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Abstract

As our world has become increasingly digital and the number of tasks performed by soft-
ware has grown, so too has the volume of software logs and the importance of cyberse-
curity. Anomaly detection on software logs is crucial for securing systems and identifying
the causes of past attacks. Extensive research has focused on developing effective log
parsers and anomaly detection methods. However, the process between obtaining parsed
logs and feeding them to the anomaly detectionmethods has remained unchanged for years.
Typically, logs are ordered by their generation time and split into fixed-length timeframes,
which are then analyzed for anomalies. This approach can group unrelated logs together
while splitting related logs across different timeframes, potentially missing critical context
for anomaly detection.

This research explores the concept of views, which are different perspectives used on input
data. For example, logs can be grouped by the computer they are generated on, allow-
ing the comparison of computers instead of arbitrary timeframes. The study demonstrates
that the performance of anomaly detection methods can vary significantly depending on the
views used.

To validate this, two different anomaly detection methods were applied to two different
datasets, showing that the effect is not specific to any particular dataset or detectionmethod.

The research discusses three methods for creating these views and proposes a method to
suggest the most useful view by using views that contain a lot of different log keys and log
values. Additionally, partial views, such as grouping logs by user, are examined. These
views, although missing some logs, prove valuable for detecting anomalous behaviour as
grouping all logs of a user together and comparing that to other users, helped find the
anomalous user within a dataset that contain more than 1400 users in total.

The study also investigates the cause of anomalous behavior in Windows event logs by an-
alyzing the scores of individual logs to identify words present in anomalous logs but absent
in normal ones. While this approach has some false positives, it effectively highlighted the
timing and consequences of an attack.

Finally, the research explores various ways to combine scores from different views and their
effects. Combining all views of EVTX data provides a reliable middle ground, useful when
the most effective view is unknown. It was found that taking the highest score from all views
results in many false positives and should be avoided. However, using the highest x scores
from all views, as long as x is greater than one, does not significantly differ from taking the
average score.
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1
Introduction

In the vast landscape of modern software systems, the enormous amount of log data con-
tains a wealth of information that can be used to find anomalies in these systems. The
amount of data is however to big for humans to dig through to find these irregularities. Var-
ious anomaly detection methods have been made to detect the anomalies automatically.

Many existing methods process data sequentially, dividing it into timed windows that are
transformed into event-count matrices. These matrices serve as inputs for supervised
anomaly detection methods, which learn from labeled training data to predict anomalies
within subsequent timed windows of sequential data. Despite extensive research focus on
refining these anomaly detection methods, less attention has been directed towards opti-
mizing how data is presented to these techniques. This aspect deserves exploration as
enhancing data presentation could potentially elevate existing anomaly detection capabili-
ties with minimal additional effort.

Current research often encounters limitations in practical industry applications due to the
scarcity of labeled data, a consequence of the labor-intensive process involved in anno-
tating millions of logs. Furthermore, access to real-world system data, particularly data
reflecting actual attacks, is not freely available. In such contexts, unsupervised anomaly
detection methods offer promise by eliminating the dependence on labeled data for predic-
tions. Additionally, there is a lot of value in not only identifying anomalous time windows but
also annotating individual anomalous logs. This approach enables analysts to pinpoint the
specific causes of anomalies and finding what is happening in the system.

This research aims to advance anomaly detection in software logs by introducing the con-
cept of ’views’. Views represent different perspectives for analyzing data, which can en-
hance the contextual understanding which is crucial for anomaly detection. For instance, in-
stead of the conventional sequential ordering of logs, grouping data by system components
provides a more coherent context. This approach ensures that logs pertaining to similar pro-
cesses or systems are analyzed together, enhancing anomaly detection accuracy. Views
can also include different perspectives like focusing on users or specific systems. This rec-
ognizes that users and systems have unique behavior patterns that might not fit neatly into
traditional timed windows.

The research only uses unsupervised anomaly detection methods, focusing on predicting
anomalies for each individual log to be as practical as possible for industry use. The main
focus is on testing how different views affect anomaly detection accuracy and demonstrat-
ing their usefulness in real-world situations.

1



2

Rather than offering a complete anomaly detection solution, this thesis explores ways to
improve anomaly detection systems by presenting data in new and innovative ways. By
studying the impact of these ’views’ on anomaly detection, the research aims to advance
the development of anomaly detection methods in software systems.



2
Background

This chapter will explain the background knowledge necessary to understand the rest of the
research.

First, log parsing is discussed, which is a preprocessing step in the anomaly detection
pipeline. Next, common anomaly detection methods in software logs are explained to pro-
vide an overview of current research methodologies. Following this, n-grams are introduced
as one of the anomaly detection methods used in this research. Subsequently, the basics
of FlexFringe are covered. FlexFringe is a tool used in this research to test current state-
of-the-art techniques. Next, PCA (Principal Component Analysis) is explained, as it serves
as one of the baseline methods in this research. Afterwards, ROC curves (Receiver Oper-
ating Characteristic curves) are described, as these are used to visualize the results of the
anomaly detection methods. Lastly, the log datasets frequently used in anomaly detection
research are highlighted as they are also used for this research.

2.1. Log Parsing
To perform anomaly detection on software logs, the logs are typically divided into log keys
and log values. This is often done to use log keys to represent a log. Log keys represent
the constant part of a log message that remains unchanged across similar logs, while log
values are the variable components that differ within these logs. For instance, consider the
following log messages:

”Job {Job-ID} has started running on {computer name}”.

In this example, ”Job Job-ID has started running on computer name.” is the log key, while
Job-ID and computer name are the log values.

To identify log keys and values within a dataset, the data is parsed using a log parser. Log
parsing is a complete research field on its own, but DRAIN [3] is a commonly used parser [2],
[4], [7], [15], [18]. DRAIN is often chosen for its high accuracy and fast parsing capabilities.

DRAIN utilizes regular expressions, informed by domain knowledge, to preprocess raw log
text. For example, it can detect and isolate the date and time of a log entry, placing this
information in a separate column rather than including it in the log keys and values. After
preprocessing, DRAIN attempts to find a suitable log group within a tree structure by fol-
lowing specifically designed rules encoded in the tree nodes, such as the length of the log
message and the first word within the message. To manage the size of the tree, it has a
fixed depth, which limits the number of nodes a log can visit. An example of a parse tree
with a depth of 3 can be found in figure 2.1.

3
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Figure 2.1: Drain Parse Tree with a Depth of 3 taken from [3]

In the leaf nodes of the tree, there are lists of log groups. Each log is assigned to the
log group whose log template (the predicted log key) has the highest similarity to the log
entry. If the similarity falls below a defined threshold, a new log group is created for that log.
The fixed tree depth ensures a significantly faster runtime compared to other parsers, with
improvements of up to 81% in runtime efficiency [3].

2.2. Anomaly Detection in Software Logs
Software logs can be challenging for anomaly detection because they often consist of raw
text, while most anomaly detection methods rely on numerical values [13], [4], [6]. The
sheer volume of text makes text-based vectorization methods like TF-IDF impractical. Con-
sequently, many anomaly detection methods use vectorization based on the event-ID of the
log [4]. An event-ID is assigned to the log key of a group of similar logs. For example, all
logs following the template ”Job Job-ID has started running on computer name” might share
the event-ID 1046.

Event-IDs are ordered by the date and time of the logs and grouped into time windows. For
instance, all event-IDs within a half-hour time frame are grouped together. A time frame is
considered anomalous if any log within it is identified as an anomaly.

These time frames are then used to create an event count matrix. Each time frame cor-
responds to a row in the matrix, and each column representing an event-ID. The value at
row i and column j indicates the number of times event-ID j appears in time frame i. An
example of an event count matrix can be found in figure 2.2



2.3. N-Grams 5

Figure 2.2: Example of an Event Count Matrix

This event count matrix serves as the input for anomaly detection methods, such as decision
trees or PCA. These methods return an anomaly score or a classification (anomaly or not)
for the entire time frame, but do not provide individual scores for each log entry.

2.3. N-Grams
An n-gram is a sequence consisting of n items from a given sample of data. These items
can be characters, words, bytes, or other units, depending on the specific application. For
instance the sentence, ”The bunny jumps over the fence” can be split into 4 n-grams of size
3: (The, bunny, jumps), (bunny, jumps, over), (jumps, over, the) and (over, the, fence).

N-grams are traditionally associated with natural language processing (NLP), but they have
significant applications in other domains, including anomaly detection [12]. They are par-
ticularly useful in anomaly detection because of their ability to capture sequential patterns
and their versatility in handling non-numeric data. For instance, in analyzing software logs,
categorical values like log keys can be utilized. Take a trigram (a sequence of three items)
such as (event-ID 105, event-ID 455, event-ID 295). Such a sequence could signify actions
such as data reception, data sanitization, and data utilization within a program’s operations.
If such a pattern is common but later an instance is observed where the program receives
and uses data without sanitizing it, this deviation from the usual pattern flags as an anomaly.

They are particularly useful due to their ability to capture sequential patterns and dependen-
cies within the data. When data deviates from these usual patterns, it can be identified as
an anomaly. N-grams are simple and computationally efficient, and their versatility allows
them to be applied to various types of data, making them particularly handy for dealing with
non-numerical data.

2.4. FlexFringe
FlexFringe is one of the state-of-the-art techniques that can be used to do anomaly detection.
It is an open-source software tool designed to learn finite state automata from traces using
a state-of-the-art evidence-driven state-merging algorithm at its core [14]. It takes traces,
such as sequences of event-IDs from computer log files, to construct a state machine that
models the behavior of that computer. What distinguishes FlexFringe is its algorithm for
merging states during the learning process, which is performed heuristically.

Before merging can be performed, the input data is presented as a large tree-shaped au-
tomaton, which is called a prefix tree. An example can be seen in 2.3.
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Figure 2.3: An example of a prefix tree.

Each branch in this tree does not merge at any point with another branch. When this tree
is constructed, the merging starts.

The state-merging process checks all pairs of states and begins by checking whether one
of the states is a sink. Sinks are states with user conditions that are ignored by the merging
algorithm. For instance, states that are visited less than 50 times. If neither state is a sink,
the algorithm evaluates the consistency of the merge and assigns it a score. Themerge with
the highest score is executed. If no merge exceeds a set threshold, the model is extended.
The completed model of a credit-card transaction can be found in figure 2.4 which is taken
from [16].

Figure 2.4: FlexFringe model for a credit-card transaction taken from [16].

The figure for instance shows that the model has learned that the outcome of the merchant
cancelling or the shopper canceling does not matter for the rest of the process. As stated
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in [16]: ”Each node holds the total number of traces through the node on the first line, and
the number of respectively unknown, approved, declined, cancelled and error traces on the
second line.”. This shows that the model learned a deeper understanding of the process
that it tries to model.

Once the model is complete, it can predict the state sequence for a given trace. FlexFringe
predicts the probability of an input trace by calculating the probability of its state sequence.
For each input symbol, it calculates the probability of that symbol occurring in the respective
state at each position in the trace. For example, given the input trace (a, b, a, a), it first
calculates the probability of symbol ’a’ at the starting state, then the probability of symbol ’b’
in the next state, and so on.

2.5. PCA
Principal Component Analysis (PCA) was first introduces by [5]. It performs linear dimen-
sionality reduction on data using statistical techniques. Data that has 200 attributes can
be transformed to a chosen number of so called principle components. This is done while
trying to keep as much of the existing variance between the datapoints as possible. This
can be useful for many situations. It can for instance reduce the noise in the data or allow
data with many dimensions to be reduced to 2 or 3 dimensions so it can be displayed in
graphs. For instance, figure 2.5 shows PCA performed on a dataset that contains images
of hand written digits.

Figure 2.5: PCA performed on handwritten digits. Taken from [10]

It has become however also become a very popular technique in anomaly detection. By
first reducing the dimensions while keeping most of the variance in the data and then trying
to reconstruct the datapoints with the old attributes, you can find datapoints that are very
different from the original data [4]. These datapoints are deviating from the usual pattern
and can therefor be seen as anomalies.

A simple example can be the following: There are 5 datapoints that roughly follow the for-
mula [x, x] for any given x, and one datapoint that does not. The datapoints are the following:
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Value 1 Value 2
Datapoint 1 1 1
Datapoint 2 2 2
Datapoint 3 5 6
Datapoint 4 4 3
Datapoint 5 10 11
Datapoint 6 1 11

Table 2.1: Event Count Matrix

Using PCA the data is projected onto a 1-dimensional space. In this case it is roughly on
the y=x line. The difference between this projection and the actual datapoint is called the
reconstruction error. The projection and the reconstruction error can be seen in figure 2.6.

Figure 2.6: PCA Reconstruction Error Example.

The bigger the error, the more the datapoint deviates the more anomalous it is seen as. The
calculated construction errors for this example are: [0.01465383, 0.02491413, 0.02111924,
0.12553209, 0.10841881, 1.22720951]. It is clear that the datapoint 6 is the most anoma-
lous.

The datapoints used in anomaly detection on software logs is a row in the event-count ma-
trix [4] [17] where each time frame corresponds to a row in the matrix, and each column
represents an event-ID. The value at row i and column j indicates the number of times
event-ID j appears in time frame i. An example of an event count matrix can be found in
2.2.
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2.6. ROC Curves
Receiver Operating Characteristics (ROC) curves are graphical representations that illus-
trate the performance of a binary classifier across different thresholds. In the context of
anomaly detection, these thresholds serve as cut-off scores: data points are considered
anomalous if their anomaly score exceeds the threshold. An example of an ROC curve for
a neural network performing anomaly detection on credit card transactions can be found in
Figure 2.7.

Figure 2.7: ROC curve for anomaly detection on credit-card data using a neural network.

On the y-axis, the true positive rate (TPR) is shown, representing the number of correctly
classified anomalies divided by the total number of anomalies. On the x-axis, the false posi-
tive rate (FPR) is shown, representing the number of non-anomalies incorrectly classified as
anomalies divided by the total number of non-anomalies. Each threshold yields a different
TPR and FPR, which correspond to a single data point on the graph.

The ROC curve illustrates how well the detection method identifies anomalies while min-
imizing the classification of non-anomalies as anomalies. It can also help determine an
appropriate threshold for the classifier. To compare the results of different classifiers, the
Area Under the Curve (AUC) can be used. As the name suggests, the AUC calculates
the area under the ROC curve. Classifiers that achieve high TPR combined with low FPR
obtain higher AUC values than those that do not.

2.7. Log datasets
There are numerous datasets available that consist of software logs, with LogPai being the
most widely known platform to contain these datasets. LogPai is an open-source platform
designed to facilitate the analysis and processing of log data. It provides a comprehen-
sive suite of tools and methodologies to handle various aspects of log management, from
parsing to anomaly detection. LogPai contains many datasets widely used in research to
compare log parsers and anomaly detection methods for software logs. Most log datasets
are unlabeled due to the difficulty of labeling millions of logs. However, LogPai does include
some labeled datasets, such as the BGL and HDFS datasets. The section of LogPai that
contains the log datasets is called LogHub [19].
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The HDFS dataset [17] consists of system logs generated by the Hadoop Distributed com-
puting network. It contains a total of 11,175,629 logs divided over 575,062 blocks, labeled
as normal or anomaly. Blocks labeled as anomalies contain runtime performance prob-
lems confirmed by Hadoop developers, totaling 16,838 anomalous blocks. Blocks that are
anomalous can be very well detected by ’missing’ logs [17]. These logs could for instance
be a log that is closing an action. Anomalous blocks can also contain logs that are very rare
[17]. Most anomaly detection methods tested on the HDFS dataset use the labeled data to
train the model on blocks and then predict which blocks in the test data are anomalous.

The BGL dataset is discussed in [11]. This dataset consists of system logs from a Blue-
Gene/L supercomputer system at Lawrence Livermore National Labs (LLNL) in Livermore,
California, with 131,072 processors and 32,768GB of memory. The dataset contains a total
of 4,747,963 logs labeled as benign or with a type of anomaly. Each log entry includes a
timestamp, date, node, type, component, and log content.

The primary goal in anomaly detection on software logs, is to identify anomalous areas
rather than correctly classifying every single log. Therefore, most detection methods divide
the data into windows of a defined length, such as all logs within a one-hour time frame.
Models are trained on a training set, and predictions are made for the test set. Windows are
predicted to be either anomalous or not, with a window considered anomalous if it contains
at least one anomalous log.



3
Literature Review

This section will summarize some of the most important research that was used as inspira-
tion for this research or to get a better understanding of what was currently being done in
the research field. Each section represents a paper with in the section only the information
that was used as inspiration or as background knowledge.

3.1. Identifying key ingredients in data pre-processing for
machine learning in cyber-security

This paper discusses the use of pre-processing of network logs before they are used for
anomaly detection. The paper describes 3 distinct methods of pre-processing.

The first is by creating different channels on which anomaly detection can be done. The
paper describes 4 used for their research:

1. Overall network as time series.
2. Packets send from a single source.
3. Packets received by a single source.
4. Packets within a single connection.

A subset of the logs represent these channels and are fed to the various machine learning
methods to do anomaly detection.

The second method of pre-processing is by characterizing each instance. A server used for
video streaming behaves differently than a private user playing chess online. This is done
by looking at the flows from a single host or connection and presenting them as the mean
and standard deviation of the time series it forms.

The last method of pre-processing is extracting sequential information. Every flow is looked
at through its context. This is done by grouping flows in sliding windows of size 5. The last
flow in the window is used to determine the label of the window. If the last flow is considered
an anomaly, using the context of the other flows in the window, the whole window is seen
as an anomaly and vice versa.

The results showed that combining the different channels provided the best results, com-
pared to using only one channel at the time. The channels were combined by combining
the sliding windows for every channel into a single row in a dataset for each log.

11
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3.2. Experience Report: System Log Analysis for Anomaly
Detection

This paper compares 6 log based anomaly detection methods of which 3 are supervised
and 3 are unsupervised. The following supervised methods were compared:

1. Logistic Regression
2. Decision tree
3. Support Vector Machine (SVM)

The following unsupervised methods were compared:

1. Log Clustering
2. PCA
3. Invariants Mining

The methods were compared on 2 different datasets. The HDFS dataset, with 11,175,629
logs and 16,838 anomalies, and the BGL dataset, with 4,747,963 logs and 348,460 anoma-
lies.

The logs of the dataset were parsed and grouped in sequences by three different windows:
fixed windows, sliding windows and session windows. Session windows are grouped by
logs with the same session identifier. For the HDFS dataset, this is the block_id. The BGL
dataset did not have any identifiers and therefor session windows were not used on the
dataset.

The log sequences were then used to create an event count matrix. The rows of the matrix
represent a log sequence and every column stands for an event, in this case a log key. The
value of row i and column j is the amount of times log key j occurs in log sequence x. This
event count matrix is fed to the anomaly detection methods to detect anomalies in the log
sequences.

After comparing the results of the datasets on the anomaly detection methods, the authors
noted the following findings:

1. Supervised anomaly detection methods achieve high precision, while the recall varies
over different datasets and window settings.

2. Anomaly detection with sliding windows can achieve higher accuracy than that of fixed
windows.

3. Unsupervised methods generally achieve inferior performance against supervised
methods. But invariants mining manifests as a promising method with stable, high
performance.

4. The settings of window size and step size have different effects on supervisedmethods
and unsupervised methods.

5. Most anomaly detection methods scale linearly with log size, but the methods of Log
Clustering and Invariants Mining need further optimizations for speedup.

3.3. SFAD: Toward effective anomaly detection based on ses-
sion feature similarity

The paper tries to find abnormal web-users based on the sessions of the user. Where a
session is a sequences of pages visited during an access. The paper uses PageRank, an
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algorithm used by Google’s search engine to rank web-pages, to determine weight informa-
tion of web-pages. The pagerank score is calculated as follows:

PR(p) = (1− d) + d

n∑
i=1

PR(Ti)

C(Ti)
(3.1)

where:

PR(p) is the PageRank of page p,

Ti represents other webpages that point to webpage p,

d is the probability that the user randomly arrives at a webpage,
C(Ti) is the number of links from webpage p.

The pagerank weigths are then used by SimHash, a locality sensitive hashing algorithm,
to create signatures for the users. The similarity between users is then calculated using
the signatures produced by SimHash. Using the similarity between the users, the users
are clustered using fuzzy clustering λ-truncating algorithm. The algorithm uses a similarity
matrix and random λ-values to cluster the users. Users that are often clustered alone are
seen as abnormal.

3.4. LogSpy: System Log Anomaly Detection for Distributed
Systems

LogSpy, an anomaly detection method for distributed system, is introduced in this paper.
The method uses a convoluted Neural Network to detect the anomalies. First, the log tem-
plates are extracted from the logs. Using the templates, a feature vector is created based
on the words in the templates. These features are created using skip-gram and AGNES.
The feature are then passed to a CNN to do anomaly detection.

The data is split into different windows. This done by creating optimization windows. These
windows are the same as sliding windows but logs that are within range r of the sliding
windows and that are connected to the selected log are added to the window. This prevents
crucial data from not being considered because they are outside of the window.

3.5. Mining Invariants from Console Logs for System Prob-
lem Detection

This paper introduces an innovative approach to anomaly detection through unstructured
log analysis, employing invariants mining as a key technique. Invariants mining focuses
on identifying linear patterns within system workflows. When a log group deviates from
these established characteristics, it is identified as an anomaly. Detection of such anoma-
lies indicates a departure from the expected behavior, highlighting potential issues within
the system. By pinpointing the specific invariant constraint that is violated, the method aids
in the identification and resolution of failures or faults within the system.

The initial stage of the process involves parsing log files. These files are divided into the
log key (referred to as the message signature in the paper) and log values (referred to as
parameters in the paper). Log parsing itself is not the focus of the research; therefore, the
authors adopted the log parsing method outlined in [1]. The log parser extracts tuples for
each log, resulting in a structure that resembles the following:

[T (m),K(m), PV (m, 1), PV (m, 2), ..., PV (m,PN(m)] (3.2)
Where:
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T (m): is the timestamp of message m
K(m): is the log key of message m
PV (m,x): is the xth log value of message m
PN(m): is the number of log values in message m

The log abstraction helps to extract the log key and valueswhere these values represent
specific parameters. These parameters are defined by the combination of the log key and
value index. Considering a log key like: ”New job added to schedule, jobid=[], priority=[]”
with value index of 0, the parameter is the job-ID and the parameter value might be 3856.
The job-ID could be present in multiple logs within the dataset. Logs sharing the same job-ID
often relate to the system’s execution flow, even if they have different log keys, and the job-ID
may be located at varying value indices. The paper introduces a method that automatically
determines whether two parameters correspond to the same program variable. When two
parameters are identified as representing the same program variable, they are referred to as
”cogenetic”. Two parameters are considered cogenetic based on the following observations:

1. If parameters Pa and Pb have the same range of values, Vr(Pa) = Vr(Pa), or the
value range of one parameter is a subset of of the other, Vr(Pa) ⊆ Vr(Pb), then they
are cogenetic.

2. If parametersPa andPb have a large joint set Vr(Pa)
∩
Vr(Pb) there is a high probability

they are cogenetic.
3. The larger the length of each parameter value in the joint set is, the higher the prob-

ability that the parameters are cogenetic. Where the parameter value length is the
number of characters of the value.

Once cogenetic parameters are identified, log collections are formed, each containing logs
that share the same parameters, such as a collection of logs containing a specific job-ID.
Within these collections, distinct groups are created, each containing logs with identical pa-
rameter values for the cogenetic parameters, like logs sharing the same job-ID

For each log collection, a matrix is generated, where each row represents the log group
associated with a specified parameter value, such as the log group for job-ID 3467. Each
column corresponds to a unique log key found in the log collection across all log groups.
The value of Xij denotes the number of occurrences of log key j within log group i. This
matrix serves as the basis for anomaly detection through invariants mining.

The identification of the invariant space and row space of the matrix is achieved through
singular value decomposition and analysis. Within the invariant space, emphasis is placed
on uncovering sparse invariants, as these are more comprehensible for system operators.
Compact invariants are avoided, as they do not directly contribute to meaningful workflow
structures.

When new logs are received, they undergo parsing and grouping using the same method-
ology as the training data. A log key count vector is created for each group, similar to the
vectors used in the matrix. This vector is then cross-referenced with the corresponding
invariants. Any violation of an invariant by the vector is flagged as an anomaly, signaling
potential irregularities in the system.



4
Research Questions

This section will discuss the research questions that will be addressed in this study. First, the
research gap is explained by outlining the current research methodology and its limitations.
Following this, the three research questions are presented, each accompanied by a detailed
explanation.

4.1. Research Gap
Almost all anomaly detection methods applied to software logs organize their data by time
and date, then divide the data into windows based on a time frame. Predictions are made
using a context of sequential logs without considering whether this context is relevant. For
instance, if there are many logs from different users, it might be more effective to group logs
from the same user together and use those logs as context, as they are more likely to be
related to each other than logs from various users.

This research will focus on the impact of using different ways of viewing the data and how to
identify these views. A way of viewing the data will be referred to as a ”view.” For example,
you could have a user view and a sequential view. To explore this, the following research
questions will be addressed:

4.2. RQ1: What is the effect of using different views on anomaly
detection in software logs?

This research question examines the impact of utilizing different views on the same data
and anomaly detection method. It seeks to determine whether considering how data is or-
dered and presented to the detection method can enhance the effectiveness of anomaly
detection. This is done to find out if views are supposed to be considered when performing
anomaly detection. The expectation is that the view of the input data has a big influence on
the outcome.

The effect will be measured by giving anomaly detection methods the same data with 2
different views. First the sequential data is given to the anomaly detection method and then
a view that is grouped on a component or a block. The difference in results is then used
to determine what the effect of the different views are on the performance of the detection
methods. To ensure that this is not only the case for a single dataset or detection method,
it is done on 2 datasets and 2 detection methods.

15
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4.3. RQ2: How can useful views be suggested?
This research question delves into various methods for identifying useful views and aims to
determine their utility without executing each view and resorting to score calculations based
on labeled data. It also explores the potential of anomaly detection on partial data to yield
valuable insights. The primary objective is to consistently identify potentially useful views.
As the number of views increases, prioritizing the most impactful one becomes increasingly
challenging, we will therefor try to find a guideline that finds the most useful views.

Finding views will be done by implementing log grouping which has been highlighted in
previous research but still misses the implementation details. Examples of using columns
are also shown as well as an example of using domain knowledge to find views. Next to
that, the use of partial views will be studied by trying to determine an anomalous user by
comparing users to each other. It is expected that there are different ways of finding (partial)
views and that we might be able to determine which views could be useful by looking at the
amount of different logs they impact and the difference in the logs that are within these views.
It is also expected that we can find interesting users by comparing them against each other.

4.4. RQ3: How can different views be combined into a single
anomaly score?

This research question investigates methods for integrating different views into a single
anomaly score and examines the effects of combining these views and effects of combin-
ing the views in different ways.

Views will be combined by taking the average of multiple views or by taking the average of
the highest x scores from different views on the same log. The effect will be examined by
comparing the result of the combined view with the scores of other views. It is expected
that the combined view will always perform medium, while the highest x scores might find a
value for x that will detect anomalies that are not detected by most views but can be found
using only the highest few scores.



5
Methodology

This chapter will discuss the methodology used for this study. First the log parsing used is
discussed. Then the 3 different methods of finding views are explained and shown. Next,
methods of combining views are discussed. Afterwards, the first anomaly detection method,
n-grams per log, are explained in detail. Subsequently, themethodology used for FlexFringe
is explained. Then the technique of finding interesting words within the logs of the dataset.
The following section provides an explanation of how anomalous users can be found within
the dataset. Lastly, the methods of evaluating the research is explained.

5.1. Log Parsing
The datasets utilized in this study consist of unstructured log files. Extracting the log key
and values requires a parsing process, which is facilitated by a log parser known as DRAIN.
The method is a fixed depth tree based online log parsing method. It is designed to be a
faster alternative compared to other log parsers. While the intricacies of log parsing do not
constitute a focal point in this research, interested readers can find specific details on the
implementation in [3].

DRAIN is used as the parser in this research because it is the most widely used parser in
the research field of anomaly detection on software logs. It is faster than other available
options and delivers better or comparable results [3].

For parsing, default values of a similarity threshold of 0.5 and a depth of 4 were applied.
The log format utilized depended on the dataset used, for the BGL dataset the following for-
mat was used: <Label> <Num1> <Date> <Component1> <Time> <Component2> <Type>
<Component> <Content>. In this format, the ”Content” field contains the content with the
level at the forefront. The level is the severity of the log message, such as ”info” or ”warn-
ing”, and is often excluded from the log message. The level can provide vital information
and typically offers limited variations, allowing it to be integrated into the log message and
create different log keys for logs with the same message but with a different level. Parsing
the arbitrarily picked log:

”- 1119569230 2005.06.23 R22-M0-NB-C:J17-U01 2005-06-23-16.27.10.301258 R22-M0-
NB-C:J17-U01 RAS KERNEL INFO 6182400 double-hummer alignment exceptions ”

Results in the following structured log:

Label -

17
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Num1 1119569230
Date 2005.06.23
Component1 R22-M0-NB-C:J17-U01
Time 2005-06-23-16.27.10.301258
Component2 R22-M0-NB-C:J17-U01
Type RAS
Component KERNEL
Content INFO 6182400 double-hummer alignment exceptions
EventId 5af65199
EventTemplate INFO <*> double-hummer alignment exceptions
ParameterList [’6182400’]

Parsing the evtx data from the APTA and EYE datasets can be really hard. The general
log messages are not stored in the logs themselves but windows looks them up if they are
viewed within the event viewer. This makes it very hard to extract log keys from the data.
Instead, we used the event-id that the evtx data already has pre-defined. To create more
views we took a view parameters that are always in each evtx log: proces-ID, thread-ID,
activity-ID, security-ID, computer name, source and channel. As these are in every log,
they can be used to make views that involve every log in the dataset.

5.2. Finding Views
Certain datasets already contain fields in their logs, such as a process-id in evtx files, which
can serve as a criterion for grouping the logs. However, not all datasets feature such
columns. To address this, we adopted a modified log grouping approach inspired by the
methodology outlined in [8]. This approach facilitates the identification of groupings even in
datasets lacking explicit grouping criteria.

Within each log, parameters are represented by combinations of the log key and their re-
spective index values. For example, a log key might be structured as ”Job <Job-ID> was
started at <Date and Time>” with parameters indexed at 1 and 2. Some parameters are
shared among logs; for instance, if a subsequent log key reads ”Job <Job-ID> was ended
after <execution time> seconds” the parameter at index 1 likely corresponds to the same
job ID parameter in the preceding log key. When the values of two parameters are very
similar, they are called co-genetic. When the values of two parameters closely resemble
each other, they are referred to as ’co-genetic’. Logs can be grouped based on the shared
values of parameters present across multiple log keys. For instance, logs can be grouped
on the Job-ID present in the log.

Determining whether parameters are co-genetic depends on the range of values they in-
clude. Parameters are considered co-genetic if they meet these conditions:

1. The value ranges of the parameters are either the same, overlap significantly, or one
is a subset of the other.

2. Both sets of values contain at least 10 different values.
3. Each value consists of at least 3 characters.

The first rule ensures that the parameters likely refer to the same kind of value, like a job ID.
The second rule reduces the possibility of mistakenly identifying parameters as co-genetic
because one has a very narrow range and the other has a much broader range, potentially
causing the narrower range to be a subset of the broader one. The last rule decreases the
likelihood of parameters with distinct meanings sharing similar values due to those values
being only a few characters long. For instance, if job-ids are named somewhere between 0
and 100 and computers are as well, then these values might seem cogenetic even though
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they are about completely different items.

Once the cogenetic parameters are found, logs can be grouped according to the values
of the parameters to create a view. For example, a set of co-genetic parameters could
represent job IDs, and all entries containing one of these job IDs would be utilized to form
a subset. The subset could hold more log keys than those explicitly associated with the
co-genetic parameters.This broader inclusion ensures the presence of logs that might be
considered anomalies on their own.

For instance, if an error log follows a particular job where something went wrong, it might
not be categorized within any co-genetic parameter group due to the size of the value range
of the parameters being to low. However, it’s crucial to include such logs when examining a
specific job ID, as they indicate issues during that particular job. Subsequently, the subset
of logs is grouped on the values of the co-genetic parameter group.

In a dataset, there may be numerous co-genetic parameters, and creating a view for each
one could be excessively time-consuming. Therefore, analysts need to prioritize and decide
which views are worth exploring further and are likely to yield valuable insights. To assist
analysts find interesting views, they are sorted by the amount of unique log keys that are
part of the parameter group. A smaller amount of log keys lowers the possible combinations
which lessens the chance of anomalous combinations.

Another approach to creating views is by leveraging domain knowledge. For instance, if an
analyst suspects the presence of anomalous users within the dataset, they can employ reg-
ular expressions (regex) to identify these users. For instance, if users are always present
in the logs after ’username:’, going through the logs and finding all instances of that regular
expression finds all the logs that are a part of a users behaviour. Logs of these users can
then be grouped together to create a new view.

An example of how different views can be made can be found in figure 5.1.

Figure 5.1: A set of logs that can be grouped in different ways.

The figure shows logs in sequential order. These logs can be viewed from three different
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perspectives ,other than the sequential order, with the methods explained in this section:

1. Computer column in the data: This perspective uses the computer that generated
the log. Since the data has a separate column for the computer, it is easy to create
this view.

2. Job-ID found using log grouping: Log grouping might find that the same job-IDs are
used in multiple log keys. The values in the first index of each log key seem to take
on the same values, indicating that the first index of the log keys may be co-genetic.

3. Job-ID type found using domain knowledge: This perspective uses domain knowl-
edge. Some job-IDs start with an ”A” while others start with an ”X.” Analysts might
know that the letters represent different types of jobs. These different kinds of jobs
can be identified using regex.

The grouping of the logs are the following for each view: Computer view:

1. RAMpage: (1, 5, 6)
2. CompuSaurus: (2, 3, 4, 7)

Job-ID view:

1. A425: (1, 5)
2. A555: (2, 3)
3. X478: (4, 7)
4. X127: (6)

Job-ID type:

1. A: (1, 2, 3, 5)
2. X: (4, 6, 7)

The usefulness of each view is dependent on where a failure might happen. For instance, if
there is a computer that opens up to much tasks and can not handle the load, the computer
view will provide the most insight. However, in this case there is an error happening with a
task at log 7. There is to little data to look at only the tasks that start with an X so comparing
the jobs to each other might bring the most insight. If there was however a lot of data for
both X jobs and A jobs, and it is known t

5.3. Combining Views
Different views can provide various perspectives on the data, and combining these per-
spectives might offer a more complete picture. Before combining the results from different
views, the results are first normalized. This ensures that each view is equally important and
prevents any single view from disproportionately influencing the final score due to a high
average anomaly score or large deviations in values.

To normalize the anomaly scores, z-score normalization is used. Z-score normalization en-
sures that the mean anomaly score of each view is 0 and the standard deviation is 1. This
is achieved by subtracting the mean value from each score and then dividing each result by
the standard deviation.

One way to combine the views is by averaging all the scores from the different views that
have a calculated score for the log. This method creates a balanced scoring system: if
most views do not detect any anomalous behavior and one does, the average score will
remain relatively low. This approach reduces the chance of false positives since multiple
views need to have a high anomaly score for a log to be considered anomalous. However,
it can also miss anomalous behavior detected by only one or a few views.
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Another way to combine the views is by taking the highest score from all the views. If any
view detects something anomalous, the log is flagged as anomalous. This approach re-
duces the chances of false negatives but may lead to many false positives. It also does not
differentiate between a log with an anomaly score of 1 across all views and a log with an
anomaly score of 1 in just one view. In that case, logs that are anomalous for all logs are
labeled as just as anomalous as a log where for all but one view, it is seen as a non-anomaly.

A potential middle ground between using the average score and the highest score can be
found by considering the top few highest scores from all views. For instance, one could take
the top 3 highest scores for each log. This approach can help identify anomalies detected
by only one or two views without generating many false positives, as there might always be
a view that assigns a higher score to a log. This method also gives more priority to a log
that has high scores across multiple views compared to a log with a high score in only one
view.

To test this approach, the combined scores can be calculated by considering the top 1
highest score, the top 2 highest scores, and so on, up to the nth highest score, where n is
the total number of views (which equates to the average score). This way, the effectiveness
of combining different numbers of top scores can be evaluated to determine the optimal
balance between detecting anomalies and minimizing false positives if there is one.

5.4. N-grams Per Log Variant
In this research, one of the techniques employed for anomaly detection is the utilization
of n-grams. N-grams use sequences of log keys to identify anomalies within the dataset.
One notable advantage of n-grams is their speed in processing large datasets and their
use of the context of the logs. For this research it is important that the contexts of logs are
used to see what the effect is of using different views. The n-grams are utilized to gener-
ate anomaly scores for each individual log entry. This enables analysts to promptly identify
potentially anomalous logs, streamlining the process compared to techniques that merely
highlight anomalous data sections, leaving the analyst to discern which part of those sec-
tions is actually anomalous.

To assign scores to each log, we implement a sliding window mechanism with a size of n
and a stride of 1, traversing the data. Within this window, an n-gram is constructed using
the log keys of the n logs it includes. For each log we store how often the n-gram has been
seen in the data before this log.

An anomaly score is then calculated for each log based on the n-grams it is involved in. First,
the total count of all the n-grams, until the point of the n-gram as explained in the paragraph
above, is summed up and divided by the number of n-grams to obtain the average count
of all the n-grams associated with the log. Since a higher count indicates a more common
occurrence, implying less anomalous, we take the inverse of this average count by dividing
1 by it. This results in the final anomaly score for the log.

The calculation of the anomaly score can be formally represented as follows:

1. Average count of n-grams:

C̄(L) =

∑
Nk∈N(L) CL(Nk)

|N(L)|

2. Anomaly score:

S(L) =
1

C̄(L)
=

|N(L)|∑
Nk∈N(L) CL(Nk)
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Where:

• L is the log.
• N(L) is the set of n-grams that log L is part of.
• CL(Nk) is the count of the n-gram Nk seen before the log L.
• C̄(L) is the average count of the n-grams associated with log L.
• S(L) is the anomaly score for log L.
• |N(L)| is the number of n-grams associated with log L.

When creating a view, for instance using the components in the BGL framework, the data is
grouped per component while maintaining the sequential order within each group. The slid-
ing window uses logs exclusively within each component group to prevent overlap between
adjacent components. However, a drawback of this approach is that the first and last log
of a component is only part of 1 n-gram, making it challenging to determine whether a high
anomaly score is attributed to those logs or to other logs within the n-gram. Similarly, the
second log and second-to-last log are part of only two n-grams, and so forth. Consequently,
some logs have less contextual data available, which may affect the accuracy of anomaly
score predictions.

An example could be a component that has the following event-ids in sequential order:

Log Event-ID
1 455
2 455
3 455
4 455
5 3300
6 599

When using a sliding window of size 3, we get the following n-grams:

N-gram Occurrences
(455, 455, 455) 4088
(455, 455, 455) 4089
(455, 455, 3300) 2300
(455, 3300, 599) 1

Table 5.2: N-grams of Component and their Occurrences

The first n-gram has been seen 4088 times before this occurrence. The second n-gram is
the same but has been seen once more before its occurrence so has been seen 4089 times.
The third n-gram has been seen 2300 times before and the last n-gram is seen for the first
time.

To calculate the score for each log, we look at the n-grams they are present in. Below are
the detailed calculations for the average count and the resulting anomaly score for each log:

First Log (Log 1):

• Present in n-gram 1.
• Counts: 4088.
• Average count:

C̄(L1) =

∑
Nk∈N(L1)

CL(Nk)

|N(L1)|
=

4088

1
= 4088
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• Anomaly score:
S(L1) =

1

4088
= 0.0002

Second Log (Log 2):

• Present in n-gram 1 and n-gram 2.
• Counts: 4088, 4089.
• Average count:

C̄(L2) =

∑
Nk∈N(L2)

CL(Nk)

|N(L2)|
=

4088 + 4089

2
=

8177

2
= 4088.5

• Anomaly score:
S(L2) =

1

4088.5
= 0.00024414

Third Log (Log 3):

• Present in n-gram 1, n-gram 2, and n-gram 3.
• Counts: 4088, 4089, 2300.
• Average count:

C̄(L3) =

∑
Nk∈N(L3)

CL(Nk)

|N(L3)|
=

4088 + 4089 + 2300

3
=

10477

3
≈ 3492.33

• Anomaly score:
S(L3) =

1

3492.33
≈ 0.00028641

Fourth Log (Log 4):

• Present in n-gram 2, n-gram 3, and n-gram 4.
• Counts: 4089, 2300, 1.
• Average count:

C̄(L4) =

∑
Nk∈N(L4)

CL(Nk)

|N(L4)|
=

4089 + 2300 + 1

3
=

6389

3
≈ 2129.67

• Anomaly score:
S(L4) =

1

2129.67
≈ 0.00046949

Fifth Log (Log 5):

• Present in n-gram 3 and n-gram 4.
• Counts: 2300, 1.
• Average count:

C̄(L5) =

∑
Nk∈N(L5)

CL(Nk)

|N(L5)|
=

2300 + 1

2
=

2301

2
= 1150.5

• Anomaly score:
S(L5) =

1

1150.5
≈ 0.00086831

Sixth Log (Log 6):
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• Present in n-gram 4.
• Count: 1.
• Average count:

C̄(L6) =

∑
Nk∈N(L6)

CL(Nk)

|N(L6)|
= 1

• Anomaly score:
S(L6) =

1

1
= 1

For the experiment, an n-gram size of 5 was employed for BGL, as it allows for the compu-
tation of anomaly scores for groups with a small number of logs but still utilizes the context
around the log. For the HDFS dataset an n-gram of size 3 was employed as some of the
anomalous blocks in the dataset are only 3 or 4 logs in total, which would result in no scores
for that block. Additionally, a stride of 1 was utilized to maximize the number of data points
available for each log.

5.5. FlexFringe
The other anomaly detection method utilized in this study is FlexFringe. It is a state-of-the-
art technique that can be used for anomaly detection. It is used in this research to see
what the effect of views is on a different type of anomaly detection than just the n-grams,
which are a rather simple anomaly detection method. FlexFringe uses the log keys within
a sequence of logs to construct a finite state automaton using a state-of-the-art evidence-
driven state-merging algorithm. With this model, given a sequence of logs, FlexFringe can
predict the state sequence of a given log sequence and provide the probability of that state
sequence occurring. Further details on the implementation and capabilities of FlexFringe
can be found in [14]. It is important to note that the FlexFringe settings employed in this
study involve creating a state machine with an initial node based on sliding windows of a
specified size and stride.

To detect anomalies, FlexFringe is provided with the entire dataset to learn a state machine.
This process uses a sliding window size of n. The stride is set to 1 to maximize the number
of state predictions per log and to be able to obtain state sequences within a small group.
Subsequently, the state sequence is predicted using the same dataset. For each log, the
states it reaches are recorded, along with the total number of times each state is reached.
To compute an anomaly score for each log, 1 is divided by the average count of the states
reached by the log. If a log reaches states that are rarely visited by other logs, it is consid-
ered anomalous.

When creating a view, the data is grouped while maintaining the sequential order within
each group. A state machine is learned on that data, and the same data is used to predict
the state sequences. Only the state sequences that are strictly within a group are used to
extract the states recorded for each log.

The configuration for the FlexFringe models used in the experiment are as follows:

• heuristic_name=”alergia”
• data_name=”alergia_data”
• slidingwindow=1
• sinkson=1
• swsize=4
• swstride=1
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• sinkcount=200
• printblue=1
• swaddshorter=1

A sliding window of 4 were chosen for this research but sliding windows shorter than that
are also added. This is a much smaller size than what would be optimal for creating state
machines but the runtime of bigger sliding windows would be to long to run on a student
laptop. Sinks were used as it speeds up the runtime of the model. Sinks are states with
user-defined conditions that are ignored by the merging algorithm. In this case the amount
of visits to a state has to be higher than 200 for it to be merged with other states. We do
however still want those states to be part of the state machine as they might indicate an
anomalous state. Therefor we set printblue to true as this keeps sink states in the machine
instead of removing them.

5.6. Finding Interesting Words
To better understand potential anomalous behavior in the data, we can focus on identifying
specific words that frequently appear in logs exhibiting new behavior, but are rare in logs
showing common behavior. This approach helps pinpoint terms associated with unusual
activity. However, a limitation of the anomaly detection methods used in this research is
that they primarily detect the beginning of brute force or DDoS attacks. Once such activ-
ities become frequent, they are categorized as normal behavior. Thus, words associated
with these attacks might not seem anomalous if evaluated based solely on their average
anomaly score.

To address this issue, the frequency of appearances of words in logs that show behaviour
that is seen for the first time is stored, while excluding words that appear in a high percent-
age of total logs, such as ’a’ or ’system’. Specifically, words that occur in more than 20%
of all logs are filtered out, because they might appear frequently in anomalous logs simply
by chance rather than because the words themselves are indicators of new or anomalous
behaviour.

Words are identified by finding strings separated by spaces in a log. These words are then
cleaned by removing symbols attached to them, such as ”:”, ”(”, ”)” and ”’”. This prevents
the scores of a single word from being split over two words. For example, the log message:
”Computer 1a has got a new logon. User:Pieter, Computer:1a”. First gets split into words
seperated by a space, but User:Pieter and Computer:1a are then still seen as a single word.
With the removal of the symbols they are turned into the words User, Pieter, Computer and
1a.

The anomaly score of the log is recorded for each word present in the log. For the first logs
in the data, the anomaly score is always high due to the lack of known behavior patterns.
Therefore, the scores of the first 5% of logs are not stored. The final score lists are then
used to calculate the anomaly score for each word.

5.7. Finding Anomalous Users
The datasets from APTA and EYE contain data from servers where an attack has occurred.
These attacks are carried out by users on the system, providing a clear indication of where
to focus within the data. However, given that there can be up to 1452 users on the system,
identifying the malicious user amidst those engaged in normal activities can be challenging.

To determine which users might be anomalous, we focus on the behavior exhibited by each
user. It is more insightful to compare the behavior of a user to that of other users, rather
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than to the regular behavior of the entire system.

To facilitate the comparison of users, all logs associated with a user are collected using the
following regular expressions, where ’xxx’ represents a potential username:

1. Username: xxx
2. xxx@xxx
3. C:/Users/xxx/

Once the logs are identified, n-grams are generated from the logs. Using the n-grams for
each user, an event-count matrix is constructed. In this matrix, each row corresponds to a
user, each column represents an n-gram, and the value at row i and column j indicates the
frequency of n-gram j in the logs of user i. The similarity scores between the rows of the
matrix are then calculated using cosine similarity, and the average similarity score is used
to identify users who deviate from the norm. Users are ranked based on how different their
behavior is from other users, and this list can be utilized by analysts to identify potentially
anomalous users. Users with fewer than 50 logs are excluded from the analysis because
they have too few logs to have likely performed an attack and often do not represent normal
user behavior. Including these users would only introduce noise into the technique, and
therefore, they are left out to maintain the accuracy and reliability.

The results consist of a list of users with a similarity score, where a lower score indicates
a greater deviation from other users. The most anomalous users should be prioritized for
further investigation. Among the most anomalous users, there are often non-users who are
incorrectly identified by the regular expressions used. These non-users rank high in the list
of anomalous users because they do not exhibit typical user behavior. Additionally, some
non-anomalous users, such as admins, may appear very different from regular users due
to their unique activities.

To quickly identify which users are actually anomalous, it is helpful to examine the time
range of their logs. It is often known when the attack occurred. Users who have been be-
having consistently for years or months before the attack and continue to do so during the
attack are likely regular users. In contrast, users who suddenly start behaving differently
may indicate anomalous activity. Particularly interesting are users who are only present
around the time of the attack and are very active during that period; these users should be
investigated thoroughly.

A great way to review the logs of the users is through the dashboard described in section
5.8.3. The dashboard allows filtering logs by user and enables zooming in on specific time-
frames to examine the details of each log entry.

This method effectively mitigates the impact of brute force attacks or other types of attacks
that involve repetitive actions. Typically, such behavior might be considered normal due to
its frequency. However, if these attacks are perpetrated by only a few users, this method
highlights such behavior as anomalous, even though it may be common within the system
as a whole.

5.8. Evaluation
5.8.1. Datasets
This section discusses the four datasets are used for the evaluation of the results. The first
being the BGL dataset, the second is the HDFS dataset, the third is the APTA dataset and
the last one the EYE dataset. The BGL and HDFS datasets are chosen as they are the
most used datasets in research that are labeled and that contain software logs. The APTA
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en EYE datasets are chosen as it is a dataset required from the industry which makes it a
more useful research for the industry than if the research was done on only research data,
which is often clean and ’ready to use’.

The BGL dataset is discussed in [11]. This dataset is part of LogHub, a collection of sys-
tem log datasets, described in [19] and consists of system logs of a super computer. The
dataset contains a total of 4,747,963 logs from a supercomputer that are labeled as benign
or with a type of anomaly. The logs contain a timestamp, date, node, type, component and
the content of the log. The whole dataset is used for the evaluation.

The HDFS dataset, [17], contains of system logs generated by the Hadoop Distributed com-
puting network. In total there are 11,175,629 logs divided over 575062 blocks that are
labeled as normal or anomaly. 16838 blocks are anomalies. To limit the run time of the
algorithms used, only the first 5,000,000 logs are used.

The APTA dataset exists of evtx logs from different servers. The data comes from real
world data and is not as clean as data that is often used in research. In total there are CEN-
SORED logs. With a brute force attack from an anomalous user. The data is not labeled
but we know that there is an attack happening at the CENSORED

The EYE dataset is very similar to the APTA dataset however there are CENSORED logs in
total and the attack is also performed by an anomalous user. The data is again not labeled
but the attack happened on the CENSORED.

5.8.2. Timed Windows
Although the anomaly scores are assigned to individual logs, the evaluation is not conducted
on single logs. This is because, in real-world scenarios, the crucial aspect is not necessarily
classifying every single log correctly, but rather raising an alarm when something anoma-
lous occurs. Whether this alarm is triggered precisely at the anomalous logs or within their
vicinity is of lesser importance. Therefore, time windows are employed to categorize a clus-
ter of logs within a specific timeframe as anomalous or not. The chosen timeframe is based
on the dataset used. For the BGL dataset, given that the dataset comprises logs from a
supercomputer where numerous logs are generated within a single second, 30 seconds is
chosen as the timeframe. To establish an anomaly score for each window, the maximum
anomaly score within the window is used as the anomaly score for that window, and a win-
dow is seen as anomalous if at least one log within it is deemed anomalous.

Since the HDFS dataset is labeled per block-ID, the highest score of the logs within a block
will be taken as the score for that block.

To assess the predictions of the time windows, two real-life scenarios are considered. Firstly,
proactive anomaly detection, where the detection method is employed to identify anoma-
lies while a system is operational. In this context, minimizing false positives is crucial, as
each false positive necessitates human intervention to determine if an anomaly truly exists.
Secondly, incident response. In incident response, achieving a high true positive rate is es-
sential, as analysts must identify the cause of an incident. Missing an anomaly in the data
could lead to the analyst being unable to uncover the underlying anomaly. These scenarios
are considered to make the results useful for not only the research field but also the real
world industry.

To accommodate both scenarios, the Area Under the Curve (AUC) is utilized to evaluate
the anomaly detection methods. AUC illustrates the true positive and false positive rates
for various thresholds regarding whether a window is deemed anomalous. This enables
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assessment of performance concerning achieving a high true positive rate, low false positive
rate, or a combination of both.

5.8.3. Manual Inspection
Many datasets lack labeled data because labeling logs, especially when there are millions
of them, requires a significant amount of effort. However, it is still possible to manually
check whether predictions are accurate. The downside of this manual checking is that it
does not provide numerical results for easy comparison.

For the APTA data, it is known that an attack occurs at a specific time, carried out by an
anomalous user, but the exact anomalous logs are not identified. Using the knowledge of
the attack, it is possible to verify whether a technique detects unusual activity around that
time. Additionally, since the logs before the attack are known to be benign, there should be
minimal high anomaly scores for those logs.

To facilitate manual inspection, a dashboard was created to display anomaly scores over
time. This dashboard allows users to zoom in on specific timeframes and adjust which data
points are shown in the graph. For instance, users can select a specific user, and the logs
containing that user’s activity will be highlighted in the graph. Additionally, it is possible to
search for certain words of interest or only show logs from a certain server.

The dashboard provides a detailed view when hovering over a data point, showing all the in-
formation about that log, including the calculation of the anomaly score. This feature makes
it clear why a particular log has a high score, enhancing the interpretability of the anomaly
detection process.

Not only is the dashboard useful for evaluation of the results of anomaly detection, it can
also be used by analysts to find anomalous behaviour in their dataset. It allows them to
zoom in on suspicious areas, find users or components that are anomalous and see all the
logs that contain these users or components.

An example of the dashboard can be seen in figure 5.2.

Figure 5.2: Example of the dashboard.

The figure displays a graph with anomaly scores over time. Below the graph, there is a table
containing the columns of the selected log from the graph, along with their corresponding
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values. Underneath the table, the n-grams that the log was part of are listed together with
the amount of times that n-gram was seen before the log.

5.8.4. Baseline Models
To better understand the results of the anomaly detection techniques used in the research,
two baselines models are used.

To better understand the results of the anomaly detection techniques used in the research,
two baseline models are employed.

The first baseline is PCA using event count matrices based on timed windows. First the
logs are divided into windows of a certain time frame, for instance all logs within 5 minutes.
These time frames are then used to create an event count matrix. Each time frame cor-
responds to a row in the matrix, and each column representing an event-ID. The value at
row i and column j indicates the number of times event-ID j appears in time frame i. PCA
is then applied to the event count matrix, retaining the minimum number of components
needed to explain 95% of the variance. This approach ensures that non-anomalies are well
reconstructed, while anomalies, which cannot be reconstructed as accurately, will have a
higher reconstruction loss. The reconstruction loss is used as the anomaly score for the
time windows.

PCA uses the event-IDs in the entire window and makes a prediction for the whole window.
While the predictions for these windows are often accurate, a significant downside is that
scores are calculated for the entire window, without indicating which specific logs might be
anomalies. This can help analysts by highlighting anomalous areas but does not assist in
pinpointing exactly which logs could be anomalous. An example of PCA can be found in
section 2.5.

The second baseline simply counts how often the event-ID of a log has been seen so far.
Only the event count of that log is used so no context is used at all. This baseline is chosen
to evaluate what the scores would be if no context were used at all, relying solely on the
rarity of the log key to determine the anomaly score.



6
Results

This chapter will discuss the results of the research. Each section represents a research
question. Within research question 2 the results of finding interesting words and anomalous
users are also shown.

6.1. Research Question 1
For the results of research question 1, we will primarily examine the differences between
the two curves for the n-gram or FlexFringe methods. This comparison allows us to under-
stand the impact of using different views on the same data this comparison will be made
first. After that, the two baseline models will be utilized to assess the importance of context
by comparing the results with the event-ID count and to evaluate the overall effectiveness
of the technique used against other widely used techniques we will compare the methods
to PCA. The n-grams and FlexFringe results are in 2 different plots to make the plots less
cluttered.

The results of predicting the BGL dataset using n-grams are depicted in Figure 6.1.

30
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Figure 6.1: AUC-curve for the BGL dataset using n-grams

The figure shows the Receiver Operating Characteristic (ROC) curves for four methods: n-
grams with both sequential data and data grouped on component, PCA on timed windows
and predictions on logs based on event counts. All curves follow a similar trend, but there
are distinct differences in their performance across various ranges of the false positive rate
(FPR) and true positive rate (TPR). First we will discuss the differences between the two
n-gram techniques, then we will compare the techniques to the baselines.

The curve for data grouped by component (orange) performs better at lower values of the
FPR than curve for for sequential data. This indicates that this method is more effective at
maintaining a lower rate of false positives while still achieving relatively high true positive
rates. A good example of how grouping data by component helps identify anomalies that are
missed when using sequential data is when the same error repeatedly occurred in the data
on different processes. This for instance happens at the last few logs of the BGL dataset.
The last few logs are the following:
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Line-ID Label Component Log Message Event-ID
4747957 KERNSOCK R31-M1-NC-I:J18-U11 FATAL idoproxy communication

failure: socket closed
ab35a286

4747958 KERNSOCK R20-M1-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

4747959 KERNSOCK R00-M0-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

4747960 KERNSOCK R36-M0-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

4747961 KERNSOCK R30-M0-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

4747962 KERNSOCK R31-M0-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

4747963 KERNSOCK R34-M0-NC-I:J18-U11 FATAL idoproxy communication
failure: socket closed

ab35a286

In sequential data, this repetitive error was eventually be perceived as normal behavior as
it had been seen before. The n-gram counts for the sequential data were the following:

Line-ID N-gram Counts
4747957 (7d9df963, 4bbe7086, 4bbe7086, ab35a286, ab35a286): 1

(4bbe7086, 4bbe7086, ab35a286, ab35a286, ab35a286): 1
(4bbe7086, ab35a286, ab35a286, ab35a286, ab35a286): 2
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 123
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 124

4747958 (4bbe7086, 4bbe7086, ab35a286, ab35a286, ab35a286): 1
(4bbe7086, ab35a286, ab35a286, ab35a286, ab35a286): 2
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 123
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 124
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 125

4747959 (4bbe7086, ab35a286, ab35a286, ab35a286, ab35a286): 2
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 123
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 124
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 125
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 126

4747960 (ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 123
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 124
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 125
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 126

4747961 (ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 124
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 125
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 126

4747962 (ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 125
(ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 126

4747963 (ab35a286, ab35a286, ab35a286, ab35a286, ab35a286): 126

However, when data is grouped by component, the normal behavior of a component is con-
trasted with an unexpected log. Since the same error occurs across different components
performing different actions, it is not immediately perceived as normal behavior. This dif-
ference enables the identification of the anomaly that sequential data might overlook. The
N-gram counts for data grouped on component is the following:
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Line-ID N-gram Counts
4747957 (7d9df963, 4bbe7086, 4bbe7086, ab35a286, ab35a286): 1
4747958 (29cbf9c8, 29cbf9c8, efb0cb55, 2558fcfa, ab35a286): 1
4747959 (efb0cb55, efb0cb55, 29cbf9c8, 2558fcfa, ab35a286): 1
4747960 (efb0cb55, 29cbf9c8, 29cbf9c8, 2558fcfa, ab35a286): 1
4747961 (2558fcfa, efb0cb55, efb0cb55, 29cbf9c8, ab35a286): 1
4747962 (efb0cb55, efb0cb55, efb0cb55, 4513d091, ab35a286): 1
4747963 (efb0cb55, 29cbf9c8, 4513d091, 2558fcfa, ab35a286): 1

On the other hand, the curve for sequential data (green) performs slightly better at higher
TPRs, which suggests that it is more effective in identifying true positives when the FPR
is higher. A significant part of this can be explained by the fact that some components do
not have enough logs to create n-grams from. For example, there are a few logs without
a component assigned to them. These logs are combined but have fewer than 5 entries,
preventing the creation of n-grams. Consequently, they receive a score of 0, even though
they are labeled as anomalous. There are several similar cases where other anomalous
components have very few logs. This explains why the n-gram method grouped by compo-
nent exhibits a relatively flat line on the ROC curve from an FPR of 0.85 to an FPR of 1.

In the context of incident response, where achieving a high TPR is crucial, the sequen-
tial data method might be slightly preferred due to its better performance at higher TPRs.
However, for proactive anomaly detection or overall performance, the data grouped by com-
ponent method demonstrates superiority. This is evident as it maintains higher TPRs across
various low FPRs and achieves a higher Area Under the Curve (AUC) value of 0.61, com-
pared to 0.56 for the sequential data. The higher AUC value indicates better overall perfor-
mance in distinguishing between normal and anomalous behavior.

The context of the logs, defined by the sequence of other logs occurring at the same time,
can be crucial when making predictions on the BGL dataset. This is evident as the event-
ID count curve is overshadowed by the n-gram technique curve grouped by component at
lower values of false positives. While PCA performs well at lower false positive rates, it
performs poorly at higher positive rates. This discrepancy may be due to PCA’s focus on
entire time windows, where a single anomalous log may not significantly impact the window
and thus go unnoticed. In contrast, the n-gram technique demonstrates robust performance
against PCA on the BGL dataset, showing higher overall effectiveness with a higher AUC
score of 0.61 for the grouped data compared to an AUC score of 0.58 for PCA. The sim-
ple event-ID counter method also underperforms compared to the n-gram method grouped
by component. This might be due to its lack of context surrounding the logs, which could
lead to missing important patterns. However, it does perform better than the n-grams on se-
quential data. This is likely because the sequential context of the logs may be irrelevant; the
surrounding logs in a sequential context can pertain to entirely different processes, causing
false positives and making it more difficult to identify actual patterns in the data.

The results of predicting the HDFS dataset using n-grams are depicted in Figure 6.2.
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Figure 6.2: AUC-curve for the HDFS dataset using n-grams

The figure again presents the ROC curves for the same four methods. As with figure 6.1,
both curves follow a similar trend, with distinct differences in performance across various
ranges of the false positive rate (FPR) and true positive rate (TPR).

The curve for data grouped by block (orange) again demonstrates strong performance at
lower FPR values, effectively maintaining a low rate of false positives while achieving rel-
atively high true positive rates. Conversely, the curve for sequential data (green) shows
slightly better overall performance, particularly at higher TPRs. This suggests that the se-
quential data method is more efficient at identifying true positives as the FPR increases.

In line with the previous analysis, for incident response scenarios where a high TPR is cru-
cial, the sequential data methodmight be preferred due to its superior performance at higher
TPRs.

However, for proactive anomaly detection or overall performance, the data grouped by block
method still holds considerable merit, especially at lower FPRs. It maintains a strong bal-
ance between detecting true positives and minimizing false positives, similar to its perfor-
mance in the earlier graph.

For this dataset, the sequential dataset performs slightly better overall with its higher Area
Under the Curve (AUC) value of 0.74, compared to 0.72 for the data grouped by block.
This higher AUC indicates better overall performance in distinguishing between normal and
anomalous behavior.

However, the results indicate that both detectionmethods are inferior to a simple event count
and PCA on the blocks. This outcome is expected, as anomalous blocks can be identified
by the absence of an event-ID within a block or by the presence of very rare event-IDs, as
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discussed in section 2.7. PCA considers all event-IDs within an entire block, enabling it to
detect blocks that are missing a specific event-ID or that contain rare event-IDs. Similarly,
the simple event-ID counter can easily identify logs that are very rare. While n-grams can
also detect rare logs, they can sometimes produce false positives when the order of com-
mon event-IDs appears for the first time, resulting in a high anomaly score even though the
order may not be significant in this context.

The results of using FlexFringe on the BGL dataset can be found in figure 6.3.

Figure 6.3: AUC-curve for the BGL dataset using FlexFringe

The grouped by component method (orange) performs slightly better at low FPR values
than sequential data (green), indicating it is more effective at minimizing false positives
while achieving reasonable true positive rates. From the midpoint onwards, the two meth-
ods perform similarly with still a slight adventage for the grouped method.

Overall, the grouped by block method works better than the sequential data method with
AUC scores of 0.61 and 0.55 respectively. The difference is especially big at lower false
positives rates but rather similar at high true positive rates.

This configuration of FlexFringe performs slightly better overall than PCA and the simple
event-ID count method, achieving a higher AUC of 0.61 compared to their AUC values of
0.58. The reasoning for this is consistent with the explanation for Figure 6.1: PCA considers
entire windows, where the impact of a single anomalous log is less noticeable. The event-ID
counter method completely ignores the context of a log, potentially missing anomalous pat-
terns. N-grams on sequential data perform the worst, likely due to using irrelevant context
that results in false positives and makes it harder to detect meaningful patterns in the data.
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The results of using FlexFringe on the HDFS dataset can be found in figure 6.4.

Figure 6.4: AUC-curve for the HDFS dataset using FlexFringe

In this graph, the performance between the different methods is very clearly visible as all
methods follow a similar trend but at different performance. N-grams on sequential order
(green) performs the worst with an AUC of 0.72 which n-grams based on block grouped
data (orange) overshadows in every aspect with an AUC score of 0.80. FlexFringe does
not have the problem of the input data being to short to create an anomaly score like n-
grams have as it can also create predictions for input shorter than the sliding window.

It is clear that both the event-ID count and PCA outperform the n-grammethods and flexfringe
methods on the HDFS dataset. This is due to the reason that are discussed in section 2.7
and in the explanation in figure 6.2: the anomalous blocks in the HDFS dataset can be
identified well by missing event-IDS within the block, which PCA can recognize greatly, or
by rare event-IDs that are easily picked up by the simple event-ID counter.

6.2. Research Question 2
To test the log grouping technique described in section 5.2, the HDFS dataset, as described
in section 5.8.1, was used to find potential views. To obtain the log key and log values, the
dataset was first parsed using DRAIN as described in section 5.1. The minimum overlap
for cogenetic parameters was set to 0.9. In total 86 options are given. Many of which can
be discarded because the log keys of the parameters are to specific caused by a mistake
in the parsing. Such as:

Option 85:
First 10 values of 10 values: [’/10.250.10.176:50010’, ’/10.251.26.131:50010’,

’/10.251.75.79:50010’, ’/10.250.15.240:50010’, ’/10.251.71.68:50010’,
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’/10.251.71.16:50010’, ’/10.251.123.1:50010’, ’/10.251.214.175:50010’,
’/10.250.17.177:50010’, ’/10.251.203.80:50010’]

on index 2 of log template : 10.250.10.223:50010:Transmitted block <*> to <*>
on index 2 of log template : 10.251.193.224:50010:Transmitted block <*> to <*>

The ip-addresses are part of some of the log keys which is a mistake by the parser. These
suggestions do show up last however as they contain very little amount of log keys and
values.

Most options contain block-ids as values because block-ids are present in every log. The
first options contains for instance 243,173 block-ids:

Option 0:
First 10 values of 243173 values: [’blk_-8400939786912755639’,
’blk_8648024226389574687’, ’blk_-7886599916563087367’,
’blk_-5676752597777441092’, ’blk_8879437951867746026’,
’blk_3722814908549644161’, ’blk_5399796255976554688’,
’blk_-1029479317166673464’, ’blk_-1553049055349049116’,

’blk_-5737745528118688899’]
on index 1 of log template : Received block <*> of size <*> from <*>

on index 1 of log template : 10.250.5.161:50010:Transmitted block <*> to <*>
on index 1 of log template : 10.251.195.70:50010:Transmitted block <*> to <*>

...
on index 1 of log template : PacketResponder <*> <*> Exception java.io.IOException:

Connection reset by peer
on index 1 of log template : 10.251.193.175:50010:Transmitted block <*> to <*>
on index 1 of log template : 10.251.66.102:50010:Transmitted block <*> to <*>
on index 1 of log template : 10.250.7.244:50010:Transmitted block <*> to <*>
on index 1 of log template : 10.251.105.189:50010:Transmitted block <*> to <*>

This option allows the program to look at the behaviour of blocks and might expose patterns
that deviate from the expected behaviour.

The options that do not contain the block-ids as values, contain ip-addresses as values. This
allows to see the data from a different perspective. One of the options with IP-addresses is
option 11:

Option 11
First 10 values of 202 values: [’10.251.91.229:50010’, ’10.250.5.237:50010’,

’10.251.91.159:50010’, ’10.251.90.64:50010’, ’10.251.71.68:50010’,
’10.251.203.179:50010’, ’10.251.73.188:50010’, ’10.251.111.130:50010’,

’10.251.42.84:50010’, ’10.251.195.52:50010’]
on index 2 of log template :

BLOCK* NameSystem.delete: <*> is added to invalidSet of <*>
on index 3 of log template :

<*> writing block <*> to mirror <*>
on index 3 of log template :

<*> to transfer <*> to <*> got java.io.IOException: Connection reset by peer
on index 1 of log template :

<*> Starting thread to transfer block <*> to <*>
...

on index 2 of log template :
BLOCK* NameSystem.addStoredBlock: addStoredBlock request received for <*> on <*>

size <*> But it does not belong to any file.
on index 2 of log template :

BLOCK* NameSystem.addStoredBlock: Redundant addStoredBlock request received for
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<*> on <*> size <*>

To create a view out of this option, the log-data is grouped by the ip-addresses and, in this
case, anomaly detection using n-grams as explained in section 5.4 is used. The result for
option 11 can be seen in figure 6.5.

Figure 6.5: Anomaly Scores for IP-addresses view.

Logs that do not contain any ip-address are given a negative score so it is clear to see
where there is a low anomaly score or no anomaly score. The data shows a view peaks
of scores at points where the behaviour of an IP-address is different from the behaviour
that is expected from an IP-addresses. This view does not contain enough anomaly scores
on its own to do proper anomaly detection on all the data but it can however be used in
combination with other views to detect anomalies based on different perspectives.

The last tactic used to create a view is to use domain knowledge to find groups in the data, as
described in section 5.2. To do this we used the APTA dataset, together with the knowledge
that there are users that might be interesting to look at. These users are presented with
username@domain, such as user@hotmail. These are found in the data and then logs
containing the same username are grouped together to do anomaly detection using n-grams.
The results of the anomaly detection can be found in figure 6.6.

Figure 6.6: Anomaly Scores for users view.

The figure detects anomalous behaviour of users at the beginning and some at the end.
Of the dataset we know that there is an attack happening at the end of the dataset. This
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however does not mean that the the behaviour at the beginning is not unexpected behaviour.
For instance, if the system is updated, it introduces new behavior that deviates from the
normal patterns in the data. It is only logical that this behavior is highlighted, as the goal
is to identify behavior that is not typical. Detecting such deviations is crucial for ensuring
that the anomaly detection system is effective in identifying both malicious activities and
significant changes in system behavior.

6.2.1. Interesting Words
To better understand the APTA data, we looked for interesting words in the data that might
show anomalous behaviour with the method explained in section 5.6. The results of running
this method on the APTA data can be found in table 6.1.
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Word Anomaly Score Total Number of Logs
at 8876.0 215448
context 8238.0 309356
root 8140.0 308534
Level 6157.0 165469
None 4872.0 60425
Name 3595.0 253488
is 3296.0 522002
cnt1 3033.0 35342
Int32 2913.0 31062
Verbose 2620.0 120010
String 2296.0 20587
The 2237.0 335267
Boolean 2140.0 21740
Active 2046.0 23209
server 2029.0 35299
Channel 1641.0 95142
to 1604.0 206661
Source 1595.0 181996
cnt2 1533.0 38356
Error 1520.0 31354
Account 1439.0 486936
not 1394.0 90137
partitionFqdn 1254.0 20920
CENSORED 1233.0 127464
Directory 1222.0 12085
# 1167.0 8199
Info 1143.0 3724
Application 1050.0 3211
message 980.0 12578
service 967.0 163986
cnt3 967.0 42959
callerFilePath 962.0 9250
callerFileLine 962.0 9250
memberName 962.0 9250
of 925.0 138600
operation 908.0 9864
Microsoft-Exchange-HighAvailability 903.0 1787
Object[] 896.0 5108
scope 872.0 5641
rootId 872.0 5640
a 817.0 391990
ChannelApplication 806.0 21229
CENSORED 772.0 35980
an 764.0 40881
— 756.0 26010
cnt4 732.0 40980
LDAP 730.0 11504
Logon 723.0 526362
directory 717.0 8666
Microsoft 708.0 27231

Table 6.1: Interesting Words in APTA Data

The table contains many non-interesting words such as ’at’ and ’context’. However, there
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are some words that stand out and are worth examining more closely. For instance, the
word ’LDAP’ is notable because it is not a common word in regular logs. When filtering
logs to only include those containing the word ’LDAP’, it becomes evident that there are
numerous anomalous logs during the attack period as can be seen in figure 6.7.

Figure 6.7: Anomaly Scores for the word ’LDAP’.

Logs containing ’LDAP’ during the attack suggest that the server might have been out of
service during the attack, providing an important clue for further investigation.

Another intriguing word is ’partitionFqdn’. This word appears exclusively in logs during the
attack, as shown in figure 6.8, which was generated using the dashboard. This could help
guide an analyst’s investigation by highlighting specific events or conditions that occurred
during the attack period, potentially pointing to the source of the attack.

Figure 6.8: Anomaly Scores for the word ’partitionFqdn’.

The logs containing ’partitionFqdn’ show that it is a variable name of a string of the function
Microsoft.Exchange.Data.Directory.ServiceTopologyProvider.GetConfigDCInfo(String parti-
tionFqdn Boolean throwOnFailure).

6.2.2. Interesting Users
To identify the attack in the EYE dataset, the goal was to find users that might be anomalous,
given that the attack was carried out by a user on the system. Therefore, the method
explained in section 5.7 was applied to the data to determine if it was possible to identify
the attacker. In total, 1453 users were detected in the data. The top 30 users with the lowest
similarity scores are displayed in Table 6.2.
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Rank Similarity Score Username
0 0.006622516556291387 name:
1 0.006622516556291389 name of a computer part with an @ in it
2 0.00662251655629139 domain name with an @ in it
3 0.006622516556291391 username1
4 0.006622516556291391 username2@CENSORED
5 0.0066225165562913925 nt
6 0.006733193816270513 admin.adminname
7 0.006971793147353612 -
8 0.013245033112582781 ready
9 0.013245033112582781 verify
10 0.013255832547730955 username3
11 0.013255832547730955 username4
12 0.026280899194660753 system
13 0.03310945724416292 username5@CENSORED
14 0.033112582781456956 computername1
15 0.033112582781456956 computername1.
16 0.033112582781456956 computername2
17 0.033112582781456956 computername2.
18 0.033112582781456956 computername3
19 0.033380014150051394 computername4
20 0.039460533890132196 username6@CENSORED
21 0.03962357192529833 variationofusername5@CENSORED
22 0.0406571339372369 username6@CENSORED
23 0.04181317936344641 computername5
24 0.042334607666605024 computername6
25 0.042809934624014105 computername7
26 0.04756266087142915 computername8
27 0.04874262031915246 computername9
28 0.04874262031915246 anomalous user
29 0.04874262031915246 username7
30 0.04963229606184337 computername10

Table 6.2: Similarity scores and usernames

The first three most anomalous ’users’ are not actual users but were mistakenly detected
as such. For example, the top-ranked ’user’ contains an ’@’ symbol, leading the algorithm
to misidentify it as a user, while it is actually part of a computer, making it unsurprising that it
differs from other users. In fact, many of the ’users’ in the top rankings are not actual users.
Specifically, this applies to ranks 0-2, 5, 7-9, 12, 14-19, 23-27, and 30.

Ranks 4, 10, 11, and 27 are users who were active after the attack was detected and during
the incident response, making their behavior different from other users. Rank 3 is associ-
ated with the user ’stratus,’ who appears to be connected only to MySQL and is active only
when there is an issue with MySQL. This has been a consistent pattern for years, indicating
that this user is not an attacker but simply has unusual behavior. Rank 6 is an admin, whose
activities differ from those of regular users, resulting in a high anomaly score.

Ranks 13, 20, 21, and 22 are very active users with a high volume of logs, distinguishing
them from the average user, though they are not actually anomalous. Rank 28 is associated
with the user ’anomalous user’ whose logs are particularly suspicious. This user was only
active for a very brief period, generating a large number of logs within a short timeframe just
before an attack was noticed. The logs from this timeframe, as displayed on the dashboard,
can be seen in Figure 6.9.
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Figure 6.9: Logs of user anomalous user

Around 09:54, the user generates multiple logs per second. Then, at 10:02, the user creates
amaster key for theMicrosoft-Windows-Crypto-DPAPI, which is used to encrypt and decrypt
sensitive information. Afterwards, the user utilizes the Background Intelligent Transfer Ser-
vice (BITS), a service known for uploading and downloading files and has been known to
be exploited by attackers [9].

6.3. Research Question 3
To assess the effect of combining multiple views, the APTA dataset was utilized because it
offers multiple interesting views, unlike the HDFS and BGL datasets, which have only two
or three views. The anomaly scores from the different views were first normalized using z-
score normalization. This normalization highlights how anomalous a log is within a specific
view. It ensures that a log with a score of 1 in a view where many logs score 1, is considered
less anomalous compared to a view where fewer logs have a score of 1, making the relative
anomaly scores more apparent.

The anomaly scores for different views can be seen in Figure 6.10. The graph is zoomed
in on the time of the attack.

Figure 6.10: Anomaly Scores for different views.

The bulk of the attack occurs between 13:14 and 13:20. During this period, the view that
groups data by computer name shows the highest anomaly score by a significant margin.
This is followed by the combined view, which averages the scores of all other views, and
is closely trailed by the sequential view. The thread-ID view is the least effective by a sub-
stantial margin.

While the combined view might not have the highest performance, it yields solid results com-
pared to other views, such as the activity-ID or process-ID views. This is particularly useful
because it is often unknown in advance where the attack might occur, making it challenging
to predict which view will be the most effective. Using a combined view ensures a reliable
performance, providing a safer option when the optimal view is not clear.

To determine if there is an optimal number for combining the nth highest scores, where n is
the total number of views, the APTA data was applied to the method explained in section
5.3. The results are displayed using the dashboard, zoomed in on the attack window, as
shown in Figure 6.11.
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Figure 6.11: Anomaly Scores for the all options of the nth highest views.

The figure indicates that there is very little difference between the various options for com-
bining the scores. The only noticeable difference is that the highest view score performs
slightly worse than the other options. This is because the scores are normalized, and the
high scores for this view during the attack window hold less significance due to the overall
average score being much higher than for the other options.

Overall, it can be beneficial to combine views if it is not clear which views perform the best.
This can be done by combining the highest x views or taking the average (which is x=number
of views). Taking only the highest anomaly score of each view for a log can result in a lot of
false positives and is therefor not recommended. Taking the average can always be a safe
option that can be considered.
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Conclusion

The graphs seen in section 6.1 show that the order in which the data is given to the anomaly
detection method has influence on the results. The influence is dependent on the detection
technique used and also depends on the dataset used. The chosen order should also keep
in mind what the goal of the detection method is. One order could improve performance on
low true positive value but decrease performance on high true positive rates. There might
also be a difference between different orders used. Since the use of views can have a
significant effect, it is good to consider if there might be useful views when using anomaly
detection.

Views can be derived using various methods. The simplest approach involves using ex-
isting columns in the data, as these often contain important information and can provide
some very useful views. Because of its simplicity and potential usefulness it should always
be consider when present. However, there are instances where these columns may not
yield the necessary insights or are not present at all, making it important to consider other
methods for finding views.

Log grouping is another technique for identifying views, leveraging log keys and values.
This method can create views based on values present in all logs or in subsets of logs.
Views based on subsets may be less obvious and harder to find but can still offer valuable
insights into the data. It does cost more time and effort to find views using log grouping
but they may discover views that otherwise would not have been found and can be used
without any knowledge of the data.

Domain knowledge is the final approach for creating views. This allows analysts to guide
the anomaly detection method in the right direction and assist analysts in determining the
usefulness of certain perspectives. A great example is the user similarity that was used on
the APTA and EYE datasets. It was already known that users caused these attacks but
not known which user performed the attack. By simply focusing purely on the users and
comparing them against each other, the anomalous users were detected from a dataset
with more than 1400 detected users and more than 7 million logs.

All threemethods—using existing columns, log grouping, and domain knowledge—can yield
useful views and should be considered when searching for the most informative perspec-
tives on the data.

Identifying which view is particularly useful can be challenging when knowledge of the
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dataset is limited. Combining the results of multiple views can be a safe and effective
approach, as it tends to perform as a middle ground among the views. Outliers, whether
they are very high or very low scores within a single view, are balanced out by the other
views. This ensures a more reliable outcome that performs around the average compared
to all the views. However, the effectiveness of this approach still heavily depends on the
relevance of the views combined; if all views are non-relevant, the combined results will still
underperform.

Overall, this research has demonstrated the significant potential of using different views in
anomaly detection. Their usefulness is highly dependent on the chosen view, the dataset,
and the anomaly detection method employed. When used correctly, views can substan-
tially improve results without requiring major adjustments to the existing anomaly detection
framework and should therefor always be considered.



8
Limitations

While this study has provided valuable insights into the effect of views on the input data, it
is important to recognize its limitations. By understanding these limitations, we can better
interpret the findings and identify areas for future research. The following limitations will be
discussed: the absence of repeated experiments, the parameters used for FlexFringe, the
missing guarantee for useful views, the limited size of some groups within a view and the
log key consistency needed to do log grouping.

The first limitation is the absence of repeated experiments on research question 3. The ex-
periment was only performed on the APTA dataset. The BGL and HDFS datasets only had
one or two interesting views in addition to the sequential view, compared to the six views in
the APTA dataset. The EYE data is the same type as the APTA data but was not used due
to time constraints.

Another limitation is the parameters used for FlexFringe. FlexFringe creates state machines
from the input data. Due to hardware and runtime constraints, the sliding window size over
the data was set to 4. This means the model was trained on an input string of 4 logs. This
can make it much harder to learn a meaningful model. For instance, the length of a block
in the HDFS dataset is between 13 and 31 for 95% of the blocks. Creating a model using
all the logs from a block would likely result in a more meaningful model and better results.

The methodology itself also has some limitations. The most significant is that the usefulness
of a view is not known beforehand without access to labeled training data. Often, software
logs do not have labeled data, making it impossible to know for certain that a view will pro-
duce better results than sequential data. There are some methods discussed to determine
which view might be interesting but this is no guarantee. With some knowledge about the
dataset is is also possible to estimate how well a view will perform, but it is challenging to
employ views on unknown datasets without significant effort.

Another limitation of views is the limited size that a component or group can have. For in-
stance, in the HDFS dataset, there are many anomalous blocks that contain only 3 or 4 logs.
For n-grams, this means that the n-gram size either has to be at most 3, or these blocks will
not receive a score. This constraint limits the effectiveness of n-grams in detecting anoma-
lies in smaller groups or components.

Another limitation is that log grouping might not work on all datasets. Log keys and values
are needed to create parameters. Data with many different log keys but only a few different
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values does not work well with log grouping. For example, the EVTX logs of the APTA data
have many different log keys as data columns are not constant, and the same event-ID
might have a different log message. Using log grouping on that data did not result in any
useful views



9
Future Work

The results highlight the substantial impact that views on the data can have, but this re-
search is only a first step. There are multiple ways in which researchers can build upon this
work.

The first approach is to apply views to already existing anomaly detection methods and repli-
cate previous research using views as the input instead of the normal sequential data. This
can demonstrate whether views can improve existing research and document how easily
the anomaly detection methods can be adapted to use views. For example, recreating the
study by Shilin He et al. [4] with views as the input could be insightful.

Another way to expand on views is by trying to combine multiple types of views. Instead of
only combining views that generate scores for all logs, it could also be possible to integrate
those views with views that give scores to a group themselves or a part of the logs. For
instance with a user view that assesses how anomalous a user is. This might provide more
context and explanation for why a log is considered anomalous.

Additionally, more information on why a log is anomalous can be derived by examining how
the log deviates from previously observed behavior. For instance, if a log is part of sev-
eral anomalous n-grams, it can be checked whether the log itself is very rare, causing the
n-grams to be anomalous, or if the combination of this log with others is rare. If the combi-
nation is rare, it is possible to analyze what a normal combination with the log looks like to
understand the normal behavior and what is currently happening.

Lastly, further development of the user similarity method is recommended. Currently, there
is still a lot of manual work involved in verifying whether a user is truly anomalous. A simple
check involves examining how long the user has been active. If a user is only active at
the moment of the attack and then stops, they are likely anomalous. However, if a user
has consistently exhibited behavior different from others for a long time, they are probably
not anomalous. By analyzing the activity patterns of users, the algorithm might be able to
reduce the number of false positives in the anomalous user list which reduces the manual
work required.
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