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ABSTRACT 
Repetitive, individual exercises can improve the functional ability 
of stroke survivors over the long term. With the aim of providing 
extra motivation to adhere to repetitive, individual rehabilitation, 
this paper presents a robotic coach for stroke rehabilitation. Our 
system uses the Pepper robot and performs one of twelve data-
driven coaching policies. The policies were learned from human-
human observations of professional stroke physiotherapists and 
provide high-level personalisation based on user information and 
training context. A within subjects evaluation of the system was 
conducted in-person involving short interactions with 3 stroke 
survivors. The system was able to engage the target end users and 
there were indications that decreased workload could be possible 
when using the system compared to exercising alone. 

CCS CONCEPTS 
• Computer systems organization ~ Embedded and cyber-physical 
systems ~ Robotics ~ Robotic control • Human-centered 
computing ~ Human computer interaction (HCI) 
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1 INTRODUCTION 
In rehabilitation after stroke, adherence tends to decrease after 
discharge from hospital due to, among other reasons, a lack of 
motivation [1]. A personalised robotic coach could provide extra 
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motivation to adhere to an exercise routine and therefore increase 
the potential of functional improvements over the long term. 

Previous work has shown the potential of using a Socially 
Assistive Robot (SAR) to motivate users during physical exercise 
(e.g. [2]–[4]). However, past systems tend not to offer technical 
advice on a specific skill or are limited in their personalisation. 

We have built on the work of [5], using a novel development 
and personalisation approach to implement and evaluate a robotic 
rehabilitation coach on the Pepper platform. We use the term 
‘personalised’ in reference to high-level personalisation to groups 
of users but acknowledge that continual, low-level adaption to 
individuals would need added to meet the full personalisation 
requirement [6]. This is the first work to explore this 
personalisation approach in rehabilitation and complements the 
results of [7] who performed a similar study in sports training.  

2 BACKGROUND 

2.1 Stroke Rehabilitation 
Stroke is a sudden and devastating medical condition leaving 
more than half of survivors with permanent disabilities [9], and 
almost half feeling abandoned after they leave hospital [10]. 
Individual rehabilitation after a stroke is often done alone, 
contains repetitive exercises and is performed frequently over a 
long period of time. Motivation for rehabilitation can be affected 
by the actions of a therapist [12] [14]. In this work, we explore if 
a robotic coach used during individual exercise could have a 
similar effect. 

Examples of past work in this area include a fully autonomous 
robotic coach (Baxter) leading stroke survivors through a wire 
puzzle task [4], and a gamified robotic system (Pepper) being rated 
highly by participants in a series of stroke rehabilitation tasks 
over 15 interactions [8]. These studies point to the effectiveness 
of a SAR providing motivation during physical activity. However, 
the evaluation conducted by [4] focussed more on the efficacy of 
the wire puzzle task than the robot, and the personalisation 
conducted by [8] was set up ahead of time by the researchers. 

2.2 Personalisation of SARs 
Personalisation has been suggested as a requirement of a robotic 
coach [6]. One promising method of achieving personalisation to 
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groups of users is to learn from human demonstrations. In a 
collaborative packing task, Nikolaidis et al. showed that by 
clustering human demonstrations into similar styles and applying 
inverse reinforcement learning over those clusters, it was possible 
to learn a reward function that was representative of each user 
type [9]. In this work, we evaluate the application of a similar 
strategy to the more interactive, open scenario of coaching. 

By combining data collection methods adapted from sports 
coaching literature with computational techniques and 
mathematical modelling, Ross et al. defined a process to formalise 
human knowledge in the form of ‘coaching policies’ usable for 
robotic control [5]. A policy refers to a mapping from states to 
actions. Starting from observations of professional squash coaches 
and stroke physiotherapists (Ross’ study was cross-domain), they 
used Nikolaidis et al.’s clustering algorithm to generate 12 unique 
coaching policies that can be viewed as ‘behaviour graphs’ on 
GitHub. 1  They then utilised qualitative data obtained through 
semi-structured interviews with the observed coaches and 
physiotherapists to make actionable suggestions as to which 
policies were likely to be more appropriate for which groups of 
users. The robotic coach evaluated in this work uses these 
suggestions to select from Ross et al.’s 12 policies and achieve 
personalisation based on user information and training context. 

This type of personalisation goes beyond that previously 
explored in the context of robotic coaching. Most past works have 
focussed on customising the utterances of a system with the name 
and performance history of its user (e.g. [10], [11]). While findings 
suggest that a personalised robotic coach can increase adherence 
to [10], and enjoyment of [11], interactions with a robotic exercise 
coach, we went a step further. In this work, we attempted to 
predict the style of interaction (i.e. the behaviours used by the 
robot during a session) that each user would prefer. 

3 SYSTEM DESCRIPTION AND 
IMPLEMENTATION 

3.1 Overview of the System 
The robotic coaching system was implemented on a Pepper robot 
using NAOqi Python API. It receives data from a human operator 
using Wizard of Oz (WoZ) techniques, which it uses to formulate 
appropriate behaviours to coach users during individual 
rehabilitation sessions. These sessions comprise sets of repetitions 
of a particular exercise, sandwiched between introduction and 
feedback sequences from the robot. By performing a range of 
coaching behaviours similar to those performed by a human 
physiotherapist, the robot leads its user through their 
rehabilitation session. Behaviours are primarily animated 
utterances spoken by the robot, but also include demonstrations 
via the robot’s movements. For example, the robot might perform 
a pre-instruction behaviour, praise, or ask a question while 
demonstrating the correct arm position for a certain exercise. 
Throughout the session, Pepper’s tablet screen is used to display 
subtitles of Pepper’s utterances and images of the current exercise. 

 
1 https://github.com/M4rtinR/Behaviour-Graph-Visualisations 

3.2 System Implementation 
Figure 1 shows the architecture of the robotic coach. Following 
are details on the implementation of each part of the architecture. 

 

Figure 1: Architecture diagram of the robotic coach. 

3.2.1 Processing Layer. The processing layer is composed of 
two main blocks: the controller and the coaching policy. 

The controller coordinates everything in the system and 
communicates with the interface and tracking layers. It is 
implemented using a behaviour tree, a structure often used for 
robotic control [12]. The behaviour tree structure drives the 
format of each session, which mimics what was seen during 
observations of human coaches and physiotherapists in [5]. The 
format involves: introduction by the robot; instruction by the 
robot to perform a set of an exercise; feedback during the set; and 
feedback on the set just performed. Within the leaf nodes of the 
tree (where execution of coaching actions occurs) are calls to the 
coaching policy module. 

The coaching policy selects an action for the robot to perform 
in its current state. The policy is formulated as a T(at, at+1) matrix 
where a denotes an action and t+1 denotes the next timestep. The 
available actions are 13 of the most frequently used behaviour 
categories in the observation instrument used by [5]. Example 
actions are given in Table 1. The state space consists of the 
system’s previous action combined with the stage of the 
interaction. At each timestep, the system selects an action from 
the next state distribution as defined by the T matrix. 

The choice of policy to execute is made at the start of each 
coaching session. It is based on the user information categories 
identified by coaches and physiotherapists in [5]: the user’s level 
of impairment (self-rated), number of interactions with the robotic 
coach (i.e. length of the relationship), motivation for conducting 
rehabilitation (self-rated), and type of session. Each of these 
information categories was split into a ‘high’ and ‘low’ value, and 
if the value matched the recommendations given by [8], the policy 
received a higher score. The policy with the highest score was 
used by the system during the coaching session. Thus, the 
behaviour of the robotic coach is based on the raw data obtained 
from the HHI observations conducted by Ross et al. [5] but the 
interaction style is personalised to each user. 

Once an action has been selected by the policy module, the 
controller formats it into a robotic behaviour (i.e. an utterance) 
that incorporates data from the tracking layer. 
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Table 1: Examples of actions and robotic behaviours. 

Action Example Behaviour 
Pre-Instruction “In this exercise, you can lean forward with 

your body if you feel comfortable doing so.” 
Concurrent 
Instruction 
(Positive) 

“Slow, controlled movements.” 

Post Instruction 
(Negative) 

“Your table-top circles weren’t quite as 
good there.” 

Questioning “How did your towel slides feel there? 
Touch the back of my hand if they felt good 
or the top of my head if you think more 
work is needed.” 

Positive 
Modelling 

Demonstrates the correct way to perform 
shoulder openers. 

Praise “Good” 
3.2.2 Tracking Layer. This layer consists of a human operator 

who indicated completion of an exercise repetition during the 
session. This is the only part of the system that was run using 
WoZ techniques and was designed this way to remove the 
potential for failure of a vision system or sensor. If an appropriate 
sensing system was developed it could easily be plugged in to the 
system to replace the human operator and would allow the system 
to gather much more information usable in its feedback. 

3.2.3 Interface Layer. The user directly interacts with this layer. 
Communication between the user and the system is done through 
Pepper using the robot’s touch sensors and in-built text-to-speech 
technology. Actions selected by the processing layer are 
performed by the robot and lead the user through their session. 
The specific utterances and demonstrations that correspond to 
each action were selected at random from four available options 
for each combination of action, stage of interaction and user 
performance. This resulted in over 1,000 possible utterances. 

The differences in the coaching policies mean that the robot’s 
behaviour is personalised to the user. For example, some policies 
contain lots of instruction actions (likely to be chosen for a user 
who is early in their rehabilitation journey), whereas others 
would have the robot ask more questions to have the user figure 
things out for themselves or recall how an exercise was performed 
in a previous session. 

4. PILOT STUDY EVALUATION 

4.1 Participants 
Independently living stroke survivors (N=3) were recruited with 
the help of local charities using the following inclusion criteria: 

1. Have a stroke-related arm impairment. 
2. Have the required cognitive ability to provide informed 

consent for the study. 
3. Are living independently (i.e. in their own home, not in 

hospital or a care home). 
Each participant entered a raffle for a £50 Amazon voucher.  

4.2 Conditions 
Three conditions were evaluated during the study: two coaching 
conditions and one baseline condition. In the Data Selected 
Policy (DSP) condition, participants interacted with the robot 
executing the coaching policy chosen using the method described 
in Section 3.2.1. In the Non-Personalised Policy (NPP) 
condition, the robot executed a randomly selected policy from the 
other 11 policies that were not the best match for the participant’s 
information and training context. Comparing these two 
conditions allowed us to discover the effect of high-level 
personalisation. The selection of the random policy was 
performed at the beginning of the interaction. These two coaching 
conditions are in contrast with the No Coaching Policy (NCP) 
baseline condition in which the robot told the user which exercise 
to perform, and when to perform each set (see Section 4.4) but 
gave no coaching behaviours. It was the closest condition to a 
regular individual rehabilitation session. 

4.3 Measures 
The following measures were used in the study. The CBS-S and 
IMI used 7-point scales and the NASA TLX used a 21-point scale. 

4.3.1 Coaching Behaviour Scale for Sport (CBS-S) [13]. The 
“technical skills” subscale of the CBS-S was used to measure 
participants’ opinions on the coaching provided by the robot.    

4.3.2 Intrinsic Motivation Inventory (IMI) [14]. The interest/ 
enjoyment, perceived competence, perceived choice and value 
/usefulness subscales of the IMI were used to assess the effect of 
each condition on the participants’ intrinsic motivation for 
conducting an individual rehabilitation session. 

4.3.3 NASA Task Load Index (TLX) [15] was used as a measure 
of workload during a rehabilitation session with a robotic coach. 

4.4 Study Design 
The sessions for 2 participants were conducted in the sports 

centre at the university, and for the other at a local respite centre. 
The setup used in the study is shown in Figure 2. All necessary 
equipment was provided and sanitised between sessions. At least 
1 week prior to the study, participants were sent an information 
sheet outlining the study procedure and a consent form. The study 
received full ethical approval from the university’s ethics board.  

 

Figure 2: The experimental setup shown from the 
researcher’s perspective at the back of the room. 
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Table 2 shows an overview of the procedure. A within subject 
design was used with the order of conditions counterbalanced and 
interactions split across 2 separate days. In each session the robot 
asked participants to perform 2 sets of 4 exercises (chosen with 
input from physiotherapists: external rotations with cane, 
shoulder openers, towel slides, and table-top circles) in a random 
order. The first set consisted of 10 repetitions and the second of 5.  

Table 2: Summary of the evaluation procedure used. 

4.5 Results 
One of the participants opted not to complete the final session 
(NPP condition) but as they did not experience any problems with 
the system, and gave permission for their data to be disseminated, 
they have been included in the analysis shown in Figure 3. 
 While no statistical significance can be shown due to the small 
number of participants, the NCP condition performed worse than 
both coaching conditions in 5 of the 6 NASA TLX measures. 
Participants perceived the same exercises as more mentally and 
physically demanding, while perceiving their performance on the 
exercises as lower when the robot did not offer any coaching. 
 There were minimal differences between conditions in the IMI 
scores given by participants. Meanwhile, each condition scored 
well in different aspects of perceived coaching effectiveness, as 
measured by the CBS-S. Interestingly, the NCP condition was 
perceived to give more advice, but the NPP condition scored 
highest in reinforcement and technical feedback, whilst the DSP 
condition was perceived as the best at giving immediate feedback. 

5. DISCUSSION AND CONCLUSION 
This paper has presented the evaluation of a novel robotic coach 
for individual rehabilitation after stroke. We acknowledge the 
lack of participants as a limitation. However, the system was able 
to engage three stroke survivors in rehabilitation with limited 
WoZ input from a human operator. This shows the effectiveness  

 

Figure 3: Results from the 3 scales. Values are mean. 

of the implementation approach proposed by Ross et al. [5], and 
adds to the results obtained in squash coaching by [7]. 

Interestingly, personalisation of the system’s coaching policy 
did not result in improvements in motivation or perceived 
coaching effectiveness. It is important to note that the NPP 
condition also used a policy based on human coaching data. The 
rigid experimental setup and limited number of participants 
resulted in few differences in participants’ user information and 
training context and therefore there was little personalisation 
possible in the DSP condition. 

 Future work will learn from studies such as [16] by further 
adapting the selected policy to individuals over time using 
reinforcement learning. Evaluations of the system with more 
participants and over the long-term is also a clear next step. 
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Phase Activity 
Time 

(mins) 
Intro Researcher explained the study and 

answered questions. Participant filled in 
the consent form & demographic 
questionnaire. 

10 

Sess. 1 Participant conducted sets of exercises led 
by the robotic coach. 

10-25  

Qs 1 Participant completed the questionnaires. 10 
Day 1 total: 30-45 mins 

Sess. 2 As in Sess. 1 using a different condition. 10-25  
Qs 2 As in Qs 1. Researcher set up the next 

condition. Participant took a break. 
30-40  

Sess. 3 As in Sess. 1 using the third condition.  10-25  
Qs 3 As in Qs 1. 10  

Wrap-
up 

Researcher answered any final questions 
the participant had. 

5 

Day 2 total: 1 hr 5 mins – 1 hr 45 mins 
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