
Tree Reconstruction from a
Point Cloud using an L-System

Synthesis Project 2021

Students Supervisors
D. Dobson 5152739 L. Nan - TU Delft
H. Dong 5302501 S. Du - TU Delft
N. van der Horst 4697952 D. Voets - Cobra
L. Langhorst 4299922
J. van der Vaart 4450752
Z. Wu 5360684





Abstract

Storing accurate models of complex geometries in a compact way has become an increasingly challenging is-
sue, especially when dealing with large datasets. One of such datasets is Cobra-Groeninzicht’s database of all
trees in the Netherlands. In the gaming industry, a new technique is being used to generate tree models: the
L-system. An L-system stores a string representation of the structural model of a tree, with the added possibil-
ity for recursive modelling using growing rules. This format proves a promising alternative to more traditional
methods of storing complex geometries. However, it remains unclear whether it can be an accurate enough
representation for modelling and analysing real-life trees.

In this research project, the AdTree algorithm is used to reconstruct a skeleton from a point cloud of a single
tree. This skeleton is then transformed to an L-System string format, as well as a CityJSON format (both
in JSON structure). The L-system format comes with the advantage that it allows for several methods of
increasing its compactness further (growing, generalisation). The overall size of these files also indicates
fewer storage space is needed to store the tree geometry. The quality of the L-System skeleton is nearly equal
to the input, the skeleton generated by. Assuming it can be read and drawn using a Turtle program, the
L-system thus allows for storing the same geometric information more compactly than traditional storage
formats, with sufficient accuracy, and the added possibilities of growing or generalising the model.

Delft, June 2021

i



Acknowledgements

We would like to dedicate this page to the people who made this project possible and guided it into success.
We are grateful and stand on the shoulders of Liangliang Nan and Shenglan Du from Delft University of Tech-
nology, whose work we have built upon. It was an interesting adventure, and Liangliang Nan and Shenglan
were there every step of the way with deep insights and extensive support. We are proud to be given the
opportunity to work on such an interesting topic, and to be able to contribute to the scientific domain of
Geomatics. We also very much appreciate the idea, the data and help given to us by Dirk Voets and Leonardo
Mauri from Cobra-Groeninzicht. The whole project would not have existed without them. We hope this
project will grant them insights that are valuable in the domain of forestry management.

Delft, June 2021

ii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Organisation of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 4
2.1 3D tree modeling from point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 AdTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Compact representations of 3D tree structures . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 L-system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Turtle (graphics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 File encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methodology 9
3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Skeleton extraction (graph) with AdTree . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 The L-system format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Creating Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.6 Tree growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 L-System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 L-System JSON format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 L-system initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Obtain nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Compute relation between nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.5 Write to L-string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.6 L-System to AdTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 CityJSON semi-explicit storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Classic skeleton explicit storage format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results and discussion 27
4.1 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Effect of point cloud density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Robustness to data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Differences in encoded geometry: AdTree output and the L-system. . . . . . . . . . . . . . . . 32
4.5 Differences in encoded geometry: AdTree output and the CityJSON . . . . . . . . . . . . . . . 38
4.6 Branch tip generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Simulated growth function L-system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 Effect of file formats on storage efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 48

Bibliography 50

iii





1
Introduction

1.1. Motivation
Trees are one of the most essential elements of the Earth’s landscape, both in nature and urban areas. Trees
provide us with many benefits including social, aesthetic, climatic, ecological and economic benefits [25].
However, trees can also cause harm by falling down on a person or home, get plagued by insects or dis-
eases and therefore need to be monitored, maintained and controlled [7]. In support of monitoring trees
and forests, up-to-date forest inventories are needed to measure the extent, quantity, and condition of forest
resources [11]. The resulting information provides a base for making management decisions at operational
and strategic level, such as harvest planning and forest protection [27]. Often, data is acquired, then stored in
a digital spatial database, and processed in a Geographical Information System (GIS).

In this project, research is performed in conjunction with Cobra-Groeninzicht, a company that is responsible
for monitoring around 100 million trees throughout the Netherlands, Flanders and North Rhine Westphalia.
Their forest inventory, Treemonitor (Dutch: Bomenmonitor) [7], is largely built upon point clouds, mostly
acquired from airborne remotely sensed (sparse) LiDAR data (AHN3) and some custom (high density) LiDAR
data from Prorail. AHN(3) LiDAR data, that comes in the form of a point cloud, is collected and processed
as an initiative of the Dutch government. It is (free) open data and is updated at least yearly [21]. Hence, it
is part of the vision of this project to create a pipeline that could automatically extract tree representations
from a dataset of this quality (sparse and incomplete point clouds). Although, considering the feasibility of
this research, better quality data (dense and complete point clouds) is used primarily, from deciduous trees
without foliage.

1.2. Problem statement and objective
Working with AHN3 LiDAR data for building a forest inventory comes with a few challenges, including but
not limited to: classification, segmentation, visualisation and storage. The prior work "AdTree" [3] could be
built upon, and in this research the focus lies mainly on the storage issue. In essence, AdTree reconstructs
the 3D geometry of a tree from a point cloud input. It extracts the tree’s skeleton in the form of a graph, and
reconstructs the 3D geometry of that graph with a cylinder fitting process [3]. The skeleton (graph) is avail-
able as export to an ASCII format (e.g. .ply) and the corresponding 3D reconstruction as a mesh (e.g. .obj).
Although they store an accurate, detailed and automatically modelled tree, both formats have low interoper-
ability in the forestry monitoring domain, and point clouds and meshes are inefficient storage-wise for the
inventorization and visualisation of a hundred million trees.

For forestry maintenance and control, data needs to be at least regularly updated. AHN3 data was acquired
between 2014 and 2019, and its successor AHN4 is also flown in parts over the course of years [24]. Trees con-
tinue to grow yearly, and a data discrepancy of up to five years makes apt forestry management cumbersome.
This is where the L-system approach comes in. The L-system is chosen as they are extensively studied in the
botanical field, may be extended to create flexible geometric models of plants, and are fit to simulate growth
and external forces (e.g. light, gravity, resources) [2]. In its most basic application, the L-system models the
structure of a tree as nested set of relative movements between nodes. From this structure, the complex ge-

1



2 1. Introduction

ometry of the model can be retrieved. It may be extended with the capacity to describe the growth of a plant
in a recursive manner, by means of a fractal, therefore describing the geometric model even more compactly.
The L-system is an established method to model trees in the gaming industry, pioneered as early as 1999
[16] and commercialised by IDV Inc. in early 2000’s under the name SpeedTree [10]. SpeedTree is still the
state-of-the-art today, and famous for creating the trees in James Cameron’s movie Avatar[18]. L-systems are
considered an emerging technology for tree simulation models in the forestry management domain. Micro-
climate model maker ENVI-met is rolling out an L-system based module to realistically simulate trees in 2022
[4].

Hence, the objective of this project is to create a pipeline, built upon AdTree, that can incorporate the con-
cept of an L-system to generate accurate tree models that are stored compactly to address storage efficiency,
format interoperability, and data discrepancy.

1.3. Research questions
In order to study the possibility of addressing the aforementioned problems with an L-system, the following
research question was formulated:

How can AdTree be extended to incorporate an L-system to obtain a compact representation of a tree geometry,
to increase storage efficiency and interoperability, and simulate growth?

While this research question encompasses the scope of the project and addresses the stated problems, several
sub questions were formulated to dissect the research question into different parts:

• How does AdTree reconstruct a 3D model from a point cloud and what are its (intermediate) outputs?

• How does point cloud quality and method of acquisition affect the reconstruction?

• What is an L-system, how can it help to store and reconstruct a representation of a tree from a point
cloud, and how does it perform compared to current AdTree outputs?

• What other formats could be synthesized for storing a (intermediate) representations of a tree to in-
crease storage inefficiency and interoperability, and how do these perform?

• How does an L-system, derived from a point cloud, simulate growth?

1.4. Project objectives
At the beginning of the project, using the MoSCoW method, the expectations of the project were defined.
A number of "must have" points were defined that were deemed the highest priority goals set by the team.
In the following table these expectations are shown, along with whether they were achieved or not. As can
be seen, nearly all expectations were met. Solely number 4; "Estimate branch diameter per branch" is not
achieved. During the process of this project, this was deemed irrelevant to the scope.

Must have

Expectations Results
1 Pre-processing to clean AHN3/4 point cloud into points that only belong to trees Achieved
2 Find and fit the trunk from AHN3/4 data using custom code Achieved
3 Store a graph representation of the tree skeleton Achieved
4 Estimate branch diameter per branch Not Achieved
5 Retrieve and store branch node location, thickness and angle of the branches Achieved
6 Evaluate the proposed pipeline with multiple single tree point clouds provided by

COBRA
Achieved

7 Evaluate the proposed pipeline with raw AHN3/4 data to obtain a model of a single
tree

Achieved

Table 1.1: Must haves of project (expectations and results)



1.5. Organisation of the paper 3

1.5. Organisation of the paper
In Section 2, Related work, an elaboration on the prior work this research is built upon (mainly AdTree) can
be found, as well as an introduction of the concept of an L-system and compactness. In Section 3.1, Pipeline,
the research approach is described in detail, guided by the development pipeline. This is followed by the
corresponding results and discussion thereof, in Section 4, Results and discussion. A summary of the most
important results and discussion to answer the research questions, complemented with recommendations
for future work forms the conclusion of this research in Section 5, Conclusion.



2
Related work

2.1. 3D tree modeling from point clouds
In 3D modelling, a decision has to be made on whether the model should be data or model driven. The
decision is based on the characteristics a model of choice is ought to have. If a model should represent the
true 3D geometry as much as possible, the model will be designed to stay true to its input data and is therefore
called data driven. A drawback of this approach is that it is dependent on (the quality of) its input data. If a
model should represent a (reasonable) approximation of the 3D geometry, while ignoring some or all its input
data it is called model driven.

The AdTree method to model trees was chosen as it proven to be an automatic and accurate approach for
the reconstruction of 3D tree branches from point clouds, recovering both topology and geometry of the tree
branches, outperforming other state-of-the-art methods [3] such as SimpleTree [8], PypeTree [1] or TreeQSM
[20]. As the Cobra-Groeninzicht’s Treemonitor has around one hundred million trees, the automatic aspect is
important as well as the topology and geometry accuracy for apt forestry management. AdTree can be char-
acterised as a data driven model, and shares the drawback of input data dependency. Moreover, the AdTree
method does not incorporate natural growing rules of tree branches. Therefore, the L-system approach is
chosen to extend AdTree to incorporate natural growing rules. This could address data dependency and data
discrepancy (Section 1.2), while potentially making the representation of the tree more compact. As the L-
system would make the model more implicit, a graphical interpreter is needed such as a Turtle. Hence, the
AdTree method, compactness including the L-system concept, and the Turtle agent are elaborated upon in
the following sections. The incorporation of the L-system would shift the AdTree method towards a more
flexible model driven approach, and therefore free it from its data dependent limitation in some aspects.

2.1.1. AdTree
AdTree is an algorithm developed to accurately and automatically reconstruct detailed 3D mesh models from
point clouds of individual trees, by Du et al. [3]. To achieve the best results with this method, the input data
(point cloud) should be a dense, complete, isolated tree, not contain any foliage and cleaned from outliers.
The selection and cleaning of input data can be done automatically, though done manually in this study for
simplicity of the research. AdTree’s main steps are: skeleton initialization, skeleton simplification, branch/-
cylinder fitting, and adding realism, see Figure 2.1 for the overview. The focus of this research will be on the
first three steps, as realism is outside of the scope of this research.

4



2.1. 3D tree modeling from point clouds 5

Figure 2.1: Overview of AdTree method, by Du et al. adopted from [3].

Skeleton initialization
In this first AdTree step, all input points of the point cloud are triangulated with a Delaunay triangulation,
which yields an initial graph. Its edges are weighted using their lengths defined in the Euclidean space. Then,
Dijkstra’s shortest path algorithm is applied to compute the MST (Minimum Spanning Tree) to extract the
initial tree graph. The idea is that points that are close to each other are likely to belong to the same branch.
However, this intermediate MST result is noisy, thus not fit for a compact representation of a tree. A mean-
shift algorithm is applied to centralize main-branch points to improve the quality of the skeleton.

Skeleton simplification
The initial tree skeleton resulting from the previous step contains a large number of redundant vertices and
edges, most of which do not contribute to the overall shape of the structural tree skeleton. They can therefore
be omitted. This is achieved by two main steps, iteratively. First, vertices and edges are assigned importance
based on their length relative to their child vertices and edges. Second, adjacent vertices with one child
that are within a certain threshold of distance from each other are merged by the Douglas-Peucker method.
Vertices that have multiple children with similar (positioned and oriented) adjacent vertices and edges are
merged as well. The results can be observed in Figure 2.2.

Figure 2.2: Simplification by removing noisy small branches (left) and by merging similar vertices and edges (right), by Du et al. adopted
from [3].

The simplified skeleton is the most interesting intermediate result of AdTree for this study. It is a light-weight
skeleton that can be used as a compact representation of a tree, it has a fitted trunk (a common problem
in modelling tree models), and its quality and usability has been improved by means of simplification. For
these reasons, the simplified skeleton outputted by AdTree at this step is the input used for the L-system



6 2. Related work

intervention (described further in Section 2.2.1). The result of the L-system intervention can be re-inserted
into the pipeline, after which the branch fitting step (Section 2.1.1) can continue.

Branch fitting
In this step, the simplified skeleton undergoes a cylinder-fitting process. The geometry of the tree is approx-
imated by fitting a sequence of cylinders onto the graph nodes. This is achieved by first segmenting and
identifying the tree in different parts. An accurate radius of the tree trunk can be obtained by initially op-
timizing in the non-linear least squares sense. The optimization problem is then further solved using the
Levenberg Marquardt algorithm. The radii from the subsequent branches are derived from the main trunk.
It is important to note that if the point density of the trunk is below a certain threshold, a radius cannot be
extracted for the main trunk. This means that the rest of the branch radii can also not be determined. There-
fore, if a point cloud is too sparse in the trunk area or is missing it completely, the reconstruction will fail.
Tree trunks can be artificially added by means of tree trunk estimation. This is however out of the scope of
this research. This step is also altered, which is described in Section 3.2.6.

2.2. Compact representations of 3D tree structures
2.2.1. L-system
Late 1960’s Lindenmayer system (L-system) by Aristid Lindenmayer is a mathematical, rule-based approach
to represent the growth of vegetation [15]. It describes the development of branching structures with a parallel
string-rewriting mechanism [9]. L-system rules possess a recursive nature, which leads to self similarity and
are thus fit to be described as a fractal [22]. Trees can also be defined as a recursive structure, making the
L-system a promising possibility for modelling them compactly. By increasing the number of recursions, the
L-system structure can slowly be grown as well. An L-system can be parametric, allowing for one or more
variables to determine the outcome of a rule. Parametric L-systems are defined as a tuple [19]: G = (V ,ω,P ),
where V is a set of symbols of variables (changeable) and constants (unchangeable),ω (start, axiom) is a string
of symbols that describe the initial state of the system , and P is a set of production rules. The parametric L-
system variant is used in this research as input for drawing the L-system (the Turtle: see Section 2.2.2).

In essence, the L-system encompasses a set of characters describing drawing rules (in graphical applications)
that for instance a Turtle drawing program could follow. The characters in V are the encoding describing all
drawing operations possible, as well as (in this case) structural relationships between nodes. ω contains the
starting point, the initial drawing instructions using the symbols in V . P then describes the L-system rules,
the ways in which ω should be extended with each iteration. A parametric L-system allows some symbols in
V to be assigned a value. These values, in this case, describe exactly in what way the turtle should draw: with
which length it should draw an edge, which way to turn, and by how many degrees.

L-systems can also used to combine actual measurements with more advanced tree data, such as tree species
data, botanical models, or environmental parameters. This data can be used to model trees more compactly,
and make and process the models on a large scale and automatically[14]. These advanced models can be used
for simulation purposes, focused on tree growth [14]. While complex tree growth models are out of the scope
of this research, it is a promising prospect that L-systems could be used for large scale forestry management,
as is the case for the one hundred million trees in the forest inventory of Cobra-Groeninzicht.

2.2.2. Turtle (graphics)
In computer graphics, a turtle is an agent that can follow a certain set of commands to move, thus "drawing"
by tracing its movements [6]. The turtle has a starting location, a direction, and a "pen" [5].



2.2. Compact representations of 3D tree structures 7

Figure 2.3: Here is demonstrated how a turtle could follow some basic drawing rules, where “F" means forward in a set length, -/+ gives
a rotation in each direction.

As mentioned in Section 2.2.1, a turtle can be used to follow the recursive drawing rules of an L-system. Us-
ing the characters as defined in V of the L-system, one can give the Turtle instructions. In this research, the
following characters were used: "F" for forward with a set length, "+/-" for rotation on the Y-axis in either di-
rection (left or right), and "</>" for roll on the Z-axis (also in either direction). Figure 2.4 shows a 3D example
of a recursive non-parametric L-system defined and drawn in this manner.

Figure 2.4: Demonstration of how a turtle could follow L-system drawing rules, using "F", "+/-", and "">/<" as characters, as well as
"[/]" to indicate nesting.

2.2.3. Compactness
In mathematics, the Heine-Borel theorem states that a set S is compact if its closed and bounded, meaning
if every open cover of S has a finite subcover (e.g. V ), for S in Rn [26]. V is a finite subcover if V has finitely
many elements. Intuitively, a subset of S can have many or an infinite amount of subcovers that intersect that
cover S. So much so, that the subcovers have redundant coverage of S. It is also possible to have a smaller
subset of S that covers S that only has a finite number of covers, and thus is compact.

Due to the size of the database maintained by Cobra-Groeninzicht, every tree model would in an ideal situ-
ation be stored as compactly as possible. Compactness as defined in this work does not just entail file size;
it is defined as a compact representation of complex geometric data. A compact representation of complex
geometry stores the same data (S) in a more efficient and indirect manner (with a smaller subset of S that cov-
ers the same information). For example, if one were to want to store a sphere, there are several possibilities.
One could store all points of the surface of the sphere that one would want to display directly. Alternatively,
one could store the sphere parametrically. The parametric representation of any point on a sphere (x, y, z)
is noted in the following formula: (x − x0)+ (y − y0)+ (z − z0) = r 2, where r is the radius of the sphere, and
(x0, y0, z0) is its center. This way, instead of storing a large set of points, every point on the sphere is described
with the same formula: this is more compact. For complex geometry, in the case of this work a set of cylinders,



8 2. Related work

the usual representation is to store all vertices and all edges of the geometries that make up the cylinders. A
more compact representation, from which all vertices and edges of the complex geometry could be inferred,
but which are not necessarily stored directly, would be beneficial for both storing in a database and doing
computations. The L-system could form such a representation.

2.2.4. File encoding
The file format in which data is stored relates directly to this notion of compactness. Aside from the L-system,
the CityJSON format is also investigated in this research as a possible more compact alternative to traditional
methods of storing complex tree geometry. It was developed as an alternative to CityGML by TU Delft’s Hugo
Ledoux, along with a team of 3D experts. The JSON encoding is emerging as a replacement of the XML stan-
dard for transferring data over the web. The same is true for the storing and transferring of 3D city mod-
els with CityJSON, for which CityGML used to be considered the standard. The developers of the CityJSON
model state its compactness: "The aim of CityJSON is to offer a compact and developer-friendly format, so
that files can be easily visualised, manipulated, and edited." By changing from GML encoding to JSON the file
is smaller in size, can be parsed and edited by many existing programming languages, and is thus more fit for
transference over the web [13].

Any JSON file consists of object properties that can be assigned string, boolean, or numerical values, and two
data structures: objects and arrays. These elements can then be nested and combined to create a data struc-
ture to the liking of the user. CityJSON uses these elements in a predefined manner. The "Geometry" property
of 3D objects, which describes their geometric elements, has several options for representing geometry. A ge-
ometry is built out of a list of boundaries being one dimension lower than the object itself, i.e. a line will have
vertices as its boundary, and a surface will have arrays of vertices representing lines as its boundaries. Seman-
tics can be defined as well, to specify characteristics of every entity in the object. For every object’s geometry,
a type will need to be defined ("Solid", "MultiSurface", "MultiLineString", etc.), as well as the level of detail.
Additionally, parents and children for the object may be defined. Lastly, a CityJSON model will contain a list
of vertices. The objects in the "geometry" property describing the boundary of the object will refer to these
vertices using indices, which prevents redundancy in specifying the 3D locations of these vertices.



3
Methodology

3.1. Pipeline
When going from point clouds to L-system representation, the entire process can be divided into several
parts. These consecutive parts are described in the method pipeline (Figure 3.1). In short, raw point cloud
data of a tree is filtered and passed on to AdTree. After AdTree extracts the skeleton from the point cloud data,
the L-system format can be written. This is also where the CityJSON writer can use the extracted skeleton.
The L-system approach is integrated into the AdTree software as an extension. In this chapter, each step of the
pipeline will be introduced: starting from the raw point cloud and performing data selection and cleaning,
obtaining a graph with AdTree, writing the L-system (nesting, relation between nodes, writing to L-string),
then reading the L-system in with the Turtle, re-entering the read skeleton into AdTree to convert it to a mesh
geometry, and lastly the tree generalization and growing possibilities of the L-system. The method used to
write the tree skeleton in CityJSON format is explained as well. After introducing all steps of the pipeline, the
most important parts will be described extensively.

Figure 3.1: Pipeline of the entire L-system process.

3.1.1. Point cloud
As explained in Section 2.1.1, the input data for the native AdTree method should be of good quality (i.e.
dense, complete, isolated etc.) for accurate and robust modelling. For the purpose of testing the performance
of the L-system on AdTree modelling, it is important to satisfy the data quality criterion such that the native
AdTree method is performing as expected. The original modelling performance of native AdTree is considered
the “ground truth", in lack of a true ground truth (e.g. dense point cloud validated with pictures). Thus, all

9



10 3. Methodology

input data used is manually selected, cleaned and validated to result in an accurate model. In this process,
the quality of the point cloud in the trunk is most important.

Acquisition source Accuracy Foliage

Airborne LiDAR (AHN3) ∼5cm-20cm No
Airborne LiDAR (custom) 1-2cm No
TLS LiDAR (static) ∼2mm* Yes
TLS LiDAR (mobile) ∼5cm Yes

Table 3.1: The different input sources used and their accuracy. Furthermore, winter data contains no foliage in the case of deciduous
trees. Foliage can have a negative impact on the performance of AdTree to reconstruct the geometry of the skeleton. *in 1m-50m

measuring distance.

To understand whether the AdTree method remains robust after the implementation of the L-system, the
effect of different acquisition techniques and corresponding qualities are tested. An overview of the different
acquisition techniques can be observed in table 3.1. Although the accuracy of the acquisition method used
does not completely explain the quality of the inputs, it often gives some indication of the density of the point
clouds. Generally, it was found the more accurate the input source, the denser the point clouds were. Foliage
makes the result of AdTree less stable, and performs better without. However, density of the point cloud is
more important as becomes clear in sections 4.2 and 4.3.

3.1.2. Skeleton extraction (graph) with AdTree
The AdTree algorithm, as described in Chapter 2.1.1, creates an output of a simplified skeleton in the form
of a graph. The native AdTree software gives the output option of the skeleton in a 3D model format (.ply).
This format is rather storage efficient, although it has low interoperability. In terms of storage efficiency, this
original skeleton output format is the benchmark used for the CityJSON and L-system formats. The creation
of the simplified skeleton marks the point in the pipeline where the intervention into the AdTree algorithm
starts. The simplified skeleton contains a simplified MST graph spanning (most of) the input points from the
point cloud model of the tree. This skeleton graph is read by both the CityJSON and L-system steps in the
pipeline, including the L-system extensions (growing and generalisation).

3.1.3. The L-system format
The skeleton graph extracted in the previous step is used to create the L-system L-string, axiom and rules,
which are read by a turtle to then draw the skeleton of the (botanical) tree. This skeleton can then be con-
verted to a mesh geometry. The full pipeline of this process will be explained the following sections.

The first step is obtaining the nesting, meaning finding the branches that are connected to one another
and more specifically what child branches originate from one parent branch. The entire tree can be seen
as a nested structure, with branches containing child-branches, and these children also containing child-
branches. The structure of the L-system and its notation in the L-string, is determined by traversing the
entire tree recursively and finding this nesting. When traversing the tree branch-by-branch, the relative po-
sition between nodes is computed along with the nesting. The next step is thus defining the spatial relation
between two nodes: how to move through a branch and to its children in Cartesian space.

The spatial relation between two nodes is described using 3 variables: a variable for rotation, roll, and forward
movement. Starting from the bottom of the trunk (the root), the movement to reach every next node up the
branches will be described relatively with these variables. To move from one node to the next, a specific
change in roll angle, rotation angle, and distance is used. This method of describing the tree allows the tree
to be entirely scalable, not only in absolute size, but when using patterns (L-system rules), the tree can also
be "grown" (one of the main advantages of the L-system). A drawback however is that the accuracy of the
relations between the nodes can have a large impact on the branches further away, since a small error at the
start of a large branch will show more severely further down the branch.

The acquired roll angles, rotation angles, and forward movements are written in traversal order to the L-
system’s L-string. The syntax of this L-string will be explained in Section 3.2.5. The L-string thus describes the
traversal of the entire tree by means of relative movements between two nodes. The L-string contains nesting
as well. Branches may contain other branches, and every one branch can have multiple nodes. Any branch



3.2. L-System 11

node may be the origin of one or several new branches.

3.1.4. Creating Mesh
To read in a skeleton from the generated L-string, a program called the LsTurtle is used. It reads the L-string
and converts it to the geometry required for creating a valid tree mesh. As explained in Section 2.2.2, a turtle
can follow a set of rules to draw lines from a starting position and direction. This property of the turtle thus
allows it to follow the L-string down the tree step-by-step, follow rules specified for this string, and recursively,
starting at the trunk, draw it. The turtle system will be explained further in Section 3.2.6.

The final result of the AdTree algorithm is a 3D mesh of the tree, every branch being a cylinder with decreasing
diameter towards the tips of the branches. To obtain such a mesh from the L-system, the skeleton drawn by
the turtle is fed back into the AdTree algorithm. To obtain the mesh, the AdTree pipeline with the native
AdTree functions is followed.

3.1.5. Generalization
With the obtained L-system string, the ability is gained to generalize to increase compactness and thus stor-
age efficiency. To achieve this while minimizing the amount of alterations done on the originally created tree
skeleton, the program starts with the branch tips. The relative position of the tree tip segment to its parent
segment is obtained for every single branch tip, from which the average is computed. The original relation
for every branch tip segment to its parent segment is then replaced by this average, saving the L-system string
required to store all final branch tips. This same process can also be done for more segments in the branch
tips, thus saving more space in the L-system string, but having a larger impact on the skeleton of the tree. A
more in depth explanation is given in Section 3.3.1.

3.1.6. Tree growing
Another application of the L-system is the ability to “grow” trees either from scratch or from existing skele-
tons. To grow the trees, the nearest node to a branch tip is taken, from which new branches can sprout out
of and grow. All other branches additionally grow in length and in thickness, with the outer most branches
growing faster than the branches closer to the trunk. The parameters for the growing process can be altered
to fit certain tree types. the tree is grown several times over, allowing it to greatly grow in size in several direc-
tions. This application can be useful in the filling of gaps in data, such as growing a tree in accordance with
the time elapsed since the data was obtained. This process is described in more detail in Section 3.3.2.

3.2. L-System
This section will explain the L-system process in further detail. The creation of the L-System consists of
several integrated parts. Each of these will now be explained thoroughly, starting with the format in which it
will be stored.

3.2.1. L-System JSON format
The L-system is stored in a JSON file format. This file format not only allows for the storage of the axiom and
the rules, but also of required additional data to successfully store the whole tree. It is able to do so while
remaining easy to read for humans and (relatively) easy to parse for machines. XML would also have been a
valid option, however the added compression of the JSON format compared to XML was seen as a desirable
goal of the file and storage format. Generally, a JSON file requires less storage space while storing the same
data as a XML file [23]. This is partially due to the verbose nature of XML files. Additionally, XML files are a
harder to read for humans than JSON files are.

The L-system JSON, or LsJSON, does not only store the axiom and rules that encode the L-string and the
skeleton, it also contains a range of other data. This data helps store the volumetric data of a tree in a set
location in space. The complete LsJSON stores:

• the data needed to construct the L-string
• the trunk parameters:

– the anchor point of the trunk
– the radius of the trunk

• default values for step forward, rotate and roll



12 3. Methodology

• the angle format (degrees or radians)

A tree is a volumetric shape that is located at a certain place. The LsJSON stores this required information
as two attributes: the "anchor" and the "radius". The radius object stores the radius of the trunk at the base
of the tree. This parameter is estimated by the AdTree program. With minimal changes to the native code
this parameter can be written to the LsJson when exporting data as an L-system. The anchor is a 3D point at
which the base of the trunk of the tree starts in 3D space. It is computed from the point cloud by AdTree. This
parameter, like the radius data, can also be extracted and stored without interfering too much with the native
AdTree code.

An example of the an LsJSON can be found in Figure 3.2. This is a simple example in 2D to clarify the attributes
stored in the file. In real world scenarios the axiom and rules are longer and more complex.

{
"recursions": 5,
"axiom": "F",
"rules":
{

"F": "F[+F]F[-F][F]"
},
"trunk": {

"anchor" : [100,500,0],
"radius" : 10

},
"dimensions":
{

"forward" : 3,
"rotation" : 22.5,
"roll" : 20

},
"degrees": true

}

Figure 3.2: Example of a 2D L-system stored in the LsJSON format. It can be divided in four general groups. The recursions, axiom and
rules are the data needed to construct the full L-string. The trunk data is needed to place a volumetric tree at a location. The

dimensions are the default turtle command values. Finally the boolean degrees encodes if the angle and roll values are stored as
degrees or as radians.

As is covered in Section 3.2.5, every L-string character can have a value connected to it. For example, "F(10)"
is a step forward with a distance of 10 meters, and "-(50)" is a left rotation of 50 degrees (or radians). To allow
for more compression, default values can be stored under "dimensions". These values will be used when a
character does not have a parametric value attached to it. For example, the "F" in the LsJSON in Figure 3.2
will be seen as "F(3)" instead of "F(0)", and the "-" will be seen as "-(22.5)".

Storing tree model data in this format is rather implicit, compared to a more classical approach where all the
nodes, edges and meshes are explicitly stored. The only explicit data that is stored in the LsJSON is the trunk
anchor point and the radius. It is assumed the rest of the values needed to read this file and construct a mesh
of the tree can be calculated from this data. This means that an LsJSON file will occupy less storage space, at
the cost of needing more computations to reconstruct the mesh. This adds the potential for deviations and
errors that can propagate trough the entire model, due to the lack of correction points.

3.2.2. L-system initialisation
To generate the L-system, the first step is the initialisation of the L-system class. The L-system stores as
attributes:

• the graph
• whether it is in degrees or radians



3.2. L-System 13

• the root node
• the anchor point
• the radius of the trunk
• the L-string
• the axiom
• the rules
• movement parameters
• growth parameters
• generalisation parameters

The skeleton that was generated by AdTree is copied and duplicated. This is done to be able to edit the
attributes of the skeleton’s nodes without editing the original skeleton that is in memory. An extra attribute
was added to the nodes of the skeleton: a map that stores the L-system representation of each individual
node. This representation is a description of the relative movement from its parent towards this node, stored
as a string. It contains the forward motion, rotation, roll and nesting. A detailed description of this movement
will be given further in Section 3.2.4.

Aside from the starting skeleton itself, several attributes are stored to describe it. These consist of the root
node, trunk radius, and root position (anchor), which were previously computed by AdTree. This information
is needed to convert the L-system into geometry.

The L-system has several options. The default method reads the AdTree skeleton and converts it to an L-
system. This can be either in radians or degrees. After this, two further operations are possible. One can
generalise the L-system, aggregating all branch tips into an average and storing it as a single operation, and
one can grow the L-system, describing its development step-by-step. Both these options will be explained
further in this chapter.

The L-system itself consists of the L-string, axiom, and zero or more rules. The L-string is the complete
description of the graph in L-system notation. It is one long string, describing the relative position of all
nodes, as well as the length of the branch segments between them, and the nested structure of the branches.
The axiom is initially assigned as equal to the full L-string. It can be converted into a shortened version with
rules using the generalisation option.

3.2.3. Obtain nesting
The pipeline described in Chapter 3 shows that first the nesting is computed, then the relative position be-
tween nodes, and lastly this information is written to the L-string. However, in reality this is a recursive
process. The sections below will go into further detail about the relative movement between nodes and the
L-string representation. This section will describe the recursive process itself, as well as the nesting.

A (botanical) tree consists of branches, which can then again consists of (sub)branches. This implementation
of the L-system needs this information when converting the L-system to geometry. The markers "[" and "]"
are used to note respectively the beginning and end of a branch. When the start of a branch is detected, the
current position is stored in order to return to this position when the end of the branch is reached. The rest
of the tree can then be traversed from the start of the branch that was found.

The nesting, as well as the relative movement between all nodes, is found by traversing the skeleton recur-
sively. The recursive traversal method (Algorithm 3.1) takes as input two nodes, as well as a pointer to the
skeleton. The current node to traverse to is the startV, which is a SGraphVertexDescriptor from the Boost
package. Its parent, prevV, is passed as well. The movement of startV that will be noted in the L-string is the
relative movement from node prevV to node startV. The root node, which does not have a parent, is thus
not included in the L-string directly, but as the starting point (prevV) of the movement to the first node after
it. The absolute position of the root node in 3D coordinates is stored in the "anchor" property of the LsJSON.
The rest of the tree can be generated relative to this point.

Algorithm 3.1: Tree traversal

1 input : s t a r t i n g Boost node startV ,
2 parent Boost node prevV ,
3 skeleton Boost graph skel
4 output : L−s t r i n g ( a t t r i b u t e of L−system c l a s s )
5



14 3. Methodology

6 children = None
7

8 write movement prevV to startV
9

10 i f startV i s l e a f then
11 return startV
12 else do
13 foreach ( outward edge eout of startV ) do
14 i f ( eout destination != prevV ) then
15 add eout destination to children
16

17 i f ( startV has 1 child ) do
18 return t r a v e r s a l ( prevV = startV , startV = child )
19 else do
20 Boost node l e a f = None
21 foreach ( child in children ) do
22 add " [ " to L−s t r i n g
23 add " [ " to child . l s t r i n g [ " nesting " ]
24 l e a f = t r a v e r s a l ( prevV = startV , startV = child )
25 add " ] " to l e a f . l s t r i n g [ " nesting " ]
26 add " ] " to L−s t r i n g
27

28 return l e a f

The traversal method is first called with the root node, as this is the natural staring point. The root node
has itself as its parent, and thus for the initial traversal step it is passed as both the prevV and the startV.
When the traversal method is called for all following nodes, the movement towards the current node startV,
relative to the position of its parent node prevV, is written to the L-string. After this, all children of the node
are found and traversed recursively. This is where the nesting is detected and written to the L-string as well.
The number of children found determines the nesting structure. If one or zero children are found, the branch
respectively continues or has reached a leaf. No new nesting structure is initiated. Detecting two or more
children means a branching point has been found. In this case, a new branch start marker ("[") is inserted
into the L-system L-string for all children. The node-specific L-string nesting description property is also
updated. This property is used for the generalisation extension (Section 3.3.1). Each child thus notes the
beginning of a new (sub)branch, both in the L-string and as a property of the node itself.

Noting the ending nodes of branches is slightly more difficult. A branch should be ended at the tip, meaning
when a leaf node is reached from the last branching point. However, at the point in the code where the
beginning of a branch is noted, the end node is still unknown. The ending marker can simply be inserted into
the L-string after the recursive call of the traversal method. Adding the ending marker as a property of the
correct node however requires the program to return a pointer to the leaf node when it is found. The traversal
method thus returns the respective end of a branch to the point where it was started, allowing the ending
marker "]" to be added as a property of the correct leaf node.

3.2.4. Compute relation between nodes
Algorithm 3.2 describes the way the relative movement between two nodes is computed. This movement
consists of a rotation angle (angle around the Y-axis), roll angle (angle around the Z-axis), and the distance
between the two nodes. The relative angle between nodes was split up into two axes because of the way the
LsJSON file is read. The part of the code that performs this translation, the Turtle, reads the rotation one axis
at a time. It first rotates, then rolls, and lastly moves forward. This means that in order to describe movement
in 3D, rotation had to be described per axis. The third axis of rotation, the X-axis, pitch, or forward direction,
is in this case irrelevant. This rotation would correspond to a movement similar to if one were to "roll" a
branch between two fingers. Any rotation in this direction would not be noticeable in 3D (unless textures
are used for the geometry of the branches). The rotation in 3D between two nodes could thus in this case be
described using just 2 of the axes.

Algorithm 3.2: Relative movement between nodes

1 input : s t a r t i n g Boost node startV ,
2 next Boost node nextV ,
3 skeleton Boost graph skel ,
4 i n t accuracy
5 output : tuple movement <rotation , r o l l , forward>



3.2. L-System 15

6

7 movement = { 0 , 0 , 0}
8 Boost node prevV = parent startV
9

10 i f ( nextV ! = root ) do
11 f ind the the coordinates of the 3 nodes
12 branch length = distance startV to nextV
13

14 vector to_nextV = coords_next − coords_start
15 vector to_startV = coords_startV − coords_prevV
16

17 define vectors of axis system (X , Y , Z , righthanded )
18

19 project the 2 vectors between nodes to the XY plane :
20 projected vector Z = 0
21

22 f ind the r o l l angle of both vectors :
23 for ( both vectors in the XY plane ) do
24 double r o l l angle = None
25 i f (Y < 0) do
26 r o l l angle = − acos ( dot product ( vector ,
27 X axi s ) / ( length ( vector )
28 * length (X axis ) ) )
29 else do
30 r o l l angle = acos ( dot product ( vector ,
31 X axi s ) / ( length ( vector )
32 * length (X axis ) ) )
33 i f r o l l angle = NaN, do r o l l angle = 0
34

35 r o l l the 2 vectors to the XZ plane :
36 new vector = r o l l old vector with − r o l l angle
37

38 f ind the rotation angle of both vectors :
39 for ( both vectors in the XZ plane ) do
40 double rotation angle = None
41 i f (Z < 0) do
42 rotation angle = acos ( dot product ( vector ,
43 X axi s ) / ( length ( vector )
44 * length (X axis ) ) )
45 else do
46 rotation angle = 2pi − acos ( dot product
47 ( vector , X axis ) / ( length ( vector )
48 * length (X axis ) ) )
49 i f rotation angle = NaN, do rotation angle = 0
50

51 r e l a t i v e r o l l angle = r o l l angle to_nextV − r o l l angle
52 to_startV
53 r e l a t i v e rotation angle = rotation angle to_nextV −
54 rotation angle to_startV
55

56 round angles close to 360 or 0 degrees to 0
57

58 return < r e l a t i v e rotation angle ,
59 r e l a t i v e r o l l angle ,
60 distance >

The method for splitting up the relative rotation between two nodes into two axes was based on the concept
of spherical coordinates. Figure 3.3 shows how the rotation and roll angles were found. First, the vector
between two nodes is projected onto the XY plane. This can simply by done by making the Z-coordinates of
the vertices equal to 0. The roll angle, around the Z-axis, is then the angle between this projected vector and
the X-axis. The angle between two vectors (θ) can be found with the following formula:

cosθ = ~u •~v
‖~u‖•‖~v‖

θ = arccos
~u •~v

‖~u‖•‖~v‖
(3.1)

Using this formula as-is would not distinguish between vectors on different sides of the X-axis, meaning when



16 3. Methodology

a vector is mirrored in the X-axis, it will have the same angle to the X-axis. Because this angle is used to roll
around the Z-axis, vectors on the "other side" of the X-axis need to be accounted for. This is done by rotating
with a negative angle if the projected vector has a negative Y-coordinate. Vectors on the negative Y-side of
the X-axis will be rolled in the opposite direction of those on the positive Y-side. The angle to the X-axis in
this case can be calculated using θ =−arccos ~u•~v

‖~u‖•‖~v‖ . Mirrored vectors in the Z-direction were not taken into
account, since all vectors used here were projected to the XY plane.

Figure 3.3: Method of finding relative angles, for both Y and Z axis.

After the roll angle around the Z-axis is found, the rotation angle around the Y-axis is calculated. Projecting
the original vector to the XZ plane by setting the Y-coordinate to 0 here would result in a vector on the XZ
plane with a different inclination than the original, meaning it no longer points in the right direction. To
project the original vector to the XZ plane, it is rolled around the Z-axis instead. The angle needed to rotate
exactly onto the XZ plane has already been calculated: it is the opposite of the roll angle. For finding the
rotation angle, the same formula as above is used to find the angle between the vector and the X-axis. In this
case, mirrored vectors will have a negative Z-coordinate. The angle to the X-axis in this plane is opposite to
the positive rotation direction using the right-hand coordinate system, meaning the real angle to rotate with
will be a full circle (2π) minus the found angle. For mirrored vectors, the original found rotation angle will
be the correct one. Found rotation angles of vectors with a negative Z-coordinate are therefor not subtracted
from 2π. Since vectors are rolled onto the XZ plane, accounting for vectors mirrored in the Y direction is not
necessary.

The final result of finding the relative movement from one vertex to the next will be the roll angle, the rotation
angle, and the distance between the two vertices. To get the relative angles of a vertex nextV, the global angles
of both the vector towards it, as well as the global angles of the edge that preceded it need to be calculated.
The current edge, here noted as~b will be from startV to nextV, the previous edge, here noted as ~a will be
from prevV to startV. The relative roll and rotation angles towards node nextV are then the global angles of
~b minus the global angles of ~a.

3.2.5. Write to L-string
Algorithm 3.3 displays the way the L-string of the L-system gets filled, as well as how the relative movement of
each node is stored as an attribute of the node. Each movement to a new node is marked by one occurrence
of "F" in the L-string. Occurrence of rotation ("+", "-") and roll (">", "<") are optional, and are only written if
they exist. Thus, the angles only get written if they are not 0, preventing redundancy.

Algorithm 3.3: Tree traversal



3.2. L-System 17

1 input : s t a r t i n g Boost node nextV ,
2 next Boost node nextV ,
3 skeleton Boost graph skel ,
4 i n t accuracy
5 output : L−s t r i n g ( a t t r i b u t e of L−system c l a s s )
6

7 compute movement from startV to nextV
8 movement = r o l l angle ( rad ) ,
9 rotation angle ( rad ) ,

10 forward distance (m)
11

12 i f ( L−system : degrees ) do
13 convert rotation and r o l l angle to degrees
14

15 i f ( rotation angle > 0) do
16 round angle to accuracy
17 write "+( angle ) " to global L−s t r i n g
18 write "+( angle ) " to rotation of nextV
19 i f ( rotation angle < 0) do
20 round angle to accuracy
21 write "−(angle ) " to global L−s t r i n g
22 write "−(angle ) " to rotation of nextV
23

24 i f ( r o l l angle < 0) do
25 round angle to accuracy
26 write " >( angle ) " to global L−s t r i n g
27 write " >( angle ) " to r o l l of nextV
28 i f ( r o l l angle > 0) do
29 round angle to accuracy
30 write " <( angle ) " to global L−s t r i n g
31 write " <( angle ) " to r o l l of nextV
32

33 i f ( forward distance > 0) do
34 round distance to accuracy
35 write "F( distance ) " to global L−s t r i n g
36 write "F( distance ) " to forward of nextV

Corresponding to the order in which the Turtle will read in the L-string movement, the rotation angle gets
written first. The roll angle follows, with the forward marker after that. As discussed previously, the nesting
markers are not written here, but inside the recursive traversal method. Because the Turtle can roll and rotate
in both directions, a distinction is made between positive and negative angles. Which direction is positive,
and which is negative, is determined using the right-hand 3D axis system.

3.2.6. L-System to AdTree
As described in Section 2.2.2, an approach based on the python library turtle has been used to translate the
LsJSON file back to 3D geometry. The class with this functionality is called the LsTurtle, for ease of reading
the python turtle will be called just turtle. Unlike a normal turtle, the LsTurtle is not limited to only drawing
edges by following simple commands. The lsTurtle additionally generates all the data that is necessary to
allow AdTree to recognize the LsJSON as the components of a tree. This allows the program to take advantage
of the existing functions of AdTree to transform these components into a volumetric tree model. In the native
version of AdTree these components are computed from a point cloud, however, this original data source is
not available when opening an L-system.

The processes the LsTurtle executes can be summarized in the following steps:

• Access and collect the attributes stored in LsJSON
• Translate the axiom and rules into an L-string (if needed)
• Read the L-string
• Compute the height and bounding distance of the tree

The rest of this subsection will describe how the LsTurtle functions based on these four steps.

Access and collect the attributes stored in LsJSON
The augmented AdTree allows the user to select an "Open L-system" option from the GUI. This will prompt
the user with a file dialog that allows for easy file selection. The chosen file path is fed into the LsTurtle



18 3. Methodology

instance. The LsTurtle accesses the data that is stored in the LsJson with the help of the nlohmann JSON
library [17]. The data that is stored in the JSON is handled in different ways. Data like the default dimensions
are stored privately and are only accessible by the LsTurtle instance itself. Data like the trunk anchor and
radius are also stored privately but accessible with getters that enable parts of the substituted AdTree code to
have easy access to the values. Some data, like the axiom and the rules are accessed, used for computation,
and immediately afterwards discarded.

Figure 3.4: The added GUI element that allows the user to easily select and open an LsJSON file

Translate the axiom and rules into an L-string
As mentioned before, the LsTurtle does not store the rules or axiom. This data is only used to create the
L-string from them, and is discarded afterwards. The creation of the L-string is called the translation. The
axiom is translated with the help of the supplied rules and the recursion variable. If no rules are supplied, the
translation process is bypassed. In this case the axiom is seen as the L-string.

If rules are supplied by the JsJSON the translation process is executed. This is done by first constructing
a dictionary. This is a map of the rules, created with the key set as the predecessor part of a rule and the
mapped value as the matching successor part. The actual translation is done by iterating over ever character
of the axiom. Every time a character matches with a key in the dictionary, the character is replaced with
the matching mapped value. With this process the axiom-like string, generally, grows longer. This iteration
process is repeated until it has looped over the complete axiom-like string a specified amount of times (this
value is supplied by the LsJSON).

The "recursions" object in the LsJSON dictates the number of times the axiom-like string is iterated through.
The term "iterations" was not used here, due to the possibility of the L-system to grow both iteratively and re-
cursively. The diagram in Figure 3.5 gives a simple example of how this translation creates a recursive growth.
The first section of the diagram shows a section of an LsJSON file, the second section shows the resulting L-
string per recursion number. In this example the characters used as rules do not directly translate to LsTurtle
movement, this is however also a possibility.



3.2. L-System 19

{
"recursions": 5,
"axiom": "A",
"rules":
{

"A": "AB"
"B": "A"

},
...

}

recursion = 0 : A
recursion = 1 : AB
recursion = 2 : ABA
recursion = 3 : ABAAB
recursion = 4 : ABAABABA
recursion = 5 : ABAABABAABAAB

Figure 3.5: Top: fragment of a recursive LsJson file. Bottom: the resulting L-string per iteration. Note that when recursion = 0, the axiom
is the same as the L-string and thus no translation is needed.

Due to the way the L-string is read in a later step, the occurrence of nesting without any "F" characters can
cause errors. Examples are cases where a subsection of the L-string is "...[X]...", "...[+]..." or "...[>]...". To avoid
the errors that these and similar cases bring, these situations are removed from the L-string in a cleaning
process.

During the cleaning process, the L-string is iterated over backwards and nesting is marked. Whenever a nest-
ing is found that does not include any sub-nesting, nor an "F" character, the nesting is removed from the
L-string. After the complete reverse iteration the cleaned L-string is finished and can be used for the reading
process.

Read the L-string
The cleaned L-string is transformed into geometry in the first process, which resembles a turtle. The L-string
encodes the steps the turtle takes in 3D space. The turtle iterates through the L-string and executes the com-
mand the current character encodes. The location of the turtle while walking is stored into a skeleton graph,
after reading this will resemble the complete structural skeleton of the stored tree.

The "F" character is the only "storing character". The "F" encodes a step forwards. When this character is
encountered, the turtle does not only step forward but it also stores the point it walked to as a vertex. This
point is stored in an adjacency list. To connect the vertices, the edge between the point it moved from and
the point it moved to is also stored.

Figure 3.6: Visual example why the "F" char is the only "storing character". Case 1: the "F" char is encountered, a new point and a new
edge is created. Case 2: a rotate char is encountered ("+" in this case), the turtle rotates but no new point nor a new edge is created.

Case 3: a roll char is encountered (">" in this case), the turtle rolls but no new point nor a new edge is created. So in case 2 and 3 there is
no new information related to the graph to store.



20 3. Methodology

Figure 3.7: The simplification of straight line segments during the reading process. When passing over a "F" char no new point is stored
nor a new edge if the next char is also an "F". The location of the turtle does get updated however. If the next "F" char is not followed by

another "F" char, the point and edge are stored. (1) the location updates of the turtle, (2) the stored edge and points.

During the reading process the LsTurtle also applies the standard dimensions when necessary, and simplifies
the straight parts of the skeleton. An example of the simplification can be seen in Figure 3.7.

An LsTurtle instance has no direct functionality to create branching chains. However, a tree has a skeleton
that branches heavily. In the L-string branching, or nesting, it is declared with the square brackets "[]". When
during the reading process the the "[" char is encountered, a new LsTurtle instance is called. The main lsTurtle
will iterate further over the line until the ending of the nesting, "]", at the right level is found. The new LsTurtle
will read the nested line and return the found edges and vertices. This data is stored and connected in the
main LsTurtle’s graph. This creates a branching L-system by recursively calling linearly working turtles.

Figure 3.8: Example of the recursion of the LsTurtle reading. This example is the 2D skeleton of the L-string "F[+F-F[+F]F]-F". The

main LsTurtle is fed the line "F[+F-F[+F]F]-F" and executes "F-F" . The second child LsTurtle is fed the line "+F-F[+F]F" and

executes "+F-FF". The second child LsTurtle is fed the line "+F" and executes this completely.

The constructed tree graph is stored in a Boost adjacency list. This is a list that collects the vertices, indices,
and their respective properties. The adjacency list is also used in the native AdTree to store the skeleton
information, enabling AdTree to use the LsTurtle skeleton graph directly without the need of any conversion
of type.

Compute the height and bounding distance of the tree
After the LsTurtle has reconstructed the skeleton graph, the final computations related to the created skeleton
can be made. These are the height of the skeleton and the bounding distance of the skeleton. These two
variables are needed, just like the trunk variables, to allow AdTree to be able to function with the supplied
data.

The height is computed by looping through the collected vertices and computing the distance between the
anchor and the point at that iteration. If the height delta (point z - anchor z) is larger than the stored height,
the stored height gets updated to this height delta. In that same loop the bounding distance is computed.
This is done by computing the distance from the anchor and the point at that iteration. If this distance is
bigger than the stored bounding distance the bounding distance is updated.



3.3. Extensions 21

From LsTurtle to AdTree data
The LsTurtle collects and computes the information that AdTree computes from a point cloud. Thus, the
LsTurtle bypasses a major part of the AdTree process. The output of the LsTurtle needs to be fitted to the cor-
rect variables in the native AdTree in order to use AdTree to create 3D volumetric geometry from the skeleton.

The vertices that are created by the turtle are used as points in the 3D viewer, allowing the user to visualize
the vertices stored in the skeleton. These points are not of the same nature as they are when opening a tree
point cloud directly. The points outputted by LsTurtle do not reflect the original point cloud from which the
skeleton is extracted. This data is not stored in the LsJSON used to create it. The simplified skeleton, now
internalized in AdTree, is used to draw the edges in the viewer and connect the earlier copied vertices to
create a visualized graph.

The following creation of a volumetric tree is completely done with native AdTree functions. After the clone
skeleton function, native AdTree functions are used to reconstruct the mesh. This is all still happening in one
connected process after the "open L-system" option is selected by the user. This means that when the user
imports an LsJSON into AdTree it creates a cloud, skeleton and mesh in one go. It does not constrain itself, like
when importing a cloud, to only one of these steps until the user requests the next one. This is done because
the LsJSON encodes the data of both the skeleton and the mesh. This is unlike the point clouds, where all
these parameters need to be computed/approximated. The option to create leaves is however still kept as
a separate option that needs to be selected by the user. The LsJSON and LsTurle do not directly encode or
compute the leaf data. However, due to the close interaction between the LsTurtle and the augmented AdTree
the native AdTree option to add leaves functions very well on the L-system trees.

3.3. Extensions
The base L-system functionality reads an AdTree skeleton into an L-system L-string. Two extensions are pos-
sible as well: one can grow the tree step-by-step, and one can generalise the tips of branches. Both possibili-
ties will be discussed further in the following sections.

3.3.1. Generalisation
The generalisation functionality replaces the tips of all branches with a computed average. It starts with a
previously computed L-system. Both the generalisation and the growing work with a custom branch struc-
ture. This branch structure computes and stores additional structural parameters of the L-system, such as
the leaf nodes. For the generalisation functionality, the leaf nodes stored in this structure are used to initialize
the algorithm. Starting from each leaf node, the generalisation takes a step back, towards the parent of the
leaf. It then compares the relative movement from all parents, to all leaves. The relative motion towards a
node was previously stored as an attribute of all nodes when the L-system was generated. This information
is now used to compute the average roll angle, the average rotation angle, and the average branch length to-
wards all leaves of the tree. The motion towards these leaf nodes is then changed to be this average. Instead of
working with the full L-string as the axiom, the L-system will now work with an altered axiom and rules. For
each leaf node, the averaged movement will be marked as a rule. The full movement previously noted in the
L-string/axiom will now be replaced with a rule marker. This can be any currently unused string character,
in this case "X" is used. A corresponding rule is added to the L-system. It will map "X" to the average roll,
rotation and forward motion of the branch tips.

Depending on user input, one or multiple steps can be averaged in this manner. If the number of steps to
average is larger than one, the algorithm will average out multiple nodes. Starting from the leaves, an average
is computed for each step back towards the root of the tree. The rule noting the generalised movement will
be extended with an average of each step. A generalisation with 3 steps for example will have the following
structure:

{rule: averaged rotation to all parents of parents of leaves
averaged roll towards all parents of parents of leaves
average distance to all parents of parents of leaves

averaged rotation to all parents of leaves
averaged roll towards all parents of leaves
average distance to all parents of leaves



22 3. Methodology

averaged rotation to all leaves
averaged roll to all leaves
averaged distance to all leaves

}

In the rule component of the L-system, this will for example look like the following (with the angles in de-
grees):

{"X": "+(20)>(30)F(1.2)-(33)>(170)F(0.4)-(163)<(11)F(2.3)"}

One can see three sets of rotation, roll, and forward motion, corresponding to the three steps that were av-
eraged. The order of the steps will be the order of the eventual traversal, starting from the last node that was
averaged, and ending with the leaf. In the axiom, only the first node of each rule (the parent of the parent in
the example) will be marked. The other two nodes, the leaves and their other parents, will not be marked.
The three consecutive nodes are thus replaced with a single marker "X" at the start of where the rule occurs.
All branch tips are replaced with the same averaged structure. This saves in complexity of the L-system, as all
branch tips will now be described with a marker at the start of each tip in the axiom, and a single rule noting
the same relative movement(s) towards all leaves.

The rewriting of the axiom is done using the relative movement property that was previously stored per node.
When averaging nodes, for each node that is used, the "forward" property gets changed to contain the rule
marker, instead of the original forward movement. For each step except the last, an asterisk is added to the
rule marker to note this node will not be noted in the axiom. After all averages are computed, the generalisa-
tion algorithm traverses the skeleton one last time, starting from the root. The axiom is emptied, and passing
over all the nodes, gets re-written incorporating the generalisation rules. If the forward property of the node
is equal to the rule marker ("X"), an "X" gets added to the axiom instead of the stored relative movement to
the node. If the forward property is equal to the rule marker plus an asterisk, nothing happens. If no rule
marker is present in the forward property, the relative movement to the node gets written to the axiom. This
way, all generalised nodes are replaced with a single rule marker, at the start of each sub-branch that was
generalised.

As for the nesting, this was stored as an attribute per node as well. In principle, the nesting is not changed
when inserting averaged rules. In practice, the algorithm also filters out redundant nesting markers. This is
done by seeing if the nesting attribute of a node contains both opening and closing markers ("[" and "]"). If
this is the case, the markers get counted, and the opening or closing markers that are redundant are removed.
The amount of opposite markers is then decreased accordingly. For example, a node with 3 opening markers
and 5 closing markers ("[[[]]]]]") will be written as 0 opening markers and 2 closing markers ("]]"). All other
markers were redundant.

3.3.2. Growing
Similar to the generalisation, the growing function can be called during the process of writing to L-string.

Several hypotheses were formed about how a tree will sprout and grow its branches:

1. The position of a bud for a new branch should be specific on a branch rather than random.

2. The sections of branches near the tips will grow faster than those near a trunk.

3. The thickness of branches grows at a different speed compared with the growth speed of length.

In practice, the values of the position to sprout, the speed of branch growth in length and thickness, and the
faster speed for sections near tips are provided by the user based on the species information. In this project,
a default set of these values was defined, where users can change them in the GUI as well.

The specific position for a node mentioned in hypothesis 1 is a relative position, which is equal to how many
nodes are between a node and the tip (leaf) of the branch it belongs to. For example, when the sprout position
is 1, the new branches will be added to the nearest node of leaves on every branch. Moreover, if the node is
already a branch point, which means two or more branches are attached to it, a new branch will not be added.
Figure 3.9 shows an example of how a tree will grow in this method when the sprout position is 1.



3.3. Extensions 23

Figure 3.9: An example of growth process.

To implement this, first it is needed to get the relative position of each node. Thus, a depth-first search
method is used to split branches of a tree and then compute the relative position for each node.

Algorithm 3.4: Get relative position

1 input :
2 skeleton Boost gragh skel ,
3 Boost node rootV
4 output :
5 map r e l a t i v e _ p o s i t i o n <Boost node , i n t position >
6

7 w a i t _ l i s t = [ ]
8 back push rootV into w a i t _ l i s t
9 while ( w a i t _ l i s t i s not empty) do

10 root_ = w a i t _ l i s t . back
11 branch_list = [ ]
12 back push root_ into branch
13 n e x t _ l i s t = [ ]
14 f ind a l l next Boost nodes for root_ and store into n e x t _ l i s t
15 next_ = nexts [ root_ . v i s i t _ t i m e ]
16 root_ . v i s i t _ t i m e += 1
17 i f ( root_ . degree <= root_ . v i s i t _ t i m e ) do
18 back pop w a i t _ l i s t
19 while ( next_ i s not a l e a f ) do
20 back push next_ into branch_list
21 i f ( next_ . degree−1 > next_ . v i s i t _ t i m e ) do
22 back push next_ into w a i t _ l i s t
23 next_ . v i s i t _ t i m e += 1
24 n e x t _ l i s t _ = [ ]
25 f ind a l l next Boost nodes for next_ and store into n e x t _ l i s t _
26 update next_ with n e x t _ l i s t _ [ next_ . vis i t_t ime −1]
27

28 back push next_ into branch_list
29 next_ . v i s i t _ t i m e += 1
30 for (node in branch_list ) do
31 i f node in map map r e l a t i v e _ p o s i t i o n and value position > node index in branch_list do
32 continue
33 else do
34 i n s e r t { node , node index in branch_list } into map r e l a t i v e _ p o s i t i o n
35 back push branch_list into branches

After finding all relative positions for nodes in the tree, the next step is to generate L-strings for the new
branch. The process is very similar to the generalization function. During writing to L-string, rule markers are
put into the axiom if the relative position of nodes equals the position of a bud that was set up by the prorgam
or from the user’s setting. There are 4 rules responding to the 4 cases of the tips of branches: positive rotation
and positive roll, negative rotation and positive roll, positive rotation and negative roll, and negative rotation



24 3. Methodology

and negative roll. A new branch near a tip with positive rotation and positive roll will have the following
structure:

{rule: averaged rotation to all leaves that have positive rotation
averaged roll to all leaves that have positive roll
averaged distance to all leaves

}

In the rule component of the L-system, there will be 4 rules as well, for example like the following:

{"A": "[+(159.210)>(93.597)F(0.360)]"},
{"B": "[-(173.812)>(93.597)F(0.360)]"},
{"C": "[+(159.210)<(113.746)F(0.360)]"},
{"D": "[-(173.812)<(113.746)F(0.360)]"}

Notice that there are brackets "[]" around the new branches. This means the rule markers are put in front of
the original movement, so when reading this, the turtle will first draw a new branch, then go back to continue
drawing the original branch.

After this, the distance of movement will be updated with the product of the original distance and the basic
growth speed. This way, the tree does not only gain more branches while growing, but existing branches also
grow longer. In this project, if the relative position of the start node of a movement is smaller than 4, the
distance of the movement will be updated with the product of the original distance and the faster growth
speed. Last but not least, the radius in the L-system will be updated with the product of the original radius
and the growth speed of thickness. This way, branches also grow thicker as they grow in length.

3.4. CityJSON semi-explicit storage format
For using CityJSON to store tree models, the CityJSON standard was followed as closely as possible. However,
to reduce the file sizes some minor elements were changed. The first one is that the "geometry" set does
encode geometry, but not in the way that a regular CityJSON would do. The skeleton is explicitly stored with
all the nodes and their 3D coordinates as the "boundary". In the "semantics" map there are "types", which
store the radii present in the volumetric tree model, and "values", which store the "types" of radius belonging
to an edge. This means that the "boundary" set does not directly encode geometry, but rather constructs the
rails across whcih the "types" of radii are swept to create geometry. An analysis of the resulting file sizes can
be found in Section 4.8.

The different "types" of branches have unique radii. These classes of radii differ per tree, since the radius of a
class for a smaller branch is dependent on the radius of that of the largest radius, being the trunk. There are
two classes that additionally indicate quite an important characteristic of each branch, which is whether the
branch is the trunk of the tree (maximum radius), a branch tip (minimum radius) or somewhere in between.

Not storing the geometry directly into the "boundary" map, but rather in this alternative manner, means
that normal CityJSON readers are unable to read the files and that according to validation service cjio [12]
the CityJSON file is invalid. This could be resolved by setting the "Cityobjects""type" to "road" or "railway".
Doing this will not eliminate but only move the issue: the software packages used to open these files will open
it as if it is either a road or a railway object. Thus, not only classifying it incorrectly but also being unable to
execute the correct mesh creation process as described previously. Only the skeleton will be drawn, instead
of the volumetric tree. The "Cityobjects""type" is thus kept as "SolitaryVegetationObject". This means the
custom CityJSON format is not valid, not standardized and can not be open natively by CityJSON readers.
However, it utilizes most of the valid CityJSON formats and the creation of geometry is a simple process that
could be incorporated into the CityJSON standard and readers.



3.4. CityJSON semi-explicit storage format 25

{
"type": "CityJSON",
"version": "1.0",
"CityObjects": {

"oneTree": {
"type": "SolitaryVegetationObject",
"geometry": [

{
"type": "MultiLineString",
"lod": 2,
"boundaries": [

...
],
"semantics": {

"types": [
{

"class": 1,
"radius": 0.00937500037252903

},
...
{

"class": 10,
"radius": 0.09375

}
],
"values": [
...
]

}
}

]
}

},
"vertices": [
...

]
]

}

Figure 3.10: The structure of the CityJSON tree format. Note that this is not a standardized storage method and although we call it a
CityJSON tree it is not according to the current standard. This is an alternative approach that would allow more compression. For a

more in depth description of the format see Section 3.4.

Figure 3.10 shows an example of the custom CityJSON format that was created. In order to start the process of
writing the entire tree structure to a new format, it is first needed to get all necessary information from the tree
model created and stored by AdTree. This starts with the collection of skeleton data, meaning the nodes and
edges and the radius data that is stored per edge. To correctly collect this, the point cloud needs to be filtered.
In cases where a whole point cloud is loaded in to create a tree model, following the native ADTree modelling
approach a lot of points are present in the in memory skeleton graph that are not used in the actual skeleton.
The unconnected points are discarded and only the connected points/nodes of the skeleton are stored.

The collected edges do not need filtering, however they do need correction. The edges are generated by
ADTree by connecting points via their indices. If points are discarded when filtering the point cloud, like in
the case when points in the cloud are not part of the skeleton, these indices are not pointing to the correct
points anymore. Thus, when collecting the edges for the CityJSON export these indices are corrected so they



26 3. Methodology

connect the right points.

Every edge in the skeleton created by ADTree contains information about the radius the mesh pipe around it
should have. This data is collected and stored in a list that is in the same order as the edges. From this list the
maximum and minimum radius is computed. This created domain is split in steps of 10, allowing extra data
compression by reducing the amount of similar data. For every radius in the radii edge list, a step is chosen
and these index values are stored in a list.

The JSON file is written with the help of the nlohmann JSON C++ library [17]. This allowed for easy JSON
access with no need for complex code.

3.5. Classic skeleton explicit storage format
Aside from the functions required to allow the user to export, generalise, grow and open L-systems, the aug-
mented AdTree also has a reworked export skeleton function. This function will export a skeleton into a more
classical format. The points are stored as 3D coordinates, the edges contain two indices referencing two
points and thus connecting them. This information is encoded in the .PLY file format.

Although the functionality to write .PLY files did exist, the native AdTree was unable to write valid files. The
output was not readable by any of the 3D viewers and modellers that were tested. To add functionality to
AdTree, but also to add an easy way to check the skeletons for issues while programming, this method was
fixed. The augmented AdTree now writes the correct header, edges and vertices to be opened in other soft-
ware. This writer is similar to the CityJSON writer, where the point cloud data and edge data had to be either
corrected or removed from memory before the writing process could start. For an example of a .PLY file as
outputted by the augmented AdTree program, see Figure 3.11.

ply
format ascii 1.0
element vertex 4468
property float x
property float y
property float z
element face 0
property list uchar int vertex_index
element edge 4467
property int vertex1
property int vertex2
end_header

127395.5156 401149.75 13.08600044
127395.5625 401149.8438 12.68599987
...
127395.7031 401149.875 12.59599972
127397.0078 401151.7812 11.9119997

457 506
705 3027
...
2011 170
1530 1531

Figure 3.11: The structure of the classical skeleton in the PLY file. This is not a completely valid structure due to the absence face objects,
making it challenging to be opened fully by programs that are depended on the existence of these objects, like Blender and Rhino3D.



4
Results and discussion

This section demonstrates how the pipeline as described in Section 3.1 performs in practice. The pipeline
was, as mentioned before, developed and integrated into the existing software of AdTree, allowing the utiliza-
tion of the already implemented structure, GUI and functions.

(a) base Point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.1: The resulting AdTree model and L-system model of the Paris_Luxembourg tree point cloud

4.1. Assessment
To judge whether the L-system format is a good alternative to more traditional methods of storing complex
geometries of trees, several aspects were tested. In order to assess the quality of the geometries created from
the L-system, different kinds of trees were loaded into AdTree, exported to L-system, transformed into mesh
geometries, and inspected visually. Differences in acquisition method (Section 4.3) and input point cloud
density (Section 4.2) were also investigated in this manner. The L-system geometry is compared with the
geometry as outputted by AdTree as well (as this output is what would result from the input if no L-system
intervention was done), both visually and quantitatively. The same is done for the two skeletons. Aside from
the capability to be transformed into accurate complex mesh geometry, another measure of the L-system’s
quality and compactness is file size in comparison with more traditional formats (Section 4.8). It is important
to note that file size is but an indication of compactness, file size is also determined by other factors not
directly related to the compactness of the format itself. Lastly, some inefficiencies are discussed, as well as
the functionality and effect on compactness of the generalisation and grow extensions.

27



28 4. Results and discussion

4.2. Effect of point cloud density
The following figures show the effect of point cloud density on the quality of the reconstructed tree skeleton.
Points were removed by means of a minimum distance threshold from a previously dense point cloud to
achieve different densities. It can be seen that as density decreases, model accuracy decreases as well. In
the images shown, model accuracy remains relatively good, even at the lowest density. In reality however,
sparse point clouds will not have points distributed as evenly as in the examples. Sparse point clouds often
have regions where no points were detected, and may be more inaccurate in general as well. Additionally, the
points missing are often crucial trunk points.

(a) base Point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.2: In this figure one can observe the point cloud at its original density. Figure 4.2(b) shows the corresponding AdTree surface
reconstruction, Figure 4.2(c) shows that of the L-system extended AdTree.

(a) base Point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.3: In this figure one can observe the effect of a lower point cloud density (distance threshold = 0.1) on the surface
reconstruction of both AdTree and the L-system.



4.2. Effect of point cloud density 29

(a) base Point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.4: This figure shows an even sparser point cloud (distance threshold = 0.2), and the corresponding AdTree and L-system
reconstructions. The main effect seems to be fewer branches, for both reconstructions.

(a) base Point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.5: This figure shows the sparsest point cloud that was tested(distance threshold = 0.25), and the corresponding AdTree and
L-system reconstructions. The main skeleton/structure of the tree is still clearly present.

From the point cloud sparsity comparison (Images 4.2, 4.3, 4.4, and 4.5) it can be seen that the lower the
density is, the less accurate the branch tips become. At lower densities, there are fewer branch tips detected
overall, tips are more inaccurate, and larger parts of the tree belong to these diverging tips. Despite this, even
at the lowest density tested the main structure of the tree remains present. However, as mentioned above, this
test does not represent the reality of very sparse point clouds accurately. Even in this test one can already see
inaccuracies in the trunk emerge when the density of the point cloud decreases (the "twist" near the bottom,
visible both in AdTree and the L-system). The trunk is probably the part of the tree most vulnerable to the
effects of sparse input clouds, as it is both often difficult to detect and critically important to the quality of the
result. It is therefor expected that in principle low-density point clouds will not cause significant inaccuracies
in modelling the main structure of the tree (both with AdTree, and the L-system) - provided sufficient trunk
points are present in the data.

Comparing the AdTree and the L-system models, one can see no obvious discrepancies between the two
representations. Overall, they are very similar. This makes sense, as the AdTree skeleton is used as input
for the L-system. Possible structural inaccuracies between the two representations can only be the result of
inaccuracies in the L-system translation process.



30 4. Results and discussion

4.3. Robustness to data sources
In order to study the effect of input quality on the performance of skeletonization, variations of point cloud
input sources were explored as well. The following figures (Figure 4.6, 4.7, 4.8) show the performance of
AdTree and the L-system when dealing with data from different acquisition methods. For AHN3 and custom
flown LiDAR data, the L-system result was initially faulty. This was due to an inconsistency in the way the
cylinder meshes were rendered. The error was fixed by ensuring the direction of the mesh edges was correct.
Interestingly, the flipped edges error did not occur for the TLS data, as well as some other custom flown
datasets. Once again, it can be seen that the actual structure of the trees is very similar in the AdTree and the
L-system models.

(a) Base point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.6: The AdTree and L-system surface reconstructions based on a AHN3 airborne LiDAR cloud.

Different methods of acquisition proved to have an impact on the quality of the AdTree and L-system results.
The areal LiDAR methods (AHN, custom flown) resulted in much sparser point clouds. TLS LiDAR detected
many more trunk points as well, resulting in more defined, more realistic trunks, and a smaller change of the
reconstruction failing altogether. This makes sense, as terrestrial LiDAR would have much better access to the
lower parts of the tree, be less obstructed by the leaves of the tree in general, and will scan trees from a much
closer distance. Both the static and dynamic TLS result in models that contain many dense small branches.
As mentioned below, dense point clouds may cause faulty models if they are also inaccurate. This is not the
case for TLS, the small branch tips detected seem to follow a realistic image of a tree. How true these small
branches are to the structure of the real tree remains however difficult to judge without inspecting the tree
in reality. Another interesting point can be seen in the AHN3 model, where an accurate trunk was extracted
despite the limited number of trunk points detected. This did not hold true for all AHN3 data, which often has
too few trunk points to make an accurate reconstruction of it. However, it is thus shown that reconstruction
of trees from AHN3 data using an L-system is possible.



4.3. Robustness to data sources 31

(a) Base point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.7: The AdTree and L-system surface reconstructions based on custom flown airborne LiDAR.

(a) Base point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.8: The AdTree and L-system surface reconstructions based on static TLS LiDAR.

(a) Base point cloud (b) Native AdTree tree (c) Base L-system tree

Figure 4.9: The AdTree and L-system surface reconstructions based on mobile TLS LiDAR.



32 4. Results and discussion

Figure 4.10 shows a common error. This error already occurs in the AdTree skeleton (Figure 4.10(b)), and has
to do with the density of the point cloud. In this case, the point cloud is too dense, resulting in AdTree not
being able to construct clear branches. The main structure is present, but the smaller branches get connected
to seemingly random vertices all throughout the model. This issue was common for LiDAR data that was not
collected in winter. This data would contain leaves, confusing the program and introducing many unnec-
essary, non-structural points. A maximum distance filter between two consecutive branch points may help
reduce the severity of this error.

(a) Base point cloud (b) Native AdTree tree

Figure 4.10: Reconstruction error in a tree with many inaccurate or unnecessary branch points.

4.4. Differences in encoded geometry: AdTree output and the L-system
Due to the difference between the storage approaches of the native AdTree (mesh and classical skeleton1)
and the L-system storage approach, there are chances of introduced inaccuracies and deviations. To examine
the presence of inaccuracies and their magnitude, the native AdTree skeleton outputs are compared to their
compressed L-system representations. Figure 4.11 shows the pipeline that was used to obtain and examine
these representations. It is possible to do this comparison in third-party 3D software due to the fact that
AdTree was altered to not only export, but also read/import L-system files. This means the point cloud data
can be converted to an AdTree representation, exported to an L-system, imported again into AdTree, and
exported to a classical skeleton or mesh file. These re-exported files can be visualized by common 3D viewers.
Thus, the limits that the L-system compression presents can be investigated, and the L-system data can be
compared to the data before it was converted and stored as an L-system.

1A structure is considered a classical skeleton when the nodes are explicitly stored with three coordinates and the edges as the lines
between those nodes.



4.4. Differences in encoded geometry: AdTree output and the L-system 33

Figure 4.11: Visual representation of the file pre-processing that happens prior to the evaluation of the performance of the L-System
files. The pointcloud is loaded into AdTree and exported as an L-system and as a skeleton or mesh. The L-system is again loaded into

AdTree and subsequently exported as a skeleton or a mesh. This enables us to compare the L-System files to the "normal" skeleton and
mesh files in 3D viewers/modellers.

In order to inspect whether the skeleton generated from the L-system is accurate, first a visual inspection is
performed, an example of which can be seen in Figure 4.12. Due to a minor bug in the augmented AdTree
code the L-system geometry is translated slightly, resulting in the L-system geometry being placed at a slightly
incorrect location2. This was manually corrected before the models could be compared. The models were
aligned on their anchor point, which corresponds to the location of the root of the tree. This is the only point
that is explicitly stored in the L-system, making it the only valid point possible to align both models with.

The visual inspection shows in every comparison set two fairly similar skeletons. In general, no significant
anomalies were detected. However, the L-system skeleton’s deviation form the baseline geometry becomes
larger towards the the tips of the branches, see Figure 4.12. This is due to the fact that the baseline skeleton
geometry has been explicitly stored, while the L-system skeleton geometry only has an explicitly stored an-
chor point. The rest of the geometry is stored relative to the anchor. This means that if the string of steps
from the root point towards the tip of a branch is longer, and thus more complex, a deviation from the actual
location of the tip is more likely. This is most presumably caused by either small inaccuracies in the creation
of the steps and/or by the rounding of values to a specified number of decimals (3 in this case), which is the
floating point length in the L-system file. The more steps that are taken, the more effect the introduced er-
ror of an earlier step has, and the more rounded steps are stacked upon each other, possibly reinforcing the
errors.

One should note that the mentioned loss of accuracy is not persistent in every export to L-system. Only when
exporting from the original skeleton file to L-system will there be a loss. An opened L-system can be stored
to L-system without an extra loss of accuracy. Thus, an L-system can be opened, edited and stored without
the need of a classical skeleton file as a source to keep the accuracy above a certain threshold. Opening an
L-system will draw edges and nodes with step and angle sizes adhering to the originally stored rounding
accuracy. Thus, when exporting this to L-System again, the computed L-string will already fit this rounding,
which means no extra loss of accuracy occurs.

2This translation was usually around 0 cm to 10 cm depending on the shape of the crown. A tree with an asymmetrical crown will be
more susceptible to this translation bug.



34 4. Results and discussion

Figure 4.12: The visual inspection of the skeletonization of AdTree versus the L-system approach. The original AdTree skeleton has been
colored in black while the L-system skeleton is colored in brown. Both do clearly resemble the same tree, however when taking a closer

look the discrepancies at the branch tips become noticeable.

With an altered test version of the augmented AdTree code and a simple Rhino Grasshopper script it is pos-
sible to quantify the variations that were seen in the visual inspection. This is done by putting the nodes of
both skeleton files in the same order, resulting in two files with matching pairs of points at the same index.
With these files the distance of the L-system skeleton nodes to their ground truth location can be computed.
The results of this analysis can be found in Table 4.1. The skeletons based on the L-systems do indeed show
some deviation from the original input points. This distance is fairly small and does not render the storage
method unusable. There are however some large outlier values that can be spotted, see for example the max-
imum distances of tree1 and tree7 in Table 4.1. The same script was also used to visually display the distance
deviations. This analysis confirms the conclusions drawn in the visual inspections: the more steps a branch
contains, larger the inaccuracy at its tip.



4.4. Differences in encoded geometry: AdTree output and the L-system 35

Min distance* Max distance Median distance stdev distance

Mobile_tree_1 0,00 ... 0,39 0,11 0,07
tree1 0,05 46,00 0,11 2,43
tree7** 0,00... 299,93/32.11** 1,11 53,74/1,78**
Lille_2 0,00... 5,04 0,13 0,07
Lille_11 0,04 0,05 0,04 0,07
LAS_009*** 0,00... 631,99 343,89 99,59

Table 4.1: Statistics of the distances between point pairs from the L-system and non L-system skeletons. Note that these differences are
from the by AdTree created skeletons, and not the differences from the real life tree. *: The minimal distance has the anchor/root point

excluded, due to that always being 0. **: these threes show extreme outliers, being more than ten times larger than the nearest other
distance discrepancy. These values do also not reflect the nature of the tree. The double values in this row reflect the values with the

outliers in the set on the left of the slash, and with these extreme outliers excluded from the set on the right. ***: Las_009 is an example
where the flip bug occurs fairly near the base of the model, resulting in a major part being mirrored and thus being extremely

inaccurate.

The occurrence of some bugs that were overlooked in the visual evaluation could now also be detected. Fig-
ure 4.13 displays one of the visual outputs of the evaluation script. It can be seen that in general the distance
between a point from the L-System skeleton and the matching normal skeleton is extremely small. The me-
dian value is often considerably smaller than 1 cm. However, some major outliers may occur. These outliers
are often a bug that occurs in either the translation to or from the L-system format by the augmented AdTree.
This bug causes the rotation of a node to be flipped around an axis, resulting in the rest of the branch being
the exact mirrored projection of the original one. This is a persistent bug that occurs when during the rotation
the length of the Z-axis becomes very close to 0. The number of occurrences of this bug has been reduced
considerably since the first encounter, however it has proven to be too challenging to completely remove so
far. A close-up of an example of this bug and its effect can be found in Image 4.14. This example is an oc-
currence close to the tip of the branch and thus not that severe. It can however occur anywhere in the tree,
resulting in the possibility of more extreme deviations. Tree LAS_009 is such an extreme case.

Figure 4.13: The visual output of the Rhino/Grasshopper script. This output displays in color the distance a l-system point is deviated
from its location of ground truth point. The gradient goes, in this case, from no deviation (green) to 0,26 cm deviation (red). The blue

points are outliers which are have a much larger deviation than the other points.



36 4. Results and discussion

Figure 4.14: A isolated fragment of Figure 4.13 where one of the persistent bugs in the augmented AdTree code is clearly visual. If during
the rotation of the turtle the Z-axis becomes extremely close to 0 the turtle executes a flipped rotation. This results in the rest of the

subsequent branch becoming an almost perfect mirrored copy from the original. Note how close the original (red) and L-System
skeleton (in black/blue) resembled each other before the faulty rotation.

Aside from this issue, another bug has been spotted in the L-System skeletons. This bug causes the node of
the skeleton to be translated exactly 299,93 cm from the original location along the vector direction of the
edge that precedes it. So far it only occurs in one specific tree model (tree7), where it occurs twice. The results
can be seen in Table 4.1 and a visual result can be seen in Figure 4.15. It is unclear what triggers this bug, or
how it can be prevented. Currently it only occurs in one test case and can not be recreated in any subsection
of this same model, or in any other tested tree model.

(a) Baseline skeleton (b) L-System skeleton

Figure 4.15: The clear isolated outlier (image (b) on the left side of the image) that is created by an L-system translation bug causing the
node of one branch tip to be translated 299,93 cm compared to the baseline location. It seems to only occur in this one tree model.

The mentioned similarities and differences between the skeleton of the L-system and the baseline model can
also be recognized when visually inspecting the volumetric mesh trees, see Figure 4.16. However, the visual
inspections show an anomaly here that was not seen in the skeletons: the bending of main trunk. The section
of the trunk starting from the anchor of the tree to the first branching is bent in a manner that does not
reflect the mesh of the ground truth. When comparing the skeletons of the L-system and the ground truth,
no abnormal deviations that could have caused this are visible, see Figure 4.12 and 4.11. The same bent in the
skeleton, which in the L-system’s case gets translated into the L-system mesh as well, is present in both the
baseline skeleton and the L-system skeleton. Currently it is unclear why this is only translated into a mesh
bend in the mesh of the L-system tree.



4.4. Differences in encoded geometry: AdTree output and the L-system 37

(a) AdTree visualization (b) Lsystem visualization

Figure 4.16: Comparison between AdTree and Lsystem

Aside from the bending of the trunk, the meshes from the L-system and the baseline model seem to resemble
each other very closely. However, the earlier mentioned edge extending bug can also be spotted here. The
extending of the branch in skeleton of tree7 thus translates into the resulting volumetric model. Note that
this is an issue with the skeleton of the L-system tree: the mesh itself has been created correctly around the
skeleton.

With a variation on the earlier used Rhino/Grasshopper script it is possible to quantify the variations between
tree meshes, enabling more in-depth analyses. The script projects the centroids of the triangular surfaces of
the L-system mesh on the baseline mesh and computes the distances from the original point to the projected
one. The results of this script can be found in Table 4.2. This table tells a similar story as Table 4.1. This is
because the rules related to the skeleton are true here as well. Depending on the complexity and length of the
branch, the mesh will become less accurate the further away the edge or node is located from the root of the
tree.

Min distance* Max distance Median distance stdev distance

Mobile_tree_1 0,00... 16,1 0,37 0,33
tree1 0,00... 13,66 0,36 0,59
tree7** 0,00... 272,40/xxx 0,18 13,00/xxx
Lille_2 0,00... 28,38 2,27 1,37
Lille_11 0,00... 8,86 0,20 0,24
LAS_009*** 0,00... 44,07 5,00 5,05

Table 4.2: Statistics of the distances between point pairs from the L-system and non L-system mesh. *: The minimal distance has the
anchor/root point excluded, due to that always being 0. **: these trees show extreme outliers, being more than ten times larger than the

nearest other distance discrepancy. These values do also not reflect the nature of the tree. The double values in this row reflect the
values with the outliers in the set on the left of the slash, and with these extreme outliers excluded from the set on the right. ***: Las_009

is an example where the flip bug occurs fairly near the base of the model, resulting in a major part being mirrored.

The Rhino/grasshopper script also allows one to visually display the values to see where the largest discrep-
ancies are located. These visuals, see Figure 4.17, show new issues that were not spotted when visually com-
paring the models.



38 4. Results and discussion

Figure 4.17: Two visual outputs of the Rhino/Grasshopper script. The scale goes from no deviation in green to large deviation in red.
The blue locations are outliers which generally have a deviation that is 10 times or larger than the rest of the areas. The left tree shows
that although the main trunk is not bend, it still is inaccurate. The tree on the right shows the result of a bend in the trunk (in this case

the trunk even folds in upon itself), which results in the rest of the branches being too narrow.

The earlier spotted skeleton bugs are again recognizable in the mesh: the extension bug, and the mirroring
bug as seen in Figure 4.14. Additionally, there are two new issues. First, the trunk seems to always be inaccu-
rate. Even when it visually resembles the model very closely, the trunk is often the least accurate area of the
tree. This is remarkable due to the close proximity of this part of the tree to the only explicitly stored vertex
location. However, these deviations are not so severe that the model should be deemed faulty. The second
issue can be considered more critical. In some cases the whole tree, aside from the end areas of the branches,
is inaccurate. This occurs only in tree meshes that display fairly major trunk bending. A potential explanation
for this issue is that due to a relation between the trunk bending and the fashion in which AdTree calculates
branch radii, the mesh branches are created too thin. This averages out towards the end of a branch, resulting
in the script registering more accurate tips than the rest of the tree model. This is however not a new bug, but
an artifact from the earlier mentioned trunk bending bug, see Figure 4.17.

4.5. Differences in encoded geometry: AdTree output and the CityJSON
The CityJSON file encoding of the trees is more closely related to the classic skeleton and mesh storage meth-
ods, but it is still different. Thus, there are chances of introduced inaccuracies and deviations. Similar to
Section 4.4, the native AdTree outputs (as ground truth) are compared with the CityJSON representation to
examine the presence of inaccuracies, and their magnitude. Figure 4.18 shows the pipeline of this compari-
son. It is possible to do this in Rhino3D with the help of a Grasshopper script that opens and transforms the
special CityJSON trees to mesh and skeleton objects.

Figure 4.18: Visual representation of the file pre-processing that happens prior to the evaluation of the performance of the L-System
files. The pointcloud is loaded into AdTree and exported as a cityJSON and as a skeleton or mesh. The cityJSON is loaded Rhino via a

Grasshopper JSON reader transforming it back to a skeleton or a mesh. This enables us to compare the L-System files to the "normal"
skeleton and mesh files in 3D viewers/modellers.



4.5. Differences in encoded geometry: AdTree output and the CityJSON 39

Like traditional skeleton formats, the CityJSON explicitly stores the coordinates of every node of the skele-
ton. This results in a skeleton file stored with pinpoint precision. The visual inspection shows no deviations,
anomalies, or bugs. With the help of the same grasshopper script used in Section 4.4 it is also possible to
quantify any deviations between the baseline and the CityJSON skeleton that may occur. The outputs show
that there is no deviation between the two. They are, aside from the order of the edges and nodes, carbon
copies of each other.

However, when visually comparing the mesh of the CityJSON and the native AdTree output, a distinct differ-
ence can be seen. The CityJSON based mesh is both unsmoothed and seems to be generally a lot thicker than
the native AdTree output mesh, see Figure 4.19. However, both meshes follow the same structure, and no ex-
treme outliers or anomalies can be spotted. Both meshes clearly resemble the same tree, where the CityJSON
based model seems a more unsophisticated representation of it.

Figure 4.19: An example of a native AdTree mesh output (left) and a CityJSON output (right). It can clearly be seen that the AdTree mesh
is more sophisticated than the CityJSON generated mesh. Note that the differences between both the meshes is mostly related to the

way the CityJSON is read and not due to the actually encoded data.

It is presumed that this is not directly related to the way the data is stored in the CityJSON, but more to the
way it is read by Rhino/Grasshopper. With the current state of the custom CityJSON tree writer, meshes are
directly created by sweeping pipe shapes over the encoded skeleton. This skeleton is not smoothed prior to
the sweeping process, resulting in jagged branches. The sweeping of the pipe-like shapes is done with a single
radius per line section, resulting in clear steps in width, with no tapering. This lack of tapering also results in
the tips of the branches being a lot wider than the AdTree native mesh.

With the same Rhino/Grasshopper script that was used in Section 4.4 to compare meshes, one can again
quantify the variation between the tree meshes. This allows for a more in-depth analysis and a comparison
with the performance of the L-system storage approach. The results can be seen in Table 4.3. This table lays
bare some interesting properties of the CityJSON mesh. The CityJSON mesh, with its current reader, is more
accurate than the L-System mesh. Due to the explicit encoding of the CityJSON the skeleton is stored very
accurately, resulting in the mesh being less susceptible to bugs and deviations. An example of this is the mesh
tree7 and tree LAS_009, where the L-system showed a significant error, the CityJSON does not.

Min distance* Max distance Median distance stdev distance

Mobile_tree_1 0,00... 14,96 1,00 1,13
tree1 0,00... 9,49 1,82 1,00
tree7 0,00... 15,86 0,84 0,52
Lille_2 0,00... 29,40 3,17 2,11
Lille_11 0,00... 7,72 0,91 0,70
LAS_009 0,00... 6,37 0,65 0,08

Table 4.3: Statistics of the distances between point pairs from the CityJSON and the native AdTree mesh. *: The minimal distance has
the anchor/root point excluded, due to that always being 0.

The visual output of the testing script confirms this deduction. For example, the model of Lille_11 shows some
deviation from the ground truth, see Figure 4.20 (right image). This deviation however does not propagate to



40 4. Results and discussion

the following branches, due to the partially explicit storing of the mesh. This is unlike the L-system deviations
of the same tree, see Figure 4.17 (right image). Due to the almost completely implicit storing of the mesh in
the L-system approach, an error in the trunk can propagate through major parts of the tree.

Figure 4.20: Two visual outputs of the Rhino/Grasshopper script. The scale goes from no deviation in green to large deviation in red.
The blue locations are outliers which generally have a deviation that is 10 times or larger than the rest of the areas. The trucks and some

main branches have noticeable difference from those in AdTree-created meshes. And the tips also have high deviations.

Unfortunately, it is challenging to compare the ground truth, CityJSON and L-system performance in more
depth due to the limited CityJSON reader. Presumably, the CityJSON model would perform better than the
L-System in terms of accuracy, at the cost of using more storage space, see Section 4.8. This is due to the
more explicit storage method that is used in the CityJSON. This way of storing data will however also limit the
possible further computations that would be possible with an L-system, see Section 4.6 and 4.7. However, the
CityJSON would be more easily readable by a selection of software packages, due to already relying for a large
part on an existing infrastructure. The L-System tree model infrastructure that this L-system implementation
requires is still in the early stages of development.

4.6. Branch tip generalisation
Figure 4.21 shows a closer look at the effect of generalising the branch tips of a tree model. The figure shows
the original tree model and the effect of generalising with both 1 and 2 steps. it can be seen that generalising
with 1 step barely has any influence on the quality of the model. However, the L-system contains far fewer
characters, while describing the same tree model. It is therefor more compact. Generalising 2 steps of the
branch trees does lead to some more inaccuracies, such as the zig-zagging pattern visible at some tips. This
pattern is likely caused by the particular nesting structure at these tips, where several sub-branches with only
1 edge until the leaf node sprout from a consecutive structure. Generalising with 2 steps will average these
tips in an overlapping way, as some branch endings are only 1 step long, but get averaged over 2.

This effect is not very problematic at 2 steps of generalisation, as it mostly affects the shortest branch endings
and not the main structure of the tree. It has proved more of an issue at further generalisation steps (Figure
4.22 and 4.23), although at 2 steps it likely caused the missing lowest branch of the tree in Image 4.21. Larger
branches suddenly pointing in a wrong direction, which is what happened in this case, is likely the result of
generalising branch tips that are shorter than the amount of steps to be generalised. If a branch tip of length 1
sprouts from the lower part of a large branch, an edge in the main structure of this branch will be incorporated
into the generalisation as steps past the actual branch tips are generalised. The generalisation thus "moves"
down the main structure of a branch, and can cause a bigger branch to change, and with it the rest of the
branch changes direction as well.

The overall structure of the tree, however, is still well defined at 2 steps of generalisation. It is very similar
to the original and the 1-step generalisation models. Accepting some inaccuracies around some branch tips,



4.6. Branch tip generalisation 41

generalising 2 steps could also be an acceptable method of compressing the model further.

(a) Branch structure of a original tree model (L-system)

(b) Branch structure of the L-system generalised with 1 step.

(c) Branch structure of the L-system generalised with 2 steps.

Figure 4.21: Effects of different amounts of steps of generalisation, one branch has been highlighted for easy evaluation. The main
structure remains clear, while the branch tips are averaged and represent the actual tree model less accurately, but more compactly. The

model does however lose accuracy noticeably at 2 steps, although the size of this effect varies widely from tree model to tree mode.

Min distance Max distance Median distance stdev distance L-system axiom
mesh mesh mesh mesh length

L-System 0,00 13,66 0,36 0,59 199 170
L-System step 1 0,00... 16,42 1,11 0,96 136 423
L-System step 2 0,00... 90,70 12,42 10,68 77 123
L-System step 3 0,00... 140,89 12,35 24,17 42 627

Table 4.4: Comparison of the (generalized) L-system meshes compared to a native AdTree mesh as ground truth. An added variable is
the length of the axiom of the L-system.

In Figure 4.22 and 4.23, a visual comparison has been made for the generalisation option of the entire tree
model, for two different input trees. The most important parameter to consider is the number of steps to
generalise, which is a user parameter. Generalisations have been visualised for 0 (original tree), 1, 2 and 3
steps. It can be clearly seen that this parameter should not be set too large, or an unrealistic tree model
will be the result. For both trees, generalising with 1 or 2 steps results in a model similar to the original
tree, but generalising with 3 steps results in odd angles and clearly wrong branch directions. This can be
explained by the fact that the more steps are generalised, the more relevant branch segments are included



42 4. Results and discussion

in the generalisation. Which branch segments are relevant will depend on the overall size of the tree: larger
trees will have more and larger branches, and thus their tips will relatively be less important. In smaller trees,
branch tips are more relevant, and should be generalised less. The accuracy of the generalised model will
also depend on the overall similarity of the branch tips. The more similar they are, the better the averaged
representation will approximate them. A tree with very similar branch tips could perhaps be generalised
further than a tree with very dissimilar tips, as similar steps carry less importance.

(a) Native AdTree tree (b) Base L-system (c) 1 step generalized L-System

(d) 2 step generalized L-System (e) 3 step generalized L-System

Figure 4.22: Comparison of generalisation with different amounts of steps to generalise, tree 7.



4.6. Branch tip generalisation 43

Efficiency wise, generating a generalised model with 1 step for both trees took about 30 seconds. Generating
a model with 3 steps took about 2 minutes. In principle, this does not seem like a long processing time, but
considering the huge amount of trees in the client’s database, this becomes an important factor to consider.
Lastly, one should consider minimum branch length. As of now, no check is performed to ensure branches are
not generalised more steps than they are long. Generalising branches further than realistically possible will
result in invalid geometries, and invalid L-system files. This should be prevented, either by user inspection, or
ideally as a possible future improvement in the code itself. In conclusion, considering also the observations
regarding compactness in the beginning of this chapter, in general a tree model could be generalised at least
one or two steps. Provided processing time, minimum branch length, and branch importance are taken
into account, generalising the L-system model will result in a much more compact storage option, while
preserving enough accuracy to present a realistic model of the tree.

(a) Native AdTree tree (b) Base L-system (c) 1 step generalized L-System

(d) 2 step generalized L-System (e) 3 step generalized L-System

Figure 4.23: Comparison of generalisation with different amounts of steps to generalise, Ahn tree 9.



44 4. Results and discussion

4.7. Simulated growth function L-system
To study the way the growing function actually grows the tree model, the non grown L-systems are compared
to grown L-systems. The native AdTree output could also have been chosen to be compared to the grown
L-system, however this would have made the analysis more challenging. There are differences between the L-
system and the native AdTree output which could be mistaken for differences caused by the growing process.

The normal L-system is compared with the default setup growing L-system in Figure 4.24. Its challenging to
compare the two due to the growing L-system changing multiple elements of the tree, like branching, trunk
radius and size. However it is clear that both the L-systems closely resemble each other and aside from the
scaling it is believable that both are the same tree with a temporal difference. The scaling seems to be too
large for the minor changes to the rest of the tree, it has a 3D modelling software uniform scale command
feeling. Aside from this unnatural scaling there are no artifacts of the growing process that change the tree in
a drastic manner that seems incorrect on the first glance.

(a) un-grown tree L-system (b) grown tree L-system

Figure 4.24: The difference between the un-grown tree based on the normal L-system and the grown tree based on a grow L-system
with the default settings

To allow a more in depth analysis of the growing process the effect of the different growing parameters is
studied in a isolated way. This isolation is done by manually changing one parameter while setting the others
to default (value = 0). This way any effects of the parameter can be identified and studied. For every variable
three outputs have been made, one with the minimum possible value, one with the mean value, and one with
the highest possible value. The order of the growth parameters is not based on importance but based on the
order at which they are mentioned on the GUI. Thus, sprout position, (basic) branch grow speed, growth ratio
and grow coefficient.

The sprout position can be set to a value from 1 to 5 (0 = the default value), and the effects it has can be seen in
Figure 4.25. The sprout position parameter dictates how close to the tip of a branch a new branch can sprout.
With a high value, 5 for example, branching occurs 5 nodes from the tip of the branch. In 4.25(a) this can be
seen by the distinct V like shape this causes at the tip of the branches. These do not occur in cases where the
growth position value is higher.



4.7. Simulated growth function L-system 45

(a) grow position = 1 (b) grow position = 3 (c) grow position = 5

Figure 4.25: A fragment of a tree model where the different results are based on the grow position parameter can be seen. The difference
in branching have been highlighted with red arrows

An added rule to the sprout position code causes the sprouting not to happen in cases where the node it
would sprout from already had a fork. No nodes can thus be forking in threes due to the created growing
process. This has the added effect that the sprouting process feels more natural, even though the sprouting
position is set to 3, not every third node from the tip is spit. This means that the tree will not get a mechanical
feeling, split at every branch at the same location. This mechanical feeling is also avoided due to the model of
the tree itself, edges between nodes have different lengths avoiding a homogeneous forking distance from the
tip. The only mechanical feeling sprouting is with the sprout position 1, which creates distinct v like shapes
at the tips.

sprout position 1 2 3 4 5
New vertices count 958 611 367 234 157

Table 4.5: The amount of new vertices that are added to the skeleton per sprout position value on the tested tree model

Aside from the more natural feeling sprouting positions with a higher parameter value this parameter also
causes there to be less sprouting in total. The trees this has been tested on had, in general, less naturally
present forking in the first and second position than in the third to fifth one. Less sprouting in total thus
occurred in the situations where a larger setting was chosen. This phenomena can also been seen in table
4.5.

The (basic) branch growing speed can be set to a value from 0.1 to 1. This dictates the length that every edge
can grow. The results can be seen in Figure 4.26.

(a) grow speed = 0.1 (b) grow speed = 0.5 (c) grow speed = 1

Figure 4.26: Three grown tree models based on the same tree starting model. The different results based on the grow speed parameter
can be clearly seen.

It becomes clear that the variable does not only have an effect on the branches, but also on the main trunk,
making the whole tree grow. This is something a real life tree might not do in a similar manner. The effect



46 4. Results and discussion

of this parameter seems to closely resemble a uniform 3D scaling operation in 3D modelling software. The
growing speed variable can be seen as the scaling value ranging from 1.1 to 2 times as large as the original.
Only using this variable to grow a tree would yield vastly unrealistic results, as can be seen in Figure 4.26.

The growth ratio can be set to a value of 1.5 to 5. It is a more nuanced variant of the (basic) branch growing
speed where the growing will have more effect the closer to the tip of a branch it is. The results can be seen in
Figure 4.27.

(a) grow ratio = 1.5 (b) grow ratio = 3.0 (c) grow ratio = 5.0

Figure 4.27: A fragment of a tree model where the different results are based on the grow ratio parameter. The images have been
overlaid with a grid to clarify the differences.

How nuanced this effect can be becomes clear when comparing the different situations created by the differ-
ent set values. To clarify the figure a grid has been added. With the help of this grid it can be seen that close
to the base of the tree the growing is very limited, while the closer the tip is approached the bigger the growth
is. This growth feels natural and removes the uniform scale like behavior the (basic) branch growing speed
introduces in the process.

(a) thickness coefficient = 0.1 (b) thickness coefficient = 0.4 (c) thickness coefficient = 0.8

Figure 4.28: A fragment of a tree model where the different results are based on thet thickness coefficient parameter

The grow coefficient can be set to a value from 0.1 to 0.8. This dictates the width the trunk gains when growing.
The results of this can be seen in Figure 4.28.

The differences in trunk width are challenging to see in the figure, however they are present. The increase in
thickness is also propagated into the branches. This means that not only the main trunk gains girth but also
the branches. The girth drop off is more severe when a bigger grow coefficient is picked, so the tree becomes
more bottom heavy. this is due to the fact that a bigger radius is spread out over the length of the skeleton.
Following from the root of the tree, through the trunk to one of the branches the wider radius has to be divided
(over different branches) and lessened. The length of the branches is not enlarged by using this variable, so
this process needs to divide and lessen the enlarged girth over a non enlarged distance.



4.8. Effect of file formats on storage efficiency 47

4.8. Effect of file formats on storage efficiency
The efficiency of the different storage approaches is crucial. The aim is to be able to compress as much
information in small file sizes without losing a consequential amount of accuracy. This would allow easy
and accurate storage of the forest inventory of Cobra-Groeninzicht, which contains around 100 million trees.
In table 4.6 the file sizes of four storage mediums are compared: The lsJSON, the generalized LsJSON, the
PLY skeleton, and the OBJ tree mesh. The file size of the source point cloud .xyz file is also mentioned. It is
important to note that file size is not a direct measure of format compactness, but rather an indication. File
size also depends on other factors such as encoding and the number of decimals. All files used were encoded
in ASCII, and all numbers (except the input point cloud files) have been rounded to three decimals.

Source Generalized Classical Tree
Point Cloud L-System L-System CityJSON Skeleton mesh

(.XYZ) (LsJSON/.JSON) (LsJSON/.JSON) (.JSON) (.PLY) (.OBJ)

Mobile_tree_1 893 kb 392 kb 260kb 3848 kb 530 kb 30 528 kb
tree1 245 kb 200 kb 137 kb 1922 kb 225 kb 11 674 kb
tree7 316 kb 195 kb 132 kb 1871 kb 221 kb 11 264 kb
Lille_2 1572 kb 537 kb 376 kb 5295 kb 734 kb 46 680 kb
Lille_11 1037 kb 353 kb 257 kb 3448 kb 475 kb 22 132 kb

Table 4.6: The sizes of the files created from the by AdTree created data. The source point cloud is the cloud that AdTree uses to generate
the tree data, the following columns are different storing approaches to store this data. The gray marked cells represent non volumetric

data, while the white cells encode volumetric data.

The smallest way to store a tree model is as a generalized L-system. This is not only the smallest method
tested, but also considerably smaller than the source point cloud itself. However, as mentioned before, the
generalization is an extra compression method that may reduce detail in the model. If this is not desirable, a
normal L-System could be a better storage medium. The resulting files are still smaller than the source point
cloud size, yet encode all the data that AdTree generated in a fairly lossless manner. While the amount of
compression is negligible in small point clouds, once the point cloud file’s size become larger the compres-
sion that the L-System provides becomes more noticeable. Another factor in the amount of compression the
LsJSON format is able to provide is the complexity of the tree. An example of how tree complexity influences
the resulting LsJSON file size can be seen in table 4.6: mobile_tree_1 is a cloud that occupies less storage
space than the cloud of Lille_11, but when the data is stored as an L-system it is the other way around.

The L-system files occupy less space than the classic skeleton files, while encoding more information. The
skeleton files only store the edges and nodes of the structural tree model, without any added volumetric data.
The skeletons also do not support the additional operations that are possible with L-systems. The kind of data
the L-systems contain is most comparable to a tree mesh. Although a mesh will also not support the L-system
operations, it still is a volumetric representation of a tree. The L-system files are considerably smaller than
the mesh files. Often the difference is in the magnitude of 80 times or bigger. However, a difference to keep in
mind is that mesh files are supported by a large set of software packages, while the L-system files have to be
converted to a more commonly used mesh file (obj) to be used in those packages.

When comparing the storage approaches mentioned in 4.6, a distinction needs to be made in the amount
of information they store. For example, the skeleton files do not encode any volumetric data like the branch
diameter. So, although the skeleton file is considerably smaller than the source point cloud and the CityJSON,
it does not contain the same wealth of information, making a direct comparison invalid.

The CityJSON format falls in between the L-System and the tree mesh in terms of compression. It encodes the
same volumetric data as the L-System and the mesh format do, but it does not allow for the L-System specific
operations. Although both approaches utilize the .JSON file format, they store data in a distinctly different
manner. The L-system only stores a couple of attributes explicitly, while the majority of the data is stored
implicitly in a string. In contrast, the CityJSON format stores the geometry and every single attribute explicitly.
It may seem like a CityJSON file would thus be easier to transfer between machines, but all recipients are
required to install specialist software to visualize and use the data stored. However, the same can be said
about the custom L-System format. A major difference is that CityJSON has packages and plugins available
in software like QGIS and FME. However, these are currently not able to read the attributes of CityJSON trees.



5
Conclusion

The objective of this project was to create a pipeline that can take open data and the data collected and owned
by Cobra-Groeninzicht and generate accurate tree models that are stored in a compact manner, possibly as
an L-system. This would not be a completely newly created pipeline, but would augment already available
tools, like AdTree and Cobra-Groeninzicht’s pre-processing algorithms.

The JSON format was selected to store the results, since it could contain additional information about the
tree geometry, and is designed for ease of use. The CityJSON format was considered as an alternative to the
custom L-system JSON format, which would allow for a complete 3D geometry of the tree to be stored, and
provides an interoperable structure as well. The L-system JSON, however, proved to be more compact. It is
of much smaller size, and stores geometry information indirectly instead of explicitly. The L-system format
does not store more than the relative path between consecutive nodes and a few parameters for the turtle to
use in order to read the tree and construct the mesh model from it. In order to store tree models in L-system
format, a graph structure (the skeleton) from the existing proprietary software AdTree was first used as input.
From this skeleton the nesting, relative rotation angle, roll angle, and forward distance between all nodes
of the graph were computed and translated to the L-system format. The L-sting contains all these motions,
and could be read by the LsTurtle and transformed into both a structural skeleton graph and a geometric tree
mesh model. The geometry could then be visualized with the built-in 3D viewer of AdTree, as well as exported
to .ply and .obj format to be visualised using more standard 3D modelling software.

To assess the quality of the results, the AdTree skeleton, which was used as input, was compared with the
skeleton as outputted by the Turtle reader. The mesh models resulting from both skeletons were also com-
pared. The structural model of the L-system output and the original AdTree model were very similar, both for
all tested input point cloud densities and acquisition methods. The inaccuracies found were larger at the tips
of the tree branches. This can be explained by the fact that the L-system notation uses relative movement. An
inaccuracy at the start of the graph will accumulate as the process is repeated and further movement is built
upon it. Barring a few detected bugs, differences were still relatively small. In the context of modelling botan-
ical trees, inaccuracies in the centimeter range, as they most often were, are not problematic. The structural
layout of trees can vary due to a variety of factors, for example the accuracy of the used acquisition machin-
ery, whether the data was collected in winter or when foliage is present, or whether the wind was blowing the
tree out of position at the moment it was scanned. A difference in centimeters will not affect the quality of the
L-system representation, nor of the possible analyses that Cobra-Groeninzicht could carry out on the model.
These analyses would mainly be environmental predictions (sunlight, temperature, wind, moisture) and risk
analysis (overhanging branches, danger in case of storms). They are on the scale of whole threes, meaning as
long as the main structure of a tree is modelled accurately, the exact position of its branches may vary in the
cm range.

Limitations of the method described mainly consist of managing inaccuracies and missing elements in the
input data. In order to construct a valid model of a tree, estimating the trunk position and diameter is essen-
tial. Currently, the method is completely dependent on the input data, which often does not contain enough
points to accurately model the trunk, and the quality of the skeleton and its variables as generated and out-

48



49

putted by AdTree. Aside from this, two known internal issues of the method described exist: the deviating
trunk geometry as described in the results section, and the translation issue. For more accurate results, these
issues need to be resolved, although they do not pose an integral threat to the quality of the current results. In
order to improve the method, either input data with more trunk points or better trunk estimation is needed,
as well as the testing and analysis of larger datasets.

Considering this, the L-system implementation described here can be regarded as an accurate, more com-
pact manner of storing a structural model of a botanical tree. Aside from this, the L-system format has sev-
eral other advantages. Firstly, it can be used for further analysis. For example, by means of the software En-
viMet, which carries out environmental analysis on L-system tree data and has interested Cobra-Groeninzicht
greatly. Another useful property of an L-system is that it can be grown. This report has described some initial
exploration of this topic. The ability to grow a tree model provides insights in the development of a (certain
species of) tree, as well as predictions of its further development. This is useful when the most current dataset
available is several years old, as is usually the case with the AHN data, as well as when one wants to anticipate
tree development further into the future.

Since it is a model originating from the botanical field, several existing botanical models may be used to
improve the model’s correspondence to actual, real-life trees. For example: using botanical knowledge as a
supplement, initial graphs could be improved and validated to approach a realistic structure of a tree, even if
the input data was initially not accurate enough to determine this. This method also provides a direction for
further improvement: this system currently does not work well on AHN3 data, since it is too sparse. Having a
method to appropriate realistic trees, without being as tightly bound to (inaccurate and/or incomplete) input
data may prove promising. Analysis of the L-system model of a large dataset of trees, meaning aggregating
data and generating statistics, may also be a method of achieving this. Lastly, one could determine a species
profile, based on a database of L-system trees. This profile could include parameters such as average trunk
diameter, height, growing behaviour, or branch density. This information may be used to further improve the
methods described above.



Bibliography

[1] Sylvain Delagrange, Christian Jauvin, and Pascal Rochon. Pypetree: a tool for reconstructing tree peren-
nial tissues from point clouds. Sensors, 14(3):4271–4289, 2014.

[2] Ben Discoe, 2005. URL http://vterrain.org/Plants/Modelling/.

[3] Shenglan Du, Roderik Lindenbergh, Hugo Ledoux, Jantien Stoter, and Liangliang Nan. Adtree: Accurate,
detailed, and automatic modelling of laser-scanned trees. Remote Sensing, 11(18), 2019. ISSN 2072-4292.
doi: 10.3390/rs11182074. URL https://www.mdpi.com/2072-4292/11/18/2074.

[4] ENVI-met. Trees and vegetation - envi-met, May 2021. URL https://www.envi-met.com/
trees-and-vegetation/.

[5] Python Software Foundation. turtle - turtle graphics¶, Jun 2021. URL https://docs.python.org/3/
library/turtle.html.

[6] Ron Goldman, Scott Schaefer, and Tao Ju. Turtle geometry in computer graphics and computer-aided
design. Computer-Aided Design, 36(14):1471–1482, 2004.

[7] Cobra Groeninzicht. Home, 2015. URL https://www.bomenmonitor.nl/.

[8] Jan Hackenberg, Heinrich Spiecker, Kim Calders, Mathias Disney, and Pasi Raumonen. Simpletree—an
efficient open source tool to build tree models from tls clouds. Forests, 6(11):4245–4294, 2015.

[9] James Hanan. Parametric L-systems and their application to the modelling and visualization of plants.
Citeseer, 1992.

[10] IDV Inc. Speedtree - about us, 2017. URL https://store.speedtree.com/about-us/.

[11] Annika Kangas, H Gove Jeffrey, and Charles T Scott. Introduction (chapter 1). In: Kangas, Annika;
Maltamo, Matti, eds. Forest inventory, methodology and applications, Vol. 10 [in series: Managing for-
est ecosystems]. Dordrecht, Netherlands: Springer: 3-11., 2006.

[12] Hugo Ledoux. cjio. URL https://github.com/cityjson/cjio.

[13] Hugo Ledoux, Ken Arroyo Ohori, Kavisha Kumar, Balázs Dukai, Anna Labetski, and Stelios Vitalis. Cityj-
son: a compact and easy-to-use encoding of the citygml data model. Open Geospatial Data, Software
and Standards, 4(4), 2019.

[14] Chi Wan Lim and Yi Su. Tree species modelling for digital twin cities. Transactions on Computational
Science XXXVIII, 12620:17, 2021.

[15] Aristid Lindenmayer. Mathematical models for cellular interactions in development ii. simple and
branching filaments with two-sided inputs. Journal of Theoretical Biology, 18(3):300–315, 1968. ISSN
0022-5193. doi: https://doi.org/10.1016/0022-5193(68)90080-5. URL https://www.sciencedirect.
com/science/article/pii/0022519368900805.

[16] Bernd Lintermann and Oliver Deussen. Interactive modeling of plants. IEEE Computer Graphics and
Applications, 19(1):56–65, 1999.

[17] Niels Lohmann. nlohmann/json, 2013. URL https://github.com/nlohmann/json.

[18] Emilie Lorditch. Buzz blog, 2014. URL https://www.physicscentral.com/buzz/blog/index.cfm?
postid=4512988575527688739.

[19] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer Science
& Business Media, 2012.

50

http://vterrain.org/Plants/Modelling/
https://www.mdpi.com/2072-4292/11/18/2074
https://www.envi-met.com/trees-and-vegetation/
https://www.envi-met.com/trees-and-vegetation/
https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html
https://www.bomenmonitor.nl/
https://store.speedtree.com/about-us/
https://github.com/cityjson/cjio
https://www.sciencedirect.com/science/article/pii/0022519368900805
https://www.sciencedirect.com/science/article/pii/0022519368900805
https://github.com/nlohmann/json
https://www.physicscentral.com/buzz/blog/index.cfm?postid=4512988575527688739
https://www.physicscentral.com/buzz/blog/index.cfm?postid=4512988575527688739


Bibliography 51

[20] Pasi Raumonen, Mikko Kaasalainen, Markku Åkerblom, Sanna Kaasalainen, Harri Kaartinen, Mikko Vas-
taranta, Markus Holopainen, Mathias Disney, and Philip Lewis. Fast automatic precision tree models
from terrestrial laser scanner data. Remote Sensing, 5(2):491–520, 2013.

[21] Rijkswaterstaat. Actueel hoogtebestand nederland 3 (ahn3), Dec 2018. URL https://data.overheid.
nl/dataset/11513-actueel-hoogtebestand-nederland-3--ahn3-.

[22] Grzegorz Rozenberg and Arto Salomaa. Lindenmayer systems: impacts on theoretical computer science,
computer graphics, and developmental biology. Springer Science & Business Media, 2012.

[23] Muzafer H Saračević, Munir Šabanović, and Emruš Azizović. Comparative analysis of amf, json and xml
technologies for data transfer between the server and the client. Periodicals of Engineering and Natural
Sciences, 4(2), 2016.

[24] Dorien ter Veld, Feb 2020. URL https://simcms.ahn.nl/_flysystem/media/
artikel-ahn-geo-info-april-2020-.pdf.

[25] Liisa Tyrväinen, Stephan Pauleit, Klaus Seeland, and Sjerp de Vries. Benefits and uses of urban forests
and trees. In Urban forests and trees, pages 81–114. Springer, 2005.

[26] Oswald Veblen. The heine-borel theorem. Bulletin of the American Mathematical Society, 10(9):436–439,
1904.

[27] Michael A Wulder, Christopher W Bater, Nicholas C Coops, Thomas Hilker, and Joanne C White. The
role of lidar in sustainable forest management. The Forestry Chronicle, 84(6):807–826, 2008. doi: 10.
5558/tfc84807-6. URL https://doi.org/10.5558/tfc84807-6.

https://data.overheid.nl/dataset/11513-actueel-hoogtebestand-nederland-3--ahn3-
https://data.overheid.nl/dataset/11513-actueel-hoogtebestand-nederland-3--ahn3-
https://simcms.ahn.nl/_flysystem/media/artikel-ahn-geo-info-april-2020-.pdf
https://simcms.ahn.nl/_flysystem/media/artikel-ahn-geo-info-april-2020-.pdf
https://doi.org/10.5558/tfc84807-6

	Introduction
	Motivation
	Problem statement and objective
	Research questions
	Project objectives
	Organisation of the paper

	Related work
	3D tree modeling from point clouds
	AdTree

	Compact representations of 3D tree structures
	L-system
	Turtle (graphics)
	Compactness
	File encoding


	Methodology
	Pipeline
	Point cloud
	Skeleton extraction (graph) with AdTree
	The L-system format
	Creating Mesh
	Generalization
	Tree growing

	L-System
	L-System JSON format
	L-system initialisation
	Obtain nesting
	Compute relation between nodes
	Write to L-string
	L-System to AdTree

	Extensions
	Generalisation
	Growing

	CityJSON semi-explicit storage format
	Classic skeleton explicit storage format

	Results and discussion
	Assessment
	Effect of point cloud density
	Robustness to data sources
	Differences in encoded geometry: AdTree output and the L-system
	Differences in encoded geometry: AdTree output and the CityJSON
	Branch tip generalisation
	Simulated growth function L-system
	Effect of file formats on storage efficiency

	Conclusion
	Bibliography

