
Robustness Analysis for the Re-entrant Flow Shop Problem

Alexandru Bobe
Supervisor(s): Eghonghon Eigbe, Neil Yorke-Smith

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 19, 2022



Robustness Analysis for the Re-entrant Flow Shop Problem

Alexandru Bobe1
Supervisor(s): Eghonghon Eigbe1 , Neil Yorke-Smith1

1EEMCS, Delft University of Technology, The Netherlands

Abstract

Scheduling is required in almost every industry and
when done well it can bring a lot of revenue. Flex-
ibility is often forgotten when creating the initial
schedules. Therefore, in case of an unexpected de-
lay, the whole schedule has to suffer. In this paper,
we consider a re-entrant flow shop with sequence-
dependent setup times and relative due dates for
our industrial partner, which specialises in indus-
trial printers. Then, we perform a robustness anal-
ysis on real schedules from the industry, which can
be extended to any system represented as a flow
shop with relative due dates. We find how much
time a schedule with relative due dates has before
it becomes infeasible. We continue by empirically
creating a new robustness measure and comparing
it with state-of-the-art techniques. The experiments
confirm that this measure can be useful in creating
robust initial schedules for re-entrant flow shops
with added idle time that has a minimal effect on
the total duration of the solution.

1 Introduction
Scheduling has always been relevant to the real world and it
is now undergoing intense study in many domains, including
Artificial Intelligence [1]. Whether it is about humans or ma-
chines, an execution plan is beneficial for achieving optimal
results. In a small team, a manager can cope with unexpected
situations, when resources are insufficient or time is limited.
However, when it comes to complex manufacturing systems,
there is a need for sophisticated scheduling strategies. The
system must highly optimize the process, by choosing which
machines will complete the job and in which specific order, to
achieve the best results with the lowest quantity of resources
used. In Managerial Sciences, the main characteristic used
for comparison is revenue. In Computer Science, we talk
about time, as it is tightly connected to revenue and allows for
easier generalisation. Modern systems are present in many
industries and to name a few, public transport, manufacturing
and even aerospace engineering [2].

Much research has been done in collaboration with indus-
trial partners in order to prove the difficulty of scheduling

problems [3] and optimize their systems. Our industrial part-
ner is concerned with industrial printing. The printing process
is comprised of different operations and various durations, in-
cluding the printing time, warm-up time, recovery time and
loading time. This level of complexity is specific to combina-
torial problems, which live at the intersection of Mathematics
and Computer Science. A few papers have already explored
the optimization of industrial printers using advanced com-
putations [4; 5]. They present the problem as a flow shop
since the machine ordering is the same for every job. More-
over, they present some techniques for generating solutions.

The implementation of a schedule in a real-world setting is
not a one-fit-all scenario. However, we describe in Figure 1
a scenario that can be applied in various environments. First,
an initial schedule has to be created. Various techniques are
being used to do it, including Bellman-Ford and genetic al-
gorithms [6]. Then, the initial solution is improved in various
ways. The schedule is analysed in terms of different char-
acteristics, depending on the overall goal. Besides the total
makespan, the robustness of the schedule is also important.
At first, as in our paper, this analysis deals with a determinis-
tic schedule. Then, as the schedule is improved, the duration
of operations takes stochastic values to better mimic the real
world. After the analysis is done, the manager chooses if they
want to add idle time to the schedule to improve the overall
performance. We deem it a useful step for improving the ro-
bustness of schedules and we create the means for efficiently
doing it. Afterwards, the schedule is applied in the production
environment and the probability distributions are found for
the operations in the given schedule, as the operational times
might follow a different distribution depending on the chosen
sequence. It is a difficult task to find the probability distribu-
tions, which have a great impact on the performance of the
solution. With these distributions known, an improved solu-
tion can be found. There exist no analytical solution for this
problem, however, Baker and Altheimer propose some com-
putational efficient heuristics to solve it [7]. Then, the sched-
ule is analysed again and the implementation cycle starts over.
This is a never-ending cycle, as machine breakdowns and de-
terioration are always present in a production system [8] and
the latest schedule might not be the most efficient anymore.
Xiong et al. propose a robustness measure for stochastic job
shops. This measure can also be applied in our case for the
schedules with stochastic values. They propose to measure



the robustness of a stochastic schedule using the Monte Carlo
method with the following formula:

RM =
1
N

∑N
i=1 Mi (S)−M0 (S)

M0 (S)
(1)

where N is the number of experiments, M0 is the expected
makespan of the schedule and Mi is the actual makespan ob-
tained in the experiment.

In this paper, we are not interested in how the initial sched-
ules were generated, but in assessing if an existing sched-
ule that assumes deterministic values for the duration can in-
deed take into account delays without totally breaking down
or having a minimum increase in the duration. We use a re-
entrant flow shop and we perform a robustness analysis on
schedules with deterministic values generated for our indus-
trial partner, depicted as the second step in Figure 1. This
analysis is valuable not only for our partner but for any sys-
tem depicted as a flow shop with relative due dates. Then,
we demonstrate how our measure compares to state-of-the-
art techniques [9; 10]. The goal of this paper is to create a
robustness measure that can be used while creating re-entrant
flow shop schedules with inserted idle time to improve flexi-
bility while minimising the delay in completion time.

2 Problem Definition
In this section, we define the re-entrant flow shop with
sequence-dependent setup times and relative due dates, in-
troduce the terminology and formalize the notations. In order
to facilitate the understanding of the reader, the use case is
an industrial printer, but it can be generalised to any large
production system. It is important to note the difference be-
tween scheduling problems or benchmarks and schedules or
solutions.

2.1 The Re-entrant Flow Shop Problem
A flow shop is a complex combinatorial problem [11]. A
re-entrant flow shop is a scheduling problem where one
or more operations must be performed multiple times by
the same machine, see Figure 2 for an example visualiza-
tion. For example, printing both sides of a paper requires
the sheet to go twice through a machine. In literature, a
re-entrant flow show is usually represented as a tuple [4;
12] with minor variations. We chose to define the tuple
(M,J, r,O, P, S, SS,D, ϕ) for a schedule with n jobs and
m machines. M = {m1,m2...mm} is the set of machines.
Each machine can only perform a single operation at any
given moment and it must fully complete an operation before
being able to start another operation. J = {j1, j2...jn} is the
set of jobs. For our problem, the flow shop has a fixed job or-
der. Different re-entrant flow shops, where the ordering of the
jobs is not fixed, have been proven to be NP-complete [13].
r defines the number of operations that has to be completed
for each job. Oi = {oi,1, oi,2...oi,r} is the set of operations
for job ji. P = {p1,1, ..., pn,m} describes the processing
times of all the operations in the scheduling problem and it is
defined as P : O → N. S is defined as an integer and de-
scribes the default setup of the machines or how much time
it takes a machine to prepare for an operation. SS(ox,oy) is

the sequence-dependent setup times and describes how much
time it takes for a machine to prepare for executing opera-
tion oi after previously executing operation oi−1, defined as
SS : O×O → N . In case the SS is not defined for a pair of
operations, then the default setup time applies. The sequence-
dependent setup time can be exemplified by a printer machine
that takes a long time to print a colour page after just pre-
viously printing a black and white page. Moreover, these
sequence-dependent setup times add to the overall complex-
ity of the problem. D is the set of all the defined relative due
dates. ϕ = [m1, ..,mr] is the re-entrance vector which shows
on which machine the operation must be performed, being the
same for every job and containing r elements.

2.2 Schedule Feasibility and Optimality
The solution to a flow shop is a schedule. This schedule de-
fines all the operations’ start times. In order for this schedule
to be feasible it has to adhere to some constraints:

• Every machine can only execute a single operation at a
given time and a started operation must be completed

• Every machine’s setup time, default or sequence-
dependent, must be allocated

• Every machine must follow the fixed order of jobs. In
the case of the re-entrant machine, if the setup times
have been met, the machine has the choice of which
operation to start, while still following the jobs’ order.
For example, o(2,3) cannot be performed before opera-
tion o(1,3) has been done.

• Every relative due date must hold. Therefore, if D(oa,ob)

is defined, then the start of operation b cannot be later
than the start time of operation a plus the value of the
relative due date.

The optimality of a schedule can be assessed on multiple
criteria. The ones we use are minimal makespan and max-
imal robustness or flexibility. The makespan is equal to the
moment when the last operation is finished, while the robust-
ness or flexibility of a solution is defined as the ability of the
schedule to deal with unexpected situations.

3 Related Work
This section presents in a general to specific approach the
work that has been conducted in studying sensitivity analy-
sis, robustness measures and scheduling problems modelled
as re-entrant flow shops.

For many years, sensitivity analysis has been a topic un-
dergoing intense study in different branches of science, like
managerial sciences or mathematical sciences. Hall and Pos-
ner, in their paper [14], make the first systematic sensitiv-
ity analysis for different types of scheduling problems. They
base the need for their sensitivity analysis study on the work
of Anderson et al. [15], who explain from a managerial per-
spective that every schedule exists in a continuously chang-
ing environment. In other words, they create the hypothe-
sis for introducing uncertainties in scheduling problems to
closely mimic real-life situations. Moreover, while explain-
ing an algorithm, Hall and Posner acknowledge the need for
new methods to choose the most robust schedule from a pool



Figure 1: The processes involved in putting a schedule into action in a real-world setting. We are particularly interested in the first run through
the second step, which is illustrated with a bold border in this figure. The step with a dotted border is an optional step.

Figure 2: An example of a flow shop with three machines, four jobs
and four operations. The operations that have the same colour are
performed by the same machine, with the number inside the circles
representing the processing times. The setup times are shown with
black edges and the relative due dates are presented with red edges.
The blue edges represent sequence-dependent setup times. The dou-
ble edges illustrate a possible solution to this flow shop.

of optimal solutions for scheduling problems. Penz et al.
[16] focus on sensitivity analysis for static scheduling algo-
rithms and on determining the performance guarantee of a so-
lution in case of disturbances. They clearly make the distinc-
tion between sensitivity analysis, robustness and stabilization
process. Al-Fawzan and Haouari [9], while investigating a
project scheduling problem, define robustness. In their paper,
Al-Fawzan and Haouari define robustness in a deterministic
way. Other papers, like the one from Shen et al., [17] define
robustness with a probabilistic approach.

In our case, the scheduling problem has been created by
the needs of an industrial partner. Therefore, uncertainties
have to be taken into account and analysed, following the
principles described by Anderson et al. in their work [15].
Then, Pixten et al. [12] formally define the scheduling prob-
lems modelled as re-entrant flow shops. This formalisation
has every constraint needed in our problem and it gives us the

possibility to apply algorithms for graphs to solve this prob-
lem. Moreover, Waqas et. al [4], having a similar use case for
their 2 re-entrant flow shops, help us visualise the problem
in a real-life situation with industrial printers. Tempel et al.
[18] propose a heuristic, MPHCS, which takes into account
the relative weights for productivity and flexibility that influ-
ence how the schedule is created. They claim that for 50% of
their test cases, the algorithm finds a schedule within 10% of
the optimal makespan. However, it is not clear what weights
they are using for the experiments and how the variation in
the weights affects the results.

To the best of our knowledge, most of the existing liter-
ature on the topic uses robustness measurements as a way
to create initial robust schedules that can accommodate un-
expected disturbances. However, the literature lacks an ex-
haustive study for the most optimal robustness measures for
different scheduling problems, containing various constraints
and degrees of freedom for scheduling solutions. Al-Fawzan
and Haouari [9] describe robustness as the sum of free time
slack for all the operations in the schedule. Then, Shen et al.
[17] come up with two different stochastic ways of measur-
ing the robustness of schedules. Since the literature lacks an
exhaustive study for the most optimal robustness measures
for different scheduling problems, it was impossible to find
a suitable measurement for analysing the robustness of our
schedules and comparing schedules that prefer flexibility to
productivity. Branke and Mattfelld [10] introduce a flexibility
term that penalizes idle times. The results obtained by using
this measure were consistent, but we believe the underlying
idea is not extendable to scheduling problems where idle time
insertion is beneficial. Therefore, we want to analyse the ro-
bustness of the schedules created for industrial printers and
create the means for future work in robust initial scheduling.
Our problem is NP-Hard, though the only proofs that have
been published are related to similar but not exactly the same
problem [19].

4 Robustness Analysis
This section explains our approach to bound the amount of
time slack a schedule made for a system of difference con-
straints has before it becomes infeasible. Furthermore, we
define a schedule-specific robustness measure to compare dif-



ferent solutions for the same scheduling problem.

4.1 Bounded Intervals of Time Slack
Now, to illustrate the described behaviour, we consider a sim-
plified example. Suppose we have a solution for a scheduling
problem with 3 machines and 5 jobs and we want to mea-
sure how much disturbance the solution can absorb before it
breaks down. Assume that an unexpected delay happens dur-
ing the first operations from the first two jobs and the solution
remains feasible. Now, assume the same disturbance happens
for the second operations from the same jobs. Just because
the schedule was able to deal with the first delay, it is not
guaranteed that any other delay will not break the schedule.
Therefore, we quickly come to understand the answer to our
question is not a number, but an interval.

In case of a delay, a solution can have various behaviours.
The first and most convenient case is that the solution can
absorb the delay without any increase in starting times for any
of the subsequent operations and consequently no increase in
the total makespan of the schedules. However, this can only
be the case for systems that have idle times between the finish
and start times of subsequent operations. The second case is
when a delay can only be absorbed by increasing the start
times of some or all the subsequent operations, to have time
for setting up the machines. The third case happens when
increasing the start times is not enough and rescheduling is
needed to solve the scheduling problem feasibly. The fourth
and worst case happens when a delay makes it impossible
to reschedule the solution and the whole scheduling problem
becomes unsolvable. In this paper, since we are interested
in analysing the robustness of schedules, and not scheduling
problems, we only consider and study the first three cases.

After presenting the possible outcomes of higher than ex-
pected processing times, we can formally define the interval
of delay that can be absorbed by a schedule. We know that
in our problem, the due dates are relative, meaning that they
enforce a maximum period between the start of two opera-
tions. This led to the definition of the lower bound of our
interval. We defined the lower bound as the minimum differ-
ence between the due date for the start of an operation and
the processing and setup times of the operations that happen
between the operations that characterise the due date, for any
two operations in the schedule. This is the lower bound of
slack time for a specific schedule. In other words, a distur-
bance has to be strictly greater than this number for it to have
a chance to make the schedule infeasible. Formally, it was
defined as:

Min

(
D
(
(j,o−1),(j,o)

)
−
∑
b ∈ B

P (j,b)−
∑

b′ ∈ B′

S (j,b′)

)
(2)

for all D in the set of defined due dates, where B defines all
the operations that happen between operation o−1, included,
and operation o. B′ defines all the operations that happen
between operation o− 1 and operation o, included.

To define the upper bound of this interval, we had to see
how much disturbance the schedule can absorb before it be-
comes for sure infeasible. The formula for the lower bound
could be adapted to represent the upper bound of our interval.

Algorithm 1 Calculate the Problem-Specific Robustness

1: dueDatesSum← 0
2: robustness← 0
3: repeat
4: duration← startOp− startPrevOp
5: slack ← dueDate− duration
6: robustness← robustness+ slack
7: dueDatesSum← dueDatesSum+ dueDate
8: until all the defined due dates
9: return robustness/dueDatesSum

Instead of looking for the minimum difference, we were in-
terested in adding this difference for every relative due date.

∑
o∈O

(
D
(
(j,o−1),(j,o)

)
−
∑
b ∈ B

P (j,b)−
∑

b′ ∈ B′

S (j,b′)

)
(3)

Therefore, in case a disturbance happens in a specific place,
the schedule has a time slack of as little as described in (2).
Otherwise, if the disturbance is evenly distributed, it can have
as much time slack as defined in (3).

It is important to note that different scheduling problems
might have a different number of defined due dates. There-
fore, two schedules created for two different scheduling prob-
lems cannot be compared using this interval.

4.2 Problem-Specific Robustness Measure
The interval described in Section 4.1 can give a clear indi-
cation of how robust a single schedule created for a specific
scheduling problem is. However, it has limitations when it
comes to comparing two different schedules for the same
problem.

To have a relative ordering of schedules in terms of ro-
bustness, we created a new measure formula. To come up
with this formula, we needed a base that remains unchanged
for any solution for the same problem. We found that no
matter the chosen path, the relative due dates remain the
same. Moreover, when encountering delays, we applied sev-
eral rescheduling algorithms like Bellman-Ford or one of its
variations, called Goldberg Radzik [20]. We discovered that
depending on the chosen path the distance of every operation
to its deadline will change. Therefore, we used this distance
in our measurement and normalised it by dividing it by the
total sum of relative deadlines in the schedule. Formally, it
was defined for all the relative due dates, as:∑(

D((j,o−1),(j,o)) −
(
Start(j,o) − Start(j,o−1)

))∑
D((j,o−1),(j,o))

(4)

This robustness measure can be calculated in linear time in
terms of defined due dates for any schedule and it can be used
in further research for initial robust scheduling with idle time
or rescheduling in case of deterioration for systems defined as
flow shops with relative due dates. The implementation can
be seen in Algorithm 1.



5 Experimental Setup and Results
The experimental results aimed to assess the quality of our
robustness measure by comparing it with a measure cre-
ated by Branke and Mattfeld [10]. Their paper introduced
this measure to decrease the nervousness of schedules, de-
fined by them as the disruption of the schedule in case of
re-scheduling, and increase the schedules’ performance over
time. They called it flexibility term and it was denoted by P.
Even if it has a different name than ours, it ought to achieve
the same result, increased robustness for dynamic schedules.
In this section we present the experimental setup followed
by the experimental results, that should answer the following
questions:

• Is our problem-specific robustness measure effective in
assessing the flexibility of different schedules?

• Is our measure consistent when it comes to multiple sce-
narios?

• How does our measure compare to the state-of-the-art
measure?

• Can we systematically assess which is the most robust
schedule for a given benchmark scheduling problem?

5.1 Experimental Setup
To conduct these experiments, we used scheduling prob-
lems from an industrial partner. The 3-machine, 2-re-entrant
scheduling problems represented the benchmarks. They con-
sisted of 100 and 500 jobs, each of them with 4 operations.
The processing times, due dates and setup times were repre-
sented using integer values.

For each benchmark, three schedules were generated using
the MPHCS algorithm [18]. The algorithm has three param-
eters P (productivity), F (flexibility), T (tie-breaker), which
can be assigned different relative weights that indicate the im-
portance of productivity and flexibility in the schedule. For
this experiment, we generated three different types of sched-
ules: a, b, and c with different weights.

• a: P = 0.7, F = 0.25, T = 0.05
• b: P = 0.45, F = 0.45, T = 0.1
• c: P = 0.25, F = 0.7, T = 0.05

Even though there exists a flexibility term in the algorithm, its
behaviour related to our robustness measure is unpredictable
for multiple reasons. The first reason is that they define flexi-
bility in a different way than us. According to their definition,
the more flexible a schedule is, the more feasible possibilities
are available for planning following jobs. The second reason
is the lack of linearity in the scheduling behaviour in relation-
ship with the given parameters. To better understand how the
parameters affect the solution we generated 50 schedules for
each relative weight of the flexibility in the intervals 0.05 and
0.85, with an increment of 0.05. Therefore we analysed 850
schedules generated for the same benchmark. We found out
that there was no change in the schedule when using relative
weights for F between 0.05 and 0.35. The first change was
visible at 0.40 and lasted until 0.75, included. Even though
the weight of the flexibility increased, the median robustness
calculated using our measure decreased. Then, at 0.8 there

was a trade-off between productivity and robustness that re-
sulted in a gain in robustness but a loss of productivity, with
the makespan greatly increasing. This behaviour was sum-
marized in Figure 3.

[0.05; 0.35] [0.40; 0.75] [0.80; 0.85]
Weight of F

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ro
bu

st
ne

ss

Relation between F and Robustness

Figure 3: Box plots that illustrate the absence of linearity in robust-
ness for schedules generated using the MPHCS heuristic [18].

The solutions had different makespans and execution se-
quences for the re-entrant machines while following the same
constraints. The model ran on the Gurobi [21] server using an
academic license. The generated schedules were in a text file
format and contained the starting times of all the operations in
the solution. The rows represented jobs and the columns rep-
resented operations. Since the start times were already avail-
able, it could be considered that this was a post-production
analysis of the generated schedules.

The experiments were performed in an environment con-
taining Python 3.9, on an Intel Core i7 CPU running 2.8GHz
with Windows 10.

5.2 Experimental Results
To assess the validity of our robustness measure, we anal-
ysed some of the schedules that were generated as explained
above. The schedules were known to be feasible, so no vali-
dation had to be done. Then, the robustness values for each of
the eight schedules from the three categories were calculated
using the implementation described in Algorithm 1.

After running the experiments for our robustness measure,
we aggregated the results in Figure 4. The y-axis shows
the robustness value yielded by our measure and the x-axis
presents the benchmark for which the schedules were gen-
erated. In general, the robustness value was in an interval
between approximately 0.03 and 0.06. To contextualise these
numbers, the ideal value of one would have meant that all the
operations and their setup times finished instantly and no time
was spent, which was impossible. At the opposite end of the
spectrum, a value of zero would have meant that any unex-
pected delay would break the system and re-scheduling was
needed, which is an expensive operation in terms of time. We
saw that the schedules in a had the highest value every time.



� � � � 	 
 � �
��������

����

����

����

����

����

���	

���


��
��
�

�
���	��������
�
�
�

� � � � 	 
 � �
��������

����

����

����

����

����

���	

���


��
��
�

�
���	��������
�
�
�

Figure 4: Comparison of different solutions for benchmarks with
100 jobs (top) and 500 jobs (bottom). The y-axis represents the value
calculated using the formula 4, the x-axis shows the benchmark and
a,b and c show three types of solutions.

This meant that the schedules were more robust or flexible
than those in b or c. Therefore, in case of processing times or
setup times that took longer than expected, the schedules in a
had the highest probability to accommodate the delay.

To further assess the quality of our robustness measure,
we implemented a state-of-the-art flexibility measure, as de-
scribed in [10]. The paper explains that because early idle
periods are expected to be particularly important for dynamic
scheduling, the penalty for each idle time is weighted linearly
decreasing with time, as:

w (t) = max

{
0, 1− t

β

}
Since this measure penalized the idle times, all the sched-

ules that we applied this formula to had the common charac-
teristic of starting every operation as soon as possible. This
restriction might not always be beneficial for the real world,
since halting the start of an early job might increase the ro-
bustness of the schedule without even increasing the total
make-span. Our robustness measure does not suffer from this

� � � 	 
 � � 
������	�

���

��


���

��


���

��

�

	�

�� �	�����	�����
�	�
�
�
�

� � � 	 
 � � 
������	�

���

���

��	

���

��

���

��

�

	�

��� �	�����	�����
�	�
�
�
�

Figure 5: Comparison of different solutions for benchmarks with
100 jobs (top) and 500 jobs (bottom). The y-axis represents the
penalty calculated using the flexibility formula from the paper [10],
the x-axis shows the benchmark and a,b and c show three types of
solutions.

caveat and can therefore be generalised for a wide range of
dynamic scheduling problems. However, it was beneficial to
make the comparison to prove our measure’s accuracy.

In order to perform the comparison, we deemed it appro-
priate to choose the value for β equal to the finishing time of
the last operation to take the whole time interval into account.
Moreover, we came up with an implementation in Python, as
described in Algorithm 2. After calculating the values for the
same benchmarks and the same schedule types as in Figure
4, we aggregated them in Figure 5. We observed that both of
the measures yielded similar results and our measure could be
scaled to schedules with 500 jobs without any unwanted value
increase. The schedules in a obtained the lowest penalty each
time, which makes them the most flexible schedules out of
the three. Then, we saw that the penalties for the schedules
in b and c were equal. Again, the efficiency of our measure
was confirmed. Moreover, the difference in penalty between
schedule a and schedules b and c had a similar percentage as
the difference in their robustness values. However, their flex-



Algorithm 2 Calculate the Flexibility Penalty

1: beta← lastOperationStart+ processingT ime
2: penalty ← 0
3: repeat ▷ Find operations’ sequence on machine
4: repeat
5: t← opStart+ processingOp+ setupNextOp
6: w ← 1− t

β

7: idle← startNextOp− t
8: penalty ← penalty + (idle ∗ w)
9: until all the operations on the machine

10: until all the machines
11: return penalty

ibility measure classified schedules four and five as the most
robust or flexible schedules. On the other hand, our robust-
ness measure assigned the most robustness to schedule a for
the benchmarks one and three. The explanation for this is that
there was more idle time in the beginning of the schedules a
for the benchmarks one and three, which we considered an
advantage since the machines have an equal probability of
breaking down or taking longer than expected.

6 Responsible Research
In order to show that we have followed the principles of Re-
sponsible Research, we talk about our transparency regarding
the software used, the randomly chosen test set and the re-
producibility of our results. Firstly, in order to generate the
schedules for the benchmarks from the industrial partner, we
used the Gurobi [21] server with an academic license. Sec-
ondly, in order to test our robustness measure and compare
it with another known technique, we used a subset from the
generated solutions. To not interfere with the accuracy of the
results, the first eight schedules were selected for each type:
a, b and c. Lastly, the reproducibility of our results is high, as
the algorithms are presented in pseudocode in the paper and
the test set can be made available at request.

7 Conclusions and Future Work
We have studied the re-entrant flow shop problem with pro-
cessing times, relative due dates and sequence-dependent
setup times expressed as integer values. First, we have for-
mally defined the industrial printer as our use case. Then, we
found how much time a schedule has before it becomes in-
feasible by bounding it within an interval containing its lower
and upper bounds. Moreover, we empirically developed a
new robustness measure. We applied it to a set of schedules
from our industrial partner. Then, we implemented a known
flexibility measure to assess its validity and applied it to the
same schedule set. It confirmed that our robustness measure
is as accurate as the previously known technique while hav-
ing the ability to be used in flow shops with idle time inserted,
as opposed to the known measure. For future studies, initial
scheduling for re-entrant flow shops should take into account
the possibility of inserting idle times in designated places to
improve the robustness of a schedule, with minimal impact
on the duration. This study can be done using our developed

measure to understand the impact of halting some operations
in any system represented as a flow shop with relative due
dates.

References
[1] B. Çaliş and S. Bulkan, “A research survey: review of

ai solution strategies of job shop scheduling problem,”
Journal of Intelligent Manufacturing, vol. 26, no. 5,
pp. 961–973, 2015.

[2] M. Zweben and A. R. Center., Constraint-based
scheduling [microform] / Monte Zweben. NASA,
Ames Research Center, Artificial Intelligence Research
Branch ; National Technical Information Service, dis-
tributor [Moffett Field, CA] : [Springfield, Va], 1991.

[3] J. Hoogeveen, J. Lenstra, and B. Veltman, “Preemptive
scheduling in a two-stage multiprocessor flow shop is
np-hard,” European Journal of Operational Research,
vol. 89, no. 1, pp. 172–175, 1996.

[4] U. Waqas, M. Geilen, J. Kandelaars, L. Somers, T. Bas-
ten, S. Stuijk, P. Vestjens, and H. Corporaal, “A re-
entrant flowshop heuristic for online scheduling of the
paper path in a large scale printer,” in 2015 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp. 573–578, 2015.

[5] M. B. Do, W. Ruml, and R. Zhou, “On-line planning
and scheduling: An application to controlling modular
printers,” in Proceedings of the 23rd National Confer-
ence on Artificial Intelligence - Volume 3, AAAI’08,
p. 1519–1523, AAAI Press, 2008.

[6] C.-L. Chen, V. S. Vempati, and N. Aljaber, “An applica-
tion of genetic algorithms for flow shop problems,” Eu-
ropean Journal of Operational Research, vol. 80, no. 2,
pp. 389–396, 1995.

[7] K. R. Baker and D. Altheimer, “Heuristic solution
methods for the stochastic flow shop problem,” Euro-
pean Journal of Operational Research, vol. 216, no. 1,
pp. 172–177, 2012.

[8] J. Xiong, L. ning Xing, and Y. wu Chen, “Robust
scheduling for multi-objective flexible job-shop prob-
lems with random machine breakdowns,” International
Journal of Production Economics, vol. 141, no. 1,
pp. 112–126, 2013. Meta-heuristics for manufacturing
scheduling and logistics problems.

[9] M. A. Al-Fawzan and M. Haouari, “A bi-objective
model for robust resource-constrained project schedul-
ing,” International Journal of Production Economics,
vol. 96, pp. 175–187, 5 2005.

[10] J. Branke and D. C. Mattfeld, “Anticipation and flexi-
bility in dynamic scheduling,” International Journal of
Production Research, vol. 43, pp. 3103–3129, 8 2005.

[11] T. S. Lee and Y. T. Loong, “A review of scheduling prob-
lem and resolution methods in flexible flow shop,” In-
ternational Journal of Industrial Engineering Compu-
tations, 2019.



[12] J. V. Pinxten, U. Waqas, M. Geilen, T. Basten, and
L. Somers, “Online scheduling of 2-re-entrant flexible
manufacturing systems,” ACM Transactions on Embed-
ded Computing Systems, vol. 16, 9 2017.

[13] H. Emmons and G. Vairaktarakis, Flow shop schedul-
ing: theoretical results, algorithms, and applications,
vol. 182. Berlin, Germany: Springer Science & Busi-
ness Media, 2012.

[14] N. G. Hall and M. E. Posner, “Sensitivity analysis for
scheduling problems,” Journal of Scheduling, vol. 7,
pp. 49–83, 2004.

[15] D. Anderson, D. Sweeney, and T. Williams, Contempo-
rary Management Science with Spreadsheets. Mason
OH: South-Western College Pub, 1 ed., 1998.

[16] B. Penz, C. Rapine, and D. Trystram, “Sensitivity
analysis of scheduling algorithms,” Eur. J. Oper. Res.,
vol. 134, pp. 606–615, 2001.

[17] X. N. Shen, Y. Han, and J. Z. Fu, “Robustness mea-
sures and robust scheduling for multi-objective stochas-
tic flexible job shop scheduling problems,” Soft Com-
puting, vol. 21, pp. 6531–6554, 11 2017.

[18] R. van der Tempel, J. van Pinxten, M. Geilen, and
U. Waqas, “A heuristic for variable re-entrant schedul-
ing problems,” in 2018 21st Euromicro Conference on
Digital System Design (DSD), pp. 336–341, 2018.

[19] A. Pishevar and R. Tavakkoi-Moghaddam, “β - robust
parallel machine scheduling with uncertain durations,”
Universal Journal of Industrial and Business Manage-
ment, vol. 2, pp. 69–74, 3 2014.

[20] A. V. Goldberg and T. Radzik, “A heuristic improve-
ment of the bellman-ford algorithm,” Applied Mathe-
matics Letters, vol. 6, no. 3, pp. 3–6, 1993.

[21] Gurobi Optimization, LLC, “Gurobi Optimizer Refer-
ence Manual.” Available at https://www.gurobi.com, 06
2022.

https://www.gurobi.com

	Introduction
	Problem Definition
	The Re-entrant Flow Shop Problem
	Schedule Feasibility and Optimality

	Related Work
	Robustness Analysis
	Bounded Intervals of Time Slack
	Problem-Specific Robustness Measure

	Experimental Setup and Results
	Experimental Setup
	Experimental Results

	Responsible Research
	Conclusions and Future Work

