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A B S T R A C T   

Terraced houses built in the Netherland after 1980 are often characterized by the use of large units connected at 
corners by continuous thin layer mortar joints. Unlike the running bond pattern, usually modelled as a rigid 
connection, the vertical continuous connection may fail in shear and influence the global seismic capacity of the 
entire building. This work aims at investigating and comparing different numerical modelling approaches for 
simulating the vertical connections. Two different constitutive models are adopted to simulate the quasi-brittle 
nonlinear behaviour of the continuous joint, and their advantages and limitations are pointed out in terms of 
robustness and accuracy. The study considers both the component level in terms of U-shaped pier-wall config
uration, and the full-scale structural level in terms of the global capacity for a two-storey masonry house 
assemblage, characterized by a running bond arrangement. The results of this work show that the shear failure 
involving the continuous joint usually reduces the strength capacity of the structure. Both the selection of 
constitutive models for the connection interface and masonry material are demonstrated to affect the results 
significantly. Decoupled direct traction-displacement relations for the interfaces appear to provide more robust 
results than coupled plasticity-based Coulomb friction laws. The selection of either a pre-fixed orthotropic 
smeared crack model for the masonry or a standard isotropic concrete-like rotating smeared crack formulation is 
demonstrated to strongly influence the activation of the different failure mechanisms and hence the response of 
the structure.   

1. Introduction 

The unreinforced masonry (URM) terraced houses represent a large 
part of the building stock in the north of the Netherlands. These build
ings are characterized by slender piers and large openings on the fa
çades, and long walls in the transversal direction. Unlike many other 
URM structures, in several terraced houses built around the 1960s the 
spandrels and the window banks do not have a structural function, being 
disconnected from the piers, so that the seismic resisting structure is 
represented only by the piers on the façades and the transversal walls. 

The Dutch terraced houses built after the 1960s are characterized by 
the use of calcium silicate (CS) masonry, and piers and transversal walls 
can be assumed strongly connected due to the use of the running bond 
pattern. Since the 1980s, the traditional small CS bricks were replaced 
by large CS elements, and the connections between walls and piers 
consisted of vertical continuous thin layer mortar joints. Usually 

cement-based mortar with high compressive resistance and limited 
thickness (2–3 mm) is used, and often flat steel ties are embedded at the 
bed-joint level, as illustrated in Fig. 1. These ties are able to provide an 
efficient tensile restraint, but they do not have any significant shear 
stiffness due to the limited thickness and are not able to prevent or 
postpone significantly the shear failure along the joint. 

In common practice, the pier-wall connections at the corners of 
masonry buildings are modelled as rigid. This assumption may be valid 
in case of a running bond pattern, but it may lead to an overestimation of 
the capacity of the building in case of continuous vertical joints. In fact, 
the failure of these latter considerably decreases the seismic capacity of 
the URM structure [1]. 

An experimental campaign conducted by Raijmakers and Van der 
Pluijm [2] investigated the possible failures of a U-shaped sub- 
assemblage, composed by two slender piers connected to the trans
versal wall through a continuous vertical connection. This experimental 
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test demonstrated that the shear failure of the connection causes a 
sudden and not negligible loss of bearing capacity of the structure. 

The behaviour of low-rise structures with loadbearing walls made of 
calcium silicate masonry was also studied for the Esecmase project at 
both wall [3,4] and building [5] level. Namely, calcium silicate blocks 
were used among other masonry units, whose dimensions in between 
bricks and units usually require the presence of a continuous vertical 
joint at the wall intersections. 

After 2014, due to the increase of gas-extraction induced seismicity 
in the Netherlands, a research program was started to assess the 
vulnerability of typical Dutch URM buildings in several laboratories, 
among which the MacroLab/Stevin laboratory of Delft University of 
Technology. Two full-scale masonry assemblages representative of the 
loadbearing structure of a typical two-storey terraced house were tested 
in quasi-static cyclic test in 2015 and 2016 [6,7]. Since then, several 
numerical simulations were conducted to compare the numerical results 
to the experimental tests [7-9]. The seismic response of buildings made 
of calcium silicate masonry has been studied in recent years also via 
shaking table tests at the laboratory of Eucentre [10,11] and LNEC [12], 
while specific studies of the out-of-plane performance of U-shaped sub- 
assemblies was investigated in [13-15]. 

In recent years, many procedures and methods were developed to 
accurately model the response of URM structures under seismic loads 
[16-21]. These can be classified according to different criteria. One of 
the most used classifications distinguishes between the different 
modelling scales [18,22], namely micromechanical, macromechanical 
and multiscale approaches. Micromechanical models accurately 
describe masonry considering all the geometrical details and mechanical 
response of each constituent, bricks/blocks, mortar and eventually 

interfaces between them [20,23-27]. Macromechanical models consider 
masonry as an equivalent homogenized material and adopt phenome
nological constitutive laws often based on damage, smeared crack/crush 
and plasticity formulations [28-33]. These are less computationally 
demanding as opposed to micromechanical approaches and can be 
adopted to describe global aspects of masonry response, with localized 
as well as diffused distributions of damage and cracking. Multiscale 
procedures are the most modern modelling approach for composite 
heterogeneous materials like masonry, representing a fair compromise 
between accuracy and computational costs [34-37]. Also simplified 
macro-models have been widely proposed, as those based on the 
equivalent frame approach, which use a single 1D, 2D or 3D macro- 
element for each pier and spandrel composing the masonry wall [38- 
43]. 

Commonly, all the aforementioned modelling approaches are 
implemented in a finite element (FE) framework adopting 1D beam, 2D 
solid, plate and shell, or 3D solid formulations, with proper constitutive 
laws describing the main nonlinear mechanisms occurring in masonry. 

This paper investigates the numerical response of masonry assem
blages experimentally tested under quasi-static cyclic loading, particu
larly focusing on the modelling of thin layer mortar joints. Both micro 
and macromechanical approaches are explored adopting different 
constitutive laws for masonry, also to study the response of the contin
uous vertical joints and their effect on the masonry assemblage behav
iour. In particular, a full-scale specimen, representing the loadbearing 
structure of a typical Dutch two-storey masonry building built in the 
period 1960–1980, is analyzed, typically comprising small CS bricks and 
running bond pattern. This choice was aimed to validate the use of the 
proposed modelling approaches for masonry and continuous 
connections. 

The software DIANA FEA 10.2 [44] was used to perform the nu
merical analyses validated against the experimental outcomes. Also, 
issues concerning convergence properties and stability of the numerical 
results are discussed. 

Section 2 introduces the different constitutive models adopted in this 
study for describing masonry and the thin layer mortar joint. Section 3 
presents the results of the numerical simulations performed on one of 
the two-storey masonry assemblages tested at TU Delft in 2015 [6], as 
well as the comparison with the experimental results. In Section 4, the 
appropriate modelling of the continuous vertical connection is analyzed 
first at the component level, by comparing the results to the experi
mental wall/pier component tests conducted by Raijmakers and Van der 
Pluijm [2]. Then, the problem is upscaled to the structural level, adding 
the continuous vertical joint in the full-scale two-storey models already 
presented in Section 3. The final remarks are reported in Section 5. 

2. FE modelling approaches for masonry 

Among the alternative approaches proposed to model nonlinear 
masonry structural response, attention is herein focused on macro and 
micromechanical finite element procedures. These are distinguished for 

Fig. 1. Pier-main wall system with calcium silicate elements and continuous 
vertical joint. 

Fig. 2. Modelling strategies for masonry structures: (a) detailed micromodelling, (b) simplified micromodelling, (c) macromodelling [20].  

D. Fusco et al.                                                                                                                                                                                                                                   



Engineering Structures 258 (2022) 114078

3

the scale and detail of the modelling. Micromodelling usually provides 
the most accurate numerical description of the structure, where mortar 
joints and units are modelled separately accounting for all the details 
about geometry and arrangement. This approach is mainly used for the 
analysis of small components, where the response strongly depends on 
the interaction and local distribution of stresses between bricks and 
mortar. A simplified and less cumbersome micromodelling procedure 
considers the unit-mortar interfaces and the mortar as a single interface 
or continuous element, while the bricks are represented as a continuum. 
For numerical analysis of real-scale masonry structures, micromodelling 
is usually computationally too demanding, and macromechanical ap
proaches are often preferred. The latter methods consider masonry as a 
homogenized continuum material where a phenomenological constitu
tive law is introduced, and the local stress and strain distributions are 
smeared out. Fig. 2 shows different approaches to model masonry 
structures as reported in literature [20]. 

This paper adopts two different strategies to describe the crack 
propagation in the framework of micro and macromodelling approaches 
for masonry structures, namely discrete and smeared cracking models 
[45]. 

The discrete model concentrates the material nonlinear mechanisms 
(cracking and sliding) in interface elements separating two continuous 
elements. The constitutive law for the interface elements is defined in 
terms of normal/shear forces and relative displacements, according to 
the displacement discontinuity occurring in the fractures. Before the 
development of the crack, the stiffness of the interface element is usually 
defined a sufficiently high dummy value so as to make the initial 
deformation of the interface negligible compared to the initial defor
mation of the bulk material. The behaviour during the softening phase, i. 
e. when cracking or sliding occurs, is described by the following relation 
[45]: 

tcr = Ccrscr (1) 

where tcr = [tn tt]T and scr = [sn st]T are the traction vector and 
relative displacement across the crack, respectively. Both vectors have 
components in the normal, ‘n’, and tangential, ‘t’, direction of the 
interface, as illustrated in Fig. 3. The matrix Ccr describes the adopted 
nonlinear constitutive law considering a tensile cracking and compres
sion crushing in normal direction (Mode I) and shear sliding in 
tangential direction (Mode II). The use of discrete interfaces reflects the 
real nature of the displacement discontinuity of the crack but results as 
not convenient in the framework of the finite element displacement 
method [45]. An additional drawback of the discrete approach is the 
need to know a priori where the crack may develop [1]. 

In the smeared crack approach, the crack is spread out over the finite 
element, modelling the cracked material as a continuum. The nonlinear 
behaviour is described through stress–strain relations, which do not fit 
to the real displacement discontinuity of the fracture but are computa
tionally less demanding [45]. Unlike the discrete models, the crack may 
occur at any location and direction, allowing to solve structural prob
lems where the position of the crack is initially unknown. The 

formulation of the smeared cracked models is usually based on the 
decomposition of the total strain ε in two components, the strain 
occurring in the crack εcr and that in the continuum material between 
the cracks εco [45]: 

ε = εcr + εco (2) 

The strain in the crack εcr is expressed by the strain in its local 
reference system ecr, i.e. the normal and tangential direction ‘n’ and ‘t’, 
using the transformation matrix N, accounting for the orientation of the 
crack. This method allows to develop the fixed single, fixed multi- 
directional and rotating crack model, and properly evaluate the redis
tribution of the rotated principal stresses after the crack [45]. The 
nonlinear constitutive law for the crack is governed by the matrix Dcr, 
which allows to introduce Mode I, Mode II, and, if selected, mixed-Mode 
components and is expressed as: 

tcr = Dcrecr (3) 

where tcr and ecr denote the traction and strain vectors expressed in 
the intrinsic local reference system of the crack. In these decomposed- 
strain based smeared crack models the behaviour of the smeared crack 
is decoupled from the behaviour of the bulk material, which is usually 
treated as linearly elastic, thus obtaining an elastic-softening description 
for the smeared cracked continuum. Alternatively, total-strain based 
stress–strain relations can be used which describe the behaviour of 
concrete and masonry in a more direct and engineering way, e.g. [49]. 

Fig. 4 shows the constitutive law for Mode I in the case of the (a) 
discrete and (b) smeared approach characterized by a linear softening 
branch. In the discrete approach, as previously mentioned, the consti
tutive law is expressed in terms of traction and relative displacement and 
the slope of the softening branch is ruled by the fracture energy Gf

I. 
Instead, in the smeared crack approach, the nonlinear behaviour is 
defined by a stress–strain relation, which depends on the fracture energy 
divided by the so-called crack bandwidth h, which is a function of size, 
shape and interpolation functions of the finite element. For linear two- 
dimensional elements, h may be assumed equal to (2A) 1/2, and for 
higher order two-dimensional elements equal to (A)1/2, where A is the 
total area of the element. In case of solid element, the crack bandwidth 
may be calculated with h = (V)1/3, where V is the volume of the element 
[44]. 

2.1. Constitutive laws used to simulate continuous vertical joints 

The behaviour of continuous vertical pier-wall connections at the 
corner of URM buildings is simulated in this work by means of interface 
elements. The failure criterion for the interface includes both discrete 
cracking for tension and discrete sliding for shear. 

The tensile failure is ruled by the normal traction versus normal 
relative displacement law, defined by two mechanical parameters, the 
tensile strength ft and the Mode I fracture energy Gf

I. Different shapes of 

Fig. 3. Intrinsic referenced system of interface element: normal direction for 
Mode I, tensile cracking - compression crushing, and tangential direction for 
Mode II. 

Fig. 4. Constitutive law for Mode I: (a) discrete and (b) smeared crack models.  
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the softening branches can be considered as shown in Fig. 5(a). For the 
sliding shear failure, the plasticity based Coulomb friction model is 
adopted, which depends on the cohesion cu and friction angle ϕ. The 
Coulomb yield limit function is defined as: 

|tt| ≤ cu − tntanϕ (4) 

As shown in Fig. 5(b), cohesion softening has been included, defined 
by an exponential shear softening diagram and the Mode II fracture 
energy Gf

II. When the Mode II softening is completed, the criterion re
duces to dry friction, as indicated by the dashed line in Fig. 5(b). Either 
associated or non-associated plasticity were used. In the former case the 
dilatancy angle, defining the uplift upon shearing, is equal to the friction 
angle, whereas in the latter case it is lower than the friction angle. 
Optionally, a compression cap can be added for combinations of shear 
with high compression, but this was not activated in the present study. 

The Coulomb friction model is a plasticity-based formulation with 
explicit coupling between normal and shear behaviour, requiring return 
mapping schemes to solve for the elastic and plastic part of the relative 
displacements. Special treatment is to be considered when the stress 
point is returned to a discontinuity such as an apex, and non-symmetric 
stiffness matrices have to be handled in case of non-associated plasticity. 
This may complicate the analyses, especially when it comes to brittle 
behaviour of large-scale structures. Therefore, in this study also an 
alternative and simpler constitutive model has been tested, that is a 

nonlinear elastic model, where the normal and shear tractions are 
uncoupled and expressed as a direct function of the corresponding 
relative displacements only. Thus, the stiffness matrix results diagonal, 
speeding up the convergence of the numerical analyses [44]. On the 
other hand, this does not allow to express the shear strength as function 
of the normal traction at the integration point, which means that a priori 
estimates or design assumptions for the local shear strengths have to be 
made. The uniaxial relationships are obtained by multi-linear diagrams 
defined by the users to simulate properly the normal and shear behav
iour of the interface. 
[

tn
tt

]

=

[
kn 0
0 kt

][
sn
st

]

(5) 

For example, a multi-linear diagram of the traction-relative 
displacement for the tangential direction is shown in Fig. 14. In partic
ular, the tangential constitutive law is determined by the maximum 
shear stress and residual shear strength, which affect the peak and post- 
peak branch, respectively. 

2.2. Constitutive laws for smeared crack models used to simulate masonry 

In the framework of the smeared crack modelling, two constitutive 
formulations are used in this work: a total-strain based crack model with 
isotropic properties [44,49] and a total-strain based pre-fixed 

Fig. 5. Constitutive laws for interface element: (a) Mode I normal traction-relative displacement laws [44]; (b) Coulomb friction model for shear stresses and Mode II 
shear traction-relative displacement law [1]. 

Fig. 6. Engineering Masonry Model (EMM): (a) the angle α for diagonal stair step cracks, (b) cracking, (c) crushing, and (d) chear behaviour [33,46,44].  
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orthotropic crack model [33,44,46]. The former was initially developed 
for concrete and assumes isotropic properties for both initial elastic and 
nonlinear parameters, while the latter was developed as an engineering 
oriented model with simple assumptions regarding the orthotropy of 
masonry. In the following, the former will be referred to as TSCM (total- 
strain crack model) and the latter as EMM (engineering masonry model). 

As for the TSCM, two different versions are available referring to the 
fixed and rotating crack model, respectively. The first defines the 
stress–strain relation in the fixed directions defined at the onset of 
cracking, whereas the rotating crack model defines the stress–strain law 
in the continuously rotating principal strain directions. The fixed crack 
model uses an explicit shear retention factor or function to reduce the 
shear stiffness after cracking, while the rotating crack model can be 
considered to include an implicit shear term that guarantees coaxiality 
between principal stresses and strains [45]. In this study, the rotating 
version of the TSCM was adopted. Various functions are used to describe 
the softening branch for tension and compression, governed by the 
tensile and compression fracture energy, respectively. 

The idealization of masonry as an isotropic material, despite its 
anisotropic nature, and the lack of distinction between the shear and 
tensile failure are two relevant shortcomings of the TSCM, when used for 

masonry. Additionally, the secant unloading/reloading formulation 
adopted for TSMC largely underestimates the energy dissipation under 
cyclic loads, when shear failure occurs. 

The EMM was developed to specifically model the nonlinear 
behaviour of masonry, overcoming the abovementioned drawbacks of 
the TSCM [33,47]. In particular, the distinction between different failure 
modes and the use of a bilinear unloading/reloading path (which con
sists of a succession of an elastic and a secant branch) returns a more 
realistic energy dissipation under cyclic loads. In addition, the EMM 
considers the anisotropy of the masonry distinguishing between the 
different stiffness, strength and softening properties in the directions 
parallel to the bed- and head-joints, respectively. Additionally, the 
tensile cracks may occur in only three predefined directions: normal to 
the bed- and head-joint directions and along the diagonal stair step 
cracks defined by the angle α (Fig. 6 (a)). The uniaxial tensile and 
compressive behaviour is defined by the relation between the stress tn 
and strain en in the normal direction, governed by the tensile and 
compression fracture energy. A linear softening branch is adopted in 
tension (Fig. 6 (b)), whereas the curve in compression is defined via a 
sequence of a third order curve and a parabolic curve up to the 
compressive peak, fc, and a linear softening branch up to a residual stress 

Fig. 7. (a) Specimen and construction detail of a typical two-storey terraced house [3] and (b) simplified modelling schematic.  

Fig. 8. Mesh made of shell (a) and solid (b) elements.  
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equal to 10% of the compressive strength (Fig. 6 (c)). The shear 
behaviour is described by the Coulomb friction model, with the post- 
peak behaviour governed by Mode II fracture energy. In particular, 
the in-plane shear stress tt is computed based on the in-plane shear strain 
et, and the stress tn in the direction normal to the bed-joint (Fig. 6 (d)) 
[33,46]. 

3. Modelling of a masonry structure with strong connections 

This section describes the numerical modelling of the first (out of 
two) two-storey masonry assemblages tested at TU Delft in 2015 [6,7]. 
The full-scale specimen, shown in Fig. 7 (a), represents the loadbearing 
structure of a typical Dutch two-storey masonry building built in the 
period 1960–1980, typically comprising small CS bricks and running 
bond pattern. 

A schematic view of the masonry modelling is illustrated in Fig. 7 (b). 
Considering geometry and loading scheme, providing symmetry condi
tions, only half structure was modelled to reduce the computational 
effort. This is a convenient modelling assumption, although symmetry 
could be partially lost as a consequence of the damage evolution and 
localization. 

To further simplify the numerical model, piers and walls were 
considered to be fixed at the base, thus neglecting any deformation of 
the steel substructure. Continuity condition was assumed for the 
connection between the slab of the second floor and the walls and piers. 
Conversely, the weight of the first floor is carried only by the wall. More 
specifically, the concrete slab is connected to the piers by anchors, which 
prevent their out-of-plane deflection. The behaviour of the anchors was 
simulated via interface elements with non-zero stiffness in the out-of- 
plane direction of the pier. A quasi-static cyclic loading regime was 
applied to the structure through two couples of actuators coupled so that 
equal forces were applied at the two floors. In the numerical model, a 
displacement-controlled monotonic pushover analysis was performed 
and a fictitious rigid steel beam with appropriate restraints was added to 
enable the analysis to be steered in displacement-control, simulating the 
experimental loading conditions. It is worth mentioning that the 
monotonic pushover analysis is a simplified simulation of the experi
ment, neglecting the effects of the quasi-static cyclic load, such as the 
cumulative damage of the masonry. 

Three numerical models were developed to investigate the effect of 
the adoption of different constitutive laws (TSCM and EMM) and 
element types (shell and solid) on the outcomes of the simulation. Since 
the EMM was not yet implemented for solid elements, the following 
models were analyzed: TSCM-Shell model, TSCM-Solid model, EMM- 
Shell model. The adopted meshes comprising shell and solid elements 
are shown in Fig. 8. For the shell models, quadratic 8-node elements, 
CQ40S, were used, with a reduced 2x2 Gauss integration scheme and a 
mesh size of approximately 200 mm. The thickness of the elements is 
equal to the depth of the bricks and seven integration points were used 
along the thickness to obtain a good interpolation for the out-of-plane 
behaviour of the walls. The interfaces which connect the piers and the 
floor at the first storey level were modelled using interface elements 

between curved shell elements, CL24I, with quadratic interpolation and 
3-point Newton-Cotes integration scheme along the longitudinal direc
tion, and 3-point Simpson scheme along the thickness. For the 3D solid 
models, quadratic 20-node solid brick elements, CHX60, were used for 
the model in Fig. 8 (b), with full Gauss (3x3x3) integration scheme. 
Quadratic 2D plane interface elements, CQ48I, with quadratic interpo
lation and 3x3 Newton-Cotes integration scheme were used in this 
model. 

Most of the adopted material parameters were derived from the 
values of the experimental companion tests performed at material level, 
as described in [6] and [7]. Those not available were set according to the 
relations in literature, as specified below. 

The parameters introduced in the TSCM are summarized in Table 1. 
A rotating crack model with linear (in tension) and parabolic (in 
compression) fracture-based softening curves were adopted. The crack 
bandwidth of the elements was assumed according to proposal by Rots 
[44]. Since in this model the material is considered to be isotropic, the 
elastic modulus was selected equal to that perpendicular to the bed 
joints. For the Poisson ratio, a typical value for the masonry was 
assumed equal to 0.16 (corresponding to a ratio between the shear and 
Young’s modulus equal to 0.43). The value of the tensile strength was 
computed as 2/3 of the flexural strength of masonry, and the Mode I 
fracture energy Gf

I was calculated through the relation [46]: 

GI
f = 0.025(2ft)

0.7 (6) 

The compressive fracture energy is provided by the following for
mula [46]: 

GI
fc = 15+ 0.43fc − 0.0036fc

2 (7) 

The mechanical parameters adopted for the EMM are reported in 
Table 2. This model accounts for the material anisotropy both in the 
linear elastic and nonlinear stage. The Young’s moduli for both the di
rection perpendicular to the bed and head joints were derived from the 
experimental companion tests. The minimum tensile strength normal to 
the head joint was calculated as ftx = 2 fty [46]. The angle between the 
diagonal crack and the bed joint, depending on the brick size, was 
approximately computed as 2hb/lb, being hb and lb the height and length 
of the brick, respectively. Secant unloading for tension, elastic 

Table 1 
Total Strain Crack Model: mechanical parameters.  

Mechanical Parameters Values Units Standard 

Elastic modulus E 3264 MPa EN1052-1 
Poisson ratio ν 0.16  * 
Shear modulus G 1306 MPa * 
Mass density ρ 1805 kg/m3 – 
Tensile strength ft 0.19 MPa EN1052-5 
Tensile fracture energy Gf

I 0.0127 N/mm * 
Compression strength fc 5.8 MPa EN1052-1 
Fracture energy in compression Gfc

I 17.4 N/mm *  

* value not available from material testing and assumed based on the 
literature. 

Table 2 
Engineering Masonry Model: mechanical parameters.  

Mechanical Parameters Values Units Standard 

Elastic modulus perpendicular to head 
joint 

Ex 2212 MPa EN1052- 
1 

Elastic modulus perpendicular to bed joint Ey 3264 MPa EN1052- 
1 

Shear modulus G 1306 MPa * 
Mass density ρ 1805 kg/ 

m3 
– 

Tensile strength normal to bed joint fty 0.19 MPa EN1052- 
5 

Minimum strength head-joint ftx 0.38 MPa * 
Tensile fracture energy Gft 0.0127 N/ 

mm 
* 

Angle between stepped diagonal crack and 
bed joint 

θ 0.792 rad – 

Compression strength fc 5.8 MPa EN1052- 
1 

Fracture energy in compression Gfc 17.4 N/ 
mm 

* 

Factor to strain at compressive strength n 5 – * 
Unloading factor for compression λ 0 – * 
Friction angle γ 0.406 rad EN1052- 

3 
Cohesion fvo 0.14 MPa EN1052- 

3  

* value not available from material testing and assumed based on the 
literature. 
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unloading for shear and elastic unloading for compression were 
assumed. 

Pushover analyses were performed by first applying the gravity 
loads, and then monotonically increasing the displacement applied to 
the middle point of the rigid steel beam up to a maximum value of ±
100 mm, in both the positive and negative direction. An incremental- 
iterative procedure was used with the classical Newton-Raphson algo
rithm to solve the nonlinear problem. 

Fig. 9 shows a comparison between the results obtained using the 
three different numerical models (EMM-Shell, TSCM-Shell, TSCM-Solid) 
and the backbone curve of the experimental test (reported in [3]). 
Overall, all models correctly reproduce the initial elastic branch. The 
models also predict similar values of the peak strength, although all 
overestimate the experimental value in the positive direction. Small 
differences are observed for the TSCM-Solid model, which reaches a 
slightly larger limit strength for the negative loading direction. How
ever, the differences at peak between TSCM-Shell and TSCM-Solid 
models are overall very limited. The numerical results depart in the 
post-peak phase. In particular, in case of TSCM, the capacity curve 
suddenly decreases showing a brittle failure, whereas the EMM shows a 
more gradual strength degradation. The differences emerging in the 
post-peak branch are related to the different failure mechanisms pre
dicted. In particular, the gradual loss of capacity for the EMM is caused 
by the progressive toe-crushing of the wide pier (Fig. 10 (b)), while the 
sudden drop of the capacity occurring for the TSCM is due to the diag
onal cracking of the same wide pier (Fig. 10 (c) and (d)). The latter 
failure mechanism corresponds to that observed during the experi
mental test (Fig. 10 (a)), although the numerical post-peak softening for 
the TSCM is more brittle than that of the experimental backbone curve. 
In conclusion, the selection of the constitutive law clearly affects the 
type of failure mechanism developed and thus strongly influences the 
global response of the structure. Additionally, the results show that the 
use of solid or shell elements influences only the peak strength, and not 
the occurring failure mechanism. 

4. Continuous vertical joints in masonry assemblage 

As anticipated, typical Dutch URM structures built after 1980 are 
characterized by the use of Calcium Silicate (CS) elements, with the piers 
connected to the transversal walls through continuous vertical connec
tions. The continuous thin layer mortar joints was made of cement-based 
mortar with high compressive strength and limited thickness (2–3 mm), 
and no steel ties were present. These ties were able to provide an effi
cient tensile restraint, but they did not have any significant shear stiff
ness due to the limited thickness and were not able to prevent or 
postpone significantly the shear failure along the joint. A common 
modelling approach considers the interlocking of the masonry brick as a 
rigid connection, but in case of a continuous joint, this approach may 
overestimate the seismic capacity of the structure. Specifically, the 
seismic performance may be strongly reduced by the shear failure of 
continuous vertical connections, as shown by the experimental 
campaign performed by Raijmakers and Van der Pluijm [2], who 
analyzed the failure mechanism of a masonry U-shaped assemblage 
under lateral load. Here, the numerical modelling of the continuous 
vertical joint is discussed, first at the element structural level, consid
ering a U-shaped assemblage tested by Raijmakers and Van der Pluijm, 
and then at the full structural level, by including a thin layer mortar joint 
in the models of the full-scale two-storey building tested at TU Delft and 
described in the previous section. 

4.1. Modelling of the vertical joint in a U-shape assemblage 

This section aims to analyze the numerical modelling of a thin layer 
mortar joint, comparing it with the results of the experimental test 
conducted by Raijmakers and Van der Pluijm [2]. The specimen was 
composed of calcium silicate units and continuous vertical joints be
tween the main wall and the piers. The schematic of the test is shown in 
Fig. 11. A monotonically increasing horizontal load was applied at the 
top of the wall, along with the vertical load, which was maintained 
constant during the test and contributes, together with the self-weight of 
the components, to the stabilizing moment of the structure. 

The results of the experimental campaign show three types of 
possible failure mechanisms. The rocking of the entire assemblage 
Fig. 12 (a) consists of the ideal tilting of the whole structure around the 
toe of the pier. A typical mechanism in case of toothed connection is the 
diagonal cracking/compression failure of the pier (Fig. 12 (b)). This 
mechanism reduces the capacity curve as illustrated in Fig. 12, pre
venting the full development of the rocking mechanism. The shear 
failure of the wall-pier connection Fig. 12 (c) may occur for weaker 
connection types, as for the thin layer mortar joints. In this case, the 
brittle failure of the connection determines a sudden reduction of the 
strength of the U-shape assemblage prior to the pier failure [1]. 

To properly describe the behaviour of the continuous vertical joint, 
nonlinear interface elements were adopted to simulate the shear failure 
of the connection. However, the brittle failure of the joint may lead to 
instability of the numerical analysis. In the following, the two consti
tutive laws described in Section 2.1 are compared: the Coulomb friction 
model and the Nonlinear Elastic model. Two different finite element 
models are also considered and shown in Fig. 13: a two-dimensional 
(2D) and a three-dimensional mesh (3D), which use plane stress or 
solid elements, respectively. In the two-dimensional model, 4-node 
quadrilateral isoparametric elements, Q8MEM, with the mesh size 
equal to 100 mm were used. Bi-linear interpolation functions were then 
adopted for the displacement fields, together with a 2x2 Gauss inte
gration scheme. For compatibility, L8IF interface elements with linear 
interpolation were selected to model the connections. In the three- 
dimensional model, the pier and main wall were modelled with 8- 
node isoparametric solid brick elements, HX24L, with tri-linear inter
polation for the displacements and 2x2x2 Gauss integration scheme. The 
mesh size was equal to 100 mm. The connections were modelled 
through Q24IF interface elements based on linear interpolation. As 

Fig. 9. Comparison of the capacity curves: experimental results (thin grey solid 
line), EMM-Shell (tick grey solid line), TSCM-Solid (dashed-point black line) 
and TSCM-Shell (black solid line). 
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suggested in literature [1], the Calcium Silicate masonry was assumed to 
behave linearly elastically. Boundary interface elements with no-tension 
behaviour were introduced at the base of the masonry elements. A 
displacement-controlled analysis was performed by applying a pre
scribed displacement to the node at the top of the wall, as illustrated in 
Fig. 13. 

The material parameters adopted for masonry and interface elements 
modelled through the Coulomb friction model are summarized in 
Table 3, set according to the numerical simulation performed by Rots 
[1]: 

The Nonlinear Elastic constitutive law, as mentioned before, assumes 
an uncoupled behaviour in the normal and shear directions of the 
interface elements. A linear elastic behaviour was considered in the 
normal direction, which corresponds to the assumption of no opening of 
the joint. Since the shear strength cannot be expressed as function of the 
normal traction and a constant normal stress distribution along the 
interface was assumed, the parameters governing the Nonlinear Elastic 
constitutive law required a proper calibration. 

The traction-relative displacement diagram for the tangential 

Fig. 10. Failure mechanism for each model: (a) Experimental test (diagonal cracking) [5], (b) EMM Shell model (toe-crushing), (c) TSCM Shell model (diagonal 
cracking) and (d) TSCM Solid model (diagonal cracking). 

Fig. 11. Piers-main wall connection (Raijmakers and Van der Pluijm [1]): (a) 
geometry and (b) loading conditions. 
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direction is shown in Fig. 14, and presents a brittle failure after the 
maximum shear stress is achieved. Three values were considered for the 
maximum shear stress: τmax = 0.4 N/mm2, 0.5 N/mm2, 0.6 N/mm2. The 
elastic stiffness in tangential direction was taken the same as for the 
analysis performed with the Coulomb friction failure criterion. A small 
residual shear strength was considered to simulate the friction of the 
interface after the sliding. Its value equal to 0.05 N/mm2 was calibrated 

to obtain the post-peak branch. 
The pushover response curves of the U-shape assemblage with the 

vertical connection modelled by adopting the Coulomb friction or the 
Nonlinear Elastic constitutive law for the interfaces are reported in 
Fig. 15 (a) and (b), respectively. The vertical and horizontal axes 
represent the total shear reaction at the base of the wall and the hori
zontal displacement in x-direction applied to the node at the top of the 
wall, respectively. The results are compared with those obtained by Rots 
in [1], where a load-controlled analysis with a special arc-length 
method, using crack mouth sliding degrees-of-freedom in combination 
with true negative tangent stiffness, allowed to accurately describe the 
snap-back of the capacity curve associated with the propagation of the 
crack along the interface. The numerical analyses performed in this 
study pointed out the difficulty in following the post-peak response stage 
and the computational effort required to reach the convergence of the 

Fig. 12. Possible failure mechanisms of a U-Shaped wall as shown in [1].  

Fig. 13. Model of the U-shape assemblage in DIANA FEA: (a) 2D plane stress and (b) 3D solid model.  

Fig. 14. Shear stress-tangential relative displacement diagram for different 
maximum shear stress values. 

Table 3 
U-shape assemblage: masonry and interface Coulomb friction model parameters.  

Elements Mechanical Parameters Values Units 

Masonry Calcium Silicate 
(Linear Elastic) 

Elastic modulus E 5000 MPa 
Poisson’s ratio υ 0.12 – 
Shear modulus G 2232 MPa 
Unit mass ρ 1800 kg/m3 

Vertical Joint  
(Coulomb Friction) 

Normal stiffness kn 3125 MPa 
Shear stiffness kt 1395 MPa 
Mode II fracture energy Gf

II 0.05 J/m2 

Cohesion cu 0.4 N/mm2 

Angle of friction tanφ 0.75 – 
Angle of dilatancy tanψ 0.1 –  
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solution. In particular, the analysis performed using the Coulomb fric
tion interfaces converges until the onset of the shear failure of the ver
tical connection. After that, the sudden propagation of the crack along 
the joint causes the instability of the numerical solution. Specifically, the 
analyses performed with the Newton-Raphson iterative method diverge 
after the peak is achieved, whereas those run with the Secant (Quasi- 
Newton) method describe the post-peak branch, although a very small 

step size must be set. Besides, the snap-back cannot be described due to 
the adopted displacement-control, but is “jumped over” by using the 
Secant Quasi-Newton method. 

Unlike the Coulomb-friction model, no convergence issues are 
observed when the Nonlinear Elastic interfaces are used along with the 
Newton-Raphson iterative method. The results of the analyses per
formed by adopting different values of the maximum shear stress are 

Fig. 15. 2D model capacity curves: (a) Coulomb Friction vs (b) Nonlinear Elastic model as constitutive law for the vertical interface.  

Fig. 16. 3D model capacity curves: (a) Coulomb Friction vs (b) Nonlinear Elastic model as constitutive law for the vertical interface.  
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illustrated in Fig. 15 (b). Once more, as a displacement-controlled 
analysis was performed, the snap-back cannot be described and the 
peak load is underestimated for all the cases. Overall, the Coulomb 
friction-based constitutive law is more adherent to the mechanical 
behaviour of the joint, but the implemented formulation suffers from 
numerical instability and hardly allows to describe the post-peak 
behaviour of the structure. This could be likely related to various is
sues: the coupled plasticity-based formulation is very sensitive to nu
merical details in the required return mapping schemes in solving for the 
elastic and plastic part of the relative displacements; the apex and the 
combination of Coulomb friction with discrete cracking require special 
treatment; non-symmetric stiffness matrices in case of non-associated 
plasticity have to be dealt with. On the other hand, the Nonlinear 
Elastic interface is a simple alternative to obtain an approximate 
description of the joint behaviour, although its parameters need to be 
accurately calibrated to obtain reliable results, for instance considering 
as a benchmark the outcomes of the testing campaign presented in [15]. 
The absence of a decomposition of the relative displacements and the 
straightforward derivation of the tangent or secant stiffness for the in
dependent uniaxial curves obviously make the analysis robust. 

Regarding the 3D model, the use of solid elements did not provide a 
more accurate description of the failure mechanism. On the opposite, 
this choice presents some drawbacks, such as the much higher compu
tational effort, more convergence problems, or the need to impose the 

dilatancy angle Ψ equal to the friction angle ϕ to have a symmetric 
stiffness matrix and increase the robustness of the model. In Fig. 16, the 
results of the 3D model are compared with those obtained by Rots in [1] 
for the 2D model. 

4.2. Modelling of the continuous vertical joints in the two-storey masonry 
assemblage 

The interfaces described in the previous section were used to model 
the continuous vertical connections between piers and transversal walls 
in the masonry structure already described and analysed in Section 3.1. 
The three FE models, TSCM-Shell, TSCM-Solid and EMM-Shell were 
modified by modelling the discontinuity present along the vertical joints 
at the corners by means of interface elements, as illustrated in Fig. 17 
(a). A rigid horizontal interface between the pier and the second floor 
was added to allow the sliding along the joints after failure, as shown in 
Fig. 17 (b). 

First, the Coulomb friction constitutive law was adopted for the 
vertical interfaces. A sensitivity study was performed by varying the 
value of the friction angle, expressed as a percentage of the initial angle 
ϕ equal to 0.64 rad (as for the U-shape assemblage). The friction angle 
was gradually reduced to obtain sliding failure along the interfaces, and 
Fig. 18 shows the corresponding capacity curves. It was observed that 
the numerical model is not robust, since the convergence is extremely 

Fig. 17. (a) Vertical interface and (b) rigid horizontal interface.  

Fig. 18. Capacity curves in terms of Base Shear force vs Horizontal Displacement of the second floor varying the friction angle for (a) EMM-Shell, (b) TSCM-Shell and 
(c) TSCM-Solid, adopting Coulomb friction interfaces. 
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sensitive to small variations of the friction angle. Besides, similarly to 
the analyses performed for the U-shaped assemblage, the solution be
comes numerically unstable at the onset of the sliding along the 

interfaces. 
Subsequently, the vertical interfaces were modelled via the uncou

pled Nonlinear Elastic relations, instead of the coupled non-associated 

Fig. 19. Capacity curves in terms of Base Shear force vs Horizontal Displacement of the second floor, varying the maximum shear stress for (a) EMM-Shell, (b) TSCM- 
Shell and (c) TSCM-Solid, adopting Nonlinear Elastic interfaces. 

Fig. 20. TSCM-Shell with maximum shear stress equal to 0.6 N/mm2: (a) and (b) mechanism which causes the decrease of capacity [Output Plot: Crack-widths], (c) 
sliding of the interface [Output Plot: Interface Relative Displacement]. 
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plasticity-based Coulomb friction model. Also in this case, a sensitivity 
study was performed by varying the values of the maximum and residual 
shear stresses of the vertical interfaces. 

Fig. 19 shows the comparison of the capacity curves obtained for 

positive imposed displacements, considering three different values of 
the maximum shear stress (τmax = 0.4, 0.5, 0.6 N/mm2), and that ob
tained by neglecting the nonlinear mechanisms of the vertical joints, i.e. 
considering strong vertical connections (SVC). Unlike the model with 

Fig. 21. TSCM-Shell with maximum shear stress equal to 0.5 N/mm2: (a) and (b) mechanism which causes the decrease of capacity [Output Plot: Crack-widths], (c) 
sliding of the interface [Output Plot: Interface Relative Displacement]. 

Fig. 22. Capacity curves in terms of Base Shear force vs Horizontal Displacement of the second floor, varying the residual shear stress for (a) EMM-Shell, (b) TSCM- 
Shell and (c) TSCM-Solid, adopting Nonlinear Elastic interfaces. 
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Coulomb friction interfaces, more stable numerical results were ob
tained. In fact, no convergence problems occurred, and the results do not 
show a significant sensitive to the small variations of the parameters. 

Different failure mechanisms occur depending on the strength 
assigned to the vertical interfaces. In the following, this is discussed with 
reference to the case of TSCM-Shell. When the vertical joint at the corner 
is strong, such as for the SVC case, the sudden drop of the force solely 
depends on the development of a diagonal crack in the wide pier. 
Conversely, when the value of the maximum shear stress was reduced, a 
mixed failure mode that combines the diagonal crack with the sliding 
along the vertical joint was observed, as shown in Fig. 20 and Fig. 21. 
The two figures also show that a lower value of the maximum shear 
strength of the connection on the one hand anticipates the global failure 
of the structure, on the other hand reduces the width of the crack, which 
also propagates more along the vertical joint. This allows for a higher 
residual capacity of the structure that is still able to withstand larger 
deformations. 

The effect of the variation of the residual shear stress is limited since 
this only affects the post-peak capacity of the structure, as illustrated in 
Fig. 22. Lower values of the residual shear stress reduce the residual 
capacity but increase its ductility, since the occurrence of further brittle 
failures is prevented, such as the diagonal cracking of the wide pier. 

5. Conclusions 

Continuous vertical joints represent a critical detail in Dutch terraced 
houses built after the 1980s, since their failure may affect the global 
seismic performance of the building. In numerical models, interface el
ements are often used to simulate the nonlinear behaviour of the 
connection. The use of different constitutive laws for interface elements 
is investigated in this work, first at component level, for U-shaped pier- 
wall configurations, and then at the full-scale structural level for a two- 
storey masonry house. The normal-shear coupled plasticity-based 
Coulomb Friction model is typically adopted, as this describes prop
erly the mechanical behaviour of the joint. However, the analyses per
formed in this study show that this constitutive law implemented in a 
FEM framework may not be sufficiently robust to simulate the brittle 
failure of the continuous vertical joint. In fact, the sudden propagation of 
the crack leads often to the divergence of the analysis. To overcome 
these limitations, a simpler Nonlinear Elastic constitutive law with 
direct, uncoupled uniaxial traction – relative displacement relations for 
the shear and normal directions is proposed as an alternative. The 
stiffness matrix of this constitutive law is characterized by decoupled 
terms in the normal and tangential direction, which is demonstrated to 
improve the robustness of the model and facilitate the convergence of 
the analysis. However, the Nonlinear Elastic model has strong limita
tions too. It requires the accurate calibration of the parameters 
(maximum and residual shear stress) which define the uniaxial shear 
diagram. Additionally, this model can only simulate the average 
behaviour of the elements along the connection, as the shear capacity 
should be a function of the normal stress, which varies along the height 
of the connection. In conclusion, the results of this work suggest that 
further investigations are required to develop and implement a specific 
constitutive law for interface elements, capable to be more robust during 
the brittle shear failure governed by Coulomb-friction behaviour. 

Additionally, the sensitivity study shows that the capacity of the 
buildings depends on the strength of the continuous vertical joint. In 
particular, the base shear force depends on the shear strength of the 
connection, whereas the residual shear stress determines the post-peak 
capacity. It is remarkable that the occurrence of the shear failure 
along the vertical joint does not always have a negative impact on the 
building performance, since it may prevent - as a fuse action - the further 
development of brittle failure mechanisms (such as the diagonal 
cracking of the piers), leading to a partly counter-intuitive increase of 
the ductility of the structure. 

Finally, the outcomes of analyses performed with three different 

numerical models, including the use of two different constitutive laws 
for masonry, as well as different elements (shell vs solid), have been 
compared with the results of a test on a full-scale two-storey building. 
The results show that the selection of the constitutive law for masonry 
(in this study the Engineering Masonry Model or Total Strain Crack 
Model) strongly influences the activation of different failure mecha
nisms and, hence, the response of the structure. Conversely, the use of 
solid or shell elements does not have large influence on the outcomes of 
the analyses. 
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