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Abstract
In this paper, a generalized version of dynamic asymmetric simple exclusion
process (ASEP) is introduced, and it is shown that the process has a Markov
duality property with the same process on the reversed lattice. The duality
functions are multivariate q-Racah polynomials, and the corresponding ortho-
gonality measure is the reversible measure of the process. By taking limits
in the generator of dynamic ASEP, its reversible measure, and the duality
functions, we obtain orthogonal and triangular dualities for several other inter-
acting particle systems. In this sense, the duality of dynamic ASEP sits on
top of a hierarchy of many dualities. For the construction of the process, we
rely on representation theory of the quantum algebra Uq(sl2). In the standard
representation, the generator of generalized ASEP can be constructed from the
coproduct of the Casimir. After a suitable change of representation, we obtain
the generator of dynamic ASEP. The corresponding intertwiner is construc-
ted from q-Krawtchouk polynomials, which arise as eigenfunctions of twisted
primitive elements. This gives a duality between dynamic ASEP and general-
ized ASEP with q-Krawtchouk polynomials as duality functions. Using this
duality, we show the (almost) self-duality of dynamic ASEP.
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1. Introduction

In this paper, we study a continuous-time interacting particle process that we call generalized
dynamic ASEP (asymmetric simple exclusion process). This process can be considered as a
higher spin version of dynamic ASEP introduced by Borodin [5], as well as a dynamic version
of generalized ASEP introduced by Carinci et al [10]. Here the term ‘dynamic’ essentially
means that the jump rates of the process depend on a height function corresponding to the
particle process. We show that generalized dynamic ASEP is dual to the same process on the
reversed lattice with orthogonal duality functions that can be expressed asmultivariate q-Racah
polynomials, i.e. a multivariate Askey-Wilson polynomial on a discrete set, where the ortho-
gonality is with respect to the reversible measure of the process. Several interesting interacting
particle processes appear as limit cases of generalized dynamic ASEP. Taking limits to these
processes leads to (orthogonal) dualities for several other interacting particle processes.

In the analysis of interacting particle processes Markov duality is a very useful property.
Duality allows us to study a complicated system in terms of a simpler one. Furthermore, as a
consequence of duality expectations of certain observables evolve according to specific sys-
tems of differential equations. For standard ASEP, in which one particle per site is allowed,
self-duality was first obtained by Schütz [35]. For its generalized version from [10], in which
multiple particles are allowed on each site, self-duality is also obtained. For both processes
duality played a role in showing they belong to the KPZ universality class [7, 14]. Also,
dynamic ASEP has a duality property: in [6] it is shown to be in duality with standard ASEP.
Furthermore, there are other generalizations of standard ASEP with duality. E.g. in [28, 29],
Kuan obtained self-duality functions for a multi-species generalization of ASEP.

In recent years several symmetric interacting particle systems were shown to have products
of hypergeometric orthogonal polynomials as duality functions. For example, Franceschini
and Giardinà [17] showed that Krawtchouk polynomials arise as self-duality functions for
the generalized symmetric exclusion process. Other orthogonal polynomials, such as Meixner
polynomials, Laguerre polynomials, and Hermite polynomials also appear as (self-)duality
functions [8, 18, 23, 32, 38]. The advantage of such orthogonal dualities is that they form an
orthogonal basis for the underlying Hilbert space, which greatly simplifies the expansion of
observables in terms of the duality function. This was used in [1, 2] to study Bolzmann-Gibbs
principles and higher order fluctuation fields, and in [16] in the study of n-point correlation
functions in non-equilibrium steady states.

Very recently orthogonal dualities were also obtained for asymmetric particle processes. In
[9] Carinci, Franceschini, and the first author show that certain q-Krawtchouck and q-Meixner
polynomials, which are q-hypergeometric orthogonal polynomials. appear as duality func-
tions for generalized ASEP and ASIP (asymmetric simple inclusion process). Because of the
asymmetry, the products of the polynomials have a nested structure, which links them to the
multivariate orthogonal polynomials of Tratnik-type from [21]. The results from [18] were
extended to multi-species versions of generalized ASEP in [4, 19], where also nested products
of q-Krawtchouk polynomials appear as duality functions.

In the present paper, we show that generalized dynamic ASEP has nested products of q-
Racah polynomials (also called Askey-Wilson polynomials) as duality functions. These poly-
nomials are generalizations of q-Krawtchouck polynomials, thus we obtain the duality res-
ults from [18] for generalized ASEP, as well as several other dualities, as special cases. The
q-Racah polynomials form the top level of the discrete part of the q-Askey-scheme of q-
hypergeometric orthogonal polynomials [26], which is a large scheme that relates families
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of orthogonal polynomials through specializations and limit relations. There are no families
of orthogonal polynomials above the q-Racah polynomials in the q-Askey-scheme, therefore
we consider it unlikely that more general orthogonal polynomial dualities will be found for
one-species exclusion processes. As another interpretation for Askey-Wilson polynomials in
relation to ASEP, we mention that they appear as correlation functions for standard ASEP with
open boundaries [37].

For the construction of duality functions, we use representation theory of the quantum
algebra Uq(sl2). In [10] the generator of generalized ASEP is constructed from the Casimir
element of Uq(sl2). Through a change of representations (of a subalgebra) we obtain the gen-
erator for generalized dynamic ASEP from the Casimir, thus also obtaining a duality function
between the two processes from the corresponding intertwiner. This duality result can then be
extended to (almost) self-duality of generalized dynamic ASEP. Although we make extens-
ive use of the algebra Uq(sl2), we will first define the process and state the Markov duality
(and corresponding duality functions) without reference to the algebraic construction, so that
the statement of the main results of the paper requires no background knowledge on quantum
algebras and representation theory. The reader interested in an introduction to the algebraic
approach to stochastic duality can look e.g. at [36].

Let us now describe the main character of the paper, generalized dynamic ASEP, in some-
what more detail. The process is a Markov jump process that lives on a 1-dimensional finite
lattice. The sites are numbered from 1, the leftmost site, toM, the rightmost site. Particles can
only jump to neighboring sites. For each site k, we let Nk ∈ N denote the maximum number
of particles allowed on that site and let N⃗ be the vector containing these Nk. Then, for a scal-
ing parameter q> 0, we propose two closely related versions of generalized dynamic ASEP.
Namely a ‘right’ version ASEPR(q, N⃗,ρ), and a ‘left’ version ASEPL(q, N⃗,λ). The first has
jump rates consisting of the rates of generalized ASEP, denoted by ASEP(q, N⃗), times a factor
which depends on the particles and free spaces on the right of a site and a right boundary value
ρ ∈ R via a height function ‘h+’. The jump rates of the second are a product of the ASEP(q, N⃗)
rates and a factor depending on a height function ‘h−’, which depends on the particles and free
spaces on the left of a site and a left boundary value λ ∈ R. The two different versions of gen-
eralized dynamic ASEP can be obtained from each other by reversing the order of the sites.
The rates of generalized dynamic ASEP are invariant under the transformation q→ q−1, so q
cannot simply be seen as an asymmetry parameter. Without loss of generality, we can assume
q ∈ (0,1). Then, if the height function for a site is very negative, the rates of ASEPR(q, N⃗,ρ)
will be close to the ones of ASEP(q, N⃗), while a very positive height function causes the rates
to be close to the ones of ASEP(q−1, N⃗). So in some sense, the parameter q influences the local
asymmetry. Moreover, we show that if there is only one particle in ASEP(q, N⃗,ρ), it gets pulled
towards the site(s) where the height function is close to zero. Numerical simulations suggest
a similar behaviour in the case of many particles, i.e. particles in generalized dynamic ASEP
are distributed around the region where the height function is close to zero, which implies that
these sites are filled by half of their capacity.

Both versions of generalized dynamic ASEP are dual to ASEP(q, N⃗), which we can use to
express the expectation of the particle current in generalized dynamic ASEP in terms of the
expectation of one dual particle in ASEP(q, N⃗). Since both versions of generalized dynamic
ASEP are dual to ASEP(q, N⃗), they are dual to each other. Also, ASEPR(q, N⃗,ρ) general-
izes both ASEP(q, N⃗) and ASEP(q−1, N⃗); the same is true for the left version ASEPL(q, N⃗,λ).
Therefore, the Markov duality between the processes ASEPR(q, N⃗,ρ) and ASEPL(q, N⃗,λ) sits
on top of a hierarchy of several other Markov dualities, see figure 1 for some of these cases.
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Figure 1. Hierarchy of Markov dualities, where q ∈ (0,1).

Table 1. Duality functions corresponding to figure 1.

Type of duality function

Duality Free parameter No free parameter

1 q-Racah Special case q-Racah
2a q-Hahn q-Krawtchouk
3b Affine q-Krawtchouk Triangular
3c Quantum q-Krawtchouk Triangular

The duality functions for duality 1 on top of figure 1 are given by a (nested) product of q-
Racah (or Askey-Wilson) polynomials. As mentioned above, these are on top of the q-Askey-
scheme [26], which means that many other orthogonal polynomials, such q-Krawtchouk poly-
nomials, are special cases of these q-Racah polynomials. Taking limits in the parameters of the
particle processes often preserves the duality. These limits correspond to certain limits in the
q-Askey-scheme, therefore duality functions lower in the hierarchy in figure 1 are still ortho-
gonal polynomials. On the other hand, limits in the q-Askey-scheme do not always correspond
to useful limits of Markov generators. For each of the dualities 1, 2a, 3b, and 3c in figure 1
we list the corresponding type of duality function in table 1, where we make a distinction
between duality functions with and without a free parameter. The latter is a parameter, inde-
pendent of both Markov processes, that appears in a non-trivial way in the duality function.
The dualities 2b and 3a can be obtained from other dualities by sending q→ q−1. All duality
functions given in the table are orthogonal polynomials with respect to the reversible measures
of the processes, except the triangular ones. The term ‘triangular’ means here that the duality
functions when written in matrix form with respect to a certain basis, are lower triangular.

The q-Askey-scheme has a q→ 1 counterpart consisting of hypergeometric orthogonal
polynomials. Considering corresponding limits in the particle processes will lead to ortho-
gonal dualities for symmetric (dynamic) exclusion processes.

1.1. Outlook

In this paper, we mainly study dualities of the new generalized dynamic ASEP and degen-
erate cases. We intend to investigate the new processes in more detail in a future paper. It
would be interesting to consider stochastic PDE limits of generalized dynamic ASEP, as e.g. is
done in [15]. Furthermore, it will be intriguing to investigate the relation between generalized
dynamic ASEP, introduced in this paper, and the recently introduced [30] higher spin versions
of dynamic stochastic vertex models. Moreover, the standard ASEP with open boundaries,
i.e. where particles can enter and leave the system at sites 1 and M, has been studied recently
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[3, 31, 34]. One could also consider generalized dynamic ASEP with open boundaries, where
particles leaving and entering the system could have a global effect on the height function.
Another extension might be to consider generalized dynamic ASEP on a ring, i.e. where sites
1 and M are connected. Given that particles in generalized dynamic ASEP can have a prefer-
ence to move towards regions with a higher particle density, it would be interesting to investig-
ate whether uphill diffusion might appear when considering generalized dynamic ASEP with
open boundaries or on a ring. Uphill diffusion is a phenomenon where there is a particle cur-
rent flowing from a lower particle density towards a higher one, see e.g. [12, 13]. Finally, we
plan to report on a corresponding inclusion process, dynamic ASIP, and dualities in the very
near future. This corresponds to representation theory of the non-compact quantum algebra
Uq(su(1,1)), which was already shown to have a connection with ASIP [9, 11]. By taking a
suitable limit from dynamic ASIP, one can also obtain a dynamic version of the Asymmetric
Brownian Energy Process (ABEP).

1.2. Outline of the paper

The organization of this paper is as follows. In section 2 we briefly recall and discuss dynamic
ASEP defined in [5]. Then in section 3 we introduce two closely related higher spin versions
of dynamic ASEP, show their reversibility, and state Markov dualities between these processes
and generalizedASEP. The dualities are 1, as well as 2a and 2b (the last twowithout a free para-
meter) from figure 1. The proof of these results is postponed until sections 7 and 8, but stating
the results does not require those techniques. In section 4 we will investigate degenerations of
this duality by taking appropriate limits of the duality 1, showing all the dualities in figure 1 as
well as dualities the for totally asymmetric zero range process (TAZRP) and (dynamic) sym-
metric exclusion processes. Up to this point, no knowledge of quantum algebras is required. In
section 6 we introduce the quantum algebra Uq(sl2) as well as the q-Krawtchouk polynomials,
which are eigenfunctions of a realization of Koornwinder’s twisted primitive elements. Then
in section 7, we construct the generator of generalized dynamic ASEP from generalized ASEP
by a change of representation of the coproduct of the Casimir. The important observation here
is that the generator of generalized ASEP acting on the degree of the q-Krawtchouk polynomi-
als can be transferred to an action on its variable, giving the generator of generalized dynamic
ASEP. This method of construction automatically gives Markov duality between the two pro-
cesses (with q-Krawtchouk polynomials as orthogonal duality functions) as well as reversibil-
ity of generalized dynamic ASEP. In section 8 we then show that generalized dynamic ASEP
is (almost) self-dual with duality functions given by a (doubly) nested product of q-Racah
polynomials. In section 9 we carry out the explicit limit calculations to prove the results on
degenerations of the q-Racah dualities which are stated in sections 4 and 5. In the appendix, we
give an overview of all duality functions appearing in this paper and their explicit description,
and we state and prove several useful identities we make use of elsewhere in the paper.

1.3. Preliminaries and notations

Let us start with the definition of Markov duality. Let {X(t)}t⩾0 and {X̂(t)}t⩾0 be Markov
processes with state spacesΩ and Ω̂ and generators L and L̂. We say that X(t) and X̂(t) are dual
to each other with respect to a continuous duality function D : Ω× Ω̂→ C if

[LD(·, ξ)] (η) =
[
L̂D(η, ·)

]
(ξ)

5
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for all η ∈ Ω and ξ ∈ Ω̂. If {X̂(t)}t⩾0 is a copy of {X(t)}t⩾0, we say that the process {X(t)}t⩾0

is self-dual with respect to the duality function D.
For future reference, we also make the following remark.

Remark 1.1. Let L and L̂ be generators of interacting particle systems where the total number
of particles is conserved (as all processes in this paper will be). Then we have the following
two basic results.

• Let D(η,ξ) be a duality function between the two processes. If f is a function only depend-
ing on parameters of the processes and the total number of (dual) particles |η| and |ξ|, then
f(|ξ|, |η|)D(η,ξ) is again a duality function since f is invariant under the action of both
generators.

• Let µ be a reversible measure for the process generated by L, i.e. detailed balanced is
satisfied:

µ(η)L(η,η ′) = µ(η ′)L(η ′,η) ,

where L(η,η ′) is the jump rate from the state η to η ′. Note that both sides of the above
equation become zero if |η| 6= |η ′| since in that case L(η,η ′) = 0. If g is a function only
depending on parameters of the process and the total number of particles |η|, then g(|η|)µ(η)
is again a reversible measure since we can just multiply above detailed balance condition by
g(|η|) = g(|η ′|).

Let us introduce some notations and conventions we use throughout the paper.We fix a scal-
ing parameter q> 0, where we will sometimes require q ∈ (0,1). By N we denote all positive
integers,

Z⩾0 = N∪{0} and R× = R\{0} .

For a ∈ R, let

[a]q =


qa− q−a

q− q−1
for q 6= 1,

a for q= 1,

which is justified by

lim
q→1

[a]q = a.

We use standard notation for q-shifted factorials and q-hypergeometric functions as in [20]. In
particular, q-shifted factorials are given by

(a;q)n = (1− a)(1− aq) · · ·
(
1− aqn−1

)
, n ∈ N

and we use the convention (a;q)0 = 1. For q ∈ (0,1), (a;q)∞ = limn→∞(a;q)n. Moreover, for
q 6= 1, n ∈ Z⩾0 and k= 0, . . . ,n the q-binomial coefficient is given by[

n
k

]
q

=
(q;q)n

(q;q)k (q;q)n−k

=
(q−n;q)k
(q;q)k

(−qn)k q− 1
2 k(k−1).

6
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The q-hypergeometric series r+1φr is given by

r+1φr

(
a1, . . . ,ar+1

b1, . . . ,br
;q,z

)
=

∞∑
n=0

(a1;q)n · · ·(ar+1;q)n
(b1;q)n · · ·(br;q)n

zn

(q;q)n
.

If for some k we have ak = q−N with N ∈ Z⩾0, the series terminates after N+ 1 terms, since
(q−N;q)n = 0 for n>N.

The shifted factorials are given by

(a)0 = 1, (a)n = a(a+ 1) · · ·(a+ n− 1) , n ∈ N,

and the hypergeometric series r+1Fr is defined by

r+1Fr

(
a1, . . . ,ar+1

b1, . . . ,br
;z

)
=

∞∑
n=0

(a1)n · · ·(ar+1)n
(b1)n · · ·(br)n

zn

n!
,

where the series terminates if ak ∈ −N for some k. The following limit relations hold: the
q-shifted factorials become shifted factorials,

lim
q→1

(a;q)n
(1− q)n

= (a)n , a ∈ R, n ∈ Z⩾0,

the q-binomial coefficient becomes the ordinary binomial coefficient,[
n
k

]
1

= lim
q→1

[
n
k

]
q

=

(
n
k

)
.

and, for a1, . . . ,ar,b1, . . . ,br ∈ R and n ∈ Z⩾0,

lim
q→1

r+1φr

(
q−n,qa1 , . . . ,qar

qb1 , . . . ,qbr
;q,z

)
= r+1Fr

(
−n,a1, . . . ,ar
b1, . . . ,br

;z

)
.

For an ordered M-tuple x= (x1, . . . ,xM) we denote by xrev the reversed M-tuple,

xrev = (xM, . . . ,x1) .

and by |x| the sum over its elements,

|x|= x1 + . . .+ xM.

All interacting particle processes and functions in this paper will depend on certain para-
meters. To simplify notation we suppress the dependence on the parameters in notations, but
occasionally add one or more parameters in the notation to stress dependency on the included
parameters.

7



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

2. Dynamic ASEP

The dynamic asymmetric exclusion process is introduced in [5] as a limit case of a stochastic
Interaction-Round-a-Face model and has been further studied in [6, 15]. The dynamic ASEP is
a continuous-timeMarkov process on the state space S = {(hk)k∈Z | hk ∈ Z, hk+1 − hk =±1}.
An element (hk)k∈Z inS can be considered as a height function on the real line that takes integer
values at integers and has slope±1 in between. The jumps of the process are independent and
have exponential waiting times with rates depending on two parameters q> 0 and α> 0:

hk 7→ hk+ 2 at rate q−1 1+αq−2hk

1+αq−2hk−2
,

hk 7→ hk− 2 at rate q
1+αq−2hk

1+αq−2hk+2
.

Jumps that take a height function out of the state space are of course not allowed and therefore
have rate equal to zero. Let us remark that the rates here are normalized slightly differently
from [5]. Furthermore, we can always set the parameter α equal to 1 by shifting the height
function by ρ= 1

2 logq(α); in this case, hk ∈ ρ+Z for all k and the rates are invariant under
the transformation q→ q−1.

In the next section, we propose a higher spin generalization of dynamic ASEP. However,
before we introduce the generalized process, it will be convenient to consider the following
interacting particle process onM ∈ N sites which is equivalent to the above-described dynamic
ASEP for height functions on Z∩ [1,M].

In [6], a slope increment of −1 was associated with a particle and a slope increment of 1
with an empty site. Note that if we would go in the opposite direction (from right to left), a
slope increment of 1 is associated with a particle and a slope increment of −1 with an empty
site, which is in our setting a more convenient view of looking at it. To be precise, let ξk be the
number of particles on site k, which is either 0 or 1, then ξk is determined by

hk = hk+1 + 1 if ξk = 1 and hk = hk+1 − 1 if ξk = 0,

or in shorter notation,

hk = hk+1 +(2ξk− 1) .

This implies that the height function (hk)Mk=1 is a function of ξ = (ξk)
M
k=1 ∈ {0,1}M. We fix the

height function to be equal to a real number ρ at the ‘virtual’ site M+ 1,

hM+1 = ρ, (2.1)

which can be considered as a boundary value (on the right). Then for k= 1, . . . ,M+ 1, the
height function is given by

hk = hk,ρ (ξ) = ρ+
M∑
j=k

(2ξj− 1) ,

where we suppress the dependence on ρ and/or ξ, unless we explicitly need it. We adopt the
convention that the empty sum equals zero so that the boundary value (2.1) holds. Let us
mention that

8
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M∑
j=k

(2ξj− 1) =
M∑
j=k

ξj−
M∑
j=k

(1− ξj)

is the sum of the particles per site minus the sum of the free spaces per site.
Wemention here that in a given configuration ξ, the height function on site 1 is also constant

and equal to ρ+ 2|ξ| −M. So if one fixes a boundary ρ ′ on a left virtual site 0 (i.e. h ′
0 = ρ ′), we

obtain essentially the same interacting particle system if one takes h ′
k = ρ ′ +

∑k
j=1(1− 2ξj).

However, we choose the convention that in the height function, we sum over the particles per
site minus the sum over the free spaces per site (instead of the free spaces per site minus the
particles per site), which implies that we need to impose a boundary value on the right.

Alternatively, a similar (but different) process can be defined where in the height function
we sum over the particles per site minus the free spaces per site on the left of and including site
k,1 which we do in section 8. For this reason, we distinguish between those cases by adding a
superscript+ (or−) to the height function when summing over particles on the right (or left).
Thus we write for λ,ρ ∈ R,

h+k = h+k,ρ (ξ) = ρ+
M∑
j=k

(2ξj− 1)

and

h−k = h−k,λ (ξ) = λ+
k∑

j=1

(2ξj− 1) .

For now, let us focus on the version with h+k . The jump rates for that corresponding particle
process are now given by

ξ 7→ ξk−1,k at rate q−1 1+ q−2h+k

1+ q−2h+k −2
,

ξ 7→ ξk,k−1 at rate q
1+ q−2h+k

1+ q−2h+k +2
,

where ξk−1,k = (. . . , ξk−1 − 1, ξk+ 1, . . .) and ξk,k−1 = (. . . , ξk−1 + 1, ξk− 1, . . .).
Let us assume q ∈ (0,1), then in the limit ρ→−∞ dynamicASEP becomes standardASEP

with jump rate q−1 for jumps to the right and rate q for jumps to the left. Moreover, in the limit
ρ→∞ we obtain the same standard ASEP, but with q replaced by q−1.

3. Generalized dynamic ASEP

In this section, we introduce a higher spin version of dynamic ASEP and state several corres-
ponding Markov dualities. The definition of the process is motivated by representation theory
of the quantum algebra Uq(sl2): the process generator is, up to an additive constant, the real-
ization of sums of coproducts of the quantum Casimir element in a particular representation.
However, in this section, all results are stated without reference to the representation theory.
The proofs of the duality results stated in this section, which make use of this representation-
theoretic interpretation of the generator, are postponed to later sections.

1 We emphasize that this is a different height function than h ′
k defined in the previous paragraph.

9



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

3.1. Generalized ASEP

Before we introduce the higher spin version of dynamic ASEP let us first introduce
ASEP(q, N⃗), which is a higher spin version of the standard ASEP, i.e. each site allows a finite
number of particles. This process was introduced in [10] in the case where each site allows the
same number of particles. Here we define the process in a slightly more general way, namely
the maximum number of particles may differ on each site.

For k= 1, . . . ,M let Nk ∈ N be the maximum number of particles allowed on site k, and
denote N⃗= (N1, . . . ,NM). The process ASEP(q, N⃗) is a continuous-time Markov jump process
on the state space X= {0, . . . ,N1}× · · · × {0, . . . ,NM} depending on a parameter q> 0. Given
a state η = (ηk)

M
k=1, a particle on site k jumps to site k+ 1 at rate

c+k (η) = q−(ηk+1+Nk−ηk+1) [ηk]q [Nk+1 − ηk+1]q , (3.1)

and a particle on site k jumps to site k− 1 at rate

c−k (η) = qηk−1+Nk−ηk+1 [ηk]q [Nk−1 − ηk−1]q . (3.2)

The Markov generator of the process is then given by

Lq,N⃗ f(η) =
M−1∑
k=1

c+k (η)
[
f
(
ηk,k+1

)
− f(η)

]
+ c−k+1 (η)

[
f
(
ηk+1,k

)
− f(η)

]
.

Remark 3.1.

• By associating particles with free places and vice versa we get a symmetry between
ASEP(q, N⃗) and ASEP(q−1, N⃗). That is, let {η(t)}t⩾0 be the process that evolves according
toASEP(q, N⃗). If we define η ′ = N⃗− η, then {η ′(t)}t⩾0 evolves according toASEP(q−1, N⃗).
This symmetry can also be found in the duality functions involving those processes.

• For N1 = . . .= NM = 2jwith j ∈ 1
2N, this becomes ASEP(q,2j) as defined in [10]. For N1 =

. . .= NM = 1, this is the standard ASEP where particles jump to the left with rate q and to
the right with q−1.

3.2. Generalized dynamic ASEP

Nowwe are ready to define a higher-spin version of dynamic ASEP. Similar to dynamic ASEP
from the previous section, the rates can be written as a product of the rate of (generalized)
ASEP and a factor containing the height function.

Definition 3.2. ASEPR(q, N⃗,ρ) is a continuous-timeMarkov jump process on the state spaceX
depending on parameters q> 0 and ρ ∈ R. Given a state ξ = (ξk)

M
k=1 ∈ X we define the height

function (h+k )
M
k=1 by

h+k = ρ+
M∑
j=k

(2ξj−Nj) ,

and on the right we set the boundary value h+M+1 = ρ. Then a particle on site k jumps to site
k+ 1 at rate

CR,+
k (ξ) = c+k (ξ)

(
1+ q2ξk−2h+k

)(
1+ q2ξk+1−2h+k+1

)
(
1+ q−2h+k+1

)(
1+ q−2h+k+1−2

) ,

10
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and a particle on site k jumps to site k− 1 at rate

CR,−
k (ξ) = c−k (ξ)

(
1+ q−2ξk−1−2h+k

)(
1+ q−2ξk−2h+k+1

)
(
1+ q−2h+k

)(
1+ q−2h+k +2

) .

Remark 3.3. Since

M∑
j=k

(2ξj−Nj) =
M∑
j=k

ξj−
M∑
j=k

(Nj− ξj) ,

this factor in the height function is again the sum of the particles per site minus the sum of the
free spaces per site.

Remark 3.4. One can also rewrite the rates as

CR,+
k (ξ) = [ξk]q [Nk+1 − ξk+1]q

(
qh

+
k −ξk + q−(h

+
k −ξk)

)(
qh

+
k+1−ξk+1 + q−(h

+
k+1−ξk+1)

)
(
qh

+
k+1 + q−h+k+1

)(
qh

+
k+1+1 + q−(h

+
k+1+1)

) ,

CR,−
k (ξ) = [ξk]q [Nk−1 − ξk−1]q

(
qh

+
k +ξk−1 + q−(h

+
k +ξk−1)

)(
qh

+
k+1+ξk + q−(h

+
k+1+ξk)

)
(
qh

+
k + q−h+k

)(
qh

+
k −1 + q−(h

+
k −1)

) .

(3.3)

From this we can see that the value of the parameter q in ASEPR(q, N⃗,ρ) is not related to the
asymmetry of the process as the jump rates CR,+

k and CR,−
k are invariant under q↔ q−1. In

contrast, the rates c+k and c−k of ASEP(q, N⃗) are not q↔ q−1 invariant.

Note that, similar to dynamic ASEP in section 2, this process can be written solely in terms
of the height function h+k by using

h+k = h+k+1 + 2ξk−Nk.

In this way, we can consider it as a process on the state space of height functions on [1,M]∩Z
taking values in ρ+Z, for which the slope between k and k+ 1 can take values in

{−Nk,−Nk+ 2, . . .,Nk− 2,Nk} .

The dynamic parameter ρ can be considered as a boundary value on the right for the height
function. The added label ‘R’ stands for ‘right’, indicating that there is a prescribed boundary
value for the height function at the right boundary (at the virtual site M+ 1). Consequently,
considered as an interacting particle process, the jump rates to and from site k depend on the
number of particles on the right of site k through the values h+k and h+k+1 of the height function.

For later references we introduce the ASEPR(q, N⃗,ρ) Markov generator, which is given by

LR
q,N⃗,ρ

f (ξ) =
M−1∑
k=1

CR,+
k (ξ)

[
f
(
ξk,k+1

)
− f(ξ)

]
+CR,−

k+1 (ξ)
[
f
(
ξk+1,k

)
− f(ξ)

]
.

11
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Remark 3.5 (special cases). ASEPR(q, N⃗,ρ) reduces to other processes as follows:

• For N1 = . . .= NL = 1 we recover standard dynamic ASEP from section 2. Indeed, the
height function h+k changes to h+k + 2 if a particle at site k− 1 jumps to site k. This is only
possible if ξk−1 = 1 and ξk = 0, thus in that case

CR,+
k−1 (ξ) = q−1 1+ q−2h+k

1+ q−2h+k −2
.

Similarly, we obtain that the height functions h+k changes to h+k − 2 with rate

CR,−
k (ξ) = q

1+ q−2h+k

1+ q−2h+k +2
.

• Assume q ∈ (0,1). In the limit ρ→−∞ ASEPR(q, N⃗,ρ) becomes ASEP(q, N⃗), which fol-
lows from

lim
ρ→−∞

CR,+
k (ξ) = c+k (ξ) and lim

ρ→−∞
CR,−
k (ξ) = c−k (ξ) .

Moreover, in the limit ρ→∞ we have

lim
ρ→∞

CR,+
k (ξ) = c+k

(
ξ;q−1

)
and lim

ρ→∞
CR,−
k (ξ) = c−k

(
ξ;q−1

)
,

so that ASEPR(q, N⃗,ρ) becomes ASEP(q−1, N⃗). In this sense ASEPR(q, N⃗,ρ) interpolates
between ASEP(q, N⃗) and ASEP(q−1, N⃗). This is similar to the limits of dynamic ASEP from
section 2 to standard ASEP.

Remark 3.6 (dynamic ASEP on Z). Let N⃗= (Nk)k∈Z with each Nk ∈ N. Then we can also
define ASEPR(q, N⃗,ρ) on Z instead ofM sites as long as there are a finite number of particles.
The only non-trivial thing is how to define the height function h+k when k>M. When having
M sites, we fixed the height function at the ‘virtual’ siteM+ 1 to be ρ. If we allow particles to
jump further to the right, the height function at site M+ 1 is not fixed anymore. However, we
can still use this site as a reference point. Every time a particle jumps from site M to M+ 1,
the height function at site M+ 1 is raised by 2. Therefore, define

h+M+1 = ρ+ 2
∑

j⩾M+1

ξj.

Requiring h+k = h+k+1 + 2ξk−Nk for all k ∈ Z, we obtain the height function

h+k =

h
+
M+1 +

∑M
j=k (2ξj−Nj) if k⩽M+ 1,

h+M+1 −
∑k−1

j=M+1 (2ξj−Nj) if k>M+ 1.

In this setting,M+ 1 is just an arbitrary reference site, so we may for example fixM+ 1= 0.
The duality functions obtained later on are still valid for Z since sites with no particles for

both dual processes do not contribute to the duality function.

12
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Let us take a closer look at the rates of ASEPR(q, N⃗,ρ). Since the rates are invariant under
the transformation q→ q−1, we can assume without loss of generality that q ∈ (0,1). One can
show that the rates CR,+

k and CR,−
k , seen as functions of h+k , are monotonically decreasing and

increasing respectively. Indeed, from (3.3) one obtains,

CR,−
k = [ξk]q [Nk−1 − ξk−1]q f1

(
h+k
)
f2
(
h+k
)
,

where

f1
(
h+k
)
=

(
qh

+
k +ξk−1 + q−(h

+
k +ξk−1)

)
(
qh

+
k + q−h+k

) ,

f2
(
h+k
)
=

(
qh

+
k +Nk−ξk + q−(h

+
k +Nk−ξk)

)
(
qh

+
k −1 + q−(h

+
k −1)

) .

Here we used h+k+1(ξ) = h+k (ξ)+Nk− 2ξk. A straightforward calculation for the derivative

with respect to h+k shows that f ′1, f
′
2 ⩾ 0. Since also f1, f2 ⩾ 0, we conclude that CR,−

k is mono-
tonically increasing in h+k . Similarly, one can show that CR,+

k is monotonically decreasing
in h+k . As noted in remark 3.5, ASEPR(q, N⃗,ρ) becomes ASEP(q, N⃗) in the limit ρ→−∞
and ASEP(q−1, N⃗) if we let ρ→∞. Therefore, the height function h+k makes the rates of
ASEPR(q, N⃗,ρ) interpolate between ASEP(q, N⃗), when h+k goes to −∞, and ASEP(q−1, N⃗),
when h+k goes to ∞.

To understand the behaviour of the system better, let us consider the case where there is
only one particle present in ASEPR(q, N⃗,ρ) and Nk = N ∈ N for all k. Then we have a nearest
neighbor asymmetric random walker which jumps from site k→ k+ 1 with rate CR,+

k (ek)

and from site k→ k− 1 with rate CR,−
k (ek), where ek is the one-particle configuration with

a particle at site k. Recall that both h1 = ρ+ 2|ξ| − |N⃗| and h+M+1 = ρ are fixed when ρ, N⃗ and
the total number of particles in the system are chosen. In the setting with one particle, h+1 = ρ+

2− |N⃗|. So besides the situation with M= N= 1, we always have h+1 ⩽ h+M+1. The function
k 7→ h+k is a straight line with increment N between two neighboring sites, unless the particle
is at site k, when the increment is N− 2. Since we just saw that the rate CR,+

k is monotonically
decreasing in the variable h+k and CR,−

k monotonically increasing, the more the particle is on
the right of the lattice {1,2, . . .,M}, the less it wants to jump to the right and the more it wants
to jump to the left. Similarly, when our particle moves further to the left, the less it wants to
jump to the left and the more it wants to jump to the right.

Since CR,−
k is monotonically increasing and CR,+

k monotonically decreasing, it is a natural
question to ask for which value of h+k the rates are equal. Using (3.3), we see that this will be
the case if and only if

qh
+
k −1 + q−(h

+
k −1) = qh

+
k −1+N+ q−(h

+
k −1+N). (3.4)

Note that the function

x 7→ 1
2

(
qx+ q−x

)
13
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is just cosh(ln(q)x), thus (3.4) is satisfied if and only if

h+k − 1= h+k − 1+N or h+k − 1=−
(
h+k − 1+N

)
.

The first equation has no solution, the second leads to hk = 1− 1
2N, which can only be satisfied

for certain values of ρ. However, if 1− 1
2N⩾ ρ⩽ (M− 1

2 )N− 2|ξ|+ 1, then

h+1 = ρ+ 2|ξ| −MN⩽ 1− 1
2
N

and h+M+1 ⩾ 1− 1
2N. Since the height function has a maximum increment2 of ±N between

neighboring sites, there will be an integer j such that h+j (ej)⩽ 1− 1
2N and h+j+1(ej+1)⩾ 1−

1
2N. In that setting, the particle has a preference to jump to the right if present at site j, and to
the left if present at site j+ 1. Moreover, note that h+j is relatively close to 0 compared to the
value h+M+1 − h+1 =MN− 2|ξ|. Therefore, the sign of the preferred direction the particle wants
to jump will flip in the region where the height function is close to zero. That is, the particle
is attracted to this region. However, the existence of such a region depends on the value of ρ,
so let us describe three different scenarios.

• ρ� 0.
When ρ is small enough such that h+k ⩽ 1− 1

2N⩽ 0 for all k, the particle has a preference
to jump to the right on each site. Moreover, if it gets further away from site M, the rate for
jumping to the right increases, and the rate for jumping to the left decreases. Note that this
is consistent with the fact that the jump rates get closer to the ones of ASEP(q, N⃗) when the
height function decreases.

• 1− 1
2N< ρ⩽ (M− 1

2 )N− 2|ξ|+ 1.
As discussed before, there will be an integer j such that the particle has a preference to jump
to the right if present at (or left of) site j and a preference to move to the left if present at
(or right of) site j+ 1. Also, if the particle gets further to the left, the rate for jumping right
increases, and if the particle gets further to the right, the rate for jumping left increases.
Moreover, if the particle moves further left or right of site j, the jump rates will approximate
the rates of ASEP(q, N⃗) or ASEP(q−1, N⃗) respectively.

• ρ� 0.
When ρ is large enough such that h+1 > 1+ 1

2N, then h
+
k ⩾ 1− 1

2N for all k. Therefore, the
particle will have a preference to jump to the left on each site. Moreover, if it gets further
right of site 1, the rate for jumping left increases, and the rate for jumping right decreases.
This is again consistent with the fact that the jump rates get closer to the jump rates of
ASEP(q−1, N⃗) when the height function increases.

In figure 2, one can see instances of these three situations where there is a particle at site 2
and siteM− 1. Note that as long as the particles do not jump to neighboring sites, the jump of
one particle does not influence the jump rate of the other particle. So if we assume thatM⩾ 5,
the particles are not neighbors and the previous one-particle analysis still goes through for the
states depicted.

2 In the setting with 1 particle, the increment is either N or N− 2.
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Figure 2. Three different ASEP(q, N⃗,ρ) instances with 2 particles (black dots) and the
corresponding height function h+ (dashed line), where Nk = 2 for all k. From left to
right: ρ≪ 0, 1− 1

2N⩽ ρ⩽ (M− 1
2 )N− 2|ξ|+ 1, ρ≫ 0. The arrow indicates the pre-

ferred jump direction.

3.3. Duality between ASEP and dynamic ASEP

A main result of this paper is (an orthogonal) Markov duality between ASEP(q, N⃗) and
ASEPR(q, N⃗,ρ). The duality function is given in terms of (dual) q-Krawtchouk polynomials
[26, §14.15 and §14.17] that we now introduce. Define for c ∈ R and N ∈ N,

Kn (x;c,N;q) = 3φ2

(
q−n,q−x,−cqx−N

q−N,0
;q,q

)
.

For n= 0, . . . ,N these are polynomials in q−x− cqx−N of degree n; as such these polynomials
are called the dual q-Krawtchouk polynomials. Moreover, for x= 0, . . . ,N these are polyno-
mials in q−n of degree x; as such they are known as q-Krawtchouk polynomials. Throughout
the paper we will just refer to these functions as q-Krawtchouk polynomials. We define ‘1-site
duality functions’ by

k(n,x;ρ;N;q) = ck (n,ρ,N)Kn
(
x;q2ρ,N;q2

)
, (3.5)

where the coefficient ck can be found in appendix A. We define the duality function KR :
X×X→ R as a product of the 1-site duality functions,

KR (η,ξ) = KR

(
η,ξ;ρ, N⃗;q

)
= q−

1
2 u(η;N⃗)

M∏
k=1

k
(
ηk, ξk;h

+
k+1 (ξ) ;Nk;q

)
, (3.6)

where

u
(
η; N⃗

)
=

M∑
k=1

ηkNk− 2ηk

k∑
j=1

Nj

 . (3.7)

Note that the product (3.6) has a ‘nested’ structure as the kth factor, which is the 1-site duality
function corresponding to site k, depends on ξk+1, . . . , ξM through h+k+1(ξ), i.e. on the dual
particles on the right of site k. The following result shows thatKR is a duality function between
ASEP(q, N⃗) and ASEPR(q, N⃗,ρ).

Theorem 3.7. For states η,ξ ∈ X,[
Lq,N⃗KR ( · , ξ)

]
(η) =

[
LR
q,N⃗,ρ

KR (η, ·)
]
(ξ) .
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The full proof, for which we rely on quantum algebra techniques, can be found in
section 7.2. Below we give a short sketch of the proof.

Sketch of proof. Using that both generators can be written as a sum of operators acting on
two sites, proving the duality boils down to showing it for the part of the generator for sites
k,k+ 1. That is, we write out both sides of the duality equation for the interaction between
these two sites and obtain

c+k (η)
[
KR
(
ηk,k+1, ξ

)
−KR (η,ξ)

]
+ c−k+1 (η)

[
KR
(
ηk+1,k, ξ

)
−KR (η,ξ)

]
= CR,+

k (ξ)
[
KR
(
η,ξk,k+1

)
−KR (η,ξ)

]
+CR,−

k+1 (ξ)
[
KR
(
η,ξk+1,k

)
−KR (η,ξ)

]
.

This (quite complex) identity for the multivariate q-Krawtchouk polynomials KR, where an
action on the η-variable is transferred to the ξ variable, can then be proven using representations
of the quantum algebra Uq(sl2).

Remark 3.8. When taking N1 = . . .= NM = 1, this is the duality proven in [6], although with
a different duality function. We will address this further in remark 4.3.

Since ASEPR(q, N⃗,ρ) is invariant under q 7→ q−1, we immediately also obtain a duality
with ASEP(q−1, N⃗).

Corollary 3.9. For states η,ξ ∈ X,[
Lq−1,N⃗KR

(
· , ξ;q−1

)]
(η) =

[
LR
q,N⃗,ρ

KR
(
η, · ;q−1

)]
(ξ) .

3.4. Current of ASEPR(q, N⃗,ρ)

Similar to section 3.4 of [10], we can show that the expectation of the particle current of
generalized dynamic ASEP can be expressed in terms of expectations of an ASEP system
with only one dual particle. We define the hyperbolic current of ASEPR(q, N⃗,ρ), started from
ξ(0) and now at time t, as

Jhypk (t) =

[
h+k (ξ (t))

]
q[

h+k (ξ (0))
]
q

,

where ξ(t) is the state at time t. Since the map [·]q : R→ R is bijective, one can obtain h+k (ξ(t))
uniquely from the value of Jhypk (t). Then we can calculate

h+k (ξ (t))− h+k (ξ (0)) =
∑
j⩾k

2ξj (t)−
∑
j⩾k

2ξj (0) = 2Jk (t) ,

where Jk(t) is the usual current which counts the number of particles in the time interval [0, t]
that jumped from site k− 1 to site k minus the particles that jumped in the opposite direction.
Assume q ∈ (0,1), then ASEPR(q, N⃗,ρ) becomes ASEP(q, N⃗) in the limit ρ→−∞ and

lim
ρ→−∞

Jhypk (t) = q2Jk(t).

Thus our definition of the hyperbolic current corresponds in the limit ρ→−∞ to the q-
exponential current from [10]. Using the duality function KR, we can prove the following
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theorem which links the first moment of the hyperbolic current of ASEPR(q, N⃗,ρ) to expect-
ations of ASEP(q, N⃗) with one dual particle, which is just an asymmetric nearest neighbor
random walker on the lattice {1,2, . . .,M}.

Theorem 3.10. Let ξ = ξ(0) be a configuration of ASEPR(q, N⃗,ρ). Then the first moment of
the hyperbolic current satisfies

Eξ

[
Jhypk (t)

]
= q

∑k−1
j=1 Nj

[
ρ+ 2|ξ| − |N⃗|

]
q[

h+k (ξ)
]
q

+
k−1∑
i=1

q
∑k−1

j=i+1 Nj−
∑i−1

j=1 Nj
[Ni]q[
h+k (ξ)

]
q

Ei

×

[
q
∑n(t)

j=1 Nj[
Nn(t)

]
q

(
q−Nn(t)

[
h+n(t)+1 (ξ)

]
q
−
[
h+n(t) (ξ)

]
q

)]
,

where Eξ is the expectation of ASEPR(q, N⃗,ρ) which started at ξ at t= 0 and Ej is the expect-
ation of one random walker started at site j at t= 0, which jumps from site i to i− 1 with rate
qNi [Ni−1]q and from site i to site i+ 1 with rate q−Ni [Ni+1]q.

Proof. Recall that ej is the one-particle state with a particle at site j. From the duality relation
on generator level given by theorem 3.7, we obtain

Eξ [KR (ek, ξ (t))] = Ek
[
KR
(
en(t), ξ

)]
, (3.8)

where n(t) is the position of an asymmetric random walker with rates from ASEP(q, N⃗), i.e. it
jumps from site j to j− 1 with rate qNj [Nj−1]q and from site j to j+ 1 with rate q−Nj [Nj+1]q. We
will explicitly compute KR. Taking η = ek in the definition of KR(η,ξ) from (3.5) and (3.6)
gives

KR (ek, ξ) = q−
1
2 u(ek;N⃗)k

(
1, ξk;h

+
k+1 (ξ) ;Nk;q

)
=−q−

1
2−h+k+1(ξ)+

∑k
j=1 Nj 3φ2

(
q−2,q−2ξk ,−q2h

+
k+1+2ξk−2Nk

q−2Nk ,0
;q2;q2

)

=−q−
1
2−h+k+1(ξ)+

∑k
j=1 Nj

1+

(
1− q−2

)(
1− q−2ξk

)(
1+ q2h

+
k+1+2ξk−2Nk

)
(1− q−2Nk)(1− q2)

q2


=−q−

1
2−h+k+1(ξ)+

∑k
j=1 Nj

(1− q−2Nk)

(
1− q−2Nk −

(
1− q−2ξk

)(
1+ q2h

+
k+1+2ξk−2Nk

))
=−

q−
1
2+

∑k−1
j=1 Nj

(
q− q−1

)
(1− q−2Nk)

(
q−Nk

[
h+k+1 (ξ)

]
q
−
[
h+k (ξ)

]
q

)
.

Therefore, (3.8) gives

q
∑k−1

j=1 Nj

(1− q−2Nk)
Eξ

[
q−Nk

[
h+k+1 (ξ (t))

]
q
−
[
h+k (ξ (t))

]
q

]
= Ek

[
q
∑n(t)−1

j=1 Nj(
1− q−2Nn(t)

) (q−Nn(t)
[
h+n(t)+1 (ξ)

]
q
−
[
h+n(t) (ξ)

]
q

)]
,
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which leads to the recursive relation

Eξ

[[
h+k+1 (ξ (t))

]
q

]
= qNkEξ

[[
h+k (ξ (t))

]
q

]
+ q−

∑k−1
j=1 Nj [Nk]qEk

×

[
q
∑n(t)

j=1 Nj[
Nn(t)

]
q

(
q−Nn(t)

[
h+n(t)+1 (ξ)

]
q
−
[
h+n(t) (ξ)

]
q

)]
.

Applying this formula k− 1 times and using h+1 (ξ(t)) = ρ+ 2|ξ| − |N⃗|, we obtain

Eξ

[[
h+k (ξ (t))

]
q

]
= q

∑k−1
j=1 Nj

[
ρ+ 2|ξ| − |N⃗|

]
q
+

k−1∑
i=1

q
∑k−1

j=i+1 Nj−
∑i−1

j=1 Nj [Ni]qEi

×

[
q
∑n(t)

j=1 Nj[
Nn(t)

]
q

(
q−Nn(t)

[
h+n(t)+1 (ξ)

]
q
−
[
h+n(t) (ξ)

]
q

)]
.

Now divide both sides by [h+k (ξ)]q.

3.5. Reversibility of dynamic ASEP

The q-Krawtchouk polynomials are well-known orthogonal polynomials and the orthogonality
relations imply orthogonality relations for the duality functions that we will state here. First,
the orthogonality relations for the q-Krawtchouk polynomials read in terms of the 1-site duality
functions k(n,x) = k(n,x;ρ;N;q) (see [26, §14.15 and §14.17]),

N∑
x=0

k(m,x)k(n,x)W(x) =
δm,n
w(n)

,

N∑
n=0

k(n,x)k(n,y)w(n) =
δx,y
W(x)

,

(3.9)

with positive weight functions w and W given by

w(n;N;q) = qn(n−N)

[
N
n

]
q2
, (3.10)

W(x;N,ρ;q) =
1+ q4x+2ρ−2N

1+ q2ρ−2N

(
−q2ρ−2N;q2

)
x

(−q2ρ+2;q2)x

q−x(2ρ+1+x−2N)

(−q−2ρ;q2)N

[
N
x

]
q2
. (3.11)

For q→ 1 both these weight functions become (a multiple of) a binomial coefficient. The case
q→ 1 is studied inmore detail in section 5.With theseweight functions we define the following
weight functions on the state space X,

w
(
η; N⃗;q

)
= qu(η;N⃗)

M∏
k=1

w(ηk;Nk;q) , (3.12)

WR

(
ξ; N⃗,ρ;q

)
=

M∏
k=1

W
(
ξk;Nk,h

+
k+1 (ξ) ;q

)
, (3.13)

where the factor u is given by (3.7). Theseweight functions provide uswith reversiblemeasures
with respect to which the duality functions KR are orthogonal.
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Theorem 3.11.

(i) The weight function w( · ; N⃗;q) is a reversible measure for ASEP(q, N⃗).
(ii) The weight function WR( · ; N⃗,ρ;q) is a reversible measure for ASEPR(q, N⃗,ρ).
(iii) The duality functions KR(η,ξ) defined by (3.6) satisfy the orthogonality relations∑

η∈X
KR (η,ξ)KR (η,ξ

′)w
(
η; N⃗;q

)
=

δξ,ξ ′

WR

(
ξ; N⃗,ρ;q

) ,
∑
ξ∈X

KR (η,ξ)KR (η
′, ξ)WR

(
ξ; N⃗,ρ;q

)
=

δη,η ′

w
(
η; N⃗;q

) .
Proof. (i) and (ii). One can prove this directly by checking the detailed balance condition.
Alternatively, one can show that the generators Lq,N⃗ and LR

q,N⃗,ρ
are self-adjoint with respect to

w and WR respectively. This is done via quantum algebra techniques at the end of section 6.2
and the beginning of section 7.3.

(iii) The first orthogonality relation follows straightforwardly by applying the orthogon-
ality relations (3.9) for the 1-site duality function with respect to the weight w. The second
orthogonality relation can also be checked directly using the orthogonality (3.9) with respect
toW. This computation is a bit more involved than the first computation because of the nested
product structure of the duality functions and the weight function. Alternatively, the second
orthogonality follows from the first using standard linear algebra: if A is a square matrix of
finite size satisfying AtA= I, then AAt = I also holds.

Remark 3.12. Since ASEPR(q, N⃗,ρ) is reversible, we get in particular that the process is self-
dual. At the moment however, besides the cheap duality functions, i.e. of the Kronecker-delta
type, we have no explicit self-duality functions.

Remark 3.13. If for each k one takes Nk = 2j, j ∈ 1
2N, part (i) of the above theorem gives

the same family of reversible measures as in theorem 3.1(a) in [10] (note that in this paper a
slightly different definition for the q-binomial coefficient is used).

Remark 3.14. Since ASEPR(q, N⃗,ρ) is invariant under sending q→ q−1, one would suspect
that its reversible measure WR is as well. This is true up to a factor depending on |ξ| and |N⃗|.
Indeed, one can compute that for the single site weight function we have

W
(
x;N,ρ;q−1

)
=W(x;N,ρ;q)q4x(x+ρ−N)+N(N−2ρ−1).

Therefore, we can make the single site weight function invariant by taking

Winv (x;N,ρ;q) = q2x(x+ρ−N)+ 1
2N(N−2ρ−1)W(x;N,ρ;q) .

Then, we can define a measure by taking the product of these single site weight functions,

Winv
R

(
ξ, N⃗,ρ;q

)
=

M∏
k=1

Winv
(
ξk;Nk,h

+
k+1 (ξ) ;q

)
.

At this point, it is not clear at all that this is still a reversible measure. However, a direct
computation shows that

Winv
R

(
ξ, N⃗,ρ;q

)
= qz(|ξ|,|N⃗|,ρ)

M∏
k=1

W
(
ξk;Nk,h

+
k+1 (ξ) ;q

)
,
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where

z(a,b,c) = 2a(a− b)+
1
2
b(b− 1)+ c(2a− b) .

Thus by remark 1.1, Winv
R is a reversible measure since WR is. While Winv

R is invariant under
q↔ q−1, WR itself has the useful property that for any 1⩽ j ⩽M,

∑
ξj,..,ξM

M∏
k=j

W(ξk;Nk,hk+1 (ξ) ;q) = 1.

This property, which follows directly from the second equality of theorem 3.11(iii), taking
η = η ′ = 0 and realizing that M can be chosen arbitrarily without changing the single site
weight functions, is no longer true for Winv

R . Throughout this paper, we will work with WR.

Remark 3.15. In [6], (half-)stationary initial data for the standard dynamic ASEP (Nk = 1 for
all k) is generated by a Markov chain (sk)k∈Z which has transition probabilities

P(sk−1 = sk+ 1) =
qsk

α+ qsk
and P(sk−1 = sk− 1) =

α

α+ qsk
.

In the language of this paper, we have to take α= q−ρ, h+k = sk+ ρ and q2 instead of q, so
that we obtain

P
(
h+k−1 = h+k + 1

)
=

q2h
+
k

1+ q2h
+
k

and P
(
h+k−1 = h+k − 1

)
=

1

1+ q2h
+
k

.

The reversible measure WR is connected to this (half-)stationary initial data in the following
way. Take N1 = N2 = . . .= NM = 1, assume h+k = c ∈ R is given and define A to be the set of
ξk, . . ., ξM such that h+k = c (which is of course only possible for specific values of ρ). Then by
Bayes’ law,

P
(
h+k−1 = h+k + 1|h+k = c

)
=

P
(
h+k−1 = h+k + 1 and h+k = c

)
P
(
h+k = c

)

=

∑
ξ∈{0,1}k−2×{1}×A

WR

(
ξ; N⃗,ρ;q

)
∑

ξ∈{0,1}k−1×A

WR

(
ξ; N⃗,ρ;q

) .

If we now divide both numerator and denominator by

∑
ξk,...,ξM∈A

M∏
j=k

W
(
ξj;1,h

+
j+1;q

)
,
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we obtain

=

∑
ξ1,...,ξk−2∈{0,1}k−2

W(1;1,c;q)W(ξk−2;1,c+ 1;q)
k−3∏
j=1

W
(
ξj;1,h

+
j+1;q

)
∑

ξ1,...,ξk−1∈{0,1}k−1

W(ξk−1;1,c;q)W(ξk−2;1,c+ 2ξk−1 − 1;q)
k−3∏
j=1

W
(
ξj;1,h

+
j+1;q

) .
(3.14)

Since
∑
ξ

WR(ξ; N⃗,ρ;q) = 1 for any ρ and number of sites M, we have

∑
ξ1,...,ξk−2∈{0,1}k−2

W(ξk−2; ,1,c+ 1;q)
k−3∏
j=1

W
(
ξj;1,h

+
j+1;q

)
=1,

∑
ξ1,...,ξk−2∈{0,1}k−2

W(ξk−2;1,c− 1;q)
k−3∏
j=1

W
(
ξj;1,h

+
j+1;q

)
=1,

W(0;1,c;q)+W(1;1,c;q) =1.

Therefore, (3.14) is equal to

W(1;1,c;q)
W(0;1,c;q)+W(1;1,c;q)

=W(1;1,c;q) .

Similarly, we have

P
(
h+k−1 = h+k − 1|h+k = c

)
=W(0;1,c;q) .

Thus

h+k−1 = h+k + 1 with probability W
(
1;1,h+k ;q

)
=

q−2h+k

1+ q−2h+k
,

h+k−1 = h+k − 1 with probability W
(
0;1,h+k ;q

)
=

1

1+ q−2h+k
.

Taking q−1 instead of q (which is possible since the process is invariant under this transforma-
tion) we get the desired probabilities of theMarkov chain which generates the (half-)stationary
initial data. In [6] the initial data is found using an orthogonality measure for q−1-Hermite
polynomials, so interestingly, the orthogonality measure of our multivariate q-Krawtchouk
polynomials for N1 = . . .= NM = 1 is connected to that particular orthogonality measure of
q−1-Hermite polynomials.

If we let the dynamic parameter ρ tend to ±∞, one expects the reversible measure W for
dynamic ASEP to become the reversible measure w for ASEP. This is, up to functions depend-
ing on the total number of particles (see remark 1.1), indeed the case. Let us assume q ∈ (0,1).
Then the following limit relations hold,

lim
ρ→∞

q2ρ(|ξ|−|N⃗|)WR

(
ξ; N⃗,ρ;q

)
= qβ1(|ξ|,|N⃗|)w

(
ξ; N⃗;q−1

)
,

lim
ρ→−∞

q2ρ|ξ|WR

(
ξ; N⃗,ρ;q

)
= qβ2(|ξ|,|N⃗|)w

(
ξ; N⃗;q

)
,

(3.15)
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with

β1 (a,b) = b− a(a+ 1)− (b− a)2 ,

β2 (a,b) = a(1− 2a+ 2b) .

See section 9 for the explicit calculations.

3.6. Dynamic ASEP on the reversed lattice

In the higher spin version of dynamic ASEP from definition 3.2 the value h+k of the height
function at site k is determined by the number of particles on the right of site k and the boundary
value ρ at the most right side. Here we assume that the sites are labeled from left to right: site
1 is the most left site and siteM is the most right site. In a similar way, we can define a higher
spin version of dynamic ASEP where the value of the height function at site k depends on
the number of particles on the left of site k and the boundary value at the most left site. In
particular, this left dynamic ASEP is the right dynamic ASEP defined on the reversed lattice,
i.e. the sites are labeled from right to left. Relabeling k 7→M− k+ 1 then gives a process (on
the lattice labeled from left to right) where the rates to and from site k depend on the number
of particles on the left of site k and the boundary value of the height function at a virtual site on
the left (site 0). We denote this ‘left version’ of generalized dynamic ASEP by ASEPL(q, N⃗,λ)
and its generator by LL

q,N⃗,λ
. Here, λ ∈ R is the value of the height function on the virtual site 0

and, as before, q> 0 and N⃗ ∈ NM.
Let us write down the jump rates of the process explicitly. Given a state ζ = (ζk)

M
k=1 ∈ X,

the height function (h−k (ζ))
M
k=1 is given by

h−k = h−k,λ (ζ) = λ+
k∑

j=1

(2ζj−Nj) ,

where we again suppress the dependence on λ and/or ζ unless confusion could arise. We set
the left boundary value at the virtual site 0 by

h−0 = λ.

A particle on site k jumps to site k+ 1 at rate CL,+
k (ζ) = CR,−

M−k+1(ζ
rev, N⃗rev), and a particle on

site k jumps to site k− 1 at rate CL,−
k (ζ) = CR,+

M−k+1(ζ
rev, N⃗rev). Also, observe that

h+M−k+1,λ (ζ
rev) = h−k,λ (ζ) .

Then a small calculation shows that the jump rates are given by

CL,+
k (ζ) = c+k (ζ)

(
1+ q2(h

−
k−1+ζk)

)(
1+ q2(h

−
k +ζk+1)

)
(
1+ q2h

−
k

)(
1+ q2(h

−
k −1)

) ,

and

CL,−
k (ζ) = c−k (ζ)

(
1+ q2(h

−
k−1−ζk−1)

)(
1+ q2(h

−
k −ζk)

)
(
1+ q2h

−
k−1

)(
1+ q2(h

−
k−1+1)

) .
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Remark 3.16.

• We see that, for q ∈ (0,1), in the limit λ→∞ we recover ASEP(q, N⃗) from ASEPL(q, N⃗,λ)
and in the limit λ→−∞ we recover ASEP(q−1, N⃗).

• When N1 = . . .= NM = 1, we obtain

CL,+
k (ζ) = q−1 1+ q2h

−
k

1+ q2h
−
k −2

,

and

CL,−
k+1 (ζ) = q

1+ q2h
−
k

1+ q2h
−
k +2

.

Notice that these are exactly the rates from [6] for jumps of the height function of standard
dynamic ASEP where the height function is replaced by minus the height function.

Since ASEPL is the same as ASEPR on the reversed lattice, by corollary 3.9 it follows that
ASEPL(q, N⃗,λ) is in duality with (nondynamic) ASEP with parameter q−1 on the reversed
lattice, with duality function KR(η

rev, ζ rev;λ, N⃗rev;q−1) for η,ζ ∈ X. Reversing the lattice for
ASEP is the same as replacing parameter q by q−1 on the nonreversed lattice. To be precise,
for the jump rates we have

c+M−k+1

(
ηrev; N⃗rev;q−1

)
= c−k

(
η; N⃗;q

)
,

c−M−k+1

(
ηrev; N⃗rev;q−1

)
= c+k

(
η; N⃗;q

)
.

It follows that we have duality between ASEPL(q, N⃗,λ) and ASEP(q, N⃗) with the following
nested products of q-Krawtchouk polynomials as duality functions

q
1
2 u(η

rev;N⃗rev)
M∏
k=1

k
(
ηk, ζk;h

−
k−1 (ζ) ;Nk;q

−1
)
.

In order to have orthogonality with respect to reversible measure w from (3.12) we multiply
this by

q−
1
2 [u(η;N⃗)+u(η

rev;N⃗rev)] = q|η||N⃗|,

to obtain the following duality result.

Theorem 3.17. For η,ζ ∈ X define

KL (η,ζ) = q−
1
2 u(η;N⃗)

M∏
k=1

k
(
ηk, ζk;h

−
k−1 (ζ) ;Nk;q

−1
)
,

then [
Lq,N⃗KL ( · , ζ)

]
(η) =

[
LL
q,N⃗,λ

KL (η, ·)
]
(ζ) .
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In this case, we have again orthogonality relations with respect to the ASEP(q, N⃗) reversible
measure w(η;q, N⃗), which by (B.2) can written as

w
(
η; N⃗;q

)
= qu(η;N⃗)

M∏
k=1

w
(
ηk;Nk;q

−1
)
,

and the ASEPL(q, N⃗,λ) reversible measure

WL

(
ζ; N⃗,λ;q

)
=WR

(
ζ rev; N⃗rev,λ;q−1

)
=

M∏
k=1

W
(
ζk;Nk,h

−
k−1 (ζ) ;q

−1
)
.

(3.16)

Summarizing, we obtain the following corollary which is similar to theorem 3.7.

Corollary 3.18.

(i) The weight function WL( · ; N⃗,λ;q) is a reversible measure for ASEPL(q, N⃗,λ).
(ii) The duality functions KL(η,ζ) defined in theorem 3.17 satisfy the orthogonality relations∑

η∈X
KL (η,ζ)KL (η,ζ

′)w
(
η; N⃗;q

)
=

δζ,ζ ′

WL

(
ζ; N⃗,λ;q

) ,
∑
ζ∈X

KL (η,ζ)KL (η
′, ζ)WL

(
ζ; N⃗,λ;q

)
=

δη,η ′

w
(
η; N⃗;q

) .
Similar to before, we can obtain the reversible measures for ASEP(q, N⃗) and ASEP(q−1, N⃗)

by taking limits from WL,

lim
λ→∞

q−2λ|ζ|WL

(
ζ; N⃗,λ;q

)
= qγ1(|ζ|)w

(
ζ; N⃗;q

)
,

lim
λ→−∞

q−2λ(|ζ|−|N⃗|)WL

(
ζ; N⃗,λ;q

)
= qγ2(|ζ|,|N⃗|)w

(
ζ; N⃗;q−1

)
(3.17)

with

γ1 (a) = a(2a− 1)

γ2 (a,b) =−b+ a(a+ 1)+ 2(b− a)2 − 2ab.

3.7. Almost self-duality for dynamic ASEP

Since both ASEPL(q, N⃗,λ) and ASEPR(q, N⃗,ρ) are dual to ASEP(q, N⃗) with respect to the
duality function KL and KR respectively, they are dual to each other with respect to the duality
function Rv : X×X→ R given by

Rv (ζ,ξ) = Rv
(
ζ,ξ;λ,ρ, N⃗;q

)
=
∑
η∈X

KL (η,ζ)KR (η,ξ)w(η)v|η|, (3.18)

where v ∈ R× is a free parameter. That is, we have the duality relation,[
LL
q,N⃗,λ

Rv ( · , ξ)
]
(ζ) =

[
LR
q,N⃗,ρ

Rv (ζ, ·)
]
(ξ) . (3.19)
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See section 8.1 for more details of this scalar-product method, which is used before in e.g. [8].
The function Rv(ζ,ξ) can be expressed as a nested product of q-Racah polynomials. The latter
are q-hypergeometric polynomials defined by

Rn (x;α,β,γ,δ;q) = 4φ3

(
q−n,αβqn+1,q−x,γδqx+1

αq,βδq,γq
;q,q

)
. (3.20)

For x,n ∈ N these are polynomials in q−x+ γδqx+1 of degree n and also polynomials in q−n+
αβqn+1 of degree x. The following theorem shows that the duality functions Rv(ζ,ξ) are a
product of these q-Racah polynomials.

Theorem 3.19. We define 1-site duality functions by

r(y,x;λ,ρ,v,N;q) = cr (y,x;λ,ρ,v,N;q)Ry
(
x;α,β,γ,δ;q2

)
, (3.21)

where

(α,β,γ,δ) =
(
−v−1qρ+λ−N−1,vqρ−λ−N−1,q−2N−2,−q2λ

)
.

and the coefficient cr can be found in appendix A. Then the duality function Rv can then be
written as

Rv (ζ,ξ) =
M∏
k=1

r
(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk;q

)
. (3.22)

The full proof can be found in section 8.1. The proof boils down to showing the sum (3.18)
of q-Krawtchouk polynomials can be expressed in terms of q-Racah polynomials, see lemma
8.1.

Note that (3.22) is now a ‘doubly nested’ product as the kth factor corresponding to site k
depends on the particles on the left of site k through h−k−1(ζ) as well as on the dual particles on
the right of site k through h+k+1(ξ). The following results says that Rv is an orthogonal duality

function between ASEPL(q, N⃗,λ) and ASEPR(q, N⃗,ρ).

Theorem 3.20. The duality function Rv satisfies the following orthogonality relations

∑
ζ∈X

Rv (ζ,ξ)Rv
−1

(ζ,ξ ′)WL

(
ζ; N⃗,λ;q

)
=

δξ,ξ ′

WR

(
ξ; N⃗,ρ;q

) ,
∑
ξ∈X

Rv (ζ,ξ)Rv
−1

(ζ ′, ξ)WR

(
ξ; N⃗,ρ;q

)
=

δζ,ζ ′

WL

(
ζ; N⃗,λ;q

) .
The proof can again be found in section 8.1.

Remark 3.21.

• The duality function R satisfies the symmetry relation

Rv
(
ζ,ξ;λ,ρ, N⃗;q

)
= Rv

(
ξrev, ζ rev;ρ,λ, N⃗rev;q−1

)
,

which corresponds to the fact that ASEPL(q, N⃗,λ) is obtained from ASEPR(q, N⃗,ρ) by
reversing the order of the sites and interchanging ρ↔ λ.
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• Since both LL
q,N⃗,λ

and LR
q,N⃗,ρ

are invariant under q→ q−1, one expects that the duality func-
tion between these two processes is invariant under this transformation as well. A straight-
forward calculation shows that, up to a factor depending on the total number of particles |ζ|
and |ξ|, the duality function Rv(ζ,ξ) is invariant under sending (q,v)→ (q−1,v−1).

• Some of the factors in the 1-site duality function r can be taken out or changed and we still
obtain a duality function. Let us define R ′ : X×X→ R by

R ′ (ζ,ξ) =
M∏
k=1

r ′
(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk;q

)
with

r ′ (x,y;λ,ρ,v,N;q) = vy
(
−vqρ+λ−N+1;q2

)
x

(
−v−1qρ+λ−N+1;q2

)
y

qy(y+ρ+λ−N)
Ry
(
x;α,β,γ,δ;q2

)
,

with α,β,γ,δ,v as in the definition (3.21) of r. Then R′ is also a duality function between
ASEPL(q, N⃗,λ) and ASEPR(q, N⃗,ρ). Indeed, R(ζ,ξ) = c(ζ,ξ)R ′(ζ,ξ) where

c(ζ,ξ) =
M∏
k=1

(
vq2ζk−h+k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
Nk(

vq−2ξk−h+k+1(ξ)+h
−
k−1(ζ)+Nk+1;q2

)
ξk+ζk

=

(
vqλ−ρ+2|ζ|−|N⃗|+1;q2

)
|N⃗|−|ζ|(

vqλ−ρ−2|ξ|+|N⃗|+1;q2
)
|ξ|

(3.23)

is a function depending only on the total number of particles and dual particles. Now the
claim follows from remark 1.1. For notational convenience later on, we define

cv (|ζ|, |ξ|;λ,ρ) := c(ζ,ξ) . (3.24)

Similarly, we have

Cv (|ζ|, |ξ|;λ,ρ) =
M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ξk(

−vqh
+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ζk

=

(
−vqλ+ρ−|N⃗|+1;q2

)
|ξ|(

−vqλ+ρ−|N⃗|+1;q2
)
|ζ|

. (3.25)

So that in the 1-site duality function r (and r′) the x in the factor (−vqρ+λ−N+1;q2)x can be
replaced by y and we still have a duality function. Similarly, in (−v−1qρ+λ−N+1;q2)y the y
can be replaced by x. This will be important when taking limits in the duality function r in
section 4. See appendix B for the simplification of cv and Cv.

4. Asymmetric degenerations

The duality between ASEPL(q, N⃗,λ)↔ ASEPR(q, N⃗,ρ) sits on top of a hierarchy of several
other dualities. By taking appropriate limits in the duality equation[

LL
q,N⃗,λ

Rv ( · , ξ)
]
(ζ) =

[
LR
q,N⃗,ρ

Rv (ζ, ·)
]
(ξ) (4.1)
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Table 2. Three limits of the duality between ASEPL(q, N⃗,λ) and ASEPR(q, N⃗,ρ).

Duality between Corresponding limit

(i) ASEP(q, N⃗) ASEPR(q, N⃗,ρ) λ→∞
(ii) ASEP(q, N⃗) ASEP(q, N⃗) λ→∞, ρ→−∞
(iii) ASEP(q, N⃗) ASEP(q−1, N⃗) λ,ρ→∞

from (3.19), we obtain several other duality relations. This boils down to taking appropriate
limits of the process generators, duality functions, and orthogonality relations. That is, we will
look at the limits of the form

• f(|ζ|, |ξ|)Rv(ζ,ξ), which are also duality functions by remark 1.1.
• g(|ζ|)WL(ζ) and g ′(|ξ|)WR(ξ), which are still reversible measures (again by remark 1.1).

In all cases, the functions f,g, and g′ are conveniently chosen such that the limits are conver-
gent. The explicit calculations of the limits, which are mostly straightforward computations
using the q-hypergeometric expressions of the duality functions, are postponed to section 9.
In this section, we only look at asymmetric degenerations, by which we mean that we do not
take limits in the parameter q yet. This will be done in section 5. Throughout this section, we
assume q ∈ (0,1).

4.1. Dualities for the asymmetric exclusion process

Recall from section 3 the limits from dynamic ASEP to ASEP,

lim
ρ→±∞

LR
q,N⃗,ρ

= Lq∓1,N⃗ and lim
λ→±∞

LL
q,N⃗,λ

= Lq±1,N⃗.

This gives us three ‘different3’ limit cases of the duality between ASEPL ↔ASEPR, which are
listed in table 2.

For the next proposition, we need the following orthogonal polynomials, which are special
cases of q-Racah polynomials.

(i) The q-Hahn polynomials [26, §14.6 and §14.7] are defined by

Pn (x;α,β,N;q) = Rn
(
x;α,β,q−N−1,0;q

)
= 3φ2

(
q−n,αβqn+1,q−x

αq,q−N
;q,q

)
.

We define the 1-site duality function

p(n,x;λ,ρ,v,N;q) = cp (n,x;λ,ρ,v,N;q)Px
(
n;α,β,N;q2

)
, (4.2)

where

(α,β) =
(
−vqρ+λ−N−1,v−1qρ−λ−N−1

)
,

and the coefficient cp can be found in appendix A.

3 Different in the sense that they cannot be obtained from one another by sending q→ q−1 or reversing the order of
sites.
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(ii) The quantum q-Krawtchouk polynomials [26, §14.14] are defined by

Kqtm
n (x; p̂,N;q) = 2φ1

(
q−n,q−x

q−N
;q, p̂qn+1

)
.

We define the 1-site duality function

kqtm (n,x;λ,ρ,v,N;q) = Kqtm
x

(
n; p̂,N;q2

)
, (4.3)

where

p̂= v−1qρ−λ−N−1.

(iii) The affine q-Krawtchouk polynomials [26, §14.16] are defined by

Kaff
n (x;p ′,N;q) = 3φ2

(
q−n,0,q−x

p ′q,q−N
;q,q

)
.

These are related to the quantum q-Krawtchouk polynomials by

Kaff
n

(
x;p ′,N;q−1

)
=

1
(q/p ′;q)n

Kqtm
n

(
N− x;p ′−1,N;q

)
.

We define the 1-site duality function

kaff (n,x;λ,ρ,v,N;q) = caffk (x;λ,ρ,v,N;q)Kaff
x

(
n;p ′,N;q2

)
, (4.4)

where p ′ = vqρ+λ−N−1 and the coefficient caffk can be found in appendix A.

As we take appropriate limits in the duality relation (4.1), we obtain the following duality
functions which correspond to the dualities given in table 2.

Proposition 4.1. (i) Define the function PvR : X×X→ R by

PvR (η,ξ) = lim
λ→∞

q2λ|η|Rvq
−λ

(η,ξ) .

Then PvR is a duality function between ASEP(q, N⃗)↔ ASEPR(q, N⃗,ρ) and

PvR (η,ξ) =
M∏
k=1

p
(
ηk, ξk;h

−
k−1,0 (η) ,h

+
k+1 (ξ) ,v,Nk;q

)
.

(ii) Define the function Kvqtm : X×X→ R by

Kvqtm (η,ξ) = lim
ρ→−∞

(
v−2q−2ρ

)|η|
cv (|η|, |ξ|;0,0)Cv (|η|, |ξ|;0,2ρ)

Pvq
ρ

R (η,ξ) ,

where cv can be found in (3.24). Then Kvqtm is a self-duality function for ASEP(q, N⃗) and

Kvqtm (η,ξ) =
M∏
k=1

kqtm
(
ηk, ξk;h

−
k−1,0 (η) ,h

+
k+1,0 (ξ) ,v,Nk;q

)
.
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(iii) Define the function Kvaff : X×X→ R by

Kvaff (η,ξ) = lim
ρ→∞

q2ρ|η|

c−v (|η|, |ξ|;0,2ρ)
P−vq−ρ

R (η,ξ) .

Then Kvaff is a duality function between ASEP(q, N⃗)↔ ASEP(q−1, N⃗) and

Kvaff (η,ξ) =
M∏
k=1

kaff
(
ηk, ξk;h

−
k−1,0 (η) ,h

+
k+1,0 (ξ) ,v,Nk;q

)
.

Remark 4.2. For completeness, the duality relations of proposition 4.1 are given by

(i) [Lq,N⃗P
v
R( · , ξ)](η) = [LR

q,N⃗,ρ
PvR(η, ·)](ξ),

(ii) [Lq,N⃗K
v
qtm( · , ξ)](η) = [Lq,N⃗K

v
qtm(η, ·)](ξ),

(iii) [Lq,N⃗K
v
aff( · , ξ)](η) = [Lq−1,N⃗K

v
aff(η, ·)](ξ).

Remark 4.3. Similar to the second item of remark 3.21, the function

P ′
R (η,ξ) =

M∏
k=1

p ′
(
ηk, ξk;h

−
k−1,0 (η) ,h

+
k+1 (ξ) ,v,Nk;q

)
with

p ′ (x,y;λ,ρ,v,N;q) = vxq−x(x+ρ+λ−N)
(
−vqρ+λ−N+1;q2

)
x

×Py
(
x;−vqρ+λ−N−1,v−1qρ−λ−N−1,N;q2

)
is again a duality function between ASEP(q, N⃗) and ASEPR(q, N⃗,ρ). For N1 = . . .= NM = 1
the 1-site duality function p ′(ηk, ξk) equals 1 for ηk = 0 and for ηk = 1 we obtain

p ′
(
1, ξk;h

−
k−1,0 (η) ,h

+
k+1 (ξ) ,v,1;q

)
= vq−h+k+1(ξ)−h−k−1,0(η)

(
1+ vqh

+
k+1(ξ)+h

−
k−1,0(η)

+
q2

1− q2
(
1− q−2ξk

)(
1+ q2h

+
k+1(ξ)+2ξk−2

))
.

This function is different from the duality function Zn;q,α(⃗x, s⃗) from equation (2.1) in [6]. It
would be interesting to know how they relate. Unfortunately, we did not succeed in finding
this connection.

The orthogonality relations from theorem 3.20 are still valid after taking the limits in the
previous proposition. Hence, the duality functions PvR, K

v
qtm, and K

v
aff are still orthogonal with

respect to the reversible measures w and/or WR (multiplied by some factor depending on the
total number of particles).

Proposition 4.4.

(i) The function PvR is an orthogonal duality function between ASEP(q, N⃗)↔ ASEPR(q, N⃗,ρ)
and
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∑
η∈X

PvR (η,ξ)P
v
R (η,ξ

′) ωp (|η|)w
(
η; N⃗;q

)
=

δξ,ξ ′

ωp
R (|ξ|)WR

(
ξ; N⃗,ρ;q

) ,
∑
ξ∈X

PvR (η,ξ)P
v
R (η

′, ξ) ωp
R (|ξ|)WR

(
ξ; N⃗,ρ;q

)
=

δη,η ′

ωp (|η|)w
(
η; N⃗;q

) .
(ii) The function Kvqtm is an orthogonal self-duality function for ASEP(q, N⃗) and∑

η∈X
Kvqtm (η,ξ)K

v
qtm (η,ξ

′) ωqtm (|η|)w
(
η; N⃗;q

)
=

δξ,ξ ′

ωqtm
R (|ξ|)w

(
ξ; N⃗;q

) ,
∑
ξ∈X

Kvqtm (η,ξ)K
v
qtm (η

′, ξ) ωqtm
R (|ξ|)w

(
ξ; N⃗;q

)
=

δξ,ξ ′

ωqtm (|η|)w
(
η; N⃗;q

) .
(iii) The function Kvaff is an orthogonal duality function between ASEP(q, N⃗)↔ ASEP(q−1, N⃗)

and∑
η∈X

Kvaff (η,ξ)K
v
aff (η,ξ

′) ωaff (|η|)w
(
η; N⃗;q

)
=

δξ,ξ ′

ωaff
R (|ξ|)w

(
ξ; N⃗;q−1

) ,
∑
ξ∈X

Kvaff (η,ξ)K
v
aff (η

′, ξ) ωaff
R (|ξ|)w

(
ξ; N⃗;q−1

)
=

δη,η ′

ωaff (|η|)w
(
η; N⃗;q

) .
The coefficients ω in front of the reversible measures w andWR can be found in appendixA.

Remark 4.5. The duality function Kvqtm from proposition 4.1(ii) and its orthogonality relations
in 4.4(ii) were first found in [9]. In the present paper we have an alternative proof for [9,
theorem 3.2] by exploiting that it is a degenerate version of the orthogonal duality between
ASEPL(q, N⃗,λ)↔ ASEPR(q, N⃗,ρ).

The product for the duality function PvR in proposition 4.1(i) has a ‘doubly nested’ structure,
similar to the product structure of the duality functionRv in theorem 3.19. This is different from
the simpler nested structure of the duality function KR defined by (3.6), which is a duality
function between the same two processes as PvR. The simpler function KR can be recovered
from PvR by taking an appropriate limit involving the free parameter v:

lim
v→0

v−|η|PvR (η,ξ) = q−
∑M

k=1 ηk[ηk+h
+
k+1(ξ)+

∑k−1
j=1(2ηj−Nj)−Nk]

×
M∏
k=1

3φ2

(
q−2ηk ,q−2ξk ,−q2h

+
k+1(ξ)+2ξk−2Nk

q−2Nk ,0
;q2,q2

)
= (−1)|η| q−|η|(|η|−1)KR (η,ξ) .

We can also obtain the triangular self duality functions for ASEP from [10]. In [9, remark
6.2] they were obtained by taking the limit v→ 0 in the duality function Kvqtm. Here we show
they can also be obtained as a ρ→−∞ limit, i.e. the limit that removes the ‘dynamic part’
of dynamic ASEP, of the duality function KR given by (3.6). Since there are no free para-
meters involved in this limit, this shows that KR is in a sense the ‘triangular’ duality function
betweenASEP andASEPR.We remark that the orthogonality relations do not survive the limit.
Furthermore, letting ρ→∞ also gives a triangular duality function between ASEP(q, N⃗) and
ASEP(q−1, N⃗).
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Proposition 4.6.

(i) The function D : X×X→ R given by

D(η,ξ) = lim
ρ→−∞

q−ρ|η|KR (η,ξ)

= q−
1
2 u(η;N⃗)

L∏
k=1

(
q−2ξk ;q2

)
ηk

(q−2Nk ;q2)ηk
qηk(ηk+2ξk− 3

2Nk+
1
2+

∑m
j=k+1 2ξj−Nj)1ηk⩽ξk

is a self-duality function for ASEP(q, N⃗), i.e. [Lq,N⃗D( · , ξ)](η) = [Lq,N⃗D(η, ·)](ξ).
(ii) The function D ′ : X×X→ R given by

D ′ (η,ξ) = lim
ρ→∞

(−qρ)|η|KR (η,ξ)

= q−
1
2 u(η;N⃗)

L∏
k=1

(
q2ξk−2Nk ;q2

)
ηk

(q−2Nk ;q2)ηk
qηk(ηk−2ξk− 3

2Nk+
1
2−

∑m
j=k+1 2ξj−Nj)1ηk⩽Nk−ξk

is a duality function between ASEP(q, N⃗) and ASEP(q−1, N⃗), i.e.[
Lq,N⃗D( · , ξ)

]
(η) =

[
Lq−1,N⃗D(η, ·)

]
(ξ) .

4.2. Duality for the totally asymmetric zero range process

Finally, we consider also briefly the limit of (4.1) where the number Nk of allowed particles
per site tends to ∞. We set N1 = . . .= NM = N and let N→∞. For the dynamic ASEP jump
rates we have

(
q−1 − q

)
lim
N→∞

CR,+
k (ξ) =

1− q2ξk

1− q2
and lim

N→∞
CR,−
k+1 (ξ) = 0,

in which we recognize the jump rates for the totally asymmetric zero range process q-TAZRP,
see e.g. [7, section 2]. This is the continuous-time Markov jump process on the state space
(Z⩾0)

M where particles can only jump to the right, with generator given by

[
LRq f
]
(ξ) =

M−1∑
k=1

1− q2ξk

1− q2
[
f
(
ξk,k+1

)
− f(ξ)

]
.

Note that the dynamic parameter ρ vanishes in this limit.
Similarly, we have

lim
N→∞

CL,+
k (ζ) = 0 and

(
q−1 − q

)
lim
N→∞

CL,−
k+1 (ζ) =

1− q2ζk+1

1− q2
,

so that we obtain another totally asymmetric zero range process. In this case, particles can only
jump to the left, and the generator is given by

[
LLq f
]
(ζ) =

M−1∑
k=1

1− q2ζk+1

1− q2
[
f
(
ζk+1,k

)
− f(ζ)

]
.
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So we have (
q−1 − q

)
lim
N→∞

LR
q,N⃗,ρ

= LRq and
(
q−1 − q

)
lim
N→∞

LL
q,N⃗,λ

= LLq .

By taking an appropriate limit of the duality function Rv, we get the following known duality
for q-TAZRP (see e.g. [7, 10]).

Proposition 4.7. The function D : (Z⩾0)
M× (Z⩾0)

M → R given by

D(ζ,ξ) = v−|ξ|q−|ξ|(|ξ|+ρ+λ) lim
N→∞

q|ξ|MN

cv (|ζ|, |ξ|;λ,ρ)
Rv (ζ,ξ) =

M∏
k=1

q2ξk
∑k

j=1 ζj ,

where cv is given by (3.24), satisfies [LLqD( · , ξ)](ζ) = [LRqD(ζ, ·)](ξ).

5. Symmetric degenerations

Next, we consider the q→ 1 limit of the duality equation (4.1), propositions 4.1 and 4.4. The
duality functions and measures we obtain in this section are similar to the asymmetric case
since in the q→ 1 limit factors of the form qA disappear and the q-shifted factorials become
ordinary shifted factorials using

lim
q→1

(
q2a;q2

)
n

(1− q2)n
= (a)n .

We have put a hat on the duality functions and measures without a parameter q to distinguish
between them and their counterparts that do depend on q.

Let us first consider to q→ 1 limit of (nondynamic) ASEP(q, N⃗). This gives the well
known generalized symmetric simple exclusion process SSEP(N⃗), which is the continuous-
time Markov process with state space X where particles jump from site k to k+ 1 at rate

lim
q→1

c+k (η) = ηk (Nk+1 − ηk+1) ,

and interchanging k and k+ 1 gives the rate for jumps from site k+ 1 to k,

lim
q→1

c−k (η) = ηk+1 (Nk− ηk) .

We denote the corresponding Markov generator by LN⃗. The dynamic ASEP jump rates CR,±
k

from definition 3.2 are of the form c±k · d±k , where c
±
k are theASEP jump rates. Assuming ρ ∈ R

the factors d±k satisfy limq→1 d
±
k = 1, so the limit of ASEPR(q, N⃗,ρ) is again SSEP(N⃗), and the

dynamic parameter vanishes in this limit. Clearly, for λ ∈ R the q→ 1 limit of ASEPL(q, N⃗,λ)
is also SSEP(N⃗). So for ρ,λ ∈ R,

lim
q→1

LR
q,N⃗,ρ

= LN⃗ and lim
q→1

LL
q,N⃗,λ

= LN⃗.

By taking the limit q→ 1 of the ASEP(q, N⃗) reversible measure w we obtain the well-known
reversible measure for SSEP(N⃗) as a product of binomials,

ŵ
(
η; N⃗

)
= lim

q→1
w
(
η; N⃗;q

)
=

M∏
k=1

(
Nk
ηk

)
.
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Taking the limit of the reversible measure for ASEPR(q, N⃗,ρ) or ASEPL(q, N⃗,λ) gives essen-
tially the same result,

lim
q→1

WR

(
η; N⃗,ρ;q

)
= lim

q→1
WL

(
η; N⃗,λ;q

)
= 2−|N⃗|ŵ

(
η; N⃗

)
.

Moreover, for ρ= λ= 1
2 logq(v) with v> 0, i.e. q2ρ = v, we have

lim
q→1

WR

(
η; N⃗,ρ;q

)
= lim

q→1
WL

(
η; N⃗,λ;q

)
= p|η|v (1− pv)

|N⃗|−|η| ŵ
(
η; N⃗

)
,

pv =
1

1+ v
.

5.1. Generalized dynamic SSEP

To obtain a non-trivial limit of the factor d±k , we replace q2ρ by −q2ρ. This can be done by
substituting ρ 7→ ρ+π i/2ln(q), where i =

√
−1. We then get, using the rewriten rates 3.3,

CR,+
k (ξ) = [ξk]q [Nk+1 − ξk+1]q

[
h+k − ξk

]
q

[
h+k+1 − ξk+1

]
q[

h+k+1

]
q

[
h+k+1 + 1

]
q

,

CR,−
k (ξ) = [ξk]q [Nk−1 − ξk−1]q

[
h+k + ξk−1

]
q

[
h+k+1 + ξk

]
q[

h+k
]
q

[
h+k − 1

]
q

.

If we now take the limit q→ 1, we obtain a dynamic version of the symmetric exclusion pro-
cess. In a similar way, we obtain a dynamic version of SSEP from ASEPL. We impose that the
rates stay nonnegative, for example by requiring |ρ|, |λ|> |N⃗|.

Definition 5.1.

(i) SSEPR(N⃗,ρ) is a continuous-time Markov jump process on the state space X depend-
ing on a parameter ρ ∈ R. Given a state ξ = (ξk)

M
k=1 ∈ X we define the height function

(h+k+1(ξ))
M
k=1 as before by

h+k,ρ (ξ) = h+k (ξ) = ρ+
M∑
j=k

(2ξj−Nj) .

Then a particle on site k jumps to site k+ 1 at rate

ξk (Nk+1 − ξk+1)
(
h+k (ξ)− ξk

)(
h+k+1 (ξ)− ξk+1

)
h+k+1 (ξ)

(
h+k+1 (ξ)+ 1

) ,

and a particle on site k jumps to site k− 1 at rate

ξk (Nk−1 − ξk−1)
(
h+k (ξ)+ ξk−1

)(
h+k+1 (ξ)+ ξk

)
h+k (ξ)

(
h+k (ξ)− 1

) .
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(ii) SSEPL(N⃗,λ) is a continuous-timeMarkov jump process on the state space X depending on
a parameter λ ∈ R. Given a state ζ = (ζk)

M
k=1 ∈ Xwe define the height function (h−k (ζ))

M
k=1

as before by

h−k (ζ) = λ+
k∑

j=1

(2ξj−Nj) .

Then a particle on site k jumps to site k+ 1 at rate

ζk (Nk+1 − ζk)
(
h−k−1 (ζ)+ ζk

)(
h−k (ζ)+ ζk+1

)
h−k (ζ)

(
h−k (ζ)− 1

) ,

and a particle on site k jumps to site k− 1 at rate

ζk (Nk−1 − ζk−1)
(
h−k−1 (ζ)− ζk−1

)(
h−k (ζ)− ζk

)
h−k−1 (ζ)

(
h−k−1 (ζ)+ 1

) .

Remark 5.2.

• For N1 = . . .= NM = 1 SSEPR(N⃗,ρ) is the dynamic symmetric simple exclusion process
defined in [5, definition 9.4] resticted to M sites.

• In the limit ρ→±∞we recover SSEP(N⃗) from SSEPR(N⃗,ρ). Similarly, by letting λ→±∞
we recover SSEP(N⃗) from SSEPL(N⃗,λ).

5.2. Duality between SSEPL and SSEPR

Let us now consider the corresponding q→ 1 limit of the q-Racah duality functions, which
leads to duality functions in terms of Racah polynomials. These are hypergeometric orthogonal
polynomials given by

R̂n (x;α,β,γ,δ) = 4F3

(
−n,n+α+β+ 1,−x,x+ γ+ δ+ 1

α+ 1,β+ δ+ 1,γ+ 1
;1

)
,

which can be obtained as the q→ 1 limit of the q-Racah polynomials Rn(x;α,β,γ,δ;q) in
case α,β,γ,δ ∈ R. We substitute (v,ρ,λ) 7→ (qv,ρ+ iπ/2ln(q),λ+π i/2ln(q)) in the duality
functionRv given by (3.22).We then let q→ 1 to obtain duality functions for SSEPL and SSEPR
as a nested product of Racah polynomials, see the result in proposition 5.3 below. From the
reversible measures for ASEPL(q, N⃗,λ) and ASEPR(q, N⃗,ρ)we obtain the following reversible
measures for SSEPL(N⃗,λ) and SSEPR(N⃗,ρ),

ŴL

(
ζ; N⃗,λ

)
= lim

q→1

(
1− q2

)|N⃗|
WL

(
ζ; N⃗,λ+ iπ/2ln(q) ;q

)
=

M∏
k=1

Ŵ
(
ζk;Nk,h

−
k−1 (ζ)

)
,

ŴR

(
ξ; N⃗,ρ

)
= lim

q→1

(
1− q2

)|N⃗|
WR

(
ζ; N⃗,ρ+ iπ/2ln(q) ;q

)
=

M∏
k=1

Ŵ
(
ξk;Nk,h

+
k+1 (ξ)

)
,

(5.1)

where the ‘1-site’ weight function Ŵ is given by

Ŵ(x;N,ρ) = lim
q→1

(
1− q2

)N
W(x;N,ρ+ iπ/2ln(q) ;q)

=
2x+ ρ−N

ρ−N

(ρ−N)x
(ρ+ 1)x (−ρ)N

(
N
x

)
.
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The Racah duality functions R̂v in the proposition below are orthogonal with respect to these
reversible measures, which follows from letting q→ 1 in the orthogonality relations for the
q-Racah duality functions from theorem 3.20, see section 9 for the details of the proof.

Proposition 5.3. Define the function R̂v : X×X→ R by

R̂v (ζ,ξ) = lim
q→1

(
1− q2

)−|N⃗|
Rv (ζ,ξ) =

M∏
k=1

r̂
(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk

)
,

with the 1-site duality function

r̂(y,x;λ,ρ,v,N)

=

(
1
2 (ρ+λ−N+ v+ 1)

)
x

(
1
2 (ρ+λ−N− v+ 1)

)
y

(
y+ 1

2 (λ− ρ−N+ v+ 1)
)
N(

−x+ 1
2 (λ− ρ+N+ v+ 1)

)
x+y

× R̂x
(
y; 12 (ρ+λ−N− v− 1) , 12 (ρ−λ−N+ v− 1) ,−N− 1,λ

)
.

Then R̂v is a duality function between SSEPL(N⃗,λ) and SSEPR(N⃗,ρ), i.e.[
LL
N⃗,λ

R( · , ξ)
]
(ζ) =

[
LR
N⃗,ρ
R(ζ, ·)

]
(ξ) .

Furthermore, we have the following orthogonality relations,∑
ζ∈X

R̂v (ζ,ξ) R̂−v (ζ,ξ ′)ŴL

(
ζ; N⃗,λ

)
=

δξ,ξ ′

ŴR

(
ξ; N⃗,ρ

) ,
∑
ξ∈X

R̂v (ζ,ξ) R̂−v (ζ ′, ξ)ŴR

(
ξ; N⃗,ρ

)
=

δζ,ζ ′

ŴL

(
ζ; N⃗,λ

) .
5.3. Degenerations

Similar to the asymmetric case, we will consider the dualities listed in the table below. Note
that in the q→ 1 limit, the processes ASEP(q, N⃗) and ASEP(q−1, N⃗) both become SSEP(N⃗).

Duality between

(i) SSEP(N⃗) SSEPR(N⃗,ρ)
(ii) SSEP(N⃗) SSEP(N⃗)

There are two routes for obtaining these dualities at this point. In this paper, we take the
q→ 1 limit from the dualities from proposition 4.1 and theorem 3.7. An equivalent way would
be taking limits from the duality between SSEPL and SSEPR shown in proposition 5.3.

So let us consider the q→ 1 limit of the q-Hahn and q-Krawtchouk4 duality functions PR

and KR. To make these limits convergent, we again need a factor in front that only depends
on the parameters and total (dual) particles. Not surprisingly, we will end up with Hahn and
Krawtchouk polynomials.

4 In this paper, we have several choices for duality functions to obtain a self-duality function for SSEP as a limit. We
choose the function KR, but others are equally valid.
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(i) The Hahn polynomials [26, §9.5 and §9.6] are defined by

P̂n (x;α,β,N) = 3F2

(
−n,n+α+β+ 1,−x

α+ 1,−N
;1

)
.

We define the 1-site duality functions

p̂(n,x;λ,ρ,v,N) =

(
1
2 (ρ+λ−N+ v+ 1)

)
x

(
y+ 1

2 (λ− ρ−N+ 1+ v)
)
N(

−x+ 1
2 (λ− ρ+N+ 1+ v)

)
x+n

× P̂x
(
n; 12 (ρ+λ−N+ v− 1) , 12 (ρ−λ−N− v− 1) ,N

)
.

(ii) The Krawtchouk polynomials [26, §9.11] are defined by

K̂n (x;p,N) = 2F1

(
−n,−x
−N

;
1
p

)
.

We define the 1-site duality functions

k̂(n,x;v,N) = v
n
2 K̂n

(
x; 1

1+v ,Nk
)
.

In the q→ 1 limit of the q-Hahn polynomials, we first substitute (v,ρ) 7→ (iqv,ρ+
iπ/2ln(q)) in PR. The q-Krawtchouk polynomialsKR depend, besides q, on the dynamic para-
meter ρ, but not on other extra parameters. We substitute ρ 7→ 1

2 logq(v) for v> 0, i.e. q2ρ 7→ v,
and then let q→ 1. In this way, the dynamic parameter ρ ends up in the duality function as just
a free parameter. We then obtain the following result similar to proposition 4.1, for which the
proof can be found in section 9.

Proposition 5.4.

(i) Define the function P̂vR : X×X→ R by

P̂vR (η,ξ) = lim
q→1

(
1− q2

)|ζ|−|N⃗|
Piq

v

R (η,ξ) ,

where ρ is replaced by ρ+ iπ/2ln(q) in Piq
v

R . Then P̂R is a duality function between
SSEP(N⃗)↔ SSEPR(N⃗,ρ) and

P̂vR (η,ξ) =
M∏
k=1

p̂
(
ηk, ξk;h

+
k+1 (ξ) ,h

−
k−1,0 (η) ,v,Nk

)
.

(ii) Define the function K̂v : X×X→ R by

K̂v (η,ξ) = lim
q→1

(−1)|η|KR (η,ξ) ,

where ρ= 1
2 logq(v) in KR. Then for v> 0, K̂v is a self-duality function for SSEP(N⃗) and

K̂v (η,ξ) =
M∏
k=1

k̂(ηk, ξk;v,Nk) .
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For completeness, the duality relations of proposition 5.4 are given by

(i) [LN⃗P̂R( · , ξ)](η) = [LR
N⃗,ρ
P̂R(η, ·)](ξ),

(ii) [LN⃗K̂
v( · , ξ)](η) = [LN⃗K̂

v(η, ·)](ξ).

Remark 5.5.

• Let us remark that the same result can be obtained by substituting v 7→ v−λ in proposition
5.3 and letting λ→∞.

• There are several proofs of the self-duality result of SSEP(N⃗), see e.g. [17, 23, 32].
• Note that the product K̂v no longer has a nested structure.

By taking the q→ 1 limit in proposition 4.4, we also obtain orthogonality relations for the
duality functions P̂vR and K̂v. The proof can again be found in section 9.

Proposition 5.6.

(i) The function P̂vR is an orthogonal duality function between SSEP(N⃗)↔ SSEPR(N⃗,ρ) and

∑
η∈X

P̂vR (η,ξ) P̂
v
R (η,ξ

′) ω̂p (|η|) ŵ
(
η; N⃗

)
=

δξ,ξ ′

ω̂p
R (|ξ|)ŴR

(
ξ; N⃗,ρ

) ,
∑
ξ∈X

P̂vR (η,ξ) P̂
v
R (η

′, ξ) ω̂p
R (|ξ|)ŴR

(
ξ; N⃗,ρ

)
=

δη,η ′

ω̂p (|η|) ŵ
(
η; N⃗

) .
(ii) The function K̂v is an orthogonal self-duality function for SSEP(N⃗) and

∑
η∈X

K̂v (η,ξ) K̂v (η,ξ ′) ŵ
(
η; N⃗

)
=

δξ,ξ ′

ω̂k (|ξ|) ŵ
(
ξ; N⃗
) ,

∑
ξ∈X

K̂v (η,ξ) K̂v (η ′, ξ) ω̂k (|ξ|) ŵ
(
ξ; N⃗
)
=

δη,η ′

ŵ
(
η; N⃗

) .
The explicit expressions of the coefficients ω̂ in front of the reversible measures ŵ and ŴR

can be found in appendix A.

6. The quantum algebra Uq(sl2) and q-Krawtchouk polynomials

In this section, we state the necessary properties regarding the quantum algebra Uq(sl2) and
the q-Krawtchouk polynomials required for proving the main results of this paper concerning
the Markov processes. We will first introduce Uq(sl2) and give a representation of this algebra
which has close connections with ASEP and dynamic ASEP. Then lastly, we will state some
recurrence relations for q-Krawtchouk polynomials that will be useful later on.
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6.1. The algebra Uq(sl2)

Uq := Uq
(
sl2
)
is the quantized universal enveloping algebra of the Lie algebra sl2. This is the

unital, associative, complex algebra generated by K, K−1, E, and F, subject to the relations

KK−1 = 1= K−1K, KE= qEK, KF= q−1FK, EF−FE=
K2 −K−2

q− q−1
. (6.1)

The Casimir element

Ω=
q−1K2 + qK−2 − 2

(q−1 − q)2
+EF=

q−1K−2 + qK2 − 2

(q−1 − q)2
+FE (6.2)

is a central element of Uq, i.e. ΩX= XΩ for all X ∈ Uq. We use the ∗-structure on Uq which
comes from the Lie algebra su(2). This is the anti-linear involution defined on the generators
by

K∗ = K, E∗ = F, F∗ = E,
(
K−1

)∗
= K−1.

Note that the Casimir element is self-adjoint in Uq, i.e. Ω∗ =Ω.
The comultiplication∆ : Uq →Uq⊗Uq is a ∗-algebra homomorphism defined on the generat-
ors by

∆(K) = K⊗K, ∆(E) = K⊗E+E⊗K−1,

∆
(
K−1

)
= K−1 ⊗K−1, ∆(F) = K⊗F+F⊗K−1.

(6.3)

The self-adjoint element ∆(Ω) will be the generator of our Markov processes. It follows
from (6.2) and (6.3) that

∆(Ω) =
1

(q−1 − q)2
[
q
(
K2 ⊗K2

)
+ q−1

(
K−2 ⊗K−2

)
− 2(1⊗ 1)

]
+K2 ⊗FE+KE⊗FK−1 +FK⊗K−1E+FE⊗K−2.

(6.4)

Another important element in Uq we need, is the twisted primitive element Yρ, defined by

Yρ = q
1
2EK+ q−

1
2FK− [ρ]q

(
K2 − 1

)
, ρ ∈ R.

This satisfies

∆(Yρ) = K2 ⊗Yρ +Yρ ⊗ 1, Y∗ρ = Yρ. (6.5)

In Lie algebras, the comultiplication of an element X is defined by ∆(X) = 1⊗X+X⊗ 1.
Note that Yρ almost satisfies this. The K2 in the above equation will cause the asymmetry of
the process.

6.2. A representation of Uq related to ASEP

The generator of ASEP(q, N⃗) can be realized by sums of coproducts ∆(Ω) in an M-fold
tensor product representation of Uq. Let us introduce the representations we need. Define Hk

to be the (Nk+ 1)-dimensional Hilbert space of (continuous) functions f : {0,1, . . .,Nk}→
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C with inner product induced by the orthogonality measure (3.10) of the q-Krawtchouk
polynomials,

〈 f,g〉Hk =

Nk∑
n=0

f(n)g(n)w(n;Nk;q)q
−2nuk(N⃗),

where w(n;q,Nk) can be found in (3.10) and the factor

uk
(
N⃗
)
=−1

2
Nk+

k∑
j=1

Nj

is present to prevent needing ground state transformations, as is used in e.g. [10], later on. Our
duality functions will be elements of the M-fold tensor product of Hk,

H= H1 ⊗H2 ⊗ . . .⊗HM.

We will interpret H as functions on states η in our state space X= {0, . . . ,N1}× · · · ×
{0, . . . ,NM}. Moreover, note that

u
(
η; N⃗

)
=−2

M∑
k=1

ηkuk
(
N⃗
)
,

where u is given by (3.7), hence the measure from the inner product of H, corresponds to
w(η;q, N⃗) from (3.12):

〈 f,g〉H =
∑
η

f(η)g(η)w
(
η; N⃗;q

)
. (6.6)

Let B(Hk) be the space of linear operators on Hk and πk : Uq → B(Hk) the ∗-representation
defined by

[πk (K) f ] (n) = qn−
1
2Nk f(n) ,

[πk (E) f ] (n) = quk(N⃗) [n]q f(n− 1) ,

[πk (F) f ] (n) = q−uk(N⃗) [Nk− n]q f(n+ 1) ,[
πk
(
K−1

)
f
]
(n) = q

1
2Nk−nf(n) .

(6.7)

One can easily verify that this is a ∗-representation, i.e. πk(X∗) = πk(X)∗ for all X ∈ Uq, by
checking this for the generators K,K−1,E and F.

Denote by πk,k+1 the tensor product representation of πk and πk+1,

πk,k+1 (X⊗Y) = πk (X)⊗πk+1 (Y) , X,Y ∈ Uq.

A direct calculation shows that the representation πk,k+1 of ∆(Ω) is the generator of
ASEP(q, N⃗) for sites k and k+ 1 plus some constant, i.e.

[πk,k+1 (∆(Ω)) f ] (η) = c+k
[
f
(
ηk,k+1

)
− f(η)

]
+ c−k+1

[
f
(
ηk+1,k

)
− f(η)

]
+
[
1
2 (Nk+Nk+1 + 1)

]2
q
f(η) .
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Therefore, if we subtract the constant and sum over k, we get the generator of ASEP(q, N⃗):

Lq,N⃗ =
M−1∑
k=1

πk,k+1

(
∆(Ω)−

[
1
2 (Nk+Nk+1 + 1)

]2
q

)
. (6.8)

It now immediately follows that w is a reversible measure for ASEP(q, N⃗):

Alternative proof of theorem 3.11(i). Since the πk are ∗-representations, ∆ is a ∗-
homomorphism and Ω∗ =Ω, we have that Lq,N⃗ is self-adjoint with respect to the measure

w. Therefore, w is a reversible measure for ASEP(q, N⃗).

6.3. Properties of q-Krawtchouk polynomials

In this subsection, we introduce three different recurrence relations for the q-Krawtchouk poly-
nomials that we need later on. For convenience, write

k(n,x;ρ) = k(n,x;ρ,N;q) .

The first recurrence relation we give is a standard three-term recurrence relation, the other two
are very similar but more dynamic in the sense that the parameter ρ will be changing as well.

All sets of orthogonal polynomials {pn(x)}, where n is the degree of the polynomial and
x the variable, satisfy a three-term recurrence relation in the degree of the polynomial of the
form

xpn (x) = A(n)pn+1 (x)+B(n)pn (x)+C(n)pn−1 (x) .

At the moment we consider the q-Krawtchouk polynomials as having degree x in the variable
q−2n. Then its three-term recurrence relation is given by,

q−2nk(n,x;ρ) = a−1 (x)k(n,x− 1;ρ)+ a0 (x)k(n,x;ρ)+ a1 (x)k(n,x+ 1;ρ) . (6.9)

The coefficients can be found in appendix C, see also [26, §14.17]. Moreover, the q-
Krawtchouk polynomials satisfy two more relations where besides x, the parameter ρ will
be changing as well.

Lemma 6.1. The q-Krawtchouk polynomials satisfy q-difference equations of the form

q−2nk(n,x;ρ) = a−2,2 (x)k(n,x− 2;ρ+ 2)+ a−1,2 (x)k(n,x− 1;ρ+ 2)

+ a0,2 (x)k(n,x;ρ+ 2) ,
(6.10)

q−2nk(n,x;ρ) = a0,−2 (x)k(n,x;ρ− 2)+ a1,−2 (x)k(n,x+ 1;ρ− 2)

+ a2,−2 (x)k(n,x+ 2;ρ− 2) .
(6.11)

Explicit expressions for aj,m(x) can be found in appendix C.

Note that the coefficient aj,m(x) is in front of k(n,x+ j,ρ+m).

Proof. A direct computation shows that

q−nk(n,x;ρ) =
1+ q2x+2ρ−2N

1+ q4x+2ρ−2N
k(n,x;ρ+ 1)+

1− q−2x

1+ q2N−4x−2ρ
k(n,x− 1;ρ+ 1) . (6.12)

40



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

Multiplying both sides by q−n and then applying (6.12) to the right-hand side gives (6.10).
Using the identity [20, (III.6) and (III.7)]

3φ2

(
q−n,q−x,−cqx−N

q−N,0
;q,q

)
= (−c)n 3φ2

(
q−n,qx−N,−c−1q−x

q−N,0
;q,q

)

for q-hypergeometric series, we obtain

k(n,x;−ρ,N;q) = (−1)n k(n,N− x,ρ,N;q) . (6.13)

If we replace ρ by −ρ in (6.10) and apply the above symmetry, one obtains (6.11) after repla-
cing N− x by x.

7. Algebraic construction of generalized dynamic ASEP

7.1. Constructing the generator

Constructing the generator of ASEPR(q, N⃗,ρ) is done by transferring the action of
πk,k+1(∆(Ω)) from the η-variable to the ξ-variable using the q-Krawtchouk polynomials. We
will proceed in the following three steps.

(1) In their usual action, we can let the operators πk,k+1(∆(Yh+k+2(ξ)
)) and πk,k+1(∆(K−2)) act

on the η variable of the duality function KR(η,ξ) given by (3.6) as a nested product of q-
Krawtchouk polynomials.Wewill show that we can transfer these actions to be exclusively
depending on the ξ variable. This is the content of lemma 7.1.

(2) Then we show that Ω can be written in terms of Yρ and K−2, i.e. the latter two elements
are ‘building blocks’ for the Casimir Ω. Consequently, ∆(Ω) can be written in terms of
∆(Yρ) and ∆(K−2).

(3) In the last step, we explicitly compute the action of πk,k+1(∆(Ω)) on KR(η,ξ) in the ξ
variable by combining the previous two steps. This will give the generator on sites k and
k+ 1 of ASEPR(q, N⃗,ρ), which is summarized in theorem 7.2.

For step (1), we will show that we can transfer the η-dependent actions

[
πk,k+1

(
∆
(
Yh+k+2(ξ)

))
KR (·, ξ)

]
(η) and

[
πk,k+1

(
∆
(
K−2

))
KR (·, ξ)

]
(η)

to the ξ variable.

Lemma 7.1. The operator πk,k+1(∆(Yh+k+2(ξ)
)) acts as a multiplication operator on KR(η,ξ),

[
πk,k+1

(
∆
(
Yh+k+2(ξ)

))
KR (·, ξ)

]
(η) =

([
h+k+2 (ξ)

]
q
−
[
h+k (ξ)

]
q

)
KR (η,ξ) . (7.1)
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The operator πk,k+1(∆(K−2)) is a 9-term operator for KR(η,ξ) in the ξ-variable,

q−Nk−Nk+1
[
πk,k+1

(
∆
(
K−2

))
KR (·, ξ)

]
(η) = a−1 (ξk+1)

2∑
j=0

aj,−2 (ξk)KR (η,ξ+ jϵk− ϵk+1)

+ a0 (ξk+1)
1∑

j=−1

aj (ξk)KR (η,ξ+ jϵk)

+ a1 (ξk+1)
0∑

j=−2

aj,2 (ξk)KR (η,ξ+ jϵk+ ϵk+1) ,

(7.2)

where εj is the standard unit vector in RM with 1 as jth element.

Proof. First, let us define for this proof only,

k(ηk, ξk;ρ) = qηkuk(N⃗)k(ηk, ξk;ρ,Nk;q) ,

then

KR (η,ξ) =
M∏
k=1

k
(
ηk, ξk;h

+
k+1 (ξ)

)
is the duality function between ASEP(q, N⃗) and ASEPR(q, N⃗,ρ) from (3.6). Moreover, by mul-
tiplying both sides of the recurrence relation (6.9) and the two recurrence relations from lemma
6.1 by the factor qηkuk(N⃗), we see that these three relations hold equally well for k(ηk, ξk,ρ)
defined above. For the moment, let us fix the number of sitesM to be 2. Later on, we will gen-
eralize to M ∈ N sites by starting from the two rightmost sites and then inductively working
towards the left. The (2-site) duality function KR(η,ξ) is now given by

KR (η,ξ) = q−
1
2 u(η;N⃗)k

(
η1, ξ1;N1,h

+
2 (ξ) ;q

)
k(η2, ξ2;N2,ρ;q)

= k
(
η1, ξ1;h

+
2 (ξ)

)
k(η2, ξ2;ρ) .

(7.3)

Note that the right q-Krawtchouk polynomial only depends on site 2, but that the left one
depends on sites 1 and 2 since h+2 (ξ) contains ξ2 and N2. Later on, this will be crucial since
this will allow us to work inductively from right to left when extending to M ∈ N sites.

We will now show the following two things.

(i) KR(η,ξ) are eigenfunctions of π1,2(∆(Yρ)) with eigenvalue µ= [ρ]q− [h+1 (ξ)]q. Hence
π1,2(∆(Yρ)) acts as multiplication by µ on KR(η,ξ).

(ii) Using the three-term recurrence relation (6.9) and the q-difference equations from lemma
6.1, we can show that π1,2(∆(K−2)) acts as a 9-term operator in the ξ-variable onKR(η,ξ).

For (i), we use that the q-Krawtchouk polynomials k(·, ξk;ρ) : {0, . . .,Nk}→ R are eigen-
functions of πk(Yρ),

[πk (Yρ)k(·, ξk;ρ)] (ηk) =
(
[ρ]q− [2ξk−Nk+ ρ]q

)
k(ηk, ξk;ρ) . (7.4)
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Using this and the explicit expression (6.5) for ∆(Yρ), one can show that the 2-site duality
function KR(η,ξ) is an eigenfunction of π1,2(∆(Yρ)),

[π1,2 (∆(Yρ))KR (·, ξ)] (η) =
(
[ρ]q− [ρ+ 2(ξ1 + ξ2)− (N1 +N2)]q

)
KR (η,ξ)

=
(
[ρ]q−

[
h+1 (ξ)

]
q

)
KR (η,ξ) .

(7.5)

See appendix D for more details. Thus, π1,2(∆(Yρ)) can also act on KR(η,ξ) by multiplication
by the (η-independent) eigenvalue [ρ]q− [h+1(ξ)]q. Note that everything goes entirely similar
if we take sites k,k+ 1 instead of sites 1,2, and h+k (ξ),h

+
k+1(ξ),h

+
k+2(ξ) instead of h

+
1 (ξ),h

+
2 (ξ)

and ρ, proving (7.1).
The verification of (ii) is more subtle. By (6.7), the operator πk(K−2) is multiplication by

qNk−2ηk . Therefore, using∆(K−2) = K−2 ⊗K−2,[
π1,2

(
∆
(
K−2

))
KR (·, ξ)

]
(η) = qN1+N2q−2η1−2η2KR (η,ξ)

= qN1+N2q−2η1k
(
η1, ξ1;h

+
2 (ξ)

)
q−2η2k(η2, ξ2;ρ) .

(7.6)

We can use the q-difference equations (6.9) and (6.10), (6.11) from lemma 6.1 to show that
q−2ηk can act in three different ways on the ξk variable of k(ηk, ξk;ρ),

q−2ηkk(ηk, ξk;ρ) = a−1k(ηk, ξk− 1;ρ)+ a0k(ηk, ξk;ρ)+ a1k(ηk, ξk+ 1;ρ) , (7.7)

= a−2,2k(ηk, ξk− 2;ρ+ 2)+ a−1,2k(ηk, ξk− 1;ρ+ 2)+ a0,2k(ηk, ξk;ρ+ 2) , (7.8)

= a0,−2k(ηk, ξk;ρ− 2)+ a1,−2k(ηk, ξk+ 1;ρ− 2)+ a2,−2k(ηk, ξk+ 2;ρ− 2) , (7.9)

where the coefficients aj and aj,m depend on ξk, Nk and ρ (and not on η) and can be found in
appendix C.

The naive approach here is to use the standard three-term recurrence relation (7.7) for both

q−2η1k
(
η1, ξ1;h

+
2 (ξ)

)
and q−2η2k(η2, ξ2;ρ)

in (7.6). However, this would not work since the variable ξ2 of the right one is part of the
parameter h+2 (ξ) of the left one. To see this, apply (7.7) for ‘q

−2η2’ to the right q-Krawtchouk
polynomial,

q−2η1−2η2KR (η,ξ) = q−2η1k
(
η1, ξ1,h

+
2 (ξ)

)[
a−1 (ξ2)k(η2, ξ2 − 1;ρ)

+ a0 (ξ2)k(η2, ξ2;ρ)+ a1 (ξ2)k(η2, ξ2 + 1;ρ)
]
.

(7.10)

Let us take a closer look at the term

q−2η1k
(
η1, ξ1,h

+
2 (ξ)

)
a−1 (ξ2)k(η2, ξ2 − 1;ρ) . (7.11)

Since ‘h+2 (ξ)’ contains a term ‘2ξ2’, and the variable of the right q-Krawtchouk polynomial is
‘ξ2 − 1’, we have to adjust ‘h+2 (ξ)’ by ‘−2’ to obtain a product of q-Krawtchouk polynomials

43



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

of the same form as KR(η,ξ). That is, since the variable of the right polynomial is ξ2 − 1, we
have to adjust the left q-Krawtchouk polynomial so that we end up with terms

KR (η,ξ1 + j, ξ2 − 1) = k
(
η1, ξ1 + j;h+2 (ξ)− 2

)
k(η2, ξ2 − 1;ρ) ,

with j ∈ Z. Therefore, we have to use the third relation (7.9) for the factor q−2η1k(η1, ξ1,h
+
2 (ξ))

in (7.11) to obtain(
a0,−2 (ξ1)k

(
η1, ξ1;h

+
2 (ξ)− 2

)
+ a1,−2 (ξ1)k

(
η1, ξ1 + 1;h+2 (ξ)− 2

)
+ a2,−2 (ξ1)k

(
η1, ξ1 + 2;h+2 (ξ)− 2

))
× a−1 (ξ2)k(η2, ξ2 − 1;ρ) .

This is equal to

a−1 (ξ2) [a0,−2 (ξ1)KR (η,ξ1, ξ2 − 1)+ a1,−2 (ξ1)KR (η,ξ1 + 1, ξ2 − 1)a2,−2 (ξ1)

× KR (η,ξ1 + 2, ξ2 − 1)] .

Let us now look at the other terms in (7.10). Using the first equation (7.7) for the term

q−2η1k
(
η1, ξ1;h

+
2 (ξ)

)
a0 (ξ2)k(η2, ξ2;ρ)

and the second equation (7.8) for

q−2η1k
(
η1, ξ1;h

+
2 (ξ)

)
a1 (ξ2)k(η2, ξ2 + 1;ρ) ,

we obtain (7.2) for k= 1.
Let us now generalize this to M ∈ N sites and πk,k+1 for k= 1,2, . . . ,M− 1. It is crucial

to observe that in (7.3) we can pick the parameter ρ of the right q-Krawtchouk polynomial
freely. However, its variable ξ2 and dimension N2 have to get into the ‘ρ’ parameter of the
left q-Krawtchouk polynomial by adding 2ξ2 −N2. Therefore, we can work from right to left
inductively, as long as we change the ‘ρ’ parameter accordingly every time. That is, we have
to add 2ξk+1 −Nk+1 to the ‘ρ’ parameter of the 1-site duality function of site k each time we
go from site k+ 1 to k,

h+k+1 (ξ) = h+k+2 (ξ)+ 2ξk+1 −Nk+1.

Doing this iteratively, we see that this agrees with the definition of our height function,

h+k (ξ) = ρ+
M∑
j=k

(2ξj−Nj) .

Now that we have finished step (1), we move on to step (2): expressing the Casimir Ω in
terms of K−2 and Yρ. One can prove that

Ω=
f
(
Yρ − [ρ]q ,K

−2
)

(q+ q−1)(q− q−1)
2 +

(
q+ q−1

)
K−2

(q− q−1)
2 + [ρ]q

Yρ − [ρ]q
q+ q−1

− 2

(q− q−1)
2 , (7.12)
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where f : Uq×Uq →Uq is the function given by

f(A,B) =
(
q2 + q−2

)
ABA−A2B−BA2. (7.13)

This identity in Uq can be shown by either a direct calculation using the commutation rela-
tions (6.1), or by observing that (7.12) is actually a relation in the degenerate version of the
Askey-Wilson algebra AW(3) generated by Yρ and K−2, see e.g. [25] or [24, theorem 2.2]5.
Note that we can pick our parameter ρ freely, in particular we can take ρ= h+k+2(ξ). Now,
taking the coproduct on both sides we obtain

∆(Ω) =
f
(
∆(Yρ)− [ρ]q ,∆

(
K−2

))
(q+ q−1)(q− q−1)

2 +

(
q+ q−1

)
∆
(
K−2

)
(q− q−1)

2

+ [ρ]q
∆(Yρ)− [ρ]q
q+ q−1

− 2

(q− q−1)
2 , (7.14)

completing step (2).
Lastly, for step (3) we will combine steps (1) and (2) and do an explicit computation to

obtain the explicit action from πk,k+1(∆(Ω)) on the ξ variable of the nested product of q-
Krawtchouk polynomials KR(η,ξ). This gives the rates of the generator of ASEPR(q, N⃗,ρ)
given in definition 3.2.

Theorem 7.2. The action of the operator πk,k+1(∆(Ω)) on the η-variable of KR(η,ξ) can be
transferred to the ξ-variable,[
πk,k+1(∆(Ω))KR(·, ξ)

]
(η) = CR,+

k

[
KR(η,ξ

k,k+1)−KR(η,ξ)
]
+CR,−

k+1

[
KR(η,ξ

k+1,k)−KR(η,ξ)
]

+
[ 1
2 (Nk+Nk+1 + 1)

]2
q
)KR(η,ξ).

Here, CR,+ and CR,− are the ξ-dependent rates from ASEPR(q, N⃗,ρ) given in definition 3.2.

Note that the factor
[
1
2 (Nk+Nk+1 + 1)

]2
q
is the same as the one appearing in (6.8) for

ASEP(q, N⃗).

Proof. The idea is to use (7.14) and lemma 7.1 to transfer the action of πk,k+1(∆(Ω)) on
KR(η,ξ) from the η-variable to the ξ-variable. Applying πk,k+1 to (7.14) we obtain for any
ρ ∈ C,

πk,k+1 (∆(Ω)) =
f
(
πk,k+1 (∆(Yρ)− [ρ])q ,πk,k+1

(
∆
(
K−2

)))
+
(
q+ q−1

)2
πk,k+1

(
∆
(
K−2

))
(q+ q−1)(q− q−1)

2

+ [ρ]q
πk,k+1 (∆(Yρ)− [ρ]q)

q+ q−1
− πk,k+1 (2)

(q− q−1)
2 .

(7.15)

By lemma 7.1, we have that πk,k+1(∆(K−2)) acts on KR(η,ξ) as a 9-term operator in the ξ-
variable and[
πk,k+1

(
∆
(
Yh+k+2(ξ)

)
−
[
h+k+2 (ξ)

]
q

)
KR (·, ξ)

]
(η) =−

[
h+k (ξ)

]
q
KR (η,ξ) . (7.16)

5 Note that in [24] the Casimir differs from Ω by a scaling factor and an additive constant.
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Since πk,k+1(∆(K−2)) is a 9-term operator, we need some extra notation. Denote by
ξk,k+1( j,m) the state ξ in which there are j andm particles added to site k and k+ 1 respectively,
i.e.

ξk,k+1 ( j,m) = (ξ1, . . . , ξk−1, ξk+ j, ξk+1 +m, ξk+2, . . . , ξM) .

Note that ξk,k+1(−1,1) = ξk,k+1 and ξk,k+1(1,−1) = ξk+1,k. Moreover, if j+m 6= 0, the
amount of particles in the states ξ and ξk,k+1( j,m) is different. Let us apply πk,k+1(∆(Ω))
to KR(η,ξ). Then we obtain, using (7.15) with ρ= h+k+2(ξ), lemma 7.1 and (7.16),

[
πk,k+1 (∆(Ω))KR (·, ξ)

]
(η) = qNk+Nk+1a−1 (ξk+1)

2∑
j=0

aj,−2 (ξk)βk ( j− 1)KR
(
η,ξk,k+1 ( j,−1)

)
+ qNk+Nk+1a0 (ξk+1)

1∑
j=−1

aj (ξk)βk ( j)KR
(
η,ξk,k+1 ( j,0)

)
+ qNk+Nk+1a1 (ξk+1)

0∑
j=−2

aj,2 (ξk)βk ( j+ 1)KR
(
η,ξk,k+1 ( j,1)

)
−

([
h+k+2 (ξ)

]
q

[
h+k (ξ)

]
q

q+ q−1 +
2(

q− q−1
)2
)
KR (η,ξ) ,

(7.17)

where

βk (m) =

(
q2 + q−2

)[
h+k (ξ)

]
q

[
h+k (ξ)+ 2m

]
q
−
[
h+k (ξ)

]2
q
−
[
h+k (ξ)+ 2m

]2
q
+
(
q+ q−1

)2
(q− q−1)

2
(q+ q−1)

.

The expression (7.17) greatly simplifies from a 9-term operator to a 3-term operator, since for
all p ∈ R we have the identity(

q2 + q−2
)
[p]q [p+ 2]q− [p]2q− [p+ 2]2q+

(
q+ q−1

)2
= 0, (7.18)

as readily verified by a direct computation. Therefore, βk(m) = 0 if m=±1. Consequently,
only the terms in (7.17) with KR(η,ξk,k+1( j,m)) remain where j+m= 0, i.e. the amount of
particles is preserved. Thus,

[πk,k+1 (∆(Ω))KR (·, ξ)] (η) = qNk+Nk+1a−1 (ξk+1)a1,−2 (ξk)βk (0)KR
(
η,ξk+1,k

)
+ qNk+Nk+1a0 (ξk+1)a0 (ξk)βk (0)KR (η,ξ)

+ qNk+Nk+1a1 (ξk+1)a−1,2 (ξk)βk (0)KR
(
η,ξk,k+1

)
−

([
h+k+2 (ξ)

]
q

[
h+k (ξ)

]
q

q+ q−1
+

2

(q− q−1)
2

)
KR (η,ξ) .

Using the explicit expressions for aj(ξk) and aj,−2j(ξk+1) found in appendix C, we obtain the
factors CR,+

k and CR,−
k for KR(η,ξ

k,k+1) and KR(η,ξ
k+1,k) respectively. Therefore,

[πk,k+1 (∆(Ω))KR (·, ξ)] (η) = CR,+
k

[
KR
(
η,ξk,k+1

)
−KR (η,ξ)

]
+CR,−

k

[
KR
(
η,ξk+1,k

)
−KR (η,ξ)

]
+ γk (ξ)KR (η,ξ)

(7.19)
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for some factor γk(ξ). To find this factor, observe that KR(0, ξ) = 1 for any ξ by (3.6) and the
fact that k(0,x;q,N,ρ) = 1. If we now take η= 0 in (7.19), we obtain

[πk,k+1 (∆(Ω))KR (·, ξ)] (0) = γk (ξ)KR (0, ξ) .

Since πk,k+1(∆(Ω)) is related to the generator of the ASEP(q, N⃗) process via (6.8), we also
have that

[πk,k+1 (∆(Ω))KR (·, ξ)] (0) =
[
1
2 (Nk+Nk+1 + 1)

]2
q
.

Hence γk(ξ) =
[
1
2 (Nk+Nk+1 + 1)

]2
q
.

7.2. Duality between ASEPR and ASEP

Because of the way we constructed the generator of ASEPR(q, N⃗,ρ), we automatically get a
Markov duality with the standard ASEP(q, N⃗) and the q-Krawtchouk polynomials KR(η,ξ) as
duality functions, which is the content of theorem 3.7.

Proof of theorem 3.7. Combining (6.8) with theorem 7.2, we have

[
Lq,N⃗KR (·, ξ)

]
(η) =

M−1∑
k=1

c+k

[
KR

(
ηk,k+1, ξ

)
−KR (η,ξ)

]
+ c−k

[
KR

(
ηk+1,k, ξ

)
−KR (η,ξ)

]
.

=

M−1∑
k=1

[
πk,k+1

(
∆(Ω)−

[ 1
2 (Nk+Nk+1 + 1)

]2
q

)
KR (·, ξ)

]
(η)

=

M−1∑
k=1

CR,+
k

[
KR

(
η,ξk,k+1

)
−KR (η,ξ)

]
+CR,−

k

[
KR

(
η,ξk+1,k

)
−KR (η,ξ)

]
=
[
LRq,N⃗,ρKR (η, ·)

]
(ξ) .

7.3. Reversibility of ASEPR

We end this section by giving an alternative proof of the reversibility of ASEPR(q, N⃗,ρ).
Similarly as for ASEP(q, N⃗), we do this by proving that its generator is self-adjoint with respect
to the reversible measure WR defined in (3.13).

Alternative proof of theorem 3.11(ii). We will use the orthogonality of the duality function
KR(η,ξ) given in theorem 3.11(iii). First, define the Hilbert space HR as functions acting on
states ξ in our state space X= {0, . . . ,N1}× · · · × {0, . . . ,NM} with inner product induced by
the measure WR,

〈 f,g〉HR =
∑
ξ

f(ξ)g(ξ)WR

(
ξ; N⃗,ρ;q

)
.

Next, define the linear operator ΛR : H→ HR by

(ΛRf)(ξ) = 〈 f,KR (·, ξ)〉H ,

47



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

where H was the Hilbert space with inner product given by w(η; N⃗;q), see (6.6). Then Λ is a
unitary operator since it maps the orthogonal basis δη of H to an orthogonal basis of HR while
preserving its norm. Indeed, trivially we have

||δη||2H = w
(
η; N⃗;q

)
.

On the other hand, since

ΛR (δη)(ξ) = KR (η,ξ)w
(
η; N⃗;q

)
,

we can use theorem 3.11(iii) to obtain

||ΛR (δη) ||2HR = w
(
η; N⃗;q

)
.

Now let us define a ∗-representation of U⊗M
q equivalent to

π = π1 ⊗π2 ⊗ ·· ·⊗πM

by intertwining with ΛR. That is, let σ be the representation on HR defined by

σ (X) = ΛR ◦π (X) ◦Λ−1
R , X ∈ U⊗M

q . (7.20)

For convenience, write for X ∈ Uq⊗Uq,

σk,k+1 (X) = σ

1⊗ ·· ·⊗ 1︸ ︷︷ ︸
k−1

⊗X⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
M−(k+1)

 .

Note that σk,k+1(∆(Yh+k+2(ξ)
)) and σk,k+1(∆(K−2)) are exactly the actions of

πk,k+1(∆(Yh+k+2(ξ)
)) and πk,k+1(∆(K−2)) on the ξ variable of KR(η,ξ) given in lemma 7.1.

Indeed, using that πk,k+1(∆(Yρ)) is self-adjoint for all ρ ∈ R, we have(
ΛR

(
πk,k+1

(
∆
(
Yh+k+2(ξ)

))
f
))

(ξ) =
〈
πk,k+1

(
∆
(
Yh+k+2(ξ)

))
f,KR ( · , ξ)

〉
H

=
〈
f,
[
πk,k+1

(
∆
(
Yh+k+2(ξ)

))
KR

]
( · , ξ)

〉
H

=
([
h+k+2 (ξ)

]
q
−
[
h+k (ξ)

]
q

)
(ΛRf)(ξ) ,

hence

ΛR ◦πk,k+1

(
∆
(
Yh+k+2(ξ)

))
=
([
h+k+2 (ξ)

]
q
−
[
h+k (ξ)

]
q

)
ΛR.

Therefore, [
σk,k+1

(
∆
(
Yh+k+2(ξ)

))
f
]
(ξ) =

([
h+k+2 (ξ)

]
q
−
[
h+k (ξ)

]
q

)
f(ξ) .

The caseσk,k+1(∆(K−2)) is similar. Since the right-hand side of (7.12) is invariant under taking
the ∗-operation, we can repeat the proof of theorem 7.2 to obtain that
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[σk,k+1(∆(Ω))f ] (ξ) = CR,+
k

[
f(ξk,k+1)− f(ξ)

]
+CR,−

k

[
f(ξk+1,k)− f(ξ)

]
+
[
1
2 (Nk+Nk+1 + 1)

]2
q
)f(ξ).

Therefore, we can construct the generator of ASEPR(q, N⃗,ρ) with σ,

LR
q,N⃗,ρ

=
M−1∑
k+1

σk,k+1

(
∆(Ω)−

[
1
2 (Nk+Nk+1 + 1)

]2
q

)
.

Since σ is a ∗-representation and ∆(Ω∗) = ∆(Ω), we have that LR
q,N⃗,ρ

is self-adjoint with
respect to the reversible measure WR.

8. Generalized dynamic ASEP on the reversed lattice

As explained in section 3.6, we can define dynamic ASEP on the reversed lattice, referred to
as ASEPL(q, N⃗,λ). In this section, we prove duality of this process with ASEPR(q, N⃗,ρ) with
a doubly nested product of q-Racah polynomials as duality functions. Algebraically, one can
describe this process in a similar fashion as before by replacingK byK−1 and q by q−1. Instead
of the twisted primitive element

Yρ = q
1
2EK+ q−

1
2FK− [ρ]q

(
K2 − 1

)
,

one then gets the twisted primitive element

Ỹλ = q−
1
2EK−1 + q

1
2FK−1 − [λ]q

(
K−2 − 1

)
.

Eigenfunctions of πk(Ỹλ) are given by q−1-Krawtchouk polynomials. Moreover, the inner
product of these functions with the eigenfunctions of πk(Yρ) are q-Racah (or Askey-Wilson)
polynomials [22, 33]. Furthermore, this pair of twisted primitive elements satisfies the Askey-
Wilson algebra relations [25], an algebra that encodes many properties of the Askey-Wilson
polynomials. Therefore, it comes as no surprise that duality functions between ASEPL(q, N⃗,λ)
and ASEPR(q, N⃗,ρ) are q-Racah polynomials.

8.1. Duality between ASEPL and ASEPR

Since both ASEPR(q, N⃗,ρ) and ASEPL(q, N⃗,λ) are dual to ASEP(q, N⃗), they are also dual to
each other. A duality function is given by the inner product in the Hilbert space H corres-
ponding to the reversible measure of ASEP(q, N⃗) of the duality function KL(η,ζ) between
ASEPL(q, N⃗,λ) and ASEP(q, N⃗) and the duality function KR(η,ξ) between ASEPR(q, N⃗,λ)
and ASEP(q, N⃗). This scalar-product method is used before in e.g. [8]. We then get

R(ζ,ξ) = 〈KL (·, ζ) ,KR (·, ξ)〉H =
∑
η

KL (η,ζ)KR (η,ξ)w
(
η; N⃗;q

)
,

where w is the reversible measure of ASEP(q, N⃗) given in (3.12). We can fit in an extra para-
meter v ∈ R× by slightly adjusting one of the original duality functions. Define

KvL (η,ζ) = v|η|KL (η,ζ) = q−
1
2 u(η;N⃗)

M∏
k=1

vηkk
(
ηk, ζk;h

−
k−1 (ζ) ,Nk;q

−1
)
.
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Since this extra factor v|η| is a function depending on the total number of particles in the state
η, KvL(η,ζ) is also a duality function between ASEPL(q, N⃗,λ) and ASEP(q, N⃗) (see remark
1.1). Therefore, define precisely as in (3.18))

Rv (ζ,ξ) = 〈KvL (·, ζ) ,KR (·, ξ)〉H.

Wewill show thatRv is indeed a duality function and equal to a product of q-Racah polynomials
as stated in theorem 3.19.

First, let us show that Rv(ζ,ξ) is indeed a duality function between ASEPL(q, N⃗,λ) and
ASEPR(q, N⃗,ρ). Using the duality between ASEPR(q, N⃗,ρ) and ASEP(q, N⃗), we get[

LR
q,N⃗,ρ

Rv (ζ, ·)
]
(ξ) =

∑
η

KvL (η,ζ)
[
LR
q,N⃗,ρ

KR (η, ·)
]
(ξ)w

(
η; N⃗;q

)
=
∑
η

KvL (η,ζ)
[
Lq,N⃗KR (·, ξ)

]
(η)w

(
η; N⃗;q

)
.

Since, Lq,N⃗ is self-adjoint with respect to the reversible measurew, the expression above equals

∑
η

[
Lq,N⃗K

v
L (·, ζ)

]
(η)KR (η,ξ)w

(
η; N⃗;q

)
=
∑
η

[
Lq,N⃗K

v
L (η, ·)

]
(ζ)KR (η,ξ)w

(
η; N⃗;q

)
=
[
LL
q,N⃗,λ

Rv (·, ξ)
]
(ζ) ,

where we used the duality between ASEPL(q, N⃗,λ) and ASEP(q, N⃗) in the last step.
Summations over a product of q-hypergeometric series, like Rv(ζ,ξ), cannot always be

expressed more explicitly. However, in this particular case the summation over two 3φ2’s
becomes a 4φ3 known as q-Racah polynomials. The required formula is given in the follow-
ing Lemma.

Lemma 8.1. Let r(y,x;λ,ρ,v,N) be the 1-site duality function as in (3.21), then we have the
following summation formula between q-Krawtchouk polynomials and q-Racah polynomials,

r(y,x;λ,ρ,v,N;q) =
N∑
n=0

vnk
(
n,y;λ,N;q−1

)
k(n,x;ρ,N;q)w(n;N;q) . (8.1)

Proof. We start on the right-hand side of (8.1). After expressing the Krawtchouk polynomials
k as 3φ2-functions, the right-hand side is written as

N∑
n=0

[
N
n

]
q2
qn(n+λ−ρ−N)vn 3φ2

(
q−2n,q−2x,−q2x+2ρ−2N

q−2N,0
;q2,q2

)
× 3φ2

(
q2n,q2y,−q−2y−2λ+2N

q2N,0
;q−2,q−2

)
.
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Showing that this sum is equal to a q-Racah polynomial basically comes down to [22, lemma
4.6 ] and a change of parameters. Indeed, using definition (4.1) in [22] we see that the following
summation formula between 3φ2 and 4φ3 functions holds,

c1 4φ3

(
q−2m,abcdq2(m−1),ax,ax−1

ab,ac,ad
;q2,q2

)
=
∑
n∈N

c2 3φ2

(
q−2n,σqkx̂,σqkx̂−1

q2k,0
;q2,q2

)
3φ2

(
q2n, τq−kŷ, τq−kŷ−1

q−2k,0
;q−2,q−2

)
, (8.2)

where

c1 = q−m(m−1)

(
acq2m,bcq2m;q2

)
∞

(ab;q2)m (cx̂,cx̂
−1;q2)∞

(
ab,ac,ad;q2

)
m

(−ad)m
,

c2 =
vnqn(k−1)

(στ)
n

(
q−2k;q−2

)
n

(q−2;q−2)n
,

and (a,b,c,d, ŷ) = (qkσ,qkσ−1,qvτ−1,qv−1τ−1, τq−k−2m). Taking k=−N, ŷ=
−iq−2y+N−λ, x̂= iq2x+ρ−N, σ = iqρ and τ =−iq−λ, where again i =

√
−1, we obtain m= y

and on the right-hand side we get a finite sum because (q2N;q−2)n = 0 if n>N,

c1 4φ3

(
q−2y,−q2y+2λ−2N,−q2x+2ρ−2N,q−2x

q−2N,−vqρ+λ−N+1,−v−1qρ+λ−N+1
;q2,q2

)
=

N∑
n=0

c2 3φ2

(
q−2n,−q2x+2ρ−2N,q−2x

q−2N,0
;q2,q2

)
3φ2

(
q2n,−q−2y−2λ+2N,q2y

q2N,0
;q−2,q−2

)
,

(8.3)

where

c1 = (−1)y d−yq−y(y−1)

(
acq2y,bcq2y;q2

)
∞

(ab;q2)y (cx̂,cx̂
−1;q2)∞

(
ab,ac,ad;q2

)
y

ay

= vyq−y(y+ρ+λ−N)

(
−vqρ+λ−N+1,vq2y−ρ+λ−N+1;q2

)
∞

(
−v−1qρ+λ−N+1

)
y

(−vq2x+ρ+λ−N+1,vq−2x−ρ+λ+N+1;q2)∞

= vy
(
−vqρ+λ−N+1;q2

)
x

(
−v−1qρ+λ−N+1

)
y

(
vq2y−ρ+λ−N+1;q2

)
N

qy(y+ρ+λ−N) (vq−2x−ρ+λ+N+1;q2)x+y
,

and

c2 =
vnqn(−N−1)

qn(ρ−λ)

(
q2N;q−2

)
n

(q−2;q−2)n
=

[
N
n

]
q2
qn(n+λ−ρ−N)vn.

We see that the right-hand side of (8.3) equals the right-hand side of (8.1). It remains to show
that the left-hand side of (8.3) is the required q-Racah polynomial. The coefficient c1 is exactly
the factor cr as given in appendix A. The 4φ3 on the left-hand side of (8.3) is a q-Racah
polynomial Ry(x;α,β,γ,δ;q2) with parameters

α=−v−1qρ+λ−(N+1), β = vqρ−λ−(N+1), γ = q−2(N+1), δ =−q2λ,

which shows that the left-hand side of (8.3) is exactly r(y,x;λ,ρ,v,N).

51



J. Phys. A: Math. Theor. 57 (2024) 375202 W Groenevelt and C Wagenaar

Applying this formula M-times, we get that the duality function Rv is equal to a (doubly)
nested product of q-Racah polynomials.

Proofs of theorem 3.19. Writing out the definition of Rv(ζ,ξ), we obtain

R̂v (ζ,ξ) =
∑
η1

∑
η2

· · ·
∑
ηM

KvL (η,ζ)KR (η,ξ)w
(
η; N⃗;q

)

=
∑
η1

∑
η2

· · ·
∑
ηM

M∏
k=1

vηkk
(
ηk, ζk;h

−
k−1 (ζ) ,Nk;q

−1
)

× k
(
ηk, ξk;h

+
k+1 (ξ) ,Nk;q

)
w(ηk;Nk;q) .

Note that the terms with u(η; N⃗) exactly canceled each other. Since ηk only appears in the kth
term of the product, we can interchange the order of summation and product in the previous
expression. Thus we obtain

Rv (ζ,ξ) =
M∏
k=1

(∑
ηk

vηkk
(
ηk, ζk;h

−
k−1 (ζ) ,Nk;q

)
k
(
ηk, ξk;h

+
k+1 (ξ) ,Nk;q

)
w(ηk;Nk;q)

)

=

M∏
k=1

r
(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk;q

)
,

where we used lemma 8.1 in the last step.

The multivariate q-Racah polynomials Rv are orthogonal with respect to the reversible
measures WL and WR of ASEPL and ASEPR.

Proof of theorem 3.20. For (ii), recall from the alternative proof of theorem 3.11(ii) in
section 7.3 that the unitary operator ΛR : H→ HR was defined by

(ΛRf)(ξ) = 〈 f,KR (·, ξ)〉H.

Note that since

[ΛRK
v
L (·, ζ)] (ξ) = Rv (ζ,ξ) ,

the second equation from theorem 3.20 can be written as

〈ΛRK
v
L (·, ζ) ,ΛRK

v−1

L (·, ζ ′)〉HR .

Since ΛR is unitary, we obtain that the above expression is equal to

〈KvL (·, ζ) ,Kv
−1

L (·, ζ ′)〉H =
δζ,ζ ′

WL

(
ζ; N⃗,λ;q

) ,
where we used corollary 3.18(iii) in the last step. One can use a similar approach to prove the
first equality from 3.20. Alternatively, it can also be obtained from the second equality we just
proved by exploiting that ASEPL is just ASEPR on the reversed lattice. That is, by sending
q→ q−1, interchanging ρ↔ λ and reversing the order of sites and using the first point of
remark 3.21.
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9. Limit calculations

In this section, we carry out the explicit calculations to derive the duality results stated in
section 4 from the (almost) self-duality of dynamic ASEP stated in (3.19) with respect to the
q-Racah duality functions Rv, see theorem 3.19. The corresponding 1-site duality functions r
defined in (3.21) are given explicitly in terms of q-hypergeometric functions by

r
(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk;q

)
= cr

(
ζk, ξk;h

−
k−1 (ζ) ,h

+
k+1 (ξ) ,v,Nk;q

)
× 4φ3

(
q−2ξk ,−q2h

+
k+1(ξ)−2Nk+2ξk ,q−2ζk ,−q2h

−
k−1(ζ)−2Nk+2ζk

−v−1qh
+
k+1(ξ)+h

−
k−1(ζ)−Nk+1,−vqh

+
k+1(ξ)+h

−
k−1(ζ)−Nk+1,q−2Nk

;q2,q2
)
,

(9.1)

where

cr (y,x;λ,ρ,v,N;q) = vy
(
−vqρ+λ−N+1;q2

)
x

(
−v−1qρ+λ−N+1;q2

)
y

(
vq2y−ρ+λ−N+1;q2

)
N

qy(y+ρ+λ−N) (vq−2x−ρ+λ+N+1;q2)x+y
.

With this explicit form, it is quite straightforward to compute the appropriate limits.

9.1. Limits of reversible measures

Before we consider limits of duality functions we first consider limits of reversible measures
WR andWL, defined by (3.13) and (3.16), respectively. We show that these reversible measures
tend to the reversible measure w given by (3.12) when the dynamic parameters ρ and λ tend
to ±∞.

Let 0< q< 1, then the 1-site weight functions w and W, (3.10) and (3.11), satisfy

lim
ρ→∞

q2ρ(ξk−Nk)W
(
ξk;Nk,h

+
k+1 (ξ) ;q

)
= q2Nkh

+
k+1,0(ξ)q−Nk(Nk−1)q−ξk(2h+k+1,0(ξ)+1+ξk−2Nk)

[
Nk
ξk

]
q2

= q−2h+k+1,0(ξ)(ξk−Nk)q−Nk(Nk−1)qξk(3Nk−2ξk−1)w(ξk;Nk;q) ,

where h+k,0 =
∑M

j=k(2ξj−Nj) and we used (−aq−2ρ;q2)N = aNqN(N−1)q−2ρN+O(q−2ρ(N−1))
for ρ→∞, and

lim
ρ→−∞

q2ρξkW
(
ξk;Nk,h

+
k+1 (ξ) ;q

)
= q−ξk(2h+k+1,0(ξ)−1+ξk)

[
Nk
ξk

]
q2

= q−ξk(2ξk−1−Nk+2h+k+1,0(ξ))w(xk;Nk;q) .

Recalling that w(x;Nk;q) = w(x;Nk;q−1) and using (B.1) and
∑M

k=1Nk[ξk+
∑M

j=k+1 2ξj] =

−u(ξ; N⃗), it follows that

lim
ρ→∞

q2ρ(|ξ|−|N⃗|)WR

(
ξ; N⃗,ρ;q

)
= q|N⃗|−|ξ|−

∑M
k=1(Nk[Nk−2

∑M
j=k+1(2ξj−Nj)]+2ξk[ξk+

∑M
j=k+1(2ξj−Nj)]−3ξkNk)

M∏
k=1

w(ξk;Nk;q)

= q|N⃗|−|ξ|(|ξ|+1)−(|N⃗|−|ξ|)
2

w
(
ξ; N⃗;q−1

)
,
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and

lim
ρ→−∞

q2ρ|ξ|WR

(
ξ; N⃗,ρ;q

)
= q|ξ|−

∑M
k=1 ξk[2ξk+

∑M
j=k+1 4ξj−

∑M
j=k+1 2Nj−Nk]

M∏
k=1

w(ξk;Nk;q)

= q|ξ|(1−2|ξ|+2|N⃗|)w
(
ξ; N⃗;q

)
,

which proves (3.15).
Similarly,

lim
λ→∞

q−2ζkλW
(
ζk;Nk,h

−
k−1 (ζ) ;q

−1
)
= qζk[−1+2ζk−Nk+2h−

k−1,0(ζ)]w(ζk;Nk;q)

lim
λ→−∞

q2λ(Nk−ζk)W
(
ζk;Nk,h

−
k−1 (ζ) ;q

−1
)
= q2h

−
k−1,0(ζ)(ζk−Nk)qNk(Nk−1)q−ζk(3Nk−2ζk−1)w(ζk;Nk;q) ,

from which it follows that

lim
λ→∞

q−2λ|ζ|WL

(
ζ; N⃗,λ;q

)
= q|ζ|(2|ζ|−1)w

(
ζ; N⃗;q

)
,

lim
λ→−∞

q2λ(|N⃗|−|ζ|)WL

(
ζ; N⃗,λ;q

)
= q−|N⃗|+|ζ|(|ζ|+1)+2(|N⃗|−|ζ|)

2−2|ζ||N⃗|w
(
ζ; N⃗;q−1

)
.

This proves (3.17).

9.2. Proof of propositions 4.1(i) and 4.4(i)

We take the limit λ→∞ of a multiple of the duality function R defined as a product of 1-site
duality functions r by (9.1). We replace v by vq−λ and then let λ→∞. This gives

lim
λ→∞

q2λζkr
(
ζk, ξk;vq

−λ
)

= vζk

(
−vqh

+
k+1(ξ)+h

−
k−1,0(ζ)−Nk+1;q2

)
ξk

(
vq1+2ζk−h+k+1(ξ)+h

−
k−1,0(ζ)−Nk ;q2

)
Nk

qζk(ζk+h
+
k+1(ξ)+h

−
k−1,0(ζ)−Nk)

(
vq1−2ξk−h+k+1(ξ)+h

−
k−1,0(ζ)+Nk ;q2

)
ζk+ξk

× 3φ2

(
q−2ξk ,−q2h

+
k+1(ξ)−2Nk+2ξk ,q−2ζk

−vqh
+
k+1(ξ)+h

−
k−1,0(ζ)−Nk+1,q−2Nk

;q2,q2
)

= p
(
ζk, ξk;h

−
k−1,0 (ζ) ,Nk,h

+
k+1 (ξ) ,v,Nk;q

)
,

where we use the 1-site duality function p defined in (4.2). It follows that

lim
λ→∞

q2λ|ζ|Rvq
−λ

(ζ,ξ) = PvR (ζ,ξ) ,

which proves proposition 4.1(i). In the same way, we find

lim
λ→∞

r
(
ζk, ξk;v

−1qλ
)
= v−ζk

(
−vqh

+
k+1(ξ)+h

−
k−1,0(ζ)−Nk+1;q2

)
ζk(

qζk+h
+
k+1(ξ)+h

−
k−1,0(ζ)−Nk

)ζk
× 3φ2

(
q−2ξk ,−q2h

+
k+1(ξ)−2Nk+2ξk ,q−2ζk

−vqh
+
k+1(ξ)+h

−
k−1,0(ζ)−Nk+1,q−2Nk

;q2,q2
)
.
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It follows that

lim
λ→∞

Rv
−1qλ (ζ,ξ) = v−2|ζ|C

v (|ζ|, |ξ|;0,ρ)
cv (|ζ|, |ξ|;0,ρ)

PvR (ζ,ξ) ,

where cv is the function given in (3.24),

cv (|ζ|, |ξ|;λ,ρ) =
M∏
k=1

(
vq2ζk−h+k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
Nk(

vq−2ξk−h+k+1(ξ)+h
−
k−1(ζ)+Nk+1;q2

)
ξk+ζk

=

(
vqλ−ρ+2|ζ|−|N⃗|+1;q2

)
|N⃗|−|ζ|(

vqλ−ρ−2|ξ|+|N⃗|+1;q2
)
|ξ|

,

and Cv is given in (3.25),

Cv (|ζ|, |ξ|;λ,ρ) =
M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ξk(

−vqh
+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ζk

=

(
−vqλ+ρ−|N⃗|+1;q2

)
|ξ|(

−vqλ+ρ−|N⃗|+1;q2
)
|ζ|

.

Finally, replacing v by vq−λ in the orthogonality relations from theorem 3.20 and letting
λ→∞ using the limits of WL form section 9.1, gives the orthogonality relations for PvR as
stated in proposition 4.4(i).

9.3. Proof of propositions 4.1(ii) and 4.4(ii)

For the first statement, let ρ→−∞ in v= in Pvq
ρ

R to obtain

lim
ρ→−∞ 3φ2

(
q−2ηk ,−q2h

+
k+1(ξ)−2Nk+2ξk ,q−2ξk

−vqρ+h
+
k+1(ξ)+h

−
k−1,0(η)−Nk+1,q−2Nk

;q2,q2
)

= 2φ1

(
q−2ηk ,q−2ξk

q−2Nk
;q2,v−1q1+2ξk+h

+
k+1,0(ξ)−h−k−1,0(η)−Nk

)
= Kqtm

ξk

(
ηk;pk,v (η,ξ) ,Nk;q

2
)
,

where pk,v(η,ξ) = v−1qh
+
k+1,0(ξ)−h−k−1,0(η)−Nk−1. Then using

lim
ρ→−∞

v−2ηkq−2ρηk
(
vqNk−h+k+1,0(ξ)−h−k−1,0(η)−ηk

)ηk
×
(
−vq2ρ+h

+
k+1,0(ξ)+h

−
k−1,0(η)−Nk+1;q2

)
ηk
= 1,

it follows that

lim
ρ→−∞

(
v−2q−2ρ

)|η|
cv (|η|, |ξ|;0,0)Cv (|η|, |ξ|;0,2ρ)

Pvq
ρ

R (η,ξ) = Kvqtm (η,ξ) .

Using the above limit relations and letting ρ→−∞ in proposition 4.4(i) then gives the ortho-
gonality of 4.4(ii).
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9.4. Proof of propositions 4.1(iii) and 4.4(iii)

Letting ρ→∞ in Pvq
−ρ

R we get

lim
ρ→∞ 3φ2

(
q−2ηk ,−q2h

+
k+1(ξ)−2Nk+2ξk ,q−2ξk

−vqh
+
k+1,0(ξ)+h

−
k−1,0(η)−Nk+1,q−2Nk

;q2,q2
)

= 3φ2

(
q−2ηk ,0,q−2ξk

−vqh
+
k+1,0(ξ)+h

−
k−1,0(η)−Nk+1,q−2Nk

;q2,q2
)

= Kaff
ξk

(
ηk;p

′
k,v (η,ξ) ,Nk;q

2
)
,

where p ′
k,v(η,ξ) =−vqh

+
k+1,0(ξ)+h

−
k−1,0(η)−Nk−1, from which it follows that

lim
ρ→∞

q2ρ|η|

c−v (|η|, |ξ|;0,2ρ)
P−vq−ρ

R (η,ξ) = Kvaff (η,ξ) .

Again, using the above limit relations and letting ρ→∞ in proposition 4.4(i) gives the ortho-
gonality of 4.4(iii).

9.5. Proof of proposition 4.6

For the first statement, we use

q−ρ|η|KR (η,ξ) = q−
1
2 u(η,N⃗)

M∏
k=1

(−1)ηk q
1
2ηk(Nk−1)q−ηk(ρ+h+k+1)Kηk

(
ξk;q

2h+k+1 ,Nk;q
2
)
. (9.2)

Writing out the explicit expression of the q-Krawtchouk polynomials in terms of q-
hypergeometric functions we obtain

lim
ρ→−∞

q−2ηkρKηk

(
ξk;q

2h+k+1 ,Nk;q
2
)

= lim
ρ→−∞

q−2ηkρ
3φ2

(
q−2ηk ,q−2ξk ,−q2h

+
k+1+2ξk−2Nk

q−2Nk ,0
;q2,q2

)

= (−1)ηk
(
q−2ξk ;q2

)
ηk

(q−2Nk ;q2)ηk
qηk(ηk+2h+k+1+2ξk−2Nk+1)

if ηk ⩽ ξk and 0 otherwise. Taking the limit of ρ→−∞ in (9.2) then gives the desired outcome.
For the second statement we use the identity (6.13) with ρ replaced by −ρ,

k(n,x;ρ,N;q) = (−1)n k(n,N− x;−ρ,N;q)

to obtain

(−qρ)|η|KR (η,ξ) = q−
1
2 u(η,N⃗)

M∏
k=1

(−1)ηk q
1
2ηk(Nk−1)qηk(ρ+h

+
k+1)

Kηk

(
Nk− ξk;q

−2h+k+1 ,Nk;q
2
)
. (9.3)
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Writing out the explicit expression of the q-Krawtchouk polynomials again, we obtain

lim
ρ→∞

q2ηkρKηk

(
Nk− ξk;q

−2h+k+1 ,Nk;q
2
)

= lim
ρ→∞

q2ηkρ 3φ2

(
q−2ηk ,q2ξk−2Nk ,−q−2h+k+1−2ξk

q−2Nk ,0
;q2,q2

)

= (−1)ηk
(
q2ξk−Nk ;q2

)
ηk

(q−2Nk ;q2)ηk
qηk(ηk−2h+k+1−2ξk−2Nk+1)

if ηk ⩽ Nk− ξk and 0 otherwise. Taking the limit of ρ→∞ in (9.3) then gives the desired
outcome.

9.6. Proof of proposition 4.7

This follows from writing the q-Racah duality function R given by (3.22) explicitly in terms
of 4φ3-functions using (3.20) and (3.21), together with the following limit,

lim
N→∞ 4φ3

(
q−2ζk ,−q2h

+
k+1(ξ)−2N+2ξk ,q−2ξk ,−q2h

−
k−1(ζ)−2N+2ζk

−v−1qh
+
k+1(ξ)+h

−
k−1(ζ)−N+1,−vqh

+
k+1(ξ)+h

−
k−1(ζ)−N+1,q−2N

;q2,q2
)

= 2φ0

(
q−2ζk ,q−2ξk

−
;q2,q2ζk+2ξk

)
= q2ζkξk ,

where we used a limit case of the q-Chu-Vandermonde summation identity [20, (II.6)] in the
last step.

9.7. Proof of proposition 5.3

Let us first recall the following identities,

lim
q→1

(
q2a;q2

)
n

(1− q2)n
= (a)n , a ∈ R, n ∈ Z⩾0,

and, for a1, . . . ,ar,b1, . . . ,br ∈ R and n ∈ Z⩾0,

lim
q→1

r+1φr

(
q−n,qa1 , . . . ,qar

qb1 , . . . ,qbr
;q,z

)
= r+1Fr

(
−n,a1, . . . ,ar
b1, . . . ,br

;z

)
.

Then we have the following limit of the 1-site duality function r defined by (3.21),

lim
q→1

(
1− q2

)−N
r(y,x;λ+π i/2ln(q) ,ρ+ iπ/2ln(q) ,qv,N;q)

=

(
1
2 (ρ+λ−N+ v+ 1)

)
x

(
1
2 (ρ+λ−N− v+ 1)

)
y

(
y+ 1

2 (λ− ρ−N+ v+ 1)
)
N(

−x+ 1
2 (λ− ρ+N+ v+ 1)

)
x+y

× 4F3

(
−y,ρ−N+ y,−x,λ−N+ x

1
2 (ρ+λ−N+ 1− v) , 12 (ρ+λ−N+ 1+ v) ,−N

;1

)
= r̂(y,x;λ,ρ,v,N) ,
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where r̂ is the 1-site duality function given in proposition 5.3. It follows that

lim
q→1

(
1− q2

)−|N⃗|
Rq

v

(ζ,ξ) = R̂v (ζ,ξ)

where λ→ λ+π i/2ln(q) and ρ→ ρ+ iπ/2ln(q) in Rv. The orthogonality relations follow
by taking the limit in the orthogonality relations in theorem 3.20 using the above limit and the
limits (5.1) of the reversible measures.

9.8. Proof of propositions 5.4(i) and 5.6(i)

Similar to the previous section we can take limits in the 1-site duality functions p defined
in (4.2),

lim
q→1

(
1− q2

)y−N
p(y,x;λ,ρ+ iπ/2ln(q) , iqv,N;q)

=

(
1
2 (ρ+λ−N+ v+ 1)

)
x

(
y+ 1

2 (λ− ρ−N+ v+ 1)
)
N(

−x+ 1
2 (λ− ρ+N+ v+ 1)

)
x+y 3

F2

×
(

−x,ρ−N+ x,−y
1
2 (ρ+λ−N+ v+ 1) ,−N

;1

)
,

from which it follows that

P̂R (η,ξ) = lim
q→1

(
1− q2

)|ζ|−|N⃗|
Piq

v

R (η,ξ) ,

where ρ→ ρ+ iπ/2ln(q) inPiq
v

R . The orthogonality relations of proposition 5.6(i) are obtained
by letting q→ 1 in the orthogonality relations from proposition 4.4(i), using the stated limit
of the duality function PvR, the limits of the reversible measures w and WR, and the following
limits of the invariant functions ωp and ωpR (see appendix A),

lim
q→1

(
1− q2

)|N⃗|−2x
ωp
(
x; N⃗,ρ+ iπ/2ln(q) , iqv;q

)
=

(−1)x
(

1
2

(
ρ− |N⃗|+ v+ 1

))
x(

x+ 1
2

(
v− ρ− |N⃗|+ 1

))
|N⃗|−x

,

lim
q→1

ωp
R

(
x; N⃗,ρ+ iπ/2ln(q) , iqv;q

)
=

(
−x+ 1

2

(
v− ρ+ |N⃗|+ 1

))
x(

1
2

(
v+ ρ− |N⃗|+ 1

))
x

.

9.9. Proof of propositions 5.4(ii) and 5.6(ii)

This follows fromwritingKR in terms of the 1-site duality functions k, see appendix A.Writing
the function k in terms of a 3φ2-function gives

lim
q→1

(−1)n v
1
2ηkq

1
2ηk(Nk−1)

3φ2

(
q−2ηk ,q−2ξk ,−vq2h

+
k+1,0(ξ)+2ξk−2Nk

q−2Nk ,0
;q2,q2

)

= v
1
2ηk 2F1

(
−ηk,−ξk
−Nk

;1+ v

)
&= K̂ηk

(
ξk;

1
1+v ,Nk

)
.
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The orthogonality for K̂ from proposition 5.6(ii) then follows from taking the limit in the
orthogonality relations for KR from theorem 3.11, using the limits of the reversible measures
w and WR.
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Appendix A. Overview duality functions and coefficients

The duality function on top of all other duality functions in this paper is the multivari-
ate q-Racah polynomial R(η,ξ;v), where η is the configuration of ASEPL(q, N⃗,λ), ξ of
ASEPR(q, N⃗,ρ) and v ∈ R× is a free parameter.When taking appropriate limits of λ,ρ→±∞,
when can obtain other dualities, found in the table below.

The functions are given by

• Rv(ζ,ξ) =
M∏
k=1

r(ζk, ξk;h
−
k−1(ζ),h

+
k+1(ξ),v,Nk;q),

• PvR(η,ξ) =
M∏
k=1

p(ηk, ξk;h
−
k−1,0(η),h

+
k+1(ξ),v,Nk;q),

• KR(η,ξ) = q
− 1

2

∑M
k=1

(
ηkNk−2ηk

∑k
j=1 Nj

)
M∏
k=1

k(ηk, ξk;h
+
k+1(ξ),Nk;q),

• Kvqtm(η,ξ) =
M∏
k=1

kqtm(ηk, ξk;h
−
k−1,0(η),h

+
k+1,0(ξ),v,Nk;q),

• Kvaff(η,ξ) =
M∏
k=1

kaff(ηk, ξk;h
−
k−1,0(η),h

+
k+1,0(ξ),v,Nk;q),

where the 1-site duality functions are given by,

• r(y,x) = cr(y,x;λ,ρ,v,N;q)Rx(y;−v−1qρ+λ−N−1,vqρ−λ−N−1,q−2N−2,−q2λ;q2),
• p(n,x) = cp(n,x;λ,ρ,v,N;q)Px(n;−vqρ+λ−N−1,v−1qρ−λ−N−1,N;q2),
• k(n,x) = ck(n;ρ,N;q)Kn(x;q

2ρ,N;q2),
• kqtm(n,x) = Kqtm

x (n;v−1qρ−λ−N−1,N;q2),
• kaff(n,x) = caffk (x;λ,ρ,v,N;q)Kaff

x (n;vqρ+λ−N−1,N;q2),

the coefficients by

• cr(y,x;λ,ρ,v,N;q) = vy
(−vqρ+λ−N+1;q2)x(−v−1qρ+λ−N+1;q2)y(vq2y−ρ+λ−N+1;q2)N

qy(y+ρ+λ−N)(vq−2x−ρ+λ+N+1;q2)x+y
,

• cp(n,x;λ,ρ,v,N;q) = vn
(−vqρ+λ−N+1;q2)x(vq2n−ρ+λ−N+1;q2)N
qn(n+ρ+λ−N)(vq−2x−ρ+λ+N+1;q2)x+n

,
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• ck(n;ρ,N;q) = (−1)nq−nρq
1
2 n(N−1),

• caffk (n,x;λ,ρ,v,N;q) = (−v)n (vq
ρ+λ−N+1;q2)x
qn(n+ρ+λ−N)

,

and the polynomials by

• Rn(x;α,β,γ,δ;q) = 4φ3

(
q−n,αβqn+1,q−x,γδqx+1

αq,βδq,γq
;q,q

)
(q-Racah),

• Pn(x;α,β,N;q) = 3φ2

(
q−n,αβqn+1,q−x

αq,q−N
;q,q

)
(q-Hahn),

• Kn(x;c,N;q) = 3φ2

(
q−n,q−x,−cqx−N

q−N,0
;q,q

)
. ((Dual) q-Krawtchouk),

• Kqtm
n (x;p,N;q) = 2φ1

(
q−n,q−x

q−N
;q,pqn+1

)
(Quantum q-Krawtchouk),

• Kaff
n (x;p,N;q) = 3φ2

(
q−n,0,q−x

pq,q−N
;q,q

)
(Affine q-Krawtchouk).

The factors in front of the reversible measures in proposition 4.4 are given by

• ωp(x) =
v−2xqx(2x−1)(−vqρ−|N⃗|+1;q2)x

(vq−ρ+2x−|N⃗|+1;q2)|N⃗|−x

,

• ωpR(x) =
(vq−ρ−2x+|N⃗|+1;q2)x
(−vqρ−|N⃗|+1;q2)x

,

• ωqtm(x) = v−xqx(x+|N⃗|−1)(vq2x−N+1;q2)|N⃗|−x,

• ωqtm
R (x) =

vxqx(|N⃗|−x+1)

(vq1+|N⃗|−2x;q2)x
,

• ωaff(x) = v|N⃗|−3xqx(|N⃗|+x−1)(vq1−|N⃗|;q2)x,

• ωaff
R (x) =

q|N⃗|(1−|N⃗|)+x(|N⃗|−x−1)

(vq1−|N⃗|;q2)x
.

The factors in front of the reversible measures in proposition 5.6 are given by

• ω̂p(x) =
(−1)x( 12 (ρ− |N⃗|+ v+ 1))x

(x+ 1
2 (v− ρ− |N⃗|+ 1))|N⃗|−x

,

• ω̂p
R(x) =

(−x+ 1
2 (v− ρ+ |N⃗|+ 1))x

( 12 (v+ ρ− |N⃗|+ 1))x
,

• ω̂k(x) =
v−x

(1+ 1
v )

|N⃗|
.
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Table 3. Overview dualities, where DF is short for duality function.

Duality η-process ξ-process Corresponding limit DF (1) DF (2)

(i) ASEP(q, N⃗) ASEPR(q, N⃗,ρ) λ→∞ PvR(η,ξ) KR(η,ξ)

(ii) ASEP(q, N⃗) ASEP(q, N⃗) λ→∞, ρ→−∞ Kvqtm(η,ξ) Triangular
(iii) ASEP(q, N⃗) ASEP(q−1, N⃗) λ,ρ→∞ Kvaff(η,ξ) Triangular

Appendix B. Identities

In this section, we state some useful identities we use throughout the paper.

• For A,B ∈ RM,

|A||B|=
M∑
k=1

M∑
j=k+1

(AkBj+AjBk)+
M∑
k=1

AkBk

=
M∑
k=1

k−1∑
j=1

(AkBj+AjBk)+
M∑
k=1

AkBk.

(B.1)

• We have the identity

w(n;N;q) = w
(
n;N;q−1

)
(B.2)

for the single site weight function w defined in (3.10). The identity directly follows from the
readily verified formula(

a−1;q−2
)
n
= (−1)n a−nq−n(n−1)

(
a;q2

)
n
, a ∈ R×.

• We verify the following identity, stated in (3.23): for q> 0 and q 6= 1,

M∏
k=1

(
vq2ζk−h+k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
Nk(

vq−2ξk−h+k+1(ξ)+h
−
k−1(ζ)+Nk+1;q2

)
ξk+ζk

=

(
vqλ−ρ+2|ζ|−|N⃗|+1;q2

)
|N⃗|−|ζ|(

vqλ−ρ−2|ξ|+|N⃗|+1;q2
)
|ξ|

.

First, assume q< 1. We use the identity

(a;q)n =
(a;q)∞
(aqn;q)∞

, n= 0,1, . . . , (B.3)

then we find that

M∏
k=1

(
vq2ζk−h+k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
Nk(

vq−2ξk−h+k+1(ξ)+h
−
k−1(ζ)+Nk+1;q2

)
ξk+ζk

is equal to

M∏
k=1

(
vq2ζk−h+k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
∞(

vq−2ξk−h+k+1(ξ)+h
−
k−1(ζ)+Nk+1;q2

)
∞

.
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Using

h−k−1 (ζ)+ 2ζk−Nk = h−k (ζ) and h+k+1 (ξ)+ 2ξk−Nk = h+k (ξ) ,

this becomes

M∏
k=1

(
vqh

−
k (ζ)−h+k+1(ξ)+1;q2

)
∞(

vqh
−
k−1(ζ)−h

+
k (ξ)+1;q2

)
∞

=

(
vqh

−
M (ζ)−hM+1(ξ)+1;q2

)
∞(

vqh
−
0 (ζ)−h+1 (ξ)+1;q2

)
∞

=

(
vqλ−ρ+2|ζ|−|N⃗|+1;q2

)
∞(

vqλ−ρ−2|ξ|+|N⃗|+1;q2
)
∞

.

Using (B.3) again then gives the result for 0< q< 1. Since both sides of the obtained identity
are meromorphic functions in q, it follows that the result still holds for q> 1.

• Next we verify identity (3.25): for q> 0 and q 6= 1,

M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ξk(

−vqh
+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ζk

=

(
−vqρ+λ−|N⃗|+1;q2

)
|ξ|(

−vqρ+λ−|N⃗|+1;q2
)
|ζ|

.

Indeed, in a similar fashion as before, we have

M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ξk(

−vqh
+
k+1(ξ)+h

−
k−1(ζ)−Nk+1;q2

)
ζk

=
M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k−1(ζ)+2ζk−Nk+1;q2

)
∞(

−vqh
+
k+1(ξ)+h

−
k−1(ζ)+2ξk−Nk+1;q2

)
∞

=
M∏
k=1

(
−vqh

+
k+1(ξ)+h

−
k (ζ)+1;q2

)
∞(

−vqh
+
k (ξ)+h−k−1(ζ)+1;q2

)
∞

=

(
−vqρ+λ+2|ζ|−|N⃗|+1;q2

)
∞(

−vqρ+λ+2|ξ|−|N⃗|+1;q2
)
∞

,

from which the required identity follows.

Appendix C. Coefficients recurrence relations q-Krawtchouk polynomials

Let

k(n,x;ρ) : = k(n,x;ρ,N;q) = (−1)n qnρq
1
2 n(N−1)Kn

(
x;q2ρ,N;q2

)
,

be the 1-site duality functions from (3.5), where

Kn (x;c,N;q) = 3φ2

(
q−n,q−x,−cqx−N

q−N,0
;q,q

)
.
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Then k(n,x;ρ) satisfies the following three q-difference equations,

q−2nk(n,x;ρ) = a−1 (x)k(n,x− 1;ρ)+ a0 (x)k(n,x;ρ)+ a1 (x)k(n,x+ 1;ρ) , (C.1)

q−2nk(n,x;ρ) = a0,2 (x)k(n,x;ρ+ 2)+ a−1,2 (x)k(n,x− 1;ρ+ 2)

+ a−2,2 (x)k(n,x− 2;ρ+ 2) ,
(C.2)

q−2nk(n,x;ρ) = a0,−2 (x)k(n,x;ρ− 2)+ a1,−2 (x)k(n,x+ 1;ρ− 2)

+ a2,−2 (x)k(n,x+ 2;ρ− 2) .
(C.3)

The coefficients from (C.1) are given by

a−1 (x) =−
q4x+2ρ−4N−2

(
1− q2x

)(
1+ q2x+2ρ

)
(1+ q4x+2ρ−2N−2)(1+ q4x+2ρ−2N)

,

a0 (x) =−(a−1 (x)+ a1 (x)− 1) ,

a1 (x) =

(
1− q2x−2N

)(
1+ q2x+2ρ−2N

)
(1+ q4x+2ρ−2N)(1+ q4x+2ρ−2N+2)

,

from (C.2) by

a0,2 (x) =

(
1+ q2ρ+2x−2N

)(
1+ q2ρ+2x−2N+2

)
(1+ q2ρ+4x−2N)(1+ q2ρ+4x−2N+2)

,

a−1,2 (x) =

(
1+ q−2

)(
1− q−2x

)(
1+ q2ρ+2x−2N

)
(1+ q2N−2ρ−4x−2)(1+ q4x+2ρ−2N−2)

,

a−2,2 (x) =

(
1− q−2x

)(
1− q−2x+2

)
(1+ q2N−2ρ−4x)(1+ q2N−2ρ−4x+2)

,

and from (C.3) by

a0,−2 (x) =

(
1+ q−2ρ−2x

)(
1+ q−2ρ−2x+2

)
(1+ q2N−2ρ−4x)(1+ q2N−2ρ−4x+2)

,

a1,−2 (x) =

(
1+ q−2

)(
1− q2x−2N

)(
1+ q−2ρ−2x

)
(1+ q2ρ+4x−2N−2)(1+ q2N−2ρ−4x−2)

,

a2,−2 (x) =

(
1− q2x−2N

)(
1− q2x−2N+2

)
(1+ q2ρ+4x−2N)(1+ q2ρ+4x−2N+2)

.

Note that the coefficients from aj,−2(x) can be obtained from a−j,2(x) by replacing x by N− x
and ρ by −ρ.

Appendix D. q-Krawtchouk polynomials as eigenfunctions of twisted primitive
elements in Uq

Let πk be the Nk+ 1 dimensional representation defined on functions f : {0,1, . . . ,Nk}→ C by

[πk (K) f ] (n) = qn−
1
2Nk f(n) ,

[πk (E) f ] (n) = quk(N⃗) [n]q f(n− 1) ,

[πk (F) f ] (n) = q−uk(N⃗) [Nk− n]q f(n+ 1) ,[
πk
(
K−1

)
f
]
(n) = q

1
2Nk−nf(n)

(D.1)
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and let

Yρ = q
1
2EK+ q−

1
2FK− [ρ]q

(
K2 − 1

)
.

Similar to the proof of lemma 7.1, we define for this section only,

k(ηk, ξk;ρ) = qηkuk(N⃗)k(ηk, ξk;q,Nk,ρ) . (D.2)

Then we have that the q-Krawtchouk polynomials k(·, ξk;ρ)→ C are eigenfunctions of πk(Yρ)
(see e.g. [27]),

[πk (Yρ)k(·, ξk;ρ)] (n) =
(
[ρ]q− [ρ+ 2ξk−Nk]

)
k(n, ξk;ρ) . (D.3)

Moreover, we have the following result for the coproduct of Yρ.

Proposition D.1. Taking M= 2 gives

KR (η,ξ) = k(η1, ξ1;ρ+ 2ξ2 −N2)k(η2, ξ2;ρ) .

Then this is an eigenfunction of π1,2(∆(Yρ)),

[π1,2 (∆(Yρ))KR (·, ξ)] (η) =
(
[ρ]q− [ρ+ 2(ξ1 + ξ2)− (N1 +N2)]q

)
KR (η,ξ) .

Proof. Indeed, since

∆(Yρ) = K2 ⊗Yρ +Yρ ⊗ 1,

we have[
π1,2 (∆(Yρ))KR (·, ξ)

]
(η) =

[(
π1

(
K2
)
⊗π2 (Yρ)+π1 (Yρ)⊗π2 (1)

)
KR (·, ξ)

]
(η)

=
[(

π1

((
[ρ]q− [ρ+ 2ξ2 −N2]q

)
K2 +Yρ

)
⊗π2 (1)

)
KR (·, ξ)

]
(η) ,

where we used (D.3) for π2(Yρ). If we now use the explicit expressions for Yρ, we see that(
[ρ]q− [ρ+ 2ξ2 −N2]q

)
K2 +Yρ =q

1
2EK+ q−

1
2FK− [ρ+ 2ξ2 −N2]qK

2 + [ρ]q

=Yρ+2ξ2−N2 + [ρ]q− [ρ+ 2ξ2 −N2]q .

Therefore, applying (D.3) with ρ replaced by ρ+ 2ξ2 −N2, we obtain that[
π1

((
[ρ]q− [ρ+ 2ξ2 −N2]q

)
K2 +Yρ

)
k(·, ξ1;ρ+ 2ξ2 −N2)

]
(η1)

is equal to (
[ρ]q− [ρ+ 2(ξ1 + ξ2)− (N1 +N2)]q

)
k(η1, ξ1;ρ+ 2ξ2 −N2) .

Therefore,

[π1,2 (∆(Yρ))KR (·, ξ)] (η) =
(
[ρ]q− [ρ+ 2(ξ1 + ξ2)− (N1 +N2)]q

)
KR (η,ξ) .
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