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We explore the dynamics of a graphene nanomechanical oscillator coupled to a reference

oscillator. Circular graphene drums are forced into self-oscillation, at a frequency fosc, by means of

photothermal feedback induced by illuminating the drum with a continuous-wave red laser beam.

Synchronization to a reference signal, at a frequency fsync, is achieved by shining a power-modulated

blue laser onto the structure. We investigate two regimes of synchronization as a function of both

detuning and signal strength for direct ðfsync � foscÞ and parametric locking ðfsync � 2foscÞ. We

detect a regime of phase resonance, where the phase of the oscillator behaves as an underdamped

second-order system, with the natural frequency of the phase resonance showing a clear power-law

dependence on the locking signal strength. The phase resonance is qualitatively reproduced using a

forced van der Pol-Duffing-Mathieu equation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4976310]

Synchronization, also known as entrainment, is the phe-

nomenon by which self-sustained oscillators mutually

lock their frequencies and phase. Synchronization was first

observed in a pair of coupled mechanical clocks by

Huygens.1,2 Synchronized oscillators occur in a wide variety

of engineered and biological systems such as injection-

locked time keeping devices, the cardiac pacemaker cells,

and groups of fireflies.3–6 To study these phenomena experi-

mentally, NanoElectroMechanical Systems (NEMS) have

been proposed as representative model systems. Indeed, their

strong nonlinearity, tunability, and convenient time scales

make detailed experimental studies of synchronization possi-

ble, including the observation of features such as phase slip-

ping, phase locking, phase inertia, and phase oscillation.4,7–10

Compared to top-down fabricated NEMS devices, graphene

nanomechanical systems offer enhanced nonlinear response

due to their extreme aspect ratio. This enables new experi-

mental studies of parametric synchronization and phase-

oscillation dynamics, which are the topics of this letter.

In this work, we demonstrate the synchronization of a

single-layer graphene (SLG) nanomechanical oscillator to an

optical reference signal. Two cases are considered: synchro-

nization to a reference frequency close to the oscillator fre-

quency and that close to twice the oscillator frequency. We

investigate the synchronization dynamics for both cases and

demonstrate the presence of phase oscillations and show that

their frequencies exhibit a distinct power-law dependence on

the strength of the reference oscillator. The phase oscilla-

tions are explained using a van der Pol-Duffing-Mathieu

equation and are shown to occur when the nonlinear spring

constant of the oscillator exceeds a threshold value.

The oscillator is fabricated by transferring a single layer

of chemical vapor deposition (CVD) grown graphene onto

a silicon substrate with circular cavities, which are etched

into a 630 nm thick thermally grown silicon oxide layer.

To reduce the thermal drift, the graphene drum is placed

in a cryogenic chamber with optical access (Montana

Instruments) and cooled down to 3 K at a pressure of <10�6

mbar. Figure 1 shows the device and the setup. To induce

self-oscillations, a red He-Ne laser (k¼ 633 nm) is focused

on the drum. The reflection from the silicon bottom of the

cavity creates a partial standing wave, which introduces a

position-dependent thermally induced mechanical tension

in the structure.11 The resulting photothermal force gradient,

rFph, modifies the effective damping, given as Ceff ¼ C
�

1

þ x0

C
x0s

1þx2s2

rFph

j

�
, where C (C ¼ x0=Q) is the damping with-

out feedback, x0 and j are the natural frequency and spring

stiffness of the graphene drum, and s is the thermal delay

time.12,13 By choosing the thickness of the oxide layer to be

close to the wavelength of the He-Ne laser (tox ¼ 630 nm

� k ¼ 633 nm), the photo-thermal force gradient rFph is

maximized. As a result, the effective damping becomes neg-

ative at low laser power, and the drum enters a regime of

self-oscillation.

The membrane’s motion is detected using an interferom-

eter as described in Refs. 14 and 15. Briefly, a small portion

of the incident red laser power is reflected off the graphene

surface, and its interference with the light reflected from the

silicon substrate underneath modulates the reflected inten-

sity, which is detected with a high-speed photodiode, as

shown schematically in Fig. 1(a). The measurements are per-

formed at an incident laser power of 10 mW. The motion of

the graphene drum is recorded in the time-domain by sam-

pling the photodiode output at 1 GS/s using an oscilloscope.

At the same time, an external reference signal, to which the

graphene drum oscillator will be locked, is provided by a

blue laser diode (2.5 mW, k¼ 405 nm) whose intensity is

electronically modulated.

Figure 1(b) shows the time-domain signals: the yellow

trace indicates the free-running oscillator and the blue trace

shows the output of the oscillator when the reference oscillatora)s.houri@tudelft.nl
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signal is applied. Figure 1(c) displays a zoom of the oscilla-

tions in more detail. Figure 1(d) shows the power spectral den-

sities (PSD) of the displacement signal, obtained by taking the

FFT of the time traces. The spectral purity of the peak, given

by its full-width at half-maximum (FWHM), is significantly

better in the case the reference signal is applied (FWHM <1

kHz) compared to the case without the reference signal

(FWHM �35 kHz). While this is an indication that the SLG

drum motion is locked to the reference oscillator, the PSD

does not provide information regarding the phase coher-

ence. A more detailed picture of the oscillator phase is

obtained by plotting the displacement signal on a slow

(microseconds) time scale and a fast (nanoseconds) time

scale.3,10 Figure 2(a) shows such a plot for the freely run-

ning oscillator, where the phase diffuses after a few hundred

microseconds.16 In contrast, when the reference signal is

applied (panel (b)), the phase is coherent during the mea-

surement (� 1 ms). This demonstrates that the oscillator is

synchronized to the reference signal. Interestingly, small

phase fluctuations are noticeable on the slow time scale,

which could indicate the presence of noise or higher order

phase dynamics. These phase fluctuations become more

apparent by plotting the in-phase component of the dis-

placement versus its quadrature component with respect to

the reference oscillator. The freely running oscillator (Fig.

2(a), right panel) shows a homogeneously distributed phase,

while the locked oscillator phase ((b), right panel) takes a

fixed value. Note that a noise-free synchronized system

would be represented by a single dot; significant fluctua-

tions in both phase and amplitude are apparent in the syn-

chronized graphene drum oscillator.

To explain the dynamics of the synchronized oscillator

in the presence of noise, we describe the system using the

Adler equation17,18

_/ ¼ � dV /ð Þ
d/

¼ �Dxþ c sin
m

n
/

� �
þ n tð Þ; (1)

here, Vð/Þ is a periodic potential, / is the phase difference

between the graphene oscillator and the reference signal, c is

the amplitude of the reference signal, and Dx is the detuning

between the oscillator’s natural frequency ðxosc ¼ 2pf0Þ and

the reference signal ðxsync ¼ 2pfsyncÞ. nðtÞ is an additive sto-

chastic term that represents the Brownian force noise.

Synchronization occurs if Dx ¼ jnxsync–mxoscj, where m

and n are integers. In the above experiment, m ¼ n ¼ 1,

which results in direct synchronization. In the following sec-

tion, we also consider the case where m ¼ 2n ¼ 2, which

results in a higher order (parametric) synchronization.6,17

Figure 3(a) shows the potential Vð/Þ, which has a period

of m
n

2p. The blue curve represents the case where fsync ¼ fosc,

while the red curve represents the parametric case with

fsync ¼ 2fosc. The phase of the oscillator is trapped in the

potential minimum and fluctuates under the effect of noise.

Figure 3(b) shows the experimentally obtained phase differ-

ence, as calculated by taking the Hilbert transform of the

measured time trace for Dx ¼ 0. Here, the direct forcing fre-

quency fd ¼ 15:19 MHz and the power Pd ¼ 1:1 mW, while

for the parametric case, the forcing frequency fp ¼ 30:3 MHz

and power Pp ¼ 1:5 mW. A slight detuning, Dx 6¼ 0, breaks

the symmetry and causes the washboard potential to become

FIG. 2. Raster plot (left panels) of the PD voltage of the free running (a) and

locked (b) oscillators. The right panels show the corresponding I-Q plots.

FIG. 1. (a) Schematic representation of the measurement setup. A red He-

Ne laser and a modulated blue laser are focused onto the drum via a window

in the vacuum chamber of the cryostat at a temperature of 3 K. The displace-

ment of the drum is detected using a photodiode (PD) and sampled with a

digital oscilloscope. (b) A time-domain trace of the photodiode output for a

free-running (yellow) and a synchronized (blue) oscillator. The frequency

and power of the reference signal are fsync ¼ 15:19 MHz and a modulation

strength of Pd ¼ 1:5 mW, respectively. (c) Zoom of the oscillation signal.

(d) Power spectral density of the displacement and reference signals taken

over a 1 ms time interval.
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tilted as shown schematically in Fig. 3(d) for fd

¼ 15:01 MHz and Pd ¼ 0:75 mW and fp ¼ 30:265 MHz and

Pp ¼ 0:35 mW. As the asymmetry created by tilting the

potential reduces the barrier height, the system is now more

prone to noise-induced phase slips where the phase undergoes

a jump to the adjacent local minimum as the experimental

data shown in Fig. 3(e). Note that the direct forcing shows

phase slips of 2p, whereas the parametric forcing shows phase

slips of p as expected by the theory. The asymmetry of the

potential well is clearly reflected in the phase histograms.

While a symmetric potential shows a Gaussian distribution

(Fig. 3(c)), a tilted potential results in a skewed-Gaussian dis-

tribution (Fig. 3(f)). If the detuning is increased further, the

tilt increases and the potential no longer represents a local

minimum, as shown in Fig. 3(g) for fd ¼ 14:78 MHz and

Pd ¼ 0:35 mW and fp ¼ 30:01 MHz and Pp ¼ 0:35 mW. The

synchronization is lost, and the oscillator phase is free-

running with respect to the reference signal, as shown in Fig.

3(h). In this case, the phase histogram is uniformly distributed

over the 2p and p range, Fig. 3(i).

One would naively expect to see no slow phase dynam-

ics beyond locking. Interestingly, however, Fig. 3(b) shows

that the phase in both direct and parametric cases oscillates

with a period of �0:1 ms. These oscillations are known

as phase inertia.10 To extract the frequency of the phase

oscillations, a Lorentzian function is fitted to the PSD of the

phase, as shown in the inset in Fig. 4(a). By fitting the PSD

for the different drive powers at zero detuning, the depen-

dence of the phase oscillation frequency on synchronization

signal strength is obtained. Figure 4(a) shows these plots on

a logarithmic scale for both direct (blue) and parametric

(red) entrainment. The frequency of the phase oscillation

shows a power-law dependence on the strength of the refer-

ence signals. The exponents are Sd ¼ 0:5660:18 and Sp

¼ 0:6160:03, as obtained from the fits in Fig. 4(a).

To capture the slow phase dynamics, we model our sys-

tem as a van der Pol oscillator with added terms to account

for the Duffing nonlinearity, and the parametric and direct

forcing.19 The resulting forced van der Pol-Duffing-Mathieu

equation expressed in the non-dimensional form is given as

€x þ ðCeff þ bx2Þ _x þ ð1–ep cosðxptÞÞxþ ax3¼ Fd cosðxdtÞ;
(2)

where the dot signifies taking the time-derivative, x is the

normalized displacement, Ceff is the linear damping which in

our case is negative due to photothermal feedback. b is a

nonlinear damping term, ep is the strength of the parametric

pumping term, which is proportional to Pp; xp is the para-

metric pumping frequency, a is the Duffing parameter, and

Fd is the amplitude (proportional to Pd) and xd the frequency

of the driving force. Note that for the cases studied in this

FIG. 3. Washboard potential representation of entrainment, grey panels, for Dx ¼ 0 (a), Dx > 0 (d), and Dx� 0 (g), shown for the direct (blue) and parametric

cases (red). (b) Phase of the locked oscillator and the corresponding histogram (c). (e) Noise-induced phase slips in a synchronized oscillator and (f) the correspond-

ing skewed-Gaussian distribution. Free-running phase of an unlocked oscillator (h) and the corresponding histogram showing a uniformly distributed phase (i).
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work, the parametric forcing term ep and the direct forcing

term Fd are never applied simultaneously.

The solution of Eq. (2) is expressed in terms of a slowly

changing phase /ðtÞ and amplitude AðtÞ, by taking xðtÞ
¼ AðtÞ cosðxtþ /ðtÞÞ.20 Such solutions have been reported

for the forced van der Pol-Duffing-Mathieu equation in Refs.

21 and 22. For zero detuning, Eq. (2) can now be rewritten in

terms of /ðtÞ and AðtÞ as follows:

_/ ¼ � ep

2A
sin 2/ð Þ þ Fd

2A
cos /ð Þ þ 3

8
ajAj2

_A ¼ �Ceff

2
� b

8
jAj2A� ep

2
cos 2/ð ÞA� Fd

2
sin /ð Þ

9>=
>;: (3)

Setting _/ ¼ _A ¼ 0 gives the stationary solution ðA0Þ as

follows:

9

4
�a2 þ b

16

� �
A6

0 þ
Ceffb

2
A4

0 þ C2
eff � e2

p

� �
A2

0 � F2
d ¼ 0: (4)

To study the slow phase dynamics, we use a perturbative

approach, where we set /¼/0þ /̂ and A¼A0þ Â, with

the hats denoting a small deviation from stationary solution.

By inserting these into Eq. (3), developing, and keeping only

first order terms, we obtain the following linear system of

equations whose eigenvalues are the time constants of the

phase oscillations:

_̂/ ¼ � ep cos 2/0ð Þ þ Ceff

2
þ 1

8
bA2

0

� �
/̂ � 3

4
aA0 þ

ep

2A0

sin 2/0ð Þ
� �

Â

_̂
A ¼ � epA0 sin 2/0ð Þ þ 3

4
aA3

0

� �
/̂ þ ep

2
cos 2/0ð Þ � Ceff

2
� 3

8
bA2

0

� �
Â

9>>>=
>>>;
: (5)

The imaginary part of the eigenvalues of Eq. (5) gives the

phase resonance frequency f/. These are obtained and plotted

in Fig. 4(b) as a function of the Duffing parameters (for

Ceff ¼ �1; b ¼ 1; �p ¼ 102, and Fd ¼ 103). For small a, the

eigenvalues take only real values, indicating non-oscillatory,

i.e., overdamped phase dynamics. As a is increased, the

eigenvalues become complex, which indicates the transition to

oscillatory phase behaviour. Figure 4(c) shows the dependence

of the phase oscillation frequency on the synchronization sig-

nal strength for a ¼ 0:5. In the case of direct forcing (blue

trace), the time constant shows a sublinear dependence on sig-

nal strength (slope¼ 2/3), while parametric forcing (red trace)

exhibits a linear dependence (slope¼ 1). Remarkably, increas-

ing a or Ceff has no influence on these slopes. Thus, once phase

oscillation sets in, its power-law exponent is independent of

both nonlinearity and oscillation amplitude.

For m ¼ n ¼ 1, the experimentally obtained power-law

dependence with Sd ¼ 0:56 is in good agreement with the

calculated Sd ¼ 2=3. This is less the case for parametric

synchronization, m ¼ 2n ¼ 2, where the experimentally

obtained value is Sp ¼ 0:6, while in simulations Sp ¼ 1. The

discrepancy could indicate the presence of additional nonlin-

earity, which may originate from device asymmetry that is

introduced, for instance, by wrinkles or a non-uniformly dis-

tributed residual strain.23 The demonstrated phase oscilla-

tions are expected to occur naturally in entrained graphene

oscillators, since they are easily driven into the nonlinear

regime,24 and their dependence on the drive strength and

detuning with respect to the coupled reference oscillator

may be used to further characterize the devices, or in appli-

cations that require the sensing of externally applied forces

or masses.25

In summary, the current work demonstrates that gra-

phene self-oscillators can be synchronized to both a direct

and a parametric external signal at low temperatures. It is

shown that achieving entrainment can significantly reduce

the width of the oscillation peak, thus allowing a reduction

of oscillator frequency fluctuations to produce stable nano-

scale oscillating motion. In addition to phase-locking and

noise induced phase-slips, we also observed phase resonance

and found that its frequency exhibits a power-law depen-

dence on the drive signal strength for both direct and para-

metric synchronization. These oscillations were qualitatively

FIG. 4. (a) Experimental power-law dependence of the phase resonance fre-

quency on signal strength (rms signal power) for direct (blue) and parametric

(red) locking. Inset shows a PSD of the phase and a Lorentzian fit. (b) Onset

of phase oscillations as a function of p for direct (blue) and parametric (red)

locking. (c) Dependence of the phase oscillation frequency on direct (blue)

and parametric (red) forcing. The parametric and direct cases present a linear

and a sublinear dependence on forcing with Sd ¼ 2=3 and Sp ¼ 1.
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reproduced using a forced van der Pol-Duffing-Mathieu

equation, with the Duffing nonlinearity playing a crucial role

in making such behaviour possible. Potential applications of

synchronized oscillators include optoelectronic modulators,

sound generators, and oscillating sensors; in addition, this

method might be used to synchronize a large number of gra-

phene oscillators to the same reference signal. We finally

note that the described synchronization processes also occur

at room temperature, when frequency drift is sufficiently

suppressed by a stabilized environment.

See supplementary material for detailed description of

the fabrication process.
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