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A B S T R A C T

Simulating forced time-periodic flows in industrial applications presents significant compu-
tational challenges, partly due to the need to overcome costly transients before achieving
time-periodicity. Reduced-order modelling emerges as a promising method to speed-up compu-
tations. We extend upon the work of Lotz et al. (2024) where a time-periodic space–time model
is introduced. We present a time-periodic reduced-order model that directly finds the time-
periodic solution without requiring extensive time integration. The reduced-order model gives
a reduction in variables in both space and time. Our approach involves a POD-Galerkin reduced-
order model based on a time-periodic full-order model that employs isogeometric analysis,
residual-based variational multiscale turbulence modelling and weak boundary conditions. The
projection-based reduced-order model inherits these features. We evaluate the reduced-order
model with numerical experiments on moving hydrofoils. The motion is known a priori and
we restrict ourselves to two spatial dimensions. In these experiments we vary the Strouhal
and Reynolds numbers, and the motion profile respectively. Reduced-order model solutions
agree well with those of the full-order model. The errors over the entire time period of thrust
and lift forces are less than 0.2%. This includes complex scenarios such as the transition
from drag to thrust production with increasing Strouhal number. Our time-periodic reduced-
order model offers speed-ups ranging from (102) to (103) compared to the full-order model,
depending upon the basis size. This makes it an appealing solution for prescribed time-periodic
problems, with potential for additional speedup through nonlinear reduction techniques such
as hyper-reduction.

1. Introduction

Finding a time-periodic solution of the flow past a prescribed periodically moving object using the Navier–Stokes equation is often
associated with significant computational cost. Usually, a solution is found by integrating an initial condition over a sufficiently long
time for a time-periodic solution to emerge. This transient phase usually consists of several periods. This makes these computations
expensive in industrial applications, such as wind farm and propeller optimization. To overcome this problem, we explore the use
of reduced-order models for speeding up this type of computations. Here, model assumptions or data are used to approximate the
solution of the original model, the full-order model. In this work we focus on projection-based reduced-order models, where the
full-order model is projected onto a reduced basis. This reduced basis is constructed from simulation data using proper orthogonal
decomposition (POD). In this paper, we introduce a reduced-order model that directly solves the time-periodic solution, eliminating
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the need for time integration. By leveraging the advantages of a space–time discretization, where space and time are treated equally,
we achieve a reduction in degrees of freedom in both space and time.

In the literature, various techniques are developed to obtain periodic solutions more efficiently. The shooting method is one of
hese methods [1–3]. It involves converting the time-periodic boundary value problem into an initial value problem. The objective
s then to determine the correct initial condition that satisfies the original, possibly expensive, boundary value problem. Another
ost-effective alternative is the spectral method [4,5]. The flow variables are represented by a Fourier series in time, facilitating the
irect solution of periodic flows. This approach may face challenges in accurately capturing non-sinusoidal motion due to the rapid
ncrease in the required number of Fourier modes. In the present study, we aim to develop an economical method for computing
eriodic solutions without assumptions on the motion. We use a time-periodic full-order model [6–9] to create a POD-Galerkin
educed-order model.

The stability of a reduced-order model is not guaranteed and a considerable amount of research is devoted to it. Instabilities of
educed-order models can be classified into at least two, and possibly more [10,11], classes: inf-sup instabilities, related to solving a
addle point problem, and instabilities due to convection-dominated flows. For the first class of instabilities, efforts have been made
n velocity-only reduced-order models [12–14]. However, many numerical methods for obtaining the snapshots do not provide
ointwise divergence-free flow fields [14,15], and neglecting the pressure term can lead to instabilities and large amplitude errors
n the Galerkin model [16]. An attractive alternative is to enforce a solenoidal basis, which requires a Piola transform for data
ssociated with essential boundary conditions [17]. For velocity-pressure reduced-order models, it is possible to enrich the velocity
pace with a supremizer, providing an additional set of degrees of freedom to solve for [18–21]. For instabilities of the second class,
ubgrid closure models are a promising approach. This involves the modelling of the eddy viscosity of the missing modes [22,23] or
ynamic subgrid scales [24]. A successful alternative is the application of the variational multi-scale method [25] at both full-order
nd reduced-order model levels [10,26–28], which does not require additional supremizers or a solenoidal basis, as it provides an
nf-sup stable model [10,26,29]. Alternatives to subgrid closure models can be found in e.g. data-driven techniques [21,30,31] or
he use of neural networks [32–34]. We stabilize the reduced-order model with the variational multi-scale method, following the
ork in [26].

We first consider the full-order model, which is a variational multi-scale method [25] using isogeometric analysis [35] adapted for
ime-periodic space–time [9]. By solving the time domain monolithically, we are able to impose the time-periodic constraints a priori.

e effectively transform the initial value problem into a boundary value problem. The dimension of the domain is increased by
ne, but it allows us to enforce the time-periodic constraint as a classic periodic boundary condition. The motion of the periodically
oving object is considered known and is accommodated by appropriately shaping the space–time mesh in advance. We construct

he reduced-order model by applying a Galerkin projection of the full-order model on a time-periodic basis. The basis is computed by
eans of a proper orthogonal decomposition of a snapshot matrix of which each entry is the entire periodic space–time solutions of

he full-order model for a chosen parameter set. The resulting time-periodic reduced-order model, like the full-order model, directly
omputes the entire space–time solution. We evaluate the quality of the computed solution fields and forces by comparing them
ith the full-order model for three numerical experiments. The experiments evaluate the reduced-order model for a variation of the
trouhal number, Reynolds number or motion shape for a periodically moving hydrofoil in two dimensions. The first experiment
s studied more elaborately. It examines the transition from drag to thrust production as the Strouhal number increases. For this
xperiment, we also study the effect of the basis size on solution quality and speed-up. In the last two experiments, we study the
ffect of the Reynolds number or motion shape on lift and drag.

. Full-order and reduced-order model for the time-periodic incompressible flow

In this work, we transform the initial value problem into a boundary value problem. This is achieved by treating time analogously
o space. Our notation reflects this analogy by disguising the time as an additional spatial dimension. Therefore, we directly obtain

time-periodic solution in both the full-order and reduced-order model. This approach eliminates the need for separate time
ntegration. We use the space–time full-order model for periodic flow as described in [9].

For the reduced-order model, we consider a standard POD-Galerkin model. We are able to use this standard reduced order model
s we effectively solve a boundary value problem. The reduced-order model gives a reduction of the number of variables in both
patial and temporal dimensions.

To provide a self-contained and reproducible work, we reproduce the strong formulation and discrete weak formulation of the
odel problem in the first two sections. For further details of the model, we refer to the original work.

.1. Strong formulation of time-periodic incompressible flow

We consider incompressible flow on a periodically deforming domain 𝛺(𝑡) = 𝛺(𝑡 + 𝑇 ), where 𝑇 is the period. We assume the
nknown velocity 𝐮 and pressure 𝑝 exhibit the same periodicity, that is 𝐮(𝐱, 𝑡) = 𝐮(𝐱, 𝑡 + 𝑇 ) and 𝑝(𝐱, 𝑡) = 𝑝(𝐱, 𝑡 + 𝑇 ). The boundary is
omposed of an exterior part 𝛤ext and a periodic time-dependent interior 𝛤int(𝑡). We introduce the normal velocity 𝑢𝑛 = 𝐮 ⋅ 𝐧 with
ositive and negative parts 𝑢±𝑛 = 1

2 (𝑢𝑛 ± |𝑢𝑛|). The exterior boundary is further separated in an inflow and outflow part,

𝛤𝐷
ext ∶=

{

𝐱 ∈ 𝛤ext|𝑢n(𝐱) < 0
}

, (1a)

𝛤𝑁
ext ∶=

{

𝐱 ∈ 𝛤ext|𝑢n(𝐱) ≥ 0
}

, (1b)
2
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Fig. 1. Sketch of the spatial domain with its boundaries, with inflow on the left.

here the superscripts refer to the Dirichlet and Neumann boundary conditions that will be imposed on these parts.
Fig. 1 depicts a sketch of a spatial domain 𝛺, similar to the one we will consider in Section 3.
We extrude the spatial domain over the time domain  = [0, 𝑇 ] to obtain a continuous space–time domain 𝑄 with space–time

oundaries 𝑃ext and 𝑃int. Here, 𝑃ext = 𝛤ext × while 𝑄 and 𝑃int are deformed version of 𝛺× and 𝛤 × to accommodate the motion.
We denote the space–time coordinate, using the time direction 𝑑 +1, as �̂�𝑇 = [𝐱𝑇 𝑠𝑡] = [𝑥1 ... 𝑥𝑑 𝑠𝑥𝑑+1] and the extended velocity

ector as �̂�𝑇 = [𝐮𝑇 𝑠]. Note that 𝑡 is scaled with a reference velocity 𝑠 to ensure dimensional consistency.
We substitute the traditional initial condition

𝐮(⋅, 0) = 𝐮0(⋅) in 𝛺, (2)

with its time-periodic counterpart

𝐮(⋅, 0) = 𝐮(⋅, 𝑇 ) in 𝛺, (3)

which transforms an initial value problem into a boundary value problem. To make this point more clear we chose to denote the
material derivative as

𝜕𝑡𝐮 + 𝐮 ⋅ ∇𝐮 = �̂� ⋅ ∇�̂�𝐮, (4)

resulting in the Navier–Stokes equations for time-periodic incompressible flow,

�̂� ⋅ ∇�̂�𝐮 + ∇𝑝 − 𝜈∇2𝐮 = f in 𝑄, (5a)

∇ ⋅ 𝐮 = 0 in 𝑄, (5b)

𝐮 = 𝐮𝐷int in 𝑃int, (5c)

𝐮 = 𝐮𝐷ext in 𝑃𝐷
ext, (5d)

−𝑝𝐧 + 𝜈∇𝐮 ⋅ 𝐧 + 𝑢−n 𝐮 = 𝟎 in 𝑃𝑁
ext, (5e)

𝐮(⋅, 0) = 𝐮(⋅, 𝑇 ) in 𝛺, (5f)

where 𝜈 is the kinematic viscosity, 𝑓 is an external force and 𝐮𝐷int and 𝐮𝐷ext are prescribed velocities on the interior and exterior
boundary.

The first two equations state the balance of linear momentum (5a) and mass (5b), respectively. Subsequently, the Dirichlet
boundary conditions (5c) and (5d) prescribe the velocity on the interior and the inflow boundary. While (5e) governs the outflow
boundary. Finally, (5f) enforces the time-periodic condition.

2.2. Discrete weak formulation of time-periodic incompressible flow

Converting the strong form, as given in the previous section, into a discrete formulation involves a couple of steps. First, we
convert the strong form into a weak form, by multiplying the two balance equations with appropriate test-functions, integrating
over the domain and applying integration by parts on the pressure and diffusion terms.

Subsequently, we discretize the formulation by decomposing the domain 𝑄 in non-overlapping elements 𝑄𝑒. For ease of notation,
we also define the union of element interiors as �̃� =

⋃

𝑄𝑒. We define simple polynomial (or rational) functions on each element
and construct approximate function spaces, denoted as ℎ, by combining these appropriately.

Last, we stabilize the discrete formulation by accounting explicitly for the subgrid-scale effects. For this, we apply residual-based
variational multiscale turbulence modelling as stabilization [25,36]. We split 𝐮 and 𝑝 into coarse-scale, denoted by ℎ, and small-scale
components, denoted with ′,

{𝐮, 𝑝} =
{

𝐮ℎ, 𝑝ℎ
}

+
{

𝐮′, 𝑝′
}

. (6)

The small-scale components will be accounted for by a model.
3
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For improved robustness, we choose to enforce the Dirichlet conditions weakly and added some residual-based discontinuity
apturing. The resulting discrete variational formulation of (5) is similar to [9]. After these choices, the discrete problem is stated
s follows:
Find 𝑼ℎ =

{

𝐮ℎ, 𝑝ℎ
}

∈ ℎ such that for all 𝑾 =
{

𝐰ℎ, 𝑞ℎ
}

∈ ℎ:

𝐵
(

𝑼ℎ,𝑾 ℎ) = 0, (7a)

here

𝐵
(

𝑼ℎ,𝑾 ℎ) =𝐵GAL
(

𝑼ℎ,𝑾 ℎ) + 𝐵VMS
(

𝑼ℎ,𝑾 ℎ) + 𝐵WBC
(

𝑼ℎ,𝑾 ℎ) + 𝐵DC
(

𝑼ℎ,𝑾 ℎ) , (7b)
𝐵GAL

(

𝑼ℎ,𝑾 ℎ) =
(

𝐰ℎ, �̂�ℎ ⋅ ∇�̂�𝐮ℎ
)

𝑄 −
(

∇ ⋅ wℎ, 𝑝ℎ
)

𝑄

+
(

∇𝐰ℎ, 𝜈∇𝐮ℎ
)

𝑄 +
(

𝑞ℎ,∇ ⋅ 𝐮ℎ
)

𝑄 −
(

𝐰ℎ, 𝑢−n
ℎ𝐮ℎ

)

𝑃𝑁
ext

−
(

𝐰ℎ, 𝐟
)

𝑄 , (7c)

𝐵VMS
(

𝑼ℎ,𝑾 ℎ) = −
(

∇�̂�𝐰ℎ, u′ ⊗ �̂�ℎ
)

�̃� −
(

∇𝐰ℎ,𝐮ℎ ⊗ u′
)

�̃�

−
(

∇𝐰ℎ, u′ ⊗ u′
)

�̃� −
(

∇𝑞ℎ, u′
)

�̃� −
(

∇ ⋅ wℎ, 𝑝′
)

�̃� , (7d)

𝐵WBC
(

𝑼ℎ,𝑾 ℎ) =
(

𝐰ℎ, 𝑝ℎ𝐧 − 𝜈∇𝐮ℎ ⋅ 𝐧
)

𝑃int
+
(

𝜈∇𝐰ℎ ⋅ 𝐧 − 𝑞ℎ𝐧,𝐮ℎ − 𝐮𝐷int
)

𝑃int

+
(

𝐰ℎ𝜏𝑏,𝐮ℎ − 𝐮𝐷int
)

𝑃int
, (7e)

𝐵DC
(

𝑼ℎ,𝑾 ℎ) =
(

∇𝐰ℎ, 𝜈𝑑𝑐∇𝐮ℎ
)

𝑄 . (7f)

Note: we have adopted the standard notation for the 𝐿2 innerproduct, that is (𝒇 , 𝒈)𝐷 = ∫𝐷
𝒇 ⋅ 𝒈 d𝐷.

In (7d) the small-scale velocities 𝐮′ and the small-scale pressure 𝑝′ are modelled as

𝐮′ = −𝜏𝑀𝐫𝑀 , (8a)

𝑝′ = −𝜏𝐶 𝑟𝐶 , (8b)

were 𝜏𝑀 and 𝜏𝐶 are stability parameters and 𝐫𝑀 and 𝑟𝐶 are the strong form residuals defined as

𝐫𝑀 =
(

�̂�ℎ ⋅ ∇�̂�
)

𝐮ℎ − ∇𝑝 − 𝜈∇2𝐮ℎ − 𝐟 , (9a)

𝑟𝐶 = ∇ ⋅ 𝐮ℎ. (9b)

The small-scale contributions directly depend on the strong residuals, ensuring their consistency. For the stabilization parameters
we use

𝜏𝑀 =
(

�̂�ℎ ⋅ �̂��̂�ℎ + 𝐶𝐼𝜈
2𝐆 ∶ 𝐆

)−1∕2
, (10a)

𝜏𝐶 = 𝜏−1𝑀 Tr (𝐆)−1 , (10b)

where 𝐶𝐼 is a user-provided input related to the inverse estimate, while �̂� and 𝐆 are two metric tensors providing size and
deformation information of the current element. The space–time metric tensor �̂� and the spatial metric tensor 𝐆 are defined as

�̂� =
(

𝜕𝜉
𝜕�̂�

)𝑇
𝐆𝑠

𝜕𝜉
𝜕�̂�

, 𝐆 =
(

𝜕𝜉
𝜕𝐱

)𝑇 𝜕𝜉
𝜕𝐱

, with 𝐆𝑠 =
[

𝐈𝑑×𝑑 01×𝑑
0𝑑×1 𝑠2

]

. (11)

The terms in (7e) result from the weak enforcement of the Dirichlet boundary condition. They consist of a consistency term, a
ual consistency term and a penalty term. For the penalty parameter, we use

𝜏𝑏 =
1
2
𝐶𝑏𝜈 (𝐧 ⋅𝐆𝐧)

1
2 , (12)

where 𝐶𝑏 is a user-provided input related to a trace inequality.
The discontinuity capturing provided in (7e) results in additional diffusion in problem areas. The discontinuity capturing viscosity

is inspired on [37],

𝜈dc = 2
𝐶dc

Tr (𝐆)1∕2
‖𝐫𝑀‖2

‖∇𝐮ℎ‖𝐹
, (13)

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm, and 𝐶dc is a user defined coefficient. This type of discontinuity capturing viscosities is
ubiquitous in the literature. Note that a VMS-based justification for this form of discontinuity capturing is given in [38,39]. Similar
to the stabilization terms the additional viscosity scales with the size of the residual, this makes it a consistent term. This ensures
the accuracy of the final solution.
4

These semi-linear forms in (7) are implemented using the MFEM library [40].
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2.3. System of nonlinear ordinary differential equations

The formulation provided in (7) results in a non-linear system of algebraic equations. To aid the exposition of the reduced-order
odel in Section 2.4, we will explicitly provide this system here. We discretize the coarse scale variables with

𝑢ℎ1 (�̂�) = 𝝓𝑢1 ⋅ 𝐍(�̂�), (14a)

𝑢ℎ2 (�̂�) = 𝝓𝑢1 ⋅ 𝐍(�̂�), (14b)

𝑝ℎ(�̂�) = 𝝓𝑝 ⋅ 𝐍(�̂�), (14c)

where 𝐍(�̂�) is the array of shape functions, and 𝝓𝑢1 , 𝝓𝑢2 and 𝝓𝑝 are the arrays with unknown coefficients of the entire space–time
domain. Note that 𝑁(�̂�) does not need to be split into spatial and temporal components, as space and time are treated the same in
the continuous space–time discretization.

The bilinear form in (7) becomes of the form

𝐵
(

𝑼ℎ, {𝐍, 0, 0}
)

= 𝐛𝑢 + 𝐀𝑢1𝑢1𝝓𝑢1 + 𝐀𝑢1𝑢2𝝓𝑢2 + 𝐀𝑢1𝑝𝝓𝑝 + 𝐡𝑢1 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (15a)

𝐵
(

𝑼ℎ, {0,𝐍, 0}
)

= 𝐛𝑢2 + 𝐀𝑢2𝑢1𝝓𝑢1 + 𝐀𝑢2𝑢2𝝓𝑢2 + 𝐀𝑢2𝑝𝝓𝑝 + 𝐡𝑢2 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (15b)

𝐵
(

𝑼ℎ, {0, 0,𝐍}
)

= 𝐛𝑝 + 𝐀𝑝𝑢1𝝓𝑢1 + 𝐀𝑝𝑢2𝝓𝑢2 + 𝐀𝑝𝑝𝝓𝑝 + 𝐡𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (15c)

here 𝐛𝑥 are the zeroth order terms, 𝐀𝑥𝑦 are the gradients defining the first order terms and 𝐡𝑥(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝) are the remaining
igher order terms. In matrix–vector form this becomes

⎡

⎢

⎢

⎣

𝐀𝑢1𝑢1 𝐀𝑢1𝑢2 𝐀𝑢1𝑝
𝐀𝑢2𝑢1 𝐀𝑢2𝑢2 𝐀𝑢2𝑝
𝐀𝑝𝑢1 𝐀𝑝𝑢2 𝐀𝑝𝑝

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝝓𝑢1
𝝓𝑢2
𝝓𝑝

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐡𝑢1 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
𝐡𝑢2 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
𝐡𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝐛𝑢1
𝐛𝑢2
𝐛𝑝

⎤

⎥

⎥

⎦

. (16)

For added robustness, we solve the nonlinear algebraic equations using a pseudo-time globalization technique. The pseudo-time
s denoted by 𝜃. In the discrete weak formulation in (7), both the momentum and continuity equation are augmented with a pseudo-
ime rate term. For dimensional consistency, we scale the rate term in the continuity equation appropriately. The parameter 𝑎 can be
nterpreted as an artificial speed of sound, parametrizing pseudo-compressibility [41–43]. Note, this is with respect to pseudo-time.
he actual time derivative in (4) is unaffected and consistency of the formulation is maintained. The discrete problem in becomes:
Given 𝑼 𝑛 = {𝐮𝑛, 𝑝𝑛} ∈ ℎ find 𝑼 𝑛+1 =

{

𝐮𝑛+1, 𝑝𝑛+1
}

∈ ℎ such that for all 𝑾 =
{

𝐰ℎ, 𝑞ℎ
}

∈ ℎ:

𝐵
(

𝑼 (𝑼 𝑛,𝑼 𝑛+1),𝑾 ℎ) + 𝐵PT
(

𝜕𝜃𝑼 (𝑼 𝑛,𝑼 𝑛+1),𝑾 ℎ) = 0, (17a)

here

𝐵PT
(

𝜕𝜃𝑼ℎ,𝑾 ℎ) =
(

𝐰ℎ, 𝜕𝜃𝐮ℎ
)

𝑄 + 1
𝑎2

(

𝑞ℎ, 𝜕𝜃𝑝
ℎ)

𝑄 . (17b)

Additional interpolation rules for 𝑼
(

𝑼 𝑛,𝑼 𝑛+1) and 𝜕𝜃𝑼
(

𝑼 𝑛,𝑼 𝑛+1) have to be specified to close the system. In this case, we
elect the backward Euler method, resulting in

𝑼
(

𝑼 𝑛,𝑼 𝑛+1) = 𝑼 𝑛+1, (18a)

𝜕𝜃𝑼
(

𝑼 𝑛,𝑼 𝑛+1) = 1
𝛥𝜃

(𝑼 𝑛+1 − 𝑼 𝑛), (18b)

here 𝛥𝜃 is a user-specified pseudo-time step size.
Using the mass matrix,

𝐌 = ∫𝑄
𝐍⊗ 𝐍𝑑𝑄, (19)

nd dropping the superscript gives the following non-linear system of algebraic equations:

⎛

⎜

⎜

⎜

⎝

1
𝛥𝜃

⎡

⎢

⎢

⎢

⎣

𝐌𝑢1 0 0
0 𝐌𝑢2 0
0 0 1

𝑎2
𝐌𝑝

⎤

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐀𝑢1𝑢1 𝐀𝑢1𝑢2 𝐀𝑢1𝑝
𝐀𝑢2𝑢1 𝐀𝑢2𝑢2 𝐀𝑢2𝑝
𝐀𝑝𝑢1 𝐀𝑝𝑢2 𝐀𝑝𝑝

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎣

𝝓𝑢
𝝓𝑣
𝝓𝑝

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐡𝑢1 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
𝐡𝑢2 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
𝐡𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝐛𝑢1
𝐛𝑢2
𝐛𝑝

⎤

⎥

⎥

⎦

+ 1
𝛥𝜃

⎡

⎢

⎢

⎢

⎣

𝐌𝑢1𝝓
𝑛
𝑢1

𝐌𝑢2𝝓
𝑛
𝑢2

1
𝑎2
𝐌𝑝𝝓𝑛

𝑝

⎤

⎥

⎥

⎥

⎦

(20)

ote that the time-dependent contributions are incorporated in the matrices 𝐀𝑥𝑦 and vectors 𝐡𝑥, while the pseudo-time contributions
re represented by the first and last terms respectively. This problem is solved using a modified Newton iteration method, while
he parallel sparse matrix problems are solved using precondition and GMRES provided by the Hypre library [44].
5
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2.4. Reduced basis using Proper-Orthogonal Decomposition

The dimensionality 𝑛𝑓 of the system of the full-order model in (20) is inherently large. This imposes a large computational effort.
or scenarios involving solving numerous closely related problems, such as parameter studies or design optimization, there is an
pportunity to mitigate this computational burden. We can reuse previously obtained solutions, leading to a remarkable reduction
n computational effort with only a minor reduction in solution fidelity.

We find the reduced-order model basis 𝐕 using a discrete Proper Orthogonal Decomposition (POD) [45]. The POD generates
a low-dimensional basis by finding meaningful behaviour in low-dimensional patterns of dynamic activity tailored to particular
dynamics and parameters. The discrete POD consists of a singular value decomposition of a snapshot matrix 𝐗 containing 𝑚 full-
rder solutions in its columns. The full-order solutions are determined using a particular set of input parameters 𝜇, which is a sample
rom a larger parameter space 𝛩. Each entry of the snapshot matrix contains one entire space–time solution of a full-order solution
or a parameter set 𝜇. The singular value decomposition is given as

𝐗 = ΦΣΨ𝑇 , (21)

where Φ contains the POD modes in the left singular vectors, Ψ gives the right singular vectors and Σ gives the singular values in
he diagonal. The expansion coefficients of the ROM basis have standard algebraic orthogonality such that 𝐕𝑇𝐕 = 𝑰 . The singular
alues are ordered from smallest to largest with 𝜎𝑖 < 𝜎𝑖+1 < 𝜎𝑚, indicating the relevance of the corresponding modes. We find the
asis 𝐕 by choosing it as the first 𝑛𝑟 columns of Φ based on a fraction of the missing energy in the basis

𝜖POD =
∑𝑛𝑟

𝑖 𝜎𝑖
∑𝑚

𝑖 𝜎𝑖
. (22)

2.5. Projection-based reduced-order model

We reduce each variable separately and reduce the dimension of the system by restricting each variable to its own subspace.
The reduced system approximates the entire space–time solution of the original system in a subspace spanned by a solution basis

𝝓𝑢1 ≈ �̃�𝑢1 = 𝐕𝑢1 �̂�𝑢1 , (23a)

𝝓𝑢2 ≈ �̃�𝑢2 = 𝐕𝑢2 �̂�𝑢2 , (23b)

𝝓𝑝 ≈ �̃�𝑝 = 𝐕𝑝�̂�𝑝. (23c)

Here, 𝝓𝑥 is the sought for full-order solution, while �̃�𝑥 is its the high-dimensional representation of the reduced-order model
approximation (size(�̃�𝑥) = 𝑛𝑓 ). Contrary �̂�𝑥 is the low dimensional representation and 𝐕𝑥 is the reduced basis as found in the previous
section (size(�̂�𝑥) = 𝑛𝑟). The matrix 𝐕𝑥 serves as a linear map between the low-dimensional and high-dimensional representation of
the reduced-order solution The basis 𝐕𝑥 is composed of 𝑛𝑟𝑥 space–time basis vectors 𝒗𝑥 as columns, 𝐕𝑥 =

{

𝒗𝑥1, ..., 𝒗𝑥𝑛𝑟𝑥
}

with
𝑟 ≪ 𝑛𝑓 .

As the reduced-order model will be a direct projection of the full-order model, it implicitly uses the same stabilization as the
ull-order model. This is akin to work on POD-Galerkin reduced-order models with the variational multi-scale frame-work [10,26,29].
pon substitution of (23) in (16), the number of unknowns reduces while the number of equations remains the same, resulting in
n over-determined system. We apply a Galerkin projection to find the reduced system of equations. This is equivalent to using the
ubspace restriction of the trial-space on the test spaces as well.

In this case the full-order model (16) is reduced to

⎡

⎢

⎢

⎣

𝐕𝑢1
𝐕𝑢2
𝐕𝑝

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

𝐀𝑢1𝑢1 𝐀𝑢1𝑢2 𝐀𝑢1𝑝
𝐀𝑢2𝑢1 𝐀𝑢2𝑢2 𝐀𝑢2𝑝
𝐀𝑝𝑢1 𝐀𝑝𝑢2 𝐀𝑝𝑝

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐕𝑢1𝝓𝑢1
𝐕𝑢2𝝓𝑢2
𝐕𝑝𝝓𝑝

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐕𝑢1
𝐕𝑢2
𝐕𝑝

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

𝐡𝑢1 (𝐕𝑢1𝝓𝑢1 ,𝐕𝑢2𝝓𝑢2 ,𝐕𝑝𝝓𝑝)
𝐡𝑢2 (𝐕𝑢1𝝓𝑢1 ,𝐕𝑢2𝝓𝑢2 ,𝐕𝑝𝝓𝑝)
𝐡𝑝(𝐕𝑢1𝝓𝑢1 ,𝐕𝑢2𝝓𝑢2 ,𝐕𝑝𝝓𝑝)

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

𝐕𝑢1
𝐕𝑢2
𝐕𝑝

⎤

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

𝐛𝑢1
𝐛𝑢2
𝐛𝑝

⎤

⎥

⎥

⎦

,

which can be alternatively written as

⎡

⎢

⎢

⎣

�̂�𝑢1𝑢1 �̂�𝑢1𝑢2 �̂�𝑢1𝑝
�̂�𝑢2𝑢1 �̂�𝑢2𝑢2 �̂�𝑢2𝑝
�̂�𝑝𝑢1 �̂�𝑝𝑢2 �̂�𝑝𝑝

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂�𝑢1
�̂�𝑢2
�̂�𝑝

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

�̂�𝑢1 (𝐕𝑢1 �̂�𝑢1 ,𝐕𝑢2 �̂�𝑢2 ,𝐕𝑝�̂�𝑝)
�̂�𝑢2 (𝐕𝑢1 �̂�𝑢1 ,𝐕𝑢2 �̂�𝑢2 ,𝐕𝑝�̂�𝑝)
�̂�𝑝(𝐕𝑢1 �̂�𝑢1 ,𝐕𝑢2 �̂�𝑢2 ,𝐕𝑝�̂�𝑝)

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

�̂�𝑢1
�̂�𝑢2
�̂�𝑝

⎤

⎥

⎥

⎦

, (24)

here

�̂�𝑥𝑦 = 𝐕𝑇
𝑥𝐀𝑥𝑦𝐕𝑦, (25a)

�̂�𝑥 (⋅) = 𝐕𝑇
𝑥 𝐡𝑥 (⋅) , (25b)

�̂�𝑥 = 𝐕𝑇
𝑥 𝐛𝑥. (25c)

ote that �̂�𝑥𝑦 can be precomputed if it is independent of parameter 𝜇. Additionally, it is worth noting that we do not use pseudo-time
s a globalization technique in the reduced-order model. The non-linearity did not pose issues in solving the problem. The reduced-
rder model is unable to represent arbitrary unphysical flow features as it is constrained by the basis. We conjecture that this is the
eason that a globalization technique such as pseudo-time is not needed in the reduced-order mode. Our experience showed that it
as not necessary.
6

For obtaining the POD basis and implementing the reduced-order model we use the libROM library [46].
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Fig. 2. Schematic representation of the domain 𝛺, as an iso-time slice of 𝑃 , surrounding the hydrofoil with the no-slip boundary 𝛤int, the inflow boundary 𝛤𝐷
ext

and the outflow boundary 𝛤𝑁
ext. The arrows indicate the direction of the flow. The five NURBS patches are indicated with a dotted line.

3. Numerical experiments

In this section, we apply the presented reduced-order model to simulate the flow past a periodically moving two-dimensional
hydrofoil. First, we discuss the general setup of the problem, its discretization and numerical parameters. Following the general
setup, we provide an overview of the reduced-order model’s specifics and explain the metrics used for evaluation. After these
preliminaries, we conduct three parameter studies, systematically varying parameters such as period, viscosity, and motion profile.
This will provide a clear demonstration of the potential offered by the reduced-order model.

3.1. Problem setup

A typical isotime slice of the computational domain is given in Fig. 2. The hydrofoil has a NACA 0012 profile with a chord
denoted as 𝑐. To find a reasonable balance between artificial boundary influences and computational effort, the size of the domain
is chosen to be 8 chords in the upwind and lateral directions and 8 chords in the downwind direction. The inflow from the left is
a uniform flow, this velocity is denoted as 𝑈 . The foil experiences a forced heave motion, with amplitude ℎ𝑎.

In the first two experiments, the motion is sinusoidal and given by

ℎ(𝑡) = ℎ𝑎 sin
( 2𝜋𝑡

𝑇

)

, (26)

where 𝑇 is the period. To correctly categorize the motion, we introduce the Strouhal number

St =
2 ℎ𝑎
𝑈 𝑇

. (27)

Furthermore, we will use the chord Reynolds number and force coefficients to non-dimensionalize the system,

Re = 𝑈 𝑐
𝜈

, 𝐶𝑥 =
𝐹𝑥

1
2 𝜌𝑈2𝑐

. (28)

3.1.1. Discretization
The full-order model formulation in (7) is evaluated using isogeometric analysis. We discretize the domain using five second-

order NURBS patches. This results in 𝐶1-continuity within each patch and 𝐶0-continuity over patch interfaces. The boundaries of
he NURBS patches are indicated with the dotted lines in Fig. 2. The patches are extruded in the time direction, resulting in 3D
URBS patches. We satisfy the time-periodic boundary condition with 𝐶0-continuous constraints.

The motion of the foil section is accommodated by appropriately shaping the space–time mesh a priori. This is achieved by
irst applying knot insertion to fit the shape of 𝛤int to be the foil section on each time slab of 𝑃int. Then, knots are inserted in
he time direction to apply the prescribed motion on 𝑃int. The resulting mesh contains the entire discretized space–time domain of
he time-periodic problem. The boundaries of the resulting discretized domain are shown in Fig. 3. Here, one of the time-periodic
oundaries is cut off, revealing the shape of 𝑃int, which governs the motion of 𝛤int(𝑡). We refer to [50] for knot insertion and fitting
lgorithms.

This discretization results in 900k degrees-of-freedom per variable, making a total system size of 2.7M degrees-of-freedom. We
se 49 control points in the time direction. See Appendix A for details regarding the discretization choice and time slices of the
esh. Further refinement of the discretization gives only a small improvement of the solution and does not compensate for the

dditional computational costs.

.1.2. Numerical parameters
Due to the non-dimensional nature of the problem, the choice for freestream and chord is largely immaterial. For simplicity, we

𝐷

7

hoose unity, that is 𝑈 = 1 and 𝑐 = 1. The time-dependent boundary velocities 𝐮int (𝑡) on the internal boundary are governed by the
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Fig. 3. The boundaries of the resulting discretized domain. The shape of 𝑃int, which governs the motion of 𝛤int(𝑡), is revealed as one of the time-periodic
boundaries is cut off. See Appendix A for time slices of the mesh.

Table 1
Numerical parameters and their
corresponding values.

Parameter Value

𝑠 1
𝑎 4
𝐶𝐼 36
𝐶𝑏 8
𝐶𝑑𝑐 0.3
𝛥𝜃 1.0

space–time mesh and are not given as an input. The velocity 𝐮𝐷int is computed with the derivative of the spatial coordinate 𝐱 to the
time direction 𝑡 = 𝑥𝑑+1∕𝑠

𝐠int =
𝜕𝐱
𝜕𝑡

|

|

|

|𝐱p
in 𝑃int, (29)

where 𝐱p is a particle path on the solid of 𝑃int. See [9] for more details. Other relevant numerical parameters are given in Table 1.
For the convergence criterion, we choose an absolute tolerance of 10−5 for the two momentum conservation and mass

conservation residuals of both the full-order and reduced-order model. For the full-order model, the residual is evaluated at the
beginning of each pseudo-time step [9]. Tighter convergence criteria only result in negligible changes to the solution.

3.1.3. Reduced-order model
The reduced-order model as presented in (24) is constructed and evaluated in three stages: an offline, merge and online stage.

In the offline stage, we evaluate the full-order model for 30 values of the input parameter 𝜇, chosen with equal distance in the
parameter space 𝛩. In the merge stage, the snapshot matrix of the time-periodic space–time solution of the full-order model is
assembled and the solution basis 𝐕𝑥 is computed using a POD. In the online stage, the system in (24) is constructed and solved.

We compute the forces of the full-order model similar to [9], using a space–time force extraction method inspired by the
variationally consistent postprocessing method [47,48]. For clarity, we repeat it here. The time-dependent force is given by

𝐅(𝑡) = ∫𝛤int

𝑝𝐧 − 𝜈∇𝐮 ⋅ 𝐧 + 𝜏𝑏(𝐮 − 𝐠)d𝛤 (30)

which requires a spatial integral at a fixed time level. For arbitrary space–time meshes evaluation of this integral is not trivial. We
remedy this by discretizing the force in time,

𝐅ℎ(𝑡) = 𝐅 𝑁 (𝑡), (31)
8

𝑎 𝑎
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and project the signal as follows

∫
𝐅𝑎 𝑁𝑎𝑁𝑏 d𝑡 = ∫𝑃int

(𝑝𝐧 − 𝜈∇𝐮 ⋅ 𝐧 + 𝜏𝑏(𝐮 − 𝐠)) 𝑁𝑏 d𝑡, (32)

which only involves integrals that are easily evaluated. Note that the last term on the right-hand side is the contribution of the weak
boundary condition.

3.1.4. Performance metrics
We evaluate the accuracy of the reduced-order model by evaluating the normalized 𝑙2-norm of the error for each variable. The

error is the difference between the full-order solution, 𝝓𝑥, and the full representation of the reduced-order solution, �̃�𝑥, over the
entire space–time domain

𝜖𝑥 =
√

(

�̃�𝑥 − 𝝓𝑥
)

⋅
(

�̃�𝑥 − 𝝓𝑥
)

∕
√

𝝓𝑥 ⋅ 𝝓𝑥, (33)

where 𝑥 is a place holder for the different variables 𝑢1, 𝑢2 and 𝑝. The error is normalized with the 𝑙2-norm of the full-order solution
of the entire space–time domain. The speed-up of the reduced-order model (ROM) over the full-order model (FOM) is defined as

speed-up = wall-clock time FOM
wall-clock time ROM . (34)

The wall-clock time only includes the solve time of the non-linear system and excludes the assembly of the matrix.
We evaluate the accuracy of the computed forces 𝐅 using the average and root mean square error for each component. For a

generic force component F we compute these as

𝜖avg = 1
𝑇 ∫

F̃ℎ − Fℎd𝑡 = 1 ∑

𝑖=1
F̃ℎ(𝑡𝑖) − Fℎ(𝑡𝑖), (35)

𝜖2RMS = 1
𝑇 ∫

(

F̃ℎ − Fℎ
)2 d𝑡 = 1 ∑

𝑖=1

(

F̃ℎ(𝑡𝑖) − Fℎ(𝑡𝑖)
)2 , (36)

where is a specified number of samples and 𝑡𝑖 =
𝑖𝑇 . To get a more meaningful quantification of the error, the average and RMS

errors are normalized with the range of the data 𝛥𝐹 ,

𝜖navg =
𝜖avg

𝛥𝐹
, 𝜖nRMS =

𝜖RMS
𝛥𝐹

, (37)

where the range of the data is obtained using

𝛥𝐹 = max𝑖=1..
(

Fℎ(𝑡𝑖)
)

− min𝑖=1..
(

Fℎ(𝑡𝑖)
)

. (38)

3.2. Parameter studies

In this section, we evaluate three studies considering a variation in Strouhal number, Reynolds number and motion profile. For
each scenario, we first discuss the general description of the problem and assess its reducibility, followed by a review of the results
and the error metrics described earlier.

3.2.1. Strouhal number study
In this experiment, we will vary the Strouhal number and evaluate the efficacy of the reduced-order model to deal with this

parameter change. The Strouhal number 𝑆𝑡 is a measure of the velocity of the motion relative to the free-stream velocity. For flat
objects with flapping motions, such as heaving foil sections, the range of 𝑆𝑡 = 0.1 to 𝑆𝑡 = 0.3 is of particular interest. Due to the
interaction of the shed vortex with the foil section, it will make the transition from drag to thrust producing when 𝑆𝑡 is increased
in this range.

We will be looking at four different Strouhal numbers spread over the range of interest, that is

𝑆𝑡 ∈ [0.105, 0.155, 0.205, 0.255], (39)

while we fix the motion amplitude ℎ𝑎∕𝑐 = 0.5. For the Reynolds number we set Re = 800. Two typical velocity fields computed by
the reduced-order model and full-order model, for 𝑆𝑡 = 0.105 and 𝑆𝑡 = 0.255, are depicted in Fig. 4. The figure shows the agreement
between the two velocity fields. Note that the wake interaction is qualitatively different. This qualitative difference is also reflected
in the force signals as depicted in Figs. 8 and 9, particularly the force in the 𝑥1 direction is notably different.

To speed up the computations, we build a reduced-order model for a sinusoidal heaving foil section with a variation in Strouhal
number. In the offline stage, we compute 30 equidistant snapshots in the range 0.08 ≤ St ≤ 0.28. The Strouhal numbers we are
interested in, given in (39), are not in this set. To extract an efficient basis for the reduced-order model out of the snapshots we
compute the SVD of the snapshot matrix. The two most dominant modes of the basis of 𝑢1, 𝑢2 and 𝑝 are visualized in Appendix B.
The singular values 𝜎𝑖 of this decomposition are given in Fig. 5.

From the steep decline in 𝜎𝑖 it can be concluded that the problem is suitable for reduction. Using the singular values, the missing
energy fraction 𝜖POD for different reduced bases can be computed. The required size of the reduced basis for a given missing energy
9

fraction 𝜖POD is indicated in Table 2.
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Fig. 4. Strouhal number study: Magnitude of the velocity ‖𝐮‖ computed by the reduced-order model (ROM) and full-order model (FOM) at 𝑡 = 0, 𝑡 = 1
4
𝑇 , 𝑡 = 2

4
𝑇 ,

𝑡 = 3
4
𝑇 for 𝑆𝑡 = 0.105 and 𝑆𝑡 = 0.255. Visualized using VisIt [49].

For these five different reduced bases the speed-up and errors in solution and force are given in Fig. 6. The solution error is
computed as 𝜖 =

√

𝜖2𝑢1 + 𝜖2𝑢2 + 𝜖2𝑝 , using (33). The force errors are given by (35) and (36) and are averaged over the four Strouhal
numbers. As expected the figure shows that the errors decrease if the missing energy fraction 𝜖 is decreased. The speed-up also
10
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Fig. 5. Strouhal number study: Decay of singular values 𝜎𝑖 associated with 𝐕.

Fig. 6. Strouhal number study: Reduced-order mode speed-up and convergence of the error as function of the missing energy fraction 𝜖POD as given in Table 2.

Table 2
Strouhal number study: Basis size 𝑛𝑟 per variable
per missing energy fraction 𝜖POD Eq. (22).
𝜖POD size 𝑢1 size 𝑢2 size 𝑝

10−3 7 20 13
10−4 14 25 22
10−5 20 27 26
10−6 24 29 29
0 30 30 30

decreases but is still significant. Note that the errors of the forces converge to zero. Below 𝜖POD < 10−4 the speed-up does not further
deteriorate, therefor we choose 𝜖POD = 0 for further experiments as this gives a favourable compromise between speed-up and errors.

For higher Strouhal numbers the errors are smaller as can be seen in Fig. 6. The contribution of the separate variables 𝑢1, 𝑢2,
and 𝑝 to these errors are given in Fig. 7. This is likely a consequence of the sampling of the parameter space used for generating
the snapshots. Alternatively, instead of opting for a uniform sampling of the Strouhal number, one could have chosen a uniform
11

sampling of the period 𝑇 , or equivalently 1∕𝑆𝑡, which would have resulted in a higher density of samples at low Strouhal numbers.
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Fig. 7. Strouhal number study: normalized 𝑙2-norm of the error 𝜖𝑥 (33) of reduced-order w.r.t. full-order model.

Fig. 8. Strouhal number study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized RMS error and absolute error of the average force for reduced-order
w.r.t. full-order model.

Another implementation of this experiment, with a uniform sampling of the period 𝑇 , indeed showed smaller errors at low Strouhal
numbers. Note that choices considering the sampling density can be avoided with the employment of an adaptive sampling method,
leading to more uniform errors in the parameter space. The error for 𝑢1 is smaller than the errors for 𝑢2 and 𝑝. This can be explained
by the normalized nature of 𝜖𝑣. The norm of 𝑢1 is dictated by the free stream velocity 𝑈 .

The computed forces of the reduced-order and full-order models are given in Figs. 8 and 9.
The corresponding normalized RMS (36) and average (35) error are also provided. The agreement between the forces is very

good. For the forces in the 𝑥1-direction and the 𝑥2-direction the errors are <0.2%. Note that the full-order and reduced-order models
use different force extraction methods.

3.2.2. Reynolds number study
The Reynolds number Re describes the ratio of inertial forces to viscous forces in fluid flow. It helps to characterize the flow

regime, indicating whether it is laminar, transitional, or turbulent. We study low Reynolds number flow with Re < 103, below the
transition regime to turbulent flow. An increase in Reynolds number can be linked to either an increase in forward velocity or a
decrease in viscosity. As the Reynolds number increases, we anticipate a reduction in drag forces and an increase in lift forces.

We create a reduced-order model for a sinusoidal heaving foil section with a variation in Reynolds number, 200 ≤ Re ≤ 800. We
choose a constant Strouhal number of 𝑆𝑡 = 0.125 and a constant motion amplitude ℎ𝑎∕𝑐 = 0.5. Fig. 10 shows a steep decrease of
the singular values 𝜎𝑖, indicating that the problem is reducible. We evaluate the reduced-order model, and the full-order model as
ground truth, at

Re ∈ [275, 425, 575, 725]. (40)
12
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Fig. 9. Strouhal number study: Vertical force coefficient 𝐶𝑥2 and corresponding normalized RMS error and absolute error of the average force for reduced-order
.r.t. full-order model.

Fig. 10. Decay of singular values 𝜎𝑖 associated with 𝐕 for the Reynolds number study.

hese Reynolds numbers do not coincide with the Reynolds numbers used to generate the snapshots.
Fig. 11 gives the relative error (33) for the variable fields when comparing the reduced-order model with the full-order model.

he errors are the smallest for the 𝑢1-solution field. The errors for the 𝑝-solution field are the largest. All errors are ≤  (1%).
Figs. 12 and 13 show the agreement between the computed forces of the full-order and reduced-order models. The normalized

oot mean square error (36) and the normalized error of the average (35) are <0.08% and <0.05% for 𝐶𝑥1 and 𝐶𝑥2 respectively.

.2.3. Motion profile study
The motion profile significantly influences thrust production in a flapping wing. An optimized motion profile can enhance

erodynamic efficiency by maximizing lift and minimizing drag, ultimately leading to more effective thrust production. We study a
roup of non-sinusoidal motion profiles described with

ℎ(𝑡) = ℎ𝑎 sin (𝜔𝑡 + 𝜙(𝑡), ) (41a)

𝜙(𝑡) = 𝜙𝑎 cos (𝜔𝑡). (41b)

The time trace of this motion is given in Fig. 14.
The time-dependent phase-shift modulation 𝜙(𝑡) is time-periodic, resulting in a time-periodic heave. As 𝜙𝑎 increases, the original

sinusoidal motion is distorted in an unsymmetric way. At a positive heave, the motion slows down, while at a negative heave, the
13

motion speeds up. This results in an uneven dwell time in the upper and lower parts of the stroke.
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r

Fig. 11. 𝑙2-norm of the error 𝜖𝑥 (33) of reduced-order w.r.t. full-order model normalized with the 𝑙2-norm of the solution field for the Reynolds number study.

Fig. 12. Reynolds number study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized RMS error and absolute error of the average force for
educed-order w.r.t. full-order model.

Fig. 13. Reynolds number study: Vertical force coefficient 𝐶𝑥2 and corresponding normalized RMS error and absolute error of the average force for reduced-order
w.r.t. full-order model.
14
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t

Fig. 14. Motion profile study: Non-sinusoidal heave function as in (41).

Fig. 15. Motion profile study: Decay of singular values 𝜎𝑖 associated with 𝐕.

We create a reduced-order model for a variation of the phase amplitude 0.1 ≤ 𝜙𝑎 ≤ 0.6. The other parameters are chosen similarly
o the previous test cases, that is: the Reynolds number is Re = 800, the Strouhal number is 𝑆𝑡 = 0.125 and a motion amplitude of
ℎ𝑎∕𝑐 = 0.5.

The singular values 𝜎𝑖 of the snapshot matrix are given in Fig. 15. The steep decrease in the singular values indicates that the
problem is amenable to model-order reduction. We assess the reduced-order model at

𝜙𝑎 ∈ [0.1625, 0.2875, 0.4125, 0.5375]. (42)

These values do not match the amplitudes used for generating the snapshots. We compare the reduced-order model against the
full-order model, which is considered as ground truth.

Fig. 16 shows similar trends when comparing the relative error (33) of the variable fields for the reduced-order model versus
the full-order model as the previous cases. The errors are the smallest for 𝑢1 and the largest for 𝑝. All errors are ≤  (0.1%).

Figs. 17 and 18 show very good agreement between the force coefficients computed by the full-order and reduced-order models.
15

The normalized root mean square error (36) and the normalized error of the average (35) are < 0.01% for 𝐶𝑥1 and < 0.005% for 𝐶𝑥2 .
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Fig. 16. Motion profile study: 𝑙2-norm of the error 𝜖𝑥 (33) of reduced-order w.r.t. full-order model normalized with the 𝑙2-norm of the solution field .

Fig. 17. Motion profile study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized RMS error and absolute error of the average force for reduced-order
w.r.t. full-order model.

Fig. 18. Motion profile study: Horizontal force coefficient 𝐶𝑥2 and corresponding normalized RMS error and absolute error of the average force for reduced-order
w.r.t. full-order model.
16
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4. Conclusions

We have successfully implemented a time-periodic reduced-order model. We confirmed the favourable performance of the
educed-order model on the problem of a moving hydrofoil, where we varied the Strouhal number, Reynolds number and heave
otion profile.

The computed solution fields of the reduced-order model and full-order model show good agreement. The same is true for the
ostprocessed forces. While reducing the dimension of the problem from (106) to (102) the errors in the force are less than 0.2%
or drag and lift. This makes the reduced-order model suitable for computations of a wide variety of time-periodic flows.

The reduced-order model behaved predictably as increasing the size of the reduced basis caused the errors to converge to zero.
he reduced-order model offers a speed-up of (102) - (103) over the full-order model, depending on the basis size. Higher speed-ups
re likely possible when appropriate non-linear reduction techniques, such as hyper-reduction, would be adopted.

Looking forward, there are several interesting avenues for future work. First, extending the model to three spatial dimensions
ould significantly enhance its applicability. Second, additional verification for higher Reynolds numbers makes the model suitable

or more industrial applications. Finally, applying the model to industrial contexts, such as optimizing the performance and
ayout of wind farms or ship propellers, provides an opportunity to bridge the gap between the ideas in this work and practical
olutions.
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ppendix A. Temporal and spatial discretization

The spatial convergence for a steady-state case of a foil section at an angle of attack of 3◦ is given in Fig. A.19. The convergence
rders of 𝐶𝑥1 and 𝐶𝑥2 are 1.3 and 1.4, respectively. A spatial discretization of ℎ∕ℎ0 = 0.5 was chosen, as it exhibited errors of 3.0%
nd 1.1% with the Richardson extrapolated results, offering a balance between computational costs and discretization error. In this
iscretization the patches are refined to 68 control points between the foil section and the inflow boundary, 62 control points over
he length of the foil section and 78 control points between the foil section and the outflow boundary. The spacing of the control
oints is similar as in [9]. The resulting spatial discretization is visualized in Fig. A.20

The temporal domain was discretized with 49 control points. For a further refinement, the added computational costs do not
alance the reduction in error on a pure heaving test case.

ppendix B. Visualization of the basis

In Fig. B.21 visualizes four slices of the shapes of the two most dominant modes of the time-periodic basis. The slices are taken
t 𝑡 = 0, 𝑡 = 1

4𝑇 , 𝑡 = 2
4𝑇 , 𝑡 = 3

4𝑇 for 𝑢1, 𝑢2 and 𝑝.
17



Computer Methods in Applied Mechanics and Engineering 429 (2024) 117161J.E. Lotz et al.
Fig. A.19. Numerical results and Richardson extrapolation of the steady-state force coefficients 𝐶𝑥𝑖 . The order of convergence is 1.30 and 1.35 for directions 𝑥1
and 𝑥2 respectively.

Fig. A.20. Slices of the space–time mesh, showing the discretization of the spatial domain at 𝑡 = 0. Visualized using VisIt [49].
18
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Fig. B.21. Strouhal number study: slices of the first two modes of the basis for 𝑢1, 𝑢2 and 𝑝 at 𝑡 = 0, 𝑡 = 1
4
𝑇 , 𝑡 = 2

4
𝑇 , 𝑡 = 3

4
𝑇 showing the shape of the basis.

Visualized using VisIt [49].
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