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Abstract We perform analysis of public transport data from March 2015 from The 
Hague, the Netherlands, combined from three sources: static network information, 
automatic vehicles location (AVL) and automated fare collection (AFC) data. We 
highlight the effect of bunching swings, and show that this phenomenon can be 
extracted using unsupervised machine learning techniques, namely clustering. We 
show different cases of bunching swings, some of which can persist for a 
considerable time. We also show the correlation of bunching rate with passenger 
load, and bunching probability patterns for working days and weekends. We show, 
how formations of bunching swings can be extracted, and clustered into four 
different types, which we name "high passenger load", "whole route", "evening late 
route", "long duration". We analyse each bunching swings formation type in detail.   
 
Keywords: Public transport · Machine learning · Clustering · Bunching · Passenger 
load · Bunching probability 
 
1 Introduction 
Increasing amount and complexity of data describing public transport (PT) services 
allows us to better explore the detection methods and analysis of different 
phenomena of PT operations. One such phenomenon is bunching. The delay of a 
vehicle compared to its expected schedule (and resulting increase of headway with 
the previous vehicle) causes more passengers to gather at PT stops, which increases 
the vehicle’s dwell times, which in turn increases the delay of that vehicle even 



 
 

 

more. The next vehicle, even though starting according to schedule, has fewer 
passengers to collect, therefore is able to travel faster, further decreasing the 
headway with the delayed vehicle. Bunching has been shown to severely negatively 
affect the operations of PT (Osuna & Newell, 1972; Chapman & Michel, 1978) and 
different techniques were designed to deal with it (Daganzo, 2009; Feng & 
Figliozzi, 2011; Moreira-Matias et al., 2016). 
By computing passenger occupancy rate of public transport vehicles from 
Automated Fare Collection data, (Yu et al. 2016) showed that supervised learning 
techniques such as Support Vector Machines can be used to predict headways.   
In this paper, we show that it is possible to extract and detect a bunching 
phenomenon by using fully unsupervised techniques, namely clustering. That 
confirms that bunching is one of the fundamental behaviours of the PT vehicles. 
Moreover, this technique allows us to highlight, how bunching propagates over 
time, and, specifically, highlight the interesting phenomenon of “bunching swings”: 
When one vehicle is delayed, the next one runs ahead of schedule and has low 
number of passengers, while the next vehicle is delayed again, and so the pattern 
repeats. When investigating data, we regularly observed 5 or more pairs of vehicles 
forming these “bunching swings”, without returning to normal scheduled times for 
nearly two hours or even longer. We looked further into formation of bunching 
swings, and in this paper we present a way to detect and extract a bunching swings 
formations from the PT data, and show that these formations can be split into four 
different types, roughly defined as (1) “very high passenger load”, (2) “affecting the 
whole route for a few consecutive trips”, (3) “happening late in route, evening and 
weekends” and (4) “long duration, affecting many trips”. 
In Section 2, we define our case study and describe the data that we used in our 
analysis. In Section 3, we describe how the clustering can be used to extract delayed 
or bunched situations. In Section 4, we discuss the “bunching swings” phenomenon. 
Section 5 shows, how interlinked formations of bunching swings can be extracted, 
and which parameters can be used for finding types of these formations. Section 6 
discusses the results of clustering for formation types extraction, and discusses each 
of four types in detail. Finally, Section 7 concludes the paper. 
  
2 Case study and data description 
For this study, we used a dataset containing static and dynamic information for each 
stop of the public transport network in The Hague, the Netherlands, which consists 
of 12 tram lines and 8 bus lines. The dataset covers the period of one month, March 
2015.  
Static data includes information about the transportation network, its geographical 
structure, stops, routes, and schedules. It is provided in GTFS format. Dynamic data 
comes from two different sources. One is Automatic Vehicle Location (AVL) data 
(Hickman, 2004): actual times of arrival/departure of vehicles, headways, delays, 
etc. Arrival ahead of schedule is represented as a negative value of delay. The 
second type of dynamic data is the Automated Fare Collection (AFC), also known 
as Smart Card data (van Oort et al. 2016), which contains the tap-in / tap-out times 



 
 

 

of personalized smart cards (which are extremely prevalent in the Netherlands over 
other types of payment), and the exact vehicles in which these transactions 
happened. Using the tap-in and tap-out times of the smart cards, the passenger load 
(or occupancy) of a vehicle can be estimated. (Luo et al. 2018) describe, how the 
load profiles were computed for this dataset. 
 
3 Situation profiles via clustering 
Occupancy data combined with automatic vehicles location data provide us with an 
opportunity to construct profiles of different typical situations in which the PT 
vehicles can be found. We use unsupervised clustering to find these profiles. 
 
We look at every line and its direction separately. We prepare the dataset by 
removing all time/place/route signifying information. This includes time of the day, 
date, line number, stop ID, trip ID, and so on. The reason for removal of this 
information is that when constructing situation profiles, we want to look at traffic 
conditions, and we want to avoid clustering two situations with similar conditions 
differently because of different routes or times when they occurred. The features 
that we use are therefore all related directly to the traffic conditions, and are 
obtained per every stop on every tram route: 

 dwell times on stops;  
 delay of arrival;  
 passenger load;  
 previous AVL headway; 
 next AVL headway. 

 
It has to be noted, that the original dataset contains some missing periods of data, 
which sometimes produce data points, where either previous or next AVL headways 
are unknown. This happens in around 1.0% of the whole dataset. In order to keep 
these points in our dataset, we use an imputer to fill the missing values with their 
probable values, in this case we use the scheduled headway. 
All features are vectorized and normalized, and we perform K-means clustering in 
order to find the situational profiles. The results of the clustering with different 
number of clusters are shown in Table 1. All values are reported in seconds. 
 
It can be seen that there are three fundamental types of situations: 
 
1. “Normal” situations: Characterized by average dwell times; low delay (half a 
minute on average); average passenger load; and equal headways with previous and 
next vehicles. 
  



 
 

 

Table 1 Clustering results with (a) three; (b) four; (c) five clusters.  
(a) Three clusters produce a good distinction between three fundamental types of vehicle 
conditions: normal operation; being late with increased passenger load, being early and 

bunched with a previous vehicle. 

Feature 
Cluster 1 “Delayed” 

(17.5%) 
Cluster 2 “Normal” 

(67%) 
Cluster 3 “Bunched” 

(15.5%) 
dwell 30.3 ± 16 27.9 ± 15 25.9 ± 18 
delayArr 229.0 ± 138 28.1 ± 73 -64.5 ± 117 
load 34.8 ± 24 22.9 ± 18 22.2 ± 16 
preAvlHw 835.4 ± 203 697.5 ± 166 369.9 ± 262 
nextAvlHw 433.1 ± 168 713.6 ± 169 841.4 ± 302 

(b) Four clusters provide a further distinction in “normal” situations (clusters 2 and 3), 
dividing them on “slightly late” and “early”. Delayed (clusters 1) and bunched (cluster 2) 

situations are more pronounced 

Feature Cluster 1 
(13.6%) 

Cluster 2 
(49.8%) 

Cluster 3 
(30.3%) 

Cluster 4 (6.6%) 

dwell 30.5 ± 16 28.1 ± 15 27.4 ± 16 25.0 ± 19 
delayArr 258.5 ± 140 57.2 ± 71 -29.4 ± 81 -72.1 ± 136 
load 35.8 ± 24 23.6 ± 19 23.5 ± 17 19.1 ± 15 
preAvlHw 847.4 ± 207 739.9 ± 166 582.0 ± 148 207.2 ± 309 
nextAvlHw 391.2 ± 158 679.5 ± 165 780.0 ± 180 866.5 ± 403 

(c) Five clusters further split the situation. Note the last cluster 5, which now shows 
extremely bunched trams, with just over 2 minutes headway time on average and very low 

passenger load. 

Feature Cluster 1 
(7.3%) 

Cluster 2 
(20.2%) 

Cluster 3 
(48%) 

Cluster 4 
(20%) 

Cluster 5 
(4.7%) 

dwell 30.7 ± 16 29.7 ± 16 27.6 ± 15 27.0 ± 18 24.5 ± 17 
delayArr 320.5 ± 141 130.7 ± 88 24.2 ± 61 -48.3 ± 94 -66.9 ± 141 
load 37.3 ± 25 31.0 ± 21 21.4 ± 17 24.3 ± 17 17.8 ± 14 
preAvlHw 875.6 ± 218 780.7 ± 179 707.4 ± 162 518.9 ± 137 137.4 ± 339 
nextAvlHw 313.4 ± 145 562.6 ± 139 724.6 ± 166 803.9 ± 191 874.8 ± 453 

 
 
2. “Delayed” situations: Increased dwell times; considerable delay; considerably 
increased passenger load; the headway with previous vehicle is considerably larger 
than the headway with the next one. 
 
3. “Bunched/early” situations: Decreased dwell times; no delay or early arrival; 
low to medium passenger load; the headway with previous vehicle is considerable 
smaller than the headway with the next one. 
 
The interesting effect can be observed when changing the number of clusters. It can 
be seen that the profiles described above are always created, no matter the number 
of clusters. However, the bigger the number of clusters, the more fine grained these 
clusters are, further discriminating between low delays/high delays, or low 
passenger load to medium passenger load. 
 
 
 



 
 

 

4 “Bunching swings” phenomenon 
Further in this section, we use three clusters, due to the following: (1) most 
situations are regarded as “normal” (67%), with slights deviations being ignored, 
which makes it easier to concentrate on well-defined cases of bunching swings; (2) 
there is one cluster for each fundamental type of situation (normal / delayed / 
bunched). However, further in Section 5 we are interested in more pronounced cases 
of bunching swings, so we use the clustering on four clusters, but combine two 
middle ones into one to obtain a bigger, more relaxed, “normal” situation. 
 

 
Fig. 1 Clustering results with observed “bunching swings” (Line 1, March 1, Sunday). 

Red-green line represents AVL routes, with the colour matching actual passenger load 

(green is low, red is high). Clusters are marked with green cross (normal), black 

square (delayed), blue circle (bunched). 
 
An example situation of tram operations can be seen in Figure 1, which represents 
the whole day of operations of the Hague’s tram line 1 on the 1st of March, 2015, a 
rather busy Sunday. Every line represents a trip of a single tram, in time (x-axis) and 
space (y-axis, representing stops). The line varies its colour depending on the 
relative occupancy rate of the tram. The markers on stops represent belonging of 
this particular event (a tram arriving, serving and leaving a stop) to a particular 
cluster, with green crosses representing the normal situation, black cubes – a 
“delayed” cluster, blue circles – a “bunched” cluster. 
 
Here, a clear phenomenon of “bunching swings” can be observed. By “bunching 
swings” we mean cases where several consecutive PT vehicles in a row alternate 
between “delayed” and “bunched” clusters, not returning to a “normal” state. A very 
clearly marked case of such a formation can be observed in Figure 2-a, from line 1 
on March 20. One tram got delayed at a stop for a considerable time, with 5 pairs of 
trams afterwards alternating between being delayed with a high number of 
passengers and being early with a low number of passengers, a situation that lasted 



 
 

 

for an hour and a half. Figure 2-b shows a different kind of situation, from line 9 on 
March 4, with three separate cases of a single swing, where two times swings are 
started by a delayed tram, and one time by an early tram. 
 

 
(a) Case of several consecutive bunching swings. (Line 1, March 20) 

 

 
(b) Case of single bunching swings. (Line 9, March 4) 

Fig. 2 Different cases of bunching swings formation. Pale blue line represents expected 

schedule. 
 
The clustering allows us to construct patterns of bunching probability, as shown in 
Figure 3. We calculate the bunching probability as a percentage of trams clustered 
into “delayed” or “bunched” clusters, compared to all trams of the period. Bunching 
patterns differ noticeably between working days and weekends. 
 



 
 

 

 
Fig. 3 Probability of bunching, Line 1. Bunching patterns are different on working 

days and weekends. 
 
5 Bunching swings formation 
We want to look in detail at the different types of consecutive bunching swings 
formations, such as those that are shown in Figure 2. The formation as a whole 
represents a tightly interlinked situation, where early schedule irregularities may be 
still having an effect on bunching/delays and uneven passenger distribution two or 
more hours later. Therefore, understanding the types of formations and conditions, 
under which they occur, leads to a better anticipation of a situation evolution. 
  
We perform the following steps to analyse the bunching swings formations. First of 
all, we need to extract the linked formations and look at each formation separately. 
Then, we need to extract important features of each formation, in order to be able to 
cluster them by formation type. In further two subsections we describe each step in 
detail. 
 
5.1 Formations extraction 
 
Each day there are usually several bunching swings formations occurring, therefore 
we need to be precise when extracting an single interlinked formation, to avoid 
combining into one formation two or more separate bunching swings occurrences. 
 
We first need to define precisely, what we are interested in.  
 
1. We are not interested in cases of a single tram being delayed/early, when it is not 
followed by a discrepancy with the schedule in the following trips. Therefore, we 
only look at formations that have at least two bunched/delayed trips (a single 
bunching swing) or more. 
 



 
 

 

2. We are interested only in the part of the route where bunching occurs. Earlier 
stops in the route should be excluded from the formation. Although it is a common 
situation that bunching, once happened, continues until the end of a particular trip, it 
also happens that the delay or early arrival are rectified enroute. We will later see 
that some bunching cases are interesting due to the fact that they happen in the 
middle of the route with a potential to be resolved during further stops. 
 
3. During our data analysis we could see some situations, where one of the trams in 
the middle of a bunching swings pattern runs on schedule, however, the trams 
before it and after it are both involved in a bunching pattern. This situation can be 
treated in two different ways: (1) as a two different bunching formations before and 
after the tram in question, or (2) as a single bunching formation with the tram 
involved in-between bunched/delayed trams being regarded as participating in the 
formation as well. There are arguments for both types of treatment, and in our 
analysis we looked at formation clustering with both of these types, and we found 
that it does alter further clustering results. Further in this paper, we report the results 
based on (2), treating such situation as a single bunching formation. The reason is 
that, based on the situations that we looked at, such bunching swings usually 
represent a single unfolding situation, see, for example, Figure 4 (4th sub-figure) and 
Figure 7. However, if at least two consecutive trams run on schedule in between 
observed bunching swings, this does cause the creation of two different bunching 
swings formations. 
 
The algorithm for bunching swings formation detection is the following: 
1. Regard each line and direction separately. Extract a collection of data points 

for the line and direction in question. Data points are represented by a list of 
AVL locations at each stop (missing information can be handled). Each data 
point should contain the following information: date, line number, line 
direction, stop ID, stop order in the route sequence, trip ID, timestamp, dwell 
time on a stop, delay of arrival in time units, passenger load, headway to the 
previous vehicle, headway to the next vehicle, previous trip ID, next trip ID 

2. Perform clustering of data points as defined in Section 3. Each data point is 
assigned a particular cluster type (“delayed” / “normal” / “bunched”). 

3. During bunching swings formation (BSF) extraction, regard each day 
separately. Extract all data points, related to this line, direction, date into a 
current dataset. 

4. While exists an un-investigated “delayed” or “bunched” point in the current 
dataset: 
4.1. Create a new unique potential BSF ID, and put the point in question into 

the queue of points for this ID. 
4.2. Take the next point from the queue for the current potential BSF, and 

mark it as investigated. Extract neighbours of this data point: neighbours 
are data points that correspond both to the neighbouring trips (the trip in 
question, the previous trip or the next trip) and neighbouring stops (the 



 
 

 

stop is question and the certain number of stops before and after this stop, 
we used 3 stops before and after in our analysis). If at least 20% of the 
neighbouring data points belong to non-normal clusters, mark the current 
data point with the unique current “potential BSF” marker and add all its 
still un-investigated neighbours to the queue. Remove investigated point 
from the queue, and repeat this full step, while the queue is not empty. 

4.3. Extract all points marked with the current potential BSF marker, and 
perform the checks on the current potential BFS formation. Remove 
leading and trailing normal trips. Split the BSF into two or more, if it 
contains at least 2 “normal” trips in between (“normal” trips are those 
that have less than the predefined threshold of non-normal AVL points, in 
our case: 3). Check that it contains at least the minimum number of trips 
(in our case: 2). If all checks pass, a new BSF is detected and added to the 
list of BSFs. 

 
5.2 Formations clustering and profiling 
 
Once we have separate bunching swings formations extracted, we want to look 
carefully at their parameters. In this analysis, we used the following parameters 
when looking at bunching swings formations: 
 
Bunching Swings Formations Parameters: 
1. Average passenger load – we average passenger load for the whole formation, 

mainly due to the fact that in two consecutive trams in a formation, one being 
bunched and one being early, the load can differ significantly. 

2. Number of trips involved – the total number of trams that were affected 
3. Total duration – Total duration, in hours, of the bunching swings occurrence. 

It has to be noted that, obviously, this variable is considerably correlated with 
the number of trips involved (Pearson’s r=0.96 for the line 1 that we used in our 
analysis, however, it will be different for other lines that change trips density 
over time and on different days), so any one of them can be used in further 
analysis, depending on the preference. We used both separately and didn’t find 
any meaningful difference in reported results. 

4. Average starting stop – when in the sequence of stops the bunching effect 
starts to occur. 

5. Average length in stops – how long during the route the bunching effect lasts.  
6. Time of day when the bunching swings formation starts 
7. Day type – work day or weekend 
8. Lasts until route end? – yes or no, depending on whether bunching is resolved 

mid-route, or lasts until the end of the route. 
 
Once we extract these factors from each detected bunching swings formation, we 
can use them to perform a second layer of clustering, in order to combine 
formations by type.  



 
 

 

Table 2 Clustering results for bunching swings formation types extraction 

Feature 
Cluster 1 
(36,5%) 

Cluster 2 
(25,1%)  

Cluster 3 
(19.6%) 

Cluster 4 
(18.7%) 

Average passenger 
load 35.2 ± 9 22.2 ± 7 15.5 ± 5 29.1 ± 5 

Trips involved 4.5 ± 3 5.0 ± 3 3.5 ± 2 15 ± 6 

Duration 1h ± 30m 1h20m ± 30m 50m ± 30m 3h ± 1h 

Average starting stop 18 ± 5 8 ± 4 22 ± 5 14 ± 4 

Time when starts 12h ± 3h 14h ± 4h 19h30m ± 4h 12h ± 3h 

Average length in 
stops 

20 ± 5 31 ± 5 18 ± 4 26 ± 4 

Day type 
work 86.3% 

weekend 13.7% 
work 81.8% 

weekend 18.2% 
work 69.8% 

weekend 30.2% 
work 80.5% 

weekend 19.5% 

Until route end 
Yes 86.2% 
No 13.8% 

Yes 98.2% 
No 1.8% 

Yes 95.4% 
No 4.6% 

Yes 100% 
No 0% 

Explanation 

Very high average 
passenger load 
Medium length 

during route 
More often returns to 

normal schedule 
before the trip ends 

Starts very early on 
the route 

Lasts for the whole 
route duration 

Low trips number, 
evening bunching 
Starts late in the 

route 
Very low passenger 

load 
Often occurs during 

weekend 

Very long duration 
with many 

consecutive trips 
affected 

Rather high average 
passenger load 

Nickname 
"High passenger 

load" 
"Whole route" 

"Evening late 
route" 

"Long duration" 

 
One of the main concerns when doing this type of analysis, is the inability to 
combine bunching swings from different lines into one common type extraction. 
The geographical differences of lines, different stops being a part of central/busy 
areas, different schedule and frequency, different coverage by neighbouring lines 
providing feasible alternatives for passengers to avoid taking delayed trams, and 
many other external factors can all influence the bunching formations and evolution 
differently. In our future research analysis, it is our goal to add such external factors 
to our dataset and specifically look at differences in bunching formations on 
different lines and in different cities. In this paper, however, we control all those 
factors by looking at bunching swings formation types within one line, namely Line 
1 in The Hague.   
 
We looked at using different number of clusters K for K-means bunching swings 
types extraction, and settled at using K=4. We found, that three clusters do not lead 
to enough distinction between different situations, and result in common 
occurrences of different formations being assigned to the same cluster. With K=5 
and K=6, we found that some clusters had very slight distinction with each other, so 
extra clusters were not producing extra meaningful insights. However, we would 
like to note that since we used data for one month for one line only in this analysis, 
we expect that by increasing the order of data volume used, we may use the same 
approach with a bigger cluster number to get more nuanced cluster results. 



 
 

 

6 Results 
 
6.1 Clustering results 
 
As described in Section 5, we detected, extracted, and clustered bunching swings 
formations in four different types. You can see the types combined in Table 2. We 
highlighted the most important differences for each cluster.  
 
1. “High passenger load” – The most common type of bunching swings and it is 
specified by very high average passenger load for the whole duration of the swings 
formation. It often starts in the middle of the route and more often than other types 
can be experienced on work days. It has to be noted, that this is the only cluster, that 
contains considerable number of bunching swings formations that resolve before the 
end of the route, although this number is still rather small, at 13.8%. However, for 
other clusters it stands at 1.8%, 4.6%, 0%, so by far the vast majority of bunching 
swings formations cannot be resolved mid-route. Examples can be seen in Figure 4. 
 
2. “Whole route” – Bunching swings of this type usually start very early in the 
route and last for the whole duration of the trip. They have average number of trips 
involved and average passenger load. Examples can be seen in Figure 5. 
 
3. “Evening late route” – This is a somewhat unique formation type in terms of 
many factors involved. First of all, the time of day and the day type when it 
happens: it usually starts late in the evening and can be observed on weekends much 
more often than other types. The bunching swings usually start very late in the 
route, noticeably later than for other clusters. However, by far the most interesting 
factor of this cluster is the average passenger load, as it is very small, considerably 
smaller than for other bunching swings formation types. And, very importantly, this 
number is low even if we consider all trips, not only trips that are involved in 
bunching. On the one hand, this correlates very well with the fact, that this type of 
bunching swings usually happens on evenings and weekends, as at these times and 
days passenger numbers generally are much lower than average. However, as shown 
in Section 5.2 and by previous research works, bunching effect in itself correlates 
considerably with high passenger load. The fact that there is a type of bunching 
swings formations that consistently happen with low passenger number is, therefore, 
very interesting, and deserves further investigation into external factors of why this 
type of bunching swings occurs. Examples can be seen in Figure 6. 
 
4. “Long duration” – This formations type contains mainly very long and heavy 
bunching swings occurrences, lasting for a long time with many trips involved. 
Passenger load stays rather high for the duration of such a formation. Bunching 
swings of this magnitude have no chance to be resolved mid-route, as clearly shown 
by the fact that exactly 100% of such bunching swings formations in this cluster 
lasted until the end of the route. Examples can be seen in Figure 7.   



 
 

 

 

 
Fig. 4 Examples of bunching swings formations from cluster 1 “High passenger load” 

 

 
Fig. 5 Examples of bunching swings formations from cluster 2 “Whole route” 



 
 

 

 
Fig. 6 Examples of bunching swings formations from cluster 3 “Evening late route” 

 

 
Fig. 7 Examples of bunching swings formations from cluster 4 “Long duration” 



 
 

 

6.2 Passenger load effect on bunching 
 
It has been shown in previous research (Yu et al. 2016) that the number of 
passengers and changing load are one of the culprits of public transport bunching. In 
our analysis we can clearly see some cases of increased passenger load that 
nevertheless do not result in emergence of a bunching pattern, e.g. in Figure 1. 
 

 
Fig. 9 Bunching rate occurrences 

depending on passenger load 

 
Fig. 8 Histograms of average 

passenger load for (a) high 

(x>0.7); (b) medium (0.3<x≤0.7); 

or (c) low (x≤0.3) bunching rates 
 

In order to investigate the effect of increased passenger load on a bigger scale, we 
need to analyse the average rate of bunching pattern emergence over time. We look 
at all stops of our dataset, and split the full operations at each stop on periods of 2 
hours. We want to obtain the average passenger load per tram (i.e. all transported 
passengers divided by a number of trams), and the bunching rate (percentage of 
bunched/delayed trams) during these particular periods. 
 
Figure 4 shows the combined data of all occurrences of average load (x-axis) vs. 
bunching rate (y-axis) for the whole month for one direction of tram 1. The red line 
shows the average bunching rate depending on average passenger load values. The 
average bunching rate clearly goes up until an average load of about 70 people per 
tram, with the Spearman coefficient between the two values being ρ=0.86, and 
Pearson coefficient being r=0.88, which clearly shows a high correlation of 
passenger load and bunching. In Figure 5 we split bunching rates on three 
categories: high (rates over 0.7), low (rates lower than 0.3), medium (between 0.3 
and 0.7), and draw histograms of average passenger load for every rate. It can be 
seen that low bunching rate corresponds to lower passenger load. 
 
7 Conclusions 
In this paper, we showed that clustering techniques can be used to extract three 
fundamental types of a PT vehicle’s situation (normal, delayed or bunched). We 
showed that clustering clearly highlights the ‘bunching swings’ phenomenon, which 
sometimes lasts for a considerable time. By varying the number of clusters, we can 
tune the severity bunching patterns that we extract. We also showed a clear 



 
 

 

correlation between passenger load and bunching rate.  Clustering results allow us 
to perform further analysis on bunching swings in an uncontrolled environment, e.g. 
their characteristics and conditions under which the swings return to normal or 
intensify. We showed, how the formations of bunching swings can be extracted, and 
that they can be clustered into four types of situations: "high passenger load", 
"whole route", "evening late route", "long duration”. 
In our further research, we plan to investigate to abstract the parameters of bunching 
swings formation from the specific characteristics of a particular line, by 
parameterizing running frequency and other differences in schedule, and by 
including the information about the geographical location and other external 
parameters into the model. We also aim to use this information to look at how the 
evolution of bunching swings formation can be predicted in real time.  
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