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Abstract: In almost all practical applications of control, technological and economical consid-
erations impose limits on communication speed, frequency of communication, and frequency of
actuator adjustment. Such limits turned the analysis of sampled data systems into a flourishing
field. Water systems pose a particular challenge: the systems are networks of canals and reservoirs
spread over large areas, and the actuators are relatively large and exposed to the elements. In
this study, a theorem on the local exponential stability of sampled data systems with variable
control time step and variable delay in the communication between the non-linear continuous
time process and the non-linear discrete time controller is presented. To illustrate the application
of the theorem, it is applied to a simple water system.
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1. INTRODUCTION

There is a long history of water level control in water
management. In fact, even a fixed weir can act as a water
level regulator for a lake with a varying inflow (van Nooijen
and Kolechkina, 2020b). Hand operated moveable weirs or
gates may even go back to prehistory (van Nooijen et al.,
2021). In modern water management, digital computers
are used to calculate the control actions and implement
those actions by adjusting moveable weirs or gates, or
adjust pump speeds (Mareels et al., 2005; Hadid et al.,
2019; van Nooijen and Kolechkina, 2018). Networks of
open channels form an important category of environmen-
tal systems. They are used not only to transport irriga-
tion and drainage water, but also as highways for barges
transporting raw materials and goods. Automatic control
of these systems poses specific problems (van Nooijen and
Kolechkina, 2020a). Remotely operated gates and weirs are
adjusted by electric motors. Using these has an associated
cost in terms of wear and tear. It therefore makes sense to
limit the number of adjustments to actuator settings. This
also helps save communications bandwidth. Allowing some
time to implement a control action may also help with
the larger actuators, where rapid adjustment is costly or
undesirable. Evidently, the time step depends on the time
scale on which the system operates. The control of the
water level of a large lake has another rhythm than the
management of a small irrigation canal. The question now
arises how non-trivial communication delays and control
time step variations affect these systems.

More general communications problems, such as dropped
packets or out of order arrival, will not be treated here.
For such problems, see Zhang et al. (2013) and refer-
ences therein. The increased generality achieved there
entails either restrictions on plant or controller form, or
assumptions on the existence of functions or functionals
that may take considerable effort to find. Examples are
the treatment of global stability in van de Wouw et al.
(2012), which achieves generality by assuming existence of
a family of approximate discrete time plant models that
meet specific criteria and a family of auxiliary functions,
and Toli¢ (2020), which assumes existence of a suitable
functionals and involves solving several matrix inequali-
ties. Dealing with sampled data systems with aperiodic
sampling has also received considerable attention, see for
example Hetel et al. (2017) and references therein, but
there additional delay in the feedback loop is not explicitly
considered. Again, for many of the methods discussed,
specific functionals need to be found.

The emphasis in this paper is on a simple method to
check local asymptotic stability of a physical network of
waterways where the actuators are controlled by a discrete
controller. The approach of Hu and Michel (2000) for
sampled data systems is extended to sampled data systems
with variable delays in the feedback loop by borrowing
an idea used in the treatment of linear sampled systems
by Astrém and Wittenmark (1997). The most attractive
aspect of this approach is that local asymptotic stability
is linked to a specific property of a matrix that can be
constructed automatically once the derivatives of the time
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evolution functions and output functions of the plant
and controller have been determined. Those derivatives
themselves can in principle be determined automatically
either through symbolic differentiation in suitable software
or through automatic differentiation (Bischof et al., 2008;
Naumann, 2012). As an illustration, the resulting theorem
is applied to a simple process consisting of a lake fed by a
stream and discharging into a river over an adjustable weir.
Such a process could be a component in a larger network.
A PI controller is used to keep the exposition as clear
as possible. For this simple system the relation between
controller coefficients, stability, and system response is
examined for different controller time steps and delays.

2. A GENERAL DESCRIPTION OF THE TYPE OF
SYSTEM UNDER CONSIDERATION

Consider a continuous process with an n,-dimensional
state vector x},

p (t) = fo1 (@p (1), up () (1)
Yp (8) = fp.2 (p (1)) (2)
zp (0) = xl()o) 3)

that is linked to a discrete time controller with an n.
dimensional state vector x.

T (k + 1) = fc,l (xc (k) y Ue (k)) (4)

Ye (k) = fc,2 (xc (k) y Ue (k)) (5)

ze (0) = (6)

by a sampler that also models the variable feedback loop

delay pg
0 k=0
ue (k) = 7
®) {yp(Tk—pk) k>0 @

and a zero order hold that links the controller output to
the process input

up (t) = ye (k) , 7 << T (8)
where the 7 are the points in time when the input to the
process changes. To keep the notation compact, from this
point onward the convention z (79 — po) = 0 will be used.
As in Hu and Michel (2000), the system can be simplified
by inserting (8) into (1) and (7) into (4) and (5). Next (2)
and the modified version of (5) are used to eliminate y,
and y.. With new variables

(t) = ap (t) 5 u (k) = e (k) (9)

and new time evolution functions

f@,0,0) = fou (@, fe2 (u, fo2 (v))) (10)
g (Ua u) = fC,l (uv fp,2 (U)) (11)

the evolution in time can be written as
@(t)=f(x@),z(m—pr),u(k), s <t <t (12)
u(k+1)=g(uk),z(m — pr)) (13)
() =2l (14)
u(ro) =z (15)

where it is assumed that the controller starts up with
ue (0) = 0. Tt will be assumed that

feCH(R™ x R™ x R™ R™), f(0,0,00=0 (16)
g€ C(R™ x R™ R"),¢(0,0) =0 (17)
and that there exists a p such that the 75 satisfy
lim 75, = 0o, sup {7x+1 — Tk} = pu < 0 (18)
k—oo kEN

and the py41 satisfy

Tk < Thtl = Ph+1 < Th41 (19)
To prepare for the formulation of the theorem, some
auxiliary definitions are needed, namely, the matrices that

describe the linearisation of the system

A Of (z,v,u) Ay = of (z,v,u) 7
Ox (0,0,0) v (0,0,0)
B of (x,v,u) (20)
du (0,0,0)

and two functions F € C(R"™ x R" x R" R") and
G € C(R"™ x R™ R") that represent the remainder
terms after linearisation of the continuous and discrete
system respectively

F (z,v,u)

lim =0 (21)
02000 flal® 1 flo]® + flu]
G
_CGlwy) (22)
OO0\l + ful®

Given these definitions, the time evolution of the system
follows from

@ (t) = Az (t) + Aoz (Th — pr) + Bu (1) (23)
Fz(t),u(me—pr),u(m), e <t <Trp
u(Tp11) = Cu(7y) + Dx (T — pr) (24)

+G (z (1 — pr) ,u
From (23) it follows that
x(t) =a () + (t — ) Aox (T — pr) + (t — 7%) Bu (%)

+ / Az (1) + F (z (1) ,x

(7))

(7k = pr) s u (7)) dr - (25)
T=Tk
or
x(t) = elt=) Ay (1)
t t
+ / =T Adr Ay (T — pr) + / e Adr By (1)

T=Tk T=Tk

t

+ [ R ) g ) dr (26)

T=Tk
For a proof of (26) see, for instance, Sideris (2013, Corol-

lary 4.1). Next, two vectors and a matrix are defined that
link the continuous problem to a discrete problem.

z (Tk — pk)
w (k) = [  (7k) ] (27)
’U,(Tk)
Q (k) = (28)
e(m+1*ﬂk+1*"’)AF (x (7—) , T (’rk — ,Dk) , U (Tk)) dr
o(Ter1—T)A R (x (1), 2z (1 — pr),u (1)) dr

L G (z (1 — pr),u (7)) |
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Hy = (29)
J (K, prg1) Ag e m e =4 T (ko 1) B
J (k,0) Ag el 1=m)A T (k. 0)dr B
D 0 c
where
Th41—P
J(k,p) = e(Ter1=P=) Ay (30)
T=Tk
This makes it possible to write
w(k+1)=Hyw (k) +Q(k) (31)
3. THEORETICAL RESULTS
For matrices |- is the norm induced by the Euclidean

vector norm.

Lemma 1. Let A, Ay, B, F, u, 7 and pp be as defined
earlier. Let the time evolution of  be given by (12). There
is a d3 > 0 such that for |lw (k)| < d3 and ¢ € |7k, Tht1)

lz (O]l < (1 + p (| Aol + [|B]| +2)) eHHIADE=m) g, (k?))gl

The proof of the bound (32) was extracted from the proof
of Lemma 2.2 in Hu and Michel (2000).

Proof. From (21), continuity of F', and F (0,0,0) = 0, it
follows that there is a do > 0 such that
1 (z, v, w) || < 2]l + o]l + [[ull (33)
whenever max (||z||, ||v||, [|u]]) < d2. Now suppose that for
all 03 > 0 there is w (k) with ||w (k)| < 3 and a t; > 7%
such that ||z (t1)]] > d2. Now let
co = (1+ (T — 7)) ([ Aol + | Bl +2)) e#IAIFD (34)
and take 03 = d2/co. From ||z (7)]] < d2, || (t1)] > 0o,
and continuity, it follows that there is a ty € [7%,t1) such
that || ()] < g for 7, <t < to and ||z (to)]| = 2. From
(25), it follows that for ¢ € [y, Th41)
[z @) < llz (&)
+ (t = 7) ([ Aol |z (7 — p) |l + 1 Bl lw () ) (35)

+ / [A[ [z ()] + [[1F (2 (1), 2 (k. = pr) »w (7w)) | dT

and from (33), it now follows that
[l (@) < [l (7))l
+(t = 7) ([ Aol + 1) [l (7% — pw) [l + (I BII + 1) [lu (7))

+ [ Qa1+ e @) ar

T=Tk

< (T+p(

+ / (IA]| + 1) |z ()] dr

T=Tk

[ Aol + [ BIl +2)) [l (F)l
(36)

By the Gronwall inequality this implies that
[z (o)l <
(1 + p (Aol + Bl +2)) | (k)| etomm AT+
(1+ (o] + B +2) oo 4140
= (U (Tar —m) ([Aofl + [ BI + 2)) AT+
< 4y

(37)

which contradicts our assumption. Therefore, there must
be a 0 < d3 < d2/co such that for ||w (k)| < 3, it follows
that ||z ()| < d2 for all ¢ € |7k, Tit1]. For ||w (k)] < d3, it
follows that

lz ()1 < (1 + g ([ Aol + | BIL +2)) [lw (k)] e IAIFD
Lemma 2. Let A, Ay, B, C, D, F, G, Q, w, u, 17 and py,
be as defined earlier. For any given v > 0 there exists a

01 (v) > 0 such that

[l (&) < collw (Rl
[Q®)] <vllw®)

whenever |w (k)| < 61 for k € N and 7, <t < 741 where

¢ as in (34) and with g as in (18). This is a variation on
Lemma 2.2 in Hu and Michel (2000).

Proof. From (32) it follows that there is a d3 > 0 such
that for ||w (k)| < ds3

lz (O < (14 ([ Aol + [1B] +2)) eHHIADE=T) g (k)|

for all ¢ € [k, Ti41). This proves (38). Next, suppose that
v is given. Take £; > 0 such that

v=ex (1+ 2o (a4l /3 +1)

By (21), (22), and continuity, there is a d4 > 0 such that

(40)

2 2 2
HF(%U,U)HS&\/H%H + fJull” + ol (41)

IG (u0)| < ery/lloll* + [lul? (42)

whenever \/[l2l|® + [[u® + [|o[® < 1. Next take 5 =

min (83,64/ (cov/3)). Now, [lw (k)| < & < 83, so for
te [Tk77k+1]

(8[| < co llw (k)| < 64/V3, |z (7 — p&)|| < 64/V/3,
lu (i) || < 64/V/3

and therefore \/llx O + [l (7 = o)l + lu (7)1 < 64
for t € [1k, T+1]. Now,

12 (B)[| <
Tk4+1—Pk+1
e(m+1—pk+1—7')\|AH HF (gj (T) , X (Tk - Pk) , U (Tk))H dr

T=Tk
Tk+1

N / e =DIAN P (2 (1) 2 (11, — pi) , u (1)) || dr
T=T}

HIG (@ (s = pr) s u (7))

By using (41) and (42), we find
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12 (F)|| < 2exp (]| All)

Tk+1

x 51\/||x(r)||2+ 2 (e = p) I + llu (7) [Pl
Tk

T=

ter/lle (i — o) I + lu (7)1

Tk+1

| eV le®I + e (lPar

+er Jw (K]

< (14 2uep 1) 3+ 1) o 0

=vw )l

< 2exp (u [ Al)

(43)
which proves (39).

With Lemma 2, the approach from Hu and Michel (2000)
can be used to prove the following theorem.

Theorem 8. Assume that 7%, pg, f, and g satisty (18), (19),
(16), and (17) respectively, and Hy, is as defined in (29). If
limsup max |\ <1 (44)
k—oo A€o (Hy)
where o (H},) is the spectrum of Hy, and each subsequence
of {Hy},-, contains a subsequence which converges to a
Schur stable matrix, and the solutions P of H,;'—Pka -
P, = —1I satisty
lim sup | Py — Pel| < 1 (45)
k—oo
then the trivial solution (z,u) = (0,0) of (12-13) is
exponentially stable. (For the details of the proof see
Appendix A).

4. A SIMPLE EXAMPLE OF A WATER SYSTEM

The system to be used as example is a small lake with an
area of @ = 1hm? receiving an unregulated inflow from
a stream and with an outflow to a river that is regulated
by a moveable weir (Fig. 1). It receives an inflow of g¢i,.
Losses due to evaporation and seepage from the lake to the
groundwater are neglected. The desired water level or set-
point is A* which is given relative to a height datum, for
instance, the Amsterdam Ordnance Datum (NAP). The
aim of the control system will be to keep the mean water
level h within a given margin Ah = 0.2m of the set-point
h*. It is assumed that the inflow is a stationary process
with a long term average of ¢* = 0.3m?/s. As disturbance,
an additional inflow of 0.2m?/s over a period of 3600s is
used (Fig. 2). An automated measurement station with
several sensors does some data preprocessing to determine
the average water level and removes all of the measurement
noise. It is also assumed that for level fluctuations within
the margins, the area of the lake may be taken to be
constant. The lake will be modelled by

_ Gin (t) = gw (R (1), her ()

h(t) - (46)
h(0) = h* (47)
where
3/2
Gw (I her) = by <§) Vamax (0, — he)*? (48)

models the flow over the weir, h is the water level in the
lake upstream of the weir, he, is the crest level, b = 1.75m

height datum

Fig. 1. A typical moveable weir

is the width of the weir, ¢, = 1.0 is a constant depending
on the weir design, and g = 9.81m/s? is the gravitational
acceleration at the location of the weir. Let level hY, < h*
be the crest level such that g, (h*, k%) = ¢* which for the
above values follows from

2\ 3/2
¢ =175 () Vaht =R ) =03m’s  (49)

3
X 2/3
3( ¢
— ~ (0.216
2 (bcw\/ﬁ) o
A Taylor series expansion around the setpoint gives
Gw (hyher) = q* + cL ((h = B") = (her = hey))
+ F(h—h* hey —RY)

SO

h* — hE = (50)

(51)

where

F(x,z)=qyw (W +a,hl +2)—q¢"—cL(x—2) (52)

is the remainder term, and the linear terms in the expan-
sion are ¢y, and —cp, with

3 q

A Y Ty

~2.081m?/s (53)

The controller will act at times 7, = kA7 for kK =0,1,...,
and the communication delay will be p with 0 < p < Ar.
As system state z, we take x(t) = h(t) — h*. In this
example, a discrete PI controller with coefficients cp and
c1 is used, which is modelled by

u(k+1) =wu(k)+ax(m — pk) (54)
her (k) = hey — cpx (Th — pi) — cru (k) (55)

This results in
z(t) = (56)

Gw (B* + (1), hey — cpx (T — pr) — cru (k)
a
ulk+1)=wuk)+z (1t — pr) (57)
If gin (t) = ¢* and ¢y is replaced by (51), then (56) can be
written as

& (t) =

(in (t) -

—cr, (x — cpx (T — pr) — cru (k))
a
F (z,—cpz (16 — pr) — cru (k)
a
so in this case, Hy, defined in (29) is constructed using
CL,Cp CL,CI

(58)

A=-L 4= p_LT c_1.D=1 (59
a a
5. NUMERICAL EXPERIMENTS
Numerical experiments were conducted for 7, = kAT

and pp = p with various combinations of A7 and p. A
disturbance of an amplitude 0.2m?/s and a duration of
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0.67
w041
o
g
§o0.2
0 .
0 1 2 3 4
t(s) x10*
Fig. 2. Inflow for all tests
0.021
E
N 0
<
I
<
-0.02} p=15 p =180
p =90 p =450
0 1 2 3 4
t(s) %104

Fig. 3. Level as a function of time for optimal cp and ¢
with A7 =900s and different p

0.02}
B
= 0
=
|
= .0.02
AT =60 AT = 300
AT =120 AT =900
-0.04 : : : ;
1 2 3 4
t(s) x10%

Fig. 4. Level as a function of time for optimal cp and ¢
for different A7 with p = 0.2A7

3600s (Fig. 2) will be used to test system behaviour. Runs
for different AT and p with cp and ¢; chosen to minimize
the modulus of the largest eigenvalue were performed. For
fixed A7 and increasing p the maximum deviation from
set-point and the time needed to get back to the set-point
increase with p. (Fig. 3). A similar pattern is seen when
AT is varied, but the ratio p/Ar is held constant (Fig. 4).
For constant A7, the range of allowed ¢; decreases with
increasing p (Fig. 5a, 5b). The size of the region of values
of cp and ¢ for which the system is stable shrinks with
increasing A7 (Fig. 5b, 5¢). Numerical experiments showed
that for points outside the stability region the systems did
indeed become unstable.

6. CONCLUSIONS

A theorem was presented that provides sufficient condi-
tions for stability for a non-linear continuous time system
with a non-linear discrete time controller where the control

400 .
300 0.9
¢ 0.8
&' 200
0.7
100
0.6
0= 0.5
0 100 200 300 400 :
Cp
(a) AT =60s and p = 0.1A7
400
|
300 0.9
&' 200 0.8
v ’ v
0 0.6
0 100 200 300 400
Cp
(b) AT =60s and p = 0.2AT
25 1
20 0.9
15
5 0.8
10
0.7
5
0.6
0
0 5 10 15 20 25 05
cp

(¢) AT =900s and p = 0.2AT

Fig. 5. Plots of the region where maxycq () [A| < 1 for the
lake with weir and PI controller for several values of
A7 and p (colour indicates the value of |\|)

time step may vary and where the feedback loop contains
a variable delay factor. A strong point of the method is
that, once time evolution functions and output functions
of the plant and controller have been determined, the
derivatives of these functions needed for the theorem can
be determined by symbolic or automatic differentiation.
This removes the need for manual construction of Lya-
punov functionals. Extension to delays in the feedback
loop longer than one time step is expected to be a mat-
ter of extending the state vector of the controller and
perhaps some technical modifications to the theorem. A
bigger challenge will be adapting the theorem to allow for
time delays within the continuous process while keeping
verification of stability relatively simple.

Application of the results to a simple water system pro-
vided insight into the effect of control time step size and
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communication delay on controller performance. For the
example system, the range of allowed values for cp and ¢
decreases with increasing time step size.
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Appendix A. PROOF OF THEOREM 3

Some lemmas are used to split the proof up into manage-
able parts. These will be stated and proved first.

Lemma 4. Suppose {Hk}zozl is a sequence of square ma-
trices such that

limsup max |A] <1
k—oo AE0(Hy)

(A1)

where o (H},) is the spectrum of Hj, and each subsequence
of {Hy},., contains a subsequence which converges to a
Schur stable matrix. In that case there is a kg such that for
k > ko for each Hj there is a positive definite symmetric
solution Py of

H!P.H, — P, =1 (A.2)
and there is a m € R such that
sup [ Px|| = m (A.3)
I <P, <ml (A4)
|Hel < vm —1 (A.5)

Proof. According to (A.1), there exists a 6 > 0 such that
limsup max |A|=1-9§

k—oo A€o (Hy)
therefore there is a kg such that

sup max |\ < 1—é

k>ko A€o (Hy) 2
so for all k > ko, Hy, is Schur stable, and there is a positive
definite symmetric solution Py of H,;'—Pka - P, = —1I.
Now suppose that || Pg|| for k > ko is not bounded. In that
case for each m € N, m > 0 there must be a k,,, > kg such
that || P, || > m. But the sequence Hj, must contain a
subsequence converging to a Schur stable matrix H. Next
suppose that P is the solution of H' PH — P = —I. By
continuity we must have P, — P which contradicts the
unboundedness of || Py

nLH'

From (A.2) follows that P, > I. It then follows that
| Hll = \/maxseo ) (HY Hy) < vV =1,
Lemma 5. If 0 < g<1and m > 1 and
p(2) = q+2zmyv/m — 1 + mz2?
then there is a v with 0 < v < 1 such that
0<p(v)<1

Proof. If m = 1 then p(z) = ¢+ 2% and any 0 < z <
V1 —¢q will do. If m > 1 then consider
g—14+2z2zmvVm—1+mz>=0
This has roots
—2my/m — 1+ \/4m?(m — 1) + 4m (1 — q)
2m

:_mi\/(m_m:nu_q)

Clearly z1 < 0 < 2z, p(z1) = p(22) =1, and p(0) = ¢ so
there must be a 0 < v < min (22, 1) such that p (v) < 1.
Lemma 6. Let A, Ay, B, C, D, F, G, Q, w, u, 7, and py,
be as defined earlier. For any k1 € N and any £; > 0 there
is a 0 (k1,£1) such that |lw(0)|] < §(k1,e1) implies that
lw (k)| < &1

21,2 =
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Proof. Pick v € (0,1) and let 6; (v) be as in Lemma 2.
The proof will use finite induction on k. Define

min {e1,01 (v)}
IT5%" (111 + 1)
Now according to (31) and (39)

o ()] < 156l oo )] + 12 O)]
< [[Hol[ llw (O)]| + v [lw (0)]]
< ([[Holl + 1) llw (0)|

(5(]61,61) = (AG)

lw (W < (

<

[ Holl +1) [lw (0)]]
min {e1,d; (v)}
[ (] + 1)
Induction step: suppose that for &’ < k < k; we have
oo (K] < “;f“f“"“ ot
[LLe (1H]+1)
then according to (31) and (39)
llw (5" + DIl < (1Hgll + 1) flw (&)
min {e1,d; (v)}
= kq1—
1 (1) + 1)

< 01 (v)

which implies that
|w (B[l < (1 Hgy | + 1) [lw (k1 — )]
min 61,51 (1})
< (1| + 1) —pn e W)}
IT; 2, - (HHG I+ 1)
= min {61,(51 (1})} < €1

Now we get to the proof of Theorem 3.

Proof. The proof of Theorem 3 is similar to the proof
of the corresponding theorem in Hu and Michel (2000).
According to Lemma 4, there is a kg such that (A.3) holds
and for k > kg there is a symmetric positive definite P
such that P, = H,| PyHj,+1. From (44) and (45) it follows
that there is a kg and a ¢ such that 0 < ¢ < 1 and for
k> ko

e Al < @ | Progr — Brll < q (A.7)
Next define
V(w (k) =w (k)" Peyw (k) (A.8)
and calculate
Viw(k+1)) = V(w(k) =
—w (k)" w (k) + 2w (k) H PQ(K)+Q k)" P (k)
+w (k)" (P — Pu1)w (k)
Viwk+1)—V (k) = (A.9)
— (1= q)|lw (k)|

+2my/m =T (k)| |w (k)| +m |2 (k)]
According to Lemma 4, for any value of 7 > 0 it is possible
to find a 47 () such that 1 (k)| < 7||w (k)| provided that
[[w (k)| < 61 (7). This gives

Vwk+1)=V(w(k) <
(=1 + g+ 2mvm — 1o +mp?) |w (k)|

(A.10)

According to Lemma 5, we can pick a v (0 < v < 1) such
that

r:\/m71+q+2um\/mfl+ml/2<1 (A.11)
Now define
a =min (1,—Inr) (A.12)
and for every € > 0 define
—_ & oam Al
€0 CO\/RG (A.13)
Next use Lemma 6
. (61 (v koo
§=96 (k’o,mln ( \I/(E),soe ko )) (A.14)
with 7 (v) from Lemma 2 to get
Jeo (o)l < min (‘Sffn)’f) (A.15)
From (A.9) and |lw (ko) < L\/(%) we get
Vi(w (ko +1)) =V (w (ko)) < (A.16)
(g —1+2omvm —1+mv?) [lw (k o)|I?
s0
V (w (ko +1)) < (g4 2vmvm — 1+ mv?) V (w (ko))

where [lw (ko)||> < V (w (ko)) follows from (A.8) and k >
ko and therefore P, > I. Now
V (w (ko 4+ 1)) <72V (w (ko))

and

lw (ko + D)I* < V (w (ko + 1)) < 7V (w (ko))
< rPmllw (ko)||* < (61 (v))*
Now suppose that for a given k > kg for all k' such that
forall kg <k <k-1

lw ()| < 61 (v)

V(w (k' +1)) <r?V (w(K))

and

then
V(w(k+1) < (¢+20mvm —1+mv?) V (w(k))
<V (w (k) < rP*FROV (W (ko))
and therefore
lw (k+ DI <V (w (k+1)) < r?V (w (k)
< PR lw (ko )[|* < (61 (v))®
and
e + 1) < b1k on SV o
co/m
Now for all k > ko and ¢ € [rg, Ti41) we have |w (k)| <
01 (v) so
lz () < (1+ (| Aoll + 1| B]| +2)) M HIADE=) 1) (k) |
(14 p (Aol + 1B +2)) et HIADE=T) oo ()]
= @ a (o] + BT+ 2) D=7

< pUet1) € emOn < e—(k-i—l—a)u

vm vm

and therefore (x,u) = (0,0) is exponentially stable.



