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Electromagnetic fields carry a linear and an angular momentum, the first being responsible for the
existence of the radiation pressure and the second for the transfer of torque from electromagnetic radiation
to matter. The angular momentum is considered to have two components, one due to the polarization state
of the field, usually called spin angular momentum (SAM), and one due to the existence of topological
azimuthal charges in the field phase profile, which leads to the orbital angular momentum (OAM). These
two contributions to the total angular momentum of an electromagnetic field appear, however, to not be
independent of each other, something which is described as spin-orbit coupling. Understanding the physics
of this coupling has kept scientists busy for decades. Very recently it has been shown that electromagnetic
fields necessarily carry also invariant radial charges that, as discussed in this Letter, play a key role in the
angular momentum. Here we show that the total angular momentum consists in fact of three components:
one component only dependent on the spin of the field, another dependent on the azimuthal charges carried
by the field, and a third component dependent on the spin and the radial charges contained in the field. By
properly controlling the number and coupling among these radial charges it is possible to design
electromagnetic fields with a desired total angular momentum. Remarkably, we also discover fields with no
orbital angular momentum and a spin angular momentum typical of spin-3=2 objects, irrespective of the
fact that photons are spin-1 particles.

DOI: 10.1103/PhysRevLett.121.123202

Electromagnetic fields carry a linear and angular momen-
tum, the first being responsible for the existence of the
radiation pressure and the second for the transfer of torque
from light to matter. Originally, most of the studies on this
topic were concerned with linear momentum. After the work
by Allen et al. [1], the interest on the angular momentum of
light, its origin and effect on matter, has gradually grown
through the years and currently represents an active area of
investigation, especially in view of possible applications to
high-capacity optical communications, novel metrology
techniques, and classical and quantum imaging [2–6]. The

nature, and the origin, of the total angular momentum (TAM)
for electromagnetic fields have been widely investigated and
it is commonopinion that there are essentially two sources for
it: one due to the polarization state of the field (spin angular
momentum or SAM, for short) and the other due to the
presence of a helical wave front in the electromagnetic field
(orbital angular momentum or OAM) [7]. The search for two
such contributions has beenmostly guided by analogies with
mechanics and by the fact that the governing equation for
monochromatic electromagnetic fields, under the paraxial
regime, is formally equivalent to the Schrödinger equation
for a quantum particle confined on a planewhich is known to
carry both types of angular momenta. Whether such formal
division also applies to nonparaxial fields, i.e., to true
solutions of Maxwell’s equations, is still the subject
of scientific investigation and debate. It could be that
spin-orbit coupling is an inherent property of
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electromagnetic fields. After all, the governing equations for
electromagnetism and quantum mechanics are in fact of
fundamental different nature. This Letter intends to contrib-
ute to understanding the physics of this fundamental issue.
More specifically, we make use of a recently introduced
representation of a field in terms ofHelmholtz naturalmodes,
which allows us to identify two types of topological charges
in a field: an azimuthal charge and a radial charge. As we are
going to show in this Letter, radial topological charges are the
physical objects that couple to the spin of the field. Once the
main mechanism behind the generation of the total angular
momentum (TAM) of a field is clear, we can show the
existence of fields endowed with only a SAM contribution,
which however corresponds to spin-3=2 particles, something
surprising when dealing with electromagnetic fields.
In order to proceed, we need first to fix the notation used

throughout the Letter. First of all, all fields depend on time by
the factor expð−iωtÞwhereω > 0. This factor is omitted from
all formulae. As will be clear later on, it is convenient to
express agenericmonochromatic electromagnetic field,which
propagates in the positive z direction of a Cartesian reference
frame, in terms of s and p polarized plane waves expansion
as EðrÞ ¼ R R ½AsðξÞŝðξÞ þ ApðξÞp̂ðξÞ� exp ðik · rÞd2ξ, and

HðrÞ¼ ffiffiffiffiffiffiffiffiffi
ε=μ0

p R R f½−AsðξÞp̂ðξÞþApðξÞŝðξÞ�expðik·rÞd2ξg
with k ¼ 2πξxx̂þ 2πξyŷþ kzẑ, r ¼ xx̂þ yŷþ zẑ, kz ¼
½k2 − 4π2ðξ2x þ ξ2yÞ�1=2, and k2 ¼ ½4π2ðξ2x þ ξ2yÞ þ k2z � ¼
4π2=λ2, λ being the wavelength. The functions AsðξÞ and
ApðξÞ are the s and p components of the angular spectrum,
respectively, and ξ ¼ ξxx̂þ ξyŷ is the transverse spatial
frequency vector. The unit vectors ŝðξÞ and p̂ðξÞ are
given by ½ξy;−ξx; 0�ðξ2x þ ξ2yÞð−1=2Þ and ½−ξxkz=k;−ξykz=k;
2πðξ2x þ ξ2yÞ=k�ðξ2x þ ξ2yÞð−1=2Þ, respectively. Since we will
only consider propagating fields, we neglect any contribution
of evanescent waves to the field EðrÞ; hence we have
4π2ðξ2x þ ξ2yÞ < k2. From now on, we will be particularly
interested in studying the properties of TAM in optical beams,
paraxial or not, for which a mean direction of propagation,
coinciding with the z axis of a Cartesian reference frame, can
still be identified. The time-averaged TAM can be written in
the following way [8,9]:

J ¼ ε0μ0
2

Re

�Z
½r × ðE ×H⋆Þ�dr

�
ð1Þ

where the ⋆ symbol stands for complex conjugation. The
majority of analyses and applications of SAM and OAM has
always considered Laguerre-Gauss beams or other known
solutions of theparaxialwave equation.Theworkswhichhave
addressed the case of nonparaxial fields suggested that for
Maxwell fields the separation in SAM and OAM components
in not possible [10–19]. This is the case, for instance, for
tightly focused fields, or for light scattered by small objects.
The reader interested in knowing more about the different

scenarios where spin-orbit coupling plays a role is referred to
the recent review work by Bliokh et al. [20]. In this Letter, we
are not going to discuss the different physical interactions that
can lead to a spin-orbit conversion, butwe intend to investigate
the physical origin behind such coupling. In order to do so, we
will follow the common procedure of considering the angular
momentum, and later on the energy, per unit length for a field
propagating along the z direction. This quantity reads

Jz ¼
ε0μ0
2

Re

�Z
½r × ðE ×H⋆Þ�zdxdy

�

¼ ε0μ0
2

Re
�Z

½xðEzH⋆
x − ExH⋆

z Þ

− yðEyH⋆
z − EzH⋆

y Þ�dxdy
�
: ð2Þ

Equation (2) can be put into a different, more insightful
form by expressing it in Fourier space and in terms of polar
coordinates, ρ and φ say, such that ξx ¼ ρ cosφ and
ξy ¼ ρ sinφ. This gives

Jz ¼ Re

�
ε0
2iω

Z ��
A⋆
s
∂As

∂φ þ A⋆
p
∂Ap

∂φ
�

−
ð2πÞ2
k

ρ2

kz
A⋆
s Ap

�
ρdρdφ

�
: ð3Þ

Equation (3) is an expression for the total angular
momentum of surprising elegance and represents the first
important result of this Letter. It shows that the TAM can in
fact be expressed in terms of the sum of a s-polarized
contribution (which we will call S-TAM), a p-polarized
contribution (which we will denote as P-TAM) and a s-p
cross term (which we can denote as SP-TAM). Such a
generic expression for the TAM of an electromagnetic
field will now allow us to further investigate how spin and
orbit couple to each other. In order to do this, wewill use two
main ingredients. First, we will decompose a generic field,
solution of the scalar Helmholtz equation, in terms of
Helmholtz natural modes (HNMs). Second, we will con-
struct a solution of Maxwell’s equations from a scalar
solution of Helmholtz equation. Let us suppose we have a
solution of the scalar Helmholtz equation ∇2Uðx; y; zÞ þ
k2Uðx; y; zÞ ¼ 0 where k ¼ 2π=λ and Uðx; y; zÞ ¼R R

Aðξx; ξyÞ exp ½i2πðξxxþ ξyyÞ� exp ðikzzÞdξxdξy. Since
we do not consider evanescent waves in the field, we can
decompose the scalar angular spectrum Aðξx; ξyÞ at z ¼ 0 in
terms of orthogonal and propagation invariant modes, the
Helmholtz natural modes [21], as

Aðρ;φÞ¼
X
m;n

cm;n

"
exp

	
i2πmλ

ffiffiffiffiffiffiffiffiffiffiffiffi
1
λ2
−ρ2

q 


ð 1
λ2
−ρ2Þ1=4 expðinφÞ

#
; ð4Þ
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with m, n integers in the range ð−∞;∞Þ. The resulting
expression for the field Uðx; y; zÞ is

Uðx; y; zÞ ¼
X
m;n

cm;n exp ðinθÞ

× in
Z

1=λ

0

exp
h
i2πðmλþ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λ2
− ρ2

q i

ð 1
λ2
− ρ2Þ1=4

× Jnð2πρr⊥Þρdρ; ð5Þ

where x ¼ r⊥ cos θ, y ¼ r⊥ sin θ and the coefficients cm;n

are computed as

cm;n ¼
λ

2π

Z
2π

0

Z
1=λ

0

Aðρ;φÞ
ð 1
λ2
− ρ2Þ1=4 exp ð−inφÞ

× exp

�
−i2πmλ

�
1

λ2
− ρ2

�
1=2

�
ρdρdφ: ð6Þ

HNMs are orthogonal with respect to the scalar product
and it is important to point out how each of the modes in a
HNMs decomposition has finite energy and carries an
azimuthal charge and a radial charge. Azimuthal charges
appear in the form of a helical wave front and are due to the
phase term exp ðinφÞ in Eq. (4). Since the phase is not
defined at the center of the coordinate system, the name of
phase singularity is also a commonway to refer to such phase
profile.Azimuthal charges are responsible for thepresence of
an orbital angular momentum of light. Radial charges, in
turn, appear in the form of Fresnel zones–like functional
dependencies for the angular spectrum and are characterized
by the phase profile exp ði2πmλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=λ2Þ − ρ2

p
Þ. The exist-

ence of a radial charge, preserved under free-space propa-
gation, seems to have remained unnoticed until very recently
[21,22]. The fundamental modes in real space consist of
vortices in the azimuthal variable θ and integrals of Bessel
functions in the radial variable r⊥. The reader should notice
that the only contribution to the fieldUðx; y; zÞ on the optical
axis (r⊥ ¼ 0) comes from the coefficients cm;0, as expected.
In fact, all the other termswould lead to an undefined phase at
the points ð0; 0; zÞ, due to the presence of the vortex
exp ðinθÞ in the phase profile, which would be not physical.
In addition to that, we would also like to stress how, for any
value of n ≠ 0, the point ρ ¼ 0 in the integrand in Eq. (5)
does not contribute to the value of the field Uðx; y; zÞ due to
the presence of a zero of the Jnð2πρr⊥Þ at ρ ¼ 0. As to a
general procedure to build a vector field that is solution of
Maxwell’s equations from a scalar field U solution of
Helmholtz equation, a way is to combine two independent
vectorial solutions of Maxwell’s equations, namely M ¼
∇ × ðvUÞ and N ¼ 1=k∇ ×M, where v is a constant vector
[23]. The field obtained in thisway has, generally speaking, a
position dependent polarization state, also sometimes
denoted as local polarization state. In our case, we prefer
to work with a field endowed with a global polarization

state such that the state of polarization of the field compo-
nents transverse to the mean direction of propagation
is unequivocally defined. Such a field can be generated if
one takes only the M-type solution and further sets v ¼
1=k½−ia2 exp ðiαÞ; ia1; 0�, where a1, a2, and α are real-
valued constants that set the polarization state of the field.
The resulting field reads

E¼
ZZ

Aðξx;ξyÞ
�
a1

kz
k
x̂þa2 expðiαÞ

kz
k
ŷ

− ẑ
1

k
½a1kxþa2ky expðiαÞ�

�
expðik ·rÞdξxdξy: ð7Þ

It can be checked that the field in Eq. (7) satisfies the
transversality condition ∇ ·E ¼ 0. Furthermore, it is easy
to see that the transverse field ExðrÞx̂þ EyðrÞŷ is ellipti-
cally polarized, independently of position r [24]. In
particular, if we set a1 ¼ a2 and α ¼ 0, the transverse
field component on the x, y plane will be linearly polarized,
while for a1 ¼ a2 and α ¼ �π=2, it is circularly polarized.
The field is also linearly polarized if a1 ¼ 0 or a2 ¼ 0. In
the most general case (a1 ≠ a2, α ≠ 0, π=2), the field is
elliptically polarized. From now on, we will consider the
case of circular polarization, namely we will set a1 ¼ a2 ¼
1 and α ¼ �π=2.
We have previously proven [see Eq. (3)] that the TAM

can be expressed in terms of s and p components of the
angular spectrum. For the field in Eq. (7), we can easily
determine the expressions for AsðξÞ and ApðξÞ, which read

Asðξx; ξyÞ ¼ Aðξx; ξyÞ
kz
k
½sinφ − exp ðiαÞ cosφ�

Apðξx; ξyÞ ¼ −Aðξx; ξyÞ½cosφþ exp ðiαÞ sinφ�: ð8Þ

By inserting the expressions from Eq. (8) in Eq. (3), and
further setting α ¼ �π=2, we obtain

Jz
ð�π=2Þ ¼ Re

�
ε0
2iω

Z
2π

0

Z
1=λ

0

��
iσzjAj2 þ A⋆ ∂A

∂φ
�

×

�
1þ k2z

k2

�
þ ð2πÞ2

k2
iσzρ2jAj2

�
ρdρdφ

�
ð9Þ

where, depending on the handedness of the polarization
state, σz ¼ �1 denotes the component of the spin along the
propagation direction. The energy per unit length W of the
field,W¼ε0=2

R R ½jAsðξÞj2þjApðξÞj2�d2ξ, can be expressed
in terms of the scalar spectrum in the following way:

Wð�π=2Þ ¼ ε0
2

Z
2π

0

Z
1=λ

0

jAj2
�
1þ k2z

k2

�
ρdρdφ: ð10Þ

The ratio γ ¼ Jz
ð�π=2Þ=Wð�π=2Þ between the TAM and

the energy, per unit length, is
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γ ¼ σz
ω

þ
Ref 1

iω

R
2π
0

R 1=λ
0 A⋆ ∂A

∂φ ð1þ k2z
k2ÞρdρdφgR

2π
0

R 1=λ
0 jAj2ð1þ k2z

k2Þρdρdφ

þ Refσzλ2ω

R
2π
0

R 1=λ
0 ρ2jAj2ρdρdφgR

2π
0

R 1=λ
0 jAj2ð1þ k2z

k2Þρdρdφ
: ð11Þ

The key step now to gain full insight on what controls
each term in Eq. (11) is to expand Aðρ;φÞ in terms of
Helmholtz natural modes, as in Eq. (4). This gives

γ¼σz
ω
þ 1

ω

Re
nP

m;n
4
3
njcm;nj2þ

P
m;m0 ;n
m≠m0

nc⋆m0;ncm;nfðm;m0Þ
o

P
m;n

4
3
jcm;nj2þ

P
m;m0 ;n
m≠m0

c⋆m0;ncm;nfðm;m0Þ

þσz
ω

Re
nP

m;n
2
3
jcm;nj2−

P
m;m0 ;n
m≠m0

c⋆m0;ncm;nfðm;m0Þ
o

P
m;n

4
3
jcm;nj2þ

P
m;m0 ;n
m≠m0

c⋆m0;ncm;nfðm;m0Þ ;

ð12Þ

where we defined the coupling function as

fðm;m0Þ ¼
�

1

i2πðm −m0Þ þ
1

2π2ðm −m0Þ2
�
: ð13Þ

Eq. (12) is the second fundamental result of this work.
It shows that for the class of electromagnetic fields derived by

a scalar angular spectrum Aðρ;φÞ, as in Eq. (7), with
a1 ¼ a2 ¼ 1 and α ¼ �π=2, the TAM has three main
contributions: a first term only dependent on the spin σz, a
second one dependent on the azimuthal charges n present in
the field (the orbital part), and a last term dependent on the
spin σz and the radial charges m contained in the field [25].
Jz=W can be interpreted as if each photon in the field
contributes to the angularmomentum through a term σzℏ due
to its spin, a term nℏ due to its orbital angular momentum,
and a third term, again proportional to the spin σz and
function of the radial charges carried by the field. The last
contribution, which is absent within the paraxial regime, is a
special trait of the electromagnetic theory. If we look at the
coupling function fðm;m0Þ in Eq. (13), we see it has a local
form, since each individual radial charge effectively couples
to only a limited number of neighboring charges, having
radial indices m not too different from each other and
corresponding to the same azimuthal charge n. The local
nature of the coupling can be better appreciated by looking at
panel (a) of Fig. 1, where it is clear how each radial charge of
radial index m is effectively able to couple with few
neighboring radial charges only. Since the mechanism
behind the coupling is now clear, one can predict when it
is relevant for applications and even properly design fields to
obtain a specific value of the TAM. More importantly, if a
field has only one radial chargem for every single azimuthal
charge n (namely it is always c⋆m0;ncm;n ¼ 0 when m0 ≠ m),

(b) (c)
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FIG. 1. Panel (a): Absolute value of the coupling function fðm;m0Þ ¼ 1=½2iπðm −m0Þ� þ 1=½2π2ðm −m0Þ2� among neighboring
radial modes. The curve refers to the coupling of the zeroth order radial charge (shown close to the origin of the x axis in the graph) with
the neighboring radial charges, of order m ∈ ½−5; 5�. On the x axis the order of each charge is reported, while the phase profile of each
charge is used as marker on the curve. Only radial charges corresponding to HNMs of same azimuthal charge n can couple to each other.
Panels (b), (c), (d), and (e): Example of spin-3=2 electromagnetic field. The field is derived by a scalar angular spectrum
Aðρ;φÞ ¼ sin ½2πmλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=λ2Þ − ρ2

p
þ nφ�=½ð1=λ2Þ − ρ2�1=4. The absolute value, and phase, of the corresponding scalar field

Uðx; y; zÞ, at z ¼ 0, is given in panels (b) and (c), respectively. Panels (d) and (e) show the amplitude and phase of the corresponding
scalar spectrum, A, within the circle of radius 1=λ in Fourier space. The example corresponds to m ¼ 3 and n ¼ 2. The full
electromagnetic field E associated to the angular spectrum A is obtained through Eq. (7). More generally, any electromagnetic field
carrying HNMs with no azimuthal charge (i.e., n ¼ 0) will give a γ ¼ 3σz=ð2ωÞ.
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then there is no coupling among radial charges at all. In this
specific case, Eq. (12) takes the remarkable form

γ ¼ 3σz=2
ω

þ 1

ω

P
m;nnjcm;nj2P
m;njcm;nj2

; ð14Þ

which showsaSAMtypical of a spin-3=2 particle, something
surprising when dealing with spin-1 particles, such as
photons. Notice that the 3=2 SAM is independent of the
weighting coefficients cm;n and arises solely from the
polarization state of the field. In addition, if the field does
not have azimuthal charges (i.e., n ¼ 0 for all HNMs carried
by the field), Eq. (14) gives γ ¼ 3σz=ð2ωÞ, which corre-
sponds to the existence of electromagnetic fields only
carrying a spin-3=2 angular momentum. Very recently, the
possibility to generate light beamswith half quantization of a
total optical angular momentum has been discussed and
experimentally tested within the paraxial regime [26]. The
results obtained in the present work apply to electromagnetic
fields, which are solutions of Maxwell’s equations and stem
from the coupling between radial charge and spin that takes
place in the full nonparaxial regime. These results indicate
that fractional-spin properties of light are of a much more
fundamental nature and a direct consequence of the electro-
magnetic theory. As an example of an electromagnetic field
that shows this unexpected spin-3=2 angular momentum, we
consider the field with the following scalar angular spectrum

Aðρ;φÞ ¼
sin ½2πmλ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λ2
− ρ2

q
þ nφ�

ð 1
λ2
− ρ2Þ1=4 : ð15Þ

The decomposition in HNMs of the angular spectrum in
Eq. (15) only presents two terms different from zero, with
coefficients cm;n ¼ 1=ð2iÞ and c−m;−n ¼ −1=ð2iÞ [27].
Once this scalar spectrum is used to construct an electro-
magnetic field by using the recipe given in Eq. (8), one
obtains exactly γ ¼ 3σz=ð2ωÞ. This is simple to see if one
realizes that all products c⋆m0;ncm;n are zero, given that for
different m0 and m there are no common azimuthal indices
n. Additionally, it is important to point out that, although
two azimuthal charges are present in the field, their
contributions to the orbital angular momentum cancel with
each other, leading to a field only carrying a spin angular
momentum. In Figs. 1(b), 1(c), 1(d), and 1(e), we show
amplitude and phase for the scalar angular spectrum A for
this field, along with amplitude and phase profiles, at z ¼ 0,
of the corresponding scalar field U. To summarize, in this
work we unfolded the different contributions to the total
angular momentum of electromagnetic fields and showed
how there are three main contributions: one due to spin, one
due to the azimuthal charge carried by a field, and one
which depends on the spin and the radial charges carried
by the field. All this suggests that instead of talking of

spin-orbit coupling, it would be more appropriate to
consider coupling between spin, azimuthal charges, and
radial charges in the field. A useful form for the total
angular momentum has been obtained in terms of
Helmholtz natural modes, which led to the discovery of
fields for which only a spin-3=2 angular momentum exists.
This is a surprising result, considering the quanta in an
electromagnetic field, photons, are spin-1 particles. On an
application perspective, the results presented here open
novel routes to the control of light-matter interaction,
optical metrology based on total angular momentum trans-
fer and optical communications.

This work was partly funded through the Projects
No. 14IND09 and No. 16ENG03 [European Metrology
Programme for Innovation and Research (EMPIR)]. The
EMPIR initiative is cofunded by the European Union
Horizon 2020 research and innovation programme and
the EMPIR participating States.

*o.elgawhary@tudelft.nl
[1] L. Allen, M.W. Beijersbergen, R. J. C. Spreeuw, and J. P.

Woerdman, Phys. Rev. A 45, 8185 (1992).
[2] Quantum Imaging, edited by M. Kolobov (Springer,

Singapore, 2007).
[3] Quantum Metrology, Imaging and Communication, edited

by D. S. Simon, G. Jaeger, and A. V. Sergienko (Springer,
Cham, 2017).

[4] Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C.
Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur,
M. J. Padgett, and A. E. Willner, Nat. Commun. 5, 4876
(2014).

[5] I. Bialynicki-Birula and Z. Bialynicka-Birula, J. Opt. 19,
125201 (2017).

[6] T. Van Mechelen and Z. Jacob, Optica 3, 118 (2016).
[7] We are referring here to the so-called intrinsic OAM. The

extrinsic OAM, originating from a skew beam trajectory, is
not of fundamental nature and will not be considered here.

[8] L. Allen, M. J. Padgett, and M. Babiker, in Progress in
Optics, edited by E. Wolf (Elsevier, Amsterdam, 1999)
XXXIX, pp. 291–372.

[9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,
Photons & Atoms (Wiley-VHC,, Weinheim, 2004).

[10] S. M. Barnett and L. Allen, Opt. Commun. 110, 670 (1994).
[11] K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A.

Aiello, Phys. Rev. A 82, 063825 (2010).
[12] S. J. van Enk and G. Nienhuis, J. Mod. Opt. 41, 963 (1994).
[13] K. Y. Bliokh and F. Nori, Phys. Rep. 592, 1 (2015).
[14] I. Bialynicki-Birula and Z. Bialynicki-Birula, J. Opt. 13,

064014 (2011).
[15] L. Allen, M. Babiker, and W. L. Power, Opt. Commun. 112,

141 (1994).
[16] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V.

Pasko, S. M. Barnett, and S. Franke-Arnold, Opt. Express
12, 5448 (2004).

[17] M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos,
and N. R. Heckenberg, Phys. Rev. A 56, 4064 (1997).

PHYSICAL REVIEW LETTERS 121, 123202 (2018)

123202-5

https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1038/ncomms5876
https://doi.org/10.1038/ncomms5876
https://doi.org/10.1088/2040-8986/aa98b6
https://doi.org/10.1088/2040-8986/aa98b6
https://doi.org/10.1364/OPTICA.3.000118
https://doi.org/10.1016/0030-4018(94)90269-0
https://doi.org/10.1103/PhysRevA.82.063825
https://doi.org/10.1080/09500349414550911
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1088/2040-8978/13/6/064014
https://doi.org/10.1016/0030-4018(94)00484-6
https://doi.org/10.1016/0030-4018(94)00484-6
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1103/PhysRevA.56.4064


[18] S. M. Barnett, L. Allen, R. P. Cameron, C. R. Gilson, M. J.
Padgett, F. C. Speirits, and A. M. Yao, J. Opt. 18, 064004
(2016).

[19] S. M. Barnett, M. Babiker, and M. J. Padgett, Phil. Trans. R.
Soc. A 375, 20150444 (2017).

[20] K. Y. Bliokh, F. J. Rodriguez-Fortuno, F. Nori, and A.
Zayats, Nat. Photonics 9, 796 (2015).

[21] O. El Gawhary, New J. Phys. 19, 013021 (2017).
[22] O. El Gawhary, Opt. Lett. 40, 2626 (2015).
[23] J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New

York and London, 1941).
[24] We emphasize that the M solutions are only chosen as a

matter of convenience. The results obtained are general and
valid regardless of this particular choice. If one chooses the
N solutions, the roles of the s and p components for the
electromagnetic field are simply interchanged. This has no
effect on Jz and the field energy W. A proof of this is
provided in the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.123202.

[25] The reader should notice that the energy W in the
denominators of Eq. (12) is a real quantity, despite the

apparent complex-valued expression. This can be easily
proven by using the definitions of the coefficients c⋆m0;n and
cm;n and see what happens when m and m0 get replaced by
−m and −m0.

[26] K. Ballantine, J. F. Donegan, and P. R. Eastham, Sci. Adv. 2,
e1501748 (2016).

[27] The reader might have noticed that the angular spectrum in
Eq. (15) is multi-valued at ρ ¼ 0, for n ≠ 0. The scalar field
Uðx; y; zÞ corresponding to that spectrum is however single-
valued, since the point ρ ¼ 0 of the spectrum does not
contribute to the field, due to the presence of a zero at ρ ¼ 0
carried by the function Jnð2πρr⊥Þ as already discussed
previously in the text. This means that in the practical
realization of that angular spectrum one can replace the
original spectrum by another one that vanishes at ρ ¼ 0,
recovering in this way also a single-valued spectrum. The
HNM decomposition of the two spectra remains the same,
as the single point, where the two functions differ from each
other, has zero measure and does not contribute to the
integrals defining the coefficients cm;n.

PHYSICAL REVIEW LETTERS 121, 123202 (2018)

123202-6

https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1088/2040-8978/18/6/064004
https://doi.org/10.1098/rsta.2015.0444
https://doi.org/10.1098/rsta.2015.0444
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1088/1367-2630/aa57c3
https://doi.org/10.1364/OL.40.002626
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.123202
https://doi.org/10.1126/sciadv.1501748
https://doi.org/10.1126/sciadv.1501748

