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In theory, hosting providers can play an import-

ant role in fighting cybercrime and misuse. This 
is because many online threats, be they 
high-profile or mundane, use online storage  
infrastructure maintained by hosting providers at 
the core of their criminal operations.
However, in practice,  we see large differences in 

the security measures taken by hosting providers. 
Some providers implement an array of actions to 

protect their customers. Others lack even the 
capacity to detect cybercrime, are negligent of 
cybercrime, or even willfully facilitate it.

This book answers a series of questions that 
collectively aim to understand the underlying 
differences in security incentives and policies of 
hosting providers: How do we define a hosting 
provider? How are they distributed? To what 
extent do their individual properties or security 
measures affect the volume of incident in their 
networks?
We expect this book to provide useful insights for 
hosting providers about the effectiveness of their 
security policies  and to serve as a an input for 
development of evidence-based policies by the 
government.
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“The important work of moving the world forward does not wait to be done by
perfect men.” [George Eliot, 1858]
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CHAPTER 1

Introduction

1.1 Background
1.1.1 Internet security

In early 2017, Google reported a spear phishing scam in which victims received
an email that appeared to be from someone they knew. Opening a link in
the email led to a fraudulent website, hosted by a legitimate hosting provider,
identical to Google’s log-in and permissions page. This harvested all of the log-in
details entered by victims, in addition to installing malware on their devices [1].

At about the same time, China Digital Times (CDT) employees received an
email from someone purporting to be a UC Berkeley student. The email con-
tained a link to a fake CDT website, designed to redirect users to a WordPress
log-in phishing page. The page was used both to harvest employees’ personal
information and to distribute NetWire malware [2].

Just months later, a network of compromised Internet-of-Things (IoT) de-
vices launched the largest denial-of-service attack ever recorded. Hackers used
a variant of the ‘Mirai’ malware to compromise the home routers of German In-
ternet Service Provider (ISP) Deutsche Telekom. More than 900,000 customers
su�ered outages as a result. The command-and-control (C&C) servers used to
control the Mirai botnet were hosted at 23Media GmbH, a legitimate hosting
company [3].

As the cases above demonstrate, Internet infrastructure, in addition to facil-
itating communication and data sharing for users around the world, also serves
as a platform for fraud and misuse. Cybercriminals exploit the global web in-
frastructure for personal and financial gain. They devise ways to compromise
servers and web domains via technical vulnerabilities in systems or human mis-
takes. Phishing, stealing online banking information, and malware distribution
are but a few examples. These malicious practices not only harm individuals,
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but also generate wider economic impacts, hurting society as whole.
More than 86,000 vulnerabilities has been reported between 2000 and 2017 [4]

and di�erent counter measures have been employed by now. Security companies
and researchers dedicated a significant amount of research on identifying and
mitigating vulnerabilities present in servers of Internet hosts. However attackers
are always one step ahead and discover new vulnerabilities to exploit.

Research on mitigating cybersecurity problems has also focused on the role
of end-users (the victims), criminals, or even law enforcement. However, coun-
termeasures addressing end-users directly, such as user awareness-raising and
information campaigns, have proven to have limited e�ectiveness. Users remain
the weakest link and hence a major factor in security breaches [5].

Therefore, research has shifted focus to the role of Internet intermediaries in
reducing cybercrime [6]. Internet intermediaries play a growing role in shaping
the online economy, according to national and international organizations such
as the Organization for Economic Co-operation and Development (OECD) and
the European Union Agency for Network and Information Security (ENISA) [7,
8]. Examples of these intermediaries are ISPs, social network operators, pay-
ment service providers, and hosting providers.

1.1.2 The role of hosting providers in web security

The criminal activities introduced above have one thing in common: they all
utilized hosting-provider operated infrastructure, such as servers and websites,
to perform the online attacks.

Hosting providers are a key Internet intermediary. These companies “o�er
end users the ability to create their web presence on hardware they do not
actually own1” [9]. They provide and facilitate infrastructure for storing and
hosting online content. Go daddy, Leaseweb, and OVH hosting are a few well-
known hosting providers.

Hosting providers can play an important role in fighting cybercrime and
misuse [9]. This is because many online threats, be they high-profile or mundane,
use hosting infrastructure at the core of their criminal operation. Think of selling
stolen credit cards, publishing materials showing child sexual abuse, running
C&C servers for botnets, and phishing for personal information. All these crimes
use online storage space maintained and o�ered by hosting providers. Sometimes
existing legitimate websites are compromised for illicit purposes, or new websites
may be registered solely for criminal gain.

1We will reflect on this definition in more detail in chapter 2.
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Depending on the hosting type and distribution of administrative rights,
hosting providers may be responsible for assisting their customers maintain the
security of the infrastructure they rent. In theory, a web hosting provider can
provide critical proactive and reactive security support. For example, providers
can act proactively by regularly patching their systems and applications. Or they
can be reactive, taking down websites when they discover them to be compro-
mised or when third parties notify them of malicious activity. Hosting providers
that o�er domain name registration in addition to hosting can influence domain
registration processes. Specifically, they can suspend a domain if it is used for
malicious purposes.

In practice, however, thousands of providers are associated with enabling
online crime on a daily basis, wittingly or unwittingly. Providers are relatively
free to determine how much to invest in their own security practices. We there-
fore see large di�erences in the security measures taken by hosting providers.
Some providers take an array of actions to protect their customers. Others lack
the capacity to detect cybercrime, are negligent of cybercrime, or even facilitate
it.

Canali et al. found that some hosting providers were unable to detect basic
attacks against their networks [10]. A major reason was the di�culty providers
faced in adopting e�ective security practices in highly price-competitive markets.
The so-called bulletproof hosting providers are an example of those that are
negligent of or facilitate cybercrime. They are known for their leniency in the
face of malicious content in their network [11, 12]. Often, however, it is di�cult
to distinguish between providers that deliberately facilitate malicious activities
and those that are incapable of detecting abuse. Proving that a provider is
unwilling to detect abuse, rather than unable, is even more di�cult to do.

Given the magnitude of the cybersecurity threats we see every day, it is clear
that the hosting market is not performing well in terms of cybersecurity. It is
therefore legitimate to inquire into what hosting providers are already doing,
what they could do better, and what others could do to incentivize them to
achieve higher levels of security.

1.1.3 The economics of security in the hosting market

Ensuring and improving security in the hosting market has been a major chal-
lenge so far. But why? What characteristics of hosting providers contribute to
insecurity in this market?

We start by addressing two general characteristics that are rather similar
across all Internet intermediaries: negative externalities, and information asym-
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metry that could cause misaligned incentives. These explain to some extent why
cybersecurity problems have not yet diminished, despite the technical solutions
available.

The literature on the economics of information security presents cybersecu-
rity as an issue of misaligned incentives among the key actors involved, though
technical issues are also recognized as playing a role [13]. Thus, actors with the
technical knowledge who can influence security lack the economic incentive to do
so. Conversely, those tasked to deal with Internet security, such as traditional
law enforcement, may lack the required technical knowledge (although they are
catching up quickly).

In addition, those in charge of protecting a system may not bear conse-
quences if it fails [14, 15]. This is a classic example of negative externalities:
the cost of a security failure by the owner of a machine or service ends up with
third parties [16]. For instance, an individual who connects an insecure PC to
the Internet does not face the full economic cost of that action; similar to an
individual who produces air pollution by driving a diesel car [14].

There is also information asymmetry in the market for cybersecurity. This
leads to a situation like what Akerlof called the ‘market for lemons’. That
is, buyers of a second-hand car cannot distinguish between a high-quality car,
termed ‘a peach’, and a low-quality car, termed ‘a lemon’, whilst sellers do
know the di�erence [17]. Buyers are therefore only willing to pay a fixed price
(a median price between the ‘lemon’ and ‘peach’), and sellers only sell when
they have a ‘lemon’. Otherwise they leave the market, which eventually reduces
the overall willingness-to-pay of buyers [17]. Likewise in the market for security,
buyers are unwilling to pay a premium for more secure services, so sellers are
unwilling to o�er them [18, 14]. In such a market, a major governance challenge
is to improve the incentive of key actors (sellers) to invest in cybersecurity.

A number of properties set hosting providers apart from other intermedi-
aries. (i) Hosting providers are spread over more than 150 jurisdictions. Most
of these jurisdictions have few or no formal regulations in place imposing secu-
rity requirements or obligations on this market [9, 19, 20]. (ii) Renting hosting
services is not geographically bound to the country where the infrastructure is
located. Such services can be rented anywhere in the world. Technically, many
of these services are highly substitutable as well. Thus, hosting services can
easily move their infrastructure from one country to another. The fact that
hosting companies are so ‘footloose’ makes the security challenge more oner-
ous. Stimulating improvements in security can therefore be more complex for
hosting services than for other Internet intermediaries, such as broadband ISPs,
which are geographically bound to physical networks. (iii) Multiple actors are
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involved in the hosting space, with both providers and customers occupying
various ‘layers’. In addition to o�ering hosting services directly to end-users,
some hosting providers lease hosting services to other retailers (resellers), which
then sell them on to their own customers [9]. (iv) Security provision responsibil-
ities are rather unclear in hosting services. Both providers and customers have
agency. Authority and responsibility for security thus shifts between hosting
providers and customers, depending on the hosting service type on o�er.

Beyond these known properties of hosting providers, there are many areas
in which we are still in the dark. Given what is known, it is clear that under-
standing and improving the security of the thousands of providers, across the
multitude of jurisdictions, is a complex undertaking requiring action from actors
beyond the hosting providers alone.

In addition, the negative impacts of insecurity in the hosting services market
a�ect not only providers, but also users, the economy, and society as a whole.
Security in the hosting market therefore constitutes a collective action problem.
In other words, multiple actors would benefit from a solution to this problem,
though it is implausible that any individual actor could provide a solution alone,
due to all the associated properties and costs.

1.1.4 Security as a governance challenge

The literature on traditional governance identifies four canonical modes, or
ways of steering and collaboration, through which complex problems can be ad-
dressed [21]: market governance, hierarchical governance, network governance,
and community governance [22, 23]. Could any of these o�er e�ective ways of
improving hosting provider security in the face of the current underperformance
of the hosting market itself?

Market governance hinges on e�ciency in resource use and competition be-
tween enterprises [24]. Judging from security outcomes (abuse incidents), secu-
rity levels are currently rather low in the hosting market. This can be termed
as a market failure. That is, the market has failed to supply su�cient security
with the hosting services o�ered. Providers lack incentives when it comes to se-
curity provision, despite their critical position in cyberspace. After all, security
measures are costly. Moreover, information about security is asymmetric. Cus-
tomers are less savvy than providers about the security levels particular hosting
services o�er. This reduces many providers’ willingness to implement security
measures to safeguard their networks. Additionally, the information asymmetry
present in this market makes it di�cult even for providers to reliably assess the
e�ect of their security policies in comparison to their competitors [25]. Finally,
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negative externalities are at work, as insecurities on one website may compro-
mise all of the websites hosted on a shared server.

Hierarchical governance is found in traditional top-down rule-making, for
example, through laws, legislation, and regulations [21]. If a market fails to
function satisfactorily, a government could address the problem by resorting to
hierarchal means, such as law enforcement and regulations. However, given the
market conditions outlined above, we suspect hierarchical governance to have
limited e�ectiveness in improving hosting service security. For one thing, this
market is globally distributed over more than 150 jurisdictions, making gover-
nance via regulations considerably more challenging. Many of these jurisdictions
barely have any law enforcement in place, let alone a regulatory framework ca-
pable of mandating cybersecurity standards. Furthermore, the few government
measures implemented up to now have been predominantly reactive. These have
mostly comprised countermeasures initiated subsequent to the detection of ma-
licious activity, such as notifications and take-down e�orts. Besides, the scale of
government e�orts has been miniscule in comparison to the scale of cybercrim-
inal activity. As such, the number of cases in which national or international
government entities have taken action is dwarfed by the number of incidents.

Network governance is characterized by interdependence and continuous in-
teraction among network members. These interactions reflect shared resources
or purposes and are based on mutual trust [24, 21]. Peer pressure is an ex-
ample of a network governance mechanism. For instance, if hosting providers
were pressured by their peers to ensure a certain level of security for their ser-
vices, overall security levels would be significantly improved. However, such
peer pressure is hardly viable beyond a small-scale operation. It would be es-
pecially di�cult to achieve in a globally distributed market such as that for
hosting services. Moreover, most network governance mechanisms are predi-
cated on trust and reciprocal relations. Developing these among the thousands
of hosting providers scattered around the globe would be a challenging task
indeed.

Community governance is based on communal identity and norms [21]. It is
characterized by large groups of actors aiming to overcome a collective action
problem. Examples of communities related to the hosting market are the Mes-
saging, Malware and Mobile Anti-Abuse Working Group (M3AAWG) [9] and
Stopbadware [19]. However, their output so far has been limited to formula-
tion of best practices, which have not yet been very e�ective due to the lack of
reliable insights regarding the complexity of the hosting market.

In sum, in order to improve security in the hosting market, there is a need
for a governance mechanism or combination of governance mechanisms that can
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be e�ective given the known properties of hosting providers and the market
they operate in. However, there is still a lot about this market that is unclear.
For instance, there exists no comprehensive empirical understanding of how
many providers operate worldwide, how their services are distributed, and what
hosting types predominate.

Therefore, the first step in tackling hosting providers’ security problem is to
focus on the hosting market itself. That is, a better understanding is needed
of the hosting providers, the current security levels of their infrastructure, and
the mechanisms and factors that shape their security decisions and security
outcomes.

The current research takes this proposition as its starting point. The fol-
lowing section identifies knowledge gaps regarding hosting providers and their
role in the provision of security in cyberspace. This is followed by a further
specification of the scope of this research and introduction of the main research
questions.

1.2 Research Gaps
Security of hosting providers is the subject of a growing literature. Numerous
scientific studies and industry reports have drawn on abuse data to make in-
ferences regarding security at di�erent levels. Some scholars have investigated
security and vulnerability at the level of individual network entities, such as
domain names and Internet Protocol (IP) addresses [26, 27, 28, 29, 30, 31]. Oth-
ers have investigated the security of networks [32, 33, 34], organizations [35]
or hosting providers [10], where abuses have been located. Industry reports
have ranked hosting providers based on the number of abuse incidents in their
networks [36, 37].

This previous work provides a foundation for understanding the security
of the infrastructure operated by hosting providers, such as websites and IP
addresses. Their results allow us to theorize that hosting providers could play a
role in tackling cybersecurity problems. However, we do not as yet know if and
to what extent hosting providers can actually play a role in security provision
in the hosting market. This is mainly because we lack key insights and data,
beginning with the security problem itself and hosting providers’ involvement
in it.

First, we lack as yet a comprehensive mapping of the hosting market and
the existing security measures, based on empirical data. Such a mapping would
provide information about the di�erent hosting services on o�er and their char-
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acteristics. How is the hosting market structured? What business models exist
in the market? How many providers operate worldwide? How are these geo-
graphically distributed? What are the current levels of security in this market?
What security measures are providers already taking

Likewise, we have no metrics, as yet, for actually measuring hosting providers’
security levels. There is no single accepted definition of hosting provider secu-
rity or method by which to gauge it. Abuse data or ‘blacklists’ are publicly
available registers containing metadata on websites utilized in particular types
of attacks, such as phishing or malware. These basically connect malicious
activities to technical identifiers – typically IP addresses, domain names, or
URLs. Some previous research has used the number of times a provider’s name
appears in such blacklists as a proxy for their security/insecurity. However,
possible biases introduced by such data are unknown; nor do we know how
many blacklist mentions actually materialize as cybersecurity incidents. Some
blacklists are open to the public, allowing users to add entries they perceive
as malicious. This may introduce errors. Research that relies on direct counts
from such sources without attempting to reduce possible data biases (removing
false positives) or addressing them (approximating the e�ect of biases) would
thus produce unreliable results.

Furthermore, no research has as yet systematically scrutinized the hosting
services market. What drives providers’ security performance, as measured by
abuse incidents? Is the performance of hosting providers more a function of
certain inherent structural properties, or of reactive and proactive security ef-
forts? What role do providers play in security provision? Is the security of the
websites in a provider’s networks influenced only by them, or by webmasters as
well? Similarly, little has been done to develop empirical models for quantifying
the impact of factors related to public regulation, self-regulation, market char-
acteristics, and other forces on the security performance of hosting providers.
For example, how can we quantify the e�ect of a country’s regulatory framework
on the security performance of providers in that country.

Finally, we do not know, as yet, what these knowledge gaps mean for gover-
nance. Here governance is defined as processes and structures for coordination,
steering, and decision-making among the variety of actors involved in tackling
the collective problem of providing security in the hosting market.
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1.3 Research Aims and Questions
We already have certain information about hosting providers, about the market
for hosting services, and about the security levels of the infrastructure they op-
erate, such as websites and IP addresses. This knowledge allows us to theorize
that hosting providers could play a role in in tackling cybersecurity problems.
However, research on the hosting space and the role of providers in security
provision requires deepening in two major directions: (i) improvement of the
technical metrics used to measure cybersecurity performance and (ii) illumi-
nation of the relationship between cybersecurity incident data, the economics
of the hosting provision market, and governance. Herein lies the focus of this
dissertation. This research seeks to advance understanding of the structural
properties of the hosting providers and the market they operate in, while inves-
tigating di�erent methods of measuring the performance of hosting providers
in security provision. It builds upon three bodies of research: web security,
security economics and Internet governance. The aim is to answer the following
research question:

How can the security performance of hosting providers be measured and im-
proved?

This main research question is divided into several areas of inquiry, or sub-
questions. These sub-questions are explored in subsequent chapters through
five separate studies. The section below introduces these studies and their
corresponding sub-questions in more detail.

1.3.1 Study 1: Understanding the basics of the hosting market (Chapter 3)

The first study is an empirical analysis of the hosting market. Various poli-
cies, standards, and best practices have emerged to improve hosting security
(e.g., [9, 19]). All these, however, grapple with a significant barrier: the incred-
ible complexity and heterogeneity of the hosting market.

Little e�ort has been put into reliably identifying the economic agents that
operate the IP and domain space, such as hosting providers and the organiza-
tions behind hosting services. Additionally, we know little about the hosting
market and the distribution of di�erent hosting services. Our study is therefore
the first to connect technical identifiers such as domain names and IP addresses
from empirical data to hosting providers. The aim is to explore the hosting
market and the di�erent business models present in this market.
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In short, the study aims to answer the following research question:

1. What are hosting providers and how is the hosting market structured?

1.3.2 Study 2: Measuring the impact of provider structural properties on abuse (Chap-
ter 4)

The first study, above, establishes a methodology for identifying hosting providers
as economic organizations responsible for the security of the IP addresses as-
signed to them. The next step is to infer and understand the factors that can
influence providers’ security performance, as indicated by abuse observations.
Some previous work has been done on identifying culprit hosting providers or
‘bad performers’. Much of it, however, has neglected the impact of influential
factors when drawing conclusions from abuse observations.

Our second study addresses this limitation. First it identifies factors that
can influence the abuse data generation process. It then goes on to quantify the
impact of these factors. The focus is on the following research questions:

2. How can we analytically disentangle the di�erent factors at work in the
data generation process of abuse observations regarding hosting providers?

3. What is the impact of providers’ structural properties on their security
levels, for the case of phishing abuse?

We propose an analytical model identifying sources of variance in abuse
observations, such as factors related to providers’ structure and security e�orts,
attacker behavior, and measurement error. Next, the relative impact of the
structural properties of hosting providers, as described by the analytical model,
are estimated using quantitative statistical models.

1.3.3 Study 3: Measuring the impact of providers’ reactive security e�orts on abuse
(Chapter 5)

The second study demonstrates that certain inherent structural properties of
hosting providers, such as size and business model, explain more than 84% of
the variance in phishing counts. We suspect, however, that the impact of these
properties will di�er for di�erent types of abuse, assuming attackers are sensi-
tive to providers’ reactive security e�orts. One example of reactive measures
taken by providers is the ‘uptime’ of a malicious domain, determined by how
quick providers take down malicious domains reported in their networks. We
hypothesize that uptime of abused domains is critical to attackers, especially



1.3 Research Aims and Questions 11

in types of abuse where domain names provide the main node for distributing
malware or sending commands to other nodes.

This third study tests this hypothesis. Specifically, it answers the following
research questions:

4. To what extent are abuse concentrations determined by the structural prop-
erties of providers, for the case study of infrastructure used in malware
distribution?

5. What is the impact of providers’ reactive security e�orts? Do attackers
prefer providers that take little or no abuse response action?

Similar to the second study, we use quantitative statistical models to esti-
mate the impact of di�erent independent variables on the count of domains used
in malware distribution, as the dependent variable.

1.3.4 Study 4: Understanding attacker behavior (Chapter 6)

The second study shows that in addition to provider properties and security
e�orts, attacker behavior and preferences impact abuse concentrations. Ac-
cordingly, the fourth study focuses on attacker behavior. Via an exploratory
analysis, we study attackers’ preferences in target selection for financial mal-
ware attacks. In addition, the impacts of hosting provider take-down e�orts are
assessed on attackers’ C&C infrastructure.

This fourth study answers the following research question:

6. What factors influence attackers’ preferences in target selection for mal-
ware abuse?

The study draws on Zeus family malware data over a time span of four years.
We trace attackers’ choices and activity patterns using techniques borrowed from
statistics and machine learning.

1.3.5 Study 5: Measuring the impact of providers’ proactive security e�orts on abuse
(Chapter 7)

The analytical model presented in the second study indicates that abuse ob-
servations are determined by attacker behavior, the structural properties of
defenders, the security e�orts of defenders, and measurement error. That same
study shows that the structural properties of hosting providers can explain more
than 84% of the variance in abuse observations.
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The focus of our fifth study is providers’ proactive security e�orts. Specif-
ically, we assess the impact of di�erent proactive security measures taken by
webmasters and hosting providers on abuse in the shared hosting environment.

The following research questions are addressed:

7. To what extent and in what areas can hosting providers influence the se-
curity of websites?

8. How do the proactive security e�orts of hosting providers influence the
prevalence of abuse?

To estimate the security e�ort made by hosting providers, this study draws
on a diverse set of security and software features collected using a series of
measurements. It then distinguishes features that collectively contribute to what
providers can influence in terms of security, such as infrastructure security and
web application security – as opposed to the group of features that are mostly
determined by webmasters, such as security measures for website content. We
construct multiple statistical models to estimate the impact of each factor on
malware and phishing abuse observations.

1.4 Dissertation Outline
The remainder of this dissertation is organized as follows. Chapter 2 reviews
the literature related to the security practices of hosting providers, as the over-
arching context of this research. Chapters 3 through 7 then present the five
studies introduced above. Finally, chapter 8 recaps and summarizes the studies
and presents proposals for future research.

Each of the five empirical chapters has been published as a separate peer-
reviewed article in a highly ranked outlet with acceptance rates of 25% or lower.
Table 1.1 provides an overview of the corresponding scientific articles. I was for-
tunate to be able to conduct these studies in collaboration with great researchers
in the field of cybersecurity, as is reflected in the list of co-authors in Table 1.1.
I gratefully acknowledge their contributions in Section 8.3.3, located at the end
of this dissertation.
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Table 1.1: Overview of dissertation chapters

Chapter Publication

3

S. Tajalizadehkhoob, M. Korczynski, A. Noroozian, C. Ganan, and M. van Eeten,
“Apples, oranges and hosting providers: Heterogeneity and security in the hosting
market”. In Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS), IEEE, 2016.

4

S. Tajalizadehkhoob, R. Bohme, C. Ganan, M. Korczynski , and M. van Eeten,
“Rotten Apples or Bad Harvest? What We Are Measuring When We Are
Measuring Abuse”. https://arxiv.org/abs/1702.01624, Forthcoming in ACM
Transactions on Internet Technology (TOIT), ACM, 2017.

5

S. Tajalizadehkhoob, C. Ganan, A. Noroozian, and M. van Eeten, “The Role
of Hosting Providers in Fighting Command and Control Infrastructure of
Financial Malware”. In Proceedings of the 12th ACM ASIA Conference on
Computer and Communications Security ACM (ASIACCS), ACM 2017.

6
S. Tajalizadehkhoob, H. Asghari, C. Ganan, and M. van Eeten, “Why Them?
Extracting intelligence about target selection from Zeus financial malware”.
In Workshop on the Economics of Information Security (WEIS), 2014.

7

S. Tajalizadehkhoob, T. van Goethem, M. KorczyÒski, A. Noroozian, R. Böhme,
T. Moore, W. Joosen, and M. van Eeten, “Herding Vulnerable Cats: Disentangling
Joint Responsibility for Web Security in Shared Hosting” . In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), ACM, 2017.
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CHAPTER 2

Review of Literature

This chapter presents the scientific state of the art regarding measuring and ex-
plaining abuse incidents in hosting provider networks. It reviews studies and
concepts from work on web security and security economics. The chapter in-
cludes a model (Figure 2.1) that illustrates the conceptual relationships between
factors that shape the security performance of hosting providers and attacks.
The work of this dissertation is focused primarily on the highlighted parts of
the conceptual framework. This chapter first introduces the framework. Next, it
reviews and summarizes prior work regarding di�erent parts of the conceptual
framework.

2.1 Conceptual Relations
Rehashing the driving forces behind concentrations of abuse in the network of
hosting providers requires a deep understanding of the underlying factors at
work. Figure 2.11, adopted from the earlier work [38], depicts the conceptual
relation between such factors.

Abuse incidents cause tangible losses (e.g., money and resources) and in-
tangible losses (e.g., reputation and credibility). Such losses do not only a�ect
hosting providers and their individual customers, but also impact hosting as a
sector and society at large. Incidents are principally caused by cyber attacks.
Security/vulnerability and exposure act as moderating factors. They do not
cause attacks, but influence the degree to which the attacks materialize as in-
cidents. Exposure refers to an array of factors that a�ect the magnitude with
which a providers’ infrastructure is exposed to potential attacks. For example,

1I gratefully acknowledge the contributions of Rainer Böhme, who had the original idea
for the model, and of the participants of the Dagstuhl Seminar 16461 “Assessing ICT Security
Risks in Socio-Technical Systems” who helped to further articulate it.
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providers with more customers have higher exposure rate than those with fewer.
Security and vulnerability capture the extent to which a resource is pro-

tected. This, in turn, is influenced by controls. Controls consist of measures
taken by actors to protect a resource. This actor could be the hosting provider
herself or the customer, depending on the hosting type. In other words, controls
are the e�orts put in place by a responsible entity for securing the resource(s).

Security
incentives Controls

Attacks

Security
(vulnerability)

Incidents

Exposure

Losses

Institutional environment
 • Regulatory environment

 • Law enforcement
• Norms

Organizational environment
 • Cost of abuse management
 • Cost of customer support

• Cost of infrastructure

Security Effort

Figure 2.1: Conceptual framework

Decisions regarding which control measures to take are ultimately influenced
by security incentives of those in charge of security. These incentives are them-
selves shaped by a diverse set of factors. The institutional environment of
providers is composed of, among other things, social norms, law enforcement
and regulatory framework in di�erent jurisdictions and geographical locations.
Factors related to the organizational environment, such as cost of abuse man-
agement and customer support, can also be influential for security decisions.

In the upcoming sections of this chapter, we review the literature around
each of these factors in more detail.

2.2 Hosting Types
According to the Messaging, Malware and Mobile Anti-Abuse Working Group
(M3AAWG) best practices for hosting, hosting providers are entities that ‘o�er
end users the ability to create their web presence on hardware they do not
actually own’ [9].
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Hosting services are o�ered in peculiar types. Depending on the service type,
the responsibility in provision of security, abuse handling, and administrative
rights can shift from the hosting provider to the customer. So does the distri-
bution of abuse over the providers’ network. Prior work has focused on security
in di�erent forms of hosting services such as shared and cloud hosting, among
others [39, 40]. Here, before discussing the literature on abuse concentration in
networks of hosting providers, we first break down the di�erent forms of hosting
services and the distribution of responsibilities among providers and customers
in maintaining security.

Hosting types can vary from colocation where the provider rents out a phys-
ical space for hosting servers owned by customers, to managed hosting which
includes a comprehensive support by the hosting provider. Hosting types with
higher storage capacity can be used not only for hosting websites (web hosting)
but also for data storage and processing purposes. Below, is a short description
of distinct hosting types:

• Shared: This category of hosting services includes the use of shared re-
sources. In shared hosting service, the server and the majority of ad-
ministrative rights are owned by the hosting provider. This is while the
customer has only an end-user access [9]. That is, the customers have
control over the client-side applications, in most cases. In shared host-
ing a physical server and its resources such as RAM and CPU is shared
among multiple domains. This is considered entry level hosting, as it re-
quires minimum technical knowledge from its users. It is considered the
most a�ordable hosting plan as well. In Virtual Private Server (VPS) a
server is divided into a few virtual servers (compartments), where each
unit has its own server software set up separately and is capable of func-
tioning independently [41]. Although in VPS the physical server is still
shared among multiple customers (less than shared hosting), each web-
site/customer still receives a dedicated portion of those resources such as
CPU. Cloud hosting is built with the same logic as shared hosting, but
with redundancy. Hence, it brings in better performance and uptime, in
comparison to traditional shared hosting [9].

• Dedicated: In this category of hosting services each website is hosted on
a dedicated server and a dedicated IP address. The server is owned by
the hosting provider. The customer controls and maintains the server,
OS, and software. The customer has full root administrative access to
the server and hence is responsible for its security. A milder and more
expensive version of a dedicated hosting is managed hosting. Although
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the user is granted administrative access to the server, the provider is still
responsible for server’s technical and security support [9].

• Reseller: This is where a hosting company provides a dedicated or un-
managed service to a customer (reseller), who can then act as an inde-
pendent hosting provider and sell services, typically shared hosting, to
other customers. These customers can then be either end-users or other
resellers [9]. The multi-layer structure of reseller hosting can potentially
add more complexity and delay in abuse handling.

• Colocation: In colocation only the physical space for hosting the server is
provided. Everything else, including the server itself and its maintenance
is realized by the customer herself.

Depending on the distribution of authority and responsibility between providers
and costumers in each service type explained above, the providers can play a cru-
cial role in the provision of security for their customers. For example, in shared
hosting, providers have the most control over the server-side software and hence
most responsibility for their server-side resources. However, in dedicated host-
ing, customers typically have full administrative rights over the dedicated box
and hence have to assure its security. Therefore, any research that aims at eval-
uating the security performance of providers requires to account for the types
of hosting service and to identify the entity that is bearing the responsibility
and authority for provision of security.

However, given the heterogeneity and several layers of complexity in services
such as reseller hosting, establishing the economic entity who is in control of the
security and therefore should be held responsible has not yet been very straight-
forward. Although over the years, various standards and best practices have
come forth to improve hosting security [9, 19], none revealed any information
about the most basic concepts of the hosting market: How many providers are
there? What address space do they manage? How are they distributed in terms
of geography, size, types of services?

There exists no comprehensive list of all hosting providers. Prior work on the
hosting market often uses BGP data to map IP addresses of abuse incidents to
the organizations that own Autonomous Systems (ASes) and equated the latter
with hosting providers. They are network administrative entities that control
IP routing throughout the Internet [34]. This is problematic due to two main
reasons: First, the entity that is routing an IP address is not always the same
as the organization that is hosting an IP address. While some organizations
operate under several ASes, other organizations share a single AS [42]. Second,
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ASes are technical identifiers and cannot be held responsible for security of
websites. Hosting providers are organizations who operate the IP space and
thus are economic real-world entities in charge of security of their services.

Most of the prior work on predicting or analyzing abuse patterns have been
focused on di�erent levels of analysis other than hosting providers: (i) individual
resources such and domain names and IP addresses [43, 44, 45, 46, 47, 30], (ii)
aggregated network resources such as ASes [48, 34] and TLDs [49], (iii) economic
actors such as registries, registrars [50, 51], and organizations [35]. Aside from
the work carried out by Canali et al. on the security practices of a small sample
of shared hosting providers [10], we are not aware of any work that analyzes
abuse patterns across the population of hosting providers. Even the basics of
the market are not studied yet in any scientific work. This is the first part
of the knowledge gap that this dissertation intends to fill in. In chapter 3 of
this dissertation, we conduct a comprehensive study on the hosting market and
describe its properties based on the empirical data.

2.3 Attacks
The cybercrime problem starts with attacks executed by cybercriminals. Cyber
attacks can vary diversely based on the aim and business models of cybercrimi-
nals. We do not perform any specific study concerning attack trends during the
course of this dissertation. However, reviewing attack trends are still relevant
for gaining a better understanding about the measures that hosting providers
and webmasters could take to avoid incidents. In the remainder of this section,
we review the body of literature around a few examples of attacks carried out
by utilizing the hosting infrastructure.

A large and growing body of literature has investigated attack trends us-
ing di�erent botnets that utilize hosting infrastructure to host the command
and control servers. Andriesse et al. have carried out a detailed analysis on
the Gameover Zeus, the peer-to-peer (P2P) Zeus malware variant, and demon-
strated its high resilience [52]. Rossow et al. have studied the properties and vul-
nerabilities of eleven active P2P botnets and assessed their resilience against at-
tacks and showed that some P2P botnet families contain over a million bots [53].
Wang et al. studied GR, an influential Black Hat search engine optimization
(SEO) botnet and found several characteristics such as modest size and low
churn di�erent from typical e-mail spam botnets [54].

A considerable amount of literature has been published on DDoS attacks [55,
56, 57]. Rossow performed a detailed analysis on distributed reflective denial-of-



20 Review of Literature

service (DRDoS) attacks where attacker sends requests to public servers such as
open recursive DNS resolvers and spoof the IP address of a victim. Having used
darknet as well as network tra�c from large ISPs, he observed both victims and
amplifiers and concluded that attackers are already abusing vulnerable protocols
other than DNS [58]. Kührer et al. monitored di�erent sources of amplification
DDoS attacks. Their results showed that vulnerabilities in the TCP handshake
can help attackers to abuse millions of hosts to achieve 20x amplification. They
also highlighted networks that allow IP address spoofing as the root cause of
amplification attacks. Such networks often lack egress filtering [59]. Santana et
al. studied the infrastructure of booter services, services that facilitate DDoS
attacks via the provision of of infrastructure-as-a-service to perform attacks.
Their results revealed that among the 11 booters analyzed, 10 of them had their
infrastructures based on Web-shells scripts and only 1 based on servers [60].

A great deal of previous research into Phishing attacks, where attackers di-
recting users to fraudulent websites which are either hosted on a compromised
server or is maliciously registered [61, 62, 63]. Mavrommatis et al. studied
popularity of drive-by downloads within a 10 month period and show that over
3 million malicious URLs initiate drive-by downloads and approximately 1.3%
of the incoming search queries to Google’s search engine returned at least one
malicious URL in the results page [64]. Leontiadis et al. investigated search-
redirection attacks and found that about one third of all search results are over
7000 compromised websites that redirect the users to a few hundred pharmacy
websites [65]. Alrwais et al. looked into watering holes, another emerging mal-
ware distribution attack where the target of compromise is strategically chosen
with the goal of collecting information from a specific group within an organi-
zation [66].

Some studies focused on identifying possibilities for attack vectors using
hosting infrastructure based on vulnerabilities present in the hosting websites
and webservers. A few studies have identified new attack vectors, on the basis
of vulnerabilities present in SSLv2 [67] and TLS [68, 69] . They reported that
such vulnerabilities are a significant threat against SSL ecosystem. Finally,
Nikiforakis et al. identified several attack vectors that can be carried out by
exploiting vulnerabilities in configuration of JavaScript code inclusions [70].

Another body of literature worked on the detection of web-based malware
campaigns [71, 64, 72, 73, 74]. Borgolte et al. developed the delta-system, a
system that is able to identify previously known and unknown malware infec-
tion campaigns from changes associated with malicious and benign behavior in
websites [74].
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2.4 Abuse Incidents

Successful attacks can materialize as abuse indents. Abuse incidents can be mea-
sured and collected via methods such as honeypots, spamtraps, and crawlers.
Abuse incident observations are then made available mainly for protection and
cleaning purposes, in di�erent forms: Blacklists/blocklists are the first exam-
ple. Blacklists are lists that contain meta data regarding websites or webservers
used in various types of online attacks such as DDoS, phishing, malware propa-
gation, and child pornography, among others. Examples of blasklists/blocklists
are Anti Phishing Working Group (APWG) [75], PhishTank [76], abuse.ch, The
Swiss Security Blog [77], and MalwareDomains [78]. Such lists are normally
maintained by third-part security companies or institutions. In some cases they
are open for the public to report incidents (e.g., DShield [79]). Prior work has
studied limitations of abuse blacklists such as comprehensiveness and indepen-
dence at length [80, 81, 82]. Having that said, any study that utilizes such data
still requires to evaluate the robustness of their results against the potential
biases in the blacklist data.

Anti-virus companies such as Sucuri, McAfee, and Norton integrate observa-
tions data as an input into their products with the goal of improving the protec-
tion and detection quality. Google safe browsing utilizes incident observations
as well. It o�ers a browser plug-in to help end-users in detection of malicious
content. Incident report is another mean via which abuse incidents are made
available. Incidents reports can also be private or publicly available. Examples
are VERIS Community Database (VCDB) [83] and Data Breach Investigations
Reports (DBIR) [84].

There is a large number of published papers [63, 6, 85, 48, 43, 47, 86, 87, 88]
that studied attack concentrations and patterns in attack targets using abuse
blacklist data. Some of these studies are carried out at the level of individ-
ual technical entities such as domain names/IPs [63, 89]. Others investigated
concentrations for technical identifiers of network entities [85, 6, 48, 80] or real
world economic entities/organizations who operate the networks [50, 51, 90, 35].

Among these are also studies that focused on the relationship between con-
trol measures or vulnerabilities and abuse. Vasek et al. studied the odds of
domain names getting compromised via phishing or malware attacks when they
have certain CMS installed or when they are hosted on a shared server [44].
Zhang et al. [90] and Liu et al. [35] looked into the relation between a number of
mismanagement security symptoms in the networks of organizations and abuse
incidents from incident reports. Although it is very important to anticipate
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these relationships, any further remedy for improving security in those net-
works requires knowing the control points or the key actors who can in practice
influence the security.

To that end, there is hardly any paper that investigates the relationship be-
tween vulnerabilities/control measures and the amount of abuse in the network
of hosting providers. In addition, there exists no study so far that has focused
on empirically identifying areas of control, where each of webmaster or provider
can influence security of websites. This is one of the most important areas where
this thesis is aiming to further investigate.

2.5 Security and Vulnerability
Attacks can be influenced by certain vulnerabilities in the networks of providers,
some of which are already known and others which are unknown, zero-day vul-
nerabilities. In recent years, there has been an increasing amount of literature by
both industry and academia on measuring security of websites and web servers
or detecting specific vulnerabilities that can lead to compromise. In this section,
we discuss some example studies with the aim of providing an insight into this
branch of work and its relation to our work.

The literature on this topic has revealed the emergence of several vulnerabil-
ities. Industry has mainly been active in publishing reports on website security
statistics [91, 92, 93, 94] ranging from general demographics to specific vulnera-
bilities. Alarifi et al. evaluated the security of popular Arabic websites via using
known website scanners namely, Sucuri SiteCheck, McAfee SiteAdvisor, Google
Safe Browsing, Norton, and AVG website. They observed that the majority
of the scanned websites contain malicious contents which were proportional to
website vulnerabilities , as unpatched software increases the risk of being vul-
nerable to compromise [95].

Other studies looked into more specific vulnerabilities. Kals et al. [96] and
Lekies et al. [97] focused on automatic discovery of vulnerable websites and
found several instances with exploitable SQL injection and Cross-Site Script-
ing (XSS) vulnerabilities. Nikiforakis et al. carried out a large-scale analysis of
remote JavaScript inclusions in websites. They also propose a Quality of Mainte-
nance metric that captures the security of web applications running on websites
with remotely included the Java-Script library. Their QoM metric asses web-
site’s security in terms of availability, cookies, anti-XSS and anti-clickjacking,
cache control, SSL/TLS implementation, and outdated web servers. This metric
is used to study the trust relationships between websites and JavaScript inclu-
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sions. Using the metric they found that a substantial number of high-profile
websites that include JavaScript code from external sources are vulnerable to
compromise [70]. Van Acker et al. examined login-page security of several
websites and found many login pages vulnerable to password leakage and eaves-
dropping attacks. Nevertheless, they observed a few login pages with advanced
security measures regarding the aforementioned vulnerabilities [98]. Doupe et
al. develops a state-aware black-box scanner in which they evaluate vulnera-
bilities in a number of applications including WordPress CMS and PHP [99].
Vasek et al. carried out a case-control study where she measures presence of
outdated CMS and web server software, among others [44]. Two studies in-
vestigated security of shared hosting servers, where a server is shared between
di�erent websites. Both studies demonstrated that lack of enforced session iso-
lation leaves shared web hosts vulnerable to compromise [31, 39].

All the above discussed studies have been successful at revealing one or
more vulnerabilities present on web applications, websites, or servers. None
of these studies however empirically quantified how and to what extent such
vulnerabilities lead to abuse incidents, in the networks of hosting providers.
Such analysis is crucial in understanding why certain abuse incidents occur,
where are they located, who can influence them and how can they be further
mitigated. This is another area where the focus of this dissertation is placed.

2.6 Exposure
Vulnerabilities are one of the factors than can cause an attack to materialize
as an incident. Exposure is the other factor that can influence occurrence of
cybersecurity incidents. Traditional crime Routine Activity Theory highlights
exposure as one of the five factors that determine the likelihood for an individual
in becoming victim of a crime [100]. Exposure is how accessible potential targets
are to potential attackers. The more exposed a target is, the higher the chance
of a crime being materialized. The same holds in cyberspace Ḟor example,
the more websites hosted in a network of a provider, the higher the exposure
rate of that provider, and the chance of being compromised. Given that, any
study that aims at identifying underlying reasons behind concentrations of abuse
across networks of providers needs to take the e�ect of exposure into account.

Among the studies that looked into the abuse concentrations in networks
of ASes or organizations, some utilized size of a network to normalize abuse
counts [34, 33, 6, 101, 51, 102]. Others studied alternative factors such as
domain age and Alexa popularity [103, 104, 26].
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A very crucial part of reliably identifying culprit hosting providers is to
understand what factors drive the concentration of abuse in their networks.
The mere act of counting abuse data points in blacklist data and aggregating
them to providers does not yield to a reliable benchmark due to the e�ect of
exposure: the inherent or structural properties of a provider that can increase
the probability of attracting more attacks regardless of the e�ort a provider
puts in security. In this dissertation, we aim to map the factors at work in
the data generation process of abuse observation and estimate their impact on
abuse concentrations of hosting providers.

2.7 Controls
Controls are measures taken by responsible actors to ensure and improve the
security of a resource and increase its protection against possible attacks. These
measures are the results of security e�orts put in place by several actors. Website
administrators (from now on we call them webmasters), software vendors, and
hosting providers are some of the most important examples of such actors.

We already know that most of the malicious content on web is not hosted on
servers owned by attackers [105] but is rather either (i) malicious content hosted
on compromised servers that are exploited due to particular vulnerabilities found
by attackers via automatic scans [106], (ii) embedded malicious code in a third-
party web application or (iii) maliciously registered domain names used for
a purpose of attack (free or paid registration). Given these scenarios, it is
very important that hosting providers and webmasters undertake the required
control measures to maintain a desirable level of security for their webservers
and websites.

Regarding specific control measures, Weichselbaum et al. studied the adop-
tion of Content Security Policy (CSP) – a web platform mechanism that is de-
signed to mitigate XSS attacks – and discovered that more than 90% of websites
use a policy with significant flaws in CSP deployment which makes it bypass-
able by attackers [107]. Pen et al. proposed CSPAutoGen, an application that
facilitates CSP adoption by enabling CSP option in real-time without server
modifications [108].

Van Goethem et al. developed a general web scanner with the purpose of
discovering various features that are indicators of website’s “security conscious-
ness”. These are often certain controls that webmasters or hosting providers
have/have not taken. Their findings suggest that many of the investigated web-
sites contain vulnerabilities and weaknesses while most of the control measures
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are sparsely distributed. In addition, websites’ popularity did not show any
relation to the presence of weaknesses and vulnerabilities, despite the common
assumption that popular websites are more likely to have better security mea-
sures in place [26]. Zhang et al. and Liu et al. analyzed network mismanagement
symptoms such as open recursive DNS resolvers, untrusted HTTPS certificates,
lack of Egress Filtering – both at the level of IP addresses and autonomous sys-
tems (ASes) – and observed prevalent failures in implementing common security
practices [90, 35]. Similar to Van Goethem et al., they argued that although
most of the symptoms are not directly vulnerabilities, their presence might (ii)
expose more attack vectors, or (i) indicate security unconsciousness of the net-
work administrators. Finally, their work highlights a need for future work on
measurement of additional security indicators as latent variables that are not
directly causing compromise, at the level of hosting providers. To improve the
existing defensive mechanisms of networks, they also recommend to put more
focus on defender’s properties with such symptoms rather than attacker’s strate-
gies.

In this dissertation, we aim to understand and ultimately improve the host-
ing security, by investigating both attacker’s and defender’s properties. Rather
than focusing on specific best practices or vulnerabilities, we are interested to
understand what type of providers’ characteristics and attacker’s preferences
influence the amount of abuse in their networks. Control measures are among
many other such characteristics. Inherent properties or exposure variables such
as network size, geographical distributions, law enforcement, and business mod-
els of providers can be equally important in shaping the security outcomes.

2.8 Security Incentives
Control measures are often put in place if people who are responsible for provi-
sion of security have enough incentives to invest in it [109]. Internet security is
the outcome of decisions of several autonomous actors in di�erent markets all
around the world [13]. Information insecurity has as much to do with misaligned
incentives of the key actors involved as it has to do with technical vulnerabili-
ties [13]. Incentives of hosting providers to invest in security are influenced by
‘information asymmetry’ in the market. That is, the buyers of hosting services
(ordinary customers), cannot distinguish a more secure hosting service from a
less secure one [17]. Even the regulators and hosting providers themselves do
not have a clear idea about their position in the market in terms of security.

In addition, security measures are costly and user-unfriendly. Hosting providers
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would only be willing to take security measures if they have the proper incen-
tives for it. Such incentives are not only influenced by costs of security measures
and information asymmetry in the market. Factors regarding institutional en-
vironment (e.g., market structure, regulatory environment, law enforcement)
and organizational environment (e.g., cost of abuse management, cost of cus-
tomer support) among others, influence them as well. A clear example is the
di�erence in security levels due to di�erence in regulatory environment within
distinct countries.

There is a relatively small body of literature that is concerned with the in-
stitutional or organizational factors influencing incentives and hence security
outcomes. Subrahmanian et al. study the factors that can explain geograph-
ical variation in malware concentrations. Their results suggest high malware
concentrations and malware binary downloads in countries with low GDP per
capita [110]. Contray to Subrahmanian, Mezzour et al. found a relationship be-
tween countries’ wealth (GDP), technological sophistication (ICT development)
and attack concentrations (exposure) [111]. They also found a relation between
the countries where attacks are hosted and the joined e�ect of widespread cor-
ruption and computing resources.

Garg et al. found out that the bulk of spam is hosted within a small number
of countries. Their results also indicate a positive significant correlation between
Internet penetration and spam concentrations [112]. In another study [113],
Garg et al. examine the relationship between participation in e-crime tasks, such
as Captcha solving in the Mechanical Turk crowd-sourced market, and countries’
socio-economic characteristics. Their results indicate that low participation in e-
crime tasks is significantly correlated with better rule of law, more governmental
transparency, and less corruption [113].

The knowledge gap regarding factors influencing security incentives lies more
at the level of analysis issue. Most of the existing studies looked into organi-
zational or institutional factors that influence security of individual resources
such as domain names and IP addresses, found in abuse data. However, little
has been done on identifying such factors at the level of hosting providers. Hav-
ing such factors identified is a step towards gaining a better understanding of
hosting providers’ security incentives and ultimately improving them.

2.9 Conclusions
In this chapter, using the conceptual framework introduced in section 2.1, we in-
troduced the conceptual relations between the underlying factors that influence
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providers’ abuse concentrations. By surveying the literature regarding each of
these factors, we highlighted the ares of knowledge gap, where this thesis is plan-
ning to contribute. We started with the formal definition of hosting providers
and outlined di�erent hosting types. We have seen that depending on hosting
types, provider’s responsibility and authority for the provision of security di�ers.

We further explained that abuse incidents are caused by attacks and this re-
lation is mediated by providers’ exposure and security characteristics. Security
itself is then influenced by controls. These control measures are only in place
if people who safeguard the systems have enough security incentives, and in-
centives themselves can be influence by several institutional and organizational
factors such as regulatory framework, law enforcement and various costs.

In summary, to better understand and improve the role of hosting providers
in security, the literature needs to be improved in three main aspects: (i) Un-
derstanding the basics of the hosting market, (ii) Quantifying the impact of
various exposure, security or incentive related factors on the concentrations of
abuse at the level of hosting providers, and (iii) Identifying the role of provider
and distinguishing it from the role of webmasters, in the provision of security.
In short, to identify areas for improving the role of providers in security, we
suggest to start from the problem again, and the context in which this problem
occurs.
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CHAPTER 3

Understanding the Basics of the Hosting
Market

All kinds of basic facts about the hosting market are still poorly understood.
Questions such as how to identify a hosting provider, how many providers oper-
ate in this global market, what type of hosting services they o�er and how they
are distributed are still unanswered. This chapter providers a comprehensive
overview of hosting providers and the market they operate in. The first part of
the chapter discusses a method to identify hosting providers at scale from tech-
nical identifiers such as domain names and IP addresses, captured from passive
DNS and WHOIS data. It then uses these to explore the basics of the market
and of providers’ business models. The second part of the chapter then tests
whether the di�erent business models are correlated with di�erences in abuse
rates across the market.

3.1 Introduction
Hosting providers play a pivotal role in the provisioning of all kinds of Internet-
based services, as well as in mitigating the abuse of these services. Criminals
purchase or hack services for hosting malware, phishing pages, command and
control (C&C) servers, drop zones, dark markets, child pornography and more.

Over the years, various policies, standards and practices have emerged to
improve hosting security (e.g., [9, 19]). These initiatives run into a significant
barrier: the incredible complexity and heterogeneity of the hosting market.
Even the most basic facts are unknown: How many providers are there? What
address space do they manage? How are they distributed in terms of geography,
size, types of services?

Developing policies and best practices in the absence of this kind of informa-
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tion seems unlikely to be e�ective. We cannot generate reliable security metrics
for hosting providers without accounting for their heterogeneity [114]. It makes
a big di�erence whether a best practice is geared towards hosting behemoths
like GoDaddy, which operates an infrastructure across 800,000 IP addresses,
towards the tiny providers which administer services on a single IP address, or
perhaps towards some median point on this scale.

By necessity, security practices will look di�erent across this spectrum. One
can speculate that the same holds for security performance. Tiny providers
might not be able to achieve the same level of competence as the large providers
with their dedicated abuse departments, but perhaps they make up for it by
being more agile.

Remarkably, the complexity of the hosting market has barely been studied
empirically, least of all in the area of security. Research has typically equated
providers with Autonomous Systems [34, 115, 32]. Using routing data to identify
providers and attribute security incidents is problematic as a lot of address space
that is announced by an AS is not actually assigned to, or administered by, the
AS owner.

There are some proprietary approaches to more accurately map the hosting
space [116], but the underlying methodology and data are not publicly available.
Lists published by sites like webhosting.info are of poor quality and lack key
properties needed for research. In short: a decent map of the landscape is
missing.

In this chapter, we propose a novel measurement approach for capturing the
complexity of the hosting market. In Section 3.2, we systematically identify
hosting providers through a fine-grained method combining passive DNS data
to find hosting infrastructure and WHOIS data to determine address space
assignment around that infrastructure. This results in a set of 45,434 hosting
providers. Section 3.3 discusses the hosting landscape by exploring di�erent
provider characteristics that can be extracted from the data. In Section 3.4, we
condense the complexity and heterogeneity of the hosting market by performing
cluster analysis on the properties of providers. Finally, we demonstrate the value
of these clusters by showing that they are associated with significant di�erences
in the uptimes of phishing sites.

As far as we know, this is the first comprehensive mapping of the hosting
provider market. The value of a more accurate mapping of the hosting market
consists of i) identification of providers rather than owners of Autonomous Sys-
tems; ii) more accurate attribution of security incidents to providers; iii) more
accurate comparison and benchmarking of providers, also by normalizing for the
size of providers. In the chapter, we demonstrate these contributions by using
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the new map in a case study of phishing websites. We make the map available
to other researchers upon request.

3.2 Methodology for Identifying Hosting Providers
The Message, Mobile and Malware Anti-Abuse Working Group (M3AAWG),
a leading industry association, defines a hosting provider as “any entity which
o�ers end users the ability to create their web presence on hardware they do not
actually own” [9]. Hosting providers o�er a variety of hosting services. They
range from free and shared hosting services with limited resources and admin-
istrative privileges for customers, to more expensive services such as dedicated
hosting and virtual private servers (VPS) where customers have more control
over the computing resources [9]. The role of the provider to safeguard security
also changes across these services.

While web presence is just one of the services on o�er, we assume that all
hosting providers have at least some webhosting in their portfolio. This allows
us to use domain names as a way to identify providers. More specifically, we
follow several steps to get from domain names to the population of providers
(see Figure 3.1):

1. Extract domain names from DNSDB, a passive DNS dataset with an rea-
sonable approximation of all domains in use on the web;

2. Identify the IP addresses where these websites are hosted;

3. Extract from WHOIS the netblocks to which these IP addresses belong
and the organizations to which they are assigned;

4. Filter out the organizations that are clearly not hosting providers.

Figure 3.1: Steps towards identifying hosting providers

In the next subsection, we systematically walk the reader through the design
decisions taken in each step of this process.
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3.2.1 Identifying webhosting infrastructure

We first obtain a list that approximates the population of all domains in DNSDB
– a passive DNS database that is generously shared with us by Farsight Security.
DNSDB data is widely used by researchers worldwide and to our knowledge, it
has the best coverage of the overall domain name space that is available to re-
searchers. It draws on hundreds of sensors worldwide and on the authoritative
DNS data that various top-level domain (TLD) zone operators publish [117].
Other studies also confirm that DNSDB has a relatively unbiased and compre-
hensive view of the overall domain and IP space [118, 38].

From DNSDB we extract all second-level domain names seen between January-
June 2015 and the IP addresses that they resolved to. We identify 214,138,467
unique 2nd-level domain names that are mapped to 47,446,082 unique IP ad-
dresses.

3.2.2 Identifying organizations and IP ranges

We use WHOIS data provided by Regional Internet Registries (RIR) to map
the IP addresses of domains to the netblocks and names of the organizations to
which these addresses are assigned.

WHOIS data has its own limitations, most notably the fact that records
can be stale, inaccurate and non-standardized [119]. That being said, compared
to the routing (BGP) data that most security research uses to associate IP
addresses with providers, IP assignment better captures who is responsible for an
address range and the services o�ered there than AS-level routing information.
An AS, think of a data center, can announce routes for many di�erent providers
using its infrastructure.

We have used MaxMind’s Organization database [120], which collates the
WHOIS data of RIRs. The organization is identified by MaxMind from dif-
ferent fields of WHOIS databases, such as “descr” or “role” or “organization”,
depending on the RIR’s WHOIS format.

When mapping IP addresses to organization names, an organization might
appear multiple times in slightly di�erent versions: Go Daddy Netherlands B.V.,
GoDaddy.com, LLC and GoDaddy.com Singapore. The di�erent names may
point to the same organization. Sometimes, however, the di�erences reflect the
fact that there are separate entities, for example in di�erent jurisdictions. There
currently is no reliable process to distinguish these situations, which is why we
chose to not merge organizations with similar names.

Mapping IP addresses to their ranges and organizations results in a list of
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161,891 organizations, covering 28,489 unique ASNs. On average, an ASN has
address space allocated to around 7 organizations. This underlines just how
problematic the current practice is to equate ASes with providers.

3.2.3 Filtering out non-hosting providers

Clearly, not all of the organizations that host domains are hosting providers.
When filtering out these cases, one has to balance potentially removing true
positives versus keeping in false positives. Since our aim is to capture the
complexity of the market, we do not want to lose true positives and apply three
filters that conservatively remove false positives.

Filter 1: AS level. In a previous study [121], we have manually categorized
2000 ASes that contributed the most machines to botnet populations seen in
sinkholes and spamtraps. Based on di�erent data sources, we assigned ASes
to one of the following types: (i) education, (ii) government, (iii) hosting, (iv)
ISP-mobile, (v) ISP-other, (vi) ISP-broadband, and (vii) corporate networks
such as banks, hospitals, etc. The first filter removes 6598 organizations (4%
of the total set) that are located in the 332 ASes belonging to the categories
education, government, and corporate networks.

Filter 2: Organization level. We generated a list of keywords for education,
government and corporate networks. For example, the education category con-
sist of the following list of keywords: universi, institut, college, school, akademi,
academy, academi, research, teach, education, and science. We matched the
keywords with organization names. In case of a match, we excluded the orga-
nization.

In this step we removed 39,369 organizations from the 155,293 that remained
after the previous filter (25,4%), most of which matched an education keyword.

Filter 3: Number of domains. The third filter looks at the number of domains
hosted by the organization. Organizations that host fewer domains than a
certain threshold value are considered as “non-hosting”. We hypothesize such
organizations are not providing hosting services for others but instead they host
their own websites.

To find the appropriate threshold, we took a sample of 163 organizations
through a stratified sampling method to maintain the population’s distribu-
tion in terms of the size of their address space, while keeping the sample
size amenable to manual inspection. We manually assign “hosting” and “non-
hosting” labels to the organizations by checking their names and visiting the
corresponding websites, if they exist. The “hosting” label is assigned to all
organizations that o�er hosting service as a part of their business.
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We then perform a sensitivity analysis on the threshold value for the number
of domains to filter out non-hosting providers from the total set. For each
threshold on the number of domains, we calculate the following parameters:

F P rate = F P
F P + T N

, T P rate = T P
T P + F N

(3.1)

Accuracy = T P + T N
F P + T N + T P + F N

(3.2)

Where true positive (TP) is when an organization is correctly classified as
“hosting”, false positive (FP) is when an organization with “non-hosting” label
is incorrectly classified as a hosting provider. Similarly, true negative (TN) is
when an organization that is labeled as “non-hosting” is correctly classified as
“non-hosting”, whereas false negative (FN) is when an organization that has
“hosting” label is incorrectly classified as “non-hosting”.

Figure 3.2: ROC curve of di�erent threshold values for the number of domains

The receiver operating characteristic (ROC) curve shows the performance
of di�erent thresholds (Figure 3.2). The two thresholds marked with red circles
in the ROC curve (T=83 and T=28) are the optimal thresholds for detecting
hosting providers according to Equation 3.2. Note that our data is highly skewed
and contains a large number of organizations with only a few domains. This
leads to substantial noise when detecting hosting providers. At both thresholds,
we have already included more than 99% of the total domain space in the
data. Therefore the choice is essentially driven by the conservative approach
of maximizing the chance of correctly identifying hosting providers and we are
less sensitive to include false positives. We select T=28 as the threshold and
define a hosting provider an organization that is hosting more than 28 domains.
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The filter discards 73,801 organizations from the set of 119,235 providers (62%)
– e.g., Family Dental of Chicago (netblock 72.54.46.208/29) and United States
Institute of Peace (netblock 64.210.233.0/23).

After applying these filters, we have a population of 45,434 organizations
identified as hosting providers.

3.3 Exploring the Hosting Landscape
From the underlying data, we can extract several characteristics of the 45,434
hosting providers, such as the size of their address space, as well as the portion
of that space used for webhosting. What can these tell us about the hosting
market?
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Figure 3.3: Histograms and kernel density estimates for five characteristics of hosting
providers

[c1] IP address range size: The first plot in Figure 3.3 displays the distribution
of providers in terms of their address space. The distribution goes from around
200 providers with only one IP addresses all the way up to providers with six or
seven orders of magnitude larger address space. There we find ISPs like AT&T
and Comcast, for whom hosting is not the main service. The distribution is
centered around providers with 1,000 to 10,000 addresses (median: 1,517). From
an economic perspective, this market shows a surprising lack of consolidation.
One would think that economies of scale, in combination with commoditized
services that can be globally delivered, would lead to a few large providers
dominating the market. This mechanism is clearly visible in cloud services, but
not here. It takes 1,210 providers to account for 80% of the address space used
for webhosting. How can the many medium-sized providers compete on price
with the large ones? How do the tiny providers survive in this market? This
finding underlines that we know little about the incentives in this market and
the security practices that they give rise to.
[c2] Percentage of IP range used for hosting websites: What percentage of
the address space of a provider is used for webhosting? This tells us to what
extent webhosting is the core business model or not. The second plot shows
the distribution of providers. It shows that for the bulk of them, webhosting
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is only a minor part of their infrastructure. Their infrastructure might be used
to run game servers, databases, VPN exit nodes, and other services. Some
smaller providers use almost all of their address space for webhosting, whereas
larger companies such as GoDaddy and OVH are using approximately half of
their allocated range for webhosting, but they are all on the higher end of the
spectrum.
[c3] Percentage of IP range used for shared hosting: When talking about abuse
in hosting services, shared hosting is often flagged as a problem area [26, 122].
One reason is the low profit margins of these services, which seems to be ac-
companied by poor security, according to a recent study [10]. The third plot
shows the percentage of the address space used for shared hosting. We consider
an IP address to be used for shared hosting if it serves more than 10 domains.
While shared hosting draws a lot of attention in research, most providers actu-
ally use only about 10% of their address space for this purpose. Only around
500 providers use more than 50% for shared hosting, while 225 focus exclusively
on shared hosting.
[c4] Percentage of domain names on shared hosting: A slightly di�erent take on
the importance of shared hosting is to look at its portion of all domains that are
hosted by the provider. The fourth plot shows a rather uniform distribution,
except for the first group, who o�er no shared hosting at all. In other words,
for webhosting as a service, shared hosting is provided in all portfolios and has
a fluid proportion to other webhosting solutions, like VPS or dedicated hosting.
[c5] Density of domains on shared hosting IP addresses: The average number
of domain names on IP addresses used for shared hosting can indicate in what
part of the market the provider is competing. Higher density (more domains
per server) would indicate more shared resources and competing for lower value
customers. The last plot shows that a few hundreds of providers have shared
IP addresses with more than thousand domains, on average, while the majority
of the providers have 10 to 100 domains per shared IP address.

These individual characteristics give us a sense of the hosting landscape. We
can see just how much complexity and heterogeneity is present across providers.
There is remarkably little consolidation and many small players shape the land-
scape as much as the larger providers. Webhosting, the service that has dom-
inated the image of the sector, only plays a limited role for many providers –
and shared hosting even more so.

All of these characteristics influence security incentives and practices, espe-
cially in combination. Viewing a characteristic isolated from the others can be
misleading. For example, when looking at the influence of size of a provider,
one cannot simply use address space as a proxy, because it ignores the fact
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that the providers with the largest address space are not predominantly hosting
providers, so their hosting product groups may actually resemble those of small
or medium-sized providers.

To deepen our understanding of the market, we would need to identify how
di�erent values for these characteristics occur in combination across the pop-
ulation of providers. We propose to profile the providers by performing clus-
ter analysis on the characteristics. This would condense the complexity into
a tractable starting point for further empirical research. Are certain types of
providers more e�ective in securing their infrastructure? Perhaps type is not
that relevant. We might find a equally strong and poor security practices within
each type. In the remainder of this chapter we first perform cluster analysis on
the characteristics and then use those clusters to determine whether they un-
cover meaningful di�erences in terms of security, as measured by the uptime of
phishing websites in the networks of these providers.

3.4 Categorizing Hosting Providers
We try to profile hosting providers using the set of five characteristics explained
in the previous section. To identify providers that have similar business model
profiles, we need to use a machine learning technique that allow us to do a
similarity analysis without a need for ground truth data. Clustering, is an
unsupervised learning technique that would fit within this criterion.

In the following sections, we first identify the appropriate clustering algo-
rithm, carry out the clustering and finally discuss the interpretation of clusters.

3.4.1 Choice of the clustering algorithm

To meaningfully partition the hosting space, we test four clustering algorithms:
k-means [123], k-medoids [124], expectation maximization (EM) [125], and hi-
erarchical [126]. We first randomly sample ten thousand hosting providers, we
then evaluate the four selected algorithms using five types of cluster validation
measures, as described by Brock et al. [127]. Table 3.1 reports on the stability
metrics (APN: average proportion of non-overlap, ADM: average distance be-
tween means, and FM: figure of merit) and internal metrics (connectivity and
silhouette width) calculated for four clustering algorithms and di�erent numbers
of clusters.

The results shown in Table 3.1 indicate that clustering of hosting providers
obtained using hierarchical and k-means algorithms are more stable (smaller
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Table 3.1: Stability and internal metrics per clustering algorithm and number of
clusters

Clustering
Algorithm

Metric Number of Clusters

2 3 4 5 6 7 8 9 10 11 12 13 14

hierarchical APN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ADM 10,628.70 17,804.84 17,805.16 17,805.16 21,989.46 21,991.56 21,993.01 21,993.08 26,749.91 26,750.06 26,751.00 26,751.00 29,675.66
FOM 422,786.09 422,807.23 422,828.35 422,849.48 422,870.63 422,891.67 422,912.59 422,933.65 422,954.74 422,975.74 422,996.68 423,017.85 423,039.01
Connectivity 3.86 9.54 11.54 14.31 18.87 20.87 23.37 27.10 29.42 31.42 35.47 40.32 42.92
Silhouette 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

kmeans APN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02
ADM 10,624.97 18,525.27 18,527.03 21,989.46 25,463.27 28,099.38 28,100.34 28,289.60 28,290.13 29,999.74 30,000.07 30,085.53 30,112.69
FOM 422,786.17 422,807.20 422,828.28 422,849.48 422,870.63 422,891.68 422,912.71 422,933.64 422,954.50 422,975.51 422,996.68 422,904.85 422,925.75
Connectivity 3.86 11.53 13.53 16.82 18.23 22.09 24.09 29.52 32.02 32.74 34.74 46.86 45.58
Silhouette 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98

kmedoids APN 0.00 0.10 0.11 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.16
ADM 10,622.25 25,458.85 27,179.76 30,109.91 31,577.42 31,581.43 31,350.52 31,580.66 31,662.98 31,790.83 31,663.69 31,668.07 31,708.57
FOM 422,786.18 422,806.49 422,686.58 422,708.06 422,751.59 422,768.74 422,661.05 422,690.55 422,696.29 422,717.51 422,632.32 422,653.60 422,662.08
Connectivity 3.86 5.38 13.72 16.33 18.47 29.76 31.76 44.55 47.33 39.30 45.86 57.83 60.45
Silhouette 1.00 0.99 0.99 0.98 0.87 0.88 0.88 0.88 0.88 0.88 0.73 0.73 0.74

EM APN 0.18 0.27 0.49 0.38 0.46 0.47 0.52 0.49 0.48 0.50 0.53 0.48 0.51
ADM 85,712.28 101,145.64 104,900.13 118,009.14 116,255.66 114,734.28 101,111.36 117,688.39 99,655.42 120,131.56 112,749.72 100,706.27 109,422.14
FOM 422,785.45 422,788.48 422,793.21 422,807.16 422,790.86 422,860.83 422,604.51 422,635.49 422,573.50 422,601.98 422,525.90 422,590.41 422,520.98
Connectivity 1,400.55 2,589.21 3,022.55 4,338.44 4,692.36 5,689.08 6,378.72 7,345.93 7,572.52 7,349.92 7,742.04 7,034.40 8,122.14
Silhouette 0.39 -0.10 0.11 -0.33 -0.52 -0.52 -0.51 -0.51 -0.51 -0.46 -0.49 -0.45 -0.45

values of APN and ADM) and compact (lower connectivity and Silhouette width
close to 1) comparing to k-medoids and EM algorithms. Given the similarity in
evaluation results of k-means and hierarchical algorithms, we choose the former.
It is computationally more e�cient and it enables the iterative improvements
in grouping of the hosting providers. We inspected the stability and internal
metrics as a function of a number of clusters (see Table 3.1). Combined with
our domain knowledge about the hosting sector, we grouped providers in 10
clusters using k-means.

3.4.2 Groups of hosting providers

Table 3.2 shows the groups: the size (number of providers), and the mean and
standard deviation of each characteristic. Cluster 2 represents a group of the
smallest hosting providers that are assigned on average a few to a few dozen IP
addresses which are only used for shared hosting–the proportion of provider’s
domain name space and IP space used for shared hosting (c3 and c4) is above
97%. Note that the mean density of domains per shared hosting IP address (c5)
is very high (1720), as is the standard deviation. Both are driven by GoDaddy,
LLC with 385,757 domains registered to a single IP address (other sources, like
DomainTools.com report this as well). When we closely investigate a sample
of domains hosted on this IP, we come across several parked domains, which to
some extent explain the density. Without this provider, the mean density drops
to 178 (SD: 222). Providers in this cluster are mainly located in United States
(97.2%). They o�er a great variety of cheap or even free hosting services. For
example, we observed an average of 1983 domains per IP hosted on 2048 IP
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addresses of the OpenTLD Web Network TK organization (the .tk registry).
Most of these providers include free plans with limited web space and data
transfer under certain second-level domains. For a monthly fee of few euros a
customer may obtain an unlimited number of domains under the most popular
gTLDs as well as unlimited storage and bandwidth.

Clusters 4 and 8 contain somewhat larger providers (in terms of address
space) such as 1&1 Internet. They o�er more diverse services in comparison
to the smaller ones. Around 80% of their addresses are used for webhosting,
but only a small share of this space is used for shared hosting services (11%
and 33%, respectively). The lower density of domains over shared IP addresses
(c5) may suggest that they o�er virtual private hosting as an extension for the
hosting services. This type of service is usually unmanaged, i.e., the customer
administrates the virtual system and software that runs on the server.

Cluster 10 is similar to clusters 4 and 8 in terms of the mean size of the IP
range (c1) and the portion of IP space used for webhosting (c2), while a much
smaller portion of the address space (c3) and domain name space (c4) is shared
hosting. This suggest that providers in this cluster o�er more non-shared (and
thus expensive) type of services, such as dedicated hosting.

Clusters 3 and 7 are the next class in terms of size, moving from hundreds
to thousands of IP addresses (c1). A smaller portion of the address space is
for webhosting (c2)—40% and 33% respectively. The providers in cluster 3 use
7.6% of their IP address and 80% of their domain name space for shared hosting
(c3 and c4). In cluster 7, on the other hand, providers have less shared hosting
address space (0.49%) and only 9.85% of all domains are on shared addresses.
Again, this suggests that providers in this group such as Go Daddy o�er more
dedicated or managed hosting services.

Similar conclusions could be drawn from a comparison of hosting providers
in clusters 5 and 6. We move, once more, up one class in terms of size of the
address space, where the portion of those addresses used for webhosting further
diminishes. In contrast to cluster 5, the webhosting of providers in cluster 6
is mostly shared hosting. In comparison to other clusters, cluster 5 has the
smallest shared hosting portion of its IP address space and domain name space.

Cluster 1 is similar to cluster 5 in terms of the allocated IP space (c1) and the
portion of IP space used for webhosting (c2) while a bigger portion of domain
name space (c4) in this cluster is shared hosting.

Cluster 9 with around 17% of the total providers in the data, mostly contains
providers with the largest allocated IP space (c1) and a small portion of the
address space used for webhosting (c2) such as Telecom companies. The values
of percentage of IP space and domain names space used for shared hosting (c3
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Table 3.2: Hosting provider groups

Mean (Standard Deviation)

Cluster Size c1 c2 c3 c4 c5

1 7,413 48286.64 4.36 0.15 31.20 25.97
16,81% (263086.31) (4.90) (0.25) (8.16) (19.41)

2 250 28.44 99.62 97.77 99.68 1720.09
0.47% (205.85) (2.46) (7.43) (1.79) (24387.17)

3 3,771 2441.18 40.03 7.58 80.64 114.57
7.94% (29297.19) (10.69) (4.51) (15.00) (402.76)

4 1,748 210.35 81.00 10.92 75.93 117.74
3.35% (2455.62) (13.86) (4.75) (15.72) (1354.02)

5 13,367 48775.60 4.77 0.01 1.96 4.08
29.01% (377535.49) (4.90) (0.03) (4.38) (10.67)

6 6,657 16594.20 6.83 1.31 85.43 391.45
15.02% (101181.78) (6.62) (2.26) (8.33) (3946.55)

7 2,550 5948.00 33.08 0.49 9.85 11.30
5.90% (75045.93) (9.98) (1.01) (14.34) (22.71)

8 988 459.95 79.14 32.82 91.78 113.18
1.88% (9557.63) (21.34) (10.71) (9.17) (1006.72)

9 7,389 307011.67 4.95 0.35 57.85 42.40
17.07% (4327995.09) (5.75) (0.54) (8.40) (46.62)

10 1,301 679.87 79.21 0.98 8.13 8.10
2.55% (6270.40) (15.22) (1.98) (13.89) (20.77)

c1: IP address range size
c2: Percentage of IP address range used for hosting websites
c3: Percentage of IP address range used for shared webhosting
c4: Percentage of domain names on shared webhosting
c5: Density of domains on shared webhosting IP addresses

and c4 respectively) suggest a significant portion of the webhosting in this group
is shared hosting.

These results, while crude, allow us to distinguish groups of providers with
di�erent profiles, from small companies that o�er cheap webhosting on highly
dense shared servers from those providers that o�er more expensive and flexible
services, such as managed and dedicated hosting.

Finally, we analyze the geographical location of the providers in each of the
clusters. Most of the providers in clusters with smaller average IP ranges are
located in United States while clusters containing providers with larger IP range
sizes are evenly distributed across di�erent countries.

We expect that di�erent groups of providers o�ering various types of hosting
services handle domain abuse di�erently, which is then examined in terms of
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uptimes of phishing domains discussed in Section 3.5.

3.5 Case Study: Analysis of Uptime for Phishing Web-
sites

In the previous sections, we grouped the hosting providers into 10 di�erent
clusters with di�erent business profiles. In this section, we examine whether
these profiles are associated with di�erences in abuse handling, more specifically,
the speed with which phishing websites are taken down.

3.5.1 Phishing data

We analyze data on the uptime of phishing websites from the moment the
provider has been notified, which was generously provided to us by Cyscon
GmbH [128].

Table 3.3: Summary of phishing data points per cluster

Cluster Providers ASes FQDNs URLs IPs Countries

1 221 229 633 3234 367 63
2 24 6 425 556 241 4
3 453 357 29641 78592 8036 54
4 86 41 689 1418 344 19
5 82 84 210 2521 134 43
6 938 893 10265 30638 4998 84
7 47 48 465 1400 229 21
8 48 19 1130 1634 734 11
9 483 504 4165 13957 1677 77
10 12 12 155 482 98 6

The dataset contains 137,577 phishing URLs associated with 48,224 fully
qualified domain names (FQDNs) that were hosted on 17,279 IP addresses in
1,962 ASes located in 114 countries. Each websites is then tagged with the first
and last time it is seen online. Note that for the websites that are only seen
once, the first seen is the same as the last seen, indicating that they were taken
down before the second measurement moment. These are logged as having an
uptime of 0 hours. The data contains websites that were first seen between June
4 to August 16, 2015. Many of the targets are known brands such as Paypal,
Dropbox, Yahoo, or Wells Fargo, World of Warcraft and Battlenet.

We mapped the phishing data to the di�erent clusters of hosting providers
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discussed in section 3.4. Table 3.3 displays the distribution of the data across
the di�erent clusters.

3.5.2 Analysis of uptime

An important criteria to evaluate security performance of hosting providers,
is how fast they respond to being notified about malicious sites [34]. Uptime
has been used in previous security research as a standard metric for studying
lifetime of di�erent attack types [65, 129, 130].

We define “uptime” of a phishing website as the number of days between the
first and last time the phishing site is observed online and reported by Cyscon.
Some of the phishing sites remain online beyond the measurement period, which
leaves their uptime unknown. To correctly account for these cases, we analyze
uptimes through survival analysis with right-censoring.

The survival function S(t) expresses the probability that a phishing website
is online at a specific time during the observation period. It is calculated at time
t using the standard Kaplan-Meier estimator without any assumption about the
distribution of the underlying data [131].

Figure 3.4 shows survival curves for phishing websites in the di�erent provider
clusters. In Table 3.4 we present descriptive statistics on uptimes, based only
on sites that had been taken down by the end of our measurement period.
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Figure 3.4: Kaplan-Meier estimates per cluster

The di�erences among the survival curves are highly significant, not only
across the population as a whole, but even when performing pair-wise com-
parisons among all clusters. Figure 3.5 displays the results for log-rank non-
parametric tests [132]. Only the blank tiles indicate non-significant di�erences
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Table 3.4: Descriptive statistics of uptimes (hours) per cluster

Cluster Min Mean Median Max SD Coef Var SE

1 0 165.840 24.000 1, 744.400 344.390 207.660 6.315
2 0 142.360 24.294 1, 813.800 301.530 211.810 12.393
3 0 59.408 0.0003 1, 829.900 175.280 295.050 0.627
4 0 62.560 0.0003 1, 505.200 175.220 280.080 4.650
5 0 16.715 0 1, 542.600 98.499 589.290 1.960
6 0 80.498 0.002 1, 812.800 210.080 260.980 1.176
7 0 76.794 24.004 1, 723.100 182.630 237.820 4.876
8 0 95.504 5.005 1, 730.100 249.650 261.400 6.168
9 0 152.790 24 1, 840.800 276.420 180.910 2.307

10 0 70.064 0.0003 1, 671.600 205.000 292.580 9.318

at a 0.05 significance level. In other words, the di�erent clusters are associated
with di�erent security performance. This underlines the value of the preceding
work of mapping and then condensing the complexity and heterogeneity of the
hosting market. Explaining the di�erences in uptimes from the properties of
the providers in the clusters is beyond the scope of this chapter and is further
discussed in Chapter 5. We can, however, explore what these results show,
without drawing any hard conclusions.

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

0 : 4

4 : 12

12 : 51

51 : 154

154 : 563

563 : 1028

1028 : 2097

Figure 3.5: Log-rank test for cluster pairs

Figure 3.4 and table 3.4 shows that phishing websites in clusters 1 and 9 have
the highest survival rate – in other words, these clusters perform the worst in
terms of take-down speed. Clusters 1 and 9 contain the largest providers in the
market (together with cluster 5, see table 3.2). Providers in these two clusters
have a relatively low percentage of webhosting, but a significant portion of that
webhosting is shared hosting. Around half of the phishing sites in these clusters
indeed map to shared hosting servers. The third-worst performer is cluster 2.
This contains the providers with the smallest allocated IP ranges, which are
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used completely for shared hosting services.
An intriguing contrast emerges when looking at the best performer: cluster

5. It is very similar to 1 and 9, except for the fact that it contains virtually
no shared hosting. It is too early to draw any conclusions from these findings,
but it seems clear that size of the allocated address space itself does not explain
performance. Perhaps it is more related to the position and size of shared
hosting services in the overall portfolio. This is consistent with earlier security
research that focused on shared hosting as a problem area. The underlying
economic mechanism would be that this part of the market is driven by fierce
price competition and low profit margins.

Whether the uptimes of phishing sites are really related to the incentives
and practices around shared hosting is a question that we further explored in
Chapter 5. In a more general sense, our findings demonstrate that a better
mapping of the market and its providers will allow us to focus security e�orts in
the most urgent areas, as well as allowing us to compare apples to apples when
evaluating the security of di�erent providers.

3.6 Related Work
To the best of our knowledge, there is no study that has systematically and
transparently mapped the hosting market. Recent work by Noroozian et al.
underlines the need for such mapping, by demonstrating how provider hetero-
geneity influences security performance metrics [114].

A number of studies map security incidents to hosting providers by equating
them with ASes and normalizing the incidents by the AS size [115]. Mahjoub
studies the concentration of maliciousness in ASes by analyzing AS topology,
hosted content and IP space reservation [133]. Other studies identify malicious
ASes using AS topology, BGP-related features and by exploring ASes providing
transit for malicious ASes [33, 32]. Although useful, these studies neglect the
organizations within ASes and their properties, which influence all metrics of
maliciousness.

Industry is more active in producing rankings for ASes as hosting providers
e.g., [36]. Netcraft’s uses reverse DNS to map providers, but the complete
methodology and data are not available to researchers [116]. Canali et al. ex-
amine the security performance of a small group of shared hosting providers
and conclude that the majority of the providers are unable to detect even ba-
sic attacks on their networks [10]. Although they study providers with specific
characteristics, the sample of providers is non-random and too small to draw
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any conclusions about providers in general.
A separate branch of research focuses more on how hosting providers deal

with the take-down of malicious websites [34, 134]. Nappa et al. explore lifetime
of drive-by download URLs and rank their associated ASes [135]. Moore and
Clayton study lifetime of domains and variables like hosting providers of the
website that might influence take-down speed and conclude that website removal
is not yet fast enough to completely mitigate the problem of phishing [129].
Gañán et al. examine characteristics of botnet C&Cs that might influence their
lifetime [136]. Again, treating providers as ASes, the paper concludes that
hosting provider, hosting types (e.g., bulletproof or free) and popularity of the
sites are significant factors associated with the uptime of the C&Cs.

We believe that this work is the first to map the hosting market and discuss
its heterogeneity by analyzing the di�erences among the providers in terms of
their services and their abuse handling practices.

3.7 Conclusions and Discussions
A variety of initiatives seek to improve security in hosting services, but none of
them have taken even basic information about the market into account, which
makes it hard to identify best practices and evaluate performance. Security
research has mostly relied on routing data and AS-level aggregations of secu-
rity incidents, equating ASes to providers. To overcome these limitations, we
have developed a systematic approach to uncover and grasp the complexity of
the hosting market. We combined passive DNS data to determine the address
space of hosting infrastructure with WHOIS data to determine the associated
providers and their IP address space. Next, we applied several filters to conser-
vatively remove false positives (non-hosting providers).

This process resulted in a set of 45,434 hosting providers, somewhat log-
normally spread around a median size of 1,517 IP addresses. Using five provider
characteristics we extracted from the data, we familiarized the reader with the
hosting landscape. There is surprisingly little consolidation in the market, given
that the services are commoditized and thus amenable to economies of scale,
as can be seen in the market for cloud services. In hosting, it takes 1,210
providers to account for 80% of the address space used for webhosting. A large
number of small players dominate the landscape as much as a small number of
larger providers. There are providers with millions of IP addresses and around
a thousand with a handful or even just a single address. We found providers
who are o�ering only webhosting versus those who are using only a small share
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of their allocated address space for webhosting.
We explored what combinations of the characteristics occur in reality via

cluster analysis. This uncovered a diverse set of business profiles and an in-
dication of what fraction of the market fits each profile. Since these profiles
are proxies for di�erent types of organizations, we assessed whether the clusters
were associated with di�erent security performance using data on the uptime of
phishing websites. The clusters were indeed very di�erent in how fast they take
down phishing domains. The results suggest that our mapping of the hosting
market is helpful in deepening our understanding of the driving forces of secu-
rity threats, as well as in developing best practices. Both benefit from being
able to compare apples to apples, rather than using the current crude analytical
approaches based on routing data and AS-level abuse metrics, which cannot
account for the heterogeneity in the market.

Several limitations need to be acknowledged. These results are just a first
step towards a thorough understanding of the market. We assumed that all
providers o�er at least some webhosting in their portfolio, so as to be able
to use passive DNS data to identify potential providers. There might be some
providers who do not o�er webhosting. They would be invisible to this approach.
Another limitation is the fact that WHOIS records are notorious for containing
stale, inconsistent and inaccurate data. Related to this are the inconsistencies
in organization names in the WHOIS data. When di�erent names point to the
same entity, they might actually be operated under one entity or they may point
to entities belonging to the same parent company but operating independently
of each other. How to distinguish these two cases is still unsolved. The accuracy
of the filters to separate hosting providers from other entities that host websites
is rather limited and this impacts the mapping.

In future chapters, we will study di�erent factors that can explain the signif-
icant di�erences that were found among the clusters of providers. The charac-
teristics of providers can also be enriched by adding other variables that might
shape their incentives and performance, such as their jurisdiction, privacy and
security regulations and development indicators.

The map of the hosting provider landscape that has been developed in the
course of this study will be made available to other researchers, so as to con-
tribute to better analysis and mitigation of the security threats that plague this
market.



CHAPTER 4

Measuring the Impact of Providers’
Structural Properties on Abuse

In the previous chapter, we established a reliable methodology for identifying
hosting providers. We also found that providers’ business models correlate with
their security performance, as measured by the speed with which they take down
phishing webpages on their network. For example, shared hosting providers with
smaller IP address ranges tend to take more time to take down a compromised
domain than providers with other business models. In this chapter, we take a
more fundamental approach. We analytically and empirically disentangle the
di�erent factors that cause variation in measured abuse rates across providers.
In the first part of this chapter, we develop an analytical model that outlines
di�erent factors at work in explaining security of hosting providers as observed
by abuse incidents. The model includes two types of provider properties that
drive abuse: exposure, as measured by structural properties like size and business
model, and their security e�orts. In the second part of this chapter, we focus
only on providers’ exposure (structural properties) and statistically quantify their
impact on the incident rates for one type of abuse, namely phishing.

4.1 Introduction
Abuse data is an important foundation for security and policy research. It
associates technical identifiers – typically IP addresses, domain names or URLs
– with malicious activities, such as spam, infected machines, command-and-
control servers, and phishing sites.

Scientific studies and industry reports draw on abuse data to make inferences
about the security practices of the parties in charge of the networks or services
where the abuse is located. Concentrations of abuse are seen as evidence of
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poor security practices or even criminal behavior, explicitly or implicitly char-
acterizing certain providers as “rotten apples”, or at least as actors who can and
should do more remediation [36, 137, 50, 56, 34, 115, 114].

Industry representatives often counter these kind of incomplete/wrong infer-
ences based on right abuse data, when they make media headlines. For exam-
ple, a 2013 McAfee report ranked the Netherlands as number three worldwide
in terms of hosting botnet command-and-control (C&C) servers [138]. A lead-
ing news organization concluded: “Netherlands Paradise for Cybercriminals”,
prompting a debate that reached the national parliament [139]. The Dutch
Hosting Provider Association responded that it “disagrees vehemently” with
this conclusion [140]. It argued that the high ranking for hosting C&C servers
was an artifact of the large hosting infrastructure in the country, not of any
negligence or malice on the part of providers.

The hosting provider association raised a valid point. We know that con-
centrations of abuse are, to a large extent, a function of the size of the net-
work and the service portfolio of the provider, rather than being indicators of
the provider’s security e�ort [141]. Previous research looked into the e�ect of
size – as one of the providers’ structural properties – on abuse levels [34, 115].
A common problem in these studies is that size is controlled for by dividing
the number of abuse events by the number of IP addresses associated with an
Autonomous System (AS). This is not only a naive normalization approach,
considering all other size indicators that could influence abuse counts, but also
contains errors in aggregation and attribution of abuse. It is also problematic
to use Autonomous Systems (ASes), who are entities responsible for routing IP
addresses, as proxies for hosting providers, the organizations who operate the
IP space. Moreover, previous work does not take into account other inherent or
structural properties of providers, such as pricing strategies or the type of the
hosting service o�ered. All of these can potentially influence abuse [35].

Therefore, to advance our ability to make reliable inferences from abuse data
and to address the limitations of prior work, in this chapter, we develop an an-
alytical approach and propose a statistical model of the abuse data generation
process. The model helps to understand to what extent abuse levels are de-
termined by structural properties of providers versus being mainly determined
by other factors including, but not limited to, the security e�orts of individ-
ual providers. Structural properties in our study are di�erent size and business
model variables, pricing strategy, time-in-business, popularity index, WordPress
use and ICT development index.

We use phishing abuse data as a case-study to demonstrate our approach.
In short, this chapter makes the following contributions:
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• We present a scalable approach to reduce attribution error in studying
abuse across the population of hosting providers

• We propose an analytical and statistical approach to explain abuse concen-
trations. Our model improves on previously utilized naive normalization
methods, through decomposing the di�erent sources of variance present
in abuse data such as providers’ characteristics, attacker behavior and
measurement errors.

• In a case study on phishing data, we show that more than 84 % of the vari-
ance in abuse data can be explained by four size and business model prop-
erties of providers, collected for the entire population of hosting providers;

• We develop an approach to measure the impact of factors that are dif-
ficult to observe at scale. Using “statistical twins”, we present the first
empirical evidence of the impact of pricing, time-in-business on phishing
abuse. Together with other factors related to providers’ business models,
we are able explain a further 77 % of the remaining variation in abuse,
while controlling for country-level di�erences;

• We demonstrate how our approach generates comparative abuse metrics
by controlling for the structural di�erences among providers. Such metrics
are more suitable to evaluate policy impact on concentrations of abuse
than absolute counts or naively normalized metrics.

While our study provides an unprecedented view into the interpretation and
attribution of abuse in the case of hosting providers, a limiting factor is that
we measure only structural properties. We obtain security e�ort, the variable
of key interest, as an unobserved residual, which is conflated with measurement
noise. As a result, this indirect approach leaves us with upper bound estimates
of the e�ect of security e�ort on abuse.

In Section 4.2, we outline the analytical approach that sets up the rest of the
chapter. Section 4.3 describes data sources and collection methods. Section 4.4
details our general modeling approach and present results for the entire sample
of hosting providers. In Section 4.5, we explain the “statistical twins” approach
and present results for the subset of enriched data points. In Section 4.6, we
evaluate the robustness by assessing the impact of measurements errors in the
abuse data and size estimates. Section 4.7 revisits related work, structured by
the level of analysis. Finally, we discusses our main conclusions and implications
in Section 4.8.
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4.2 Analytical Approach
To explain the driving forces behind abuse observations at the level of host-
ing providers, we need to disentangle several sources of variance. Figure 4.1
summarizes these sources of variance and provides an overview of our approach.

4.2.1 Decomposition of sources of variance

We assume that abuse observations are broadly driven by two phenomena: ex-
planatory factors (left branch) and measurement errors (right branch).
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Figure 4.1: Overview of our analytical approach

We further divide the explanatory factors into defender properties and at-
tacker behavior. Defender properties are then branched into two main groups:
structural properties and (indicators of) security e�ort. The most relevant struc-
tural properties are size metrics. Another structural property is the type of
business. Providers o�er di�erent types of hosting services, e.g., unmanaged,
dedicated, shared, virtual private server, etc. These services di�er in the amount
of responsibility the provider assumes and in its role of providing security [9].
Business type also includes the pricing strategy. Other characteristics include
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the legal framework under which providers operate as well as the overall ma-
turity of ICT development in a country. Last but not least, providers’ security
e�orts influence the abuse counts.

Next to explanatory factors, we distinguish measurement errors that cause
variance in the abuse counts: biases in observations (for factors and abuse data)
and problems in attributing abuse incidents to the responsible economic entity.

To asses the influence of each of the above mentioned factors in explaining
the variance in the abuse counts of hosting providers, we develop a statistical
modeling approach and implement it for one type of abuse data as a case-study:
phishing domains. The blue text in Figure 4.1 indicates how we deal with the
various sources of variance as decomposed in the analytical approach.

4.2.2 Model of the abuse data generating process

Abuse counts consists of non-negative integers that arise from a direct obser-
vation of a point process in a given time period, suggesting to model the data
generation process as Poisson distribution. The number of phishing domains
per provider enters a Poisson Generalized Linear Models (GLMs) as dependent
variable. Structural defender properties related to size and business type (de-
tailed in Section 4.4) are used as independent variables. We improve on the
size estimates used in previous work in two ways: (i) we improve attribution
by calculating size estimates for hosting providers instead of technical entities,
like ASes, (ii) in addition to the size of the allocated IP space, we also include
the sizes of the domain name space and the IP space used for webhosting in the
regression. This allows for more precise control of providers’ customer base and
attack surface. All these variables can be economically collected for all hosting
providers.

Other structural properties (detailed in Section 4.5) are more cumbersome
to collect, since they require manual work or are costly to others when measured
at scale. A statistician’s response would be to estimate from a random sample.
The size of a random sample depends on the target level of confidence and on
the e�ect size (akin the signal-to-noise ratio). In the case of hosting providers,
the heterogeneity in the population may hide subtle e�ects of security e�ort,
which would require uneconomically large samples to control for.

A more e�cient approach is to modify the sampling strategy and select sub-
sets of cases which appear homogeneous according to the observable structural
properties. Specifically, we select a set of “statistical twins” – subsets of size two
– covering the domain of the known population. We collect additional variables
for each twin. The subsequent analysis looks for factors explaining di�erences
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within twins, disregarding di�erences between twins. Technically, this can be
achieved by adding one fixed e�ect per subset to the GLM specification. This
method allows us to control for large parts of the heterogeneity and at the
same time account for linear bias introduced by the systematic sample selec-
tion. Another way of looking at this approach is that we select the a priori
most informative cases from the population for further analysis. It rests on
the implied assumption that cases which have a twin in the population do not
systematically di�er from those which do not. We conjecture that this is not
unreasonable for the population of global hosting providers.

Of course, there always remain unobserved factors, including additional
structural properties, variables related to security e�ort, attacker behavior, and
all kinds of measurement error. Although all unobserved factors are conflated
in the unexplained variance of the model, below we explain how we deal with
each of these factors.

4.2.3 Security e�ort as residual

We model security e�ort as an unobserved variable because direct measurement
of security e�ort for hosting providers is very di�cult. First of all, there is no
way to directly observe the actions of providers’ security sta�, such as applying
security patches, educating customers, and putting application firewalls in place.
At best, we can observe some technical indicators that might be influenced
by those e�orts, but that will always constitute a very partial measurement.
Second, even if certain technical indicators can be collected as proxies for e�ort,
they are not necessarily causally related to abuse. Indicators used in prior work
measure network hygiene (e.g., BGP misconfiguration, untrusted certificates,
open mail relays). This type of hygiene is not preventative of web compromise.
At best, such hygiene indicators can be interpreted as measuring some more
generic security e�ort, which might or might not correlate with providers’ e�ort
in fighting abuse. Third, useful technical proxies for e�ort are still hard to
attribute to providers. Who actually caused the presence or absence of the
vulnerability? The web master, the hosting provider, the software vendor, or
someone else? Fourth, and last, even if useful indicators can be observed and
correctly attributed, it is hard to draw the correct inference from them because
of the heterogeneity in the market. Hosting providers are very di�erent and so
are domains within providers. An indicator that signals lack of security e�ort
for one domain and provider might not signal the same for another domain
or provider, because the a�ected users may face very di�erent threats. For
instance, not all websites are more secure by adopting HTTP Strict Transport
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Security (HSTS) or Content Security Policy (CSP). And many providers cannot
cause BGP misconfigurations, as they do not operate their own AS and, hence,
BGP announcements.

In short, measuring e�ort is very di�cult under the best of circumstances.
This makes it valuable to develop an alternative approach to approximate e�ort
that does not depend on direct observation. In this work we explore the option
of treating security e�ort as residual, i.e., as part of the unexplained variance,
after accounting for the observable factors. As a consequence, our results must
be interpreted as upper bounds for the e�ect of security e�ort on abuse. This
introduces some asymmetry in our research logic: only if the residual variance
is small, we can rule out the hypothesis that security e�ort is very influential.

We model attacker behavior as random variable, assuming that most attack-
ers behave rather opportunistic than strategic. The realization of this random
variable is also part of the unexplained variance. The realization of discrete
incidents can be interpreted as part of the measurement error of an underlying
latent variable of “attack strength”, or as the result of seemingly random at-
tacker behavior. To manage expectations, we note that our statistical approach
is generally not suitable for studying targeted attacks and other rare events.

Avoiding observational biases is outside the scope of this chapter, but we try
to limit their e�ect on our core results by cross-validation against a di�erent
set of phishing data. In addition, we test the robustness of the size estimates
in the model against errors due to possible model mismatch by simulating the
impact of distorted size estimates against a simulated phishing count variable
drawn from an ideal Poisson distribution model.

4.3 Data Collection Methodology
Our study uses a variety of data sources, which are summarized in Table 4.1.

4.3.1 Mapping to hosting providers

Our goal is to accurately identify the IP ranges that belong to hosting providers.
Most of the existing work uses BGP data to map IP addresses of abuse incidents
to ASes, equating the latter with hosting providers. However, the entity that
is routing an IP address is not always the same as the organization that is
hosting an IP address. While some organizations operate under several ASes,
other organizations share a single AS. Our prior work in Chapter 3 finds that
on average an AS consists of 7 organizations [142]. WHOIS registration and
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IP allocation information, which is collected and stored by Regional Internet
Registries (RIR), provide more direct visibility into the responsible organization
behind an IP address. It should be noted that WHOIS data comes with its well-
known limitations, such as di�erent data formats, they are less detrimental on
analysis of the hosting market than starting with BGP [119].

In this chapter we build on the methodology introduced in the previous
chapter and slightly improve our True Positive Rate (TPR) by discarding more
organizations that are not hosting providers. We take 47,446,082 IP addresses
and 214,138,467 domain names observed in passive DNS data in 2015 and map
them to 161,891 corresponding organizations to whom they are allocated, using
the MaxMind API for WHOIS IP allocation, as discussed in previous research
[120, 143, 144]. The resulting list contains all organizations to whom IP ranges
are allocated. Many of them are not hosting providers, e.g., Massachusetts
Institute of Technology and DoD Network Information Center. We com-
pile a final set of organizations that o�er hosting services by filtering out non-
hosting providers through a series of keywords related to educational and government-
related organizations, ISPs, broadband providers, mobile service providers, do-
main parking services and DDoS protection services [142, 144]. The final set
consists of 45,358 hosting providers.

4.3.2 Abuse data

In order to demonstrate the application of our proposed analytical method, we
model the count of abuse in the networks of hosting providers, using phishing
data as a case-study. The main reason behind this choice is, since phishing sites
are known to be mostly compromised accounts [49], bypassing security is very
much required in the bulk of cases. To that end, we analyze phishing domains
collected from two sources: the Anti-Phishing Working Group (APWG) [75]
and Cyscon GmbH [128].

APWG data contains URLs used in phishing attacks together with their
blacklisting times. We collect the IP addresses associated with second-level
domains1 in the APWG feed by retrieving the corresponding passive DNS entry
at the time when the domain is blacklisted. The final set consists of 131,018
unique second-level domains and 95,294 unique IP addresses hosted by 5,391
hosting providers for the entire 2015.

Cyscon phishing data contains the same attributes (URLs, IP addresses,
blacklisting times). We collect 40,292 unique second-level domains and 23,021
unique IP addresses hosted by 2,782 hosting providers in June–December 2015.

1Domains such as example.co.uk are considered to be second-level domains as well.
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We use the phishing second-level domains in APWG data as the default
response variable in our regression models in Section 4.4 and 4.5. In Section 4.6,
we use the phishing second-level domains in Cyscon data to cross-validate the
results.

4.3.3 Provider properties

To explain the di�erences in phishing incident counts between hosting providers,
we collect a number of variables on provider (defender) properties, some for the
entire population and some for the sample of “statistical twins”.

Variables collected for all providers

In addition to identifying providers, we can collect variables related to size and
business model (see the leftmost factors in Fig. 4.1) from passive DNS and
WHOIS data.

Number of assigned IP addresses. Size of IP address block(s) assigned to a
provider based on WHOIS.

Number of IP addresses hosting domains. Count of IP addresses seen to
host domains in passive DNS. The combination of these two variables provides
information about the kind of business the hosting provider is running. For
instance, providers who use a large part of their assigned IP space for hosting
domains such as webhosting providers can have a di�erent business model from
providers who use their IP space for hosting other services such as data centers.

Number of hosted domains. Count of the second-level domains in the passive
DNS data. In addition, note that since the first three variables have a skewed
distribution, we log-transform them with base 10.

Percentage of domains hosted on shared IPs. We consider an IP address
shared, if it hosts more than 10 domain names [142].

This variable measures the ratio of domains that are hosted on shared IP
addresses over the total size of the hosted domains, in percent. This variable
not only conveys information about the size of the shared hosting infrastructure
of the provider, but also about the provider’s business model: the degree to
which it relies on low-cost shared hosting services.

“Statistical twins” sampling method

It is not possible or desirable to collect data at scale for all factors in Figure 4.1.
For example, pricing information must be collected manually. It involves search,
interpretation, and human judgment. Applying a standardized procedure is too



56 Measuring the Impact of Providers’ Structural Properties on Abuse

Table 4.1: Descriptive statistics of variables used in the full model for all providers
and providers in the sample of twins

min mean median max sd
for all data points (n = 45, 358)
# assigned IPs [log10] 0 3.1 3.2 8.4 1.2
# IPs hosting domains [log10] 0 1.8 1.7 6.2 0.8
# hosted domains [log10] 0 2.0 1.8 7.6 0.9
% domains hosted on shared IPs 0 51.0 59.0 100 37.1
# phishing domains in APWG 0 2.8 0 11, 455 91.3
# phishing domains in Cyscon 0 0.9 0 5, 515 37.4

for statistical twins (n = 210)
# assigned IPs [log10] 0.3 4.0 4.0 7.5 1.4
# IPs hosting domains [log10] 0.3 3.0 3.0 5.6 1.2
# hosted domains [log10] 1.5 3.9 3.7 7.6 1.2
% domains hosted on shared IPs 0 78.6 87.9 99.3 22.3
# phishing domains in APWG 0 159.2 3 9, 805 967.6
# phishing domains in Cyscon 0 54.8 1 3, 819 375.0

costly for the entire population of 45,358 hosting providers for some of these
variables. Even collecting some technical indicators, such as the number of
Wordpress installation on all websites of every hosting provider, are ine�cient
to collect in bulk.

For this reason, we employ a data-driven sampling strategy and select a
small set of homogeneous “statistical twins” for which we can collect as much
information as possible. The steps are:

(i) We start with a set of randomly and uniformly selected seed data points
(105 hosting providers) for which we have collected pricing information.
Let S be the set of seed data points and T be the total set (or population)
of providers. The random seed should ensure a good coverage of the
population.

(ii) We calculate the distance between all the data points in S and data points
in T using the Euclidean distance between all explanatory variables col-
lected for the entire population. This results in a distance matrix of 105
rows and around 45 k columns.

(iii) For each of the 105 providers in S, we select the closest match; that is the
provider in set T that has the minimum distance to the provider in set S,
in terms of variables in Table 4.1.
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(iv) This results in a set of rich data points R consisting of 105 homogeneous
statistical twins and 206 unique hosting providers in total, where a few
providers became part of two twins. We further use set R as our (noto-
riously biased) sample to study the e�ect of additional factors on abuse.
We account for the bias in the analysis (Section 4.6).

(v) We collect additional variables for all elements in R.

While the method is economical and increases the information gained per
e�ort, it comes with some limitations. First, it is unlikely to spot outliers sim-
ply because there is nothing to pair up against a unique provider like Amazon.
Second, it assumes that data points in dense regions of the population do not
systematically di�er from those in sparser regions, where the probability of find-
ing twins is lower. Third, it requires that the bias introduced by the selection
strategy is approximately linear. Non-linear bias correction is possible in prin-
ciple, but requires prior information on the functional form.
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Figure 4.2: Number of twins per country combination

Variables collected for a sample of providers

The below variables are collected only for the providers in R, as explained in
Section 4.3.3.

Country. For the providers in R, we use MaxMind API to identify where the
majority of IP addresses are located. In Figure 4.2, we show the general coverage
of twins in our data. For instance, there are 16 twins with both providers located
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in US while there is one twin with one provider located in Brazil and the other
in Japan. The figure indicates a good variation in the geo-location of twins in
our sample data.

ICT development index. The ITU publishes country-level variables that
proxy the development in information and communication technology (ICT)
using several indicators [145]. (This and the previous variable came into view
for our enriched data points, but they could also be economically collected for
the whole population.)

Popularity index. We use Alexa’s one million top-ranked domains as a proxy
for online popularity. A provider is assumed to host more popular content when
more domains are on the list. If attacker behavior is not completely random, one
may expect that providers with more popular sites are targeted more in order
to compromise domains and set up phishing sites. The popularity index per
provider in calculated by aggregating the Alexa ranks of second-level domains
in our sample R. We first reverse the Alexa ranks per domain, that is the
most popular Alexa domain gets the rank 1,000,000. We then calculate a score
per provider by summing up the base-10 logarithm of the reverse rank of all
ranked websites. This score combines website (i.e., customer) popularity and
the density of popular sites at a hosting provider and the method allows us to
account for extreme popularity of large providers.

Time in business. Time in business is a proxy for how experienced a provider
is. We collect this information by querying the WHOIS database for the regis-
tration date of the provider’s own domain name. Missing values were entered if
we could not find the website or there was no public registration date in WHOIS.
We cross-checked the results with the Internet Archive for all data points [146].
Almost all domains in our sample were captured by Web-archive a couple of
months after the day they were registered.

Pricing. Finding comparable pricing information for hosting providers is
complicated. We visit the provider’s website and collect prices for the least
expensive hosting plan on o�er, as an indicator to tell ‘bottom-end’ from ‘top-
end’ apart. We hypothesize that providers with cheaper hosting plans have
fewer resources and more vulnerable customers, so higher phishing counts. We
converted all prices to US dollars by taking the 2015 average exchange rate of
the local currency to USD. Price information for providers is missing if (i) we
could not find the provider’s website; (ii) the prices are not available online; and
(iii) we do not receive a reply to our inquiries through other channels.

WordPress use. Previous studies suggest that domains with popular content
management systems (CMS) in general have higher odds of being compromised
for phishing attacks [44]. Therefore, we use WordPress as a proxy of popular
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Figure 4.3: Visualization of the variation of additional variables within and between
sampled twins

and targeted software and hypothesize that providers with such business models
have higher chance of incurring a phishing incident. More specifically, the more
WordPress websites a provider hosts, the higher the chance of a compromise
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that is used for a phishing site. Note that we collect this indicator to capture
information about the business model. One could also collect indicators of
software installations and patch levels to measure to measure the impact of
provider’s patching practices on abuse, but this is outside the scope of this
chapter.

To collect data on WordPress installations per provider, we randomly sample
2 % of the domains of providers in R. This results in 1,398,928 domains. We use
WPScan, a black box WordPress vulnerability scanner developed by Sucuri, to
determine if a domain uses WordPress [147]. The variable “WordPress use” is
calculated by taking the ratio of scanned domains with a WordPress installation
over all scanned domains, excluding those that we were unable to scan.

To raise confidence in the selection of twins and facilitate the interpretation
of estimated coe�cients, in Figure 4.3 we show a collection of plots visualizing
the variance within and between twins for the additional variables. Circles
display the value of the provider with lower value in a twin, and are the basis
for sorting all twins horizontally. Triangles display the respective value of the
provider with higher value.

In general, the plots suggest a broad enough coverage of data points in the
twins. More specifically, as Figure 4.3(a) demonstrates, variance of the ICT de-
velopment index decreases with increasing the base level (The provider shown
with circle, those with lower value in a twin). This is probably due the concentra-
tion of hosting providers (and hence twins) in a few large and highly developed
countries, as witnessed in the country pairings displayed in Figure 4.2. The
popularity index exhibits moderate di�erences at all levels (Fig. 4.3(b)). This
indicates that the sampling strategy accounts well for the heterogeneity in the
size of hosting providers, which is also included in the index calculation. At
the same time, the remaining variation allows for the statistical identification
of potentially influencing factors within the twins. Also time in business is very
“healthy” in this regard, with a smaller di�erence for values between providers
in twins which are in business since the .com ages (Figure 4.3(c)). The dif-
ferences in price are rather small and exhibit occasional spikes (Figure 4.3(d)).
This may reflect the generally low cost of the cheapest package of one of the
twins, di�erences in business models at the spikes, and potential issues related
to comparing US dollar amounts among countries with very di�erent labor and
infrastructure costs. Finally, the Wordress use also shows a good mix of varia-
tion within and between twins, increasing the chance of extracting a meaningful
signal if the indicator has explanatory power (Figure 4.3(e)).

The general coverage of the rich data points R of the population T is best
assessed by comparing the descriptive statistics of the four explanatory variables



4.4 Modeling Phishing Counts 61

and the response variables, which are available for the entire population. This
information is included in the lower half of Table 4.1. As it is clear from the
table, the distribution of most variables follow the same pattern within the
sample and the population, except from the phishing distribution which is a lot
more concentrated in the sample.

4.4 Modeling Phishing Counts
We now propose a statistical model to analyze the extent to which structural
properties of hosting providers can explain the concentration of abuse in their
networks, for the case of phishing abuse.

4.4.1 Regression model

Abuse is measured by counting abuse events per provider. These counts consists
of non-negative integers that arise from a direct observation of a point process.
In a minimal model, the underlying process is assumed to be stationary and
homogeneous, with i.i.d. arrival times for abuse events and thus can be modeled
with a Poisson distribution. In Section 4.4.2, we explain in more details the
reason why we opted for Poisson regression over other Poisson-family models,
such as Quasi-Poisson and Negative Binomial.

Let us define our response variable Yi as the number of abused second-level
domains hosted by provider i, for i = 1, . . . , n, with n being the total number of
hosting providers. Let Yi follow a Poisson distribution with parameter ⁄ Ø 0,
The Poisson distribution has equal mean and variance E [Yi] = var [Yi] = ⁄i.
In the log-linear version of the general linear model (GLM), ⁄i is modeled as:

ln(⁄i) = —0 + x

Õ
i� = —0 +

kÿ

j=1
xij—j , (4.1)

where —0 is the intercept, xij , j = 1, . . . , k, are explanatory variables rep-
resenting the structural properties that drive the response variable Yi, and —j

are parameters to be estimated with maximum likelihood (ML). Statistical hy-
pothesis tests can tell if a parameter —j significantly di�ers from zero. If the
null hypothesis is rejected, the corresponding explanatory variable is considered
influential and the parameter’s sign and magnitude can be interpreted.
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4.4.2 Model goodness of fit

The fitted values produced by inserting the ML estimates �̂ into Eq. (4.1)
will not match the values of the phishing data perfectly, chiefly because the
data points are realizations and the fitted values are parameters of Poisson
distributions. The discrepancy between the model and the data is a measure
of the inadequacy of the model. Several measures exist to assess the goodness
of fit of GLMs such as Log-likelihood, Akaike Information Criterion (AIC), the
dispersion parameter of the Poisson model and R-squared. Here we discuss a
few of them that are more specific to our Poisson model.

Over-dispersion Recall that the Poisson model assumes equal mean and
variance for the response variable, that is var [Yi] = „E [Yi] = „⁄i, with „

!= 1,
where „ is a dispersion parameter. However, this assumption is often “violated”
in practice; that is, a likelihood function which leaves „ as a parameter to
be estimated („̂) fits the data much better. In case of heterogeneous count
variables, „̂ > 1 indicates signs of over-dispersion, which can be interpreted as
unobserved heterogeneity in terms of a missing structural factor that leads to
concentrations of observable events.

One might approach over-dispersion by starting from a Poisson model and
adding a multiplicative random e�ect to represent unobserved heterogeneity.
This leads to a Negative Binomial GLM. However, even if both parameters
of the assumed Negative Binomial distribution are correctly specified, if the
distribution of the response variable is not in fact the negative binomial, the
maximum-likelihood estimator becomes inconsistent [148]. To make sure this
holds for our data as well, we have constructed other models that control for
over-dispersion, such as Quasi-Poisson and Negative Binomial models, and ob-
served that all significant relationships stayed the same, with minor or no vari-
ation in the coe�cients and minor variations in standard error values.

The literature suggests that in the absence of a precise mechanism that
produces the over-dispersion, it is safe to assume var(Yi) = „⁄i, for positive
values of „. This approach is generally considered robust since even significant
deviations have only a minor e�ect on the fitted values, their standard errors,
confidence intervals, and p-values of hypothesis tests [149]. Moreover, over-
dispersion, is a sign of unobserved heterogeneity and is an indicator for struc-
tural variance in our model. Any attempt to compensate it with the choice of
more complex distribution functions, such as negative binomial or zero-inflated
Poisson, may hide the very signal we are looking for.

The dispersion parameter „ of a Poisson regression model is calculated using
the chi-square statistic ‰2 divided by degrees of freedom, as it is more robust
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against outliers [150].

„̂ = ‰2

(n ≠ k ≠ 1) =
ÿ

i

1
yi ≠ ⁄̂i

22

⁄̂i · (n ≠ k ≠ 1)
, (4.2)

with n being the number of observations and k the number of coe�cients. y =
(y1, ..., yn)Õ are the observed values of the response variable; ⁄̂ = (⁄̂1, ..., ⁄̂n)Õ are
the corresponding predicted values under the fitted model, respectively.

Pseudo R-Squared A popular measure to assess the fraction of variance
explained by a linear model is the R-squared statistic. Similar statistics that
take values between 0 (not better than intercept-only model) and 1 (perfect fit)
have been proposed for GLMs and are called pseudo R-Squared. According to
[149], a pseudo R-Squared measure for Poisson models that takes the e�ect of
over-dispersion into account is given by

R2 = 1 ≠ D(y, �̂) + k · „̂

D(y, Ȳ )
, (4.3)

where D(y, �̂) is the deviance of the fitted model, D(y, Ȳ ) is the deviance
of the intercept-only model, „̂ is the estimated dispersion (Eq. (4.2)), k is the
number of covariates fitted, (excluding intercept) and Ȳ = 1

n

qn
i=1 yi.

4.4.3 Model specifications

After selecting the proper regression model and discussing goodness of fit mea-
sures, we choose to fit di�erent specifications of the model with a step-wise
inclusion of the variables that capture providers’ structural properties. For each
of the variables, we hypothesize the direction of its relation with phishing counts.

We expect that the number of phishing counts increases as the ‘Number of
hosted domains’ and ‘Number of IP addresses hosting domains’ increase. Both
variables are correlated and measure some aspects of the size of a provider. We
may expect that the coe�cient sizes decline if both enter the model together,
but it is unlikely that one of them becomes redundant. In case of ‘Number
of assigned IP addresses’, the assumption is slightly di�erent since the more
assigned IP addresses does not necessarily mean that the provider uses them for
web hosting. In contrast, we found that the business model of providers with
larger assigned IP space is closer to a broadband provider who uses only a very
small portion of its assigned space for web-hosting. Accordingly, since phishing
attack – as an instance of abuse – directly depend on web-hosting, we expect
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providers with large ‘Number of assigned IP addresses’, to have less phishing
events in a specification where size is already controlled for with the two other
variables.

In addition, note that our log-transformation of the top three variables shown
in Table 4.2, perfectly matches with the log-link function of the Poisson model.

We expect that the variable ‘Percentage of domains hosted on shared IP
addresses’ correlates positively with the phishing counts of providers due to
commonly known vulnerabilities of shared hosting services [39, 122], assuming
that attackers would go for targets that are easier to compromise.

Table 4.2: GLM for count of phishing domains in APWG for all the hosting providers

Response variable: count of phishing domains
Poisson with log link function

(1) (2) (3) (4) (5)
Number of assigned IP addresses 1.186úúú ≠1.665úúú ≠0.728úúú ≠0.768úúú

(0.002) (0.006) (0.006) (0.006)
Number of IP addresses hosting domains 3.623úúú 1.104úúú 1.570úúú

(0.006) (0.008) (0.010)
Number of hosted domains 1.686úúú 1.238úúú

(0.004) (0.006)
Percentage of domains 0.027úúú

hosted on shared IP addresses (0.0003)

Constant ≠0.122úúú ≠3.594úúú ≠2.732úúú ≠5.072úúú ≠6.755úúú

(0.005) (0.010) (0.011) (0.014) (0.024)
Observations 45,358 45,358 45,358 45,358 45,358
Log likelihood ≠223,113.400 ≠514,546.600 ≠236,442.400 ≠117,601.700 ≠111,570.800
Akaike Inf. Crit. 446,228.800 1,029,097.000 472,890.800 235,211.400 223,151.700
Dispersion 2934.775 619.708 554.695 12.149 13.166
Pseudo R2 0.221 0.648 0.831 0.841

Note: Standard errors in brackets

úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

4.4.4 Estimation results

We construct several models by performing a step-wise inclusion of the explana-
tory variables explained in Section 4.4.3. A summary of these regression models
is presented in Table 4.2. The table contains 5 models with estimated coe�-
cients of explanatory variables in each model. Each coe�cient demonstrates
the amount of variance in the phishing counts that a variable can explain given
other variables in the model.

As we move from model (2) to (5), we aim to improve our models in terms
of goodness of fit metrics explained in Section 4.4.2. Likewise, the pseudo R-
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squared values increase when explanatory variables are added from model (2)
to (5). More specifically, with the four size and business-related variables, we
are able to explain 84 % of the variance in abuse counts across 45,358 hosting
providers with simple structural properties of providers. One should note that
the dispersion parameter „̂ across the models has been reduced from 2934.77
for the intercept-only model to 13.17 in model (5). In addition to other factors,
the significance and signs of the estimated coe�cient for explanatory variables
do not change between model (3) and model (5), which further indicates we can
safely take model (5) as our final model.

The results in model (5) clearly suggests that the number of phishing sites in-
creases as the ‘Number of hosted domains’ and ‘Number of IP addresses hosting
domains’ increases. One should note that these two variables together capture
the attack surface of the hosting providers for the case of phishing attacks, the
best. Hence, the results demonstrates that for larger attack surfaces, there are
more phishing websites.

As hypothesized, ‘Percentage of domains hosted on shared IP addresses’
show a statistically significant relation with the abuse counts, indicating that
having more domains on shared servers make a provider more exposed to phish-
ing attacks. The ‘Number of assigned IP addresses’ shows a statistically signif-
icant negative relation with the abuse count, as expected when controlling for
size. As pointed out earlier, a manual inspection of the providers with large
‘Number of assigned IP addresses’ suggests that they are mostly broadband
providers who o�er web hosting only as a very small part of their business.
Therefore, the negative sign of ‘Percentage of domains hosted on shared IP ad-
dresses’ works in line with our hypothesis of having more web hosting domains
and IPs as attack surface, increases the number of phishing victims.

In addition, the coe�cients and pseudo R-squared values in the models (2)
to (5) further confirm the point we made earlier in the introduction of the chap-
ter that a simple bi-variate correlation or a naive normalization of abuse with
one size metric, while neglecting other size properties, cannot comprehensively
explain the variance in abuse counts.

Taking model (2) as an example, the value of estimated coe�cient for ‘Num-
ber of assigned IP addresses’ suggest that increasing this variable by one unit
(i.e., one decimal order of magnitude), multiplies the number of expected abuse
counts by e1.186 = 3.273. However, a naive normalization of abuse (abuse counts
divided by network size) would have assumed a coe�cient equal to 1 for the
‘Number of assigned IP addresses’. Here, our study distances itself significantly
from the prior work, where just one size metric is taken into account. In the
multivariate models, several size indicators o�set each other, making the es-
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timation more precise. In addition, in model (2) where ‘Number of assigned
IP addresses’ is the only size variable, we are only able to explain 22% of the
variance in phishing counts whereas by adding three other size metrics, the
explained variance is improved up to 84%.

4.4.5 Quantitative interpretation

To illustrate the economic significance of the parameters in the fitted model (5),
we familiarize the reader with three scenarios. The scenarios are based on
hosting provider groups discussed in Chapter 3, which is medium, small and
large hosting providers.
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Figure 4.4: Partial e�ect of one unit increase in the predictors on the expected
phishing counts (mind the di�erent scales)

For each scenario, we show the partial e�ect of changes in the abuse counts
given each of the explanatory variables (see Figure 4.4). In the first scenario
(scenario 1), all explanatory variables are set at their median as a baseline
situation (see Figure 4.4). In scenario 2, the baseline shows a typical small
shared hosting provider with a small number of assigned IP addresses (0.47:
¥ 100.47 IPs assigned), a small number of IP addresses used for hosting domains
(0.47: ¥ 100.47 IPs ), a small number of hosted domains (1.95: ¥ 101.95 domains)
and a high percentage of domains hosted on shared IP addresses (100%). In
scenario 3, the baseline situation indicates a large web hosting provider with
huge number assigned IP address space (6.85: ¥ 106.85, large IP address space
used for hosting domains (5.67: ¥ 105.67 IPs assigned), large amount of hosted
domain names (5.68: ¥ 105.68 domains) and very small percentage of domains
hosted on shared IP addresses (0.48%). Apparently, this is a common case for
web hosting providers that are mostly o�ering dedicated services [142].
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The bars for each of the scenarios in Figure 4.4 illustrate the change in the
expected count of abuse events for a unit change in each of the explanatory
variables, while holding the others constant. Given the coe�cients for the ex-
planatory variables in Model (5) in Table 4.2, one can easily observe that changes
in ‘Number of IP addresses hosting domains’ while other variables are constant,
changes the phishing counts the most, while the e�ect of one unit change in
‘Percentage of domains hosted on shared IP addresses’ on the phishing counts
is small although statistically significant.

Figure 4.5: Observed and predicted number of phishing domains for Model (5) in
Table 4.2

Obviously, evaluating how e�ective providers are in keeping phishing sites o�
their networks is important for developing policies and best practices. Absolute
concentrations of abuse are still useful, of course. Even if they reflect structural
factors, those providers could be asked to go beyond the security practices of
the industry, because of their prominent position. Such a call is less plausible,
however, if attackers can easily switch among the thousands of providers, as has
been found in other work [48].

Rather than looking at absolute counts of abuse alone, measuring the amount
of abuse relative to the providers’ structural properties adds valuable informa-
tion. Figure 4.5 visualizes the di�erence between actual phishing counts and the
counts predicted by our model. Providers below the line are performing better
than average and the distance tells us by how much.

4.5 Additional Provider Structural Properties
In model (5) of Table 4.2, we see that around 84% of the variance in phishing
counts is explained by a number of the structural properties of providers, namely,
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four variables related to size and business model of the hosting providers.
In this section we continue with interpreting regression models, this time on

a sample of the rich data points (set R) as described in Section 4.3.3. Recall that
we need to adjust the estimation method by introducing two sets of fixed-e�ects,
(i) for level di�erences between statistical twins and (ii) for level di�erences
between countries. Fixed e�ects take away known linear dependence in the
residuals. This is essential to obtain accurate test statistics (which assume
independent residuals). Sources of dependence are within twins due to the
selection strategy and within countries due to the inclusion of country-level
variables.

We define the model with (one set of) fixed-e�ects as:

ln(⁄ij) = —xij + · · · + ”i, (4.4)

where — is the estimated coe�cient for xij , xij are explanatory variables col-
lected for hosting providers in set R and ”i is the “fixed-e�ect” parameter [151].
Subscript i refers to di�erent twins and j œ {1, 2} refers to di�erent measure-
ments within each twin, i.e., the same variable measured at di�erent hosting
providers belonging to the same twin.

The model uses the variables explained in Section 4.3.3 as predictors. We add
two fixed-e�ects to the model – twin and country – by fitting a separate dummy
variable as a predictor for each class of each variable. The twin fixed e�ect
controls for the bias introduced by selecting similar samples. The country fixed
e�ect prevents undue dependence in the residuals if country-level predictors are
included. In addition, in case of missing values per explanatory variable, we
perform a list-wise exclusion on a twin, if one of providers is missing. This
further reduces the number of pairs per model depending on missing values of
the included variables.

With fixed e�ects, the definition of pseudo R-squared requires some reflec-
tion. It is possible to use an intercept-only baseline, which results in artificially
high pseudo R-squared values because the level di�erences of the fixed e�ects
are counted as “explained”. A more conservative measure is to use the fixed-
e�ects-only model as baseline. Table 4.3 shows the summary of our results.

Table 4.3 contains two baseline models (model (1) and (2)). While the former
only models twins as a fixed-e�ect, the later models both twins and countries
as fixed e�ects. Model (3) broadens model (2) by fitting more explanatory
variables with fewer missing values. In model (4) we add all the explanatory
variables collected for the set of rich datapoints (R), except for the ICT devel-
opment index, having only twins as a fixed e�ect. In addition to the variables
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Table 4.3: GLM for count phishing domains in APWG for the “statistical twins”

Response Variable: count of phishing domains
Poisson with log link function

(1) (2) (3) (4) (5)
Price per year 0.0003 ≠0.007úúú

(0.0002) (0.001)

Popularity index (in thousands) 0.001úúú 0.02úúú 0.1úúú

(0.000) (0.002) (0.01)

Time in business ≠0.017ú ≠0.059úúú 0.015
(0.007) (0.005) (0.012)

ICT dev. index 0.951úúú ≠165.065
(0.214) (> 103)

Wordpress use 5.858úúú 2.203úúú

(0.271) (0.450)

Twin fixed-e�ects Yes Yes Yes Yes Yes
Country fixed-e�ects No Yes Yes No Yes

Observations 210 210 180 84 82
Log likelihood ≠2,783.157 ≠1,111.825 ≠966.249 ≠795.838 ≠249.780
Akaike Inf. Crit. 5,776.315 2,521.650 2,192.499 1,683.677 641.560
Dispersion 40.133 25.770 27.352 31.554 11.243
Pseudo R2 -0.055 0.625 0.772
Total pseudo R2 0.974 0.991 0.992 0.966 0.995

Note: Standard errors in brackets

úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

in model (4), in model (5) we add ICT development index, setting both twin
and country as fixed e�ects.

The regression results in Table 4.3 indicate that by including both twins and
country as fixed e�ects, keeping in mind that the datapoints in set R are already
homogeneous in terms of the other variables, we are able to explain around 77%
of the variance in phishing counts for the twins (pseudo R-squared value). Note
that this variance is the 77% of the 16% unexplained variance that is remained
in model (5) of Table 4.2, for the full population of providers. The results further
highlight the importance of accounting for other –non-size related– structural
properties of providers, while explaining the variance in concentration of abuse.

Even though we have around hundred fixed-e�ects, we still get very clear and
significant results for the main e�ects. In addition, by moving from model (1) to
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model (5) in Table 4.3, we are reducing the amount of unexplained heterogeneity
(model’s dispersion) from 40.133 to 11.243.

As hypothesized, we see a significant negative relation between the price of
hosting and phishing counts in model (5). That is, if we increase price by one
unit holding the other variables constant, the phishing count will be multiplied
by e(≠0.007) = 0.99 which means that the cheaper a service is, the more the host-
ing provider is prone to phishing attacks. Interestingly, variable ‘Price per year’
shows a di�erent relation in model (4) where we do not control for cross-country
di�erences. This change is expected, however, as properties of hosting markets
in di�erent countries can di�er a lot, which eventually influences the cost struc-
ture of the country in regards to hosting services. In addition, the cost of a
hosting plan is relative to the economy of the provider’s country. Conversion of
prices in a specific country to USD, if not controlled for the country di�erences,
can be very crude. The variables ‘Wordpress use’ and ‘Popularity index’ also
show a significant positive relation with phishing count indicating that more
Wordpress sites per provider, as a proxy for providers that host oft-attacked
software, translates to more phishing attacks, which is quite logical consider-
ing the fact that the majority of phishing sites are on compromised machines.
One unit increase in ‘Wordpress use’ while holding the other variables constant,
multiplies the phishing counts by e(2.203) = 9.052. Similarly, the more popular
websites a provider hosts (popularity index), the more that provider is a victim
of phishing attacks.

For ‘ICT development index’, we observe both a sign and significance change
from model (3) to model (5). This can be understood by looking back at the
distribution of twins in Fig. 4.3(b), where the gray color marks the twins that
were excluded from Model (5) due to missing values. From the figure it is
visible that the 100 observations that were excluded because of missing price
information are clustered among lower developed countries, thereby removing
the variance needed to find the e�ect of ICT development. The e�ect is also
easily observable in Model (3). Without the price variable, ‘ICT development
index’ shows a significant and positive relation.

Now the question is, to what extent does our sample reflect the popula-
tion? Looking back to our sampling strategy, in model (5) of Table 4.2, we
have a model that explained 84% of heterogeneity; so looking for neighbors in
the projection of model (5) increases the chance of getting twins that are very
comparable for all the factors that we cannot observe and are already somewhat
correlated to size measures. This means that the enriched data points contain
more valuable information than others from the total population. However,
since instead of a totally random sample, we are creating twins of providers,
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our targeted sampling strategy might introduce possible biases. In order to deal
with that bias, we make an assumption that the bias is linear in the modeling
domain, i.e., can be captured by linear fixed e�ects parameters. In Section 4.6,
we further perform additional cross-validations, to check for possible biases our
methodology might have introduced.

4.6 Robustness Checks
During the course of our analysis, we pointed out a few assumptions that we
have made, most notably about the impact of the deviations from the Poisson
model due to over-dispersion; and about the impact of measurement errors in
the abuse data. In this section, we address these two concerns. Regarding the
first assumption, we use a simulation study to perform a robustness check on our
size estimates. To check the robustness of our method against possible errors
in the our phishing blacklists data, we cross validate our results with another,
largely independent data source.

4.6.1 Size estimates

Assume attack events are Poisson and the only structural factor that a�ects
them is the size, i.e., the attack surface. In the absence of perfect information
of the true attack surface, it can only be approximated in practice through the
size variables we used in Table 4.2. Now we would like to study: to which
extent are deviations from Poisson observable only by using the imperfect size
estimations? The precise steps towards estimating new models for phishing
abuse counts using imperfect size estimations are as follows:

We generate a true size variable that is following normal distribution us-
ing mean and standard deviation of variable ‘Number of hosted domains’. We
then simulate attack events –hits– where the phishing counts follow a Pois-
son distribution (Pois(⁄sim)). where ⁄sim is the mean number of phishing
domains. We then build the simulated size variables used in model (3) of Ta-
ble 4.2, namely, ‘Number of hosted domains’, ‘Number of IP addresses host-
ing domains’, ‘Number of the assigned IP addresses’ by adding random noise
(N(µfi , ‡fi), ’i œ {1..3}) to our true size variable. µfi and ‡fi are estimated
using the mean and standard deviation of the corresponding explanatory size
variables.

We generate 1,000 times the synthetic data representing both the size and
the dependent variables, and model them using the GLM regression specified in
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model (4) (see Table 4.2). Then we calculate the dispersion parameter for each
one of the simulated models using Eq.(4.2). Figure 4.6(a) shows the density
distribution of the dispersion parameter for each of the Poisson models using
simulated size measures. The model indicates that the dispersion parameter
is on average greater than 1. The dispersion parameter value is far from the
dispersion parameter that we obtained using our real dataset in model (4) of
Table 4.2. This however is expected since the real size estimates are far from
being perfect and contain several outliers. Moreover, the over-dispersion in sim-
ulated size variables indicates that some part of the over-dispersion in model (4)
of Table 4.2 – probably not everything – can be attributed to the approximate
measurement of the size estimates. Finally, Figure 4.6(b) displays the coe�-
cients of 1,000 model fits as error bars. The red diamonds are the coe�cients
obtained with the full Poisson model. The coe�cients follow the same trend as
in the model given the over-dispersion, which validates its robustness.

4.6.2 Phishing data

Limitations of abuse blacklists, such as comprehensiveness and independence,
have been studied at length in prior work [e.g., Metcalf and Spring 2013; 2015].
In order to study the e�ect of such limitations on our results, we applied our
approach to an alternative dataset: the Cyscon phishing data. These in APWG
and Cyscon data have a 13% overlap of unique second-level phishing domains.
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This provides enough independent observations to corroborate our approach and
asses the sensitivity of our results to measurement errors in phishing blacklists.

Table 4.4: GLM for count of phishing domains in Cyscon for all providers

Response Variable: Count of phishing domains

Poisson-Log Link Function
(1) (2)

Number of assigned IPs ≠0.719úúú ≠0.776úúú

(0.011) (0.012)

Number of IPs hosting domains 1.170úúú 1.751úúú

(0.014) (0.018)

Number of hosted domains 1.663úúú 1.115úúú

(0.007) (0.011)

Percentage of domains hosted on 0.033úúú

shared IPs (0.001)

Constant ≠6.432úúú ≠8.488úúú

(0.026) (0.045)
Observations 45,358 45,358
Log Likelihood ≠49,763.500 ≠47,208.470
Akaike Inf. Crit. 99,535.010 94,426.950
Dispersion 20.153 17.444
Pseudo R2 0.791 0.803

Note: úp<0.1; úúp<0.05; úúúp<0.01
Standard errors in brackets

Similar to before, we model the arrival rate of phishing counts using a Poisson
GLM with log-link function with size and business model predictors as used in
model (4) and model (5) of Table 4.2. The result of the two final models is
displayed in Table 4.4. We then model the statistical twins in the set of rich
datapoints R, having two sets of fixed e�ects for di�erences between twins and
countries. The results are shown in Table 4.5. Model (1) and (2) contain the
same explanatory variables as Model (4) and (5) of Table 4.3. Reassuringly, the
resulting estimated coe�cients and significance levels for both of the analyses
are quite similar to those of the model with APWG data.
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Table 4.5: GLM for count of phishing domains in Cyscon data for the “statistical
twins”

Response Variable: Count of phishing domains
Poisson with Log Link Function
(1) (2)

Price per year 0.0003 ≠0.012úúú

(0.0003) (0.002)

Popularity index (in thousands) 0.02úúú 0.1úúú

(0.004) (0.01)

Time in business ≠0.048úúú 0.004
(0.010) (0.037)

ICT dev. index 13.610
(> 103)

Wordpress use 7.848úúú 3.079úú

(0.583) (1.125)

Pair Fixed-E�ect Yes Yes
Country Fixed-E�ect No Yes

Observations 84 82
Log Likelihood ≠476.818 ≠145.676
Akaike Inf. Crit. 1,045.635 433.352
Dispersion 20.712 2.993
Fixed-e�ects Pseudo R2 0.538 0.889
Total Pseudo R2 0.970 0.987

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

4.7 Related Work
There is a large body of work on methods for detecting abused resources on
the Internet. Observational data on abuse incidents is the starting point for
our study, but we do not engage with the detection methods themselves and
therefore will not survey them here.

Blacklists as a source of observational data on abused resources have already
been extensively studied [80, 81, 82]. Closer to our research is the line of work
that identifies and explains patterns in abuse data. The patterns are studied at
di�erent levels of analysis: (i) individual resource (host, IP address, domain);
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(ii) network, or other aggregates of individual resources; (iii) actor, meaning the
economic entity providing the resources or otherwise responsible for them; and
(iv) country. We briefly survey relevant work at each level.

Individual resources. A variety of studies have been successful at explain-
ing or predicting the occurrence of abuse, such as compromised websites, from
properties of individual resources, such as content-specific features, webserver
software versions, or website misconfigurations [43, 35, 44]. The factors iden-
tified in these studies impact the distribution of abuse on domain names, e.g.,
domains with outdated software are abused more than others. Others used DNS
characteristics to predict whether domain names are malicious [47, 30]. More
tailored towards phishing, some authors propose to detect phishing websites
using URL and content-specific features [45, 46].

Networks. Another strand of work looks at how abuse is distributed across
aggregate units of resources, such as address blocks, Autonomous Systems [48,
114] or top-level domains (TLDs) [49]. These studies often identify concen-
trations of abuse in certain networks [152, 153, 48] and then identify network
features that correlate with abuse rates, such as poor network hygiene [90, 34]
or rapidly changing network connectivity [115, 32, 33]. These studies aim to
detect malicious or poorly managed networks, rather than disentangling the
factors explaining the causal relationship of why abuse is concentrated or how
it is distributed across all networks. Furthermore, to be useful for policy and
interventions, the aggregated resources need to be attributed to the relevant eco-
nomic actors rather than a technical entity. For drawing inferences on providers,
an explicit attribution method is needed. This takes us to the third level of anal-
ysis.

Actors. Actors are the economic entities that operate resources or are oth-
erwise responsible for them. Work at this level has to bridge the gap between
the technical identifiers in abuse data, like ASes, and the organizations respon-
sible for specific resources. This is not straightforward as many Internet Service
Providers (ISPs), for example, operate multiple ASes [121], and many hosting
providers share an AS with other providers [142].

Our work is situated at this level. We are not aware of any work that
explains abuse patterns across hosting providers. Liu et al. have studied the ex-
tent to which organizations’ properties, such as symptoms of mismanagement,
size of allocated IP space, and corresponding abuse counts can predict data
breach incidents. This work is amongst the first studies that predicted incident
rates from one structural property of the organizations (i.e., the number of IP
addresses allocated) and several e�ort-related indicators (i.e., indicators of net-
work mismanagement and misconfiguration). However, it does not distinguish
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between organizations that o�er hosting services and other organizations. It also
does not model the structural properties of organizations comprehensively [35].
Somewhat related is a study on security practices of a small sample of hosting
providers [10]. More mature work exists for domain names. Studies have iden-
tified which registrar or registries are associated with malicious domains, and
quantified the e�ect of di�erent interventions on abuse rates [50, 51].

Our study extends the prior work in a variety of ways. Unlike the existing
work, we are not trying to find technical features to correlate with abuse, but we
are trying to understand to what extent abuse levels are a function of structural
properties of the industry versus being determined by the security e�orts of
individual providers. For that, first we adopt a better attribution method for
identifying the relevant actors, by moving from ASes towards hosting providers,
to whom the IP space is allocated. We fit a multivariate statistical model and
include a set of important explanatory factors, such as size of IP space, which
have been explored before [35]. Other properties of hosting providers, such as
size of domain name space, size of IP space used for web hosting, portion of
shared hosting business, hosting price, time in business, are studied for the first
time here.

Countries. The highest level of analysis is countries. Work in this area
studies the relationship between country-level factors, such as GDP, rule of law
and ICT development, and the distribution of abuse, most notably infected
hosts [89, 28, 154]. In contrast to this research, we take providers as the unit
of analysis, because that is where agency is located in terms of fighting abuse.
That being said, country-level factors describe institutional di�erences in the
environments of providers that are also relevant to take into account. In our
study, we estimate the impact of the ICT development of a country on abuse,
while controlling for other unobserved country-level di�erences using fixed ef-
fects models.

4.8 Conclusions and Discussions
The core question of this chapter is: to what extent are abuse levels determined
by the structural properties of providers versus being mainly determined by
other factors including, but not limited to, the security e�orts of individual
providers? Below we summarize our findings and discuss the implications of the
results.

We reduced errors in the attribution of abuse by empirically studying the
population of hosting providers, which are defined based on organizations to
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whom IP address space is assigned, rather than by routing data and AS owner-
ship. Next, we advanced the existing work that uses simple regression analysis
and naive normalizations by studying a variety of factors and errors at work
that can potentially explain abuse counts. By building several GLM models for
phishing abuse counts as the response variable, we demonstrated that a hand-
ful of providers’ structural properties–such as the number of domain names,
number of IP addresses used for web-hosting, and the size of their shared host-
ing business–can already account for 84% of the variation in phishing counts.
These variables are easily measurable at scale and capture the ‘attack surface’
of providers along with aspects of their ‘business model’.

Additionally, we measured the impact of previously unstudied factors, such
as price, time-in-business of a provider, and the amount of Wordpress sites per
provider. These were collected via a tailored sampling approach and explained
a further 77% of the remaining variation in phishing abuse.

Finally, we performed a set of robustness checks on the assumption we made
during our analysis. The results of the simulation study performed to check the
robustness of our size estimates indicated that coe�cients of size variables follow
the same trend as in our model (Table II) given the over-dispersion. To check
robustness of our method against observational biases in the phishing data, we
cross-validated our results from APWG blacklist data against Cycson phishing
blacklist data and observed very similar results.

Our findings suggest that abuse rates for phishing reflect an overall bad
harvest, rather than being driven by some rotten apples, i.e., providers that
don’t care about security. In other words, referring back to the explained and
unexplained variance by our models, we observe that structural properties of
providers explain the majority of variance in phishing abuse counts, leaving a
thin margin for other unmeasured factors including, but not limited to, the
security e�orts of providers. When structural factors are so dominant in driving
abuse, it undermines the common narrative to call for better security practices
of apparently under-performing actors or for even more intrusive interventions,
such as sanctions. However, our findings do not limit the action space for policy.
Quite the contrary: data-driven policy could try to improve the factors identified
as influential, e. g., require higher security standards at providers who host more
popular websites.

Our approach enhances more informative comparisons of provider’s security
performance. In other words, it generates comparative abuse metrics by con-
trolling for the structural di�erences among providers. Such relative metrics
are more suited to evaluate countermeasures than absolute counts or relative
counts that generated by naive normalization of one size estimate. Additionally,
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relative metrics can, in themselves, incentivize better security [33, 155]. In sum:
throwing out a few rotten apples might appear more tractable, but producing
a better harvest is definitely possible.

Here, we should also acknowledge several limitations of our work. First,
our method is geared towards identifying the main explanatory factors in the
population of hosting providers. Our conclusions should not be misinterpreted
as evidence that there are no misbehaving or negligent hosting providers, only
that their impact on the population of phishing incidents is surprisingly limited.

Second, the presence of certain unobserved factors, including security e�ort
and attacker behavior, is a limitation of this work. We have reduced the like-
lihood of these being major factors in the abuse patterns, as witnessed by the
variance explained by the structural properties. We are able to explain 84% of
the variance by the structural factors alone – and even more when we take the
findings of the statistical twins sample into account. The remaining unexplained
variance, which is the combination of provider’s security e�ort, attacker behav-
ior and measurement errors, suggests that the impact of provider’s security
e�ort should be limited. That being said, the only way to determine the precise
impact of security e�ort of providers on abuse levels is by directly measuring
it. Following this limitation, in chapter 6 of this dissertation, we study possible
patterns in attacker behavior for the case of malware used to attack financial
institutions. In chapter 7, we measure security e�ort as a latent variable. More
details will be discussed in the relevant chapter.

Third, certain structural factors might indirectly capture some information
about security e�orts. One could argue, for example, that the pricing model
chosen by a provider might also contain a signal about the amount of resources
available for security. On the other hand, the fact that 84% of the variance is
explained by purely technical structural properties, unrelated to price, suggests
that also this impact is limited. Only a more direct observation of security e�ort
can establish how it is related to price.

A final limitation is that our empirical evidence is specific to phishing. Our
modeling approach is agnostic to the type abuse, however. The independent
variables and model design are not specific to phishing. Future work can use our
approach to identify the impact of these structural and business model factors
on other types of abuse in the hosting market. For some sources, like drive-
by-download sites, we expect similar patterns. For other, more idiosyncratic
types of abuse, like long-living botnet C&C servers, we might expect di�erent
patterns. There, we might indeed find that rotten apples drive the abuse rates,
rather than a bad overall harvest. In order to test our hypothesis we carried out
an analysis of abuse concentrations for botnet C&C servers in the next chapter.



CHAPTER 5

Measuring the Impact of Providers’ Reactive
Security E�orts on Abuse

The analytical model in the previous chapter identified structural provider prop-
erties and security e�ort as the two main causal factors a�ecting the perfor-
mance of providers. The subsequent empirical analysis also showed that over
85% of the variance in the number of phishing sites can be explained from the
providers’ exposure to such attacks, as measured by structural properties. This
leaves remarkably little room for the impact of the actual security e�orts of
providers. In this chapter, we apply the same methodology used in the pre-
vious chapter, and apply it to a di�erent type of abuse, namely botnet com-
mand&control servers. In the first parts of this chapter, we study the e�ect of
the structural properties of providers on the number of C&C domains hosted.
In the second part of this study, we examine the impact of providers’ take-down
reactive security e�orts on the occurrence of C&C abuse.

5.1 Introduction
Research into the disruption of botnets has mainly focused on two strategies:
comprehensive take-down e�orts of the command and control (C&C) infras-
tructure and the cleanup process of the infected end user machines (bots) [53,
156, 157]. The first strategy has the promise of being the most e�ective, taking
away control of the botnet from the botmasters. In reality, however, this is
often not possible. The second strategy is not about striking a fatal blow, but
about the war of attrition to remove malware, one machine at a time. It has
not been without success, however. Infection levels have been stable in many
countries [158].

In practice, a third strategy is also being pursued. Similar to access providers
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cleaning up end user machines, there is a persistent e�ort by hosting providers
to take down C&C servers, one at a time. This line of mitigation has been
studied much less, perhaps because most botnets have been resilient to these
e�orts.

Could this strategy be made more e�ective? This depends on how at-
tackers distribute their C&C domains. Do they randomly distribute them
over many hosting providers? Or do they locate them predominantly in care-
fully selected providers, perhaps those who are negligent in terms of abuse
handling or who o�er bulletproof services to actively support criminal activ-
ities [33, 137, 36]?Depending on the answer, there are di�erent directions for
improving mitigation.

This chapter sets out to discover the strategies of attackers for the placement
of their C&C servers across the hosting market. We focus on botnet families
that have, in varying degrees, been used to attack financial services. Well-
known examples are Zeus, Citadel and Dyre. These are widely understood to
be among the most harmful botnets. The industry association M3AAWG has
listed them as a top priority for abuse handling by providers [9]. This means
that if providers do anything in terms of mitigation, it would be most visible
for these botnet families. Put di�erently, if attackers care about the security
practices of providers, we should see it first and foremost in the location of the
C&C for these botnets.

Do attackers prefer providers with little or no abuse handling? Or are the
C&C domains more or less randomly distributed across the overall attack surface
of the hosting market? We study seven years of data on the location of C&Cs
for 26 botnet families engaged in attacks against financial services.

We model the distribution of C&C domains across the overall landscape of
the hosting market. Using several datasets for approximating the size and attack
surface of providers, we can quantify the extent to which the number of C&C
domains per provider can be explained as the outcome of a random selection
process by attackers. We then analyze whether there is a relation between the
concentration of C&C in providers and the speed with which providers take
down such domains.

Our contributions are as follows:

• We track the trends in the hosting locations of C&C for 26 di�erent mal-
ware families that, to varying degrees, have been used in attacks on finan-
cial services. We find that, over time, C&Cs domains are spread out over
more providers, diluting the concentrations of C&C;

• We model the distribution of C&Cs across providers and show that the
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mere size of the provider can explain around 71% of the variance in the
number of C&Cs per provider, whereas the rule of law in the country only
explains around 1%, suggesting a predominantly random selection process
by the attackers for locating their C&C;

• Using a sample of hosting providers, we show that business model char-
acteristics – such as pricing, popularity, time in business and the ratio of
WordPress websites – all have a significant impact on the concentration
of C&C domains;

• We demonstrate that there are statistically significant di�erences among
providers in C&C take-down speed. Despite such di�erences, the take-
down speed only has a weak relation with the concentration of C&Cs
across providers, suggesting that attackers have little or no preference for
hosting their domains in hosting providers that allow longer C&C uptime;

The remainder of this chapter is organized as follows: Section 5.2 describes
our data collection methodology. Section 5.3 provides a descriptive summary of
our datasets and studies the concentrations of C&Cs in terms of malware and
hosting types and across di�erent geo-locations. Section 5.4 outlines a set of
variables that capture di�erent aspects of provider s’ characteristics and next
use them to model the C&C concentrations across providers. In this section
we discuss our modeling approach and results at length. We then extend our
model in Section 5.5 with taking the e�ect of provider take-down speed of C&C
domains into account. Our finding are compared to the related work in Sec-
tion 5.6. Finally, we discuss the main conclusions and limitations of our work
in Section 5.7.

5.2 Data Collection Methodology
To understand the attacker’s strategy for the placement of their C&C servers
across the hosting market, we employ two types of datasets: (i) data on C&C
domains; and (ii) data on hosting providers. We first provide an overview of
these datasets.

5.2.1 Command-and-Control Data

As stated earlier, we focus on C&Cs of botnets engaged, to varying degrees, in
attacks on financial services. We make use of two datasets which in conjunction
provide information on C&C domains located in 109 countries:
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ZeusTracker: Provided by Roman Huessy from Zeus-Tracker [77], is a
C&C panel tracker that contains meta data on C&C servers online at any
point of time between 2009 and 2016 for the Zeus malware family.

Private honeypots: Captured by a security company specialized in threat
intelligence for banks and financial institutions using honeypots located
all over the world, this dataset contains a list of botnet C&C domains
from various botnets. Some of those botnets are predominantly used for
attacks on financial services, like Citadel. Others are more generic malware
families, but the security company has observed them as participating in
attacks on financial services. The data is collected over a period of one year
(2015Q1-2016Q1) using two methods: by running live malware samples
and using honeypots.

The combined dataset contains 11,544 unique domain names associated with
8,528 IP addresses. A more detailed summary of our C&C data is shown in
Table 5.1.

Table 5.1: C&C data summary

Year # Domains IP
addresses

Families

2009 934 771 1
2010 1016 806 1
2011 1071 638 1
2012 1189 922 4
2013 1761 1365 3
2014 2188 1768 4
2015 3897 1819 28
2016 3718 969 34

5.2.2 Hosting Provider Data

The next steps towards studying the location of C&Cs is to attribute them to
their responsible service providers. To that end, we need to reliably identify
hosting providers. We use methodology and data introduced in more details in
Chapter 3 and further improved in Chapter 4. The final set consists of 45,358
hosting providers, representing the population of hosting services from all over
the world.
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5.3 Characterizing C&C Concentrations
Given our C&C and hosting provider datasets, we can examine the distribution
of C&C domains across di�erent hosting providers to gain insight into attacker
C&C placement strategies. Do they prefer certain hosting providers? Do they
prefer certain locations? In this section, we provide a descriptive summary of
our data and examine such di�erent aspects of C&C concentration.

Figure 5.1: Distribution of malware types over years

5.3.1 Descriptive Summary of C&C Domains

Figure 5.1 displays the distribution and evolution of the financial malware fam-
ilies over years, given the first time a malware is seen in our data. The trend
indicates the presence of Zeus as the main financial malware between 2009 and
2012. Starting from 2012, we observe the emergence of ZeuS-related families
such as Citadel and Ice-IX and gradually other malware families such as Dyre,
Cryptowall and Avzhan.

The portion of our C&C data that comes from ZeusTracker also includes
information on the type of hosting for some of the C&C domains. The infor-
mation about the hosting type is gathered by ZeusTracker based on manual
analysis of a sample of C&Cs.

Figure 5.2 shows the distribution of these types over the measurement period.
Since the hosting types are known only for a minority of the domains, it is not
easy to make any substantive conclusions from the exact numbers. However,
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Figure 5.2: Distribution of malware hosting types over years

the plot suggests that the majority of C&Cs with known types are located
on compromised servers, followed by a minority located at free or bulletproof
hosting providers. This further highlights the importance of measures taken by
providers to protect the machines they are hosting from getting compromised.

5.3.2 Concentration of C&Cs across Providers

Next, we examine the trends in concentration of C&C domains across providers,
to examine if C&C domains are mostly concentrated in specific hosting providers.
This could help us to gain a better understanding of attacker preferences.

Figure 5.3: Time-series plot of providers hosting C&Cs

Figure 5.3 depicts the number of providers hosting C&C domains over time.
The green line indicates the total number of providers hosting C&C domains in
a given year. The blue line indicates the amount of newly observed providers
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hosting C&C domains for a specific year while the red line depicts providers
that were no longer hosting C&Cs in comparison to the previous year. It should
be noted that the removal of a hosting provider is not necessarily due to clean-
up e�orts, but could be the consequence of attackers’ choices. The plot gives
a better sense of the total number of hosting providers that are linked with
hosting C&C domains.

Over time, we observe a general increase in the total number of providers.
At the same time, the number of newly added and removed providers follow a
similar upward trend which points to a relatively high entrance and exit rate
of providers. The pattern also indicates that an attacker’s choice of provider is
highly dynamic and shifts from provider to provider over time.

Figure 5.4: Cumulative percentage of C&C domains for the percentage of hosting
providers

Figure 5.4 displays the cumulative percentage of C&C domains against the
percentage of hosting providers. The blue line in the plot follows a power-
law distribution: a large number of C&C domains are concentrated in a small
number of hosting providers, 80% of C&Cs are located in less than 30% of
the hosting providers. This shows a clear concentration of C&C infrastructure.
While the majority of C&Cs are hosted by a minority of providers, it is still
unclear whether this concentration in caused by an attacker’s preference to
choose lax hosting providers in terms of security, or whether it is just an artifact
of a provider’s size and business model and therefore is randomly distributed.
We further examine this question via modeling various provider characteristics
in section 5.4.
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5.3.3 Geography of Providers Hosting C&C Domains

We also examine the geographical distribution of the C&Cs and the providers
who host them. Hosting providers operate from various jurisdictions and there-
fore specific geographical parts of their business could be prone to more abuse
due to factors such as weak rule of law or enforcement institutions.

We map the C&C servers to their geo-location using the MaxMind GeoIP
API [120]. While the C&Cs in our data are located in 109 various countries
around the globe, figure 5.5 suggests that the majority of C&C domains in the
top-20 most abused hosting providers are located in US and western Europe.
There are a few exceptions such as Confluence Networks that seem to oper-
ate in part from the Virgin Islands and SoftLayer Technologies that hosts
domains in Panama.

Figure 5.5: Geo-location of C&C domains for the top-20 providers hosting C&Cs

5.4 Statistical Model of C&C Concentrations
As we explained earlier, we aim to have a better understanding of why C&C
domains are concentrated in certain providers through building a statistical
model that explains C&C counts from provider characteristics. In Chapter 4, we
proposed an approach to study phishing abuse counts across hosting providers
using regression models that carefully decomposes di�erent sources of variance in
abuse counts for di�erent characteristics [159]. Our current goal is to see whether
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we see similar patterns in attacker preferences for hosting C&C infrastructure.
Contrary to phishing sites, one might expect C&C to be more selectively located.

We define a set of explanatory variables that capture structural characteris-
tics of providers and their security e�ort, as defined in the previous chapter [159].
In this section we study the relation between C&C abuse and structural char-
acteristics of providers. In the next section, we examine the ‘average C&C
uptime’ as a proxy for the security e�ort of providers. We categorize the vari-
ables characterizing structural properties of providers into those that capture
size, regulatory aspects of the country in which providers operate and those that
capture providers’ business model characteristics. A summary of these variables
is provided in Table 5.2.

5.4.1 Structural Characteristics of Providers

Size

Allocated IP space is the size of the IP address netblock(s) assigned to a host-
ing provider according to WHOIS data provided by Regional Internet Registries
(RIR). We use this information as an indicator of the attack surface of a provider,
assuming that the address range is a proxy for the amount of server infrastruc-
ture the provider is operating and that any machine in that infrastructure has
a certain probability to be abused by miscreants – i.e., more servers means a
higher count of C&C. This variable ranges from one IP address to many thou-
sands of allocated addresses, suggesting a large heterogeneity in the market for
hosting services, in terms of attack surface but also business models of providers.

Table 5.2: Descriptive summary of variables in our model

variables n min mean median max sd
Allocated IP space size (log10) 45, 363 0 3.08 3.19 8.35 1.16
Webhosting IP space size (log10) 45, 363 0 1.78 1.66 6.24 0.76
Domain name space size (log10) 45, 363 0 1.98 1.83 7.64 0.88
Portion of shared hosting (%) 45, 363 0 50.99 58.99 100 37.13
Rule of law 46, 269 ≠1.89 1.05 1.62 2.12 0.95
Best price (USD) 235 0 20.89 6.95 419 47.34
Popularity index 90 0 8, 328.34 1, 279.29 187, 454.30 26, 828.03
Time in business (years) 150 2 14.01 14.19 30 4.43
Vulnerable software ratio 86 0.01 0.19 0.16 0.48 0.11

Webhosting IP space is the number of IP addresses hosting a domain name.
To collect information on this variable we make use of passive DNS data. We
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calculate this variable by summing up all the IP addresses associated with do-
mains per provider that have been observed in our DNSDB passive DNS data.
The combination of the allocated IP space and web hosting IP space not only
indicate the size of a provider’s infrastructure, but also reflect the kind of busi-
ness a hosting provider is running. For instance, providers who use a large part
of their allocated IP space for hosting domain names have a business model
more focused on web hosting and are di�erent from providers who use their
allocated IP space for other services such as providing virtual private servers
(VPS), collocation, or access services.

Domain name space is the number of domains hosted by a particular provider.
Again we use passive DNS data to collect information on this variable. It is cal-
culated by summing up the number of second-level domains hosted on the IP
addresses of provider in the passive DNS. Note that due to the large variance
and skewed distribution of the first three variables, we use a log-transformation
of these variables (Log10).

Proportion of shared hosting measures the ratio of domains that are hosted
on shared IP addresses divided by the total size of domain name space. As
defined in Chapter 3, an IP address is considered shared if it hosts more than
10 domain names [142, 44]. This variable not only conveys information about
the size of the shared hosting infrastructure of a provider, but also about the
provider’s business model, i.e., the degree to which a provider’s business relies
on low-cost shared hosting services.

Regulation

Rule of law is an index that we use as a proxy for law enforcement against
illegal activity within a country. It is a well-established indicator relying on a
large number of periodic surveys to measure how the rule of law is experienced
in practical, everyday situations by the general public. The index is provided
by the World Justice Project, a non-profit organization working to advance the
rule of law around the globe and is based on indicators such as constraints on
government powers, absence of corruption, order and security, civil and crimi-
nal justice, open government, fundamental rights, regulatory enforcement and
justice experienced by ordinary people from 99 countries around the globe [160].
Lower index values represent a stronger rule of law.

Business Model
Most of the business model variables in this section cannot easily be collected
at scale for the total population of hosting providers. While collecting price in-
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formation requires manual inspection of the provider’s webpage, collecting some
other variables at scale such as vulnerable software can be very time consuming.
Therefore, we collect information for variables in the business model category
for only a sample of the providers.

Popularity index proxies the online popularity of a hosting provider. We use
Alexa’s one million top-ranked domains to calculate the popularity index. We
assume a provider is more popular when more top-1M domains are on the list of
domains that it hosts and speculate that more popular providers are exploited
more often for setting up C&C domains. In order to reduce the bias towards the
very large hosting providers, the index is calculated by summing up the base-10
logarithm of the reverse Alexa rank of all domains. The score communicates
information about both website popularity (i.e., customers) and the density of
popular domains in a hosting provider.

Time in business is a proxy for capturing the extent to which a provider can
be exploited, given the amount of years it is operating in the hosting business.
The expectation is for more experienced providers to be exploited less due to
learning e�ects. The data for this variable is collected by querying the WHOIS
databse for the registration date of the provider’s website. We have cross-
checked the results with the Internet Archive database [146] for all data points.
Almost all domains in our sample were captured by Web-archive a couple of
months after they were registered.

Best Price is basically the least expensive hosting plan on o�er by the hosting
provider. Our hypothesis is that providers with less expensive hosting plans
are more popular to host C&C domains, not only for the case of malicious
registrations but also in the case of compromised domains. The intuition being
that providers with cheaper plans most probably dedicate less resources to the
security of their services. All prices are converted to US dollars by taking the
2015 average exchange rate.

Vulnerable software ratio is the proportion of domains operating on vulner-
able software installations hosted by the providers in our study, as explained in
Chapter 4. The ‘vulnerable software ratio’ is calculated by dividing the num-
ber of scanned domains with Wordpress installations by all scanned domains
excluding those that we were unable to scan.

5.4.2 E�ect of Providers’ Structural Characteristics

To disentangle the e�ects of the various structural characteristics of hosting
providers which we have outlined previously on the concentration of C&Cs, we
use a generalized linear model (GLM) with log-linear link-function of the form:



90 Measuring the Impact of Providers’ Reactive Security E�orts on Abuse

ln(⁄i) = —1iAllocatedIPSize + —2iWebhostingIPSize

+ —3iDomainSize + —4iSharedHosting

+ —5iRuleofLaw,

where the dependent variable – count of C&C domains – follows a Poisson
distribution with parameter ⁄ Ø 0 and —s are the estimated coe�cients for the
explanatory variables collected for all the hosting providers. Subscript i refers
to measurements in di�erent hosting providers.

Table 5.3: Generalized Linear Regression Model (GLM) for the Population of
Hosting Providers

Response Variable: Count of C&C domains
Poisson with Log Link Function

(1) (2) (3) (4) (5)
Allocated IP space size ≠0.991úúú ≠0.356úúú ≠0.358úúú ≠0.398úúú

(0.019) (0.020) (0.020) (0.020)

Webhosting IP space size 2.725úúú 0.711úúú 0.868úúú 0.931úúú

(0.020) (0.027) (0.031) (0.032)

Domain name space size 1.465úúú 1.301úúú 1.300úúú

(0.014) (0.020) (0.021)

Portion of Shared hosting business 0.009úúú 0.009úúú

(0.001) (0.001)

Rule of Law ≠0.213úúú

(0.013)

Constant ≠1.380úúú ≠5.058úúú ≠6.834úúú ≠7.319úúú ≠7.130úúú

(0.009) (0.039) (0.049) (0.066) (0.068)

Observations 46,455 45,358 45,358 45,358 45,166
Log Likelihood ≠50,777.110 ≠21,665.390 ≠15,485.920 ≠15,418.070 ≠15,253.920
Akaike Inf. Crit. 101,556.200 43,336.780 30,979.840 30,846.140 30,519.850
Dispersion 46.62 11.049 9.296 9.641 10.328
Pseudo R2 0.587 0.717 0.719 0.722

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

We construct several models using the variables in the equation above, for
the whole population of hosting providers. Our goal is both to maximize the
amount of overall explained variance of the model and to find out which of these
variables influence the concentration of C&C abuse in providers the most. The
result of our regression models are displayed in Table 5.3.
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It is important to note that the reason for building more than one model is
to be able to compare goodness of fit values while adding new variables to each
model. Hence, to asses how the models are performing in absolute terms and
relative to the other models, we use the Log-likelihood, AIC statistic, the Poisson
dispersion parameter and the pseudo R-squared as measures of goodness-of-fit.
We aim to minimize log-likelihood and AIC (the closer to 0 the better). The
Poisson model assumes that var [Yi] = „E [Yi] = „⁄i, with „

!= 1, where „ is a
dispersion parameter. The dispersion parameter hence captures the extent to
which variance is di�erent from the mean and more specifically the heterogeneity
of the model. A model is over-dispersed when „>1. The pseudo R-squared [149]
is likewise calculated for our Poisson model given the dispersion parameter „,
using the following formula :

R2 = 1 ≠ D(y, �̂) + k · „̂

D(y, Ȳ )
, (5.1)

where D(y, �̂) is the deviance of the fitted model, D(y, Ȳ ) is the deviance of
the intercept-only model, „̂ is the estimated dispersion parameter and k is the
number of covariates fitted, (excluding intercept). By building several models,
we aim to maximize the value of the pseudo R-squared hence maximizing the
amount of variance explain in C&C abuse counts by the dependent variables.

By inspecting Table 5.3, model 1 is the intercept-only model with count of
C&C domains as dependent variables and no independent variable. In Model 2,
we take into account the size variables – ‘Allocated IP space size’ and ‘Webhost-
ing IP space size’. The model indicates a significant negative relation between
the variable ‘Allocated IP space size’ and C&C abuse counts, while ‘Webhost-
ing IP space size’ correlates positively with C&C abuse counts. This is very
much expected as pointed out earlier in the chapter, these two variables to-
gether determine to what extent the provider is using its allocated IP space for
web hosting services. In addition, our manual inspection of the hosting data
shows providers with very large allocated IP space are normally not pure host-
ing providers but rather broadband providers who use a small portion of their
IP space for hosting. Moreover, the value of our goodness-of-fit criteria shows
that only by adding these two size variables, we have substantially reduced the
log-likelihood, AIC and dispersion values and are able to explain approximately
58% of the variance in abuse counts.

We build on model 2 by including additional variables, namely ‘Size of the
domain names space’ along with the extent to which a provider is hosting its
domains on shared hosting services. Model 4 displays the estimated coe�cients.



92 Measuring the Impact of Providers’ Reactive Security E�orts on Abuse

The results indicate more domains in general and specifically shared hosting
domains relate significantly with more C&C abuse. To put the value of the
coe�cients in perspective, by holding all other values constant in the model, a
unit increase in the value of ‘Size of the domain names space’, multiplies the
number of C&Cs by e(1.300) = 3.7.

In addition to size variables analyzed in Models 1 to 4, we hypothesized that
the rule of law index of a hosting provider’s country might play a significant
role in explaining the concentration of abuse in that country. Previous work has
shown that the location of banks targeted by Zeus malware is not random [161].
Similarly, our dataset shows that some C&Cs are hosted in several islands all
around the globe which are mostly the so-called tax-heavens. We examine this
e�ect by including the Rule of law index variable in addition to the other pre-
vious 4 variables in model 5. We see a clear negative relation between the rule
of law index and the concentration of C&Cs abuse. Although the Rule of law
index is a combination of several country-level regulation indicators, it provides
valuable insight about the proportion of abuse in certain geographical locations.

With the fitted values in our final model – model 5 –, we are able to explain
approximately 72% of the observed variance (i.e., Pseudo R-squared = 0.72)
in C&C counts only through considering the size variables and the rule of law.
This highlights a very important point: regardless of the security measures a
provider has in place, certain characteristics, driven by the nature of a provider’s
business, are driving the majority of the abuse.

Note we hypothesize that there are additional factors that influence the
concentration of C&C abuse in hosting providers such as variables that capture
the business model of a provider, for example price of a hosting service. However,
such variables are much harder to collect at scale for all hosting providers. In
the next section, we assess the impact of such factors on the concentration of
C&C abuse within a smaller sample of hosting providers.

5.4.3 Concentrations of C&Cs in a Sample of Providers

As explained earlier, we collected additional business model variables for a sam-
ple of providers 5.4.1. We initially started from a set of 235 randomly selected
providers for which we collected price information, however due to missing val-
ues in other variables we ended up with 85 providers for whom we have data on
all the four variables in this category.

Note that the downside of our sampling strategy is that we might end up
with geographical biases. In order to control for such e�ects, we fit a “fixed-
e�ects” GLM model with the count of C&C domains as dependent variable
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following a Poisson distribution. We add a country fixed e�ect, ”i, by fitting
a separate dummy variable as a predictor for each country. The country fixed
e�ect prevents undue dependence of the residuals.

Table 5.4: Generalized Linear Regression Model (GLM) for a sample of hosting
providers

Response Variable: Count of C&C domains
Poisson with Log Link Function

(1) (2) (3) (4) (5) (6)
Best price ≠0.004úúú ≠0.019úúú ≠0.043úúú ≠0.018úúú ≠0.084úúú

(0.001) (0.002) (0.006) (0.005) (0.015)

Time in business 0.063úúú 0.075úúú 0.060úúú 0.070úúú

(0.006) (0.008) (0.009) (0.014)

Vulnerable software ratio 1.463úúú 1.462úúú 2.035úúú

(0.327) (0.366) (0.508)

Popularity index 0.00001úúú 0.00002úúú

(0.000000) (0.000002)

Constant ≠4.146úúú ≠2.363úúú ≠3.121úúú ≠3.533úúú ≠3.881úúú ≠20.624
(0.011) (0.024) (0.095) (0.145) (0.160) (2,103.363)

Country fixed-e�ects No No No No No Yes

Observations 45,363 230 144 85 85 85
Log Likelihood ≠21,854.350 ≠1,625.306 ≠1,133.003 ≠715.212 ≠564.210 ≠343.260
Akaike Inf. Crit. 43,710.690 3,254.612 2,272.005 1,438.424 1,138.420 754.521

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

Similar to before, we add the variables one by one to the baseline model
(model 1) to observe the extent to which a model is improved in comparison to
others. The resulting models are shown in Table 5.4. Model 5 contains all of the
4 variables discussed before. In addition to those, in our final model, (model 6),
we add the country fixed-e�ect variable as well.

Inspecting the estimated coe�cients of model 6, we observe a significant
negative relation between price of hosting and C&C counts. That is to say
that if we were to increase price by one unit while holding all other variables
constant, the C&C counts would be multiplied by e(≠0.084) = 0.91 as a result.
The cheaper a provider’s price is, the more likely it is for the hosting provider
to host C&C domains. As expected, the variable ‘Best price’ shows a weaker
relation in model 5 where cross-country di�erences are not controlled by the fixed
country e�ects of model 6. This is because the properties of hosting markets in
di�erent countries can di�er substantially, which then eventually influence the
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cost of infrastructure in a country with respect to hosting services. Moreover,
the cost of a hosting plan is in proportion to the economy of the provider’s
country. Hence, our conversion of prices in di�erent specific countries to USD,
if not controlled for the country di�erences, can be very crude.

The Variables ‘Vulnerable software ratio’ and ‘Popularity index’ also show a
significant positive relation with C&C counts. One unit increase in ‘Vulnerable
software ratio’ while holding other variables constant, multiplies the C&C counts
by e(2.035) = 7.652. The ‘Time in business’ variable shows a significant positive
relation with abuse as well, indicating that well-known providers or those who
are in business for a longer time are attacked more. Note that this can partially
be caused by the fact that our data is longitudinal. In the following section,
we will study the e�ect of C&C take-down speed on its concentration across
providers.

5.5 E�ect of C&C Take-down Speed
Up to this point, we have demonstrated that the concentration of C&C domains
can be explained by structural characteristics of providers, mostly related to
their size and business model. Together, these factors form a proxy for the
attack surface of the industry. The attack surface of providers accounts for at
least 72% of the variance in the number of C&C in their networks. Providers
with more infrastructure get more C&C. This does not indicate selective location
choices by the attackers. Quite the opposite, in fact. The bulk of C&C can be
explained from attackers randomly distributing their C&C domains across the
overall global hosting infrastructure.

In this section, we investigate whether attackers prefer providers who are
lax in taking down C&C servers. Longer uptime of C&Cs seems valuable for
the attackers, so we would expect higher C&C counts in those networks. We
examine if and how C&C uptimes influences the number of servers at that
provider. C&C uptime has been used in previous security research as a standard
metric for studying the lifetime of di�erent attack types [136].

We define the “uptime” of a C&C domain as the number of days between
the first and last time the C&C domain is observed online as reported by our
datafeeds. Some of the C&C domains remain online beyond the measurement
period, which unavoidably leaves their uptime unknown. The average uptime
of C&C domains is depicted in Figure 5.6. There is no clear trend one way or
the other. This also suggests that there are no learning e�ects among hosting
providers that enables faster take-down over time. We first examine if the
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average C&C uptime is driven by a few providers, or whether it reflects the
overall performance of hosting providers.

Figure 5.6: Mean uptime of C&C domains per year

5.5.1 Distribution of C&C Lifetime

Are long-lived C&Cs concentrated in certain providers? Figure 5.7 depicts the
distribution of the average uptime of C&C domains per provider, for 2009-2016.

Note that each individual plot is also indicative of the amount of C&C
domains that are taken down in the corresponding year. What is clear from all
the plots is that, there is always a majority of providers with a shorter uptime
followed by a long tail of providers hosting C&Cs with very long uptimes. In
some case there are examples of providers that hosts C&C domains for more
than a year. Assuming no measurement errors are at play here, such examples
could indicate ignorant or perhaps even bulletproof hosting. This leads us to
the next question: are these providers preferred by attackers?

5.5.2 Di�erences between C&C Take-down Speed of Providers

To examine the di�erences between providers more carefully, we model the sur-
vival rate S(t) of C&C domains using a Kaplan-Meier Survival Estimate which
also allows to correctly account for the C&C domains that are not taken down
by the end of our measurement period, i.e., right-censored data points [131].
The survival rate S(t) basically expresses the probability that a C&C domain
is online at a specific time during the observation period.

Figure 5.8 displays the survival curves of C&C domains in the top-10 providers
with the highest number of C&C domains in their network. Figure 5.9 depicts
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Figure 5.7: Distribution of C&C average uptime hosted by providers over years

the ‰2 value of the Log-Rank test in which the providers are compared two
by two in terms of their survival rate. Only the light blue tiles indicate non-
significant di�erences at a 0.05 significance level.

As both plots suggest, hosting providers perform di�erently either in terms
of survival probability or in terms of the total number of days that their C&C
domains remain online. For example, more than 95% of the C&C domains
in Main Hosting Server are taken down after approximately 60 days which is
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very similar to HostDime.com. However C&C domains hosted by HostDime.com
are in total taken down after maximum of 4 months whereas this takes about
more than a year for Main Hosting Server. On the extreme side are providers
such as Northen Telecom and eNom, incorporated that host C&C domains
that are online for more than 2 years.
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5.5.3 Does C&C Uptime Explain Abuse Concentration?

Given that there are significant di�erences in the C&C uptime among hosting
providers, we now analyze the impact of C&C uptime on the concentration of
C&C abuse within providers. Do attackers prefer providers with long C&C
uptimes?

Table 5.5: Generalized Linear Regression Model (GLM) for all hosting providers

Response Variable: Count of C&C domains
Poisson with Log Link Function

(1) (2) (3)
Allocated IP space size ≠0.398úúú ≠0.447úúú

(0.020) (0.020)

Webhosting IP space size 0.931úúú 1.054úúú

(0.032) (0.032)

Domain name space size 1.300úúú 1.162úúú

(0.021) (0.020)

Portion of Shared hosting business 0.009úúú 0.011úúú

(0.001) (0.001)

Rule of Law ≠0.213úúú ≠0.170úúú

(0.013) (0.013)

Average C&C uptime 0.003úúú

(0.0001)

Constant ≠1.380úúú ≠7.130úúú ≠7.077úúú

(0.009) (0.068) (0.069)

Observations 46,455 45,166 45,166
Log Likelihood ≠50,777.110 ≠15,253.920 ≠14,699.260
Akaike Inf. Crit. 101,556.200 30,519.850 29,412.510
Dispersion 46.623 10.328 9.032
Pseudo R2 0.722 0.733

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

We fit a similar GLM model to model 5.3 from Section 5.4.2 for the popula-
tion of providers, having the count of C&C domains following a Poisson distri-
bution. The result of our model with the addition of a C&C uptime variable is
shown in Table 5.5.
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In order to be able to make a relative comparison, model 2 is the final model
from our inquiry into the structural properties of providers (see Table 5.3). We
add the ‘Average C&C uptime’ variable to that model. The resulting estimated
coe�cients are observable in model 3. The model suggests that the variable
‘Average C&C uptime’ shows a statistically significant positive relationship with
the number of C&Cs. Although the relationship is significant, we are only able
to explain a total of 73% variance of C&C abuse counts, which is a 1% increase
compared to the model with only structural provider variables. This rather
indicates that there is very little or no preference by attackers for hosting their
C&C domains at providers who allow long-living C&C domains.

5.6 Related Work
With the increasing number of attacks on financial services, e�orts from industry
and academia have focused on botnet evolution and mitigation strategies.

A first area of research aims to understand the functionality of the di�erent
malware families to develop countermeasures that could disrupt these botnets.
Di�erent studies have investigated the communication protocols of these botnets
and their spreading techniques [162, 163, 164].

These studies have collected data on C&C and other botnet infrastructure.
These are typically presented in a descriptive analysis, such as their distribution
over countries. Rossow et al. [165] analyzed the lifetime and domain name
characteristics of malware downloaders. They observed steady migrations of
malware downloaders from domains and TLD registrars to others, and notice
that attackers redundantly deploy their critical infrastructures across providers.
Han et al. in [166] investigated the way cyber-criminals abuse public cloud
services to host part of their malicious infrastructure, including exploit servers
to distribute malware and C&C servers to manage infected terminals. Our work
complements the insights obtained by these works by analyzing the factors that
drive attackers to choose certain type of hosting provider.

A second strand of work has developed approaches to better detect bot-
net infrastructure. Cyberprobe [167] describes an active probing approach for
detecting malicious servers and compromised hosts. ASwatch [33] aiming at
detecting and identifying malicious ASes that exhibit “agile” control plane be-
havior (e.g., short-lived routes, aggressive re-wiring). In this context, fast flux
also appears as a technique that uses compromised computers to provide scala-
bility, geographic diversity, anonymity and redundancy to organized cybercrime
operators. The fast flux infrastructure relies on computing resources stolen from
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the unwitting users of infected endpoints. Cybercriminals rent these fast flux
proxy networks to create a profitable black market hosting environment. The
authors of [168, 169] have analyzed the structural relationships (domain, name-
server, IP connectivity) of fast-flux botnets and identified recurrent structural
clusters across di�erent botnet types. In [168], the authors have used a social
network connectivity metric to show that {Command and Control and phish-
ing} and {malware and spam botnets} have similar structural scores using the
proposed metric. In this chapter, we have defined metrics to capture not only
the attacker behavior but also the hosting provider e�ort toward mitigating the
malicious infrastructure located in their networks.

A third strand of work is the development of reputation systems for providers,
especially focused on those that facilitate cybercrime [34, 114, 118]. For exam-
ple, FIRE [34] introduced a ranking system using uptime of botnet hosting
services to identify and expose providers that demonstrate persistent, malicious
behavior. In [114] the authors propose various reputation metrics based on the
concentration of abuse, while taking some structural hosting provider character-
istics into account. During the explanatory analysis conducted in this chapter,
we use the structural properties of hosting providers to assess the impact of
these on their security performance.

All these approaches help to identify and enumerate botnet C&C infrastruc-
ture and to describe their distribution across networks and countries. We extend
this related work via explanatory analysis to determine the driving factors for
the locations of the C&C infrastructure in the hosting market. We statistically
model and explain the distribution of C&C from the structural properties of
hosting providers, business models and factors like rule of law. We expand the
work by Gañán et al. [136] by studying the properties of providers hosting C&C
domains.

Hosting providers play a key role in the size and spread of these botnets.
Di�erent abuse reporting strategies have been proposed and evaluated to ana-
lyze the performance of hosting providers [135, 134, 170]. However, as shown by
Canali et al. [10], hosting providers are often not taking appropriate measures,
probably due to a lack of incentives. Millions of websites are often poorly man-
aged by inexperienced users, shared web hosting providers have not developed
reliable mechanism to keep their users safe. Moreover, with the emergence of
cloud providers, attackers have a new platform to host their infrastructure. Cur-
rent studies have shown that these type of providers are being used to launch
long-tail spam campaigns because of their low cost [171, 172]. Only a few specific
providers have attempted to create added value by providing “add-on” security
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services. For instance, a Dutch web hosting provider [173] has added a free
automated website vulnerability scanning, fixing and recovery service.

On the other end of the spectrum there are hosting providers acting as
cybercrime facilitators [33, 174, 137]. Researchers and law enforcement agencies
are searching better ways at squashing these providers. While these e�orts are
critical for the overall fight against cybercrime, our analysis suggests that the
C&C of the botnets engaged in attacks on financial services do not depend on
malicious hosting providers, nor do attackers seem to prefer these providers
when locating their C&C.

5.7 Conclusions and Discussions

Over the years, hosting providers have spent a great deal of e�ort taking down
C&C infrastructure for botnets engaged in attacks on financial services.

This chapter aimed to enlighten the strategies of the attackers using these
botnets for the placement of their C&C servers across the hosting market. More
specifically, we examined if attackers have shown a preference for providers
with lax security e�orts. Or, conversely, whether the placement choice of C&C
domains is rather randomly distributed across the hosting space, as measured
via the provider’s structural properties.

We studied seven years of C&C data for 26 botnet families engaged in attacks
on financial services and demonstrated a general increase in the total number
of providers hosting C&C domains over time. We also found a dynamic pattern
of providers who enter and exit the population of providers that host financial
malware C&C. Our results show that C&C abuse is highly concentrated in a
small number of providers. That being said, this concentration can be explained
from relatively large portion that these providers have of the overall attack
surface of the hosting market.

To study the e�ect of hosting provider characteristics on C&C concentra-
tions, we modeled the distribution of C&Cs using Generalized Linear Models
(GLM), with C&C counts following a Poisson distribution. We showed that a
provider’s attack surface characteristics such as IP and domain space size and
the proportion of shared hosting can explain around 71% of the variance in
the number of C&Cs per provider. The rule of law in a country only explains
an additional 1% of the variance, suggesting that the attackers do not prefer
providers in jurisdictions with weak law enforcement. All in all, the selection
process for C&C seems to be random: the probability of hosting C&C is highly
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proportional to the attack surface of the providers, as measured the by observed
e�ect of indicators of size of the provider.

In addition, business model characteristics of providers show a significant
relation with C&C concentrations for a sample of hosting providers. While
the pricing of a hosting plan negatively a�ects C&C concentrations, provider’s
popularity, time in business and the ratio of vulnerable software, have a signifi-
cant positive relation with C&C concentrations. Despite statistically significant
di�erences in C&C take-down speeds among providers, when modeled in con-
junction with attack surface variables, take-down speed shows only a very weak
relation with the concentration of C&Cs across providers, suggesting that at-
tackers are rather impervious to the take-down e�orts of hosting providers.

On a more general level, our results suggest that the amount of C&C abuse
in the network of a provider is a function of a provider’s structural properties
such as its size and its pricing strategy, rather than being driven by the e�ort
they put in abuse handling.

Additionally, our approach helps in developing evidence-based policies in
the hosting market. That is, we demonstrate an approach that enables better
comparative abuse metrics by controlling for the structural di�erences among
providers rather than relying on absolute counts.

Our work comes with a set of limitations as well. The dataset contains only
malware families that have been used to attack financial institutions. Some are
predominantly used for this purpose, like Citadel, but others are much more
generic malware families. Although our methodology in generalizable, it is an
open question whether the patterns we found are di�erent for di�erent kinds of
abuse data. Future work could explore this. In addition, our uptime analysis
can contain biases from unknown measurement errors in the first-seen and last-
seen observations of C&C domains. Such observations are known to be quite
noisy. We do however think that the e�ects would be negligible since the biases
(if any) would be systematic. Finally, because we have used pooled data for
the whole measurement period, our models do not account for changes of C&C
counts over time. Future work can look into whether these patterns we discussed
in this chapter change over time.



CHAPTER 6

Understanding Attacker Behavior

In the previous chapters, we focused on quantifying the impact of hosting provider
properties and e�ort on abuse, given random attacker behavior – that is, attacks
are randomly distributed across the attack surface, as measured by the exposure
indicators. In this study we shift our focus to the attacker’s side and aim to
study attacker behavior in target selection, as observed in Zeus financial mal-
ware data. Using Zeus configuration files, the first part of this chapter explores
di�erent characteristics of a target that increase the likelihood that it is at-
tacked. The second part investigates the attacker behavior in sharing, buying,
and changing the attack code of Zeus malware.

6.1 Introduction
Online banking fraud has increased in past decades as web-based banking plat-
forms have become popular among consumers and businesses. A variety of
controls and countermeasures have been put in place by the banking sector and
security firms, from better authentication of users to real-time supervision of
transactions. Yet, online banking fraud remains a serious problem [175]. The
annual global losses caused by financial fraud are in the magnitudes of billions of
Euros [109]. The European Central Bank recently published fraud statistics for
the Single European Payment Area, reporting “card-not-present” (CNP) fraud
at around 800 million Euros (approximately $1.1 billion) [176].

Notwithstanding the fact that impacts are substantial across industrialized
countries, we also see remarkable di�erences in fraud levels. For 2012, UK
published a total loss of around 299 million Euros for CNP-fraud [177]. Over
the same year, France reported 160 million Euros and the Netherlands reported
35 million Euros of online payment fraud [178, 179]. Relative to the number of
inhabitants, France and the Netherlands su�er roughly half the level of online
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fraud of the UK. Sullivan has estimated relative fraud levels in di�erent countries
in 2006. He found that Spain and Australia experienced the lowest rates of fraud,
around $.022 and $.024 per $100 of transactions respectively. This is while the
UK and US su�ered worse fraud levels, losing $.086 and $.092 respectively [180].

One of the foundations for designing e�ective mitigation strategies would
be to better understand what factors drive the di�erences in fraud levels. An
obvious driver is the extent to which payment services are targeted by attackers.
Very little empirical work has been done regarding the underlying reasons of why
certain targets are selected more often than others. Financial service providers
di�er in many respects such as total revenue, market share, number of users,
authentication mechanisms, money transferring policies, regulatory framework,
and the properties of their home markets. Yet, we do not know how these
di�erences a�ect provider’s relative attractiveness as a target.

An important hurdle for work on attacker’s preference is the fact that not
much data is available from which target selection patterns could be extracted.
In this chapter, we present a hitherto untapped source of data on target selection
by cybercriminals: the instructions sent to the machines infected with financial
malware or banking Trojans. Given that many attacks utilize financial malware,
these instructions provide an insight into the population of targets that have
been selected by the attackers. We have studied a dataset of instructions, so-
called configuration files, which have been distributed within the ecosystem of
Zeus botnets. Analyzing a set of 11,000 malware configuration files, intercepted
over 4 years and containing 1.2 million targeted URLs, we specifically set out to
increase our understanding of the underground economy around malware-based
financial fraud and answer the following questions:

• What services have been targeted via Zeus malware (Section 6.4)?

• What metrics could be developed to rank the relative attractiveness of
targets (Section 6.5)?

• What factors could explain the target selection behavior of attackers (Sec-
tion 6.6)?

• How are new targets identified (Section 6.7)?

• What is the e�ect of Zeus source code leakage on the target selection of
attackers (Section 6.7)?

• How does the inject (attack) code develop over time (Section 6.8)?
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By answering the aforementioned questions, we aim to lay the foundation for
future research into the interactions between the security trade-o�s of financial
service providers and those of the attackers.

6.2 Background
In the course of the 1990s, banks started o�ering access to the bank’s computer
systems via the Internet using a browser or specific application [181]. The online
channel reduced the need for costly retail branches and paper transactions. This
was not only a way to o�er new services, but also a strategy that created cost-
savings for financial institutions [181, 182]. More recently, mobile devices have
become another channel for electronic banking activities. Predictably, these
innovations also meant that financial services became the target of a variety of
online attacks.

6.2.1 Online banking fraud

Online banking fraud is typically account takeover: removing money from some-
one else’s bank account. It can take place via di�erent attack vectors. Two of
the most prominent types of attacks are credential stealing and content manip-
ulation, which can be used separately or in combination. Credential stealing
attacks attempt to access users’ credentials via phishing or through the use of
financial malware [183]. Content manipulation, also called man-in-the-browser
(MitB) attacks, installs malware to manipulate the ingoing and outgoing com-
munication between the unaware user and the bank, at the system level [184].
This type of attack allows attacker to be selective in choosing the target domains
and the type of data she intends to steal or manipulate [183].

6.2.2 Zeus malware

Zeus, also known as Zbot, is a readily available malware kit that contains the
tools required to build and control a botnet. The kit is very simple to use, since it
does not require any in-depth technical knowledge [185]. Zeus was first exposed
on July 2007 and worked on computers using Microsoft Windows operating
system. Since 2012, there are also Zeus variants for Blackberry and Android
phones. Zeus malware has been primarily known for its use in financial fraud,
but its features also allow other types of data theft (e.g., password sni�ng).
The Zeus source code was leaked in 2011 and since then it has been sold and
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traded widely in underground forums. Numerous variants of the original Zeus
malware have appeared ever since [186].

Zeus malware operates based on instructions that are specified in a so-called
“configuration file”. The configuration file has two parts: the static and dynamic
section. Information located in the static section is hard-coded into the bot
executable and contains information that the bot needs when it is first executed,
such as the URL where to get the dynamic section [187, 188].

The dynamic configuration file (config.bin) is downloaded by the bot immedi-
ately after it is installed on victim’s computer. The static configuration contains
an RC4 key, which is used to encrypt the communication within the botnet, in-
cluding the dynamic configuration file. In this implementation, a key stream is
generated from the botnet password, and is XORed with the data [188]. Note
that the keys e�ectively segment the total population of Zeus clients into di�er-
ent botnets by connecting each one to a specific command-and-control (C&C)
channel. It can therefore serve as a proxy for distinct attack campaigns and,
thereby, of an attacker – though the latter is a lot less reliable, as an attacker
can be behind multiple campaigns simultaneously as well, over time.

The file is updated by the C&C server and is downloaded by the bot at
certain time intervals, providing it with new instructions. Most of the entries
in the file control how and what information is collected from the infected com-
puters, how to attack the banking clients and and where drop the information
collected from the victims [187]. Note that for the sake of simplicity, these dy-
namic configuration files are called configuration files in the remainder of this
chapter.

As soon as the victim’s computer gets infected, the Zeus malware attaches
itself to the user’s web browser. This enables it to monitor everything the victim
does on the web, including her online banking and credit card transactions [188].
Zeus records everything the victim types in the browser, including usernames,
passwords and banking credentials. It then sends them back to the command
and control server where information is stored in a dropzone. The criminal can
then use this information directly to steal money from the victim’s accounts
or he can sell the information to other criminal organizations that have the
infrastructure for large-scale online banking and credit-card fraud operations.

Moreover, Zeus can act as a Man-in-the-Browser (MitB) and modifies what
the victim sees on her bank’s web page. Fraudulent transactions are executed
by modifying certain web pages and injecting data into certain fields, invisible
to the user. These so-called ‘inject codes’ are located in a section called ‘web
Injects’ within the configuration file. To illustrate: sometimes criminals inject
extra fields to the bank’s login webpage that ask for additional login information,
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such as credit card details or PIN numbers. These type of information are
normally not required for the login process. In other types of attacks, the web-
page is modified to show a fake account balance to the user, thereby hiding a
fraudulent transaction that has been executed in the background.

Given the fact that Zeus is the most widespread banking Trojan, a better
understanding of its operations can yield useful insights into target selection
and other criminal behavior around online financial services. To this end, this
work is dedicated to exploring Zeus instructions included in the configuration
files.

6.2.3 State-of-the-art: target selection

Earlier work has often focused on the technical vulnerabilities of banking services
and on developing more secure online banking technologies [189]. However,
several authors have pointed out how the incentives of financial service providers
shape the security decisions associated with these vulnerabilities [190, 191, 192].

Moore et al. observed that attackers tend to favor certain financial services
over others. Moore and Clayton studied a sample of phishing sites and found
that some banks are targeted much more frequently than others [129]. PayPal
was impersonated by 399 of the 1695 sites, while 52 banks were only spoofed
once. They do not explain this discrepancy, except indirectly: banks can influ-
ence how long phishing sites stay online. Perhaps that serves as a deterrent. It
is unlikely, however, that PayPal is much less vigilant than 52 rarely attacked
banks.

A study on click fraud by [193] concluded that online-only banks were
targeted more than banks with physical branches. In the analysis done by
Levchenko et al. on the spam value chain, the authors found a significant
concentration on certain merchant banks that assist sellers of online pharma-
ceuticals [48].

As far as we know, there has not yet been any in-depth empirical investiga-
tion into the extent to which some banks are targeted more often than others.
While there are many factors at play, here, it seems clear that criminal’s deci-
sions and preferences play a major role. Recent security reports claimed that
online banking attacks were getting more target-specific [194, 195]. This al-
though suggests a conscious selection process on the side of criminals, factors
that drive such decision process have not yet been uncovered. Is the selection
process for online banking fraud based on specific characteristics of the bank,
its policies, its location, or another set of considerations altogether? Perhaps
the decisions of attackers are less guided by informed cost-benefit trade-o�s and
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more by herding behavior: in the absence of good information about the like-
lihood and magnitude of success, they mimic whatever other attackers (their
peers) are doing, driven by underground forums or chat rooms where experi-
ences are exchanged [196]. Yet another strategy might be to do the opposite:
select targets that nobody else is attacking?

From the literature on economics of crime, Routine Activity Theory (RAT)
can help to describe why criminals go after a certain target. RAT argues that
for a crime to be committed, three ingredients are needed: a motivated o�ender,
a suitable target, and the absence of a capable guardian at a specific time and
place. RAT has been developed in the context of conventional “o�ine” crime.
However, Yar has argued that the di�erences between the virtual and non-
virtual worlds made the applicability of RAT to cyber-crime limited [100]. These
di�erences include cyberspace’s di�erent socio-interactional characteristics, such
as the collapse of spatial–temporal barriers, many-to-many connectivity, and the
anonymity and plasticity of online identity.

Yar has adapted RAT to cybercrime. He identifies the four key properties
that derive the so-called “suitable target” to be selected as: value, portability,
visibility, and accessibility [100]. Value of a target in online banking fraud can be
defined as the value that can be gained by the o�ender if the attack is successful.
This might mean that banks located in richer countries or with higher account
balances would be selected more often, all other things being equal. Portability
is about the ease with which the criminal gains can be moved, such as money
being transferred in near real-time via irreversible transactions. Visibility is
about how visible and exposed the target is to the cybercriminals. Finally,
accessibility is about how easy the target can be reached.

In summary, we are not aware of any prior empirical work that attempts to
identify the factors that drive criminals to target certain online financial service
providers more often than others, in online banking fraud.

6.3 Data Collection Methodology

6.3.1 Dataset : Zeus configuration files

In this chapter, we analyzed a collection of Zeus financial malware data files
provided to us by Fox-IT, a leading Dutch security firm with many clients in
the financial sector. The dataset consists of around a hundred and fifty thou-
sand (144,625) captured files that were suspected to be configuration files. Of
these, we investigated 10,673 configuration files that revealed targeted domains.
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The rest of the captured configuration files could not be used due to either of
the following reasons: (i) the file could not be decrypted with one of the keys
extracted from the executables or due to an unknown format; (ii) the file was
decrypted, but was not actually a configuration file; (iii) the file was corrupted
or incomplete (some files were only captured in full after multiple attempts);
(iv) the file was decrypted but did not contain a web inject section and therefore
no information regarding the targeted domains1.

The configuration files were collected over a period of just over four years
(2009-2013Q1). They were captured using honeypots located all over the world
(with more concentration in western countries and less in Asia). The config-
uration files were collected using two di�erent methods: they are gathered by
running live Zeus samples or by emulating the malware to download configura-
tion files.

The configuration files are encrypted plain text files. Each captured file,
along with the time stamp of when it was captured and the key with which
it was decrypted, if applicable, was stored in a MySQL database. As already
explained in section 6.2.2, each Zeus configuration file contains a ‘web inject’
section which includes targeted URLs, attack instructions, HTML scripts to
be injected into the pages served from the attacked URL, and mechanisms for
bypassing the authentication procedures of the institution. Below is an example
of the web inject section of Zeus configuration files. These configuration files
typically contain multiple injects (113 of them, on average), each of which varies
from just a few lines of code, as in the example below, to over two thousand
lines:

Table 6.1: Example of Zeus inject code targeting a specific URL in configuration file

set_url https://removed.com/OLB/secure/AccountList.aspx <FLAG_GET><FLAG_LOG>
data_before
id="dgDepositAcctsheader0"*>
data_after
</table>
data_inject
datas_end

1Sometimes the malware only monitors the machines http and https post requests and
gathers system information without modifying anything. That is why some of the configura-
tion files do not contain the web inject section and could not reveal targeted URLs.
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6.3.2 Extracting targeted domains

The first step towards answering our research questions is to parse the con-
figuration files. First, we extract targeted URLs from the configuration files
and associate them with the time stamp and the RC4 key belonging to the
corresponding file.

The configuration files revealed that a total of 14,870 unique URLs were
targeted. Many of them contain di�erent paths of the same domain. All in
all, we identified 2,412 unique domain names. Extracting the domains from
targeted URLs was not a straightforward process, as some configuration files
contain URLs with wild cards. Table 6.2 displays some examples of such URLs.

Table 6.2: Example of target URLs in Zeus configuration files

Targeted URL Targeted domain
*/bancopostaonline.poste.it/*/formslogin.aspx poste.it
*banking.*sparkasse*.de/cgi/anfang.cgi* sparkasse.de
*mpresas*gruposantander.es*opaccesoempresasabe* gruposantander.es
http://www.google.*&q=* google.?

Figure 6.1 contains information regarding the algorithm we use to extract
the targeted domains from the URLs. When URLs do not contain wildcards,
we extract targeted domains by trimming the path. When URLs include wild
cards, we reconstruct the domains using regular expressions for comparing the
last part of the URL (path, query or fragment) against the set of targeted URLs
without wildcards. If a URL matches the same URL without wildcard in more
than 90% of the cases, we assume that the targeted domain is the same as the
domain of the URL without a wildcard. For around 6% of all URLs we could
not reliably determine the targeted domain. Either the URL did not match any
of the URLs in our set, or it matched with multiple URLs and none of them
reached the threshold of 90%.

6.3.3 Extracting botnet keys

Ideally, we would like to count the number of attackers going after each domain.
However, there currently is no reliable way to measure this. We use the RC4
keys as proxies for the number of botnets in use, i.e., the number of campaigns
that have been undertaken – in e�ect treating the keys as unique identifiers for
di�erent Zeus botnets. These keys can only be changed by updating the malware
with a new binary and migrating the command-and-control server to a new
URL. Typically, this happens when a botnet is taken down. The operator then
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continues with new bots and a new location for downloading the configuration,
which technically makes it a new botnet, as most of the old bots are no longer
able to connect.

6.3.4 Extracting targeted countries

We have enrich the dataset by adding some information about the targeted
domains from other sources. The geographical location of targeted domains is
determined semi-manually. For this purpose, we have used four sources of data:
(i) Where the server/infrastructure is located [197]; (ii) Where the domain’s
tra�c is coming from, according to Alexa [198]; (iii) Where the site owner’s
headquarter is located, according to the domain’s homepage; (iv) The top-
level su�x of the domain (TLD). However, most of the times, these sources
consistently pointed to the same county. We manually checked cases where they
did not match. One interesting pattern that emerged and could be explored in
future work is that quite a number of the banks were located in micro-states
and known tax havens. These o�shore banks are most probably used by a small
fraction of the population, and it is interesting to see that Zeus has been used
to target this small group.

Figure 6.1: Algorithm used to extract targeted domains from targeted URLs
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6.3.5 Size of targeted domains

We estimate the size of a target in two ways: using the tra�c volume that
is based on Alexa ranking, and for U.S. financial institutions, also by the to-
tal of deposits held by the institution, as reported by the U.S Federal Deposit
Insurance Corporation (FDIC). The FDIC is a government corporation operat-
ing as an independent agency that provides deposit insurance guaranteeing the
safety of a depositor’s accounts in member banks. As of February 2014, they
insure 6,790 institutions [199]. They provide certain statistics for these insti-
tutions, such as its total assets, deposits, the locations of its headquarters, its
web address, etc. Through the web address field, we can connect 170 of these
institutions to the data in our Zeus dataset.

Data on the tra�c volume of the targeted domains is gathered from Alexa
Internet, a subsidiary of Amazon.com that provides commercial web tra�c
data [198]. Using data gathered via the Alexa tool-bar and that provided by
sites owners, Alexa ranks sites based on their tra�c data. They also use data
from the DMOZ open directory project to categorize websites [200]. We have
pulled in this data from the Alexa website for the majority of the domains in
our dataset. In the later sections of the chapter, we use the FDIC deposit and
Alexa ranks as proxies for domain size.

6.4 Descriptives of the Zeus Attacks
6.4.1 Targets

As described in section 6.3.2, from a total of 14,870 unique targeted URLs,
we have identified 2,412 unique domains. Not all of these are financial service
providers. Among the targeted domains we could find anti-virus companies,
news websites, webmail providers, and social networks, along with domains we
could not categorize, because the sites were no longer online. Using Alexa
categories, we are able to map 43% of all domains to a specific sector. Of
these mapped domains, 760 (74%) are financial service providers and 272 (26%)
domains belonged to other sectors. The remaining 1,380 domains are uncatego-
rized.

Among uncategorized domains, we selected a random sample of 100 and
manually checked their associated sector(s). Of these domains, we were able to
map 72% of them. Of these mapped domains, 53 (73%) were financial service
providers and 19 (26%) were from other categories such anti-virus companies,
security service providers, and online consultancy firms.
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Figure 6.2: Number of attacked domains per month (2009-2013Q1)

Over the whole period, on average 600 unique domains were attacked each
month across all observed botnets (Figure 6.2). In section 6.6, we will explore
how the number of attacked domains vary over time in more detail. In terms
of the geographical coverage of the data, the targeted domains are located in
92 di�erent countries all over the world (Figure 6.5). Unsurprisingly, some
countries su�er substantially more attacks than others. In section 6.7 we will
discuss these geographical distributions in more detail.

Figure 6.3: Geographical distribution of the attacked domains (number of domains
per country in the dataset (2009-2013Q1)
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6.4.2 Attackers

As detailed in Section 6.3.3, there are 2,131 unique RC4 keys in our dataset,
which we interpret as an approximation of the number of botnets in use. Fig-
ure 6.4 displays the trend of botnet activity from January 2009 up to March
2013. The blue (upper) line displays the number of configuration files sent each
week by all botnets together. The black (lower) line indicates the number of
botnets that were active in that week, as counted by the total number of RC4
keys in use. As the trends indicate, the number of active botnets decreases
over time. The same happens with the number of configuration files that were
distributed. This might be attributed to the Zeus take-down e�orts that were
coordinated by Microsoft with di�erent governments and security firms around
the world [201], although the downward trend had started well before those
e�orts.

Comparing the number of configuration files against the number of active
botnets per month (the two lines in Figure 6.4), we see that they roughly follow
the same trend. This is to be expected, as the number of active botnets is
determined by whether or not they have distributed a configuration file that
week. However, it also can be seen that, on average, botnets sent out multiple
files. This is unevenly distributed. Some are much active than others. This
discrepancy highlights that raw counts of the number of times a domain shows
up in configuration files is not really a good metric for the relative degree in
which a domain is attacked. Accordingly, we explore more informative metrics
in the next section.
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Figure 6.4: Number of configuration files and active botnets per month
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6.5 Attack Metrics
To understand how popular di�erent domains are as targets of online banking
fraud, we need to rank them against a reliable metric. Until now, there is little
empirical work on the popularity of targeted domains. Even where it exists, the
ranking is based on poorly conceived metrics. For example, a security paper
published by F-Secure reported a list of top-20 most attacked domains by the
SpyEye malware in 2012 [202]. The rankings are calculated by simply counting
the number of times a domain appeared in the malware configuration files. We
believe that such raw counts are not reliable, mainly because the number of times
a configuration file is sent does not necessary hold a one-to-one relation with the
number of attacks. Taking the example of SpyEye malware, the configuration
file is built into the binary, so attack instructions are released as often as the
binary is changed. These changes are likely to be driven by signature updates
in the anti-virus software that SpyEye tries to evade, rather than by the target
selection process of cybercriminals.

There are numerous ways in which bot herders may choose to update their
configuration files; one may update a configuration file once per day, while an-
other one might adopt a lower update frequency, perhaps because she herds
multiple botnets or the botnet has more stable attack code. Therefore, the
number of configuration files per day sent by a botnet may have little corre-
lation with the actual attacks and, thus, with target popularity. To illustrate,
Figure 6.5 shows the configuration files of three di�erent Zeus botnets sent in
the same week. Using the raw counts, one would say Botnet 1 attacked ebay.com
three times this week and Botnet 3 two times, so in total ebay.com is attacked
five times in this week. However, in practice, all of the configuration files sent
by botnets in one week (as an estimate of a threshold) are only the updated
versions of the initial ones. It makes no sense to count them as separate attacks.

In short, to determine the popularity of targets and to deal better with these
di�erences, we need to develop more reliable metrics. Below we suggest three
alternatives as indicators for domains attractiveness:

• Number of botnets attacking a domain: Using this metric, domains at-
tractiveness is defined by the number of Zeus botnets, counted by di�erent
RC4 keys that simultaneously targeted a domain.

• Number of weeks a domain was under attack: The Zeus data can also
provide information about the persistence of attacks over time.

• Average number of botnets attacking a domain per week: This metric is
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Figure 6.5: Illustrative example of why raw counts of attacked domains are not
reliable as metric

basically a combination of the previous two. This metric eliminates some
of the limitations of the raw counts by normalizing the data: it merges all
configurations for a single botnet sent during a week and then counts the
number of botnets attacking a unique domain in that week. To compare
over longer periods, one could add up the counts for each week (‘botnet
weeks’) or average them. The formula below displays how the metric is
calculated when being averaged across n weeks.

Average number of botnets attacking a domain per week =
A

nÿ

k=1
botnets attacking domains in week(k)

B
/n

6.6 Relative Attractiveness of Targets
Having more reliable metrics at hand, we are going to look into the relative
popularity of di�erent targets along with the attackers’ incentives behind this
pattern. We do this by discussing three questions: (i) how are the attacks
distributed across targets? (ii) what is the relation between target size and its
popularity? Or to put it di�erently: do bigger targets attract more attacks?
and (iii) how is the attack persistence distributed across di�erent targets?
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6.6.1 Distribution of attacks

In Figure 6.6, we rank the popularity of domains as attack targets using the
number of botnets attacking a domain per week as a metric. The rank shows
a highly concentrated pattern. The pattern is a power-law distribution, where
15% of the domains account for 90% of the attacks.
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Figure 6.6: Cumulative percentage of attacks on unique domains (in
botnet-weeks)(2009-2013Q1)

Target popularity can also be expressed by the number of weeks a domain
is under attack or attack persistence. Figure 6.6 shows the domains distributed
over the number of weeks they were under attack between January 2009 and
March 2013. Here, too, we see a highly skewed distribution: some domains are
attacked only briefly, while others remain under attack for the whole period of
our dataset. A small number of domains (88) were always under attack for the
whole 216 weeks. A much larger group of domains (1,108) are under attack
for four weeks or less. Finally, 1,216 domains fall between the two extremes:
occasionally and often-attacked domains.

One interpretation of Figure 6.7 could be that the range of potential attack
targets for criminals is wide: the fact that some of the attacks are short-lived
might indicate trial-and-error on the part of attackers, i.e., the attacks are not
successful or don’t prove attractive. We will revisit this idea in section 6.7. An
alternative explanation might be that some of these domains are attacked for a
specific purpose, i.e., as a part of targeted attacks.

We categorized domains in Figure 6.7 into the di�erent groups (see Ta-



118 Understanding Attacker Behavior

0

100

200

300

400

500

0 50 100 150 200
Number of weeks are under attacks

N
um

be
r o

f d
om

ai
ns

 u
nd

er
 a

tta
ck

Figure 6.7: Attack persistence on domains attacked by Zeus malware (2009- 2013Q1)

ble 6.3)2. What stands out is the fact that the portion of financial service
providers as targets increases with attack persistence, while the number of
countries decreases. Here, the attackers reveal their core business: domains
in always-attacked category are located in a compact set of countries, most
notably Spain, U.S., U.K., Italy, Russia, and Germany.

Table 6.3: Domains grouped by attack persistence

Group Defitition Domains % Banks Countries
Briefly-attacked Active for 1 month or less 1,108 54% 81
Occasionally-attacked Active between 1 and 1.5 months 571 80% 58
Often-attacked Active between 1.5 and 48 months 645 94% 46
Always-attacked Active for 48 months 88 91% 13

6.6.2 Size and attractiveness for U.S. banks

The concentrated patterns of the attacks raise an obvious question of incen-
tives: why do so many attackers go after the same cluster of targets? Routine
Activity Theory (see section 6.2.3) identifies four factors that drive target selec-
tion: value, portability, visibility, and accessibility. At this moment we cannot

2The percentage of financial institutions is calculated using the Alexa categories for the
sites that are categorized by Alexa - the numbers do not include the uncategorized domains
in each group
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systematically assess portability or accessibility, though the configuration files
do contain inject code aimed to bypass two-factor authentication mechanism
of domains, which might tell us more in the near future. Value and visibility
can however correlate with the size of the attacked financial service providers,
as measured by its customer base and the wealth of those customers. In other
words, are the largest providers in the richest markets attacked more? The logis-
tics of malware-based attacks seems to favor banks with a large customer base,
as it increases both the odds of finding infected customers as well as spreading
out the costs of developing the inject code over more attacks (similar to the
reason why most malware writers target Windows-based machines).
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Figure 6.8: Deposits (top) and Zeus attack intensity (bottom) for the top fifty U.S.
financial institutions

We have crudely estimated the size of a target via its web tra�c volume
(Alexa ranking) and, for the U.S. financial institutions, via FDIC data on the
volume of deposits (see section 6.3.5 for more details). The FDIC lists U.S.
banks and financial institutions with some of their financial and administrative
properties, including assets, deposits, and net-income. In Figure 6.8 we have
plotted the top fifty U.S. banks – in terms of their deposits3 against the average
number of botnets attacking these banks per week over our observation period

3We prefer deposits over assets as a measure of size, to distinguish between financial
institutions that might provide mainly mortgages and have little banking and saving services;
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(2009-2013Q1). The blue line in the graph describes deposit per institution on
a log-scale; the black line indicates the average number of botnets attacking
all domains4 of that institution per week. Clearly, the two variables do not
maintain a strong relationship.

However, mapping the attacked domains to the FDIC list yields to two
interesting points. The first relates to the fact that out of around 6,500 active
US-based financial institutions, only 175 have been targets of Zeus attacks in
our data. Assuming that our sample is representative (see section 6.9), this is
a surprising low number. Almost all of the largest banks (48 of the top 50) are
attacked and present in the dataset5. The situation for the smaller banks is
completely di�erent. This might be caused by the fact that many smaller banks
in the U.S. either did not provide online banking services or have outsourced
these to a smaller number of third parties who may or may not be among the
attacked domains. Another explanation is that they simply are not attractive
targets for Zeus-based attacks, given their small customer size or limitations on
how and where stolen funds can be transferred.

Therefore one can claim that whether a bank gets attacked is related to its
size; above a certain threshold, a bank becomes a target. Beyond the threshold,
however, size no longer seems to be a factor. The intensity of attacks is hardly
related to size: the average number of botnets attacking each week fluctuates
from less than 1 to 20. The result of the regression analysis is an adjusted
R≠squared of 0.25 (N=50, F=0.00) – a weak correlation. This clearly suggests
that there are other factors driving target attractiveness than merely the size
of bank or its customer base.

6.6.3 Size and attractiveness worldwide

Does the pattern we observed for the U.S. banks hold across the whole popula-
tion of targets? We use the Alexa rank as a proxy for the tra�c size, with lower
rank numbers indicating more incoming tra�c, i.e., more users. Figure 6.9 on
the left, shows the relation between Alexa rank of a domain and attack per-
sistence. On the right, we have included box plots of the Alexa ranks for the
di�erent persistence groups discussed in section 6.6.1.

these will have high assets but low deposits, and so far have been of less interest to botnet-
based forms of attacks.

4Some of the institutions have multiple web addresses and domains. We aggregate the
attacks on all of these related domains in this figure.

5The two missing banks o�er online banking via a third party. These sites handle online
banking services for multiple banks. They are both present in our dataset, but attacks on
them cannot be attributed to the individual banks.
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Figure 6.9: (Left) Scatter plot of Alexa rankings vs. attack persistence; (Right)
box-plot of Alexa rankings per di�erent attack persistence groups (only financial

institutions, log-transformed. Lower rank number indicates a site has more visitors).

The result of Spearman’s rank correlation test indicates a weak but signifi-
cant negative correlation between Alexa lower ranks (domains with more visi-
tors) and the attack persistence, i.e., the number of weeks they are under attack
(rho=-0.13, ‡=0.00, N=1,995). The results are similar if we rerun the correla-
tion only for financial institutions (rho=-0.19, ‡=0.00, N=731). The correla-
tion is driven mainly by the di�erence between the ranks of the briefly-attacked
domains and the always-attacked domains. The result of Kruskal-Wallis test
for comparing sample means presented in Table 6.4 supports this. The same
test does not find a significant di�erence in the Alexa tra�c ranks of domains
that are briefly-attacked and occasionally-attacked, nor between those that are
occasionally-attacked and often-attacked.

Table 6.4: Kruskal-Wallis test results comparing means of Alexa ranks among
di�erent target groups

Persistence group N Mean Rank

Alexa
1 866 1112.76
2 479 889.73

rank 3 571 936.38
4 79 841.88

Total 1995

Test Statistics : a,b
Alexa rank

chi ≠ Square 63.626
df 3
– 0.000
a. Kruskal Wallis Test
b. Grouping Var: Pers. group
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In short: the size of a financial service provider seems to influence target
selection mostly in terms of a threshold: providers above a certain size are
much more likely to be targeted. Beyond that threshold, however, size does
not really seem to impact attack intensity. Within the top 50 of U.S. financial
institutions, we see large di�erences in attack volume. The same holds for the
wider group of larger targets. So far, it is unclear what other factors are at work
here.

6.7 Seeking New Targets
A substantial number of domains (1,108, about half of the total) were targeted
for four weeks or less in the four-year period (see Table 6.3). Taking a deeper
look into the domains in that group, we realize that this group stands out from
the others by its diversity: from the largest to the smallest domains, spread
out over 81 countries and multiple industries, only half of which are financial
services. This diversity makes sense if we interpret it as the result of a process
of trial-and-error by the attackers. A new target is chosen for attack. The
attacker identifies the relevant URLs, develops the inject code, and pushes the
new configuration to bots under her command, and waits for victims. If the
attack is successful, the attacker will persist. If, however, within a few weeks
and a handful of attempts, the attack is not successful, the attacker has to
decide how long to keep incurring costs or lack of benefit before moving on
to a di�erent target. The lack of success might be caused by e�ective defense
measures by the targeted institution or its users. It might also be the case that
the attack was technically successful, but the value of the loot – e.g., the price
that the underground market was willing to pay for the captured data – did not
merit further attacks.

The rate of trial-and-error is reflected in the number of new domains that
show up over time. New domains are being tried all the time however, with
peaks now and then: on average 119 domains are new each month – either never
attacked before, or briefly in the months before the last. The overall number
of domains getting attacked per month seems to be remarkably constant with
a clear ceiling. An average of 601 domains each month become targets of Zeus
attacks (‡=172, CV= 0.29). This is across all botnets in our dataset.

The stable ceiling on the number of targets pursued simultaneously is surpris-
ing, given the ongoing development of malware-as-a-service, which supposedly
reduces entry barriers and would attract new attackers. It suggests there are
bottlenecks elsewhere in the criminal value chain. With money mules, for exam-
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Figure 6.10: Trial of new Zeus target domains per month (2009-2013Q1)

ple, there appear to be no economies of scale [203]. In fact, the security architect
of a multinational bank recently told us that they work on the assumption that
recruiting mules is the most expensive and vulnerable resource for the attackers.
The bank changed its defense strategy based on this insight: when a fraudulent
transaction was detected, it was not blocked, but simply flagged and tracked
until it is was completed and the mule had been revealed. Only then was the
attack terminated. This meant that the attacker had to burn through his scare
resource, mules, without knowing the odds of success.

The ceiling remained in place even after the Zeus source code was leaked and
became widely available around May 2011. Several security firms predicted that
this would increase the volume of attacks, as the leak would depress prices of
Zeus-related services in the underground economy and further reduce the entry
barriers for new attackers [204, 205].

Table 6.5: Number of attacked domains and active botnets before and after Zeus
code leakage

# attacked domains # active botnets
Only before May 2011 786 1,334
Before and after May 2011 949 87
After May 2011 519 712

Our results however do not support this prediction, even though there is
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hardly a shortage of potentially profitable targets6. Table 6.5 summarizes the
point: the last row in the table indicates the number of new domains that
were targeted only after the code leak, and the number of new botnet-keys that
were activated. The numbers are lower than those for the period prior to the
leakage. If we normalize these counts per month, compensating for the fact
that the earlier period lasted a bit longer (28 vs. 22 months), the rate before
the code leak was 48 botnets per month vs. 33 afterwards (if we leave out the
botnets active in both periods).

The lack of growth in the population of Zeus targets resembles the phe-
nomenon discussed by [206]: the majority of users go unharmed each year,
despite the claims of security experts that many attacks are getting cheaper
and easier. One of their explanations is victim diversity: if the fraction of all
users who succumb to a certain attack is too small then the entire attack is
rendered unprofitable. This is especially true when the gains per victim are
unclear7.
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Figure 6.11: Entrance of new Zeus attackers (botnet) per month (2009-2013Q1)

The relatively stable pattern also belies another claim: that the Microsoft-
coordinated take-down e�ort of Zeus command-and-control infrastructure – co-
denamed B71 – had a noticeable impact on the operations of the attackers.

6Others also reported the absence of a rise in attacks [203].
7An exception to this rule is when the attacker has information at hand showing that the

victim is actually valuable. This might explain the existence of banks from the micro-states
in our datasets, given the guess is that these are used for instance tax evasion or similar
purposes, and belong to wealthy people.
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Microsoft never claimed that have fully disrupted Zeus, but rather a “strategic
disruption of operations to mitigate the threat” [201]. Within the population of
botnets that we have tracked over the course of four years, no such disruption
is visible. Although there was a temporary dip in activity around the time of
the take-down, March 2012, the decline towards that low has started well before
operation B71. In fact, briefly after the operation, botnet activity started to
rise again to previous levels.

Table 6.6: Botnets categorized by their lifetime

Lifetime category Definition # Botnets (RC4 keys)
Botnet lifetime 1 Active 1 day 1,315
Botnet lifetime 2 Active between 1 and 30 days 272
Botnet lifetime 3 Active between 30 and 105 days 272
Botnet lifetime 4 Active equal or more than 105 days 274

We also took a look into the relationship between botnet lifetime and the
di�erent groups of targets in terms of persistence of being attacked. To do that,
we first categorized botnets in terms of their lifetime into four di�erent groups
(see Table 6.6). The first group contains botnets that were only active for one
day and we treated them as a separate group. For the rest, we divided the total
number of botnets or RC4 keys into groups of almost equal size.

Table 6.7: The number of botnets with di�erent lifetime in di�erent attack
persistence categories

Attack persistence
Briefly Occasionally Often Always

Lifetime 1 Count 62 209 657 1235
Expected count 101.121 31.342 736.510 107.025

Lifetime 2 Count 23 89 217 241
Expected count 27.537 86.146 200.566 292.750

Lifetime 3 Count 32 121 236 250
Expected count 29.397 91.965 214.113 312.524

Lifetime 4 Count 70 166 252 262
Expected count 28.943 90.545 210.809 307.701

Next, we looked at the relationship between botnet lifetime8 and the attack
persistence category that they attacked. Table 6.7 shows a cross table attack

8Lifetime of each botnet or RC4 key is calculated by subtracting the first and last time
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persistence and botnet lifetime of all botnets. As it is clear from Table 6.7,
more botnets attacked domains that are located in the always-attacked cate-
gory rather than the domains that are located in the briefly- attacked category.
Moreover, most of the attacks on domains that are briefly attacked are per-
formed by botnets with the longest lifespan. We hypothesize that those might
belong to the most professional attackers, who are able to keep the botnets up
and running the longest. The attackers in this category also do the most trial
and error, which fits with the hypothesis that they are also the most capable.
The number of botnets in this cell is higher than the expected value (observed
count: 70, expected count: 28.94)9.

Finally, upon investigating the country of the attacked domains, the pattern
seen in other graphs is confirmed. Figure 6.12 shows the overlap between the
targeted countries over the course of four years (2009-2012). Out of the total
92 attacked countries, seven were only attacked in 2009, and seventeen only in
2012. This shift in the variety of the attacked countries, despite the overall
stability in the size of the attacks, points to a trial-and-error process with finite
resources and players; i.e., the attacks are not spreading like mushrooms.

Figure 6.12: Venn diagram showing the overlap among the countries of the attacked
domains in di�erent years

that the key is seen. This has strong (rho = 0.97) significant correlation with the number of
weeks that a botnet is active.

9It should be mentioned that cells in this table are not independent and therefore the
applicability of chi-square expected value is limited.
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6.8 Attack Code Development
6.8.1 Descriptive analysis

Our dataset contains 1,146,860 target URLs with associated inject codes. These
inject codes are by no means unique. In fact, on average each inject code is
repeated 27 times. Figure 6.13 shows the number of times a specific piece of
code is used in di�erent configuration files. Note that virtually all inject codes
are reused two or more times among the di�erent configuration files.
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Figure 6.13: Number of times an inject code is used among di�erent configuration
files

Just 5% of the inject codes was re-used less than 10 times. More striking
is the fact that 43% of all inject codes was repeated over 1,000 times. It is
a safe bet that any new configuration file found in the wild will contain some
inject codes that are identical or trivially di�erent of a previous file. Just 9,679
inject codes (1.19% of the total amount) that were not repeated in any other
configuration file. Even in this group, the bulk consisted of slight revisions of
previous code aimed at the same URL.

This high amount of code repetition is intriguing. Attackers have clear
incentives to reuse old code: it is more cost e�ective to make incremental mod-
ifications and reuse the same proven configuration files than to develop new
ones from scratch. The modifications are necessary to evade new security mea-
sures. What is puzzling is that the attackers can get away with this little e�ort.
Despite many countermeasures that have been proposed [207], malicious users
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continue to use the same inject code. This pattern holds both before and after
the code leakage.

To acquire a better understanding of these repetitions we analyze the amount
of code lines per attack. Results show that the average length of an inject code
is around 36 lines (with a standard deviation of 76.8 and coe�cient of variation
of 2.1). While there are complex attacks with more than 1,000 lines, they
represent only 0.05% of the total number of attacks. The majority of the inject
codes (56%) range between 10 and 100 lines. These are illustrated in Figure 6.14.
The high deviation in the number of lines gives an idea of the complexity and
diversity of the attacks. Looking at the attack codes, we see a wide range of
ideas, from a simple rendering of a page element suggestion to the user to install
an older (i.e., more vulnerable) web browser, to larger inject codes containing
actual scripts to grab personal information.
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Figure 6.14: Number of lines per attack code

6.8.2 Similarity analysis

To more systematically analyze the level at which attackers re-use existing code,
we applied a comparison technique to the whole dataset. Di�erent text com-
parison techniques can be applied to find discriminating features of di�erent
codes. Our approach is an adaptation of text retrieval matching using the
so-called Term Frequency-Inverse Document Frequency (tf-idf ) methods [208].
These techniques have been widely used for comparing di�erent malware (See
e.g., [209, 210, 211]), and for detecting plagiarized documents [212]. We also
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report the di�erences between two inject codes, expressed as a minimal list of
line changes to bring either file into agreement with the other in relation to the
total number of code lines [213].

First, we processed the configuration files to extract the inject code and
conform the strings. Then, we tokenized the symbols found using the classic
separators (e.g., dot, comma, colon, semi-colon, blank space, tab, etc.). In
order to represent a string collection, a common approach in text comparison
is to use a Vector Space Model, which represents documents algebraically, as
vectors in a multidimensional space. This space consists of only positive axis
intercepts. After that, we constructed a text representation of an inject code,
which is formed by words si, such that ≠æ

C = (s1, s2, · · · , sn), n being the number
of words within the code. We defined the weight wi,j as the number of times
the word si appears in the inject code ≠æ

C j ; if si is not present in ≠æ
C j , wi,j =

0. Therefore, any attack code ≠æ
C j can be represented as the vector of ≠æ

C j =
(w1,js1, w2,js2, · · · , wn,jsn). Finally, we used tf-idf weighting schema, where
the weight of the ith word in the jth injection code, denoted by wi,j , is defined
by:

wi,j=tf i,j ·idf i=
ni,jq
k nk,j

· log
3

—

“

4

where ni,j is the number of times the word si is not present in ≠æ
C j ,

q
k nk,j

is the total number of words in ≠æ
C j , — is the number of codes being compared

and “ is the number of codes under comparison that contain the word si.
Tf-idf method is based on vector similarity over dampened and discrimina-

tively weighted term frequencies. In our case, we chose the cosine similarity
that has proven to be a robust metric for scoring the similarity between two
strings [214]. The basic idea behind cosine similarity is to transform each string
into a vector in some high dimensional space such that similar strings are close
to each other. The cosine of the angle between two vectors is a measure of how
“similar” they are, which in turn, is a measure of the similarity of these strings.
If the vectors are of unit length, the cosine of the angle between them is simply
the dot product of the vectors. Thus, two attacks codes are more similar if they
contain many of the same terms with the same relative number of occurrences
of each.

Having defined the similarity metric, we used it to compare consecutive
attack codes per URL. Figure 6.15 shows the average similarity per URL. More
than 83% of the inject codes targeting a particular URL are more than 90%



130 Understanding Attacker Behavior

similar, and only 1.71% of the inject codes are very di�erent (less than 50%
similar). On average, across all Zeus botnets and attackers, code similarity is
over 90% from one attack to the next. This suggests some mechanism of code
sharing or stealing among the attackers.
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Figure 6.15: Average code similarity per URL
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Figure 6.16: Average code similarity per botnet and URL

If we also take a look a particular URL per a particular botnet, we see that
the similarity between consecutive codes increases even more, reaching 97% in
average (see Figure 6.16). A botnet attacking a particular URL rarely changes
the inject code between consecutive attacks.

The high similarity between consecutive attacks could be due to (i) incen-
tives of attackers to not change the code substantially if unnecessary, and (ii)
operations related to essential characteristics of the targeted URL.
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Next, we analyze the impact of code length on similarity. In general, a clear
trend does not appear between the two. As Figure 6.17 shows, large codes are
repeated less than small codes, but when repeated, the inject code is more than
97% similar – though this partially reflects the size of the inject, of course. In
smaller injects, changing a few lines will drive down the similarity. In any case,
consecutive code attacks to the same URL are more than 90% similar in average
no matter their length.
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Figure 6.17: Average code similarity versus code length and repetition (size of the
bubbles)

We took a closer look at the evolution of attack code for four URLs among
the top attacked domains (Figure 6.18). These URLs are from PayPal, HSBC,
Bank of America, and Alliance Leicester. Besides the cosine similarity, we also
compare the number of di�erent code lines between consecutive inject codes.
Both metrics follow the same pattern for all the URLs. As one would expect from
the analysis so far, the inject codes in most of the instances is the exact copy of
their predecessors. However, we can observe that the similarity metric drops at
certain points in case of some URLs. These drops most probably reflect changes
in the domain’s webpage and defense measures by domain owners (financial
service providers and other industries) that forced the attackers to adapt their
code. In either case, it can be seen that after each drop in similarity, the next
codes again become similar. Similarity drops vary in di�erent levels for each of
the URLs, reflecting the amount of change. Among these examples, a particular
PayPal URL su�ers from the most abrupt changes in the similarity metric, while
the HSBC inject code’s similarity only drops below 65% one time, with most of
the consecutive attacks remaining identical.
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Figure 6.18: Code similarity evolution for 4 URLs corresponding to the top attacked
domains

In summary, inject code is not updated with high frequency. This somewhat
contradicts the anecdotal descriptions from the industry of highly dynamic cat-
and-mouse games with constant adaptations between attackers and defenders.
The attack activity observed in this period clearly shows that copies of a previous
used inject code and also inject code that only marginally di�ers from previous
ones are present in most configuration files.

In addition, if we take a closer look to the inject code similarity between
botnets with di�erent lifetime against targets in each persistence group (6.8),
we realize that in most of the cases code similarity increases in line with botnet
lifetime, i.e., botnets that are active longer tend to have smaller code changes. It
is unclear what this means exactly. If we assume that more rapid code evolution
is a sign of attacker competencies, then this finding provides evidence against our
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earlier hypothesis that the longer-lived botnets are run by the more competent
criminals. An alternative interpretation, however, is that these attackers write
more robust code that requires fewer changes to stay functional.

Table 6.8: Cross table of inject code similarity for botnets with di�erent lifetime in
di�erent attack persistence categories (code similarity between 0 and 1)

Code similarity Attack persistence
briefly attacked occasionally attacked often attacked always attacked

Lifetime 1 0.893 0.897 0.951 0.926
Lifetime 2 0.959 0.968 0.970 0.968
Lifetime 3 0.965 0.970 0.968 0.969
Lifetime 4 0.966 0.973 0.971 0.972

In general, the overall pattern of high code reuse indicates that financial
providers are not implementing changes that require rapid adaptation on the
side of the attackers. The lack of code development also suggests that the cost
of continuing these attacks is limited. Less skilled attackers could enter the
market and survive on minor modifications of existing inject code. That we
haven’t seen an increase in the volume of attacks is further evidence for the
earlier finding that low entry barriers to the criminal market do not translate
into attack volume.

6.9 Limitations
As with all studies of real-world applications and implementations, we should
reflect on the potential impact of possible measurement errors in our data and
other limitations. We already discussed the limitation of using RC4 keys as a
proxy for botnets and attackers. Here, we focus on the possibility of biases in
the collection method. Perhaps the honeypot network is less likely to capture
attacks against certain domains or countries, or the captured and decrypted files
are biased towards the less competent attackers.

To check how representative our sample of Zeus configuration files is, we
crosschecked our data with Zeus Tracker data from Abuse.ch, a well-known anti-
Zeus initiative. We compared the C&C domains from which the configuration
files were present in both of the datasets for the specific period that Zeus Tracker
published this data (Sept 2010 to March 2013). First of all, there is a di�erence
in volume. Where Zeus Tracker published 18500 C&C domains, our dataset
identified around 27,400 C&C domains for the 11,000 files (and more than 30,000
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C&C domains for the overall set of around 144,000 captured files). It does seem
that the Fox-IT collection method is more comprehensive. Out of the 18500
C&C domains listed by Zeus Tracker (live or removed), 4550 of them overlap
with C&C domains in our dataset.

In addition, as mentioned in section 6.3.1, the data was gathered via honey-
pots, predominantly located in European countries. This might have introduced
a geographical bias. Indeed, in the next section we see that the European coun-
tries are more often targeted than those in the U.S. or Asian targets. This does
not per se imply, however, that there is a bias in the data. Our industry partner
argues that the attackers did not di�erentiate among the infected clients based
on their geography directly. The dominance of Europe targets may reflect the
fact that online banking services have been o�ered more widely by European
providers and have been adopted more comprehensively by consumers. Also,
many European banking systems have near real-time transaction processing,
which makes it easier for criminals to move money out of the account before
anti-fraud operations can stop it.

The situation in the U.S. is rather di�erent. The market is less consolidated,
with thousands of smaller banks, not all of them o�ering online banking facili-
ties. Furthermore, of the banks that o�er online services, not all of them provide
cross-bank transferring capabilities, making it harder for attackers to cash out
funds. Sometimes there is a need for in-person validation of the receiving ac-
count beforehand.

We did notice that Asian countries seemed underrepresented. That might in-
dicate a sampling bias or it might reflect a di�erent attack history. For example,
the Zeus-variant Citadel has been reported to have started targeting Japanese
banks only late in 2013, which is outside our observation period [215]. Another
explanation is that Asian attacks were predominantly executed via other mal-
ware families, such as KRBanker. Finally, we should also mention that only
a small percentage of configuration files in our data belong to the newer Zeus
variants, which is understandable since many of the new variants have become
active in the course of 2012.

6.10 Conclusions and Discussions
Financial malware on home computers and mobile devices causes millions of
Euro in damages each year. Not every financial service provider is equally pop-
ular among cybercriminals. Why are some financial service providers targeted
more often than others? There is very little comparative empirical research
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across providers and countries identifying the factors that contribute to the
selection of financial service providers as targets.

This chapter sets out to explore the incentives and strategies of attackers
from the instructions – contained in configuration files – sent to the machines
that were infected with Zeus malware from 2009-2013Q1, during which period
it was one of the dominant financial malware families. We investigated around
11,000 configuration files targeting 1.2 million URLs, which consisted of 14,870
unique URLs on 2,412 unique domains. We identified the attacked domains,
which include financial services as well as other targets, and developed metrics to
rank their relative attractiveness as a target, taking into account how criminals
update the instructions for the bots under their control.

The attacks were concentrated: around 15% of the domains attracted 90%
of the attacks. The concentration is not driven just by target size. Using
financial data from FDIC and tra�c rankings from Alexa as proxies for the size
of the payment service provider, we observe that size is a threshold for getting
attacked, but does not predict the intensity of attack. Attack persistence varies
widely, with around half of the domains targeted briefly (4 weeks or less), and
88 domains targeted during the whole period (216 weeks). We believe the brief
attacks are part of a process of trial-and-error of attackers seeking new targets.
Looking into it from the perspective of botnets, we realized that long-lived
botnets are more probable to attack domains is this category comparing to the
short-lived ones, which again supports the idea of trial-and-error.

Surprisingly enough, even though new domains are being tried over the whole
period, there seems to be a ceiling in the overall number of domains being at-
tacked simultaneously. This suggests bottlenecks elsewhere in the criminal value
chain, for example, in the recruitment of money mules or in the involvement of
the attackers in other stages of the attack (e.g., the need to take over banking
sessions in real time). Despite what is expected, the ceiling remained in place
both in terms of number of domains that were attacked and in terms of num-
ber of new botnets that entered the market even after when Zeus source code
was leaked and became widely available. This suggests that in this market, low
entry barriers do not translate into more crime.

We also studied the evolution of inject code over time. Using a cosine simi-
larity metric, we compared the 1.2 million inject codes in the dataset. In short,
the vast majority of the inject codes were merely modifications of previous codes.
In fact, only 3,664 attacks were not exact copies of a previously seen code. In
any case, consecutive code attacks to a same URL are more than 90% similar
regardless of the length of the attack code. This suggests that attacks are much
less dynamic than often presumed.
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Code gets re-used to a remarkable degree: just 1% of the inject code is never
repeated, and 226 di�erent inject codes are repeated over one thousand times
without any modifications. On average, across all Zeus botnets, code similarity
is well over 90% from one attack to the next. This suggests some mechanism
of code sharing or stealing. Within a same botnet, similarity goes up to 97%.
Overall, it seems that cost of code development for attackers is limited. This
could lower entry barriers and increase attacks, but as we found earlier, this
does not occur. Entry barriers are not the factor that is keeping attack levels
in check.

At a more general level, the implication of these findings might be that the
underground markets for infected machines, malware-as-a-service, which have
been portrayed as making attacks cheaper to execute and even as opening up
cybercrime to the unschooled masses, are not main force in driving the attack
volume, nor the selection of targets. This suggests that there is a need for more
investigation on other parts of online banking fraud value chain such as money
mules, or banks’ money transferring policies. If the bottlenecks are not in the
malware ecosystem, then investing in disrupting the ecosystem by defenders and
law enforcement may not actually be the best allocation of scare resources.



CHAPTER 7

Measuring the Impact of Providers’
Proactive Security E�orts on Abuse

The previous chapters studied di�erent parts of the causal model: incidents,
exposure, and attacks. This chapter aims to quantify a final causal link, namely
between security/vulnerability and incidents, while controlling for exposure. In
other words, to what extent do di�erent proactive security measures taken by
webmasters and hosting providers impact abuse rates in a shared hosting envi-
ronment? The study measures security e�orts by drawing on a diverse set of
security and software features collected at scale from a large sample of domains.
In the first part of study we use the features to estimate underlying latent factors
that capture di�erent types of security e�ort. We then estimate which of these
factors are influenced by provider e�orts versus the e�orts of their customers. In
the second part of this study, we construct multiple statistical models to quantify
the impact of each factor on malware and phishing abuse observations, identi-
fying the control points that providers can influence to fight against abuse. In
sum, this study comprehensively models the main relations of the causal model
underlying this thesis.

7.1 Introduction
Global web infrastructure is compromised at scale in support of a myriad of
cybercrime business models, from phishing to botnet command and control
(C&C) to malware distribution. The responsibility for remediating compro-
mised resources is shared between webmasters and multiple infrastructure op-
erators, notably hosting providers, domain name registrars and internet service
providers (ISPs). The important role of hosting providers is codified in best
practices from industry organizations such as M3AAWG and SANS [20, 216, 9].
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These guidelines encourage providers to take sensible steps, such as keeping
customer software updated.

When the defenses fall short and resources are compromised, providers are
regularly faulted for not doing enough to forestall compromise (e.g., [10, 34]).
This raises the question, however, of what providers can realistically achieve in
terms of preventing abuse. Compromise rates are driven by many factors outside
the immediate control of providers, not least of which is the security decisions
and patching practices of their own clients [217, 218]. It is this joint responsi-
bility between providers and webmasters that makes answering the question so
di�cult. In this chapter, we provide an answer for the case of shared hosting,
one of the most prevalent and a�ordable ways to publish web content in which
many websites share the same server.

We focus on shared hosting services for several reasons. First, its customers
operate under restricted privileges. Hosting providers maintain administrator
privileges and can typically regulate what software is installed and whether
it is updated. As acknowledged in M3AAWG’s best practices, providers have
the most control over, and hence most responsibility for, their resources in
shared hosting plans, compared to other hosting services [9]. Second, even
when customers can change configurations, shared hosting providers maintain
a strong influence by provisioning default configurations that may or may not
be the secure.

Put another way, if hosting providers can and do make a di�erence in im-
proving security, we would expect to find evidence for it in this segment of
the market. Third, this segment matters in the overall scheme of web com-
promise. Shared hosting is associated with especially high concentrations of
abuse [122, 49, 142]. In the data examined for this chapter, for example, around
30% of all abused domains were on shared hosting.

Another barrier to assessing provider e�orts to prevent abuse is that their
e�orts cannot be measured directly. We cannot, for example, measure each
provider’s security budget, abuse team sta� levels, or uptake of technologies to
mitigate attacks. In economics terms, there is an inherent information asymme-
try about the extent and e�cacy of the security e�orts undertaken by providers.

We overcome this barrier by adopting a new approach, adapted from psycho-
metrics, that constructs an indirect measure of security e�ort by amalgamating
a disparate set of observable features such as patching levels and secure web
design practices. There are two key benefits of our approach. First, we do not
presume ex ante if it is the webmaster or hosting provider who is responsible
for these features. Who drives patching of Content Management Systems (CM-
Ses), for example? Rather than make a priori assumptions, we answer these
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questions empirically and thereby deal with the joint responsibility problem.
Second, we do not presume a direct causal relationship between the observable
features and how the website is ultimately compromised. For example, setting a
Content Security Policy may not stop compromise, yet its presence does reflect
the security e�orts put into increasing website defences.
We make the following contributions:

• We present the first comprehensive measurement study of the population
of shared hosting providers, revealing patterns in 15 indicators spanning
domain security and software patching e�orts, captured from a sample of
442,684 domains across 1,259 providers.

• We find that version hiding is a widespread hardening e�ort–e.g., 66% of
admin panel installations hide version information. By contrast, indicators
of domain security, such as HttpOnly cookie and Content-Security-Policy,
are rare (13% and 0.2% of domains, respectively). Out of those with ver-
sion information, most discovered installations of webservers and admin
panels (87%) and (70%) were running unpatched versions. In stark con-
trast, CMS installations were unpatched in just 35% of cases. This perhaps
reflects a di�erence in the probability of compromise between lower and
higher levels of the software stack.

• We demonstrate a new statistical approach to empirically disentangle the
contributions of di�erent parties to a joint security outcome. Di�erent
from prior research, we do not make ex ante assumptions about the mean-
ing of security indicators (e.g., that their configuration is under the control
of the providers and accurately reflect their e�orts). Instead, we use the
indicators to induce latent factors that can be interpreted and empirically
attributed to roles of responsibility. We then regress these factors on mea-
surements of compromise, while controlling for exposure. This approach
can be adopted to study other areas of joint responsibility, such as between
cloud hosting providers and tenants, or corporate system administrators
and end users.

• We find that webmaster and web application security e�orts significantly
reduce phishing and malware abuse. For example, the best-performing
10% of providers (in terms of web application security e�ort) experience 4
times fewer phishing incidents than the bottom 10% of providers. More-
over, we find that providers can influence patching levels, even for software
running at the application level such as CMSes. The providers that do a
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better job of patching their customers see reduced rates of compromise.
This provides the first compelling statistical evidence of the security ben-
efits of hosting providers adhering to industry best practices.

The chapter proceeds as follows: Section 7.2 explains the data and method-
ology used to sample domains, identify shared hosting providers, estimate their
size, and measure compromise rates. Section 7.3 outlines the details of our ac-
tive measurement setup and describes the e�ort-related features we collected.
Section 7.4 presents an empirical view of the web security landscape in shared
hosting. Section 7.5 discusses the reasoning behind why the collected features
should not be used as direct causal explanations of abuse, highlighting the need
for latent variables. Section 7.6 explains the statistical approach to estimate
the latent variables and to empirically disentangle the contributions of di�er-
ent parties to a joint security outcome. Section 7.7, we assess the impact of
the latent factors on abuse incidents. Section 7.8 discussed the limitations of
our study and section 7.9 revisits related work. Finally, we discusses our main
conclusions and implications in Section 7.10.

7.2 Data Collection Methodology
Shared hosting providers We start by populating a list of all domain names1

and their IP addresses that were observed by DNSDB – a large passive DNS
database2 – in March 2016. Adopting the similar methodology explained in
Chapter 3 and Chapter 4 leaves us with a set of hosting providers. Next, we
mark a provider as a shared hosting provider if we observe at least one IP address
that hosts more than 10 domains. We adopt the same threshold used in other
studies (see Chapter 3). Using an elbow plot of domain density per IP address,
we confirmed a sharp increase in density beyond a threshold of 10 to 15 domains
per IP address. The result is a global list of 1,350 shared hosting providers.

Domain sample From the total set of 110,710,388 domains on shared hosting,
we randomly sampled 500 domain names for each provider. We scanned them
to verify these were still operational3. If fewer than 100 domains were up and

1We define domain name as a second-level or third-level domain, depending on whether
the relevant TLD registry provides such registrations, e.g., example.pl, example.com.pl,
example.gov.pl, etc.

2
https://www.dnsdb.info

3Domains are sampled only from IPs marked as shared, since a provider can have shared
servers next to dedicated ones

https://www.dnsdb.info
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running, the provider was excluded from the list (91 providers were excluded).
It should be noted that before drawing the random selection of domains, we
dismissed around 4,000 parked domains, following the detection methodology
outlined in [219]. This is specifically because a majority of parked domains
are very similar to each other (share the similar content) and typically a single
webmaster owns numerous parked domains, as indicated by Vissers et al. [219].
Therefore, if taken into account, the analysis is more likely to be biased towards
a handful of website administrators owning a large number of domains. By
excluding parked domains, we maintain an unbiased observation of the features
that are related to the e�orts of the webmaster. Accordingly, our final set
contains 442,684 domains distributed over 1,259 hosting providers, located in
82 countries all over the world.

Size of hosting providers Shared hosting providers di�er vastly in size, a fact
to be controlled for when analyzing abuse with providers as units of analysis.
Clearly, a million-site business is likely to observe more abuse than one with
a few thousand customers. Unfortunately, there is no authoritative source for
provider size. To estimate it from the available data, we use two di�erent size
indicators, each capturing a di�erent aspect of the shared hosting providers.
Shared hosting IP space size is the number of IP addresses hosting at least 10 or
more domains. It is calculated by summing up all the IP addresses defined as
shared, associated with domain names per provider that have been observed in
the passive DNS data. The mean, median and maximum values are 636, 137 and
71, 448 respectively, across providers in our sample. Shared hosting domain space
size is the number of domains hosted on shared IPs by a particular provider.
It is calculated as the sum of the domains that are associated with shared IP
addresses of the provider, as seen in the DNSDB data. The mean, median and
maximum values are 94,118, 10,233 and 3.3 ú 107 respectively, across providers
in our sample. Note that due to a large variance and skewed distribution of the
size variables, a log-transformation of these variables (base 10) is used in the
regression analyses of Section 7.7.

Abuse data To estimate the compromise rate for each shared hosting provider,
we used two abuse datasets. We extracted all entries that were associated with
the shared hosting IP addresses of the providers and counted the number of
unique domains per provider.

The phishing data is collected from two sources: the Anti-Phishing Working
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Group (APWG) 4 and Phishtank 5. Both datasets contain IP addresses, fully
qualified domains, URLs of phishing pages, blacklisting times, and additional
meta-data. For the second half of 2016, the data consisted of 62,499 distinct
domains, which resolved to 47,324 IP addresses at the time of reporting. 49,065
of these domains were hosted by one of 968 shared providers in our study (The
remaining 291 providers did not record any phishing during the period.)

We include drive-by-download malware URLs flagged by the Google Safe
Browsing program, as reported to StopBadware6. For the second half of 2016,
there were 362,069 distinct domains newly flagged with malware. Of these,
332,625 resolved to an IP address at the time of reporting. The rest was likely
maliciously registered and already suspended. Of all resolvable domains, 97,872
were hosted by one of 1,050 shared providers in our study (The remaining 209
providers did not record any malware during the period.) The high proportion
in both datasets underscores the importance of shared hosting in distributing
web-based phishing and malware.

7.3 Measurement of Features
We aim to collect a wide range of features, composed of vulnerabilities and
weaknesses, security mechanisms, and software patching practices, all of which
can help us estimate the amount of e�ort going into securing domains.

We perform a large-scale measurement to obtain information from the 442,684
sampled domains. More precisely, we instructed our crawler, which is based on
the headless browser PhantomJS7, to visit up to 20 web pages for each domain.
The list of web pages for a certain domain were obtained by following links
starting from the home page, until either the maximum number of page visits
was reached, or no further links could be discovered.

In order to restrict the feature collection process to the target domains, the
crawler only considered web pages with the same second-level domain name.
If, for example, the target domain example.com immediately redirects users to
website.com, only a limited set of features could be obtained, i.e., server-level
features and those based on response headers sent out by example.com. This
was done to ensure that only information related to the website hosted in the
shared hosting environment was considered. In total, it took our crawler, which

4
http://www.antiphishing.org

5
https://www.phishtank.com

6
https://www.stopbadware.org

7
http://phantomjs.org/

http://www.antiphishing.org
https://www.phishtank.com
https://www.stopbadware.org
http://phantomjs.org/
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was distributed over 15 virtual machines, each composed of 4 CPUs and 4GB
RAM, 7 days to visit and extract information from the 7,463,682 web pages.

We gather information to construct a list of 15 features, which is an extension
of the web-based security features explored in prior work [26]. Our features give
an indication of both security-related configurations, such as the deployment
of Content-Security-Policy, and patching practices of various software such
as CMSes, admin panels, PHP and SSH. Consequently, the captured features
reflect security practices employed by both the shared hosting providers as well
as the domain owners (webmasters) themselves. In the following sections, we
briefly discuss these two groups. For the extensive list of features, please refer
to Table 7.1.

Note that for most of the collected features, we do not expect to observe a
direct causal relation on abuse practices. Instead, we consider the features to
be proxies of the e�orts made by the providers and webmasters. We discuss
the limitations of treating these features as direct indicators of e�ort in greater
detail in Section 7.5.
Ethical considerations. We have also assessed our work using the principles
outlined in the Menlo report [220]. We do not collect data on persons. We
designed our measurement techniques to be as unobtrusive as possible. We
collected no more data than necessary and carefully scheduled our requests so
that no single server could be overloaded. All features were obtained through
passive observation and we added various countermeasures to prevent any ir-
regular interactions with third party websites. Finally, we report the findings
in an anonymized manner. We have also assessed our work using the principles
outlined in the Menlo report.

7.3.1 Domain security indicators

As domains are prone to a large variety of potential vulnerabilities and weak-
nesses, the web security community has for a long time supported hosting
providers and webmasters with mechanisms that enable them to apply a defense-
in-depth approach. In this section, we discuss how we collect a multitude of
security-related features to get an approximation of security e�orts for domains.

Cross-site scripting (XSS) vulnerabilities are among the most critical secu-
rity risks according to OWASP [107]. We look for the presence of the Content
Security Policy response header, as it can be used to protect against XSS at-
tacks. We consider a domain to have weak browser XSS protection if an ad-
ministrator has disabled the default browser mechanism to detect and block
reflected XSS attacks by means of the X-XSS-Protection response header. We
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also check for the presence of HttpOnly, which helps reduce the potential con-
sequences of XSS attacks, and X-Frame-Options, which can be used to thwart
clickjacking. In addition, we check if the Secure cookie attribute and the HTTP
Strict-Transport-Security response header are present, as they both can
e�ectively improve transport layer security. Properly implemented web applica-
tions are also crucial. We define the SSL-stripping vulnerable form feature when
a website has a form (e.g., on a login page) pointing to an HTTPS endpoint
while being loaded over an insecure connection. Accordingly, the mixed-content
inclusions happen when a website’s content (e.g., JavaScript code, style-sheets,
images etc.) is included over an insecure connection, while the web page was
loaded over SSL/TLS.

Note that we indicate the direction of the features by (≠) and (+) signs in
Table 7.1 since not all features have a positive e�ect, such as mixed-content
inclusions, SSL-stripping vulnerable form, and weak browser XSS protection.

7.3.2 Software patching practices

In addition to the security mechanisms discussed in the previous section, the
act of patching server software and web applications plays a crucial role in the
security posture of websites.

Often, attackers exploit known vulnerabilities present in unpatched soft-
ware (e.g., vulnerabilities reported in the National Vulnerability Database [221]).
Therefore, it is generally considered best practice for providers as well as web-
masters to employ patch management mechanisms regularly and extensively.

Content Management Systems (CMSes) have been amongst the most ex-
ploited software stacks for many years [222, 43, 105]. Depending on the ad-
ministration rights in the shared hosting environment, CMSes can be updated
either by the webmaster or the shared hosting provider herself. In this chapter,
we limit our scope to the CMSes with the majority of market share, namely
WordPress, Joomla! and Drupal CMSes [223].

The presence and version number of these three CMSes are determined in
two phases: first, a basic scan is performed using our crawler which tried to infer
the version number from the <meta name=ÕÕgeneratorÕÕ> HTML tag. However,
as many CMSes allow hiding the version number, something that is generally
considered a good practice against automated attack scripts, we perform a sec-
ond, more comprehensive scan. For the comprehensive scan we made use of
well-known industry tools such as Sucuri WPScan8 and WhatWeb9. For the

8
https://wpscan.org

9
https://whatweb.net

https://wpscan.org
https://whatweb.net
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latter, we updated the original scripts to allow us to incorporate the latest
versions of the targeted CMSes.

In addition to the experiment that determines the presence and version num-
ber of CMSes, we performed a similar experiment that focused on admin panels,
a type of technology that is innate to the shared hosting environment. In this
chapter, we focus on the four most popular admin panels, namely cPanel, Plesk,
DirectAdmin, and Virtualmin. We instructed our crawlers to visit the domains
at the port numbers that are typically associated with the admin panels, e.g.,
port 2082 and 2083 for cPanel. We then improved our measurements by visit-
ing the endpoints that we found to often be used as a shorthand to link to the
admin panel, e.g., /panel/. Based on the response headers, HTML contents,
and redirection chains that were captured by our crawlers, we tried to deter-
mine the presence and, when possible, the version number of the admin panels.
This allowed us to obtain the version information for approximately 33% of the
domains with admin panel in our sample.

Moreover, other components that contribute to the software stack, such as
the HTTP server, SSH server and PHP interface, should also be treated as part
of the threat surface. In this chapter we focus on Apache, Microsoft IIS and
nginx for the HTTP servers. For the features related to the infrastructure of the
web host, we inferred the version information through either the Server and
X-Powered-By response headers (for webserver and PHP), or by the banner that
was returned, e.g., the banner on port 22 for SSH.

Lastly, we look into SSL/TLS implementations, as they are important to
prevent attacks on the transport layer. To assess weaknesses in the SSL/TLS
infrastructure, we used sslyze [224]. The domain’s SSL/TLS implementation is
considered insecure when it was vulnerable to Heartbleed, supports old protocols
(SSLv2, SSLv3), enables compression, or is vulnerable to CCS injection [225].

For all software where the version number could be determined by our scan-
ner, we make the distinction between software that is patched and unpatched.
Generally, we consider a software version to be patched if it was packaged in one
of the supported versions of OSes with larger market share namely, Ubuntu, De-
bian, and CentOS [226] at the time of our the measurement (November 2016).
This approach is relatively generous in considering software patched: patches
are often backported to older versions; as we did not undertake any intrusive
actions to determine the patch-level of software, no distinction is made between
versions with or without these backported patches. Note that all the older
versions of software packaged in OSes are deprecated and contain vulnerabili-
ties. For instance, PHP version 5.3.2 had a vulnerability (CVE-2012-2317) that
would allow attackers to bypass authentication in applications that would oth-
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Table 7.1: Summary of measured domain security and software patching indicators
in absolute and relative terms.

Feature # of domains % of domains
HTTP server 398,929 90.11

no version information 195,474 44.15
Patched version 58,818 13.28
Unpatched versions 144,637 32.67

SSL 288,018 65.06
Patched version 206,680 46.68
Unpatched versions 81,338 18.37

Admin panel 178,056 40.22
no version information 118,768 26.82
Patched version 17,949 4.05
Unpatched versions 41,600 9.39

PHP 156,756 35.41
Patched version 47,596 10.75
Unpatched versions 109,160 24.65

OpenSSH 130,146 29.39
no version information 716 0.16
Patched version 36,444 8.23
Unpatched versions 92,986 21.00

CMS 103,741 23.43
no version information 10,043 2.26
Patched version 61,457 13.88
Unpatched versions 32,264 7.28

HttpOnly cookie (+) 57,696 13.04
X-Frame-Options (+) 22,212 5.02
X-Content-Type-Options (+) 8,685 1.96
Mixed-content inclusions (≠) 2,107 0.47
Secure cookie (+) 1,378 0.31
Content-Security-Policy (+) 894 0.20
HTTP Strict-Transport-Security (+) 847 0.19
SSL-stripping vulnerable form (≠) 515 0.11
Weak browser XSS protection (≠) 376 0.08

erwise be secure. This was then patched in the later versions packaged. A more
recent example is CVE-2015-8867 in certain versions of PHP (5.4.44, 5.5.x be-
fore 5.5.28, and 5.6.x before 5.6.12) [221]. A list of software and their patched
versions is included in the Appendix.

Due to the automated nature of our experimental setup, the measurements
may be subject to certain limitations. Despite the preventive measures we
have taken to make the generated web tra�c reflect the browsing behavior
of a regular user, there could still be providers who will block our scanning
attempts. Moreover, it is possible that certain software was not found within
the scanning threshold due to hardening techniques. More specifically for admin
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panels, if the software was not located at a default location, we would not be
able to detect it. Furthermore, as we focus on a limited set of software, it is
possible that a domain makes use of a di�erent software stack, or that it was
hand-constructed.

7.4 Descriptive Findings about the Landscape
Previous research has explored individual security features at the domain level.
We now extend this approach in two ways: by combining these features with
software patching practices and by moving from individual domains to the level
of providers. What is the prevalence of security features across domains and
providers? How patched are software installations? Do patching rates vary
substantially from one provider to the next? Do di�erent portions of the software
stack have di�erent updating behavior?

7.4.1 Distribution of security features

Table 7.1 presents a summary of the distribution of all security features, both
positive and negative. The security features are presented as boolean variables,
with 1 pointing to the direction of the variable. The first column indicates
the total number of domains with a particular feature and the second column
reports the percentage of all domains with this feature.

The overall pattern is clear. Across the landscape, although crucial, the
positive security indicators have low to almost negligible adoption rates. Out
of 442,684 scanned domains, HttpOnly cookie reaches a somewhat respectable
13%, but after that the prevalence drops quickly. Two features are present in
less than 0.3% of all domains. The good news is that the observed negative
security features that can result in vulnerabilities are equally sparse: Mixed-
content inclusions is the most widespread at 0.5%.

To illustrate, Figure 7.1 displays the percentage of domains at a provider
that have Content-Security-Policy, HttpOnly cookie or X-Frame-Options.
At most providers, only a small fraction of their domains support these features,
hence one sees rarely any large concentration of a feature within a group of
providers. In fact, for 1,100 providers (95% of the providers we evaluated),
fewer than 20% of their domains in our sample have HttpOnly cookie enabled.
The exception is a group of 9 providers where 80% of the domains have HttpOnly
cookie enabled, indicating a provider e�ort in the form of provisioning default
secure configurations. To further validate this assumption, we tried to contact
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this set of nine providers manually and check whether they provide certain
security features by default. We have been contacted back by three of the
providers. Two of the providers confirmed that depending on the customers,
they might set HttpOnly cookie by default in the cases where they are the
responsible entity for the customer’s security. Another provider pointed out
that the default HttpOnly cookie setting is a built-in feature in the DotNetNuke
CMS they employ.

Figure 7.1: Distribution of security features over hosting providers

Note that the median and mean complexity of the webpages in our sample
which we measured by the number of endpoints are 11 and 71.68, respectively.
Having that in mind, we expect that some of the features under study are only
useful in specific configurations, so widespread adoption is not to be expected.
Not every page will set a cookie, for example, and not every cookie needs to have
the Secure or HttpOnly attribute. A cookie might set a language preference, it
might need to be accessible in JavaScript, and it does not matter if this leaks in a
man-in-the-middle attack. Also, for X-Frame-Options, it makes sense that this
header is only added on pages that are subject to clickjacking attacks. On the
other hand, features such as Content-Security-Policy would benefit many
domains and, as other work has noted [227], adoption is disappointingly low.

Of all the shared hosting providers under study, only 6% has more than
a single domain with Content-Security-Policy in the sample. That be-
ing said, there is an interesting long tail for these scarce features, where the
provider seem to play a role. For instance, the managed hosting provider
Netsolus.com, has more than 92% of its domains in our sample enabled with
Content-Security-Policy and HttpOnly cookie , which again suggests a
provider wide setting rather than e�ort of individual webmasters.
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7.4.2 Distribution of software patching features

Regarding software installations, Figure 7.2 provides a visual overview of the
data in Table 7.1. The colored area shows the portion of all domains where
we were able to discover a certain type of software. This is subdivided in in-
stallations where we found the patched version (dark blue), where we found
an unpatched version (light blue) and where we could not identify the version
(grey).

Manual analysis of the software patching features reveals several interesting
patterns. In the rest of this section, we discuss software discoverability by
attackers and version hiding e�orts by defenders. Then we look at the state of
patching across the web stack.

Figure 7.2: Software patching distribution across domains

Hardening practices

Discovering the presence and version of a software installation on a domain
is more than a measurement problem. The techniques we deploy can also be
used by attackers seeking vulnerable targets, especially if they scale easily. This
incentivizes defenders to harden software installations to be less trivially discov-
erable and to not reveal version information.

Indeed, in the case of the three main CMSes, a basic scan was rarely e�ective.
Figure 7.3 shows that most installations were discovered only through more
intrusive industry tools, described in Section 7.3.2. Overall, 23% of the domains
had one of the three main CMSes installed. To determine the validity of our
results, we manually inspected 40 domains per CMS type, both from domains
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for which we discovered an installation and from those for which we did not.
We found one false positive where the domain did not have any CMS and no
false negatives. Most of the pages that we marked as no CMS pages were either
static HTML or featured some custom-made CMS. It is an open question as to
what made the discovery more di�cult: webmaster action, provider action, or
the default configuration provided by the software vendor.

Figure 7.3: Portion of CMS installations discovered via basic vs. comprehensive scans

Similarly to CMS, most of the well-known admin panels were only discovered
after a more comprehensive scans. We found them on 40% of the domains. In
a shared hosting environment, admin panels seem a necessity, so the actual
prevalence is likely to be higher. Many providers, however, appear to shield
them from being discovered, even by more comprehensive scans. They are using
custom solutions or hide them behind customer portals with restricted access.

Version hiding is also a popular hardening technique. For SSH, all version
information is available, as required by the protocol. It is interesting that PHP
almost always provides version information, whereas only 50% of HTTP web-
servers came with version information. Finding the version information was
harder for admin panels. We managed to find it for around 32% of all domains
with one of the main admin panel packages installed. For CMSes, version infor-
mation could be obtained for around 90% of the installations. Given the known
hardening techniques such as password-protecting the /wp-admin/ directory,
disabled PHP execution etc., we suspect that this reflects the e�cacy of the
industry scanning tools, rather than provider or customer practices [228].

We are interested in the di�erence among providers in version hiding e�orts.
We looked at the percentage of software installations at a provider for which
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version information was available. Figure 7.4 displays where providers are lo-
cated across a range from where just 0-10% of their installations reveal version
information to where 90-100% do. The resulting distributions vary consider-
ably by software type. For CMSes, providers are clustered at the high end of
the range. Again, this more likely reflects the e�cacy of the scanning tools than
of provider practices. For webservers, however, we see a very di�erent pattern;
an almost uniform distribution across the range. In some provider networks,
nearly all versions are visible. In others, virtually none are. The rest are some-
what evenly distributed across the intermediate intervals. If we assume that
shared hosting providers have control over the web server configuration, which
seems reasonable, then this distribution suggests that most providers are not
consistently applying version hiding in one way or another. The mix of both
hidden and visible version information might reflect changes in the provisioning
processes over time. As new servers get added, a di�erent default setup might
be in use, hiding or not hiding this information. For admin panels, we see yet
another distribution. A concentration of providers is on the low end of the
range, where version information is mostly hidden across their network. This
suggests a consistent practice. But we also see a flat distribution over the rest
of the range. Here, again, we might see either changing or ad hoc provisioning
processes. It seems unlikely that this reflects customer action.

Figure 7.4: Distribution of discoverable software version across providers

Patching practices

More important than hiding version information is to ensure that software is
not exploitable in the first place [229]. In this section, we explore patching prac-
tices. Figure 7.2 displays the proportion of domains with the patched version
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of software, with unptached versions, and installations for which we could not
determine the version.

Appendix 7.11 lists the patched versions for each software package and its
supported branches. We find that 19% of domains use unpatched SSL. Note
that unpatched means SSLv2 and SSLv3 or containing certain vulnerabilities
such as Heartbleed, CCS injection, etc. For PHP and SSH, it is clear that fewer
domains are running the patched versions relative to the unpatched version.
For webservers and admin panels, the majority of installations were running
unpatched versions – 87% and 70%, respectively.

In stark contrast to this stand CMS patch levels: less than 35% were not
running the latest version. This probably reflects two interlocking mechanisms:
a penalty for not updating through higher probability of compromise, as CM-
Ses are known targets for attackers, and increasing support for auto-updating
mechanisms, partly in response to these attacks. The fact that lower layers of
the software stack such as webserver and SSH do not update as aggressively
suggests that the risk of compromise is lower. This might be due to older ver-
sions still being patched internally with critical security updates or to the fact
that vulnerabilities are harder to exploit remotely than in CMS software.

Figure 7.5: Percentage of domains per provider with patched software versions

Figure 7.5 shows the proportion of domains running older versions in each
provider. Providers are somewhat normally distributed when it comes to un-
patched CMS versions in their network. This is consistent with a natural update
cycle over many di�erent customers, each with slightly di�erent time lags. The
distribution of providers is more uniform for web servers, which again points
to changes in provisioning. We see a positive skew for admin panels, where a
significant portion of the providers have almost all installations on the latest
version. If we assume that both webserver and admin panel software is under
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the provider’s control, this di�erence is remarkable. It might reflect di�erent
incentives at work. Since updating incurs cost and can cause compatibility is-
sues, providers might avoid it in the absence of a pressing need. This leaves
only changes in provisioning to change the mix of software versions over time,
which means the mix of latest and older versions gradually shifts, consistent
with the flat distribution of webserver versions. For software that is attacked
more often, we would indeed expect a higher concentration of providers running
the patched version – which is indeed what we see for the admin panels.

7.5 Direct Relation Between Security Indicators and
Abuse

Our main goal in this chapter is to study the relationship between the security
indicators we collected and abuse, at the level of shared hosting providers, and
eventually understand the influence of provider security e�ort. This justifies
the choice of inductive statistical techniques which promise coe�cient estimates
that lend themselves to meaningful interpretation, as opposed to machine learn-
ing, which maximizes predictive power with non-linear methods. Statistical
techniques produce exact (up to the arithmetic precision) solutions as well as
indicators of confidence, e. g. in the form of significance tests. They can be cal-
culated as a by-product of the estimation, therefore relaxing data requirements
compared to heuristic cross-validation typical for machine learning.

Nevertheless, our task is complicated by the fact that each provider hosts
a varying number of sites of varying functionality, complexity, exposure, and
customer (i.e., webmaster) expertise. The security outcome for each site is a
result of joint e�orts of provider and webmaster as well as attacker behavior.
On the provider level, it is the result of joint e�orts of many parties. Therefore,
it is convenient and compatible with our statistical approach to model attacker
behavior as a random process, which generates counts of incidents observable
in our data source.

To explain our method, we contrast it to a naive statistical approach that
models the indicators as direct drivers of abuse rates. An example is displayed
in Table 7.2. It reports three specifications of a count-data regression model
in columns. The units of analysis are providers and the dependent variable
is the number of phishing incidents in the provider’s shared hosting domains.
Model (1) is the baseline, including the two size indicators (cf. Section 7.2).
Its Pseudo-R2 value of 0.68 highlights the importance of size control in this
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heterogeneous dataset. Model (2) tries to explain abuse with one technical
indicator (of insecurity), namely the number of domains with unpatched CMS.
The e�ect is statistically significant, and in the expected direction: the positive
sign of the coe�cient means that more domains (log scaled) with outdated CMS
coincide with more abuse. However, the more comprehensive Model (3) paints
a di�erent picture. The apparent cause of abuse is not the fact that the CMS
is unpatched, but the presence of a CMS in the first place. Model (2) missed to
control for the fact that websites di�er in complexity and thus risk. As a result,
it detected a spurious e�ect in the “unpatched” indicator.

Table 7.2: Quasi-Poisson GLM with Log Link Function

Dependent variable:
Count of phishing domains

(1) (2) (3)
Number of hosted domains 1.467úúú 1.539úúú 1.678úúú

(0.083) (0.085) (0.078)

Number of IPs hosting domains 0.690úúú 0.672úúú 0.472úúú

(0.100) (0.100) (0.085)

Number of domains with oudated CMS 0.010úúú ≠0.023úúú

(0.002) (0.005)

Number of domains with CMS without version info ≠0.019úúú

(0.004)

Number of domains with CMS 0.015úúú

(0.001)

Constant ≠5.596úúú ≠6.150úúú ≠6.743úúú

(0.274) (0.314) (0.322)

Observations 1,259 1,259 1,259
Dispersion 90 89 68
Pseudo R2 0.68 0.71 0.78

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

These findings confirm previous work at the level of domain names [222].
The authors have concluded that i) running popular CMS platforms (Word-
Press and Joomla) and ii) running up-to-date versions of WordPress increases
the odds of a domain in getting compromised. Table 7.2 reflects that we find
similar relationships on the provider level. In addition, we identify a statisti-
cally significant e�ect of hardening e�orts put in place by defenders in hiding
the version string.

But does hiding version information really prevent abuse? While plausible
in principle, this conclusion is too early and su�ers from two issues. The first
one is known as ecological fallacy: a relationship at the level of providers might
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not hold at the level of domains, i.e., the abuse may not happen at the sites
where the security indicator was observed. This fallacy tells us not to interpret
aggregate-level analyses as individual causal relationships. As we mainly aim
to study the discretion and responsibility of providers, site-level e�ects need to
be isolated, but not necessarily attributed to individual causal relationships.
The second issue concerns unobserved third variables. There is a plethora of
web vulnerabilities and corresponding attack vectors. Any attempt to measure
them comprehensively with security indicators is futile, because each indicator
may su�er from the issues demonstrated in Table 7.2.

As a way out of this dead end, we first adopt a statistical approach common
in psychometrics, where dealing with unobserved constructs has a long tradition.
With this lens, hiding the version information should not be interpreted as a
direct cause of less compromise, but as an indicator of security e�ort, a latent
variable indirectly measured by many correlated indicators. The convention to
use many indicators reduces the measurement error in each of them. Moreover,
latent variables are implicitly defined by the composition of their indicators. The
main advantage of using security e�ort as a latent variable is that we do not need
to fully understand the causal relationship of attack and defense mechanisms
throughout the global shared hosting space. Instead, it is su�cient to assume
that if someone makes above-average e�ort to, e.g., hide version information,
he also takes other steps against attacks, which are not directly captured with
indicators. This way, our results become more generalizable and robust at the
same time.

In the following, we will infer from data not only one, but several latent
variables measuring the security e�ort of di�erent parties. This allows us to
disentangle the joint responsibility using empirical data, without the need to a
priori assume and impose a responsible party for each security indicator.

7.6 Security E�ort as a Latent Variable

As argued above, constructing latent factors from the security indicators we col-
lected is superior in terms of measuring security e�ort than using the indicators
on their own. This approach also allows us to better empirically disentangle
provider vs. webmaster influence over these features.

Given the restricted administrative rights in a shared hosting environment,
among the features we collected, we assume that features such as HttpOnly
cookie can be modified by webmasters as well as providers, whereas other
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features such as HTTP web server, are more likely to be modified only by the
provider itself.

However, this statement is speculative and is not necessarily an accurate re-
flection of the reality for the following reasons: First, as earlier work also points
out, the hosting market is very heterogeneous, meaning that even shared host-
ing services can be o�ered in di�erent variations [142]. This essentially means
that di�erent providers give di�erent administrative rights to their customers
(i.e., webmasters). Second, even if in principle, shared hosting providers leave
certain options open to be modified by webmasters, due to the power of default
settings, several customers never change those options, even if they can. Our
manual analysis shows that even if providers do not directly set up a security
feature, they can still trigger security measures via “recommended settings” or
regularly nudging their customers towards a more secure environment. The
same could hold for software vendors: we have noticed that for instance, from
the latest version onwards, cPanel admin panel removed the server type and
version parameter from its default server header. Third, there is an interaction
between some of the features discussed in the Section 7.3 and content and other
applications running alongside a domain, which might require the webmaster to
setup certain features such as Secure cookie or HttpOnly cookie.

To better capture the role of shared hosting providers in securing their do-
mains while accounting for such interactions, we suggest a di�erent methodology
than directly using the features that we have collected. We examine the role of
shared hosting providers, by empirically and systematically deducing groups of
provider features that correlate strongly together yet vary considerably between
providers. The results of such an approach would then be an empirical recovery
of the e�ects that are throughout the market more dominant, in the realm of
shared hosting providers and are either due to the fact that webmasters have
no choice or due to default e�ects, either of which matters significantly.

We do this in two steps: we first use exploratory factor analysis to define
latent variables or factors. Empirically inducing factors from data confirms (or
denies) whether the hypothesized division of responsibility is actually present in
the population. We then quantify to what extent each factor is under the control
of shared hosting providers or their customers. Note that we purposefully do
not use abuse data in this section in order to avoid circular arguments.

7.6.1 Exploratory factor analysis

Factor analysis uses the correlation matrix of all studied variables and re-
duces its dimensionality by “looking for variables that correlate highly with
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a group of other variables, but correlate very badly with variables outside of
that group” [230]. The variables with high inter-correlations then shape a fac-
tor. For the factor analysis, we use the security and software features discussed
in Section 7.3. Among all our features, the security features are boolean vari-
ables with 1 pointing to the direction of the variable. The software features are
ordinal from least to most secure with the following order: 0 unpatched versions,
1 patched versions, 2 no software. Note that in order to simplify the input data,
from this section onwards, we consider software with ‘no version information’
as ‘patched’ software with the latest packaged version. Since our variables are
a mix of binary and ordinal, we use Polychoric factor analysis appropriate for
ordinal scales.

The input of the factor analysis is an n ◊ p data matrix with n being the
number of measurements (in this case our domains) and p being the number of
variables (in this case our features) [231]. The factor analysis generates a set of
factors, their corresponding factor loadings and factor scores. Factor loadings
express the relationship (correlation) of each original variable with each factor.
Factor scores are the estimated values of the factors per measurement (domain).
We use parallel analysis for selecting the number of factors, which turns out to
be 4. After applying Varimax factor rotation, we obtain the factor loadings in
Table 7.3. Each row of the table corresponds to a variable, MR1 to MR4 are
the factors, and each number indicates the loading of a variable per factor. The
highest loading per variable is shown in bold. Stevens et al. suggest a cut-o�
point of 0.4 for factor loadings [232].

The results in Table 7.3 indicate all of the 15 features have a medium to
high correlation with corresponding factors and hence play a significant role
in shaping the factors. Factors MR1 to MR4 each explain a part of the total
variance. The cumulative variance explained in Table 7.3 shows that the four
factors together are able to explain 62% of the variance observed in all the 15
features. This further confirms our earlier call for having four factors, as the
majority of variance is captured by them.

From the results it is clear that these four factors (latent variables) capture
di�erent aspects of web security. In other words, the factor analysis not only
reduces the complexity of our data, but also control for unobserved third vari-
ables, as most of the the collected security features do not directly cause abuse.
In the following sections we further use these factors to (a) study the respective
role of providers and webmasters and (b) assess their impact on abuse.
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Table 7.3: Output of factor analysis

MR1 MR2 MR3 MR4
X-Content-Type-Options 0.87 0.11 0.14 -0.01
Content-Security-Policy 0.80 0.23 -0.01 0.37
X-Frame-Options 0.83 0.09 0.10 -0.16
HTTP Strict-Transport-Security 0.61 0.50 0.04 0.03
Mixed-content inclusions 0.26 0.76 -0.01 -0.24
Weak browser XSS protection -0.39 0.68 0.24 0.29
SSL-stripping vulnerable form 0.08 0.60 -0.05 -0.38
HttpOnly cookie 0.13 0.65 0.14 0.12
Secure cookie 0.36 0.86 0.03 0.11
Patched HTTP* 0.09 0.05 0.74 -0.11
Secure SSL implementation* -0.15 -0.09 0.74 -0.10
Patched SSH* -0.07 0.04 0.42 0.35
Patched PHP* 0.09 -0.12 0.13 0.55
Patched CMS* -0.14 0.01 -0.23 0.78
Patched Admin panel* 0.08 0.08 0.10 0.58
Loadings’ sum of squares 2.90 2.92 1.48 1.90
Proportion of variance explained 0.19 0.19 0.10 0.13
Cumulative variance explained 0.19 0.39 0.49 0.62
* Scale from least to most secure: 0 unpatched, 1 patched or no version,

2 no software

7.6.2 Role of providers in securing domains

The combination of the features per factor and their relative loadings (i.e. how
much they correlate with di�erent factors) in Table 7.3 suggest that each of
the factors capture a di�erent set of web security e�orts. MR1 consist of fea-
tures that are partially capturing content security practices. Features in the
MR2 factor seem to capture more webmaster security practices. Given the
high loadings on variables such as unpatched HTTP server and insecure SSL
implementation, MR3 clearly captures more infrastructure security practices
whereas MR4 seems to capture web application security practices. In other
words, the factor analysis shows that features which one might assume to be
related, such as CMS and admin panel, do indeed covary with each other in
practice, as they correlate with the same underlying factor.

This leads us to the following hypothesis: we expect MR1 and MR2 to be
be less a�ected by providers’ security e�orts than MR3 and MR4. We examine
the relation between the factors and the e�ort of providers by constructing four
linear models.

To construct these models, we first calculate the factor scores (the estimated
values of the factors) from the factor analysis, in a way that a score is assigned
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Table 7.4: Linear Regression Model

Response Variable: Security Factor(s)
MR1 MR2 MR3 MR4
(1) (2) (3) (4)

Hosting provider fixed e�ect yes yes yes yes

Constant ≠0.250úúú ≠0.300úúú 0.100ú 0.420úúú

(0.064) (0.066) (0.043) (0.051)

Observations 442,075 442,075 442,075 442,075
R2 0.077 0.066 0.270 0.200
Adjusted R2 0.075 0.064 0.270 0.200
Residual Std. Error (df = 440801) 1.400 1.400 0.920 1.100

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

to each data point (domain). We then construct a linear regression model
per factor, with the factor score as the dependent variable and provider fixed
e�ects as the independent variable. The provider fixed e�ect consists of fitting
a separate dummy variable as a predictor for each of the hosting providers in
our sample. We are interested to see how much of the variance in each of the
factors (dependent variables) can be explained by provider e�orts, as opposed
to individual webmaster e�orts. The relative di�erence between the amount
of variance explained by each model indicates the extent that shared hosting
providers influence the security indicators associated with these factors.

Table 7.4 shows the four models and their R2 and adjusted R2 values.
To simplify presentation, we omit the estimated coe�cient for each hosting
provider. The findings confirm our hypothesis: hosting provider fixed e�ects
explain at least three times more variance in MR3 and partially in MR4 than
MR2 and MR1. MR1 and MR2, as we earlier hypothesized, with the lowest
amount of explained variance, seem to be more a compound of webmaster level
e�orts rather than provider level influence. Disregarding the e�ect of measure-
ment noise, one should note that the R2 value cannot be expected to be close
to 1 in MR3 and MR4, because there are di�erences between hosting packages
o�ered by di�erent providers. Similarly, MR1 and MR2 are above zero because
customers with specific requirements self-select their provider.

Using the regression results, we are able to empirically confirm our assump-
tions regarding the role of hosting providers in influencing each of the latent
factors constructed using factor analysis. In the following section, we use these
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results to examine which of the factors have a higher impact on abuse prevalence
and which party, provider or webmaster, can influence it more.

7.7 Impact of Security E�orts on Abuse
Having empirically determined the relationship between provider and website
security by constructing latent factors, we now compare the incidence of abuse
at providers to the factors. The objective is to test the extent to which the
actions of hosting companies and individual webmasters influence the prevalence
of abuse, using malware and phishing sites as case studies.

We define our dependent variable Yi as the number of blacklisted domains
in our abuse datasets for i = 1, . . . , n, with n being the total number of host-
ing providers, where Yi follows a Quasi-Poisson distribution10. We construct
separate regression models for phishing and malware.

The regression results for phishing and malware abuse are shown in Ta-
bles 7.5 and 7.6, respectively. In order to be able to observe the e�ect of all
variables on abuse, we construct one model per variable (models 3-6), together
with a final model that includes all variables (model 7). We report the dis-
persion parameter for each of the models. Note that the Quasi-Poisson models
are estimated using a Quasi Maximum Likelihood and are adjusted via the re-
ported estimated dispersion peremeter. Therefore, the Log Likelihood values
are reported from the original Poisson fitted models, as recommended in prac-
tice [233].

Moreover, since previous research already established the strong relationship
between provider size and abuse prevalence [159, 38], we use model 2 with only
size variables as our base model, and study the extent to which our four factors
further explain the variance in abuse, on top of the R2=0.71 of model (2). Hence,
in addition to the normal pseudo R2 value used as a goodness of fit measure
for the Quasi-Poisson models [149], we report the pseudo R2 value with respect
to model (2) for each table.

We include both phishing and malware data because while we see some
similarities in how abuse type relates to the security characteristics, we also an-
ticipate that there will be di�erences. Given the specialization in cybercriminal
activity, the actors themselves and their preferred methods of compromise are
likely di�erent, as is the e�ectiveness of di�erent security e�orts on the side of
defenders [38].

10We choose Quasi-Poisson over Poisson due to the over-dispersion (unequal mean and
variance) in our data.
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Table 7.5: Generalized Linear Regression Model (GLM) for count of phishing
domains observed per provider

Response Variable: Count of phishing domains
Quasi-Poisson with Log Link Function

(1) (2) (3) (4) (5) (6) (7)
# domains on shared hosting 1.500úúú 1.400úúú 1.400úúú 1.500úúú 1.800úúú 1.800úúú

(0.083) (0.081) (0.093) (0.082) (0.080) (0.110)

# IPs on shared hosting 0.690úúú 0.780úúú 0.750úúú 0.700úúú 0.620úúú 0.660úúú

(0.100) (0.100) (0.110) (0.100) (0.086) (0.120)

MR1 ≠0.570úúú ≠0.570ú

Content security (0.140) (0.240)

MR2 ≠1.100úúú ≠1.100úú

Webmaster security (0.270) (0.390)

MR3 ≠0.360úú 0.170
Web infrastructure security (0.110) (0.150)

MR4 ≠1.100úúú ≠1.200úúú

Web application security (0.110) (0.160)

Constant 3.300úúú ≠5.600úúú ≠5.700úúú ≠5.500úúú ≠5.600úúú ≠7.100úúú ≠7.100úúú

(0.250) (0.270) (0.270) (0.300) (0.270) (0.320) (0.440)

Observations 1,259 1,259 1,259 1,259 1,259 1,259 1,259
Log Likelihood -99,401 -30,094 -29,152 -28,160 -29,516 -26,173 -24,637
Dispersion 2103 90 88 112 91 75 129
Pseudo R2 - 0.71 0.72 0.73 0.71 0.75 0.76
Pseudo R2 with regards to model 2 - - 0.032 0.066 0.015 0.14 0.19

Note: úp<0.05; úúp<0.01; úúúp<0.001

For phishing, three out of four factors are statistically significant when in-
cluded together in model (7). Webmaster security (MR2) and web application
security (MR4) play a statistically significant role in reducing phishing abuse:
for each one unit increase in each of these factors, keeping all other factors
constant, phishing abuse drops by e1.100 = 3 and e1.200 = 3.32, respectively.

The most prevalent individual indicator that makes up MR2 is the presence
of an HTTPOnly cookie, which is a standard XSS defense. To reiterate, we in-
terpret these features as indicators of latent factors measuring security e�ort
(see Section 7.5). For example, the results suggest that when individual web-
masters harden the cookie properties of their websites, this is an indication that
they also take other (unobservable) measures to inhibit abuse. The results form
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Table 7.6: Generalized Linear Regression Model (GLM) for count of malware
domains observed per provider

Response Variable: Count of malware domains
Quasi-Poisson with Log Link Function

(1) (2) (3) (4) (5) (6) (7)
# IPs on shared hosting 1.600úúú 1.600úúú 1.600úúú 1.600úúú 1.600úúú 1.400úúú

(0.090) (0.090) (0.087) (0.089) (0.098) (0.095)

# domains on shared hosting 0.460úúú 0.560úúú 0.520úúú 0.470úúú 0.480úúú 0.600úúú

(0.110) (0.110) (0.110) (0.110) (0.110) (0.110)

MR1 ≠0.700úúú ≠0.310
Content security (0.170) (0.190)

MR2 ≠1.300úúú ≠1.300úúú

Webmaster security measures (0.290) (0.300)

MR3 ≠0.380úú ≠0.130
Web infrastructure security (0.130) (0.130)

MR4 -0.170 -0.360ú

Web application security (0.140) (0.140)

Constant 4.300úúú ≠4.800úúú ≠4.900úúú ≠4.600úúú ≠4.700úúú ≠4.600úúú ≠4.300úúú

(0.240) (0.310) (0.310) (0.290) (0.300) (0.330) (0.300)

Observations 1,259 1,259 1,259 1,259 1,259 1,259 1,259
Log Likelihood -273,893 -79,646 -75,986 -73,496 -78,181 -79,392 -71,461
Dispersion 5800 330 334 298 332 320 288
Pseudo R2 - 0.71 0.73 0.74 0.72 0.71 0.74
Pseudo R2 with regards to model2 - - 0.044 0.077 0.017 0.001 0.098

Note: úp<0.05; úúp<0.01; úúúp<0.001
Standard errors in brackets

MR4 indicates that running up to date versions of CMS and admin panel, or
hiding the version information, or running no software, is negatively associated
with compromise. We suspect this is due to the fact that certain providers ad-
minister CMSes themselves, to make themselves and their customers less prone
to compromise, given the vulnerabilities imposed by CMSes and admin pan-
els [229, 234]. It also shows that these are the areas that providers’ e�ort can
be very e�ective.

For malware, only MR2 (webmaster security) and MR4 (Web application
security) are significant in model (7). From the two, webmaster security (MR2)
explains most variance in the malware abuse, both when modeled alone (model
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(4)), and when modeled with other factors (model (7)). Again, given that
HTTPOnly cookie and Secure cookie dominantly shape webmaster security factor
(MR2), their significant relation with reducing malware abuse is therefore very
intuitive. MR4 plays a less significant role in explaining malware abuse. We
suspect this is due to the di�erences in the nature of phishing and malware
attacks, attack techniques, and exploited resources.

Moreover, MR1 (Content security) and MR3 (Web infrastructure security)
show a statistical significant relation with malware and phishing abuse only
when considered alone (model (3) and (5), respectively). By inspecting regres-
sions including other combinations of factors (not included for space consider-
ations), it appears that MR1 is the more robust indicator than MR3 for the
malware regression.

Overall, the combined model explains 19% of the variance for phishing preva-
lence and 10% for malware prevalence among provid-
ers, beyond the baseline of 71% explained variance, showing that both webmas-
ter and provider e�orts influence abuse prevalence. The influence of these e�orts
on abuse rates, for disparate types of abuse (in our case web-based malware and
phishing), is consistent in direction and somewhat varying in magnitude. Fi-
nally, we note that while we have explained some of the variation in abuse
prevalence among shared hosting providers, much remains unexplained. This
should in turn motivate the collection of additional discriminating features in
follow-up studies.

Figure 7.6 uses the model to demonstrate how the factors influence abuse
prevalence. Figure 7.6 (a) plots the expected number of phishing incidents as a
function of provider size while varying the value of MR1 (content security) and
holding other factors at their median value. Note that we plotted one figure
for each of the factors that showed a significant relation with phishing abuse in
model (7) of table 7.5. We can see that the bottom 10% of providers (with the
least e�ort as measured by MR1) should experience less than one and half as
many phishing attacks as the top 10%. In the case of MR2 (webmaster security),
the bottom 10% of providers experience more than twice as many phishing at-
tacks as the top 10%. For MR4 (web-application security), the di�erence is even
more pronounced: the best-performing 10% providers by this measure should
experience more than 4 times less phishing than the bottom 10% of providers.
These findings provide reliable empirical evidence regarding the security benefits
of providers adopting industry best practices, most notably proactive patching
practices. Given that patching is costly, such evidence is critical to move the
industry in the right direction.
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Figure 7.6: Plot of expected phishing abuse counts against shared domain size for
MR1, MR2 and MR4 (from model (7) of Table 7.5)

7.8 Limitations
As with all large-scale studies of real-world applications and implementations,
we should reflect on the potential impact of measurement errors and other lim-
itations. Potential errors in our measurements are caused by the fact that we
scan only for the main software packages across the web stack. Also, the col-
lected data can be misinterpreted. One Dutch provider, for example, rolls out
its own back-ported security patches for CMSes, without updating the version
number. Another limitation stems from the use of a rather crude metric for
patching (patched/unpatched). An alternative would be looking, for example,
at the distance in time between the installed version and the patched versions.
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We captured information on 15 di�erent features, associated with security
and patching practices. Some of these features were very biased, mostly be-
cause of their extremely low prevalence. Ideally, we would include features with
more variance across the population. The features were not interpreted as di-
rect defenses against web compromise, but rather as latent factors that signals
e�ort. However, these feature might also reflect other latent factors in addi-
tion to security e�ort, such as website functionality, popularity, complexity and
exposure.

Finally, the reader should bear in mind that our study aggregates abuse at
the provider level, while features are collected on a separate sample of uncom-
promised domains in order to increase sample size. Future work could collect
features on compromised websites directly to establish stronger di�erentiation
between individual and provider e�orts.

7.9 Related Work
Because our work seeks to measure web security in shared hosting environments,
identify the role of the hosting providers and its impact on abuse, we build upon
several aspects of the literature.

Measuring vulnerabilities of websites and webservers: There are numerous
measurement studies aiming to detect web vulnerabilities across domains (e.g., [98,
67, 108, 235, 96, 97, 236, 26, 107, 227]). For example, Van Goethem et al.
assessed 22,000 websites and studied the severity of certain vulnerability and
security features [26]. SecuBat developed by Kals et al. automatically detects
XSS and SQL injection vulnerabilities [96]. Lekies et al. analyzed the 5,000
most popular domains and found that 9.6% of the examined websites carry at
least one DOM-based XSS problem [97]. Weichselbaum et al. detected domains
adopting CSP and studied how e�ective the policies were in protecting against
XSS attacks [107]. Calzavara et al. also studied CSP adoption via a large scale
measurement study and concluded that in addition to limited deployment, ex-
isting policies are frequently misconfigured [227]. Van Acker et al. performed a
systematic examination of login-page security and found that many login pages
are vulnerable to leaking passwords to third parties and to eavesdropping at-
tacks. They also observed that a few login pages deploy advanced security
measures [98]. Lastly, Aviram et al. introduced two di�erent attack techniques
against SSLv2 and concluded that SSLv2 weaknesses are a significant threat
against SSL ecosystem [67].
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Threats against shared hosting: In addition to general domain vulnerabilities,
there are certain threats specific to domains hosted on a shared server. In shared
hosting, a physical server is shared among multiple clients, ranging from a few
to over a thousand. Customers are allocated a fraction of a machine’s overall re-
sources and given limited user privileges. Server-side software must be managed
by the provider. Canali et al. examined security performance of a small group
of shared hosting providers and concluded that the majority were unable to de-
tect even basic attacks on their infrastructure [10]. The Anti-Phishing Working
Group reported that some attackers would compromise shared hosting servers
and load phishing pages on each of the hosted websites [122]. Tajalizadehkhoob
et al. investigated the security performance of di�erent hosting provider types in
terms of phishing abuse take-down times and concluded that phishing domains
in shared hosting providers often last longer than other group of providers [142].
The potential for compromise on a shared environment abuse was first pointed
out by Nikiforakis et al. [39] and Mirheidari et al. [31], who noted that the lack
of enforced session isolation leaves shared web hosts open to mass compromise.
Perhaps reflecting this strategy, Vasek et al. found that phishing websites were
disproportionately likely to be hosted in a shared environment [222].

Relationship between vulnerabilities and abuse: A few studies empirically in-
vestigated the relationship between the vulnerabilities of a domain and the like-
lihood of being compromised. Vasek and Moore found that Apache and nginx
server software and popular CMS platforms, most notably WordPress, Joomla!
and Drupal, are positive risk factors for webserver compromise [222]. In fact, a
key counterintuitive finding was that fully patched installations have a higher
likelihood of compromise than unpatched ones. Soska and Christin developed
an approach that predicts whether websites will be compromised in the near
future. The prediction is done via a classifier that is trained on features that
are extracted from a set of both malicious and benign websites. They found
CMS type and version to be predictive features, suggesting that many websites
could be compromised through a vulnerability in their CMS [43].

Role of intermediary in dealing with abuse: A number of studies focused on
di�erent types of intervention done by intermediaries (e.g., [135, 129, 237, 10,
238, 134, 239, 218, 240, 241]). Moore and Clayton, for example, examined
the e�ectiveness of phishing websites take-down by web hosting providers and
concluded that website removal is not yet fast enough to completely mitigate
the phishing problem [129]. Stock et al. performed a large-scale notification
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campaign of website owners using a set of over 44,000 vulnerable websites and
concluded that there are no reliable notification channels that would significantly
inhibited the success of notifications [239]. Li et al. examined the life cycle
of 760,935 hijacking incidents identified by Google Safe Browsing and Search
Quality, and found that direct communication with webmasters increased the
cleanup rate by 51%. They concluded that in order to decrease the number
of security incidents, one could increase the webmaster coverage of notification
while also equipping hosting providers with tools alerting webmasters to update
software [217].

We build on the existing work in several ways. First, we extend the mea-
surement approach developed by Van Goethem et al. [26] to collect a broader
set of features. Next, we move the level of analysis from individual domains to
providers. In areas beyond shared hosting, researchers have repeatedly found
that the intermediaries can play a key role in improving security [6, 237, 242,
243, 244, 159, 245].

In chapter 4 of this dissertation, we studied the di�erent factors at work in
the abuse data generation process of hosting providers. We identified structural
properties and security e�orts of hosting providers, behavior of attackers, and
measurement errors, as factors that can influence concentrations of abuse. Fur-
ther, we showed that the structural properties of hosting providers alone – such
as di�erent size, price, and business model variables – can explain more than
84% of the variance in abuse concentration of hosting providers [159]. Noroozian
et al. investigated the closely related question of how provider security prac-
tices impact abuse concentration and whether the outcome of provider security
practices can be indirectly inferred (as a latent variable) from multiple sources
of abuse data employing Item-Response Theory [38]. Their results quantified
the impact of security practices (without knowledge of what those practices
may be), demonstrating predictive and explanatory power. Finally, Sarabi et
al. studied the implications of end-user behavior in applying patches. They
observed that although both end-users’ patching speed and vendors’ facilitating
policies help in improving the overall security posture of a host, they were also
overshadowed by other factors, such as frequency of vulnerability disclosures
and the vendors’ speed in deploying patches [246].

In our study, the hosting company’s role is critical, since many domain own-
ers will not be willing or able to adequately secure their site. Our data collection
is not based on a random sample from all domains, but on a sampling strat-
egy that covers all shared hosting providers. We present a new approach to
disentangle the role of providers and customers in protecting domains. This
also allows us to extend the work on the relationship between vulnerability and
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compromise from the level of individual webmasters to that of providers. Last,
but not least, we provide the first estimate of the potential gains of such e�orts
for lowering compromise levels.

7.10 Conclusions and Discussions
We have undertaken an extensive study of web security e�orts. The purpose
of this work is (i) to study the state and landscape of security hygiene at the
level of domains and shared hosting providers, (ii) to disentangle the defensive
e�orts of providers and their customers, and (iii) to assess their impact on web
compromise.

Our descriptive findings regarding the web-security landscape show that
most domain security features occur sparsely across the domain and provider
space. Even here, though, we see the potential influence of providers. A
tiny fraction of providers has very high adoption rates of certain features like
Content-Security-Policy and HttpOnly cookie. They appear to o�er more
managed forms of shared hosting, which might enable them to exert more con-
trol over feature configurations of their customers.

Regarding software patching, higher levels of the web stack such as CMS
and admin panels are updated more than infrastructure software like SSH and
PHP. This might reflect the fact that CMSes and admin panel are attacked
more aggressively. Interestingly, even though infrastructure software is typically
under the control of the provider, we see a lot of heterogeneity of versions within
the same provider. We suspect this is due to changes in provisioning processes
over time. Since patching is costly, earlier default configurations might not get
updated unless there is an urgent need.

The individual features should not be interpreted as being directly causing
web compromise, for reasons that we laid out in Section 7.5. It is more valid
and informative to interpret them as indicators of a latent factor that is the
actual causal driver, namely security e�ort. Using exploratory factor analysis,
we uncovered four such latent factors: content security practices, webmaster
security practices, web application security practices and infrastructure security
practices. The fixed-e�ect regression analysis uncovered that providers have
control over infrastructure and application security, as we expected. Regarding
CMSes specifically, however, the influence of providers is more surprising. This
software can run client-side, but still providers influence patch levels. This might
mean that a subset of providers administer these installations themselves, or
that they found ways of getting their customers to patch in a timely fashion.



7.10 Conclusions and Discussions 169

Finally, we model the impact of the four security factors on the compro-
mise rate of providers, as observed in phishing and malware incidents, using
Quasi-Poisson GLM regression. Taken together, the results suggest that both
webmaster and provider e�orts influence abuse prevalence. While provider se-
curity e�orts play a more significant role in fighting phishing abuse, webmasters
are also e�ective in reducing abuse rates. Most of the four factors play a statisti-
cally significant role in reducing abuse, either when modeled alone or with other
factors. More specifically, the factor that captures web-master security e�orts
such as Secure and HTTPOnly cookies, shows a negative relation with both mal-
ware and phishing abuse, highlighting the e�ectiveness of webmasters’ e�orts in
fighting abuse. The regression results have also shown that web-application se-
curity, a factor associated with provider e�orts, has a strong significant negative
relation with malware and phishing abuse. To illustrate the relative impact, we
show that the best-performing 10% of providers by this measure experience 4
times fewer phishing incidents than the bottom 10% providers.

In short, our study shows that providers have influence over patch levels–
even higher in the stack, where CMSes can run as client-side software–and that
this influence is tied to a substantial reduction in abuse levels. Our study has
provided the first rigorous evidence of the security benefits of provider e�orts
to increase patching levels. This is a critical finding for the dialogue, with
and within the industry community, about the merits, costs and benefits of the
proposed best practices–e.g., [9]. The takeaway for providers is that improving
patch levels pays o�. They can do this by administering themselves more of
the software installations across the web stack, by securely provisioning default
installations or by deploying some other mechanisms that enable them to get
their customers to collectively reach higher patch levels.

Beyond the area of shared hosting and web compromise, our study provides
a new methodological approach to disentangle the impact of di�erent actors on
security. This approach can be adopted to study other areas of joint responsi-
bility, such as between cloud hosting providers and tenants, or corporate system
administrators and end users.

Measuring e�ort in a heterogeneous environment with di�erent requirements
is hard. Future work could measure feature use before (or together with) se-
curity. Measuring security alone is vulnerable to spurious correlations and in-
ferences, when not controlling for the di�erences in website functionality, com-
plexity, exposure, et cetera. Another future direction is to make this approach
longitudinal, in order to tell apart which fraction of security e�ort is reactive
(i.e., reacting to compromise) and to better detect the direction of causality. In
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the end, we hope to provide better empirical support for industry best practices
focused on hosting providers.

7.11 Version Information Details

Table 7.7: The list of versions per software that are considered patched (patched =
latest packaged version in Ubuntu, Debian or CentOS)

Software Version considered patched
Apache [2.2.15 - 2.2.22 - 2.4.7 - 2.4.10 - 2.4.18 - 2.4.20 - 2.4.23]
SSH [5.3p1 - 5.9p1 - 6.0p1 - 6.6p1 - 6.6.1p1 - 6.7p1 - 7.1p2 - 7.2p2 - 7.3 - 7.3p1]
WordPress [4.7 - 4.6.1 - 4.5.4 - 4.4.5 - 4.3.6 4.2.10 - 4.1.13 - 4.0.13 3.9.14 - 3.8.16 - 3.7.16]
Joomla! [3.6.4]
Drupal [7.52 - 8.2.3]
cPanel [7.52]
DirectAdmin [1.50.1]
Virtualmin [1.820]
Plesk [12.5.30 - 17.0.16]
Microsoft IIS [12 - 10 - 9 - 8.5]
Nginx [1.2.1 - 1.4.6 - 1.10.0 - 1.10.1 - 1.10.3 - 1.11.5]
PHP [5.3.10 - 5.3.3 - 5.4.45 - 5.5.9 - 5.6.27 - 5.6.28 - 6.6.30 - 7.0.11 - 7.0.12 -7.0.13]



CHAPTER 8

Conclusions

This research sought to understand and improve the role of hosting providers
in cybersecurity provision. We presented five peer-reviewed empirical studies.
These explored the hosting space and the role hosting providers can play in
security provision, with the ultimate aim of identifying areas for intervention.
Together with the literature review (chapter 2), the five studies set out to an-
swer the following research question:

How can the security performance of hosting providers be measured and im-
proved?

8.1 Summary of the Empirical Findings
Each chapter answered part of the research question. The conceptual frame-
work presented in chapter 2 disentangled factors associated with abuse. That
framework then guided our review of the state of the art in hosting security and
helped us to pinpoint gaps in existing scientific work, which this dissertation
sought to fill.

We identified a variety of initiatives to improve the security of hosting ser-
vices. None, however, considered the most basic characteristics of the market,
such as how many providers there are, their distribution worldwide, and the
types of services they o�er. The lack of such information has hindered devel-
opment of reliable best practices and impeded performance evaluation in this
market. A practical solution, in this case, was to go back to the root of the
problem and study the context in which cybersecurity problems occur, namely,
the hosting market.

Chapter 3 developed an approach to uncover and grasp the complexity of
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the hosting market. The method we proposed for identifying hosting providers
was to map technical identifiers – IP addresses and domain names captured
in passive DNS data – to the economic agents behind the hosting services,
identified by organizational data in the WHOIS database. With this method,
we identified the organizations that are responsible for the security of hosting
services and actually can take action to improve it.

We also surveyed the hosting landscape, empirically identifying a diverse
set of business profiles. The landscape revealed was very heterogeneous. Some
providers owned only a single IP address, which they used to o�er shared hosting
services. In terms of global distribution, hosting providers were located in more
than 150 countries. Several hosting providers had infrastructure in multiple
countries.

Following the mapping in chapter 3 of the hosting space, chapter 4 devel-
oped an analytical and statistical method to infer information about hosting
providers’ security performance from noisy abuse data. Our analytical model
decomposed the di�erent sources of variance present in abuse data, such as de-
fender properties, attacker behavior, and measurement and attribution errors.
For defender properties (in this case regarding the hosting provider), we dis-
tinguished two main types: inherent structural properties, such as the size of
their customer base and infrastructure, and security e�orts, particularly reac-
tive and proactive measures taken by providers to secure their networks. With
these factors in mind, we sought to advance on previous methods for assessing
hosting providers’ security performance based on incident data. We developed
a new approach that draws on concentrations of abuse at hosting providers af-
ter controlling for other characteristics, such as hosting providers’ structural
properties.

To quantify the impact of providers’ structural properties on abuse con-
centrations, we empirically modeled the concentration of phishing domains in
the network of hosting providers. Our results showed that a handful of provider
structural properties – such as number of domain names, number of IP addresses
used for web hosting, and the size of their shared hosting business – accounted
for 84% of the variation in phishing abuse concentrations. These variables were
easily measurable on a large scale (for all of the 45,000 providers), and captured
providers’ exposure – sometimes called their ‘attack surface’. These factors are
associated with features of providers’ business models. In short, we found host-
ing providers with a large customer base and a larger shared hosting business
to be more exposed to phishing attacks.

We constructed additional models to measure the impact of factors that
were di�cult to observe on a large scale (that could not be assessed for all
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of the 45,000 providers). In short, we found that providers’ pricing strategy,
website popularity, time in business (years of experience), and use of applica-
tions known to be vulnerable played a significant role in abuse concentrations.
These explained an additional 77% of the remaining variance in phishing abuse.
The level of ICT development in the countries where phishing domains were
hosted was also a significant factor in abuse concentrations, after other di�er-
ences between countries were controlled for. In addition, as more than 85% of
the variance in phishing abuse was explained by providers’ structural properties,
our results suggest, though indirectly, that providers’ security e�orts have less
explanatory and predictive power than inherent properties and business model
when it comes to concentrations of phishing abuse. However, this relation re-
quires testing for di�erent types of abuse. Moreover, the impact of providers’
security e�orts on abuse concentrations merits quantification through direct
measurement.

Chapter 5 examined providers’ security performance. This was measured by
abuse concentrations, using an approach similar to that developed in chapter
4. We assumed that attack concentrations and attackers’ preferences would
vary according to the nature of the attack and the centrality of the abuse to
the attacker’s operation. For example, we suggested that from the attacker’s
perspective it is more critical when a command-and-control (C&C) domain –
a domain in charge of communicating commands to other infected machines
– is taken down than when, say, a phishing site is taken down. We therefore
expected attackers to prefer hosting their C&C infrastructure with providers
that are slow to take down C&C domains. More specifically, we expected a
relation between the concentration of C&C domains within providers and their
reactive security e�orts, measured by the uptime of C&C domains.

This was tested in the study presented in chapter 5. Here, we modeled the
distribution of C&C domains across providers. Four measures of provider size
and business model were found to explain some 71% of the variance in C&C
counts. Given that the amount of variance explained by provider structural
properties was 13% more for phishing data (84%), we conclude that the fre-
quency of C&C incidents is determined less by providers’ structural properties
than by their security e�orts, compared to phishing incidents. Further, concen-
tration of C&C domains was negatively related to a rule of law indicator for
the countries where the domains were hosted. Finally, the providers’ take-down
speed was only weakly related to C&C concentrations, explaining just an ad-
ditional 1% of the variance. Thus, attackers appear to show little preference
for providers that allow long-lived C&C domains. On a more general level,
these results suggest that providers’ structural properties, such as size and pric-
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ing strategy, play a much more economically and statistically significant role
in driving C&C concentrations, compared to any reactive security measures
providers take, such as the e�ort they put into taking down abused websites.

Chapter 6 shifted the focus from defender properties to attackers’ behavior
and strategies. Here, we confined our investigation to one case study: Zeus
malware, which is a leading family of malware used for attacking financial in-
stitutions. We looked only at the targets of Zeus attack in an e�ort to better
understand attackers’ behavior, regardless of the providers that hosted the vic-
timized domains.

We transformed four years of noisy data from Zeus configuration files into
structured data on attack targets and attackers’ instructions sent to the ma-
chines infected with Zeus malware. Our explanatory analysis produced several
findings. For example, the attacks were very concentrated. 90% of the attacks
were aimed at only 15% of the overall targets. Surprisingly, we observed that
this concentration was not driven by size of the target financial institution;
nor did size predict the intensity of attack. We also observed wide variation
in attack persistence. Some institutions were attacked very briefly, while oth-
ers underwent attacks during the entire observation period (216 weeks). We
speculate that the brief attacks were part of a trial-and-error process in which
attackers sought new targets. Strengthening this speculation, we discovered that
long-lived botnets had more trial-and-error attempts than short-lived ones.

Attackers, furthermore, copied one another’s target list. Code reuse and
code similarity rates were very high. One would expect code sharing or code
stealing to lead to low code development costs, low market entry barriers for
attackers and newbies, and ultimately to a rise in the number of attacks. The
data contradicts this conjecture, however. Although attackers tried new targets
over the whole observation period, there seemed to be a ceiling in the overall
number of targets attacked at any one time. Taken together, these results
suggest that what drove the Zeus attack volume was neither target-list-as-a-
service nor code-as-a-service. The determining factors likely lie elsewhere in the
criminal value chain, such as in the recruitment of money mules or the money
transferring policies of financial institutions, or in the cash-out segment of the
value chain.

Chapter 7 investigated providers’ proactive security e�orts and sought to
quantify their impact on abuse concentrations for the specific case of shared
hosting. Although hosting providers are a key actor in fighting website com-
promises, we found that their ability to prevent abuse is constrained by the
security practices of their own customers. In shared hosting, customers operate
under restricted privileges. Providers thus retain more control over system con-
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figurations. Our study constituted the first comprehensive empirical analysis of
proactive security practices of shared hosting providers. We examined 15 proxy
features, from which we distilled four major latent factors capturing security
e�orts: content security, webmaster security, web infrastructure security, and
web application security.

Providers and webmasters employed various soft techniques, such as hard-
ening the software discovery process and hiding version information, to make it
harder for criminals to exploit vulnerabilities in their applications. Our results
confirmed that providers exert significant influence over web infrastructure and
web application security related to the software stack in their hosting environ-
ment. We also observed that content and web application security played a
significant positive role in reducing website compromises, after controlling for
size. Our findings suggest that when a provider moves from the bottom 10%
to the best-performing 10% in the market in terms of web application security,
it experiences four times fewer phishing incidents. Thus, providers’ e�orts at
the software patching level – even for client-side software like content manage-
ment systems (CMS) – can eventually lead to a substantial reduction in web
compromises.

Taken together, the findings of these studies provide a deeper and more
detailed view of the hosting market overall and of the security performance of
hosting providers and the factors that influence it in particular. The section
below expands on the implications of these findings for practice.

8.2 Implications for Practice

The introduction of this dissertation pointed out the particular challenges faced
in governance of the hosting market, especially when it comes to improving
cybersecurity. The hosting market, after all, is globally distributed and en-
compasses a multitude of actors. Actors’ roles are intertwined and not clearly
distinguishable, and empirical knowledge about hosting providers is limited.
Furthermore, there are as yet no regulations in place specific to the hosting
market, and no governance mechanism has been fully e�ective in improving the
security of this market, given its known characteristics.

Negative externalities caused by insecurity in this market a�ect not only
hosting providers, but also end-users, software vendors, economies, and soci-
eties as a whole. Yet, achieving adequate and stable levels of hosting service
security requires e�orts by both providers and users of these services. It there-
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fore constitutes a collective action problem. Overcoming such a problem requires
collaboration between the di�erent actors involved.

Our research results provide a better understanding of how this market func-
tions, particularly in terms of investing in security and countering abuse. We
learned about the geographical distribution of providers, the types of services
on o�er, and particularly the security practices employed to reduce abuse. We
also came across a variety of ways in which the market seems to regulate itself.
Some providers appeared to have a market incentive to strive towards higher
security performance, but there were failures as well.

This section explores lessons for practice from the findings of this research.
We revisit the di�erent instruments associated with each of the four governance
modes introduced in chapter 1 [247]. The paragraphs below discuss implications
of our findings for using governance to tackle the collective problem of security
provision in the hosting market. Recall that governance here is defined as pro-
cesses and structures for coordination, steering, and decision-making among the
variety of actors involved.

8.2.1 The market

Our results confirmed that hosting providers can function as control points, and
therefore exert influence on the amount of abuse in their networks. However,
providers vary widely in their security performance, as indicated by the con-
centration of abuse in their networks. Some hosting providers can influence
the security of their services, and many of them do. They take measures that
eventually reduce the number of abuse incidents, perhaps leading to lower costs
for reactive security activities. However, there are still failures in this market.
It is thinkable that the market itself could stimulate these failures to do better.
But they may be more e�ectively swayed by other governance means, such as
network, community, or hierarchical approaches. Before looking at these, we
first discuss the implications of our results for the players in the hosting market.

We found that security outcomes in terms of concentrations of abuse in
the networks of hosting providers can be explained and predicted by two main
factors: providers’ inherent structural properties and providers’ reactive and
proactive security e�orts. By providers’ structural properties, we mean the
nature of providers’ business and their customer base. Our results confirmed
that these properties have a major impact on abuse concentrations and can
explain a large portion of variance in abuse concentrations. In our study, more
than 84% of the variance in phishing abuse was explained by the structural
properties of the providers. Providers with a very large customer base and those
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o�ering shared hosting as a service were by default more exposed to attacks than
providers with a smaller customer base and less vulnerable types of business.
Providers’ reactive and proactive security e�orts refer to the measures providers’
take to secure their services. In our study, some 12% of the variance in abuse
was explained by providers’ security e�orts.

The implication is clear: hosting providers need to be cognizant of the struc-
tural properties of their services that expose them more to cyberabuse, while
investing in reactive and proactive security e�orts. Practically speaking, a host-
ing provider might adjust the services it o�ers in order to reduce its vulnerability
to abuse. For instance, providers that o�er shared hosting services could inter-
nalize all security decisions regarding client-side applications, to retain better
control over patching levels. Or, limits could be placed on the applications that
clients may install.

Moreover, our results suggest that consideration of a provider’s inherent
structural properties and the services it o�ers can render even reactive and
proactive security measures more e�ective. For instance, a shared hosting
provider that, as typical, has rather low margins, and hence invests little in
security, could utilize a�ordable means to keep its services secure. An exam-
ple is nudging customers via notifications concerning regular software updates.
Such a provider could also use default settings to impose certain measures on
their customers, such as flags and headers, to improve the security performance
of a website regardless of its content. That said, in practice numerous providers
still do not take even these simple steps.

We shared some of our results in brief with a few Dutch hosting providers.
Some of these turned out to be quite uninformed regarding the amount of crim-
inal abuse in their own networks. One way the market can regulate itself is by
making blacklist data readily available to the hosting providers, so that they can
monitor how often resources in their network are reported. Once the providers
have such a monitoring system in place, they can adjust their abuse handling
given the types of abuse noted. Our analysis found that hosting providers’
structural properties or exposure had greatest e�ect regarding phishing abuse
compared to C&C abuse.

Reactive security measures taken by hosting providers, such as the take-
down time of abused domains (in our case domains used to host C&C), seemed
to play a less significant role in reducing abuse than proactive measures taken
by providers, such as patching. With this in mind, our results suggest that
providers would su�er much less abuse in their networks if they invested time
and e�ort in proactive measures, such as patching server-side and client-side
applications and setting up domain level security mechanisms such as CSP or
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HTTPOnly cookie policy. Motivating hosting providers to adopt such mechanisms
remains the biggest challenge. This aspect can be further addressed through the
use of hierarchy.

8.2.2 Hierarchy

The classic hierarchical governance mechanism is the tightening of state regimes.
State-specific instruments can play a crucial role in giving hosting providers
incentive to act. Yet, we identified some 45,000 hosting providers operating in
more than 150 states worldwide. Regulating the entire population of hosting
providers, some with infrastructure in multiple countries with di�erent policies,
would therefore be very onerous indeed. Instead, state interventions could focus
on incentivizing a targeted subset of providers to act to improve security. These
need not be formal regulations; rather, they could take the form of stimulation
mechanisms. Below are a few examples:

(i) Enforcing criminal law. Criminal law enforcement could actively pursue
the crime facilitating segment of the hosting market. Our research distinguished
between ‘best performers’ and ‘worst performers’ in terms of both the abuse con-
centrations in their networks and their proactive and reactive security measures.
The police could use the special instruments they have to punish or take down
providers within the worst performing group, found to consistently facilitate
criminal activities, wittingly or unwittingly.

(ii) Rewarding. Fiscal measures or financial awards, such as tax cuts and
subsidies, could create economic incentives for providers willing to implement
the required security measures. Subsidies could be o�ered for proactive security
measures or for reactive measures, such as abuse handling units (e.g., abuse.io).
Similarly, tax cuts could be granted to providers willing to put certain security
measures in place, such as contributing data to abuse.io, or complying with
particular security recommendations. The current study’s results provide a
starting point for such measures.

(iii) Information transparency. Law enforcement and administrative regula-
tors could use information as an instrument to motivate hosting providers to
increase their network hygiene. By promoting transparency regarding the actual
security levels in the networks of hosting providers, governments can stimulate
improved security levels while raising awareness of the need to reduce the overall
harm that insecurity inflicts on society. This could be done, for example, by uti-
lizing performance metrics or by developing websites containing price/security
comparisons of providers. The methodologies presented in this thesis provide a
starting point for generating such measures.
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(iv)Hybrid. National law enforcement could adopt the so-called thro�r ap-
proach. This is when a unilateral threat is made in parallel with an o�er to
negotiate [248]. For example, the police might threaten the worst performing
providers with legal action, while at the same time o�ering them an oppor-
tunity to use a third-party research center to monitor abuse concentrations in
their networks. One such center is AbuseHub of the Dutch Abuse Information
Exchange. Law enforcement could instigate a flying start in cybersecurity solely
by announcing to all hosting providers that it will be employing a third party to
measure providers’ performance based on abuse and identify providers that fa-
cilitate cybercrime, wittingly or unwittingly. This would give hosting providers
a concrete reason to improve their security practices and start collaborating
with the regulator.

8.2.3 Network

Network governance is based on interdependence and repeated interactions
among network members such as public-private partnerships, or unilateral ac-
tions in the absence of an overarching authority [22, 249]. Yet, it would be very
challenging to maintain the trust needed for reciprocal interactions across the
huge network of hosting providers scattered around the globe.

Our results suggest that the majority of abuse is concentrated in a minority
of providers. Therefore, measures that require collaboration and unilateral ac-
tion targeting the hosting market could focus on strategic subsets of providers.
These can then e�ectuate substantial improvement in the overall security of the
market. Meaningful subsets would be, for example, the 1,485 providers found
to own up to 80% of the hosting infrastructure, or the 8,400 providers found to
host up to 80% of all phishing abuse in their networks.

Focusing on such narrower groups, national law enforcement entities, such
as police high-tech crime units, could get involved indirectly in building security
routines, using the so-called shadow of hierarchy [248]. That is, when a regulator
uses a credible threat of unilateral intervention, without actually implementing
it, to change actors’ perception of their general gain and loss. Although these
threats might be imposed based on generic or ambiguous existing laws, the
possibility of being punished through reputation damage vis-a-vis peers and
customers could push hosting providers towards self-regulation of the market
and change their position in the game. Anecdotal evidence from ISPs suggests
that such approach could be e�ective.

We found that identifying ‘culprits’ or bad performers and comparing secu-
rity performances based on abuse observations was informative only if providers’
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structural properties and e�ort-related di�erences were accounted for. This pro-
vides useful input for regulators aiming to identify bad performers.

8.2.4 Community

Communities are normally groups of actors with a common identity (geography,
culture, or common interest), which makes it easier for them to develop joint
norms. In governance of the hosting market, communities have so far been most
active in areas such as development of best practices and performance of secu-
rity measurements. The Messaging, Malware and Mobile Anti-Abuse Working
Group (M3AAWG) is an example of a well-established community related to
the hosting market [9]. However, best practices, such as those formulated by
M3AAWG, have not been very e�ective, due to the lack of empirically-based
knowledge about hosting providers and the market they operate in. Using our
results regarding salient properties of the hosting market to inform best prac-
tices could evoke more e�ective implementation.

On a more general level, our quantitative models could increase understand-
ing among regulators, law enforcement, and providers regarding the distribution
of security threats and factors that may influence it.

8.3 Future Work
Each analytic chapter in this dissertation concluded by enumerating study lim-
itations and potential research directions. Here, we discuss them briefly in their
broader context.

The limitations of this research can be categorized into three general groups:
those related to the data used, those related to the methodological choices made,
and those related to the theoretical background employed.

8.3.1 Data limitations

While the data limitations encountered were varied, all could ultimately be cat-
egorized as measurement errors. Data obtained from third-party sources invari-
ably brought corresponding data quality constraints. Some foremost examples
were encountered in (i) WHOIS records, (ii) DNSDB passive DNS data, (iii)
data regarding uptime of malicious domains, (iv) data collected using black-box
third-party resources such as WPscan, and (v) passive and active measurements
taken ourselves using our own tools. Future research could build a feedback cy-
cle to improve the quality of such data. Data quality could also be improved via
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collaboration between researchers and the industry partners that maintain data
sources. Examples of such sources are the Regional Internet Registries (RIRs),
Farsight Security, and the various third-party organizations that maintain abuse
blacklists and blocklists.

In specific cases, we lacked reliable information about the data collection
methodologies used for third-party datasets. More information on such data
and the ways they are collected would help researchers establish a greater degree
of accuracy and better understand the patterns observed in them. This, of
course, would be much easier if researchers and abuse data providers worked
more closely with one another. In addition, the thesis used several data sources
that are not fully open to public, such as DNSDB, APWG, and the Zeus data.
Although this is a limitation, one should note that these datasets are being used
by many other researchers in the field of cybersecurity. Therefore, there is a
lot of triangulation or corroboration of people using the same data or similarly
collected data, which gives some check and balances to overly confident claims
based on a black box dataset.

8.3.2 Methodological limitations

These include issues related to statistical methods, sampling data points, in-
dependent variables, metric definitions, aggregation levels, and data sources,
among others. During the course of this dissertation, we proposed use of a
diverse set of statistical approaches such as Generalized Linear Models, Statisti-
cal Twins and Latent Factor Analysis. Future work, can however, extent these
methods to even more complex approaches.

Moreover, we were limited to snapshot data for measuring the security lev-
els of hosting providers. For future research, longitudinal measurements are
recommended regarding the patching levels of providers, to provide a better in-
dicator for providers’ security e�orts. Longitudinal measurements are also rec-
ommended for direct reactive and proactive security e�orts, such as setting up
certain technical measures and establishing better abuse handling units. They
are also advised for indirect measures such as user awareness campaigns and
nudging e�orts

Our use of specific abuse data sources could, to some extent, limit the gen-
eralizability of our results. Our methodology, however, is independent of the
abuse data sources, and hence can be generalized to other abuse types. A natu-
ral progression of our studies would be to expand our methodology using other
and more specific abuse data types, such as materials showing child sexual abuse
and botnet data.



182 Conclusions

This research was based on a quantitative analysis of empirical data. Thus,
the data provided the starting point for our observations regarding incentives
and the behavior of hosting providers, as well as regarding the security measures
taken by providers. These, however, were constrained by our own interpretations
of the data, which could also be subject to error. Although we shared our
results with a few well-known hosting providers as well as with law enforcement
representatives during the course of the research, we did not systematically
include these interactions as a part of our methodology. To reduce interpretation
errors and improve insights regarding the hosting providers and the market they
operate in, future research could utilize mixed methods. The quantitative results
would thus be combined with qualitative observations regarding behavioral,
social, and regulatory aspects of the hosting market.

On a more general level, future work could extend our research approach by
including perspectives and disciplines touched upon only briefly in this disserta-
tion. For instance, the hosting market could be investigated from a multi-actor
perspective. That is, beyond the hosting providers, other key actors within
this economic space could also be studied, including end-users, regulators, and
criminals alongside their interactions. Another interesting dimension that could
be further explored in future work is the e�ects of interventions by di�erent
regulators, such as law enforcement entities and private companies, on abuse
concentrations.

8.3.3 Theoretical limitations

We focused on theories related to web security and Internet measurement, rather
than concepts of economics and governance. This was mainly because technical
measurements were required as an essential first step, to shed light on the nature
and the scope of the security problem in the hosting market. The aim here was
to initiate a fine-tuning of not only technical solutions, but also of solutions
related to governance in this market.

In sum, the research presented in this dissertation contributes new insights
regarding hosting providers and the market they operate in. At the same time, it
o�ers a methodology for measuring hosting providers’ security levels. Finally, it
provides approaches and recommendations for improving the security practices
of hosting providers. These results, alongside future research, hold the promise
of e�ectively reducing the frequency of online incidents such as those cited at
the start of this dissertation, ultimately diminishing their e�ects on society.
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Summary

Internet infrastructure, in addition to facilitating communication and data shar-
ing for users around the world, also serves as a platform for fraud and misuse.
Cybercriminals exploit the global web infrastructure for personal and financial
gain. They devise ways to compromise servers and web domains via techni-
cal vulnerabilities in systems or human mistakes. The consequences not only
harm individuals, but also generate wider economic impacts, hurting society as
a whole.

Hosting providers are a key Internet intermediary. They provide and facil-
itate the infrastructure used for storing and hosting online content. In theory,
hosting providers can play an important role in fighting cybercrime and misuse.
This is because many online threats, be they high-profile or mundane, use host-
ing infrastructure at the core of their criminal operations. Selling stolen credit
cards, publishing materials showing child sexual abuse, running C&C servers
for botnets, and phishing for personal information are all crimes that use on-
line storage maintained and o�ered by hosting providers. Sometimes existing
legitimate websites are compromised for illicit purposes, or new websites may
be registered solely for criminal gain.

In practice, thousands of providers enable online crime on a daily basis,
wittingly or unwittingly. Yet, we see large di�erences in the security measures
taken by hosting providers. Some providers implement an array of actions to
protect their customers. Others lack even the capacity to detect cybercrime,
are negligent of cybercrime, or even willfully facilitate it.

Ensuring and improving security in the hosting market constitutes a collec-
tive action problem. This is because the consequences of online crime a�ect not
only providers, but also users, the economy, and society as a whole. Moreover,
while multiple actors would benefit from a solution to this problem, it is im-
plausible that any individual actor could solve the problem alone, due to all the
associated factors and costs.

So far, the hosting provision market itself has not taken steps to ensure
adequate online security. Providers lack incentive to do so, due to negative
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externalities in the market and information asymmetry regarding the security
levels of the services on o�er. Hierarchal or network governance mechanisms or a
combination of these could be e�ective, if they were designed taking into account
the properties of hosting providers and the market they operate in. However,
much about this market is still unclear. For instance, there exists no compre-
hensive empirical understanding of how many providers operate worldwide, how
their services are distributed, and what hosting types predominate.

Therefore, tackling hosting providers’ security problem and improving their
security performance first requires a better understanding of the hosting mar-
ket itself. That is, we need to know more about the structure and operations
of hosting providers, the current security levels of their infrastructure, and the
mechanisms and factors that shape their security decisions and security out-
comes. This leads to the main research question of the current thesis:

How can the security performance of hosting providers be measured and im-
proved?

This main research question is divided into multiple areas of inquiry. These
are explored in five chapters presenting empirical peer-reviewed articles which
form the core of this dissertation. All of the studies have been well received by
both academia and the industry, and their findings have became starting points
for policy discussions and next research steps. The empirical research starts
with a mapping of technical identifiers to economic agents. This culminates in
an innovative approach for making inferences about providers’ security e�orts
by collecting and analyzing complex real world datasets that reveal hosting
providers’ security practices and criminal activities in their networks.

Chapter 3 develops an approach for uncovering and grasping the complexity
of the hosting market. The method proposed for identifying hosting providers
is to map technical identifiers – IP addresses and domain names captured in
passive DNS data – to the agents behind the hosting services, identified by
organizational data in the WHOIS database. This enables us to distinguish the
organizations that are responsible for the security of hosting services and in a
position to take action to improve it. We also survey the hosting landscape,
empirically identifying a diverse set of business profiles. The landscape revealed
is a very heterogeneous one. Some providers owned only a single IP address,
which they used to o�er shared hosting services. In terms of global distribution,
hosting providers were located in more than 150 countries. Several hosting
providers had infrastructure in multiple countries.

Chapter 4 develops an analytical and statistical method for inferring infor-
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mation about hosting providers’ security performance from noisy abuse data.
Using this analytical model, we decompose the di�erent sources of variance
present in abuse data, such as defender properties (i.e., their structure and secu-
rity e�orts), attacker behavior, and measurement and attribution errors. Among
these factors, we quantify the impact of hosting provider structural properties
on concentrations of abuse for the whole population of 45,000 hosting providers
(defenders). Our results show that a handful of providers’ structural character-
istics related to their attack surface – such as number of domain names, number
of IP addresses used for web hosting, and the size of their shared hosting busi-
ness – accounted for 84% of the variation in phishing abuse concentrations. We
further show that operational factors that are more di�cult to measure for the
population of hosting providers – such as providers’ pricing strategy, website
popularity, years in business, and use of applications known to be vulnerable
– can explain a further 77% of the variance in phishing abuse concentrations.
This, however, leaves little room for providers’ security e�orts to influence abuse
levels.

Chapter 5 takes these results a step further, to examine the impact of both
structural properties and the reactive security e�orts of hosting providers on
abuse concentrations in their networks. The chapter investigates what prop-
erties of providers drive attackers’ preference for hosting the command-and-
control (C&C) domains used to communicate instructions to machines infected
with Zeus malware. Results show that structural properties of providers played
a less significant role (71%) in explaining C&C abuse concentrations compared
to phishing abuse. Further, concentration of C&C domains was negatively re-
lated to a rule of law indicator for the countries where the domains were hosted.
Finally, providers’ speed in taking down C&C domains (a proxy for reactive se-
curity e�orts) was only weakly related to C&C concentrations, explaining just an
additional 1% of the variance. Thus, attackers appear to show little preference
for providers that allow long-lived C&C domains. More generally, our results
suggest that providers’ structural properties, such as size and pricing strategy,
play a much more economically and statistically significant role in driving C&C
concentrations, compared to any reactive security measures that providers take,
such as the e�ort they put into taking down abused websites.

Chapter 6 focuses on attackers’ behavior and strategies as another factor
that can drive abuse concentrations. Here, we confine our investigation to one
case study, that of Zeus malware, which is a leading family of malware used for
attacking financial institutions. We look only at the targets of Zeus attack, in
an e�ort to better understand attackers’ behavior, regardless of the providers
that hosted the victimized domains. We transform four years of noisy data from
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Zeus configuration files into structured data on attack targets and attackers’ in-
structions sent to the machines infected with Zeus malware. Results show that
targets were located all over the world and that 90% of the attacks were aimed
at only 15% of the overall targets. Surprisingly, the size of the targeted finan-
cial institution did not drive or predict attack concentration. Attack persistence
varied widely in our sample. Some institutions were attacked very briefly, while
others underwent attacks during the entire observation period (216 weeks). We
speculate that the brief attacks were part of a trial-and-error process of attack-
ers. Studying the attack code over the course of four years, we observe very
high rates of code reuse and code similarity. We expected this prevalence of
code sharing to lead to low code development costs, low market entry barriers
for attackers and newbies, and ultimately to a rise in the numbers of attacks.
However, we found a ceiling in new targets being attacked. Taken together, our
results suggest that Zeus attack volumes are driven not by the technology but
more by the cash-out segment of the value chain, such as money mules.

Chapter 7 investigates providers’ proactive security e�orts, seeking to quan-
tify their impact on abuse concentrations for the specific case of shared hosting.
The core idea is that although hosting providers are a key actor in fighting
website compromises, their ability to prevent abuse is constrained by the se-
curity practices of their own customers. In shared hosting, customers operate
under restricted privileges. Providers thus retain more control over system con-
figurations. We examine 15 proxy features, from which we distill four major
latent factors capturing security e�orts: content security, webmaster security,
web infrastructure security, and web application security. Our results confirm
that providers and webmasters employ various soft techniques, such as harden-
ing the software discovery process and hiding version information, to make it
harder for criminals to exploit vulnerabilities in their applications. We observe
that content and web application security played a significant positive role in re-
ducing abuse concentrations, after controlling for size. Our findings suggest that
providers’ e�orts at the software patching level – even for client-side software
like content management systems (CMS) – can eventually lead to a substantial
reduction in abuse concentrations.

Regarding the implications of our results for practice, I conclude that the
various insights produced, concerning hosting providers’ characteristics, security
incentives, and security performance, constitute an essential first step toward
improving online security. To e�ectively influence and elevate providers’ security
performance, providers’ incentives and properties have to be taken into account.
Influence can be exerted not only by the market players themselves, but also by
government through hierarchical mechanisms and by hosting community peers
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through network governance mechanisms. Hosting providers themselves must
be cognizant of the structural properties of their services that expose them
more to cyberabuse, while investing in reactive and proactive security e�orts.
Government can employ soft techniques, such as facilitating information trans-
parency regarding providers’ security levels and rewarding actions to improve
security performance. Communities can influence security practices by devel-
oping norms and empirically-based best practices that capture the complexities
and di�culties that providers face in achieving and maintaining high security
levels.
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Samenvatting

Het internet wordt gebruikt voor communicatie en het delen van informatie
tussen gebruikers over de hele wereld, maar ook als een platform voor fraude en
misbruik. Internetcriminelen misbruiken de infrastructuur van het wereldwijde
web voor financieel gewin. Zij misbruiken kwetsbaarheden in de beveiliging van
web servers en domeinen om deze vervolgens in te zetten voor criminele doelein-
den. De consequenties daarvan benadelen niet alleen eigenaren van die servers
en domeinen, maar hebben bredere economische gevolgen voor de maatschappij
als geheel.

Hosting providers hebben een sleutelpositie in de bestrijding van deze vor-
men van cybercrime. Deze bedrijven leveren de infrastructuur die gebruikt
wordt voor het online brengen van web domeinen en diensten. Allerlei vormen
van cybercrime hebben hostingdiensten voor een deel van de criminele han-
delingen. Het verkopen van gestolen credit cards, het publiceren van beelden
van kindermisbruik, het laten draaien van command-and-control (C&C) servers
voor botnets, phishing sites die persoonlijke gegevens proberen buit te maken –
het zijn allemaal misdaden die diensten gebruiken die worden beheerd en aange-
boden door hosting providers. Vaak worden bestaande legale websites gehackt
en gebruikt voor illegale doeleinden, soms worden nieuwe websites geregistreerd
door de criminelen zelf.

In de praktijk maken duizenden providers online criminaliteit dagelijks mo-
gelijk, bewust of onbewust. Maar er zijn grote verschillen in de veiligheidsmaa-
tregelen die door hosting providers worden genomen. Sommige providers nemen
een scala aan maatregelen om hun klanten te beschermen. Anderen zijn niet in
staat of bereid om cybercrime op hun systemen te ontdekken. Een kleine groep
faciliteert doelbewust criminele praktijken.

Het verbeteren van veiligheid op de hostingmarkt is een probleem dat om
gemeenschappelijke actie vraagt. En wel omdat online criminaliteit niet alleen
gevolgen heeft voor providers, maar ook voor haar klanten, en voor de economie
en de maatschappij als geheel. Terwijl een veelheid aan betrokkenen baat heeft
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bij een oplossing voor dit probleem, kan het niet opgelost worden door een
individuele speler, vanwege alle factoren en kosten die er mee verbonden zijn.

Tot nu toe heeft de hostingprovidermarkt zelf weinig stappen ondernomen
om voldoende online veiligheid te verhogen. Het ontbreekt providers aan een
economische prikkel om dit te doen, vanwege het optreden van negatieve ex-
ternaliteiten en vanwege informatie asymmetrie: klanten en toezichthouders
kunnen niet goed zien welke providers het goed doen en welke niet. Overheid-
sregulering of zelf-regulering, of een combinatie van deze twee zouden e�ectief
kunnen zijn, als ze zouden worden ontworpen met inachtneming van de karak-
teristieken van hosting providers en de markt waarin zij opereren. Veel over
deze markt is echter nog onduidelijk. Er bestaat bijvoorbeeld geen compleet en
goed gedocumenteerd overzicht van hoeveel providers er wereldwijd opereren,
hoe hun diensten zijn verdeeld, en welke soorten van hostingdiensten precies
worden aangeboden.

Daarom is er eerst een beter begrip van de hostingmarkt nodig om het
veiligheidsprobleem van hosting providers aan te kunnen pakken, en om hun
prestaties op het gebied van veiligheid te kunnen verbeteren. Dat betekent dat
we meer moeten weten over de structuur en de activiteiten van hosting providers,
de huidige veiligheidsniveau’s van hun infrastructuur, en de mechanismes en fac-
toren die hun beslissingen en resultaten op het gebied van veiligheid bepalen.
Dit leidt tot de belangrijkste onderzoeksvraag van dit proefschrift:

Hoe kunnen de veiligheidsprestaties van hosting providers worden gemeten
en verbeterd?

Deze hoofdonderzoeksvraag is onderverdeeld in verschillende deelvragen. Na
de inleiding in hoofdstuk 1 en het literatuuroverzicht en theoretische model in
hoofdstuk 2, worden de deelvragen beantwoord in vijf empirische hoofdstukken
die gebaseerd zijn op peer-reviewed artikelen. Deze studies zijn goed ontvangen
in zowel de academische wereld als in het bedrijfsleven, en de bevindingen zijn
startpunt geworden voor beleidsdiscussies en vragen voor vervolgonderzoek.

Het empirisch onderzoek begint met het in kaart brengen van de technis-
che kenmerken van marktpartijen en culmineert in een vernieuwende benader-
ing waarmee conclusies getrokken kunnen worden over beveiligingsinspanningen
van providers door het verzamelen en analyseren van grootschalige datasets uit
de praktijk waaruit blijkt hoe hosting providers te werk gaan op het gebied
van veiligheid en waarmee criminele activiteiten in hun netwerken aan het licht
komen.

Hoofdstuk 3 ontwikkelt een benadering om duidelijkheid te krijgen over
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de complexiteit van de hostingmarkt. De voorgestelde methode om hosting
providers te identificeren bestaat uit het in kaart brengen van de hostingmarkt
door het koppelen van passieve DNS data en WHOIS data van domeinnamen
en IP adressen. Dit stelt ons in staat om de aanbieders te identificeren die ve-
rantwoordelijk zijn voor de veiligheid van hosting diensten. We verkennen ook
het hosting landschap als geheel en tre�en daar een empirisch divers geheel aan
provider typen aan. Het landschap dat hieruit opdoemt is zeer heterogeen. Ter
illustratie: sommige providers blijken eigenaar van slechts een enkel IP adres
wat ze gebruikten om zogenaamd “shared hosting” diensten aan te bieden. An-
dere providers hebben miljoenen adressen in beheer. Kijkend naar wereldwijde
verspreiding, blijkt dat hosting providers gevestigd zijn in meer dan 150 lan-
den. Verschillende hosting providers hebben infrastructuur in een veelheid aan
landen.

Hoofdstuk 4 ontwikkelt een analytische en statistische methode om infor-
matie over de veiligheidsprestaties van hosting providers af te leiden uit grootsch-
alige incidentdata met veel ruis, zoals de links naar phishing pagina’s die worden
ontdekt in spam. Met een analytische model ontrafelen we de verschillende bron-
nen van variantie die zich voordoen in incidentdata, zoals de eigenschappen van
verdedigers (d.w.z. hun structuur en beveiligingsinspanningen), het gedrag van
aanvallers, maar ook meetfouten en attributiefouten. We kwantificeren de in-
vloed die de structurele eigenschappen van hosting providers hebben op hoeveel
phishing domeinen zich bevinden in de netwerken van de totale populatie van
45.000 hosting providers. Met een handvol structurele eigenschappen van de
providers kunnen we meten in welke mate de provider blootgesteld is aan deze
aanvallen, hun zogenaamde attack surface. Dit betreft indicatoren zoals aantal
domeinnamen, aantal IP adressen die gebruikt worden voor web hosting, en
de omvang van hun shared hosting business. Gezamenlijk zijn deze structurele
eigenschappen verantwoordelijk zijn voor 84% van de variatie in concentraties
van phishing domeinen. Van de resterende 16% variatie kunnen we 77% verk-
laren met operationele factoren die moeilijker meetbaar zijn voor de hele popu-
latie van hosting providers – zoals het prijsniveau van providers, de populariteit
van websites, het aantal jaren dat hun onderneming bestaat, en het gebruik van
applicaties die bekend zijn vanwege hun kwetsbaarheden. Dit betekent, ver-
rassend genoeg, dat er weinig impact overblijft voor de veiligheidsinspanningen
van providers om het niveau van misbruik te beïnvloeden.

Hoofdstuk 5 zet een volgende stap door opnieuw de invloed te meten van
de structurele eigenschappen van providers, maar nu in een andere type mis-
bruik: de locatie van de command-and-control (C&C) domeinen die gebruikt
worden om instructies te geven aan apparaten die geïnfecteerd zijn met Zeus
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malware. Zulke C&C domeinen zijn belangrijk voor criminelen, anders dan
bij phishing domeinen, die op grote schaal geproduceerd en vervangen worden.
Daarom wordt algemeen aangenomen de criminelen voorkeuren zullen hebben
voor providers die C&C domeinen langer online laten staan, oftewel die minder
alert hun netwerken beveiligen. Resultaten laten zien dat structurele eigenschap-
pen van providers inderdaad een minder belangrijke rol speelden (71%) om C&C
concentraties te verklaren, in vergelijking met phishing domeinen, maar dat nog
steeds een heel hoog percentage verklaard wordt uit puur structurele eigenschap-
pen, niet uit het veiligheidsbeleid van providers. Verder bleek de concentratie
van C&C domeinen negatief te correleren met een indicator voor sterke wet-
geving in de landen waar de domeinen geregistreerd stonden. Tenslotte bleek
dat de snelheid waarmee providers C&C domeinen verwijderden (een proxy
voor hun reactieve veiligheidsinspanningen) slechts zwak correleerde met con-
centraties van C&C. Dit verklaarde niet meer dan nog 1% van de variatie. Dus
aanvallers lijken weinig voorkeur te hebben voor providers die langdurig C&C
domeinen laten voortbestaan. Meer in het algemeen wijzen onze resultaten in
de richting dat structurele eigenschappen van providers, zoals omvang en prijs-
beleid, een veel grotere economisch en statistisch significante rol spelen in het
sturen van C&C concentraties, dan welke reactieve veiligheidsmaatregelen ook
die providers nemen, zoals de energie die ze stoppen in het verwijderen van
misbruikte websites.

Hoofdstuk 6 richt de aandacht meer direct op de strategieën van aanvallers
als factor die concentraties van misbruik kan sturen. We bestuderen data over
de doelwitten van criminelen die Zeus malware hebben ingezet, een belangrijke
malwarefamilie die gebruikt wordt voor het aanvallen van financiële instituties.
We kijken puur naar de doelen van de aanvallen, zoals die zichtbaar worden in
de instructies die meegegeven worden aan de Zeus malware, in een poging het
gedrag van de aanvaller beter te begrijpen, onafhankelijk van de providers waar
de aangevallen domeinen gehost werden. We transformeren vier jaar aan on-
derschepte Zeus configuratiebestanden naar gestructureerde gegevens over aan-
valsdoelen en instructies die de aanvaller gestuurd heeft naar de apparaten die
waren geïnfecteerd met Zeus malware. De resultaten laten zien dat de doelen
gesitueerd waren over de hele wereld, en dat 90% van de aanvallen gericht was
op slechts 15% van het totale aantal doelen. Verrassend is dat de omvang van
het aangevallen financiële instituut geen voorspeller is van de concentratie van
aanvallen. In ons voorbeeld was er een grote variatie in de hardnekkigheid van
aanvallen. Sommige organisaties werden slechts zeer kort aangevallen, terwijl
andere aanvallen te verduren kregen gedurende de hele observatieperiode (216
weken). Onze veronderstelling is dat de kortdurende aanvallen onderdeel waren
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van een leerproces door de aanvallers. Tijdens de periode van vier jaar dat we
de aanvalscode hebben bestudeerd, hebben we uitzonderlijk veelvuldige herhal-
ing en hergebruik van vergelijkbare codes gezien. We hadden verwacht dat het
veel voorkomen van het delen van codes zou leiden tot lage kosten voor het
ontwikkelen van codes, lage drempels om de markt te betreden voor aanvallers
en nieuwkomers, en uiteindelijk zou leiden tot een toename in het aantal aan-
vallen. We vonden echter een plafond in het aantal nieuwe doelen dat werd
aangevallen. Alles bij elkaar genomen wijzen onze resultaten in een richting dat
Zeus aanvallen niet zozeer worden gestuurd door de technologie maar eerder
door het segment van de waardeketen waar de opbrengst wordt weggesluisd,
zoals cashout via geldezels.

Hoofdstuk 7 presenteert een grootschalige directe meting van de proactieve
veiligheidsinspanningen van providers en poogt de invloed hiervan op de con-
centraties van misbruik te kwantificeren. We richten ons specifiek op shared
hosting. Hosting providers spelen een sleutelrol bij het bestrijden van misbruik,
maar hun mogelijkheden om misbruik tegen te gaan worden beperkt door de
veiligheidspraktijken van hun eigen klanten. We willen weten hoeveel invloed
providers hebben op die praktijken van klanten. Shared hosting is daarvoor een
geschikte casus, omdat in die dienst klanten opereren met beperkte privileges.
Daardoor behouden providers meer controle over de configuraties van de syste-
men. We verzamelen data over 15 veiligheidsgerelateerde voor ongeveer een half
miljoen webdomeinen die verspreid zijn over de gehele shared hosting markt.
Daaruit destilleren we vier belangrijke latente factoren die veiligheidsinspannin-
gen omvatten: beveiliging van de content, beveiliging van de webmaster, vei-
ligheid van de infrastructuur van het web, en veiligheid van de web toepassingen.
Providers hebben vooral invloed op de laatste twee factoren. We constateren
dat de beveiliging van inhoud en web applicaties een belangrijke positieve rol
heeft gespeeld in het terugdringen van misbruik. Onze bevindingen suggereren
dat de inspanningen van providers op het niveau van software patching – zelfs
voor software zoals content management systems (CMS) die door klanten zelf
beheerd worden – in de toekomst kunnen zorgen voor een aanzienlijke afname
van concentraties in misbruik.

Voor wat betreft de gevolgen van onze resultaten voor de praktijk, con-
cluderen we dat we nu meer inzicht hebben in de hostingmarkt en in de fac-
toren die de veiligheidsprestaties van providers bepalen. Dit is een essentiële
eerste stap betekenen op weg naar het verbeteren van online veiligheid. Om
de beveiligingsprestaties van providers e�ectief te beïnvloeden en op een hoger
niveau te brengen, moet rekening gehouden worden met hun eigenschappen en
incentives. Invloed kan niet alleen worden uitgeoefend door de marktspelers
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zelf, maar ook door de overheid met hiërarchische mechanismen en met het fa-
ciliteren van netwerk governance zoals benchmarking en initiatieven uit de sector
zelf. Hosting providers zelf moeten op de hoogte zijn van welke eigenschappen
van hun diensten hen meer blootstellen aan misbruik en investeren in reactieve
en proactieve tegenmaatregelen. De overheid kan soft regulation toepassen,
zoals het faciliteren van openbare informatie over de beveiligingsniveaus van
providers (benchmarks). Dit verlaagt de informatie asymmetrie en zorgt ervoor
dat de markt betere beveiligingsprestaties kan belonen. De hosting sector zelf
kan beveiligingspraktijken beïnvloeden door gedeelde normen te ontwikkelen en
door ‘best practices’ te ontwikkelen die op objectieve metingen van veiligheid-
sprestaties zijn gebaseerd.
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