
TabVFL: Improving Latent
Representation Learning in Vertical

Federated Learning

Mohamed Rashad

TabVFL: Improving Latent
Representation Learning in Vertical

Federated Learning

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Mohamed Rashad

Distributed Systems Research Group
Department of Distributed Systems

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

©2023 Mohamed Rashad. All rights reserved.

TabVFL: Improving Latent
Representation Learning in Vertical

Federated Learning

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday November 14, 2023 at 15:30.

Thesis Committee:

Chair: Prof. Dr. Lydia Y. Chen, Faculty EEMCS, TU Delft
University Supervisor: Dr. Jérémie Decouchant, Faculty EEMCS, TU Delft
University Co-supervisor: Zhao Zilong, Faculty EEMCS, TU Delft
Committee Member: Dr. Sebastian Proksch, Faculty EEMCS, TU Delft

Preface

I want to express my utmost gratitude to Lydia Chen, Jérémie Decouchant and Zhao Zilong
for their profound expertise, kindness and guidance throughout the thesis journey. I also
want to thank my friends and family for their invaluable encouragement, patience and per-
sistent support in general. Finally, I want to thank Sebastian Proksch for his friendliness
and willingness to be a member of the committee.

Mohamed Rashad
Delft, the Netherlands

3

Contents

Contents 5

List of Figures 7

1 Introduction 1

2 Research Paper 5

3 Background 19
3.1 Federated Learning . 19
3.2 TabNet . 20

4 Extended Related Work 25
4.1 Prediction models in VFL . 25

4.1.1 Linear models . 25
4.1.2 Tree-based models . 26
4.1.3 Deep learning models . 27

4.2 Client Failure Handling in VFL . 29

5 Privacy Analysis Of The Proposed Framework 31
5.1 BatchNorm Direct Data Leakage . 31
5.2 FC layer Inclusion . 32
5.3 Further Privacy Discussion . 32

6 Additional Experiments 35
6.1 Convergence Analysis . 35
6.2 Ablation Studies . 37
6.3 Latent Quality Evaluation In Two Guest Client Setup 38

7 Conclusions and Future Work 41
7.1 Conclusions . 41

5

CONTENTS

7.2 Future work . 42

Bibliography 45

A 51

6

List of Figures

1.1 An example of the traditional autoencoder model showing the encoder, decoder
and the compressed latent representation. The output layer is of the same di-
mension as the input layer in order to reconstruct the input features. 3

1.2 A typical VFL system for collaboratively training a neural network prediction
model [1]. The neural network is split into different partitions and is assigned
to different participants. Different regional contributors align their sample data
to correspond feature information with the correct sample. Then, the usual
procedure to train a neural network is commenced by transmitting intermediate
results and gradients back and forth in each iteration for updating the model
weights of each party. 3

6.1 Finetuning training loss plots. 36
6.2 Finetuning validation f1-score plots. 36
6.3 Finetuning convergence plots show trajectory of training loss and f1-score val-

idation metric over 60 epochs for each design on different datasets. 36
6.4 Latent quality results of TabVFL and other baselines on five classification

datasets in two guest client setup. The average accuracy, F1-score and ROC-
AUC scores of the six ML predictors used in the evaluation pipeline are reported
for each design. 38

A.1 TabVFL-LE pretraining workflow. Each guest sends its encoder decision steps
outputs to the host. The outputs are aggregated using summation. The aggre-
gated results are passed to the partial decoder for generating the intermediate
results. The results are split uniformly and distributed among the guest clients
for reconstruction. 52

A.2 TabVFL-LE finetuning workflow. The encoders in each guest client generate
latent representations vectors that are sent to the host. The results are summed
up into one representation vector and forwarded to the final mapping FC layer
for prediction. 52

A.3 The pretraining and finetuning workflows of TabNet in VFL with the encoder
(TabVFL-LE) component residing in each guest client (feature holders). . . . 52

7

LIST OF FIGURES

A.4 The pretraining and finetuning workflows of prior work design in VFL using
TabNet (LT). First, TabNet is pretrained on locally available data by each guest
client. The encoder of the pretrained TabNet is reused for finetuning. During
finetuning, the latent representations are concatenated at the host and passed
through a FC layer for prediction. 53

A.5 Horizontal Federated Learning (HFL). 54
A.6 Vertical Federated Learning (VFL). 54
A.7 An image showing the difference in the data being considered for the most

common data partitioning scenarios in FL [2]. 54

8

Chapter 1

Introduction

Deep Learning (DL) is a branch of machine learning (ML) that specifically deals with deep
neural networks. A Deep Neural Network (DNN) tries to roughly imitate the workings of a
human brain. A typical DNN structure is a feed-forward neural network that is made out of
interconnected nodes arranged in layers. The network is trained in an iterative fashion. In
each iteration, a prediction is made by forward passing the feature values of data samples
through the network. The prediction is compared to the true label value to calculate the
associated gradient values using a loss function. The gradients are then used to properly
update the weights of the network in the direction that minimizes the loss. What makes
DNNs useful is that they can learn complex patterns in the data and make accurate predic-
tions. They have been widely used in a plethora of tasks, including image processing using
convolutional neural networks [3], speech recognition [4] and natural language processing
[5]. DNNs are known to require a huge amount of high-quality data in order to attain their
peak performance by generalizing to unseen data. A special type of a DNN is the autoen-
coder model shown in Figure 1.1. The autoencoder is designed to reconstruct the input of
the data as accurate as possible. It is mainly used to extract relevant feature patterns from
the data without any label information. This is done by compressing the feature dimension
into a lower dimensional space in order to learn relevant latent representations present in the
feature data. Consequently, the learnt underlying patterns of the data could also improve the
performance for downstream tasks, such as classification or regression tasks, by capturing
only relevant information from the data and discarding noise or irrelevant values.

In the traditional sense, a DNN model is trained in a centralized manner [6]. The server
within an institution/company contains the model as well as the dataset used for training.
External devices or organizations send their data to the server for training. This technique
enjoys the benefit of the data being local to the model which makes it easier to train, pre-
process and evaluate the model directly. However, the use of centrally-stored personal data
to train ML models raises important privacy issues. It is crucial that this data is handled
carefully and securely to protect individuals’ privacy by complying with data protection
regulations, e.g., GDPR [7] and CCPA [8]. This is especially important when dealing with
sensitive information, such as medical records or financial data.

Vertical Federated Learning (VFL) [9, 10] is an emerging paradigm in distributed ma-
chine learning that enables the collaborative training and evaluation of a model without

1

1. INTRODUCTION

sacrificing data privacy. VFL deals with vertically partitioned data, that is, each participat-
ing party has overlapping samples with most data attributes being distinct compared to other
parties. An illustration of how the data is partitioned in VFL is shown in Figure A.6. Due
to its characteristics, VFL is mainly applicable in situations where different regional orga-
nizations, that most likely possess data about the same users, want to collaboratively build a
more powerful ML model by aggregating their feature data in a privacy preserving manner.
An illustration of applying a DNN model in VFL is depicted in Figure 1.2. Generally, only
one participant owns the labels for a particular ML task, while the other parties solely own
feature data.

The integration of the autoencoder model in VFL is under-researched [11, 12, 13]. Cur-
rently, the imposed design assumes that each non-label holder trains a separate autoencoder
locally on its local data. After the training is done, only the latent data is sent to the label
holder to train a prediction model on the latent data of the non-label holders. This design
could potentially break important feature correlations among the data of the non-label hold-
ers, leading to worsened predictive performance on the downstream task.

In this master thesis, we propose the novel framework TabVFL that addresses this gap
by aggregating the feature results in order to consolidate the feature correlations by learning
one latent vector. The most popular type of data in VFL is tabular data, as it is ubiquitous in
the industry. Tabular data is characterized by its irregular spatial and temporal properties.
In general, DNNs, such as traditional autoencoders, are not designed to capture correlations
of tabular data optimally. To address this issue, we integrate the state-of-the-art neural
network TabNet [14] into VFL that is specifically designed for tabular data and incorporates
an autoencoder-like structure.

A problem that could naturally arise and hinder the training process in a VFL system is
the failing of clients. Clients may suddenly become unavailable due to network or computa-
tional issues. This issue leads to a degraded model performance due to missing intermediate
results from failed clients which are either ignored or replaced with artificial values [15, 16].

The research questions investigated in this thesis are:

1. What design can be employed to effectively capture feature correlations and improve
latent representation learning while leveraging TabNet in VFL?

2. How is the data privacy preserved in the TabVFL design?

3. How can the disruptive effect of client failures during training be reduced in Tab-
VFL?

The master thesis consists of six chapters. In chapter 2 a research paper is provided that
compactly summarizes the core contributions and results of this thesis. In chapter 3, more
background is given about federated learning and the TabNet model. chapter 4 provides
detailed information about prediction models and client failure handling methods in VFL.
Further analysis of the privacy of TabVFL is provided in chapter 5. In chapter 6, additional
experiments are conducted and showcased. Ideas for future work and conclusive statements
are given in chapter 7.

2

Encoder Decoder

Latent Representation

Input
Reconstructed

Output

Figure 1.1: An example of the traditional autoencoder model showing the encoder, decoder
and the compressed latent representation. The output layer is of the same dimension as the
input layer in order to reconstruct the input features.

Figure 1.2: A typical VFL system for collaboratively training a neural network prediction
model [1]. The neural network is split into different partitions and is assigned to different
participants. Different regional contributors align their sample data to correspond feature
information with the correct sample. Then, the usual procedure to train a neural network
is commenced by transmitting intermediate results and gradients back and forth in each
iteration for updating the model weights of each party.

3

Chapter 2

Research Paper

In this chapter, a research paper associated with this thesis is presented. The paper summa-
rizes the proposed work and the motivation behind it. The results of the conducted experi-
ments are shown with thorough analysis. The paper has been submitted to an international
peer-reviewed conference.

5

TabVFL: Improving Latent Representation Learning
in Vertical Federated Learning

Abstract—Autoencoders are popular neural networks that are
able to compress high dimensional data to extract relevant
latent information. TabNet is a state-of-the-art neural network
model designed for tabular data that utilizes an autoencoder
architecture for training. Vertical Federated Learning (VFL)
is an emerging distributed machine learning paradigm that
allows multiple parties to train a model collaboratively on
vertically partitioned data while maintaining data privacy. The
existing design of training autoencoders in VFL is to train
a separate autoencoder in each participant and aggregate the
latent representation later. This design could potentially break
important correlations between feature data of participating
parties, as each autoencoder is trained on locally available
features while disregarding the features of others. In addition,
traditional autoencoders are not specifically designed for tabular
data, which is ubiquitous in VFL settings. Moreover, the impact
of client failures during training on the model robustness is
under-researched in the VFL scene. In this paper, we propose
TabVFL, a distributed framework designed to improve latent
representation learning using the joint features of participants.
The framework (i) preserves privacy by mitigating potential data
leakage with the addition of a fully-connected layer, (ii) conserves
feature correlations by learning one latent representation vector,
and (iii) provides enhanced robustness against client failures
during training phase. Extensive experiments on five classification
datasets show that TabVFL can outperform the prior work
design, with 26.12% of improvement on f1-score.

I. INTRODUCTION

Autoencoder [1] is a type of artificial neural network used
for unsupervised learning of efficient codings. The main goal
of an autoencoder is to learn a representation (encoding) for
a set of data, typically for the purpose of dimensionality
reduction or feature extraction. However, despite their success,
traditional autoencoders are not specifically designed to handle
tabular data effectively. Deep Neural Networks (DNNs) have
achieved remarkable results in various domains, especially
where data has inherent hierarchical or spatial structures, such
as images, audio, and text [2]–[4]. However, when it comes to
tabular data, DNNs often underperform compared to boosting-
based methods like Gradient Boosted Trees (GBT) [5]–[7].
Tabular data often lacks the spatial or temporal hierarchies that
DNNs particularly adapt at modeling. Additionally, DNNs can
be more data-hungry and prone to overfitting, especially when
the dataset is small, whereas boosting methods can be more
robust and generalize better with fewer data points.

Innovative methods are needed to appropriately adapt DNNs
to tabular data in order to address these issues. The incorpo-
ration of TabNet [8], a specialized neural network architecture
created specifically for tabular data, is a noteworthy develop-
ment in this domain. With the use of TabNet, tabular datasets

can be handled effectively while utilizing the strength of deep
learning. Its unique attention mechanism allows it to focus
on relevant subsets of features, enabling the model to capture
intricate patterns even in the absence of spatial or temporal
properties of the data.

Vertical Federated Learning (VFL) [9] describes situations
where multiple clients have different features for the same set
of individuals. This federated learning approach is especially
beneficial when diverse stakeholders or institutions possess
distinct data attributes. Consider a bank and an e-commerce
platform: while the bank maintains comprehensive financial
records, the e-commerce platform holds data on customers’
online shopping activities. Both parties aim to collaboratively
develop a precise credit scoring model to gauge the risk of a
customer defaulting on a loan or credit payment, without di-
rectly sharing customer data. In such scenarios, VFL becomes
an invaluable tool.

Autoencoders in VFL are substantially under-researched.
In the current designs [10]–[13], each non-label holder is
assumed to have a local autoencoder model which is trained
only on local feature data. After local training, the learnt
latent representation is sent to the label owner. Once re-
ceived, the latent representations are concatenated and used
for downstream tasks, e.g., for training a prediction model.
The correlation between the isolated features among the non-
label holders is not captured due to local latent representation
learning of separate autoencoders. This lack of correlation
could lead to the generation of irrelevant or noisy latent data,
significantly impacting the prediction performance. To fill in
this gap, we propose a joint latent representation learning
design, TabVFL, that learns one latent representation from
capturing feature dependencies across all parties involved in
a privacy-preserving fashion. SplitNN [14], [15] approach is
leveraged to assimilate TabNet in the VFL context. This entails
the devision of TabNet into independent model parts that are
assigned to each participating party.

Splitting TabNet is not a trivial task due to various depen-
dencies between components. Careful design choices needed
to be made in order to protect against the exposure of raw
feature data. A fully-connected layer is added in each non-
label owner model part to prevent the potential occurrence of
a direct data leakage.

One major challenge that any federated learning system
can suffer from is the presence of failing clients [16]–
[18]. These failures may happen for a number of reasons,
including network problems, hardware problems, or software
crashes. Client failures can disrupt the training and hence the

1

Host

Guest 1 Guest 2

Prediction

Bottom Model

Top Model

(a) Classical SplitNN Architecture.

Server

Client 1 Client 2

Center Model

PredictionPrediction

Front Model Bottom Model Front Model Bottom Model

(b) SplitNN U-Shape Architecture.

Fig. 1: Predictive model designs using SplitNN: example with two clients.

performance of the system. A naive solution to this problem is
replacing missing values of failed clients with vectors of zeros
[19]. However, this adds bias to the training and can hinder
the performance. We instead propose a caching mechanism
for storing and reusing the communicated values to decrease
performance degradation and enhance training stability.

We conduct extensive evaluation on TabVFL using five
classification datasets. The results are compared with three
baselines. The accuracy, f1-score and ROC-AUC metrics are
reported. The evaluation results show that TabVFL performs
considerably better than prior work for all the datasets.
The highest improvement reached was 26.12% on f1-score.
TabVFL outperforms other designs in terms of runtime and
memory utilization but it has higher communication overhead
compared to the baselines. The main contribution of this study
can be summarized as follows:

• We design the TabVFL distributed framework, which
incorporates the state-of-the-art tabular model TabNet
into vertical federated learning (VFL) via a single latent
representation of vertically partitioned data.

• We incorporate an additional fully-connected layer into
TabVFL to prevent potential data leakage.

• We introduce a caching mechanism to mitigate the impact
of client failures, enhance training process stability and
minimize performance degradation

• Extensive experiments are conducted on five classifica-
tion datasets. Results show that TabVFL demonstrates
significant enhancement in latent quality, outperforming
previous designs. Additionally, TabVFL excels in run-
time and memory efficiency, and only incurs a moder-
ately increased network consumption compared to other
designs.

II. PRELIMINARIES

Vertical Federated Learning (VFL) [9] is a distributed ma-
chine learning paradigm that focuses on collaborative model
training between multiple parties that provide their locally
available data while maintaining data privacy. The parties are
distinguished into two types: guest clients and a host client.
The host client acts as the server or the federator and the

guests act as feature providers. It is generally assumed that the
host is the label holder. The features and the corresponding
target labels of the parties need to be aligned prior to the
training process. Private Set Intersection (PSI) ([20], [21]) is
the usual algorithm applied for the cryptographic alignment
of samples in VFL ([22], [23]). We assume that the sam-
ples among clients are already aligned and that each client
owns distinct features. Popular machine learning models for
tabular data learning, such as gradient boosting decision trees
(GBDTs) ([24], [25]) and generative models ([26]), have
been considered in VFL. Participants in tree-based models
collaborate to collectively construct a prediction tree, while
generative models like GANs are employed for synthesizing
tabular data that mimics the patterns in participants’ original
data.

SplitNN particularly focuses on the neural network based
predictors [14], [15]. SplitNN enables different and flexible
split configurations of a model. Typically, a splitNN model
consists of a bottom and a top model as shown in Fig. 1a.
Each guest client processes the local feature data through its
bottom model. The generated intermediate results are sent
by the guests to the host client. Aggregation takes place of
the intermediate results which is further processed by the top
model at the host. Finally, a prediction is made and compared
to the true value for loss calculation. The acquired loss value
is used to update the models by calculating the appropriate
gradients. A special kind of split learning design is the U-
shaped design shown in Fig. 1b. The parties are called server
and client since they don’t adhere to the assumed guest and
host roles. Clients posses a front and bottom model parts,
while the server holds the middle part. This naturally reduces
computational cost for clients. The front model creates initial
intermediate results from input data. Results from clients are
sent to the server for processing. Server-generated results are
then sent back to clients for prediction and loss calculation.

TabNet [8] shown in Fig. 2 is a state-of-the-art deep
neural network that is specifically designed for tabular data. It
combines advanced ensembling concepts and novel sequential
attention mechanisms. TabNet training phases consists of
pretraining and finetuning. During pretraining, an autoencoder

Feature
Data

TabNet
Encoder

Reconstructed
Features

Feature
Transformer

Split

Encoder Decision
Step

Masked Features

Attentive
Transformer

Feature
Transformer

Encoder
Decision

Step 1

Encoder
Decision
Step N

Split

BatchNormed
Input

ReLU
Decision
Output

Split Output Next
Decision Step

Aggregated Decision
Outputs

+

Encoder
Decision

Step 2

+Decision Out

Split
Out

Initial
Split Out

Pretraining
TabNet Decoder

Finetuning FC-layer

Latent
Representation

Decision Step 1

Feature
Transformer

Decision Step 2
Feature

Transformer

Decision Step N

Feature
Transformer

Split Previous
Step

Fully Connected (FC) Layer

+

FC
Layer

Prediction

BatchNorm

Fig. 2: Structure of TabNet.

[1] structure is employed to learn general latent feature rep-
resentations. The encoder compresses input features, while
the decoder reconstructs them, extracting valuable latent fea-
tures. For finetuning, the decoder is disregarded and a fully-
connected (FC) layer is placed directly after the encoder for
predictions. The goal is to specialize the latent representation
on a downstream task. TabNet dynamically learns to pick
important features through the attentive layer by creating
and applying feature masks in each encoder decision step,
filtering irrelevant features. The encoder outputs sequential
decisions that are processed by the decoder for predicting
feature values. During finetuning, the encoder decision outputs
are transformed into encoded representations instead.

III. RELATED WORK

In this section, we begin by introducing tree-based predic-
tion models tailored for tabular data within the VFL training
framework. Subsequently, we delve into the exploration of
deep learning frameworks highlighted in the VFL literature.
Finally, client failure handling methods in federated learning
frameworks are discussed.

A. Tree-based Prediction Frameworks In VFL

Pivot [24] introduced an enhanced communication protocol
to mitigate data leakage from intermediate results for tree
models. SecureBoost [25] is able to train a GBDT model, such
as XGBoost, without sacrificing model utility by performing
similar to non-federated settings. The mentioned frameworks
are not efficient due to the sequential nature of training the
trees. VF2Boost [27] proposed a scheduler-worker design to
enable concurrent computations and an ad-hoc cryptography
protocol for faster communication time. A random forest [28]
has also been considered in VFL using a trusted third-party to
build and achieve a lossless performing model.

TabNet [8] shows superiority over tree-based model on tab-
ular data predictions. We harness TabNet’s predictive prowess,
integrating it with splitNN to undertake prediction tasks within
the VFL training framework.

B. Deep Learning Prediction Frameworks In VFL

SplitNN is applied in multiple VFL use cases, such as
healthcare [14], [15], [29], advertisement [30] and finance
[31]. In [30], transfer learning is leveraged on overlapped
and non-overlapped data among participants to alleviate the
issue of missing features. Different configurations for split
learning are proposed in [15], [31] depending on different
use cases and requirements. Different aggregation methods of
intermediate results have been explored specifically in VFL
context [18]. Practical application of splitNN is employed in
the PyVertical framework [32] where a hybrid approach is
utilized to internalize split learning in VFL along with the
PSI method for entity alignment. FDML [33] is another VFL
framework that also supports neural networks but assumes
label availability for all parties.

FedOnce framework [34] enforces one communication
round between the guests and host clients using a splitNN
design. This is achieved by locally pretraining guest mod-
els using a technique called Noise As Targets to generate
latent representations once. Khan et al. [13] follows the same
procedure but a local autoencoder is assumed in each guest
client for learning a compressed feature representation. After
completion, the latent data is aggregated and prepared for
training a separate prediction model in the host side, e.g., using
XGBoost [10] on the extracted features. A similar autoencoder
design is employed in [11] with the only difference being that
the autoencoder is encouraged to learn a higher dimensional
representation of the data. In [12] a variational autoencoder is
used for learning a latent representation that closely represents
a Gaussian distribution in order to ensure statistical similarity
between the latent data of different samples, hindering sample
distinction by attackers.

Our proposed framework extends the current autoencoder
design in VFL by unifying the latent data through training
one autoencoder model during pretraining of TabNet. A U-
shaped splitNN design (as shown in Fig. 1b) is utilized for joint
learning of the feature representations across parties. To the
best of our knowledge, none of the existing VFL frameworks
considers the application of U-shaped splitNN in cases of
feature reconstruction.

C. Client Failure Handling Methods

Many client failure handling methods exist in the Horizon-
tal Federated Learning (HFL) context where it is assumed
that clients have overlapping feature space but distinct data
samples. Existing techniques include alleviation of client
failures by incorporating robust aggregation algorithms [16],
[17], increasing eligibility of participating devices in scalable
environments [35], preemptive client state prediction [36]
and by dynamically varying training round duration [37].
An empirical study has also shown that client failures have
significant impact on convergence time and performance of
an FL system [38]. However, literature about this matter
in VFL is scarce [18], [19], [39]. [18] demonstrated that
quitting of clients leads to slower convergence rates and worse
performance, amplified by simultaneous quitting of clients in a

TABLE I: Notations

Symbol Description
PartialEnc The encoder module of TabNet without BN

layer residing in the host client.
PartialDec The decoder module of TabNet without the

FC layer residing in the host client.
fbottom repr The feature extractor containing a BN and

a FC layer in the bottom model of guest
clients.

fbottom repr bin The feature extractor containing a BN, FC
and RandomObfuscator layers in the bottom
model of guest clients.

fbottom rec FC layer used for feature reconstruction in
the bottom model of guest clients.

final mapping The final FC layer in the finetuning model
of TabVFL used for making a prediction in
the host client.

four-client splitNN configuration. Client failures in a two-party
splitNN setting are also conducted where a dropout-based
method is introduced to enforce robustness against a quitting
client [19]. Furthermore, [39] achieves model robustness via
dynamic client data re-indexing. In this study, we leverage a
caching method to improve model robustness in cases of client
failures within a two-party setup.

IV. METHODOLOGY

In this section, we first delve into the architecture of
TabVFL, elucidating its design and rationale. We then address
crucial privacy aspects of the model. Lastly, we present the
training specifics, highlighting a novel approach to manage
client failures.

A. TabVFL Architecture Overview

In Fig. 3, the structure of TabVFL is shown in a two client
setup with an example dataset. Each guest client owns distinct
feature data corresponding to the same samples. The novel
design is introduced in the pretraining phase of TabVFL. The
encoder and decoder components of the TabNet model are
split into two parts: the top and bottom models. The majority
of the model is retained in the host client. This is done to be
consistent with the general model design of U-shaped neural
network shown in Fig. 1b.

Many components of the TabNet pretraining model are de-
pendent due to the sequential attention structure which makes
a proper splitting of the model among the parties difficult
(Fig. 2). Nonetheless, the encoder can be conveniently split
by assigning the first batch normalization (BN) layer of the
TabNet encoder to the guest clients and the remaining encoder
components to the host client. The reason can be deduced from
the valuable observation that the BN layer is the only part
that every other component depends on since the normalized
values are passed to each encoder decision step and to the
initial split. Moreover, the decoder can be sufficiently divided
by splitting it between the feature transformers and the fully-
connected (FC) layer. The FC-layer is further split uniformly
into partitions such that each partition corresponds to each
guest client. The FC-layers are held locally in each guest. The
host only instructs the guests to initialize their FC-layer with

the partition dimension. The output dimension of the feature
transformers blocks is equal to the latent dimension. Therefore,
it should be ensured that the latent dimension is not set to a
value that is lower than the number of participating guests.
The top model consists of PartialEnc and PartialDec. The
TabVFL pretraining model is shown in Fig. 3a.

The bottom model is represented by two parts: the feature
extractor (left part of the bottom model) and the feature recon-
structor (right part of the bottom model). The feature extractor
is used to transform the raw feature data into intermediate
logits. The RandomObfuscator is a non-learnable component
used to generate binary masks which are directly applied to
the features. The reason for the additional FC-layer is to
transform the outputs of the BN layer in case it behaves as
an identity function. This is possible when the features are
already standardized and follow a standard normal distribution,
rendering the BN layer useless for protecting against direct
data leakage. The feature reconstructor is there to predict the
actual feature values that were used as input. The split of the
decoder is crucial for preventing the host client from reverse
engineering the features of the guest clients. This is possible
if the host client has a particular amount of feature samples
of some or all the guest clients. The encoder split was done to
allow general latent representation learning of one latent vector
by aggregating the intermediate logits of all guest clients at
the host. The concept of a label is absent during pretraining
since the goal is to accurately reconstruct the masked features
resulted from the RandomObfuscator.

In the finetuning design, the host is the label owner. The
conventional splitNN procedure is followed in order to special-
ize the latent representation from the encoder to a specific task.
As shown in Fig. 3b, the decoder components are disregarded
including the RandomObfuscator component as they are not
needed for finetuning.

B. Threat Model

We assume honest-but-curious setting where all participants
follow the framework protocol properly without any (mali-
cious) deviation. Specifically, we assume that the guest and
host clients are honest but curious, meaning that they adhere
to the TabVFL protocol, but may seek to acquire additional
information through the computation process [40], [41]. We
do not consider colluding host and guests. Since the model
weights are initialized locally and only intermediate results
are exchanged, the models in each client are considered as
black box to other clients.

C. TabVFL Training Procedures

Identical training steps as in the TabNet model are fol-
lowed in TabVFL. In both training phases, the host client is
responsible for federating the training process in mini-batch
fashion. The training workflow for pretraining and finetuning
are provided with an example dataset in Fig. 3. Similar step
numbers indicate parallel computations/communications.

During the pretraining phase, the first step entails the
generation of the binary masks and the transformed represen-

fbottom_rec

Aggregated
Intermediate

Results

Partial
Enc

Aggregated
Decoder Decision

Step Outputs

Guest 1 Guest N

Host

X̂

Random
Obfuscator

Random
Obfuscator

Partial
Dec

FC Layer FC Layer

Aggregated
Feature

Binary Masks

BN BN

1

23

5

fbottom_repr_bin

fbottom_rec

fbottom_repr_bin

1 5

4

X̂

(a) TabVFL pretraining workflow.

Aggregated
Intermediate Results

Partial
Enc

Guest 1 Guest N

Host

BN BN

FC Layer FC Layer

ŷ

final_mapping

1 1

2

3

fbottom_reprfbottom_repr

(b) TabVFL finetuning workflow.

Fig. 3: Overview of pretraining and finetuning workflow in TabVFL.

tation of the raw data by the guest clients (1). The batch
of raw features is first masked using the generated masks
from RandomObfuscator which are processed by a BN and
a FC layer and transmitted to the host. The binary masks
and intermediate results from the guest clients are aggregated
by concatenating them (2 , 3). The concatenated values are
processed by the PartialEnc and passed to the PartialDec to
generate intermediate decoder representations by aggregating
feature transformers outputs, which are then partitioned (4).
Each partition result is sent to its corresponding guest client
for reconstructing the masked feature values (5). The recon-
struction values are used to calculate the gradients for updating
fbottom rec, PartialDec, PartialEnc and fbottom repr bin.

During finetuning, the raw features are processed by each
guest client through the pretrained BN and FC layers and
communicated to the host (1). Subsequently, the intermediate
results are gathered and concatenated (2). The concatenated
results are fed through the PartialEnc to generate the latent
representations which are processed by the final mapping

for predicting the corresponding label for each sample (3).
The predicted value is used to calculate the gradients for
updating final mapping, PartialEnc and fbottom repr.

In each training phase, one epoch/iteration is finished once
the weights are updated by executing the described workflow.

D. Training Details

The details of the training phases for pretraining and fine-
tuning are presented in Alg. 1 and Alg. 2. The training of
TabVFL starts off with the pretraining phase. Each guest
first initializes its own bottom models fbottom repr bin and
fbottom rec (line 1). Simultaneously, the host initializes the
PartialEnc and PartialDec models (line 7). The guest clients
start the forward propagation by generating binary masks and
apply them to the raw feature data. The masked batch is
processed by fbottom repr bin model and sent to host (lines
4-6). The host receives the intermediate results and the binary
masks which are both concatenated into one vector separately

(lines 13-16). The results are also cached for the client
handling method described in Sec. IV-E. Although the host
can generate random binary masks itself, the binary masks
are cached instead as well to not break its correlation with the
corresponding intermediate results. The concatenated values
are fed to the PartialEnc to generate the corresponding latent
vector. The latent vector is in turn processed by the PartialDec
to create the intermediate decoder representations (lines 17-
18). The decoder results are split into uniform chunks where
each chunk corresponds to one guest client. The chunks are
sent to each guest for reconstruction (lines 19-21). The guests
receive their intermediate decoder results and reconstruct the
masked features using fbottom rec. The output is compared
with the actual feature values for calculating the reconstruction
loss (lines 22-24). For backpropagation, one loss value is
required. To achieve this, each guest client is ordered to send
its loss to the host. The accumulation of the losses takes place
and the result is used to calculate the gradients and update
the weights of the top and bottom models (lines 25-32). A
modified version of the MSE function is used in TabNet to
account for the binary mask and feature ranges for a more
stable loss calculation.

During finetuning, the weights of the FC and BN layers
in fbottom repr bin are copied over in fbottom repr for further
finetuning (line 1). The host now uses the pretrained Partia-
lEnc and initializes a final mapping containing an FC layer
for prediction (line 5-6). The first step of the forward pass
is sending the intermediate results, from applying fbottomrepr

to the raw features, to the host (line 4). The host receives the
transmitted data from each guest client and caches it to handle
possible client failures (line 11). Similar to pretraining, a
vector with concatenated intermediate results is created which
is passed to the PartialEnc. The PartialEnc now also generates
M Loss along with the latent vector (lines 12-13). The final
logits are created from passing the latent vector through the
final mapping layer. Afterwards, the final logits are softmaxed
to create normalized prediction probabilities from logits. The

loss is calculated by comparing the prediction probabilities
and the actual label values (lines 14-16). Finally, the M loss is
multiplied by the regularization parameter λsparse. The M loss
is used for regularizing the sparsity of the feature selection
made by the attentive layer of TabNet. This is to encourage
the model to only pick important features for datasets that have
few features that are relevant. The final loss value is used to
calculate gradients and update the weights accordingly (lines
17-18). The classification loss represents the cross entropy.

Note that the host is considered to be the federator which
instructs the guest clients to send and receive data during
training and inference.

E. Client Failure Handling

Usually in practical cases, variation in the systems of the
guest clients can naturally lead to training errors during the
training session. This error can occur when a guest client is
unable to complete the training due to an unreliable channel
or limited data transfer speed, resulting in a failed connection.
We propose a caching method for handling abrupt failures of
clients to improve robustness and stability during training. The
method is implemented in the host client as that is where the
intermediate results are handled of each guest client. During
training, if a client goes offline then its stored/cached batch
of results are reused instead (code lines 10-11 in Alg. 1 and
9 in Alg. 2). When a client is online again, the corresponding
batches in the cache are replaced by the new intermediate
results (code lines 13-14 in Alg. 1 and 11 in Alg. 2). Therefore,
we enforce that the clients must be online during the initial
epoch. To simulate the failures using the proposed framework,
the guest clients are given the same probability of being
considered offline. Let M be the number of guest clients.
Each guest client c ∈ M follows a binary failure probability
distribution:

pc ∼ Bernoulli(P fail) ∀c ∈M

We simulate the setting by sampling a float value x from a
random variable that follows a uniform distribution for each
client, i.e. X ∼ U(0, 1). If the sampled value is less than a
predefined threshold (P fail), then the client is skipped for
one whole epoch iteration. The skipped clients would not be
able to generate any new intermediate results. In a practical
setting, the client failures could be handled at the host by
setting a certain timeout to wait a bit for a guest client to send
its intermediate results. If a timeout occurs, then it is assumed
that the guest client is offline or unresponsive. Furthermore,
the correct batch index that is being processed by the host
should also be communicated to the guest clients to keep the
mini-batches aligned throughout the training process during a
real deployment. This should be done to prevent offline clients
from processing the wrong batch when they come online again.

V. PERFORMANCE EVALUATION

In this section, we first introduce the experimental setup
and the baselines. We then showcase the evaluation pipeline,
followed by the presentation and analysis of the results.

Algorithm 1: TabVFL Pretraining Process
Input:
NumClients = {1, 2, ...K}
Epochs = E
Feature Dataset Xi of party i ∈ {2, 3, ...K}
/* Guests: */

1 initialize local models fbottom repr bin, fbottom rec

2 for e ∈ E do
3 for each mini-batch Xb ∈ B do
4 Generate binary mask Sb

5 Xmasked
b ← Mask Xb using Sb

6 Send intermediate result
fbottom repr bin(X

masked
b) and Sb to host

/* Client 1 (Host) */
7 initialize PartialEnc, PartialDec
8 for c ∈ [2,K] do
9 if c is offline then

10 X̃ ← reuse cached intermediate results
11 S̃ ← reuse cached binary masks

12 else
13 X̃ ← Receive and append intermediate

results. Cache received results.
14 S̃ ← Receive and append partial binary

masks. Cache received binary masks.

15 Xintermediate ← concatenate X̃ column-wise
16 Scomplete ← concatenate S̃ column-wise
17 Zlatent ←

PartialEnc(Xintermediate, Scomplete)
18 outintermediate ← PartialDec(Zlatent)
19 [˜out1, ˜out2, ..., ˜outK]← Split outintermediate

into uniform partitions for client c ∈ [2,K]
20 for c ∈ [2,K] do
21 Send ˜outc to client c

/* Guests: */
22 Db ← Receive mini-batch decoder intermediate

result
23 X̂b ← fbottom rec(Db)

24 lossb ← reconstruction loss(Xb, X̂b, Sb)
25 Send lossb to host

/* Client 1 (Host) */
26 total loss = 0
27 for c ∈ [2,K] do
28 if client c is offline then
29 continue

30 lossc ← Receive mini-batch unsupervised
loss

31 total loss = total loss+ lossc

32 Calculate gradients and update the weights

Algorithm 2: TabVFL Finetuning Process
Input:
NumClients = {1, 2, ...K}
Epochs = E
Feature Dataset Xi of party i ∈ {2, 3, ...K}
/* Guests: */

1 set weights of fbottom repr to the pretrained BN and
FC layers fbottom repr bin

2 for e ∈ E do
3 for each mini-batch Xb ∈ B do
4 Send intermediate result fbottom repr(Xb) to

host
/* Client 1 (Host) */

5 use pretrained PartialEnc
6 initialize final mapping
7 for c ∈ [2,K] do
8 if c is offline then
9 X̃ ← append cached intermediate

results
10 else
11 X̃ ← Receive and append intermediate

results. Cache the received results.

12 Xintermediate ← concatenate X̃ column-wise
13 Zlatent,M Loss←

PartialEnc(Xintermediate)
14 final logits← final mapping(Zlatent)
15 prediction proba← softmax(final logits)
16 loss←

classification loss(prediction proba, y true)
17 loss = loss−M loss ∗ λsparse

18 Calculate gradients and update the weights

A. Experiment Details

Setup. TabVFL is compared against three baseline de-
signs: Central TabNet (CT), Local TabNets (LT) and TabNet
VFL with guests-assigned encoders (TabVFL-LE). CT is the
baseline where TabNet is run on the full dataset in a non-
federated setting. TabNet model implemented with PyTorch
[42] is used. The code is modified to disable batch shuffling
in each mini-batch iteration and a feature for measuring epoch
time is added. The former is implemented to ensure that the
experiments differ only in design. LT applies the design from
prior work [10]–[13] where multiple autoencoders are trained
locally in each guest client. The TabNet pretraining model is
used instead of autoencoders to keep it consistent with the
other baselines. During finetuning, one fully-connected (FC)
layer is trained collaboratively in the host. This is done by
ensuring that only latent representations are sent to the host.
The latent data of each guest are aggregated to make up
one latent vector which is processed by the FC-layer in the
host to predict a label and calculate the loss. The decision
of training one FC-layer at the host (similar to splitNN) is

Preprocessing

Full Dataset

Train Set Test Set

TabNet
Pretraining

TabNet
Finetuning

XGBoost

Linear SVM

Random
Forest

Classification

Decision
Tree

Logistic
Regression

MLP

Latent Train
Set

Latent Test
Set

Training Evaluation

Accuracy
F1-Score
ROC-AUC

Standard Scale Numerical
Features

Categorical Features Encoding

Label Encoding Binary
Features And Class Labels

Valid Set

Fig. 4: Evaluation pipeline for evaluating the latent data of
different experimental designs.

made to fairly compare it with other designs as it resembles
the training procedure of finetuning in TabVFL. TabVFL-
LE shares the pretraining model design of TabVFL, differing
slightly in that the encoder is consolidated within each guest
client, unlike TabVFL where it is split into two parts. The
outputs of all decision steps are sent as a list of tensors to
the host (see Fig. 3a) where the output of each decision step
is aggregated by means of summation with the outputs of the
same decision step from different guests. The reason is that
the decoder accepts a list of encoder decision step tensors.
Each encoder decision step corresponds to a decoder decision
step. Due to the host receiving all encoder steps from the
guests, concatenating each encoder split output and feeding
it to the decoder is not feasible. This approach would create
incompatible dimensions for each decoder split. Consequently,
every encoder decision step output received by the host is
aggregated into a single vector, ensuring compatibility with
the dimensions expected by the decoder. In Fig. 2 it is shown
that encoder steps are aggregated and passed to the decoder.
But in the PyTorch code of TabNet [42], the aggregation
happens at the decoder. The finetuning phase is identical to
TabVFL with the only difference being that the latent vectors
sent from each guest client to the host are aggregated using
summation instead of concatenation as in TabVFL. This is
done to keep the aggregation method consistent throughout the
training phases. This baseline can be seen as a partial transition
from LT design to TabVFL design. We find it interesting to
see how the transitioning design affects the evaluation results.

Environment. The experiments have been run on a machine
with NVIDIA GeForce RTX 2080 Ti GPU with 11 GB of

50

60

70

80

90

100

A
cc

ur
ac

y

Intrusion Rice MSC Bank Marketing Forest Cover Type Air Passenger Satisfaction

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Latent Quality Evaluation Results (epochs=300 OR early stopping)

CT
LT
TabVFL-LE
TabVFL

Fig. 5: Results of the latent representation quality of TabVFL and all baselines on different datasets.

VRAM and CUDA version 11.0. The amount of RAM is 32
GB. Intel(R) Core(TM) i9-10900KF CPU is used with speed
of 3.70GHz and 20 cores.

Datasets. Five different classification datasets are con-
sidered for evaluations: Air Passenger Satisfaction (air),
Network Intrusion Detection (intrusion), Bank Marketing
(bank), Forest Cover Type (forest) and Rice MSC (rice).
The datasets bank and forest are retrieved from UCI
Machine Learning Repository, while air, intrusion and
rice are acquired from Kaggle. Among the classification
datasets, three are suited for binary tasks, while two are
tailored for multi-class tasks. The metadata of each dataset
are shown in Tab. II. All datasets, with the exception of
bank, are down-sized to 50K samples due to the limited
computational resources. Stratified random sampling is em-
ployed with regards to the target label to ensure identical
class distribution between the original and the down-sized
datasets. All the designs are run for 300 epochs to allow ample
time for convergence both during pretraining and finetuning.
Batch size of 64 is used. A latent dimension of five has been
chosen for all experiments to facilitate similar model sizes
across all baselines and to encourage a compressed latent
representation for all datasets. Furthermore, three runs are
conducted from which the average is calculated and presented
to account for the inherent randomness and variability in the
results. During the experiments, each dataset is split vertically
and uniformly to mimic a VFL environment. Moreover, the
numerical features of the datasets are preprocessed using
standard scaling. The binary features and class labels are label
encoded, while the categorical features are one-hot encoded.
The standard scaling and label encoding are applied using
sklearn [43].

B. Evaluation Pipeline

An evaluation pipeline has been devised to evaluate the
effectiveness of the generated latent representation of each
design. The pipeline is shown in Fig. 4. The full dataset is
preprocessed and split into training, valid and test sets with a
ratio of 70%-15%-15% respectively. The training set is used
as input for both pretraining and finetuning in each experiment
design. The valid set is used for the early stopping mechanism
that we employ during training. A patience value is used as
the maximum count of how many iteration to wait for the
validation score to improve. The early stopping feature is
implemented as a regularization method to prevent overfitting
[44]. The training is stopped when the maximum amount of
epochs is reached or when the patience value is reached.
After training completion, the training, valid and test sets
are combined and processed by the TabNet finetuning model
to generate the total latent set from the encoder. The set is
then split into a training and test set with ratios 70%-30%,
respectively, using random shuffling to generate the latent train
and test sets. The latent train set is used to train six classic
machine learning algorithms: logistic regression, decision tree,
random forest tree, multi-layer perceptron (MLP), XGBoost
and linear support vector machine (Linear SVM). The per-
formance, and hence the quality of the generated latent data,
of each algorithm is evaluated on the latent test set using the
conventional classification metrics: accuracy, F1-score, and the
area under the curve of the receiver operating characteristic
curve (ROC-AUC). For each experiment run, the mean of the
metric results of each algorithm are reported.

TABLE II: Metadata of the datasets used for the experiments.
Dataset #Samples #Classes #Categorical #Numerical #Binary

Intrusion 50,000 2 11 23 4
Rice MSC 50,000 5 0 106 0

Air Passenger Satisfaction 50,000 2 15 4 3
Forest Cover Type 50,000 7 44 10 0
Bank Marketing 45,211 2 6 7 3

C. Result Analysis

The experiment setup described thus far holds in any exper-
iment unless stated otherwise. Our experiments are designed
to answer the following three research questions:

• How does the latent quality produced by TabVFL com-
pare to that of the baselines, and to what extent is it
superior?

• How does the robustness of the cached and zero inter-
mediate results differ in TabVFL against random client
failures?

• How efficient is TabVFL in terms of runtime, network
consumption and memory usage compared to the base-
lines?

The questions are answered by conducting three experiments.
The first experiment is to evaluate the quality of the latent
representation of each design using the classification metrics.
To answer the second question, an experiment with different
failure probability of each client is devised to compare the
cache method for client failure handling with existing zero
vector method in the literature. The amount of guest clients for
the first and last experiments is fixed to five clients, aligning
with established setting in previous research [31], [45]. The
setup of the second experiment consists of one host and two
guest clients to adhere to the common two-client setup in
VFL [9], [32]. For the second experiment setup, each method
runs for 120 epochs in total with batch size of 128. Early
stopping mechanism is disabled in the second and third for
fair comparison and measurements. For the third experiment,
we set the batch size to 512 and amount of epochs for both
training phases to 100.

1) Latent Quality Experiment: Evaluating a design’s capa-
bility to learn high-quality latent representations offers valu-
able insights into how effective TabVFL is able to effectively
capture underlying feature correlations compared to the base-
line. The results linked to this experiment are presented in
Fig. 5 as histograms. Generally, CT always outperforms the
baseline designs as expected since it possesses all the data
locally.

Furthermore, TabVFL clearly performs better than the prior
work design (LT) for all the classification datasets. In terms
of accuracy, f1-score and roc-auc TabVFL can perform up
to 22.34%, 26.12% and 19.41% better than LT respectively.
This suggests that TabVFL is able to capture the underlying
feature correlations which leads to the generation of better
latent representations of the features. A dataset where LT was
able to perform well and approach evaluation results almost
similar to other designs is the intrusion dataset. This could
be attributed by the simplicity of the underlying patterns of
the dataset which results in high performance for most of the

TABLE III: Client failures experiment improvements of cache
method compared to zeros method and maximum performance
decrease of both method compared to baseline. All values are
presented in percentages. Best results are highlighted in bold.

Dataset Average Im-
provement

Maximum
Improve-
ment

Maximum
Performance
Decrease
Zeros Method

Maximum
Performance
Decrease
Cache Method

Intrusion 2.3 4.37 -4.78 -0.22
Rice MSC 3.91 9.49 -10.85 -0.32
Bank Marketing 1.51 2.04 -2.71 -0.65
Forest Cover Type 9.15 13.16 -17.59 -2.11
Air Passenger Satisfaction 6.31 12.73 -18.04 -3.01

TABLE IV: System performance evaluation result. The pre-
training and finetuning runtimes on rice dataset are presented
including the network consumption and memory usage.

Dataset Pretraining Finetuning Total
Training

Pretraining
Network

Finetuning
Network

Memory

CT 151 s 116 s 267 s - - 2.75 GB
LT 244 s 187 s 431 s - 0.7 MB 15.12 GB
TabVFL-LE 252 s 204 s 456 s 14.7 MB 3.5 MB 14.73 GB
TabVFL 194 s 138 s 332 s 30.38 MB 14.84 MB 14.73 GB

tested designs. Although TabVFL-LE has lower accuracy and
f1-score compared to LT, it still managed to be better in terms
of ROC-AUC score. This means that TabVFL-LE is better at
discriminating between negative and positive classes (in the
multiclass sense) compared to LT.

In addition, LT shows the biggest discrepancies in per-
formance for the forest and air datasets compared to
TabVFL. A possible reason is that both datasets have a
varying amounts of correlated features at different placements
compared to other datasets. LT fails to capture general pat-
terns in such datasets because local pretraining may result in
guest clients learning entirely distinct latent representations,
introducing potential biases. This could steer the finetuning
model to converge at a suboptimal minima during training,
leading to added noise to the latent space, therefore failing
to capture common and relevant latent patterns of features
scattered among clients.

2) Client Failures Experiment: In this study, we contrast
the caching method for intermediate results (Sec. IV-E) with
the zero intermediate results method from [19] in handling
client failures. The zero method compensates for missing client
results with zero values. Client failure probabilities ranged
from 0.2 to 0.5 in 0.15 steps. We also ran a baseline test
without client failure handling. Only the f1-score, illustrating
client failure impact, is reported and can be seen in Fig. 6.

The dashed blue line represents the baseline without any
client failures. The displayed f1-scores are eight-run averages
for each probability (p) value. As the client failure probability
p increases, the f1-score drops for both methods due to
compensating missing results with outdated ones, resulting in
suboptimal performance. Yet, cache method shows a more sta-
ble and less drastic decline than the zero method. Comparing
to zero method, the cache method showed its best average and
maximum improvements of 9.15% and 13.16%, respectively,
on the forest dataset. In contrast, its worst performance
was a 3.01% decline with the air dataset, whereas the zeros

0.2 0.35 0.5
p

0.94

0.95

0.96

0.97

0.98

F1
-s

co
re

Intrusion

0.2 0.35 0.5
p

0.90

0.92

0.94

0.96

0.98

Rice MSC

0.2 0.35 0.5
p

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90
Air Passenger Satisfaction

0.2 0.35 0.5
p

0.52

0.54

0.56

0.58

0.60

Forest Cover Type

0.2 0.35 0.5
p

0.840

0.845

0.850

0.855

0.860

Bank Marketing

TabVFL w/ zeros method
TabVFL w/ cached method
TabVFL w/o failures

Fig. 6: Result over different client failure probabilities p on different datasets.

method dropped by 18.04% on the same dataset. The minimal
performance decline was 0.22% for the cache method on
intrusion dataset and 2.71% for the zeros method on bank
dataset. The complete performance results can be found in
Tab. III.

Remarkably, the cache method matched the baseline for
the rice dataset at p=0.2, likely due to the dataset’s sim-
plicity. Furthermore, caching consistently outperformed the
zero method, suggesting higher performance even with client
dropouts, by using more realistic intermediate results instead
of zeros. Zero vectors might introduce learning biases, produc-
ing non-existent patterns. The zero method’s declining perfor-
mance, especially with higher client failure probabilities, con-
trasts with the cache method’s steadier results across datasets.
By using the latest intermediate results, the cache method
maintains some relevant data representations. However, as seen
with the air dataset, performance might drop, influenced by
the dataset complexity and the staleness of cached data.

3) Framework Efficiency and Resource Consumption
Analysis: In this section, we measure and display key perfor-
mance metrics for common VFL systems, including runtime,
network consumption, and memory usage for the TabVFL,
LT, and TabVFL-LE. For the centralized model, we ex-
clude network consumption as it is not federated. For LT,
as pretraining occurs locally at each guest client, we choose
the client with the longest runtime as its representative. No
communication means no pretraining network consumption
for LT. The results are presented in Tab. IV. Training phase
network consumption is gauged using a 4096 batch size for
one iteration of each design.

We base our efficiency assessment on the rice dataset,
which has the most data columns in our evaluations, making its
results indicative. TabVFL achieves the fastest runtime, being
29.75% quicker than LT and 38.04% faster than TabVFL-LE.
TabVFL-LE’s slower pace is due to its aggregation phase
requiring iterative summation for each decision step. LT’s
delay stems from the entire TabNet model pretraining at each
guest client.

In terms of network consumption during pretraining,
TabVFL-LE uses less than TabVFL since it transmits out-
puts (i.e., the latent representation) with a consistent, smaller
dimension compared to TabVFL’s output dimension (i.e., the

same dimension as input data). For finetuning, LT is most
efficient as each guest uses only a fifth of the total latent
dimension, reducing network consumption significantly.

Memory-wise, CT consumes the least, whereas LT uses
the most. Although TabVFL-LE guest clients employ TabNet
encoders, they have similar memory usage to TabVFL because
TabVFL’s total input dimension equals the combined local
input of all TabVFL-LE guest clients.

4) Summary: Across a variety of classification datasets,
TabVFL outperforms both the prior LT design and the al-
ternate TabVFL-LE design while maintaining nearly lossless
performance in comparison to the central TabNet model (CT).
TabVFL better captures the feature correlations among guest
clients and produces higher-quality latent representations. The
cache method shows a significant enhancement in TabVFL’s
model robustness compared to the trivial zeros method at the
expense of a higher memory utilization. Although TabVFL
excels in terms of runtime and memory utilization compared
to LT and TabVFL-LE, it incurs a higher but still practical
network consumption from the extra roundtrips needed by its
U-shape design.

VI. CONCLUSION

In this paper, we present a novel distributed framework
TabVFL that integrates the state-of-the-art tabular model
TabNet to improve latent representation learning on tabular
data in the context of vertical federated learning (VFL). To
protect against direct data leakage, TabVFL employs a fully-
connected layer to preserve data privacy. This is due to the risk
of direct data leakage from integrating TabNet as is in VFL.
TabVFL consolidates intermediate results from all parties
in order to learn a single latent respresentation, capturing
underlying feature correlations. The framework also addresses
the client failures by caching intermediate results. Compre-
hensive experiments across five datasets illustrate remarkable
improvement up to 26.12% on f1-score in latent quality by
TabVFL, surpassing baseline designs. TabVFL demonstrates
superior performance in terms of runtime and memory us-
age, yet encounters reasonable communication overhead when
compared to the baselines.

REFERENCES

[1] D. E. Rumelhart and J. L. McClelland, “Parallel distributed processing:
explorations in the microstructure of cognition, vol. 1: foundations,”
1986. [Online]. Available: https://api.semanticscholar.org/CorpusID:
15291527

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Chapter of the Association for Computational Linguistics,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
52967399

[3] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed,
N. Jaitly, A. W. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and
B. Kingsbury, “Deep neural networks for acoustic modeling in speech
recognition,” IEEE Signal Processing Magazine, vol. 29, p. 82, 2012.
[Online]. Available: https://api.semanticscholar.org/CorpusID:7230302

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, pp. 84 – 90, 2012. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:195908774

[5] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[6] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
NIPS, 2017.

[7] L. Ostroumova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” in Neural
Information Processing Systems, 2017.

[8] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular
learning,” ArXiv, vol. abs/1908.07442, 2019.

[9] S. Yang, B. Ren, X. Zhou, and L. Liu, “Parallel distributed
logistic regression for vertical federated learning without third-party
coordinator,” ArXiv, vol. abs/1911.09824, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:208248396

[10] L. Xia, P. Zheng, J. Li, W. Tang, and X. Zhang, “Privacy-
preserving gradient boosting tree: Vertical federated learning for
collaborative bearing fault diagnosis,” IET Collaborative Intelligent
Manufacturing, vol. 4, no. 3, pp. 208–219, 2022. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cim2.12057

[11] D. Cha, M. Sung, and Y. R. Park, “Implementing vertical federated
learning using autoencoders: Practical application, generalizability, and
utility study,” JMIR Medical Informatics, vol. 9, 2021.

[12] K.-F. Chu and L. Zhang, “Privacy-preserving self-taught federated
learning for heterogeneous data,” ArXiv, vol. abs/2102.05883, 2021.

[13] A. Khan, M. ten Thij, and A. Wilbik, “Communication-efficient vertical
federated learning,” Algorithms, vol. 15, p. 273, 2022.

[14] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in health-
care,” ArXiv, vol. abs/1912.12115, 2019.

[15] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
ArXiv, vol. abs/1812.00564, 2018.

[16] F. Ang, L. Chen, N. Zhao, Y. Chen, W. Wang, and F. R. Yu, “Robust
federated learning with noisy communication,” IEEE Transactions on
Communications, vol. 68, pp. 3452–3464, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:207870310

[17] Q. Chen, Z. Wang, Y. Zhou, J. Chen, D. Xiao, and X. Lin,
“Cfl: Cluster federated learning in large-scale peer-to-peer networks,”
in Information Security Conference, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:250312010

[18] I. Ceballos, V. Sharma, E. Mugica, A. Singh, A. Roman, P. Vepakomma,
and R. Raskar, “Splitnn-driven vertical partitioning,” ArXiv, vol.
abs/2008.04137, 2020. [Online]. Available: https://api.semanticscholar.
org/CorpusID:221090598

[19] J. Sun, Z. Du, A. C. Dai, S. Baghersalimi, A. J. Amirshahi, D. Atienza,
and Y. Chen, “Robust and ip-protecting vertical federated learning
against unexpected quitting of parties,” ArXiv, vol. abs/2303.18178,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
257900954

[20] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[21] L. Lu and N. Ding, “Multi-party private set intersection in vertical
federated learning,” 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom),
pp. 707–714, 2020.

[22] N. Angelou, A. Benaissa, B. Cebere, W. Clark, A. J. Hall, M. A. Hoeh,
D. Liu, P. Papadopoulos, R. Roehm, R. Sandmann, P. Schoppmann, and
T. Titcombe, “Asymmetric private set intersection with applications to
contact tracing and private vertical federated machine learning,” ArXiv,
vol. abs/2011.09350, 2020.

[23] Z. Mao, H. Li, Z. Huang, Y. Tian, P. Zhao, and Y. Li, “Full data-
processing power load forecasting based on vertical federated learning,”
J. Electr. Comput. Eng., vol. 2023, pp. 9 914 169:1–9 914 169:9, 2023.

[24] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy
preserving vertical federated learning for tree-based models,” Proc.
VLDB Endow., vol. 13, no. 12, p. 2090–2103, sep 2020. [Online].
Available: https://doi.org/10.14778/3407790.3407811

[25] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secureboost:
A lossless federated learning framework,” IEEE Intelligent Systems,
vol. 36, pp. 87–98, 2019.

[26] Z. Zhao, H. Wu, A. van Moorsel, and L. Y. Chen, “Gtv: Generating
tabular data via vertical federated learning,” ArXiv, vol. abs/2302.01706,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
256598036

[27] F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, “Vf2boost:
Very fast vertical federated gradient boosting for cross-enterprise learn-
ing,” Proceedings of the 2021 International Conference on Management
of Data, 2021.

[28] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng,
“Federated forest,” IEEE Transactions on Big Data, vol. 8, pp. 843–854,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
165163667

[29] H. R. Roth, A. Hatamizadeh, Z. Xu, C. Zhao, W. Li,
A. Myronenko, and D. Xu, “Split-u-net: Preventing data leakage
in split learning for collaborative multi-modal brain tumor
segmentation,” in DeCaF/FAIR@MICCAI, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:251741520

[30] W. Li, Q. Xia, H. Cheng, K. Xue, and S. Xia, “Vertical semi-federated
learning for efficient online advertising,” ArXiv, vol. abs/2209.15635,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
252668523

[31] Z. Zhao, H. Wu, A. Van Moorsel, and L. Y. Chen, “Gtv: Gen-
erating tabular data via vertical federated learning,” arXiv preprint
arXiv:2302.01706, 2023.

[32] D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail,
T. Cebere, R. Sandmann, R. Roehm, and M. A. Hoeh, “Pyvertical: A
vertical federated learning framework for multi-headed splitnn,” ArXiv,
vol. abs/2104.00489, 2021.

[33] Y. Hu, D. Niu, J. Yang, and S. Zhou, “Fdml: A collaborative machine
learning framework for distributed features,” Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:156053162

[34] Z. Wu, Q. Li, and B. He, “Practical vertical federated learning with
unsupervised representation learning,” ArXiv, vol. abs/2208.10278, 2022.

[35] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated
learning at scale: System design,” ArXiv, vol. abs/1902.01046, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:59599820

[36] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” Proceedings of the Web Conference 2021,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
235324741

[37] L. Li, H. Xiong, Z. Guo, J. Wang, and C. Xu, “Smartpc: Hierarchical
pace control in real-time federated learning system,” 2019 IEEE
Real-Time Systems Symposium (RTSS), pp. 406–418, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:203582658

[38] C. Yang, Q. Wang, M. Xu, S. Wang, K. Bian, and X. Liu,
“Heterogeneity-aware federated learning,” ArXiv, vol. abs/2006.06983,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
219636005

[39] J. Hou, M. Su, A. Fu, and Y. Yu, “Verifiable privacy-preserving
scheme based on vertical federated random forest,” IEEE Internet of

Things Journal, vol. 9, pp. 22 158–22 172, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:237905041

[40] W. Fang, D. Zhao, J. Tan, C. Chen, C. Yu, L. xilinx Wang, L. Wang,
J. Zhou, and B. Zhang, “Large-scale secure xgb for vertical federated
learning,” Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:237396281

[41] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “Blindfl: Vertical federated
machine learning without peeking into your data,” Proceedings of the
2022 International Conference on Management of Data, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:249578995

[42] S. Fischman, “Pytorch implementation of tabnet paper,” https://github.
com/dreamquark-ai/tabnet, 2019.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[44] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” in NIPS,
2000. [Online]. Available: https://api.semanticscholar.org/CorpusID:
7365231

[45] A. Li, H. Peng, L. Zhang, J. Huang, Q.-W. Guo, H. Yu, and
Y. Liu, “Fedsdg-fs: Efficient and secure feature selection for vertical
federated learning,” IEEE INFOCOM 2023 - IEEE Conference on
Computer Communications, pp. 1–10, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257050801

Chapter 3

Background

In this chapter, details are discussed about the general workings and training procedures
employed by federated learning and the TabNet model. Mathematical formalizations and
justifications are also included.

3.1 Federated Learning

Federated Learning (FL) was first introduced by Google in the year of 2016 [17] and at-
tracted attention from ML practitioners and researchers [18, 19, 20]. Clients in the context
of FL can refer to either personal devices (cross-device) or organizations with large datasets
(cross-silo). The former is mainly applicable in Horizontal Federated Learning (HFL) where
devices share common features but different subsets of the data, while the latter is mostly
the case in the VFL setting. A depiction of how the data is partitioned in HFL is shown in
Figure A.5. A key advantage of FL is that it allows for the training of models on a much
larger dataset than would be possible if all the data was centrally located. This is because
FL conveniently aggregates the data from multiple decentralized sources, which can collec-
tively represent a larger and more diverse dataset without the need to move raw data to a
central server. FL also has the potential of being more efficient than traditional centralized
machine learning methods, as it allows for the distributed training of models on multiple
devices, which can speed up the training process.

A client-server architecture is mainly considered for the distributed training of a ML
model in FL [21]. Initially, a global model is initialized at the server and distributed to
all or a subset of clients for training. The selected clients either train the received model
using their local data or only calculate the gradients using their model. Afterwards, the par-
tially optimized local model parameters or the gradients are sent to the server. The server
then aggregates all the incoming client results using an aggregation algorithm. After ag-
gregation, the global model parameters are updated accordingly and shared with all the
participants. The aforementioned steps are iterated until the global model converges to a
stable state (where the global model parameters do not change or do not change signifi-
cantly anymore). Two of the most well-known aggregation methods in FL are FedAvg and
FedSGD. In FedSGD, the gradient calculations of each client are transmitted to the server.

19

3. BACKGROUND

The server then updates its global model weights using Stochastic Gradient Descent (SGD)
by averaging the gradients. For a neural network model, SGD is widely used as an iterative
optimization algorithm for finding the minimum of a function. The formula applied by SGD
for updating the model weights is as follows:

θi+1 = θi−α∇Loss(θi) (3.1)

Here, ∇Loss(θi) indicates the gradients of the loss function with respect to the model
weights θ at iteration i and α is the learning rate. In FedSGD, the average gradients of
each client c ∈M over its local data are calculated by each client:

gradc =
1
nc

∇Loss(θc
i) (3.2)

The average gradients are sent to the server where the weighted average is taken and
summed up for updating the global model as follows:

θ
global
i+1 = θ

global
i −α

M

∑
c=1

nc

N
gradc (3.3)

Here, nc means the amount of samples selected by client c and N is the total amount of
samples of all clients combined. The fraction nc

N is used for averaging since the samples that
are considered by a client c play a significant role in the effectiveness of the model training.

On the other hand, FedAvg is a natural extension of FedSGD that involves sending the
whole local model parameters of each client to the server after conducting multiple local
SGD updates:

θ
local
i+1 = θ

local
i −α∇Loss(θlocal

i) (3.4)

This makes FedAvg more efficient in terms of communication as the local model weights are
only transmitted to the server after the clients are done with multiple local model iterations.
The server then only needs to calculate the weighted average of the local models:

θ
global
i+1 =

M

∑
c=1

nc

N
θ

c
i+1 (3.5)

3.2 TabNet

An architecture that is somewhat similar to the autoencoder is TabNet [14]. TabNet is a
popular DNN model that is specifically designed for tabular data. It utilizes a special atten-
tion mechanism to capture inter-dependencies of features and focus only on the important
parts of the input data. This could help improve the extraction of contextual information
and increase the prediction quality on tabular data. Similar to the autoencoder architecture,
TabNet also has an encoder and a decoder but both components differ dramatically from
the traditional autoencoder in terms of design and information flow. The usual workflow
of TabNet consists of pretraining it on the input data using the encoder-decoder design and
then finetune the model on a classification problem. First, the pretraining phase is explained.

20

3.2. TabNet

During the first step through the encoder, the input data flows through a batch normal-
ization layer. Afterwards, the normalized values are dispersed to a feature transformer and
multiple sub-networks called decision steps. A feature transformer is responsible for further
processing of the normalized features. It does this using fully-connected (FC) layers, batch
normalization (BN) layers and gated linear units (GLU). GLU is an activation function that
works like a filter for the processed values, allowing only some parts of the values through
it. The combination of the three components is called a block and there can be a variable
amount of them in the feature transformers. What makes these blocks so special is that they
can be made either dependent or independent. Independent blocks are specific for each de-
cision step and the dependent blocks are shared throughout the decision steps. The reason
for this is to improve the overall model capacity and to create an efficient way of handling
the model parameters. Furthermore, there exists a normalized residual skip connection be-
tween each block except the first one in a feature transformer. This approach is adopted to
accomplish a stable model performance by preventing potential fluctuations in the variance
of the model. The variance is an indication of how sensitive a model is to changes in the
input data.

Before the feature transformer in each decision step, the information is processed by an
attentive transformer. It consists of four layers: FC, BN, sparsemax and prior scales layer.
The prior scales layer is a matrix that keeps track of the utilization of the features from
previous steps. It also uses a relaxation term to indicate whether to use a particular feature
at multiple decision steps or only at one. The input of the previous decision step first passes
through the FC and BN layers, which is then multiplied with the prior scales. The result is
then processed by the sparsemax layer by which the values are normalized using a sparse
variation of the softmax algorithm. A sparse mask matrix is generated that is applied for
soft instance-wise selection of the most prominent features. The reason behind the feature
selection is efficiency as unnecessary computations on irrelevant features are avoided.

The outcome is proceeded to the feature transformer and then split into a part that de-
termines the outcome of a decision step and a part that is sent to the next decision step for
further processing. The former part is fed through a ReLU activation function and deter-
mines the contribution of the decision step towards the final decision. The latter part is fed
into the attentive transformer of the next decision step.

Formally, The full operation that is conducted by the attentive transformer on a particu-
lar decision step is as follows:

attentive out = f ∗M (3.6)

Here, f is the combined function of both FC and BN layers. M is the masked matrix
resulting from the sparsemax operation on multiplication of the prior scale matrix P and the
result of f on the split feature transformer output from the previous decision step:

M = sparsemax(P · f (Xsplit)) (3.7)

P at a decision step is the difference of the relaxation term ρ with the mask matrices of the
previous decision steps N:

P =
N

∏
step=1

(ρ−Mstep) (3.8)

21

3. BACKGROUND

Then the attentive transformer output is processed by a feature transformer f eat of the
current decision step and split into values that are sent towards the next decision step and
values that are used for the decision making:

f eat out = f eat(attentive out) (3.9)

outdecision,outstep+1 = split(f eat out) (3.10)

The information is sequentially processed through all the decision steps. Finally, the deci-
sion outcomes are aggregated by means of summation to obtain the resulting decision which
represents the latent representation of the input samples:

latent out =
total steps

∑
step=1

ReLU(outdecision) (3.11)

Moreover, the features are masked randomly using a Bernoulli distribution before enter-
ing the encoder during pretraining. A binary mask S is created with the same shape as the
input data. The entries containing zeros represent masked feature values and entries with
ones indicate the known features. The encoder is then trained on the features that are known
by setting the prior scales in the attention transformers to (1 - S). The task of the decoder
is then to reconstruct and thus predict the missing masked values from the encoded repre-
sentations of the encoder. This helps in learning the feature representation of the input data
before training on a classification task to lower the training time and enhance the predic-
tion quality. The decoder has the same multi-decision step structure as the encoder but it
only contains a feature transformer and a FC layer in each step. The output of each step is
summed to reconstruct the masked feature values.

f̂ =
total steps

∑
i=1

FCi(f eati(latent out)) (3.12)

Where f̂ constitutes the predicted masked feature values and f eati along with FCi are the
feature transformer and the fully connected layer function respectively at decision step i.

The specific loss function used by TabNet calculates the difference of the predicted
and known feature values while taking the initial binary mask matrix into consideration. It
additionally normalizes the feature predictions using the standard deviation of the known
feature values to account for different feature value ranges:

B

∑
b=1

D

∑
j=1

∣∣∣∣∣∣ (f̂b, j− fb, j) ·Sb, j√
∑

B
b=1(fb, j−1/B∑

B
b=1 fb, j)2

∣∣∣∣∣∣
2

(3.13)

f̂b, j stands for the reconstructed feature j of sample b. fb, j is the true feature value j of
sample b. S represents a the binary mask matrix. B is the batch size.

22

3.2. TabNet

During finetuning, only the encoder is used in combination with a FC layer for predic-
tions and to further finetune the model as follows:

ŷ = FCpred(latent out) (3.14)

The default classification loss used by TabNet is cross entropy on the normalized predicted
vector ŷ of a classification task with K classes:

Lcross =−
K

∑
c

yclog(ŷc) (3.15)

A sparsity regularization term based on entropy (measure of disorder in the sparsemax mask
matrix) is added to the classification loss:

Lsparse =
total steps

∑
i=1

B

∑
b=1

D

∑
d=1

−Mi
b,d log(Mi

b,d + ε)

total steps ·B (3.16)

The total finetuning loss is evaluated using the following terms:

Ltotal = Lcross +Lsparse ∗λsparse (3.17)

The sparsity regularization term offers more control over the feature selection of the sparse-
max function. λsparse can be tuned to either encourage or discourage sparsity.

The attention mechanisms in TabNet also provide a built-in approach of deducing feature
importance from the generated masks at each step. However, feature interpretability is be-
yond the scope of this thesis and hence not considered.

23

Chapter 4

Extended Related Work

This chapter presents an extended overview of frameworks that focus on prediction models
related to VFL. The existing client failure handling methods are also covered.

4.1 Prediction models in VFL

Trains One Latent Representation Client Failure Handling Tabular Model Imposes Autoencoder Structure
CE-AE-VFL [13] ✗ ✗ ✗ ✓

DIMIP [16] ✗ ✓ ✗ ✗

FedOnce [22] ✗ ✗ ✗ ✗

AE-VFL [11] ✗ ✗ ✗ ✓

TabVFL ✓ ✓ ✓ ✓

Table 4.1: Table showing differences in framework features between relevant related work
in VFL and current work (TabVFL).

4.1.1 Linear models

Until now, frameworks for VFL are quite limited compared to other FL types. This is due
to design challenges and specific settings that should be adhered to. Nonetheless, multiple
frameworks have been implemented to realise the learning process of ML models in a VFL
setting.

There have been efforts to utilize the logistic regression model in a VFL context [23].
Within the framework, an architecture is employed featuring a coordinator and two parties.
The coordinator can be used as a reliable entity with the main responsibility of providing a
secure communication of intermediate results between parties and for creating the encryp-
tion keys. In addition to the encryption, a random mask is added to the gradient information
in order to prevent one of the parties knowing the the true gradient values which can lead to
a potential privacy breach. The coordinator can be a separate node or a logical unit in one
of the parties.

There also exists a simplified VFL design based on logistic regression that omits the
coordinator and utilizes peer-to-peer communication instead [24]. In this case, the host is

25

4. EXTENDED RELATED WORK

responsible for a secure communication between it and the guest client. Only the loss values
of host and the prediction probabilities of the guest are exposed. This is done in an effort
to reduce the risk of data leakage by minimizing the number of parties involved in the sys-
tem and decreasing the number of communication round-trips. Moreover, this measure also
aims to address possible trust issues that may occur between the parties and the coordinator.
The VFL architecture is also applied for other classical ML models such as SVM [25] and
Linear Regression [26] to name a few.

4.1.2 Tree-based models

The linear ML models cannot handle large and complex data with non-linear patterns well
enough which is quite common in real-world tabular datasets. Tree-based models have
shown state-of-the-art results in many ML competitions [27, 28, 29]. For this reason, train-
ing tree-based models in order to exploit their predictive power while maintaining data
privacy is of great importance for businesses in VFL.

Work has been done to integrate the decision tree model into VFL [30]. This is done
using the well-known algorithm ID3 [31] for building decision trees for classification tasks.
ID3 is a recursive process where the dataset is split into subsets based on the most significant
feature(s) at each node of the tree. The splitting occurs by calculating the entropy of before
and after a particular split. The best split is considered the one with the highest information
gain or the lowest entropy value. The framework also extends the two-party setting by
supporting multiple parties.

A random forest has also been implemented into the VFL context [32]. It uses a third-
party server for encrypting the communicated values securely. Each party trains only partial
tree while only one party is able to build the complete tree. All parties have access only
to the encrypted labels. The usual bagging method is used to randomly choose subsets
of features to process for splitting the trees. The framework has been shown to achieve
comparable results to the non-federated setting.

SecureBoost [33] is able to train a tree-based boosting model, such as XGBoost, without
sacrificing model utility. It is shown that SecureBoost performs similar to the non-federated
setup of XGBoost and other GBDT models. Unlike the ID3 decision tree implementation
in VFL, it can handle both discrete and continuous data by using Gini index for splitting.
However, similar to the implementations of ID3 decision trees and random forest in VFL,
the communicated results have the potential to leak sensitive information about the partic-
ipants’ data. The data distribution statistics of the guest clients can be revealed to the host
by sharing the split information unencrypted. Moreover, the host is given the coordinator
role for the training process which exposes prediction paths of the tree, leading to potential
inference attacks on the feature values of the guests.

Pivot [34] is a framework that is built to handle ensemble models and classic tree-based
models. Its main contribution is the enhanced communication protocol that mitigates the
leakage of the transmitted results. It also protects against label leakage in cases where
clients collude and work together to infer the leaf node paths of other parties. The label

26

4.1. Prediction models in VFL

and feature information of all participants are hidden by encryption. The encryption is
achieved by using a special form of Homomorphic Encryption (HE) [35], allowing limited
computations on the encrypted data without incurring high communication overhead. The
splits and leaf node information of the trees are also encrypted to protect the tree models.
This prevents a party from knowing the full decision tree paths and leaf node values during
communication. The framework also has the ability to utilize another cryptographic tech-
nique called Secure Multi-Party Computation (MPC) [36], which enables multiple parties
to collaboratively compute a function over their inputs while keeping those inputs private.
The downside of using MPC is that it is computationally inefficient compared to HE. For
this reason, Pivot supports both HE and MPC to enhance security and improve efficiency.
More specifically, HE is mainly used for local calculations on encrypted data, while MPC
is used during joint operations, e.g., deciding the best split of the tree. This prevents the
involved parties from deducing and reconstructing sensitive information from the shared
calculations.

The mentioned frameworks are not efficient due to the sequential nature of training the
trees. VF2Boost [37] is another gradient boosting framework that focuses mainly on im-
proving efficiency and speedup of the training process. The framework makes use of a
scheduler-worker design to enable concurrent computations and synchronizations through-
out all the parties. Moreover, further optimizations are implemented that specifically speed
up the cryptographically-secured communication of the computations. These optimizations
entail the expedition in histogram construction through the grouping of multiple histograms
into one and the re-ordering of the gradient accumulations in the histogram bins. The latter
is done to minimize scaling operations in the HE calculations.

4.1.3 Deep learning models

With the increasing popularity of DNNs, most of the recent work in VFL focuses on apply-
ing neural networks into VFL. To achieve this, splitNN architecture is mainly applied. In
[38], HE is applied for protecting the transmitted value during the forward propagation step
of the training. However, due to the iterative training process and matrix operations, most
cryptographical encryption techniques are rarely considered because of the high computa-
tional cost and large communication overhead [39, 40, 41]. Hence, intermediate results are
transmitted in plaintext in most of the related papers. Still, splitNN is privacy preserving as
only the transformed intermediate results are sent by passing the raw data through the local
part of the total network. A neural network model can be split in different shapes ([42, 43])
which makes it adaptable to the required model structure.

In [43], different aggregation methods in splitNN are experimented with to provide a
valuable insight into their effectiveness and impact on performance. The authors tested
the following aggregation techniques on intermediate results: summation, average pooling,
multiplication, max pooling and concatenation. Max pooling is found to yield the highest
performance where, in some cases, it could outperform a centralized model with a slight
margin on some datasets. However, this could be caused by insufficient re-runs of the

27

4. EXTENDED RELATED WORK

experiments which causes variability in the evaluation results influenced by random factors.
It is argued that the use of average pooling method is preferable in order to ensure a secure
aggregation protocol at the expense of a small performance hit [44].

There have also been efforts to alleviate the communication overhead present in VFL. In
[13], separate autoencoders are utilized for training. Each guest possesses an autoencoder
model which is trained on the local feature data. Each autoencoder learns a compressed
latent representation of the local feature data for feature extraction. Afterwards, only the la-
tent representation of the samples are sent to the host client for training a prediction model,
e.g., logistic regression. The latent dimension is varied using different compression rates.
A well-known feature extraction technique called Principal Component Analysis (PCA) is
also considered. PCA works by reducing the dimensionality of the original data through the
projection of the data onto new linear and uncorrelated axes (principal components). For
most of the tested datasets, both the autoencoder and PCA compression methods lead to de-
creased performance compared to the centralized model. The autoencoder results show that
compressing the data leads to worsened performance when the compression is increased.
This is due to the loss of relevant patterns in the data. Also, the data privacy is preserved
since only the compressed representation of the raw data is transmitted.

In [11], the authors impose the training of multiple autoencoders with higher latent di-
mension compared to the input dimension of features. It is claimed that the larger latent
dimension would decrease the information loss compared to using a compressed latent di-
mension while ensuring privacy of the raw data. Notably, higher computation costs are
required because of the higher latent dimension. Remarkably, performance degradation is
also noticeable like in [13] from the added noise to the high-dimensional latent representa-
tion. It is mentioned that a tabular neural network is used for predictions and for evaluation,
but it is not indicated what tabular model is used. This makes the method with which the
evaluation results are gathered ambiguous.

Adapting the Variational Autoencoder (VAE) model into VFL is also considered [12].
The goal is to learn a latent representation that resembles the Gaussian distribution. A
gaussian distribution is a popular probability distribution that is centered around the mean
of the data (where most of the data points lie). The same autoencoder architecture in VFL
is used, but now the latent representations are generated by random sampling from the
gaussian distribution. The forward propagation results are encrypted while the gradients are
also masked to prevent reverse engineering attempts.

FedOnce framework [22] enforces one communication round between the guests and
host clients using a splitNN design. The guest clients first train their own partial neural
network using an unsupervised technique called Noise As Targets. The technique is generic
and different from autoencoders as it does not need partial supervision from reconstructing
features to be able to learn meaningful representations. The host only needs to collect
the representations from all the guests once to train a combined model using its own label
information and local feature data. This prevents repeated communications of intermediate
results in each iteration, meaning that only one communication round is required to send the
learnt local representations in the process. Furthermore, an extension to differential privacy
(DP) [45], a method for protecting data privacy by the addition of noise, is proposed that is
able to reduce the privacy loss between parties.

28

4.2. Client Failure Handling in VFL

BlindFL [46] is another prediction framework in VFL that enhances the splitNN de-
sign with encryption techniques in a two-party setting, preserving data and model privacy.
It extends the splitNN architecture by introducing source layers, which combine the data
of participants for proper feature processing of categorical, numerical and sparse feature
values. The source layers also provide computational privacy by employing HE and MPC
methods to preserve data privacy. HE is applied to enable local calculations on encrypted
data. MPC is used to protect the model gradients and weights by ensuring that no party can
infer valuable information about the full model. BlindFL achieves remarkable performance
with notable privacy guarantees at the cost of communication and computational overhead.

4.2 Client Failure Handling in VFL

Most of the VFL research papers assume that clients stay online during training and in-
ference. However, this assumption does not always hold in practice due to heterogeneous
systems and network. Nonetheless, only a few papers have considered researching the im-
pacts of client failures in VFL [47, 48, 16]. In this section, the words ”client failure” and
”client dropout” are used interchangeably.

In [47], multiple host clients are supported and client failures that could occur dur-
ing training of a tree-based random forest model are handled through dynamic joins and
dropouts mechanisms. The federator efficiently modifies client-specific statistics by track-
ing joined and dropped clients. The calculations specific to the dropped clients are disre-
garded and the index data is updated by the server. This leads to less computations with the
expense of fewer trees being generated, possibly degrading the predictive power. In cases
where a host client is dropped, the federator executes additional synchronization steps by
also updating the label indices. Entity alignment is also executed in cases of multiple partic-
ipating host clients. The evaluation results of the dynamic joins and dropouts feature show
a stable accuracy trajectory in situations where high amounts of clients are dynamically
changed between ”joined” and ”dropped” states.

The impact of client failures in a splitNN setting within the VFL context has been stud-
ied for the first time in [48]. The methodology consists of dropping clients in a random
fashion during training and inference time. The setup entails four clients. The outcomes of
the experiments have shown that client failures can negatively impact the performance of a
DNN model in VFL. This effect is exacerbated when the failed clients increase. Though, the
performance drop is more noticeable during inference phase than during training. Remark-
ably, client failures also impair the convergence rate of the model leading to longer runtimes
and inefficient training. Furthermore, different aggregation methods have been researched
in cases of client failures. The average pooling method, which downsamples the batch of
samples using averaging, is shown to be the most robust during inference. However, no clear
or significant differences in evaluation results could be identified during training between
the tested methods.

In [16], the negative effects of client failures in a splitNN setup are addressed. The
authors claim that the performance degradation of the VFL model is due to the dependabil-
ity of the host client on the intermediate representations of the guest clients. A method is

29

4. EXTENDED RELATED WORK

proposed that employs a dropout layer to the local DNN model of the host client. During
training, the host then naturally mimics the failing of a client by replacing some representa-
tions from the guest clients with zeros while preserving model performance. This way, the
host client becomes more independent and robust against client failures during inference.
The experiments are conducted in a two client setup, with one of the clients acting as the
host. The results show that adapting the proposed dropout method could significantly im-
prove the accuracy of the model by more than 7% without the contribution of a failed client,
enhancing the model robustness.

30

Chapter 5

Privacy Analysis Of The Proposed
Framework

In this section, the privacy of TabVFL is analysed and the proposed solution is further
elaborated while adhering to the threat model described in the research paper (chapter 2).
Further privacy discussion is given at the end by involving privacy related splitNN work in
VFL.

5.1 BatchNorm Direct Data Leakage

Due to the sequential dependencies in the TabNet model, splitting it to make it applicable
in the VFL context was not trivial. Assigning the BN layer to each guest client given the
split of the encoder is not sufficient to preserve the data privacy of the guest clients. The
data leakage from the guest-assigned BN layer of the original encoder is possible in specific
cases during forward propagation. To show how that is possible, the following BN formula
is analysed:

BatchNorm(x) =
x−E[x]√
Var[x]+ ε

· γ+β (5.1)

Here, E[x] represents the mean and Var[x] represents the variance of some batch x.
The mean and variance are estimated using running averages to obtain consistent inference
behaviour. The standardization occurs feature-wise. Furthermore, each feature is scaled by
the corresponding γ factor and shifted using the corresponding β value. Both γ and β are
initially set to a vector of one and a vector of zero respectively. Both vectors are learned
and updated throughout the training process.

The data leakage risk is much higher at the start of the training as γ and β do not con-
tribute towards the batch normalization. Moreover, it is also possible that later during the
training, the values of γ and β are not significantly updated which could also lead to zero
contribution towards the BatchNorm calculation. This allows for a data leakage problem in
cases where the data is already standardized which could be from preprocessing or that (a
subset of) the features happen to follow a standard normal distribution. Following the equa-

31

5. PRIVACY ANALYSIS OF THE PROPOSED FRAMEWORK

tion, the x representing the feature information in batches remains unaltered, effectively
causing BatchNorm to behave as an Identity function, wherein the output equals the input.
Hence, the original local data of guest clients is leaked to the host client.

5.2 FC layer Inclusion

To prevent the mentioned data leakage, an effective solution would be to add a trainable FC
layer after the BatchNorm layer in each guest client. The FC layer is able to transform the
BatchNorm using the following matrix multiplication:

WxT = z (5.2)

Here, W is the weight matrix of the FC layer, x is the input batch of samples and z is the
transformed output. The input and output dimension of the FC layer is set to be exactly
the same as the original raw feature data to mitigate any information loss or possible noise
addition in the embedding. This is also mandatory from the fact that the encoder in the host
client expects the binary mask dimension to be the same as the intermediate results, which
prohibits the possibility for choosing a different output dimension of the FC layer. The
initialization of weights is done using Xavier normal distribution [49] and no bias terms are
included to be consistent with the initialization of TabNet components. During the training
phases, a transformed representation of the original feature data is sent to the host from the
learnt embedding of the FC layer. Therefore, the BatchNorm cannot leak any data outside
the guest clients.

5.3 Further Privacy Discussion

The finetuning structure is known to be susceptible to label inference attacks from exposing
gradients to guest clients [50, 51]. [50] assumes binary classification task for label inference
which is not always practical. Also, one of the proposed attacks utilizes a model to infer
labels. Although it is difficult to defend against model-based label inference attacks, they
heavily depend on the availability of auxiliary data. The utilization of an autoencoder to
hinder the efficacy of model-based label inference attacks in particular cases has shown to
be possible [52]. In [51], colluding parties are assumed for inferring labels which is not
applicable given our threat model. Possible solution is to add Gaussian noise [53] to the
communicated gradients in order to complicate the label inference process for attackers.
Correlation reduction methods also exist for defending against label inference attacks by
decreasing the correlation between the intermediate embeddings from guest clients and the
label information in the host [54].

Reconstruction of the feature data corresponding to guest clients is also found to be
possible in strict settings [55, 56], imposing a serious threat to the data privacy. In [55],
the authors assume that the model parameters are known by the server which is not possible
in our case according to the threat model. [56] utilizes a generative model and auxiliary
data as a model inversion technique for inferring the feature data of guest clients. However,
the authors assume that the adversary already has a collection of predictions and access to

32

5.3. Further Privacy Discussion

the model parameters. [57] focuses on recovering features from intermediate results sent
to the host client by assuming that the guest clients possess binary features. This is done
by solving inverse equation of the linear transformation of a FC layer. The authors also
claim that it is not possible to recover the data when nothing is known about feature data of
guest clients since there are infinitely many solutions. Reducing the correlation between the
raw data and intermediate embeddings can be a viable solution for minimizing the risk of
feature inference as well [58]. However, inferring feature information is difficult to achieve
in practice since the models are typically black box to the adversary and strong assumptions
about the features need to be made.

Since the finetuning structure of TabVFL is not the main focus of this study, we do not
apply the mentioned solutions. Also, incorporating the defence methods would unfairly and
significantly effect the comparison of latent quality with the prior work due to the utility-
privacy trade-off [59]. All the papers about privacy leakage attacks in VFL presume that
label information is available to one of the parties. To the best of our knowledge, no attack
exists that considers the proposed pretraining setting of TabVFL where label information
is absent.

33

Chapter 6

Additional Experiments

This section goes into the details of the additional experiments conducted on TabVFL and
the baseline designs. More specifically, convergence rates of all designs are measured and
compared against TabVFL. Moreover, ablation studies are conducted on TabVFL to ac-
quire better insight into how its components impact the performance. Lastly, the latent
quality experiments are also conducted in the conventional two party setting to show how
that affects the model performance in each design. To recap, CT represents the central-
ized TabNet model without federated learning, LT is the prior work design in VFL and
TabVFL-LE is the alternative design of TabVFL. For further details about the baselines,
refer to the research paper chapter 2. Furthermore, the designs of TabVFL-LE and LT are
shown in Figure A.3 and Figure A.4 respectively.

6.1 Convergence Analysis

For this experiment we report the training loss and f1-score validation metrics during fine-
tuning of all designs. For this experiment, no early stopping is used in order to show the
full trajectory of the evaluation values. In Figure 6.3, the results of the convergence of each
design are shown over the amount of epochs. The training loss progression as well as the
validation metric scores are plotted for each dataset.

Both CT and TabVFL generally converge to the same point in terms of training loss and
validation metrics. This is expected as the latent quality results of both models are overly
consistent. For most of the datasets, TabVFL also exhibits a convergence rate that closely
aligns with CT, indicating nearly identical efficiency.

A notable observation can be made for the validation metrics of the intrusion and
bank datasets. TabVFL-LE shows to be noisy and behaves erratically instead of smoothly
converging like in other designs. This behaviour could be attributed by overfitting. The
structure for training TabVFL-LE with summation as aggregation method might be too
complex for or sensitive to the relatively simple intrusion and bank datasets which
leads to the model capturing the noise in the data instead of relevant patterns. Overall,
TabVFL-LE seems to have the highest convergence rate compared to other designs. A
reason for this could be that the feature correlations are captured per decision step by aggre-

35

6. ADDITIONAL EXPERIMENTS

0 20 40 60
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Lo

ss

Intrusion

0 20 40 60
Epochs

0.0

0.5

1.0

1.5

2.0

Rice MSC

0 20 40 60
Epochs

0.2

0.3

0.4

0.5

Bank Marketing

0 20 40 60
Epochs

1

2

3

4

Forest Cover Type

0 20 40 60
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Air Passenger Satisfaction
Convergence Rate Experiment Training Loss (epochs=200)

TabVFL
CT
LT
TabVFL-LE

Figure 6.1: Finetuning training loss plots.

0 20 40 60
Epochs

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Intrusion

0 20 40 60
Epochs

0.2

0.4

0.6

0.8

1.0
Rice MSC

0 20 40 60
Epochs

0.5

0.6

0.7

0.8

0.9
Bank Marketing

0 20 40 60
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Forest Cover Type

0 20 40 60
Epochs

0.6

0.7

0.8

0.9

Air Passenger Satisfaction
Convergence Rate Experiment Validation Metrics (epochs=200)

Figure 6.2: Finetuning validation f1-score plots.

Figure 6.3: Finetuning convergence plots show trajectory of training loss and f1-score vali-
dation metric over 60 epochs for each design on different datasets.

gating each guests’ encoder decision step outputs. Since each decision step selects different
features for processing, an optimal set of feature correlations can be found faster during pre-
training. This facilitates the finetuning process leading to faster convergence rate. This can
be seen by the fact that the training loss of the model in all datasets decreases and converges
to an optimal solution faster than other designs. The plots also reveal that TabVFL-LE
manages to converge at the same point in terms of training loss as TabVFL and CT for
the datasets forest, rice and intrusion. This indicates that the data patterns in the
aforementioned datasets are simple to capture than other datasets, leading to identical con-
vergence points. The overfitting and the suboptimal convergence on most datasets could
also be caused by the model complexity of TabVFL-LE.

One can also observe that LT performs the worst compared to other designs. This is
evident by the higher training loss and the low validation scores when the model converges.
In addition, LT has the slowest convergence rate for most of the datasets. During pretraining
step, each guest client learns a separate latent representation of its own local feature data.
When the models are collaboratively finetuned, it becomes considerably difficult to find
one overarching latent representation using multiple distinct local models which leads to
suboptimal convergence.

As expected, TabVFL and other designs never surpass the baseline model CT in terms
of training loss and validation scores. To conclude, TabVFL-LE is shown to achieve the

36

6.2. Ablation Studies

Table 6.1: Evaluation results of the ablation studies on TabVFL. The presented values are
averages of the six predictors. The best results of each evaluation metric are highlighted in
bold per dataset.

Dataset
TabVFL

baseline w/o pretraining w/o finetuning
Accuracy (%) F1-score ROC-AUC Accuracy (%) F1-score ROC-AUC Accuracy (%) F1-score ROC-AUC

Intrusion 98.23 0.982 0.991 98.23 0.982 0.991 87.14 0.848 0.898
Rice MSC 99.79 0.998 1.0 99.79 0.998 1.0 86.13 0.859 0.962

Bank Marketing 89.14 0.881 0.863 88.52 0.869 0.817 86.82 0.826 0.596
Forest Cover Type 72.04 0.712 0.852 71.02 0.702 0.842 50.76 0.441 0.627

Air Passenger Satisfaction 93.85 0.938 0.976 92.45 0.924 0.968 59.82 0.583 0.621

highest convergence rate compared to TabVFL and the other models but it tends to exhibit
symptoms of overfitting due to its complexity. In terms of convergence, TabVFL demon-
strates stable convergence while consistently achieving high validation scores and has either
consistent or lower training loss for most of the datasets compared to other designs (exclud-
ing CT).

6.2 Ablation Studies

For this experiment, different components applied in the TabVFL framework are investi-
gated to show their impact on the model performance. The components to be investigated
are (1) finetuning and (2) pretraining. The baseline is chosen to be the standard config-
uration of TabVFL with pretraining and finetuning enabled. In the case where pretraining
is disabled, TabVFL is randomly initialized for finetuning without inheriting the weights
of the pretrained model. On the other hand, when finetuning is disabled, the model is pre-
trained and the latent of only the pretrained model is used for evaluation. The average eval-
uation results of the six predictors are reported. The results of the ablation study are shown
in Table 6.1. Important observation can be made regarding the significance of the finetuning
component in terms of performance. The biggest drop in performance for most datasets is
caused by removing finetuning from the training process. For both datasets intrusion
and rice, the finetuning performance is consistent with the baseline results. This is most
likely attributed by their simplicity. The results demonstrate that finetuning is essential in
TabVFL for specializing its latent representations to a certain task for improved perfor-
mance. Moreover, removing pretraining does not lead to performance drops as severe as
when finetuning is removed. During finetuning, the model still has task-based knowledge
and can compensate for the non-existent general feature representation from pretraining.
In contrast, when the model only relies on pretraining, the generated latent representation
could be scattered and not adapted to the task at hand which leads to low quality latent data
and hence low performance. The ablation study accentuated the greater importance of the
finetuning component in contrast to the pretraining component concerning the enhancement
of latent representation quality.

37

6. ADDITIONAL EXPERIMENTS

6.3 Latent Quality Evaluation In Two Guest Client Setup

Until now, we evaluated the latent quality of TabVFL and other baseline designs in VFL
using a five client setup. However, most of the VFL frameworks experiment with two client
setup [60, 61, 24]. To adhere to this trend, we present additional latent quality experiments
in a two client setup. A batch size of 64 is used with max epochs of 300. To be consistent
with the setup of the research paper, we also apply early stopping and keep latent dimension
value set to five for all the designs. The evaluation pipeline introduced in the research
paper is also followed here. The results of this experiment are shown in Figure 6.4. The
increase/decrease in terms of accuracy, F1-score and ROC-AUC in the two client setup
compared to the five client setup are shown in the tables Table 6.2, Table 6.3 and Table 6.4
respecively. In this section, the results are analysed and justified.

50

60

70

80

90

100

A
cc

ur
ac

y

Intrusion Rice MSC Bank Marketing Forest Cover Type Air Passenger Satisfaction

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Two Guest Clients Latent Quality Evaluation Results (epochs=300 OR early stopping)

CT
LT
TabVFL-LE
TabVFL

Figure 6.4: Latent quality results of TabVFL and other baselines on five classification
datasets in two guest client setup. The average accuracy, F1-score and ROC-AUC scores of
the six ML predictors used in the evaluation pipeline are reported for each design.

In general, LT shows slight improvement in latent quality results for all the metrics
compared to the five client setup presented in the research paper chapter 2. It is more likely
that correlated features end up in the same guest client which improves the capturing of
those correlations, leading to enhanced latent representation quality. This is however also
dependent on the quality of the datasets. A decline in accuracy, F1-score and ROC-AUC
can be observed for LT on the intrusion and bank datasets. This can occur due to the
inherent noisy features in the mentioned datasets which can be captured with ease when the
latent dimension is increased, risking overfitting and degraded latent representation quality.
In cases of two guest clients and a latent dimension of five, the latent dimension of guest
one and guest two are assigned as three and two respectively. This is higher than latent
dimension of one that was assigned for each guest in the five clients setup. Even though

38

6.3. Latent Quality Evaluation In Two Guest Client Setup

the performance of LT increases on the majority of the datasets, it still results in inferior
performance compared to other designs.

Furthermore, performance increase and decrease for TabVFL-LE is insignificant on
most of the datasets. However, the design performance increases significantly on the in-
trusion dataset. This phenomenon could be attributed by the decrease in model complex-
ity from the fact that only two encoders need to be trained with the same latent dimension
distribution as LT compared to five encoders in the five clients setup. TabVFL-LE was able
to better capture the feature correlations and learn an improved latent representation regard-
less of the noisy features. This indicates that the way TabVFL-LE trains is more robust
than LT. The noise could be lessened or eliminated by taking each encoder decision step
into account and aggregating them, improving the latent quality in the process. Notably,
TabVFL-LE shows consistent performance that is on par with TabVFL and CT.

Lastly, TabVFL did not show any significant performance differences in the two clients
setup. The latent quality is barely affected and the differences are negligibly minuscule due
to the aggregation of intermediate results and the learning of one latent representation. The
reason is that the correlations between client features are captured regardless of where they
are located.

In conclusion, it has been shown that the latent quality results of TabVFL are stable
and consistent with the five client setup. The latent quality is improved on one dataset in
the case of TabVFL-LE, resulting in overall consistent performance with TabVFL and CT.
The prior work design LT shows significant improvement on most of the datasets due to the
enhanced correlation capturing from improved feature localizations.

39

6. ADDITIONAL EXPERIMENTS

Table 6.2: Accuracy increase/decrease of the latent quality in case of two guest client setup
compared to the five guest client setup. The reported values are in percentages.

Dataset
Accuracy

LT TabVFL-LE TabVFL
Intrusion -4.19 5.90 0.26
Rice MSC 2.13 -0.05 -0.05
Bank Marketing -0.75 0.28 0.16
Forest Cover Type 7.49 0.89 0.88
Air Passenger Satisfaction 13.74 0.33 -0.53

Table 6.3: F1-score increase/decrease of the latent quality in case of two guest client setup
compared to the five guest client setup. The reported values are in percentages.

Dataset
F1-score

LT TabVFL-LE TabVFL
Intrusion -4.89 8.26 0.30
Rice MSC 2.18 -0.10 -0.10
Bank Marketing -1.47 0.68 0.45
Forest Cover Type 9.92 0.95 0.95
Air Passenger Satisfaction 14.98 0.32 -0.52

Table 6.4: ROC-AUC increase/decrease of the latent quality in case of two guest client
setup compared to the five guest client setup. The reported values are in percentages.

Dataset
ROC-AUC

LT TabVFL-LE TabVFL
Intrusion -1.19 0.30 0.20
Rice MSC 0.58 0 0
Bank Marketing -3.30 0 -0.57
Forest Cover Type 6.04 0.46 0.46
Air Passenger Satisfaction 13.67 0.20 -0.30

40

Chapter 7

Conclusions and Future Work

In this chapter, the conclusive remarks are given by revisiting and answering the formulated
research questions using the gathered results and properties of the proposed framework.
Furthermore, the future work ideas are discussed.

7.1 Conclusions

1. What design can be employed to effectively capture feature correlations and im-
prove latent representation learning while leveraging TabNet in VFL?

TabVFL successfully integrates TabNet into the VFL context by splitting the encoder and
decoder among the host and guest clients using a U-shaped splitNN design. This structure
allows the intermediate results of all participating parties to be combined in order to train
one model and capture the overall correlation between tabular features. Furthermore, one
latent representation is learned to extract relevant feature patterns among the parties instead
of isolated latent latent representations as in prior work.

2. How is the data privacy preserved in the TabVFL design?

From the privacy analysis discussed in chapter 5, it is made evident that the batch normal-
ization (BN) layer that is assigned to each guest client causes a serious risk for a direct data
leakage. This could happen in cases where the features are already standardized, which
renders the BN layer useless. This privacy issue is resolved by adding a fully-connected
(FC) layer after the BN layer. The FC-layer is able to transform the outputs of the BN layer
in order to prevent it from leaking data directly.

3. How can the disruptive effect of client failures during training be reduced in Tab-
VFL?

The existing literature has proposed a method for addressing missing values of failed clients
by replacing them with zero values as a form of compensation. However, this method adds

41

7. CONCLUSIONS AND FUTURE WORK

a substantial bias to the learning process which deteriorates the model performance and the
learned latent representation. With the aim of minimizing the bias issue, we proposed a
caching method that continuously stores intermediate results of guest clients in an itera-
tive basis. When a guest client goes offline, its corresponding cached results are utilized to
maintain the highest level of correlation between the processed intermediate results. It was
empirically shown that the proposed method significantly stabilized the model performance
compared to the prior method, even in cases where it was highly probable that clients could
fail.

The development of TabVFL sets forth a considerable step forward in designing VFL com-
patible latent representation learning systems for tabular data, offering elevated performance
and stability in real-world applications.

7.2 Future work

Two configuration have been considered for implementing TabNet into VFL, namely Tab-
VFL and TabVFL-LE. However, TabNet could take on another design in VFL. The whole
decoder component could be held locally by each guest client, while the encoder is split
among clients as in TabVFL. This would minimize the risk for reconstruction at the host
site as it has no knowledge about the decoder weights. However, this design would incur
higher communication overhead during pretraining compared to TabVFL and TabVFL-
LE. Each encoder decision split output is sent to each guest for the decoder to process
which is larger than the split decoder output in TabVFL. In addition, the total dimension
of the combined intermediate results of the guest clients is larger than the latent dimen-
sion that is sent to the host in TabVFL-LE. Regardless of the expected communication
overhead, the design might perform well in terms of latent quality which is to be verified
through experimentation.

Furthermore, diverse decoder splits in TabVFL can be explored instead of uniform
splits. How different decoder splits affect the performance of the proposed design is still
unknown, offering an opportunity for extended experimentations. If the assigned split di-
mension for a guest client surpasses its input dimension, then the expected outcome is an im-
provement in performance on complex datasets due to the enlarged model capacity. Though,
this could lead to worse performance due to higher risk of overfitting on inherently simplis-
tic datasets. On the other hand, if a small split dimension is assigned to the guest client, the
model capacity decreases which might improve performance on simple datasets but not so
much on complex ones.

Attacks and defence methods could also be investigated for different threat models on
the pretraining component of TabVFL.

Improving the communication overhead of TabVFL is also crucial for future work.
Some possibilities of minimizing the communication overhead are the compression of in-
termediate results and the usage of secure redundancy of data and model parameters to
allow for independent local updates.

To mitigate the assumption that one epoch is required for the caching mechanism, a

42

7.2. Future work

hybrid solution can be considered by replacing the missing values with zeros if the cache
is empty. Moreover, client failures could also be simulated exclusively during inference to
show the effectiveness of the cache mechanism.

Lastly, different aggregation methods, such as averaging, could be studied on different
datasets to investigate their effect on the latent quality. Changing the aggregation method
could possibly enhance the overall performance of TabVFL as the intermediate representa-
tions of the feature values could be improved.

43

Bibliography

[1] K. Wei, J. Li, C. Ma, M. Ding, S. Wei, F. Wu, G. Chen, and T. Ranbaduge, “Ver-
tical federated learning: Challenges, methodologies and experiments,” ArXiv, vol.
abs/2202.04309, 2022.

[2] L. Xia, P. Zheng, J. Li, W. Tang, and X. Zhang, “Privacy-preserving gradient boost-
ing tree: Vertical federated learning for collaborative bearing fault diagnosis,” IET
Collaborative Intelligent Manufacturing, 2022.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84 – 90,
2012.

[4] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed, N. Jaitly, A. W.
Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, pp. 82–97, 2012.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding,” ArXiv, vol. abs/1810.04805, 2019.

[6] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani,
“A survey on federated learning: The journey from centralized to distributed on-site
learning and beyond,” IEEE Internet of Things Journal, vol. 8, pp. 5476–5497, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:232373329

[7] P. Voigt and A. von dem Bussche, “The eu general data protection regulation (gdpr),”
2017.

[8] D. L. Kiselbach and C. E. Joern, “New consumer product safety laws in canada and
the united states: Business on the border,” Global Trade and Customs Journal, 2012.

[9] K. Atarashi and M. Ishihata, “Vertical federated learning for higher-order factorization
machines,” in Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia
Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part

45

https://api.semanticscholar.org/CorpusID:232373329

BIBLIOGRAPHY

II. Berlin, Heidelberg: Springer-Verlag, 2021, p. 346–357. [Online]. Available:
https://doi.org/10.1007/978-3-030-75765-6 28

[10] B. Tan, B. Liu, V. W. Zheng, and Q. Yang, “A federated recommender system for
online services,” Proceedings of the 14th ACM Conference on Recommender Systems,
2020.

[11] D. Cha, M. Sung, and Y. R. Park, “Implementing vertical federated learning using
autoencoders: Practical application, generalizability, and utility study,” JMIR Medical
Informatics, vol. 9, 2021.

[12] K.-F. Chu and L. Zhang, “Privacy-preserving self-taught federated learning for
heterogeneous data,” ArXiv, vol. abs/2102.05883, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:231879990

[13] A. Khan, M. ten Thij, and A. Wilbik, “Communication-efficient vertical federated
learning,” Algorithms, vol. 15, p. 273, 2022.

[14] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular learning,” ArXiv, vol.
abs/1908.07442, 2019.

[15] S. Li, D. Yao, and J. Liu, “Fedvs: Straggler-resilient and privacy-preserving vertical
federated learning for split models,” IACR Cryptol. ePrint Arch., vol. 2023, p. 597,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:258332102

[16] J. Sun, Z. Du, A. C. Dai, S. Baghersalimi, A. J. Amirshahi, D. Atienza, and
Y. Chen, “Robust and ip-protecting vertical federated learning against unexpected
quitting of parties,” ArXiv, vol. abs/2303.18178, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257900954

[17] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” in In-
ternational Conference on Artificial Intelligence and Statistics, 2016.

[18] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 10, pp. 1 – 19, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:219878182

[19] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,
methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, pp. 50–
60, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:201126242

[20] R. S. Antunes, C. A. da Costa, A. Küderle, I. A. Yari, and B. Eskofier,
“Federated learning for healthcare: Systematic review and architecture proposal,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 13, pp. 1 – 23,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:246531818

46

https://doi.org/10.1007/978-3-030-75765-6_28
https://api.semanticscholar.org/CorpusID:231879990
https://api.semanticscholar.org/CorpusID:258332102
https://api.semanticscholar.org/CorpusID:257900954
https://api.semanticscholar.org/CorpusID:219878182
https://api.semanticscholar.org/CorpusID:201126242
https://api.semanticscholar.org/CorpusID:246531818

Bibliography

[21] K. M. J. Rahman, F. Ahmed, N. Akhter, M. Z. Hasan, R. Amin, K. E. Aziz, A. M.
Islam, M. S. H. Mukta, and A. N. Islam, “Challenges, applications and design aspects
of federated learning: A survey,” IEEE Access, vol. 9, pp. 124 682–124 700, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:237521286

[22] Z. Wu, Q. Li, and B. He, “Practical vertical federated learning with unsupervised
representation learning,” ArXiv, vol. abs/2208.10278, 2022.

[23] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne,
“Private federated learning on vertically partitioned data via entity resolution and ad-
ditively homomorphic encryption,” ArXiv, vol. abs/1711.10677, 2017.

[24] H. Sun, Z. Wang, Y. Huang, and J. Ye, “Privacy-preserving vertical federated logistic
regression without trusted third-party coordinator,” 2022 The 6th International Con-
ference on Machine Learning and Soft Computing, 2022.

[25] H. Yu, J. Vaidya, and X. Jiang, “Privacy-preserving svm classification on vertically
partitioned data,” in Advances in Knowledge Discovery and Data Mining, W.-K. Ng,
M. Kitsuregawa, J. Li, and K. Chang, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 647–656.

[26] A. Gascón, P. Schoppmann, B. Balle, M. Raykova, J. Doerner, S. Zahur, and D. Evans,
“Secure linear regression on vertically partitioned datasets,” IACR Cryptol. ePrint
Arch., vol. 2016, p. 892, 2016.

[27] A. Ustimenko, L. Prokhorenkova, and A. Malinin, “Uncertainty in gradient
boosting via ensembles,” ArXiv, vol. abs/2006.10562, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:219792740

[28] P. Bahad and P. Saxena, “Study of adaboost and gradient boosting algorithms for
predictive analytics,” 2019. [Online]. Available: https://api.semanticscholar.org/Corp
usID:213007856

[29] S. Georganos, T. Grippa, A. N. Gadiaga, C. Linard, M. Lennert, S. Vanhuysse,
N. Mboga, E. Wolff, and S. Kalogirou, “Geographical random forests: a spatial
extension of the random forest algorithm to address spatial heterogeneity in remote
sensing and population modelling,” Geocarto International, vol. 36, pp. 121 – 136,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:260501090

[30] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-preserving
decision trees over vertically partitioned data,” in TKDD, 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1297171

[31] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A comparative
study of decision tree id3 and c4.5,” International Journal of Advanced
Computer Science and Applications, vol. 4, 2014. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:8800056

47

https://api.semanticscholar.org/CorpusID:237521286
https://api.semanticscholar.org/CorpusID:219792740
https://api.semanticscholar.org/CorpusID:213007856
https://api.semanticscholar.org/CorpusID:213007856
https://api.semanticscholar.org/CorpusID:260501090
https://api.semanticscholar.org/CorpusID:1297171
https://api.semanticscholar.org/CorpusID:8800056
https://api.semanticscholar.org/CorpusID:8800056

BIBLIOGRAPHY

[32] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng, “Federated forest,”
IEEE Transactions on Big Data, vol. 8, pp. 843–854, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:165163667

[33] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, and Q. Yang, “Secureboost: A lossless
federated learning framework,” IEEE Intelligent Systems, vol. 36, pp. 87–98, 2019.

[34] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving vertical federated
learning for tree-based models,” Proceedings of the VLDB Endowment, vol. 13, pp.
2090 – 2103, 2020.

[35] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homomorphic
encryption,” in IACR Cryptology ePrint Archive, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:31616696

[36] R. Cramer, I. Damgård, and J. B. Nielsen, “Secure multiparty computation and
secret sharing,” 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
28750103

[37] F. Fu, Y. Shao, L. Yu, J. Jiang, H. Xue, Y. Tao, and B. Cui, “Vf2boost: Very fast
vertical federated gradient boosting for cross-enterprise learning,” Proceedings of the
2021 International Conference on Management of Data, 2021.

[38] Y. Kang, Y. Liu, Y. Wu, G. Ma, and Q. Yang, “Privacy-preserving federated adversarial
domain adaption over feature groups for interpretability,” ArXiv, vol. abs/2111.10934,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:242381627

[39] Q. Zhang, B. Gu, Z. Dang, C. Deng, and H. Huang, “Desirable companion for vertical
federated learning: New zeroth-order gradient based algorithm,” Proceedings of the
30th ACM International Conference on Information & Knowledge Management,
2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:240230891

[40] N. Hashemi, P. Safari, B. Shariati, and J. K. Fischer, “Vertical federated learning for
privacy-preserving ml model development in partially disaggregated networks,” 2021
European Conference on Optical Communication (ECOC), pp. 1–4, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:244506180

[41] Y. Kang, Y. Liu, and T. Chen, “Fedmvt: Semi-supervised vertical federated learning
with multiview training,” ArXiv, vol. abs/2008.10838, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:221293279

[42] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta, and
R. Raskar, “Split learning for collaborative deep learning in healthcare,” ArXiv, vol.
abs/1912.12115, 2019.

48

https://api.semanticscholar.org/CorpusID:165163667
https://api.semanticscholar.org/CorpusID:31616696
https://api.semanticscholar.org/CorpusID:28750103
https://api.semanticscholar.org/CorpusID:28750103
https://api.semanticscholar.org/CorpusID:242381627
https://api.semanticscholar.org/CorpusID:240230891
https://api.semanticscholar.org/CorpusID:244506180
https://api.semanticscholar.org/CorpusID:221293279

Bibliography

[43] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning for health: Dis-
tributed deep learning without sharing raw patient data,” ArXiv, vol. abs/1812.00564,
2018.

[44] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey, “No peek: A survey
of private distributed deep learning,” ArXiv, vol. abs/1812.03288, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:54461890

[45] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:207241585

[46] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “Blindfl: Vertical federated
machine learning without peeking into your data,” Proceedings of the 2022
International Conference on Management of Data, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:249578995

[47] J. Hou, M. Su, A. Fu, and Y. Yu, “Verifiable privacy-preserving scheme based
on vertical federated random forest,” IEEE Internet of Things Journal, vol. 9, pp.
22 158–22 172, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:
237905041

[48] I. Ceballos, V. Sharma, E. Mugica, A. Singh, A. Roman, P. Vepakomma, and
R. Raskar, “Splitnn-driven vertical partitioning,” ArXiv, vol. abs/2008.04137, 2020.

[49] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in International Conference on Artificial Intelligence and Statistics,
2010. [Online]. Available: https://api.semanticscholar.org/CorpusID:5575601

[50] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and C. Wang, “Label
leakage and protection in two-party split learning,” ArXiv, vol. abs/2102.08504, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:231942635

[51] C. Fu, X. Zhang, S. Ji, J. Chen, J. Wu, S. Guo, J. Zhou, A. X. Liu, and T. Wang, “Label
inference attacks against vertical federated learning,” in USENIX Security Symposium,
2022.

[52] T. Zou, Y. Liu, Y. Kang, W. Liu, Y. He, Z. qian Yi, Q. Yang, and Y.-Q. Zhang, “Defend-
ing batch-level label inference and replacement attacks in vertical federated learning,”
IEEE Transactions on Big Data, 2022.

[53] B. Balle and Y.-X. Wang, “Improving the gaussian mechanism for differential
privacy: Analytical calibration and optimal denoising,” in International Conference
on Machine Learning, 2018. [Online]. Available: https://api.semanticscholar.org/Co
rpusID:21713075

49

https://api.semanticscholar.org/CorpusID:54461890
https://api.semanticscholar.org/CorpusID:207241585
https://api.semanticscholar.org/CorpusID:249578995
https://api.semanticscholar.org/CorpusID:237905041
https://api.semanticscholar.org/CorpusID:237905041
https://api.semanticscholar.org/CorpusID:5575601
https://api.semanticscholar.org/CorpusID:231942635
https://api.semanticscholar.org/CorpusID:21713075
https://api.semanticscholar.org/CorpusID:21713075

BIBLIOGRAPHY

[54] J. Sun, X. Yang, Y. Yao, and C. Wang, “Label leakage and protection from
forward embedding in vertical federated learning,” ArXiv, vol. abs/2203.01451, 2022.
[Online]. Available: https://api.semanticscholar.org/CorpusID:247223065

[55] X. Jin, P.-Y. Chen, C.-Y. Hsu, C.-M. Yu, and T. Chen, “Cafe: Catastrophic data
leakage in vertical federated learning,” ArXiv, vol. abs/2110.15122, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:240070357

[56] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 181–192, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:224803115

[57] P. Ye, Z. Jiang, W. Wang, B. Li, and B. Li, “Feature reconstruction attacks and counter-
measures of dnn training in vertical federated learning,” ArXiv, vol. abs/2210.06771,
2022.

[58] P. Vepakomma, O. Gupta, A. Dubey, and R. Raskar, “R educing leakage in
distributed deep learning for sensitive health data,” 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:201635379

[59] Y. Kang, J. Luo, Y. He, X. Zhang, L. Fan, and Q. Yang, “A framework for evaluating
privacy-utility trade-off in vertical federated learning,” ArXiv, vol. abs/2209.03885,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:252118465

[60] Z. Zhao, H. Wu, A. van Moorsel, and L. Y. Chen, “Gtv: Generating tabular data via
vertical federated learning,” ArXiv, vol. abs/2302.01706, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:256598036

[61] D. Romanini, A. J. Hall, P. Papadopoulos, T. Titcombe, A. Ismail, T. Cebere, R. Sand-
mann, R. Roehm, and M. A. Hoeh, “Pyvertical: A vertical federated learning frame-
work for multi-headed splitnn,” ArXiv, vol. abs/2104.00489, 2021.

50

https://api.semanticscholar.org/CorpusID:247223065
https://api.semanticscholar.org/CorpusID:240070357
https://api.semanticscholar.org/CorpusID:224803115
https://api.semanticscholar.org/CorpusID:201635379
https://api.semanticscholar.org/CorpusID:252118465
https://api.semanticscholar.org/CorpusID:256598036

Appendix A

This appendix contains supplementary figures that provide additional details and visual sup-
port for the topics discussed in the main body of the thesis. Figure A.3 shows the detailed
workflow of both pretraining and finetuning steps followed by the TabVFL-LE baseline
design. In Figure A.4, the detailed workflows of the prior work design LT are presented.
Finally, Figure A.7 illustrates the difference between the data partitioning imposed by the
HFL and VFL scenarios.

51

A.

fbottom_rec

Encoder Encoder

Partial
Decoder

Aggregated
Decoder Decision

Step Outputs

Guest 1 Guest N

Host

X̂ X̂

Aggregated
Encoder

Decision Step 1

Aggregated
Encoder

Decision Step N

fbottom_rec

2 2

1

1

3

4 4

Figure A.1: TabVFL-LE pretraining workflow. Each guest sends its encoder decision steps
outputs to the host. The outputs are aggregated using summation. The aggregated results
are passed to the partial decoder for generating the intermediate results. The results are split
uniformly and distributed among the guest clients for reconstruction.

Aggregated
Latent Vectors

Guest 1 Guest N

Host

ŷ

final_mapping

Encoder Encoder1 1

2

3

Figure A.2: TabVFL-LE finetuning workflow. The encoders in each guest client generate
latent representations vectors that are sent to the host. The results are summed up into one
representation vector and forwarded to the final mapping FC layer for prediction.

Figure A.3: The pretraining and finetuning workflows of TabNet in VFL with the encoder
(TabVFL-LE) component residing in each guest client (feature holders).

52

Guest N

Host

TabNet

Aggregated
Latent Vectors

FC-layer

Guest 1

Encoder Encoder

ŷ

Pretraining
TabNet

PretrainingFinetuning Finetuning

1 1
2 2

3

Finetuning

Figure A.4: The pretraining and finetuning workflows of prior work design in VFL using
TabNet (LT). First, TabNet is pretrained on locally available data by each guest client. The
encoder of the pretrained TabNet is reused for finetuning. During finetuning, the latent
representations are concatenated at the host and passed through a FC layer for prediction.

53

A.

Figure A.5: Horizontal Federated Learning (HFL).

Figure A.6: Vertical Federated Learning (VFL).

Figure A.7: An image showing the difference in the data being considered for the most
common data partitioning scenarios in FL [2].

54

