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Abstract

The Dutch governmental organisation Rijkswaterstaat contributes to the smooth and safe flow of
traffic, as both traffic jams and accidents cost society large amounts of money each day. Roads
are designed for the current traffic composition. Due to the promotion of Adaptive Cruise Con-
trol (ACC) systems, utilisation of these systems is expected to increase. Society benefits from in-
sights into the effects these systems have on traffic flow, as they can help to reduce traffic jams and
accidents.

ACC systems are designed to increase driving comfort by taking over throttling and braking from
the human driver. For optimal driver acceptance, these systems show similar driving behaviour to
that of human drivers. However, this is not entirely possible due to limited anticipation. To predict
how differences in driving behaviour affect traffic flows, researchers usually perform simulations
using parametric car-following models. However, research shows contradictory findings.

The goal of this research was to gain insights into the performance of commonly applied paramet-
ric car-following models on representing the driving behaviour of ACC systems. Optimal model
calibration was obtained by investigating the sensitivity of the model calibration to synthetic data.
Investigated were the calibration methodology and the quality and quantity of calibration data.
Models are calibrated to real-world driving data from an Audi A4 from 2017. These models were
used to assess the capability of representing typical highway scenarios: steady-state car-following,
cut-in, cut-out, hard-braking and stop-and-go scenarios. The considered models were the Intelligent
Driver Model (IDM) model, which has previously been applied to model the driving behaviour of
human drivers, the newly developed simplified ACC (sACC) model and a variant on this model.

Insights in the sensitivity of the model calibration were obtained by performing a sensitivity analy-
sis on synthetic data. Essential factors in achieving an optimal model calibration are: 1) the model
closely matches the driving behaviour in the data, 2) noise levels are as low as possible and 3) the
data should contain as many situations as possible that are also included in the model. The data-
set must be sufficiently long to include all these situations and to allow the model to develop its
dynamics entirely.
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Using these insights, a calibration was performed on real-world ACC driving data from an Audi A4
(2017). For the ACC system, it was found: 1) the ACC system exhibits non-linear driving behaviour,
2) the acceleration depends on the current velocity and distance to the desired velocity, 3) the
system does not consider an intelligent braking strategy and is thus not able of handling safety-
critical driving situations and 4) the model includes a sub-controller which ensures comfortable
driving behaviour. Except for the comfortable sub-controller, the non-linear IDM model considers
all of these factors and thus best represents the driving behaviour. The linear sACC model cannot
represent standing conditions, which is resolved in the alternative version. The linearity allows for
a better representation of the behaviour of the comfortable sub-controller. However, it disallows
for an accurate representation of the dynamics by the models.
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“With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk.”

— John von Neumann





Chapter 1

Introduction
1-1 Background

On a busy highway, each vehicle continuously reacts to other vehicles surrounding it. Therefore,
the equilibrium flow of vehicles through a particular road segment and the dynamics of the flow
result from the combination of all vehicles driving on the road. Adaptive Cruise Control (ACC)
systems are designed to increase driving comfort by taking over the longitudinal Vehicle Motion
Control (VMC) sub-task of the Dynamic Driving Task (DDT) (i.e. throttling and braking) from the
human driver (Happee et al., 2018). The driver stays responsible for performing the remaining sub-
tasks from the DDT and must supervise the ACC system. In case the driver prefers to deactivate
the system, or the system requires or demands for deactivation, the longitudinal motion control
sub-task can, and in most cases will be handed back to the driver.

ACC systems must show predictable behaviour for the human driver and other passengers in the
vehicle to avoid motion sickness and increase driver acceptation (Viti et al., 2008). The gap-policy
and dynamics of the system are therefore expected to be very similar to the non-linear control
towards a constant time-gap often found for human drivers (Blauw, 2019). However, there are a
few essential differences. The driving behaviour of ACC systems is more deterministic than that
of human drivers. Moreover, while improvements have been made over the last years, temporal
anticipation (the ability to look ahead in time) and spatial anticipation (the ability to look ahead on
the road) are expected to be lower in most ACC systems than in human driving behaviour (Schakel
et al., 2017).

Because of the similarity in driving behaviour with that of human drivers, disturbances in the traf-
fic flow consisting of vehicles driving with ACC also have the ability to accumulate through a string
of vehicles (Schakel et al., 2010). In case a disturbance, like a vehicle braking, is amplified through-
out the string, the braking action will get stronger. If the effects continue, after some time a vehicle
is brought to a complete stop, and a traffic jam will arise. Whenever a vehicle located at an arbi-
trary position in the string is not able to brake hard enough, even collisions can occur (Treiber and
Kesting, 2013b).

Predictions on the effects of rising numbers of ACC on the road are generally obtained through
simulations using the new traffic composition (for example in Liu et al. (2018); Kesting et al. (2006);
Shladover et al. (2012)). Due to computational complexity, it is often undesirable to bring a com-
plete vehicle model including control systems into the simulation environment. In some papers,
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2 Introduction

the designed controller is moved directly into a simulation environment. A second solution is to
model each vehicle using a parametric car-following model, which is calibrated to vehicle data for
optimal representation. Each model assumes a different (simplified) representation of the actual
driving behaviour, influencing results of a simulation if the models are applied (Blauw, 2019). The
models mostly applied to represent the driving behaviour of ACC systems are the Intelligent Driver
Model (IDM) model, the simplified ACC (sACC) model and a variant of this model. The IDM model
has previously been applied to model human driving behaviour.

1-2 Motivation

The Dutch governmental organisation Rijkswaterstaat contributes to the smooth and safe flow of
traffic on the Dutch roads, as both traffic jams and accidents cost society large amounts of money
each day. In the recently signed ADAS Covenant (ADAS Alliantie, 2019), among other things, the
agreement was made to promote the use of ACC on the Dutch roads. To be able to anticipate on
the effects resulting from changing traffic compositions, the organisation benefits from research
performed on the topic of the effects of ACC on traffic flow.

Earlier performed research has shown that ACC usage increases road safety by a reduction in the
number of head to tail accidents (Alkim et al., 2007). When it comes to traffic flow, however, the
literature study has shown that current research shows contradictory findings (Blauw, 2019). In-
sufficient knowledge about the actual on-road performance of ACC systems in design studies often
leads to an overestimation of their capabilities. Throughout empirical studies, the performance of
the IDM model, which was initially designed to describe the driving behaviour of human drivers,
and of the newly developed sACC model on representing the driving behaviour is still relatively un-
explored field. Moreover, current studies often ignore the fact that the human driver can overrule
the system and select different time-gap settings, the fact that systems have a limited operating
range and the fact that different vehicles show different behaviour.

Models largely define the traffic flow dynamics, and equilibrium flow observed in traffic simula-
tions. Therefore, profound knowledge on the driving behaviour of ACC systems and on the perfor-
mance of these models on representing this driving behaviour must be present. The performance
of a model on representing the driving behaviour is the result of the performance of the calibra-
tion process, in combination with the capability of the model on representing the behaviour of the
system. Therefore, this thesis addresses the sensitivity of the model calibration and capability of
optimally calibrated models on representing actual vehicle data. The research will be performed
on a large data-set containing logged in-vehicle driving data of the ACC system from an Audi A4.

1-3 Research Questions

The goal of this research is to gain insights on the performance of existing parametric car-following
models on representing the driving behaviour of ACC systems. To reach this goal, optimal cali-
bration methodology will be determined from the results of the sensitivity analysis of the model
calibration. Applying this optimal calibration methodology to the models allows for an investiga-
tion of the capability of the models on representing the driving behaviour of an actual ACC sys-
tem. Performance on describing this system, together with findings from literature, will be used
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1-4 Research Approach 3

to hypothesise on the performance on modelling other ACC systems. The goal will be achieved by
answering the following research questions:

1. How is the calibration of existing parametric car-following models influenced by the calibra-
tion methodology and quality and quantity of calibration data?

(a) How does the calibration methodology influence the results of the calibration proce-
dure?

(b) How do different pre-processing techniques influence the results of the calibration pro-
cedure?

(c) How do the events present in the data influence the results of the calibration proce-
dure?

(d) How much data is needed for calibration?

2. How capable are existing parametric car-following models of representing the velocity and
distance-gap of Adaptive Cruise Control (ACC) vehicles while car-following?

(a) How to qualify the capability of car-following models?

(b) What is the certainty of the estimated model parameters?

(c) What is the overall fitting quality of the considered models?

(d) Which events can or cannot be described by the considered models?

1-4 Research Approach

These research questions will be answered by applying the research approach shown in Figure 1-1.
Literature is used to identify the current state-of-the-art in research. A synthesis from this liter-
ature review is already included at the beginning of this chapter. After structuring the problem
and prioritising the issues, in the second step of the research, an issue analysis plan and research
methodology will be defined. Before it is possible to perform an actual analysis of the in-vehicle
data and answer the research questions, the data first has to be processed. After processing, appli-
cation of the presented model calibration framework to synthetic data allows to answer research
question 1. Findings from answering this research question forms the basis for the analysis of
actual vehicle data. In this final step, the presented model calibration framework will again be ap-
plied, but this time to real-world vehicle data. Using the obtained results, research question 2 will
be answered.

Analyse model 
capability on 

describing the
actual vehicle 

behaviour

Analyse model 
calibration

sensitivity on 
synthetic data

Process raw
vehicle data

Develop issue 
analysis plan, 

data processing 
and model 
calibration

methodology

Define and 
structure
problem, 

prioritise issues

Literature Review

Answer RQ1 Answer RQ2

Thesis

Figure 1-1: Schematic representation of the research approach.
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4 Introduction

1-5 Research Scope

This research will be focused on capturing the pure longitudinal car-following behaviour of the
ACC system from an Audi A4 (2017) on highways. Only highway driving scenarios will be consid-
ered because, in urban driving conditions, the vehicle frequently interacts with the environment
and infrastructure. Such situations cannot be represented by the considered car-following models
and have to be removed from the considered data-set. This would result in lots of discontinuous
intervals, whereas in highway driving these effects are less present, and thus longer continuous in-
tervals can be retained. This research will furthermore be limited by the common driving scenar-
ios that can be represented by the two models. Which means only constrained driving situations
(car-following) will be considered. Finally, the research does not consider situations in which the
human driver is involved with performing the longitudinal VMC sub-task of the DDT or in which
actions undertaken by the human driver could influence the execution of longitudinal VMC. This
means that situations such as human takeovers and lane-changing will not be considered.

1-6 Thesis Outline

Results from the research approach presented in the previous section will be included in this thesis
report according to the structure represented in Figure 1-2. In this chapter, background introduc-
tion about the problem has been given, the current issues have been prioritised, and the research
approach has been presented. Chapter 3 will introduce the applied issue analysis, data processing
and model calibration methodology. In Chapter 4, processing steps performed on the in-vehicle
data required for data analysis will be discussed. The analysis of synthetic data and actual vehicle
data, with which both research questions will be answered, will be discussed in Chapters 5 and 6,
respectively. Finally, Chapter 7 includes a conclusion on all findings, a discussion on the applied
research methodology and obtained results, and recommendations upon further research.

Conclusions & 
Recommendations

Model Calibration
and Performance 

Analysis
Synthetic

Data Analysis

Research 
Methodology

Introduction

SAE-L2 data

Chapter 4Chapter 3

Chapter 6
Chapter 5

Conduct analysis

Synthesize findings
and develop

recommendations

Define and 
structure problem

Evidence collection and data processing

Chapter 1 Chapter 2

Develop issue 
analysis plan

Vehicle Data 
Processing

Figure 1-2: Schematic representation of the thesis outline.
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Chapter 2

Parametric Car-Following Models

2-1 Introduction

The Intelligent Driver Model (IDM) and simplified ACC (sACC) models fall under the class of para-
metric continuous-time microscopic car-following models. Both models reactively define the cur-
rent acceleration v̇i as a function ami c of the current velocity of the ego-vehicle vi , the velocity
of its direct leader vi−1, and the current distance-gap between the vehicle and its direct leader si .
Their mathematical expression is given in Equation 2-1, and a graphical interpretation is shown in
Figure 2-1. The models are characterised by instantaneous accelerations, limited spatial anticipa-
tion (only to their direct leader) and deterministic behaviour towards the inputs.

v̇(t ) = ami c (si (t ), vi (t ), vi−1(t )) (2-1)

The considered models are commonly used throughout literature for representing the driving be-
haviour of Adaptive Cruise Control (ACC) systems. The IDM model was initially introduced in
Treiber et al. (2000) for representing the driving behaviour of human drivers. The model is nowa-
days also applied by researchers for describing the driving behaviour of ACC systems (for example,
by A. Kesting in Kesting et al. (2006); Kesting (2008)). The sACC model is a simplified version of
the expected ACC control logic. In its current form, the model was introduced in Milanés and
Shladover (2014), but variations have been applied before (for example, in Schakel et al. (2010)).
The model is mainly used by V. Milanés (Milanés and Shladover, 2014, 2016) and L. Xiao (Xiao
et al., 2017, 2018). In the next section, a more elaborate introduction to both models will be given.

2-2 Model Properties

The IDM model is a non-linear car-following model, characterised by the acceleration function
shown in Equation 2-2. For notation simplicity, (t ) has been dropped from the acceleration func-
tion in the rest of this chapter.

v̇ I DM (si , vi , vi−1) =a ·
[

1−
(

vi

v0

)4

−
(

sd (vi , vi−1)

si

)2]
, where (2-2)

sd (vi , vi−1) =s0 + vi T + vi (vi − vi−1)

2
p

ab
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6 Parametric Car-Following Models

𝑥𝑖 , 𝑣𝑖 , ሶ𝑣𝑖

𝑠𝑖

𝑣𝑖−1

Figure 2-1: Figure showing the vehicle variables.

Five parameters allow for tuning of the driving behaviour as represented by the model. For each
of the parameters, a short description and typical (published) values are included in Table 2-1.
The model mainly has three operating modes. In unconstrained driving situations (si À 0), the
model controls the vehicle to the desired velocity v0, according to v̇i ,ncon ≈ a · [1− (vi /v0)]. In ap-
proaching and safety-critical braking conditions, the velocity difference between the vehicle and
lead vehicle is generally large (vi−vi−1 = ‘large’). The dynamics of the system are in these situations
dominated by the intelligent braking strategy v̇i ,appr ≈ −[(vi (vi − vi−1)) / (2

p
bsi )]2. This strategy

mainly allows for hard braking in safety-critical situations, avoiding possible collisions. Finally,
in constrained driving situations (si − sd = ‘small’), the model controls the vehicle to the desired
distance-gap v̇i ,con ≈−a[(s0 + vi T )/si ]2. The considered relation is quadratic and depends on the
current distance-gap. This distance-gap is generally larger at higher velocities, thus resulting in
lower accelerations. In most situations, the acceleration and deceleration profiles are symmetric,
but they become asymmetric in case the intelligent braking strategy is activated. The model ac-
cepts slightly shorter following distances than sd in case the distance to the desired velocity (vi /v0)
is large.

The sACC model is a linear car-following model that considers a similar constant time-gap policy
as the IDM model. The model is characterised by the acceleration function

v̇ ACC (si , vi , vi−1) = kp (si − sd (vi ))+kd (vi−1 − vi ) , where (2-3)

sd (vi ) = vi td + s0

The original sACC model includes three parameters (s0 is not considered). In the analysis of real-
world vehicle data, also a variation will be considered which includes s0. A description of the model
parameters and typical values is included in Table 2-1. Because of the linearity of the model, appli-
cation is restricted to constrained driving situations. In contrast to the IDM model, the sACC model
makes more assumptions about the driving behaviour. For example, the model considers a similar
maximum acceleration at all velocities, considers no different braking strategy in safety-critical sit-
uations (risk of collisions), and considers a linear relation between a deviation in the distance-gap
and resulting acceleration. Mathematically this is expressed as v̇i (s∗i +δs) ≡−v̇i (s∗i −δs), where δs

is some small disturbance from the equilibrium. The same holds for disturbances in the velocity
difference.

Table 2-1: An overview of the model parameters of the IDM and sACC models.

Parameters
(IDM)

Description Typical
Value

Parameters
(sACC)

Description Typical
Value

a, m/s2 Maximum comfortable acceleration 1.25 kp , s−2 Distance-gap gain 0.23
b, m/s2 Maximum comfortable deceleration 1.25 kd , s−1 Velocity gain 0.07
T, s Desired time-gap 1.4 td , s Desired time-gap 1.4
v0, m/s Desired velocity 55 s0, s Minimum standstill distance 0 or 3
s0, m Minimum standstill distance 3
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Chapter 3

Research Methodology

3-1 Introduction

In the previous chapter, the models which will be considered throughout this thesis research were
introduced. The parameters of each of the models allow them to represent different behavioural
variations within their considered driving style. The goal of the calibration procedure is to tune
the model parameters such that the model optimally represents the driving behaviour captured
in the data. The optimally calibrated model then allows for capability analysis using validation
techniques.

In this chapter, the methodology for data processing, model calibration and model validation will
be introduced. Performance of the calibration process is among others, determined by the prop-
erties of the calibration data-set. Therefore, the methodology for processing vehicle data will first
be discussed. From the set of processed vehicle data, suitable trajectories for model calibration
will be selected. Synthetic data created upon the chosen model trajectories will be used in a sen-
sitivity analysis of the model calibration. The goal of this analysis is to define optimal calibration
methodology for calibrating the models to real-world data. Optimal calibration methodology is
finally used to calibrate the models to real-world vehicle data.

This chapter will start by introducing the methodology for processing the Adaptive Cruise Con-
trol (ACC) vehicle data in Section 3-2. Section 3-3 will discuss the general methodology for model
calibration, which is applied to both synthetic and real-world data. Section 3-4 will discuss the
methodology for determining the sensitivity of the model calibration. Finally, Section 3-5 will dis-
cuss methodology for determining model performance on representing real-world data.

3-2 Methodology for Processing ACC Vehicle Data

The data-set considered throughout this thesis contains in-vehicle measurements that were cap-
tured during a field test on June 13th, 2018. A connection to the vehicle’s On-Board Diagnos-
tics (OBD)-port allows for reading communication sent over the Controller Area Network (CAN)
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8 Research Methodology

bus, a communication interface for microcontrollers in automobiles. The connection provides in-
formation from the vehicle’s sensors, actuators and other electronic systems, see Figure 3-1. This
connection is used to obtain the velocity of the vehicle from the speedometer, to determine the
state of the ACC system and to find events in which the human intervenes with the system (man-
ual throttling, braking, lane-changing etc.). A GPS sensor is used for positioning of the vehicle
relative to the earth’s surface. Together with the accelerometer signal, the speedometer and GPS
signals allow for accurate vehicle state determination. Information about the vehicle driving in
front, which will act as exogenous inputs for the car-following model, is obtained using a MobilEye
system.

The measurement signals are noisy and are, due to this noise and bias, not always entirely consis-
tent with one another. For optimal vehicle state estimation, a Kalman filter will be applied to fuse
measurement signals from the ego-vehicle. After applying the Kalman filter, additional smoothing
will be performed using a moving average filter. The moving average filter will also be applied to
the MobilEye signals. After filtering, situations which cannot be described using the car-following
models will be removed from the considered data-set. The necessity of filtering this noise becomes
clear from the sensitivity of the model calibration to residual noise, which will be further elaborated
in Section 5-5. The methodology for preparing data for filtering and sensor fusion will be discussed
in Section 3-2-1. Methods for filtering and sensor fusion will be discussed in Section 3-2-2. Meth-
ods for ensuring consistency of the data-set will be discussed in Section 3-2-3 and finally methods
for data selection will be discussed in Section 3-2-4.

ODB port

Sensors

Low Level 
Controller

State 
Estimation

High Level 
Controller

Reference 
Generator

Figure 3-1: Schematic representation of the vehicle automation system.

3-2-1 Data Preparation

Model calibration requires continuous and smooth trajectories, in which all individual measure-
ment signals are well in sync with each other. Measurements from the ego- and lead-vehicles will
be filtered separately.

Ego-Vehicle Measurements

Measurements from the ego-vehicle are filtered using a Kalman filter. The Kalman filter enhances
vehicle state estimation by fusing evidence from the GPS (xGPS), speedometer (vC AN ) and ac-
celerometer (v̇ AC L) signals. While the Kalman filter is able to handle asynchronous measurement-
times, the setup of the filter is greatly simplified if different signals are re-timed such that they
are in sync and include a constant sampling interval. Re-timing signals will be performed by us-
ing linear interpolation, with a new sampling interval of ∆t equal to the sampling interval of the
speedometer and accelerometer measurements of 0.1 seconds. Times at which at least one of the
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3-2 Methodology for Processing ACC Vehicle Data 9

measurement signals is missing will be removed from the data-set. Data is considered missing if at
least three consecutive measurements are not present. The sampling interval of the speedometer
and accelerometer is higher than the one of the GPS signal. Therefore, more value is attached to
the correct matching of these signals.

The GPS signal is used as evidence on the distance travelled by the vehicle. In the considered high-
way driving conditions, the vehicle is assumed to perform a purely longitudinal motion. Because of
inconsistencies found in the sampling interval, differentiating the position measurements would
result in high-frequency oscillations in the velocity signal. By integration of the velocity, this is
avoided (Treiber and Kesting, 2013b). The measurements are sampled and thus require applying a
proper stable numerical integration scheme, such as the trapezoidal rule (Wilson, 2001)

xi (t +∆t ) = xi (t )+∆t · vi (t )+ vi (t +∆t )

2
(3-1)

A lag in the GPS signal causes it to be out-of-sync with the other measurement signals. It is as-
sumed that this lag is caused by the time a GPS signal takes to travel from the satellite to the surface
of the earth. Therefore, the lag is considered as non-stationary, and lag-compensation needs to be
performed locally. The lag (δ∗GPS(t )) will be identified by sliding a window of width 300s over the
data, for each time-step performing minimisation of the Root Mean Square Error (RMSE) between
the speedometer signal and a time-shifted version of the GPS signal, see Figure 3-2. The RMSE
between two measurement signals zi ∈RN×1, i = [1, 2] will be denoted as FRMSE and is defined as:

FRMSE (z1,z2) =
√√√√ 1

N

N∑
k=1

(z1(k)− z2(k))2 (3-2)

In case any discontinuities are present in the window, only the continuous region adjacent to the
current point up to the discontinuity will be considered. In case discontinuities cause the range to
drop below 20 seconds, the lag will be set to the mean of all observed lags.

The second signal considered in vehicle state estimation is the velocity from the speedometer.
This signal is not compensated for low tire pressure or low traction between the tires and road sur-
face. These factors, combined with an offset to avoid legal claims for indicating too low velocities,
cause the signal to overestimate the actual velocity of the vehicle systematically. The bias of the
speedometer signal δ∗C AN is assumed to be proportional to the velocity of the vehicle vi and to
be constant in time (Treiber and Kesting, 2013b; Dogruer, 2014). Therefore, it is more convenient
to view the problem as a Least Squares Estimation (LSE) problem and remove the bias before the
filter.

𝛿𝐺𝑃𝑆
∗ 𝑡

𝑡 − 𝛿𝐺𝑃𝑆(𝑡) +
𝑁

2
𝑡 + 𝛿𝐺𝑃𝑆(𝑡) +

𝑁

2

Figure 3-2: Figure showing a schematic representation of the applied sliding window methodology
applied to determine the time-lag δ∗GPS (t ) in the GPS signal.
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The compensated signal is defined as:

vcor r ect ,i = δ∗C AN vi (3-3)

Since vT
C AN vC AN is a scalar, δ∗C AN is found by finding the least square estimate that minimises the

error between the velocity from the speedometer and GPS signals (Verhaegen and Verdult, 2007),
defined as:

δ∗C AN = 1− (vT
C AN vC AN )−1vT

C AN vGPS

The last signal considered in the Kalman filter, the accelerometer signal, does only include drift
which will be removed in the Kalman filter. Because the Kalman filter can only handle continuous
intervals, locations at which data is missing will be marked.

Lead-Vehicle Measurements

Measurements on the distance-gap are originating from the MobilEye. In contrast to the mea-
surements included in the Kalman filter, autocorrelation of noise sequences will be avoided by
re-timing the measurements only after applying the filter. A change in the lead vehicle, resulting
from passive or active lane-changes, causes a sudden jump in the velocity and distance-gap mea-
surements from the MobilEye. Because of these jumps, it is not directly possible to filter these
signals across these points. In line with Treiber and Kesting (2013a), points at which the lead vehi-
cle changes and at which data is missing, will be marked.

3-2-2 Filtering and Sensor Fusion

The noise in all measurement signals is assumed to be zero-mean white only, meaning the noise
sequence X has expectancy zero (E[X] = 0) and is nonautocorrelated (RX [n] = σ2δ[n]). Further-
more, the noise between different measurement signals z1 and z2 is assumed to be uncorrelated
(Cov[z1,z2] = 0).

Kalman Filter

Only highway driving is considered in which the vehicle is assumed to perform a purely longitu-
dinal motion. This allows definition of a similar, but greatly simplified version of the Kalman filter
applied in (Magnusson and Odenman, 2012). The relations between states x(t ) and x(t +∆t ), and
between sensor measurements z(t ) and the vehicle state x(t ) at time t , are defined as:x

v
v̇


︸︷︷︸

x

(t +∆t ) =
1 ∆t 1

2∆t 2

0 1 ∆t
0 0 1


︸ ︷︷ ︸

A

x(t )+w(t ),

xg ps

vcan

v̇acl


︸ ︷︷ ︸

z

(t ) =
1 0 0

0 1 0
0 0 1


︸ ︷︷ ︸

C

x(t )+v(t ) (3-4)

where w(t ) and v(t ) represent the process and measurement noise, respectively. For notation sim-
plicity, subscript i has been dropped from the equation.

The Kalman filter, as shown in Figure 3-3, allows one to obtain the filtered state estimate x̂(t |t )
using prior state information x̂(t |t −∆t ) and new measurement information z(t ) as:

x̂(t |t ) = x̂(t |t −∆t )+K T (t ) (z(t )−C x̂(t |t −∆t )) (3-5)
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3-2 Methodology for Processing ACC Vehicle Data 11

x̂(t |t −∆t ) is obtained by applying a time-update (Equation 3-6) to the filtered state estimate ob-
tained in (previous) time step t −∆t :

x̂(t |t −∆t ) = Ax̂(t −∆t |t −∆t ) (3-6)

The aim is to define K (t ) in such a way that limt→∞(x̂(t )−x(t )) = 0. The acceleration signal from the
accelerometer includes bias. By appending the state estimate with a bias state x̂ = [x̂T , v̇bi as]T and
replacing C in Equation 3-5 with C = [

C , [0,0,1]T
]
, the bias can be removed from the acceleration

measurements (Magnusson and Odenman, 2012). Detailed derivation of the system matrices and
a derivation of K (t ) to implement in MATLAB is given in Appendix A.

Model
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Figure 3-3: Schematic representation of the Kalman filter.

Moving Average Filter

The moving average filter utilises the fact that the noise in different measurement samples is un-
correlated to filter noise from the measurement signals. When differentiating noisy measurements,
noise sequences are amplified. The optimal window size will therefore be determined by means of
performing a jerk analysis on the obtained results. Drivers experience jerk as being uncomfortable
if the level of jerk exceeds 1.5m/s3 (Treiber and Kesting, 2013b). Two metrics are defined to assess
the performance in noise reduction: 1) acceleration behaviour: the jerk can only exceed the level
of comfortable jerk in braking situations and 2) the deviation of the velocity signal to the original
signal must not exceed a certain threshold. This threshold will be determined in the filtering pro-
cedure by assessing the deviation between the original and the filtered signal. The window size will
be changed iteratively until the required reduction of measurement noise is reached. The actual
window size depends on the considered sampling interval. For sampling intervals of 0.1 seconds,
the range of 3.5 seconds considered in Ossen (2008) seems a valid starting point.

3-2-3 Data Consistency

In addition to noise-free measurements, model calibration requires measurement signals from
the data-set to be consistent to the equations of motion (often referred to as internal consistency).
To ensure consistency, variables are derived after filtering and according to the methods in line
with the methodology used in Treiber and Kesting (2013a). Internal consistency will be ensured
by selecting the velocity from the Kalman filter as base variable, and deriving all dependent vari-
ables from this one variable. Because information from all measurement signals was fused in the
Kalman filter, the information loss is small. The position x and acceleration v̇ of the vehicle are de-
rived using appropriate numerical integration and differentiation schemes. The applied numerical
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integration scheme is the trapezoidal rule from Equation 3-1. The applied numerical differentia-
tion scheme is the central finite difference scheme, defined as:

v̇i (t ) = vi (t +∆t )− vi (t −∆t )

2∆t
(3-7)

Equivalent methods apply to derivation of the change in distance-gap ṡ(t ) from the gap s(t ). The
position of the lead-vehicle is derived by applying the equation ensuring platoon consistency. The
equation for platoon consistency relates the position of the ego vehicle to the position of the lead
vehicle via the position of the front bumpers xi and xi−1 and the length of the lead vehicle li−1. It
is given by

si (t ) = xi−1(t )−xi (t )− li−1 (3-8)

3-2-4 Data Selection

Selected data-sets must contain driving situations which both models can describe, in which the
system does not interact with the environment or infrastructure, in which the ACC system is active
and in which the human driver is not intervening (Treiber and Kesting, 2013a). Therefore, data will
only be selected if . . .

• . . . longitudinal control is performed solely by the ACC system,

• . . . the vehicle (only) reacts to the vehicle driving directly ahead, and

• . . . only constrained driving situations are included

3-3 Methodology for Model Calibration

Because of the higher reliability, this thesis considers a global approach to model calibration (Treiber
and Kesting, 2013a). In the global approach, optimal estimates for the model parameters β̂ are ob-
tained from minimising a certain objective function F , which defines the distance between pre-
dictions of the car-following model and actual vehicle data. Each iteration of the optimisation pro-
cedure consists of predicting a complete follower trajectory using the current set of estimated pa-
rameters. The objective function defines the performance on representing the actual data. Unless
stated otherwise, the setup introduced in this section is used throughout the rest of this research.

In Section 3-3-1, methodology for obtaining model predictions will be discussed. Section 3-3-
2 discusses the methodology for optimising these model predictions. Finally, Section 3-3-3 will
discuss methodology for assessing the performance of the calibration procedure.

3-3-1 Obtaining Model Predictions

Follower trajectories generated by the model are obtained from running a simulation using the
current set of parameter estimates β̂. Simulation starts by initiating the endogenous variables

ˆ̇vi (t0) = 0, v̂i (t0) = v(t ), x̂i (t0) = 0, ŝi (t0) = s(t )
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In each iteration of the simulation (t = [t0, t0+∆t , . . . , te ]), the acceleration ˆ̇vi (t ) is computed by the
model from the current set of endogenous and exogenous variables. Computation of the accelera-
tion is followed by an update of the velocity v̂i (t ) and position x̂i (t ). Since the car-following models
are in continuous-time and the simulation is in discrete-time, the velocity will be updated accord-
ing to the equations of motion considering constant acceleration on the interval t ∈ [t , t +∆t ),
defined as:

v̂(t +∆t ) = v̂(t )+ ˆ̇v(t )∆t (3-9)

After computation of the velocity, the position will be updated using the trapezoidal rule from
Equation 3-1.

Marks have been placed at the location where the lead-vehicle changed due to active or passive
lane changes and at locations of missing data. In model calibration, at the location of these marks
the current acceleration, velocity and distance-gap will be reset using a hard-reset, defined as:

ˆ̇vi (t ) = v̇i (t+), v̂i (t ) = vi (t+), ŝi (t ) = si (t+).

where t+ indicates the time immediately after the location of the mark. Hard-resets allow for split-
ting the data-set into different sub-sets, which can be concatenated in any arbitrary order (Treiber
and Kesting, 2013a). In the model validation or trajectory generation phase, a hard-reset will only
be applied in case data is missing. In case the lead-vehicle changes, for example due to a cut-in or
cut-out, a soft-reset will be applied. The soft-reset is defined as:

ŝi (t ) = ŝi (t −∆t )+ (
si (t+)− si (t−)

)
3-3-2 Optimisation of Model Predictions

The error-measure allows for defining the performance of the simulated follower trajectory on de-
scribing the trajectory of the same variable from the actual vehicle data. In the process of optimis-
ing model predictions, the objective is to minimise the value of the error function by varying the
parameter values, see Equation 3-10. The error function is therefore usually referred to as objective
function. The considered variable in the optimisation is referred to as calibration-variable. Until
stated otherwise, the RMSE (Equation 3-2) will be considered using the distance-gap as calibration
variable: FRMSE (si , ŝi ) or shortly noted as FRMSE ,s . In literature, this combination is found to show
most reliable results (Punzo and Simonelli, 2005).

β̂= argmin
β

F (z, ẑ) (3-10)

Figure 3-4 shows a typical result for the objective function for different combinations of variables
β1 and β2. In case two parameters are considered, the obtained plot (left) is referred to as the fit-
ness landscape. In case only a single parameter is considered, the obtained plot (right) is referred
to as parameter sensitivity plot. In case a model can describe the driving behaviour, the objec-
tive function is generally smooth and shows only a single minimum (*). Therefore, gradient-based
optimisation algorithms will be used for model calibration. However, the uniqueness of the re-
sults should always be checked by evaluating the fitness landscape. For optimal performance, the
optimisation is constrained.
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(a) (b)

Figure 3-4: Figure showing the fitness landscape of the error-measure or objective function for
different combinations of parameters β1 and β2 (a) and parameter sensitivity at the dotted line
(b).

In this thesis, the Sequential Quadratic Programming (SQP) algorithm will be used for model cali-
bration. The SQP algorithm can solve constrained nonlinear optimisation problems and is built-in
into the optimisation toolbox from MATLAB. Different algorithm settings considering smaller tol-
erances were tried, all resulting in similar performance as the default MATLAB algorithm settings.
Therefore, these default algorithm settings will be used. Further elaboration on the exact workings
of the algorithm is outside of the scope of this research. Using default settings, there are mainly
four situations in which the algorithm ends its operation: 1) first-order optimality is achieved (the
found solution is both the local and global solution, the Jacobian is non-negative in all feasible di-
rections), 2) the improvement in the objective function when taking a step is below a certain limit
(default: 10−6), 3) the number of iterations exceeds a certain limit (default: 400) and 4) no feasible
solution was found. Throughout this thesis, only algorithm termination due to situations 1 and 2
is considered as feasible.

3-3-3 Assessing the Calibration Performance

In line with Treiber and Kesting (2013a), the fitness landscape and parameter sensitivity plots intro-
duced in the previous section will be used to assess the performance of the calibration procedure.
Using the fitness landscape, one can check whether a minimum was present within the consid-
ered calibration region, and if the optimisation algorithm ended in this minimum. Furthermore,
the plot indicates a possible correlation between different parameters. In case the optimisation
was not able to end in a minimum, it is likely that in correlated parameters, parameters showing
low sensitivity are sacrificed first.

This sensitivity is obtained from the parameter sensitivity plot, as shown in Figure 3-4b. The plot
shows the cross-section of the fitness landscape at the found calibration value, in this figure indi-
cated with the dashed line. The slope of this plot at the obtained value from the model calibration
defines the sensitivity of the model parameters to correct calibration. The slopes at both sides are
the first-order sensitivities and will be indicated by S− (left) and S+ (right). Only in case both S−

and S+ are non-negative, an optimum is found for calibration of the parameter. Both sensitivities
must be high in order to be sure that the calibrated parameter value is correct (Punzo et al., 2015).
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3-4 Methodology for Investigating the Sensitivity of the Model
Calibration

The sensitivity of the model calibration to various factors will be investigated using synthetic data.
The formulation of the objective function (Equation 3-10) shows that the performance of the cali-
bration procedure depends on: 1) the selected optimisation algorithm 2) the objective function, 3)
properties of the data-set, 4) the method used for obtaining model predictions and 5) the ability of
the model to describe the data. These factors can be subdivided into methodological factors, data
quality factors and data quantity factors. The methodological factors include: the method used to
approach the optimum (argminβ), the error-measure (F ) and the model predictions (ẑ). In this
thesis, the sensitivity of the model calibration to three methodological factors will be investigated,
being: the error-measure, the calibration variable weight and the simulation reset interval. The
data quality and quantity factors consider the calibration data (z). This thesis will investigate two
data quality factors, being residual noise in the measurement signal and considering an incorrect
model, and two data quantity factors, being: system excitation and the trajectory length. Before
this investigation, commonly used settings are assumed for each of these factors.

To be able to assess the sensitivity of the model calibration to each of the considered factors, the
analysis will be based on synthetic follower trajectories. These trajectories will be generated using
a known model with known properties and allow for proper investigation (Ciuffo and Punzo, 2014;
Montanino et al., 2012; Punzo et al., 2015). Different drivers are considered by creating many tra-
jectories, each with different parameters. The ability of the calibration procedure of finding back
the original parameters is used to define the sensitivity of the model calibration.

This section starts by introducing methods for creating synthetic trajectories in Section 3-4-1. Sec-
tion 3-4-2 discusses the considered variations. Finally, Section 3-4-3 will discuss assessment crite-
ria for the analysis.

3-4-1 Creation of Synthetic Data

The validity of the research is ensured by the leader trajectories resembling realistic driving situa-
tions. The accuracy of the filtered data from the ego-vehicle allows it to be used as a realistic leader
trajectory in the generation of synthetic data. Four trajectories of vehicle data with different lev-
els of excitation of the system will be selected, each consisting of 390 seconds of data, just above
the minimum length of 300 seconds needed to calibrate models to human driving data (Treiber
and Kesting, 2013a). Follower trajectories are generated by applying the methodology for obtain-
ing model predictions. The only difference being the reset of the distance gap at marks, where the
distance-gap is reset to the desired gap for the current model. For repeatability, parameters for the
follower trajectories are selected (pseudo-)randomly from a range of suitable parameter values.

3-4-2 Factors Influencing the Calibration Performance

Methodological Factors

Error-Measure: When calibrating to synthetic data, the problem always shows a single optimum
(Montanino et al., 2012). The error-measures do not change the position of the optimum, but only
the sensitivity of the model calibration. Mainly two variations between error-measures exist. The
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first difference is found between using relative or absolute error-measures; the second difference is
found in between considering squared values and absolute values. In this thesis, sensitivity of the
calibration to four different error-measures will be investigated, being: the Root Mean Square Error
(RMSE) (equation 3-2), Root Mean Square Relative Error (RMSRE), Mean Absolute Error (MAE) and
Mean Absolute Relative Error (MARE), defined as:

FRMSRE ,s =
√√√√ 1

N

N∑
k=1

(
ŝi (k)− si (k)

ŝi (k)

)2

, FM AE ,s = 1

N

N∑
k=1

|ŝi (k)− si (k)| , FM ARE ,s = 1

N

N∑
k=1

|ŝi (k)− si (k)|
|si (k)|
(3-11)

Calibration variable weight: In case the ACC system does not behave exactly according to the con-
sidered car-following model, calibrating to either the distance-gap or velocity can result in a mis-
match on representing the other. A consensus can be made by considering a mixed error-measure,
where a weight is assigned to both the distance-gap ws and the velocity wv . In this thesis, sensitiv-
ity of the calibration to 5 different weights will be investigated (ws/wv ): 100/0, 75/25, 50/50, 25/75,
0/100. The mixed error variant of the RMSE is defined as:

FRMSE ,mi x = FRMSE ,s

ws
+ FRMSE ,v

wv
,

1

ws
+ 1

wv
= 1 (3-12)

Simulation reset interval: Errors that arise earlier will most probably persist in the data for a longer
time. These errors count heavier than an error arising just before a reset point. This temporal
correlation possibly affects the results of the calibration procedure. On the other hand, models
possibly need some time to react to sub-ideal initial conditions. To investigate the effects of tem-
poral correlation and the time both models take to respond to the initial conditions and the effect
this has on the calibration, reset points will be added at different interval lengths. The considered
reset intervals are: Inf., 50, 25, 10, 1 and 0.2 seconds (after each iteration of the simulation).

Data Quality

Residual noise: In case residual noise is present in the measurement signals of the ego- and/or lead
vehicle(s), this could cause the model trying to represent this noise, instead of only the dynamics
captured in the data-set. In this thesis, sensitivity of the calibration to 4 different noise-variances
will be investigated: 0.1, 0.05, 0.01 and 0.001 (m/s and m). Because multiple redundant measure-
ment signals are available for the ego-vehicle, the possibility of completely filtering out all noise is
higher. Therefore, the sensitivity of residual noise will be investigated for two different cases: only
for the lead-vehicle and both for the ego- and lead-vehicles.

Incorrect car-following model: In real-world scenarios, the considered car-following model is never
entirely in line with the driving behaviour. The effects of considering an incorrect model will be in-
vestigated by calibrating the IDM model on trajectories generated using the simplified ACC (sACC)
model and vice versa.

Data Quantity

In the considered car-following models, the parameters in the model describe the dynamics and
equilibrium of the car-following behaviour. Model calibration using parametric car-following mod-
els is essentially performing a grey-box optimisation. The calibration data-set must include suffi-
cient excitation of the system in order to allow for observation of the system dynamics and tuning
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3-5 Methodology for Real-World Model Validation 17

of the model parameters. The amount of excitation present in the considered trajectory is deter-
mined by: 1) the presence of excitation itself, 2) the length of the considered trajectory. Further-
more, trajectories should be sufficiently long to distinguish between the probabilistic and deter-
ministic part of driving behaviour.

The sensitivity to different combinations of trajectory length and system excitation will be assessed
simultaneously by applying a sliding window model calibration over the desired length. The trajec-
tory lengths considered are: 390, 300, 250, 200, 150, 100, 50, 25 and 10 seconds. The performance
will be split over different ranges for vi and v̇i , with the purpose of finding a relation between the
present variation in these variables and the possibility of correctly tuning the parameters.

3-4-3 Assessing the Calibration Sensitivity

The sensitivity of the model calibration will be assessed by means of assessing the parameter sen-
sitivity, the location of the minimum and by comparing the resulting distance of the calibrated
parameters to the actual parameters. Instead of the relative distance used in Ossen (2008), the ab-
solute value of the relative distance for each of the calibrated parameters to the actual ones will be
used |(β̂i −β∗

i )/β∗
i |. This allows for logarithmic axes, improving the visibility of improvements close

to the optimum. The amount of created synthetic trajectories allows for visualisation of the result
using box-plots. A graphical representation of the considered methodology is shown in Figure 3-5.
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Figure 3-5: Schematic representation of the research methodology for investigating the sensitivity
of the model calibration.

3-5 Methodology for Real-World Model Validation

Findings from the sensitivity analysis on the model calibration will be applied in the analysis of
real-world data to ensure optimal calibration. The real-world model validation will also consider
a variant on the sACC model which includes a parameter s0 defining the minimum standstill dis-
tance, as was already considered in Xiao et al. (2017). Real-world validation of the models will
be performed by assessing model performance on five different driving situations. The consid-
ered driving situations will be typical highway scenarios commonly considered when investigating
string stability, road capacity and comfortable behaviour of the ACC system. The considered driv-
ing situations are steady-state car-following, cut-in, cut-out, hard-braking and stop-and-go sce-
narios. Proper representation of each of these trajectories is important to draw valid and reliable
conclusions using the models (Xiao et al., 2017; Mullakkal-Babu et al., 2016; Wang, 2014).
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The validity of the model calibration procedure will be assessed using the fitness landscape and
parameter sensitivity plots. Because of the model not completely being in line with the driving
behaviour included in the data, the sensitivity of each of the parameters to a correct calibration
is expected to be lower than when considered trajectories are generated using the same model
(Montanino et al., 2012).

For proper assessment of the capability of the model on representing the driving behaviour, the
considered calibration trajectory must not be equal to the considered validation trajectory. Clas-
sical cross-validation methodology considers a single sub-trajectory of the complete trajectory for
model validation (Wang et al., 2018). When the sub-trajectory used for validation contains easy
(hard) data to represent, this results in overestimating (underestimating) the capability of the mod-
els. In this thesis, k-fold cross-validation techniques will be used. In the considered technique, k
folds will be generated, which are iteratively selected for model validation. The remaining data is
used for calibration. A fold is a continuous sub-trajectory, of which the minimum length should
be sufficient for the model to respond to the initial conditions. The length of the fold will be deter-
mined using the results on the sensitivity of the model calibration to the reset interval. The average
performance throughout all iterations is reported as the final performance. A low number of folds
(k ≤ 2) results in biased results, whereas a high number of folds (k ≥ 15) means the considered tra-
jectory should be very long and would result in large variances. In an early analysis, a right balance
was found for k ∈ [5, 10]. This balance will be used in defining the final length of the considered
trajectories.

A more comprehensive assessment is achieved by extending cross-validation methods with a cross-
comparison between model parameters and trajectories and with an assessment of the model ca-
pabilities on representing specific events. In cross-comparison, each of the obtained parameter
sets will be used to describe the other trajectories. Most papers consider the same model using
different parameter values for representing different drivers, but assume these parameters to be
fixed in time (Ossen, 2008). Therefore, it is favourable that all or most driving situations can be
(optimally) described using a single set of parameters. To investigate this, also the mean and pub-
lished parameters and the “best” calibrated parameters on all trajectories together will be consid-
ered. Since non-overlapping trajectories are selected in the analysis of real-world data, the vali-
dation trajectories in cross-comparison are not used for model calibration making application of
cross-validation methods unnecessary. A graphical representation of the considered methodology
is shown in Figure 3-6.
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Figure 3-6: Schematic representation of the research methodology for the real-world analysis.
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Chapter 4

Vehicle Data

4-1 Introduction

In the previous chapter, the methodology for assessing the sensitivity of the model calibration
and performance of parametric car-following models on representing driving behaviour was in-
troduced. The research requires a consistent and noise-free data-set containing realistic Adaptive
Cruise Control (ACC) driving behaviour. This chapter provides an introduction to the consid-
ered data-set and undertaken processing steps with which consistency and noise reduction are
achieved. The processed data-set serves as a basis from which trajectories are selected in subse-
quent chapters.

This chapter will start by introducing the considered data-set in Section 4-2. Data preparation
steps required for filtering will be discussed in Section 4-3, after which the actual filtering will be
discussed in Section 4-4. Finally, Section 4-5 will discuss the selection of data from which trajecto-
ries will be extracted in subsequent chapters.

4-2 The SAE-L2 Data-Set

Throughout this thesis, data will be used from the Audi A4 (2017) vehicle from the SAE-L2 (SAE level
2) platoon-test day. The SAE-L2 test-day was an initiative from Rijkswaterstaat, the Ministry of In-
frastructure and Water Management, the RDW and TNO and was organised by AON on Wednesday
June 18th, 2018. The goal of the day was to let (inexperienced) drivers experience the driving be-
haviour of ACC systems. Participants drove with seven vehicles from Groningen, via Amsterdam
and Helmond, to the city of Rotterdam, see Figure 4-1. Drivers were instructed to select the short-
est following distance available and set their desired velocity slightly above the speed limit, making
the vehicle string prone to instabilities. The ACC system of the Audi allows selection of five time-
gap settings (1, 1.3, 1.8, 2.4 and 3.6 seconds) and allows drivers to set their desired velocity between
30 to 150km/h. If the situation requires, the system can handle situations below 30 km/h.
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Figure 4-1: Figure showing the route driven during the SAE-L2 test-day on June 13th, 2018.

The sensor layout of the Audi vehicle is shown in Figure 4-2. The CAN bus, accelerometer and
MobilEye system are all sampled at approximately 10H z, whereas the GPS signal was sampled at
approximately 1H z.

GPS MobilEye

OBD (CAN) Accelerometer

Figure 4-2: Figure showing a schematic representation of the installed sensors on the Audi A4
during the SAE-L2 field test form June 13th, 2018.

4-3 Data Preparation

In the previous chapter, the inconsistencies present in the GPS and speedometer signals have been
introduced. These inconsistencies require removal before the Kalman filter can be applied to fuse
the measurement signals. Figure 4-3 shows the inconsistencies found in the sampling interval of
the GPS signal. The histogram plots indicate the distribution of sampling-intervals for ∆t < 5s.
Various conclusions are drawn from this Figure: 1) The default sampling interval is approximately
1 second and 2) long sampling intervals of approximately 1.5 seconds are followed by short sam-
pling intervals of approximately 0.5 seconds. The incorrect sampling interval is corrected by mov-
ing measurements that are logged too late to an earlier time by setting the sampling time of the
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incorrect measurements to the mean time of the two measurements surrounding it.
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Figure 4-3: Figure showing the applied correction in the time-vector of the GPS signal in seconds
(left), and the distribution of sampling times before (right top) and after (right bottom) correction.

After removing the sampling error, the lag in the GPS signal, which is assumed to be induced by
the time signals take to travel from the satellite to the surface of the earth, needs to be removed.
For a GPS satellite located directly above the GPS receiver travelling at an orbital height of 20.180
km and considering that the signal travels at the speed of light, the lag would be around 67ms. An
average signal lag of 789ms was found, which is much higher than expected. Figure 4-3 shows the
observed lag in the GPS signal. Figure 4-4 shows that the corrected GPS signal is well in sync with
the corrected speedometer signal. The bias factor for this signal (δ∗C AN ) was found to be 0.984.

Reset marks have been added at points where data is missing and at points where the lead vehicle
was changed. The bottom plot from Figure 4-4 shows the distance-gap signal obtained from the
MobilEye. Within the shown interval, two reset-points are included in the signal. In total, 295
reset-points are added to the data, making the average time between two consecutive reset points
65 seconds.
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Figure 4-4: Figure showing velocities from the GPS (vGPS) and speedometer (vC AN ) signals
before and after correction (top) and the distance-gap from the MobilEye (s) with reset points
(bottom).
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4-4 Filtering and Sensor Fusion

4-4-1 Ego Vehicle

All continuous measurement signals from the ego-vehicle are re-timed to a sampling-interval of
∆t = 0.1s, which is the original sampling interval of the speedometer and accelerometer signals.
The data-set is split at the point where discontinuities are present. An additional bias state v̇bi as

allows for the removal of the bias in the acceleration signal.

Computation of the Kalman gain K(t ) requires the noise covariance matrices from the measure-
ment and process noise sequences. A GPS sensor has a typical error σGPS of about 4 meters
(Gavrila and Kooij, 2017). The variance of the speedometer and accelerometer signals are com-
puted using MATLAB and are found to be 2.32 · 10−1m/s and 1.91 · 10−2m/s2. Since all measure-
ments originate from different sources, the off-diagonal terms are set to zero. Obtained values are
used to construct the measurement noise covariance matrix R. Defining the process noise covari-
ance matrix Q is a bit less straightforward since these noise variances are unknown. The matrix is
found by minimising the Root Mean Square Error (RMSE) between velocities resulting from each
of the measurement signals. The matrix is fine-tuned using trial-and-error methods. Again, all
off-diagonal terms are kept zero. Both matrices are shown in Equation 4-1. The resulting perfor-
mance of the Kalman filter of removing noise from the measurement signals and bias from the
accelerometer signal is shown in Figure 4-5.

R =

42 0 0

0
(
2.32 ·10−1

)2
0

0 0
(
1.91 ·10−2

)2

 , Q =


9.85 0 0 0

0 9.35 ·10−4 0 0
0 0 2.46 ·101 0
0 0 0 2.96 ·10−2

 (4-1)
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Figure 4-5: Figure showing the performance of the Kalman filter on removing the bias from the
accelerometer signal (a) and fusing the different measurement signals (b).

After fusing and filtering the measurements using the Kalman filter approach, the jerk analysis
shows residual noise resulting in jerk levels of over 3m/s3. The threshold for maximum deviation
of the resulting velocity from the Kalman filter to the smoothed measurement signal is set to 2%. By
means of visual comparison between noise reduction considering different filter widths, a width
of 4 measurement samples is found to result in optimal results. This is significantly shorter than
the considered width of 35 measurement samples considered in Ossen (2008). Improvements by
the filter on the velocity can be seen in Figure 4-6a. Results for other variables are included in
Appendix B.
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4-4-2 Lead Vehicle

Under the assumption that all remaining noise has been removed from the measurements of the
ego-vehicle, the state variables of the lead vehicle can be determined by applying the equation for
platoon consistency (Equation 3-8). Performing the jerk analysis for the lead vehicle results in a fil-
ter width of 101 measurement samples, which removes many of the observed dynamics from the
data. Therefore, the right balance between preserving the dynamics and removing noise from the
data needs to be found. Up to a filter width of 9 samples, the observed jerk levels reduce with in-
creasing filter width, where the error does only increase moderately. After this point, performance
improvements from increasing filter width become less significant. Therefore, a filter width of 9
measurement samples is chosen for the MobilEye signal, which is again significantly shorter than
the considered width in Ossen (2008). Improvements by the filter on the distance-gap can be seen
in Figure 4-6b. Histograms of jerk levels before and after filtering and results for other variables are
included in Appendix B.
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Figure 4-6: Figure showing the final results of the jerk analysis for the velocity measurements of
the ego-vehicle (a) and distance-gap measurements from the ego to the lead vehicle (b).

4-5 Data Selection

The previously executed steps in data processing ensure consistency in the measurement signals.
The final step is to remove data which is not suitable for model calibration purposes. The situations
of driving situations which the model cannot describe and are being removed from the considered
data-set are human intervention (ACC overruling and (de)activation), lane-changing, interaction
with the environment and non-constrained driving. Before removal of specific data, a total time
of 5:20.48h of driving data is available for the Audi vehicle. The first considered situation is the
intervention of human drivers with the ACC system. Considering user acceptation, the driving
behaviour of ACC systems should be predictable. Which could be interpreted as: “at least the
intent of the action should be equal between the human driver and ACC system”. Considering the
maximum levels of comfortable acceleration of 2m/s2 and jerk of 1.5m/s2 (Treiber and Kesting,
2013b), this means that effects of the human driver are in worst-case scenario diminished after
t = v̇/ j = 1.33 seconds. Adding the reaction time of the ACC system of 0.9 - 1.3s (Makridis et al.,
2018) and considering a small safety margin, a time of 1 second before up to 5 seconds after the
event is removed from the data. In total, ACC (de)activation and human intervention with the ACC
system accounts for removal of 44.41m of vehicle data.
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The second situation to be removed is lane-changing. Situations in which the vehicle performed
a lane-change are identified by combining evidence from the CAN-bus and MobilEye system. The
CAN-bus includes activation times of the indicator signal. The MobilEye system includes the dis-
tance to the left and right lane markings, which are re-initiated when a lane-change has occurred.
As for ACC system (de)activation and overruling, a total time of 1 second before the event to 5 sec-
onds after the event has ended is removed from the data to ensure all effects of the lane-change are
removed. Lane-changes account for additional removal of 13.21m of vehicle data. A derivation of
the times when the ACC system was active is included in Appendix C-1. A graphical interpretation
of the removal of human intervention and lane-changing situations is included in Appendix C-2.

Finally, situations in which the vehicle does not solely react to its direct predecessor are removed
from the data. This implies two cases: non-constrained driving and interaction with the environ-
ment. Driving is considered to be constrained if either the time-gap is below 2.5 seconds, or the
velocity is below 10m/s, and at the same time, the distance-gap is below 25 meters. Urban driving
situations, traffic lights and tight corners are all identified by manually evaluating the driven route
and marking each of these situations in the data. This final step accounts for additional removal of
31.21m of vehicle data. After removal, a total time of 3:50.15h of vehicle data is left which can be
used for analysis.
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Chapter 5

Sensitivity of the Model Calibration

5-1 Introduction

In order to be able to investigate the sensitivity of the model calibration procedure to various fac-
tors, at first, a consistent, noise-free data-set is required. This data-set, the SAE-L2 data-set, was
introduced and processed in the previous chapter. From the processed data, various trajectories
are selected which are used to investigate the sensitivity of the model calibration.

This chapter investigates the sensitivity for the Intelligent Driver Model (IDM) and simplified ACC
(sACC) models to the calibration methodology, and the quality and quantity of calibration data will
be investigated. The investigation will be performed through calibrating parametric car-following
models to synthetically generated trajectories. The first goal of this chapter is to obtain insights
into the process of setting up an optimal model calibration on Adaptive Cruise Control (ACC) driv-
ing data. These insights are used to define a single calibration methodology yielding optimal re-
sults for the considered models to real-world trajectory data. The second goal is to create an un-
derstanding of the validity of the resulting calibrated models.

This chapter will start by introducing the trajectories selected for the creation of synthetic vehicle
trajectories in Section 5-2. Sections 5-4 to 5-6 will discuss the sensitivity to the calibration method-
ology and quality and quantity of calibration data. Finally, Section 5-7 will discuss the conclusions
of the performed analysis.

5-2 Creation of Synthetic Data

An optimal investigation on the sensitivity of the model calibration requires the selection of mul-
tiple trajectories containing different velocity and acceleration ranges. Four trajectories with dif-
ferent levels of system excitation are selected. The trajectories, including the reset points in the
trajectories, are shown in Figure 5-1. Statistics for each of the trajectories are shown in Figure 5-
2. The selected trajectories are: “Car-Following” (CF) containing steady-state car-following with
minor accelerations, “Oscillating” (OSC) containing car-following with moderate accelerations,
“Stop-and-Go 1” (SG1) containing a complete stop-and-go manoeuvre with relatively low oscil-
latory behaviour and “Stop-and-Go 2” (SG1) also containing a complete stop-and-go manoeuvre,
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but with more oscillatory behaviour. The OSC trajectory is only 170 seconds and is therefore ap-
pended with 219 seconds of data from the CF trajectory. Unless stated otherwise, indicated results
are based on the SG1 trajectory, which contains various velocities and acceleration levels while
containing minimal reset points.
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Figure 5-1: Figure showing the four selected trajectories where the sensitivity analysis will be
based upon, being: “Car-Following” (a), “Oscillating” (b), “Stop-and-Go 1” (c) and “Stop-and-
Go 2” (d).
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Figure 5-2: Figure showing statistics for the four selected trajectories where the sensitivity
analysis will be based upon, being: “Car-Following” (a), “Oscillating” (b), “Stop-and-Go 1” (c)
and “Stop-and-Go 2” (d).

Considered ranges of parameter values for the creation of synthetic data, and also constraints for
the calibration algorithm are shown in Table 5-1. Most parameters are constrained to logically or
psychical limits. Since it is not yet sure if the ACC system contains an intelligent braking strategy,
constraints on b are very loose. This also yields for the constraints on kp and kd , but is more the
result of the non-intuitiveness of these parameters. Using the number of variations indicated in
the table for each parameter, a total of 243 trajectories are created using the IDM model, and a
total of 216 trajectories are created using the sACC model. Example follower trajectories for the
SG1 trajectory are included in Figure 5-3. For the other trajectories, example follower trajectories
are included in Appendix D.
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Figure 5-3: Plot showing an example of generated follower trajectories on the SG1 trajectory for
the IDM model using parameters p I DM = [2.63, 2.81, 1.33, 54.13, 3.53]T and sACC model using
parameters ps ACC = [0.28, 0.09, 1.33]T .

Table 5-1: Table showing an overview of the considered ranges of parameter values used for
the creation of synthetic follower trajectories, as well as constraints considered for the calibration
algorithm in the process of recovering the original parameters.

IDM Parameters sACC Parameters
a, m/s2 b, m/s2 T , s v0, m/s s0, m kp , s−2 kd , s−1 td , s

Variations 3 3 3 3 3 6 6 6
Generation range [1.0, 3.0] [1.0, 3.0] [1.0, 3.6] [45, 55] [1.0, 5.0] [0.2, 0.3] [10−3, 0.1] [1.0, 3.6]
Calibration ub∗ 8.0 104 10 69.4 10 30 10 10
Calibration lb∗∗ 10−5 10−5 10−5 4.6 ·10−4 10−5 2.0 ·10−5 1.0 ·10−6 1 ·10−4

∗ ub - upper bound, ∗∗ lb - lower bound

5-3 Benchmark Calibration Performance
In Figure 5-4, the parameter sensitivity for the defined calibration methodology from the previous
chapter is shown. As can be seen, the sensitivity of both models on correctly calibrating the pa-
rameter defining the equilibrium gap T /td is relatively high. The IDM model is least sensitive to
a correct calibration of v0, followed by b and s0. For the sACC model, parameter kd is found least
sensitive.

The IDM model considers different operating modes. Parameter a is outside of the parentheses,
therefore present in all modes and affects the complete driving behaviour. In constrained driving
at highway conditions, s0 is only a small value representing the standstill-distance which adds to
the term v(t )T . Therefore, the sensitivity of T in the considered trajectory is high. To obtain high
sensitivity for s0, driving situations at low velocities must be considered. b is mainly active in hard-
braking situations, which are not included in the considered trajectory. Therefore, the sensitivity
to a correct calibration is not very high, which is also the case for unconstrained driving situations
and parameter v0.

In the sACC model, only three parameters influence the model behaviour. All parameters influence
the overall dynamics in all driving situations. Therefore the lowest obtained calibration sensitivity
is higher than in the IDM model. A similar reasoning as for T in the IDM model yields for td .

The ability of the model calibration to retrieving the original model parameters is shown in Figure
5-5. In general, for parameters with higher sensitivity, the ability to retrieve the original parameter
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values is higher. However, for the performance on retrieving v0 and s0 this is not true. The land-
scape plots, included in Figure 5-6, show small parameter correlation for IDM parameters a and b,
parameters T and v0 and parameters T and s0. The correlation between T and v0 and between T
and s0 could be a reason for this behaviour.
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Figure 5-4: Figure showing the parameter sensitivity of the IDM (a) and sACC (b) models for
the benchmark case. Calibrated parameter values overlap with the published ones.
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Figure 5-5: Figure showing the distribution of the distances of the calibrated parameters to the
actual model parameters of the IDM (a) and sACC (b) models for the benchmark case.
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Figure 5-6: Figure showing the fitness landscape of the IDM (a) and sACC (b) models for the
benchmark case. Calibrated parameter values overlap with the published ones.
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5-4 Impact of the Calibration Methodology

In this section, the sensitivity of the model calibration to three different methodological factors will
be investigated, being: the selected error-measure in Section 5-4-1, the assigned weight to each of
the variables in the error-measure and general calibration performance in Section 5-4-2 and the
interval at which simulations are reset in Section 5-4-3.

5-4-1 Error-Measure

The first methodological factor investigated is the error-measure. Relative error-measures, as com-
pared to absolute error-measures, are more sensitive to the same errors at small distance-gaps. The
sensitivity plots included in Appendix D-2-1 show that the considered error-measure indeed does
not change the position of the optimum, but only the sensitivity of the model calibration. The
parameter sensitivity of the IDM model decreases with approximately 97% when relative error-
measures are selected over absolute error-measures. When considering the Mean Absolute Er-
ror (MAE) instead of the Root Mean Square Error (RMSE), the sensitivity decreases with 5-40%, de-
pending on the parameter. Although less present, these effects are also visible for the sACC model,
where the sensitivity in most cases decreases with more than 90% when considering relative error-
measures instead of absolute error-measures.

Figure 5-7 shows box-plots indicating the performance for different error-measures on retrieving
the original parameters. For both models, a decrease in parameter sensitivity causes the perfor-
mance of the calibration to be lower. In the sACC model, something that cannot be explained from
the sensitivity and landscape plots causes calibration performance using the MAE to be very bad.
Best parameter sensitivity and calibration performance were found when considering the RMSE.
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Figure 5-7: Figure showing the distribution of the distances of the calibrated parameters to the
actual model parameters of the IDM (a) and sACC (b) models for different error-measures. The
calibration was performed on the noise-free SG1 trajectory using full weight on the distance-gap
(ws = 1).
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5-4-2 Variable Weight

In case the considered model is not completely in line with the driving behaviour, the weight at-
tached to each of the calibration variables influences the model’s ability to represent either the
distance-gap or velocity. However, here, this is not the case. Considering full weight on the velocity
(wv = 1) does decrease the parameter sensitivity of the IDM model with a minimum of 80% and the
parameter sensitivity of the sACC model with a minimum of 65% as compared to the benchmark.
Considering equal weight on both variables (ws = wv = 0.5) decreases the parameter sensitivity in
both models with approximately 40%. The fitness landscape remains unchanged.

The box-plots included in Figure 5-8 indicate for most parameters only minor effects on the ability
of the model calibration on retrieving the original parameters. For the IDM model, the perfor-
mance on retrieving the original model parameters is slightly higher when considering full weight
on the velocity. For the sACC model, good performance is obtained in case relatively more weight
is put on the distance-gap, while the best performance is obtained when full weight is on the
distance-gap. Some events that cannot be explained cause calibration performance to be bad
when considering a weight distribution ws/wv = 25/75.
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Figure 5-8: Figure showing the distribution of the distances of the calibrated parameters to the
actual model parameters of the IDM (a) and sACC (b) models for different calibration variable
weights (ws − wv). The calibration was performed on the noise-free SG1 trajectory using the
RMSE error-measure.

5-4-3 Reset Interval

The reset interval defines the time after which the simulation of the model trajectories is reset to
the measurement data. In case long reset intervals are considered, there exists a temporal corre-
lation between errors at different steps of the simulation. Temporal correlation can be avoided by
applying shorter intervals. Because of transient behaviour, models take some time to respond to
the (sub-optimal) initial conditions. Applying reset intervals shorter than the response time of the
models to the initial conditions could result in models not being able to respond to these condi-
tions. This response time can be seen in case the model is initiated at a noisy measurement, such
as is the case for the sACC model in Figure 5-12b on page 34. In this figure, the trajectory is initiated
at a noisy measurement. As can be seen, the effects of the incorrect initiation are only gone after
almost 19 seconds have passed. This response time is furthermore important because the selected
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reset interval will be used as validation trajectory length in the validation of model performance
on real-world data.

The parameter sensitivity and fitness landscape remains approximately unchanged for most pa-
rameters in case reset intervals up to 1 second are considered. In Figure 5-9, results on the per-
formance of the calibration procedure can be found. From the box-plots, it can be seen that the
performance of the calibration on retrieving the original IDM and sACC parameters is negatively
affected in case reset intervals below 10 (IDM) and 25 (sACC) seconds are applied.

Something interesting happens when changing the variable weight for the sACC model from a full
weight on the distance-gap to an equally distributed weight of ws/wv = 50/50. Here, the calibra-
tion performance, when using the smallest reset interval, improves significantly. This improve-
ment is possibly the result of a faster response of the velocity than the response of the distance
gap, which is 2/∆t times slower. A box-plot image showing these results is included in Appendix
D-2-2.
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Figure 5-9: Figure showing the distribution of the distances of the calibrated parameters to
the actual model parameters of the IDM (a) and sACC (b) models for different simulation reset
intervals. The calibration was performed on the noise-free SG1 trajectory using the RMSE error-
measure with full weight on the distance-gap (ws = 1).

5-5 Impact of Varying Data Quality

5-5-1 Noise: Lead Vehicle

When only noise in the measurements from the lead vehicle is considered, this effectively means
the measured distance-gap is varying very fast. In order to follow these variations, models have to
be able to react very fast. The parameter sensitivity plots indicate that the IDM model is trying to
represent the noise in the data. Compared to the benchmark case, the sensitivity has only been
reduced by 25-40% for parameters a, b and T . The optimum, however, is not found at the original
location anymore and the sensitivity of parameters v0 and s0 is about 70% lower. Model parameter
b is showing a higher correlation to all other parameters than was observed before. The parameter
sensitivity plot and fitness landscape for the IDM model are included in Appendix D-3-1.

The sACC model is not able to represent the noise. Because of the fast variations in the distance-
gap, extra or less damping only has few effects. The noise causes the sensitivity on the model
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damping parameter kd to be about 90% lower than in the benchmark case. The sensitivity of model
parameter kp is about 40% lower, while the sensitivity of td is almost unchanged. The fitness land-
scape of the model is also unchanged.

In Figure 5-10, results on the performance of retrieving the original model parameters can be
found. In line with the expectations, for both models, the calibration is sensitive to residual noise
in the measurement signals of the lead vehicle. Also, the sensitivity of the IDM model is higher
than the sensitivity of the sACC model. The model responses of the two models included in Figure
5-11a confirms that the IDM model is trying to mimic the data and that the sACC model is still
trying to represent the noise-free data.
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Figure 5-10: Figure showing the distribution of the distances of the calibrated parameters to
the actual model parameters of the IDM (a) and sACC (b) models for different levels of noise
variance in the distance-gap measurements. The calibration was performed on the SG1 trajectory
using the RMSE error-measure with full weight on the distance-gap (ws = 1).
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Figure 5-11: Figure showing the response of the IDM (a) and sACC (b) models on a sub-set
of the SG1 trajectory where noise (N (0,0.1)) is injected to the distance-gap measurements. The
generating model is calibrated using the RMSE error-measure with full weight on the distance-gap
(ws = 1).
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5-5-2 Noise: Lead and Follower Vehicle

In the second case considered, residual noise is present in trajectories of both the velocity and
distance-gap measurements. The found sensitivity of the model calibration is a bit worse than,
but very similar to, the ones obtained when considering noise in the trajectories of the lead vehicle.
The fitness landscape and the ability of the calibration on retrieving the original model parameters
are for both models similar to the ones obtained in the previous section.

The response of both models is included in Figure 5-12. For the IDM model, the results of the
model trying to represent the noise become even more apparent. The model response of the sACC
model shows that the model needs some time to respond to the initial conditions. This has to be
taken into account when determining the final length of the reset interval.
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Figure 5-12: Figure showing the response of the IDM (a) and sACC (b) models on a sub-set of the
SG1 trajectory where noise (N (0,0.1)) is injected to the velocity and distance-gap measurements.
The models are calibrated using the RMSE error-measure with full weight on the distance-gap
(ws = 1).

5-5-3 Incorrect Car-Following Model

In real-world situations, it is almost certain that the model is never completely in line with the
actual behaviour. To find out what the effects of this are, in Figure 5-13, the parameter sensitivity is
shown for the case the model trajectories are generated using the other model (i.e. IDM generated,
sACC calibrated and vice versa). The obtained fitness landscape for both models is included in
Appendix D-3-2.

As discussed earlier, the acceleration in the sACC model does not depend on the current velocity
nor the distance to the desired velocity, the model does not consider an intelligent braking strat-
egy, and the model considers no minimum standstill distance s0. The absence of an intelligent
braking strategy causes that for the IDM model, no optimum for b was found within the consid-
ered calibration region. While the disability of correctly calibrating b is in this case caused by the
sACC model lacking an intelligent braking strategy, in real-world calibration this could also be the
result of the considered trajectory data not considering any events in which this intelligent braking
is needed. As for parameter b, the velocity-independent accelerations and absence of a minimum
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standstill distance cause that model parameters v0 and s0 cannot be calibrated. The result is that
the optimal region in the fitness landscape is now spread out towards very high parameter values.

The other way around, the IDM model does consider a parameter s0, considers different accelera-
tion and deceleration profiles and considers velocity-dependent acceleration. In the calibration of
the sACC model, this results in a relatively low parameter sensitivity of model parameters kp and
kd . For all three parameters, a single minimum is still present. The considered minimum standstill
distance results in an overestimation of the desired distance-gap.
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Figure 5-13: Figure showing the parameter sensitivity of the IDM (a) and sACC (b) models on
a sub-set of the SG1 trajectory where the trajectory data is generated using the other model.
The analysis was performed using the RMSE error-measure with full weight on the distance-gap
(ws = 1).

5-6 Impact of Varying Data Quantity

In this section, conclusions will be drawn on the minimum trajectory length and excitation re-
quired for proper calibration. This section start by investigating the sensitivity of the model cali-
bration to various trajectory lengths in Section 5-6-1, after which the sensitivity to different levels
of system excitation will be discussed in Section 5-6-2. In practice, both are always interlinked and
cannot be considered entirely separate. Therefore some findings will coincide between the two
sections.

5-6-1 Trajectory Length

Selecting the location and length of a calibration trajectory is a complex choice. Long trajectories
have more change of including sufficient system excitation, allow for better filtering of the prob-
abilistic part and allow for more validation steps to be performed, while short trajectories have
less chance of including behavioural changes. In case too short trajectories are considered, the
sensitivity of the parameters to a correct calibration decreases significantly, while the shape of the
fitness landscape remains about unchanged.

In Figure 5-14, results on the performance of retrieving the original model parameters can be
found. For short trajectory lengths, the reported performance is the total performance on the tra-
jectory, which is subdivided into sub-trajectories of the considered length. Performance of the
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IDM model seems to increase more gradually with increasing trajectory length than the perfor-
mance of the sACC model. For the IDM model, good performance is observed from trajectory
lengths of 200 seconds and higher, while for the sACC model, this is true from a minimum of 100
seconds. This gradual increase in performance is the result of the linearity of the considered mod-
els. The non-linear IDM model contains different operating modes which are active depending
on the magnitude of the excitation of the system. Calibration of the linear sACC model does not
rely on the amplitude of the excitation, but more on the included frequency range. In general lab-
oratory conditions, a model is calibrated to a system by exciting the system at its input using an
input signal constructed from one or more sine waves. Generally, one frequency is considered
per calibration parameter. With increasing trajectory length, the magnitude of present excitation,
therefore, increases more gradually than the number of frequencies.

Box-plots indicating the performance of the model calibration for other trajectories are included
in Appendix D-4-1. For the IDM model, less excitation in the considered trajectory causes the dif-
ferent modes to be less visible. The minimum trajectory length required for optimal calibration
remains about unchanged, but the calibration performance decreases with a factor 300 for the
CF trajectory, 10 for the OSC trajectory and increases with a factor 2 for the SG2 trajectory. The
latter is the result of the trajectory containing actual low-velocity conditions, which increase the
calibration performance of s0 and thereby increases the calibration performance of the other pa-
rameters. For the sACC model, considering other trajectories causes the minimum length required
for proper calibration to be longer. However, the same performance is obtained when sufficient
length is considered. These findings confirm what was stated before.
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Figure 5-14: Figure showing the distribution of the distances of the calibrated parameters to the
actual model parameters of the IDM (a) and sACC (b) models for different trajectory lengths.
The calibration was performed on the noise-free SG1 trajectory using the RMSE error-measure
with full weight on the distance-gap (ws = 1).

5-6-2 System Excitation

For proper model calibration, the system must be sufficiently excited in order to include the full dy-
namical behaviour. In the previous section, some preliminary statements were made about what
levels can be considered as sufficient. For a more detailed investigation, the sensitivity of the model
calibration to different levels of system excitation is performed by considering the smallest trajec-
tory length of 10 seconds. In this way, the absolute performance of the model calibration will be
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lower, and the chance of including only a single type of system excitation is higher. This increases
the difference in relative sensitivity which will be observed between different sub-sets of the tra-
jectory.

In Figure 5-15, the ability of the model calibration on retrieving the original model parameters is
shown over time for the SG1 trajectory. For the IDM model, the length considered is too short to
calibrate parameter v0 correctly. For the other parameters, braking actions or both braking and
acceleration actions in the calibration trajectory seem to result in better performance than when
only acceleration actions are considered. Moreover, the performance is better at low velocities. For
the sACC model, the calibration seems to perform better in case braking actions are present. Split-
ting the calibration performance over different levels of minimum acceleration ami n , maximum
acceleration amax and average velocity vav g included in each of the trajectories confirm these ob-
servations. Figures of this investigation are included in Appendix D-4-2. The IDM model shows
best performance in case the calibration trajectory consist of deceleration levels below −1m/s2 at
velocities below 10m/s. For the sACC model, the best performance is found when at least decelera-
tion levels below −1m/s2 are present, independent on the acceleration levels or present velocities.
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Figure 5-15: Figure showing the distribution of the distances of the calibrated parameters to
the actual model parameters of the IDM (a) and sACC (b) models for a trajectory length of
10 seconds over time. The calibration was performed on the SG1 trajectory using the RMSE
error-measure with full weight on the distance-gap (ws = 1).
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5-7 Conclusions

The goal of this chapter was to obtain insights in the process of setting up an optimal model cal-
ibration on ACC data and to create an understanding of the validity of the resulting calibrated
models. Differences were found between the sensitivity of both models to some of the investigated
factors. This raises the question of whether using a single approach for model calibration of both
models could be considered as best practice, or that different models need different approaches.
This thesis will consider an approach will which suits the calibration of both models, allowing for
optimal comparison of the obtained results.

In the model calibration, the parameters having the most influence in defining the equilibrium
distance-gap (T and td ) are found to be most sensitive to correct calibration, followed by s0 and
the parameters directly involved when an error in the distance-gap arises (a and kp ). The least sen-
sitive were the parameters connected with an error in the velocity-difference (b and kd ). Selecting
a model of which the driving behaviour is in line with the behaviour captured in the data is found
to be the most important factor in model calibration. For a linear model, calibrating a model that
considers incorrect driving behaviour affects calibration performance of all parameters. Causing
calibrated models not to be applicable in any other driving situations than the considered situa-
tion used in model calibration. For a non-linear model, only parameters included in modes that
are not in line with the considered driving behaviour are affected. Still making the model applica-
ble in other situations, but including such modes is unnecessary.

A proper model calibration requires the data to include sufficient system dynamics which are
clearly visible. Because the trajectory length restricts the amount of included system excitation,
the two are interconnected. For proper calibration, the considered trajectory must be at least 200
seconds in which at least decelerations below −1m/s2 are present. For the IDM model, these de-
celerations must take place at velocities below 10m/s.

Noise decreases the visibility of the dynamics. In case a model is able to do so, it will try to repre-
sent noise in the measurement signals. This results in a shift of the optimal calibration parameters
from the actual parameter values. Because the parameter sensitivity and calibration error remain
reasonable, one must not blindly trust these results. In case a model is not able to represent mea-
surement noise, the actual dynamics will be represented. However, the parameter sensitivity will
severely decrease and therefore, also the quality of the calibration. This emphasises the impor-
tance of accurately processing the data-set.

In the same way as that it is important that the data includes sufficient dynamics, it is also impor-
tant that the model is able to develop and show its dynamics. Temporal correlation was only found
to have only minor effects. Therefore, there is no need to include additional reset points in the tra-
jectories. The parameter sensitivity was found to degrade severely when relative error-measures
are considered. These measures should, therefore, not be used in model calibration. The model
calibration was furthermore not found to be very sensitive to considering the velocity in the model
calibration. The model calibration on real-world data will consider the RMSE using equal weight
on the velocity and distance-gap and without extra reset-points being added. The length of the
folds in model validation will be equal to the minimum required reset interval for accurate model
calibration of 25 seconds.
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Chapter 6

Real World Validation of Adaptive
Cruise Control (ACC) Models

6-1 Introduction

In the previous chapter, the sensitivity of the model calibration to the calibration methodology
and the quality and quantity of calibration data was investigated. From the SAE-L2 data-set, five
trajectories will be selected in this chapter of which three satisfy the (minimum) requirements
determined in the previous chapter.

In this Chapter, the validity of the IDM and sACC models on representing the driving behaviour of
the ACC system from an Audi A4 will be assessed. The investigation will be performed by means of
calibrating the models to the different vehicle trajectories, each including one or more interesting
events. The goal of this chapter is to gain insights on the capability of each of the considered car-
following models on representing the overall velocity and distance-gap, and on the representation
of the specific events.

This chapter will begin by examining the obtained parameter values, validation errors and event
representation for each of the trajectories in Sections 6-3 to 6-6. After obtaining optimal parame-
ters for both models for each of the trajectories, cross-comparison of model performance for each
of the parameter sets on all trajectories will be performed in Sections 6-7, 6-8 and Section 6-9.
Finally, Section 6-10 will discuss the conclusions of the performed analysis.

6-2 Trajectory Selection

The considered trajectories are shown in Figure 6-1. Statistics about the selected trajectories are
shown in Figure 6-2. The first trajectory contains steady-state car-following at highway veloci-
ties. The trajectory will be referred to as CF. Good representation in steady-state car-following is
important in determining the estimated road capacity and driving comfort when using the ACC
system. The following distance can furthermore be used to predict the number of cut-ins, which
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affect user acceptation of the system (Nowakowski et al., 2011). At a cut-in, the distance-gap is sud-
denly reduced. When the ACC system reacts too nervous to cut-in scenarios, this can have a big
impact on comfort and driver acceptation (Happee et al., 2018). The same holds for the reaction
to a sudden increase in distance-gap caused by a cut-out. Both cut-in and cut-out events are in-
cluded in the second and third trajectory, which will be referred to as CI and CI2, respectively. The
fourth trajectory contains a hard-braking event and will be referred to as HB. A hard-braking event
causes a large magnitude disturbance in the vehicle string. The way in which the vehicle reacts is
often a determining factor in if the vehicle gets an accident or if instabilities are triggered. Finally,
the fifth trajectory contains a stop-and-go manoeuvre, containing both hard-braking and (almost)
free acceleration, combined with low-velocity conditions. Proper representation on this trajectory
is important for reliable simulations using the model at different velocities. This trajectory will be
referred to as SG.

To meet the requirements in excitation for the simplified ACC (sACC) model, the car-following tra-
jectory has been appended with 120 seconds of data in which the system was more excited. There
was no data nearby with which the requirements for the Intelligent Driver Model (IDM) model
could be met. The same holds for the CI trajectory, which also does not include sufficient excita-
tion for calibration of the IDM model. In the CI2 trajectory, a sub-trajectory with a length of 60
seconds is appended with which sufficient excitation is ensured for all models. The considered
hard-braking event is constructed from approximately the same data as considered in the SG2 tra-
jectory from the previous chapter and contains sufficient excitation to calibrate all models. The
selected stop-and-go trajectory is a sub-section from the SG1 trajectory used in the previous chap-
ter and contains sufficient excitation to calibrate all models.

10:18 10:20 10:22 10:24
0

20

40
(a)

10:26 10:28 10:30

(b)

14:32 14:34 14:36 14:38 14:40

(c)

14:40 14:42 14:44 14:46
0

20

40
(d)

14:18 14:20 14:22

(e)

Figure 6-1: Figure showing the five selected trajectories where the real-world analysis will be based
upon, being: “Steady-State Car-Following” (a), “Cut-In” (b), “Cut-In 2” (c), “Hard-Braking” (d)
and “Stop-and-Go” (e).

6-3 Steady-State Car-Following

Figure 6-3 shows the considered trajectory and the obtained model trajectories using calibrated
parameters. Because of the lack of excitation for the IDM model, it is expected that correct calibra-
tion is not possible. The obtained model response will be compared with the model response using
the mean parameters of all calibration trajectories that contain sufficient excitation. The fitness
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Figure 6-2: Figure showing statistics for the five selected trajectories where the real-world analysis
will be based upon, being: “Steady-State Car-Following” (a), “Cut-In” (b), “Cut-In 2” (c), “Hard-
Braking” (d) and “Stop-and-Go” (e).

landscape, parameter sensitivity plots and model response using mean parameters are included
in Appendix E-1. They indicate that the there is an optimum present for all parameters except for
b (IDM) and s0 (alternative sACC). The parameter sensitivity of most parameters is rather low. The
found calibration parameters are included in Table 6-1. The calibrated alternative sACC model will
thus show similar behaviour as the regular sACC model.
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Figure 6-3: Figure showing the response of the IDM (a) and sACC (b) models on the CF
trajectory. The models are calibrated using the RMSE error-measure with equal weight on the
velocity and distance-gap (ws = wv = 0.5).

From the model response plot, the IDM model seems to better match the velocity of the ego-
vehicle, and seems better able to reproduce the steepness of the velocity signal. Considering the
mean parameters causes the model to react more sensitive to deviations from the desired gap, but
performance is very similar. The errors of the IDM model on the first sub-trajectory are generally
bounded by ev ∈ [−6.21,3.43]% (velocity error) and es ∈ [−14.7,13.2]% (distance-gap error). Con-
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sidering the mean parameters, ev remains unchanged while distance-gap errors mainly shift to-
wards underestimation (es ∈ [−22.2,9.94]%). The sACC models slightly overestimate the distance-
gap and show a damped version of the actual behaviour. The errors on the first sub-trajectory are
bounded by ev ∈ [−3.60,3.11]% and es ∈ [−12.2,19.6]%, which is approximately equal to the ones
from the IDM model. The actual vehicle shows cautious behaviour as it approaches the equilib-
rium time-gap, most probably to avoid overshoot and thereby enhance comfort and fuel efficiency.
Both models are not able to reproduce the asymmetry this causes in the velocity profile. In the
second sub-trajectory, especially the sACC models react too sensitive to the gap that is opened and
seem to overshoot the desired velocity. This causes less variation in the distance-gap to be present
and causes the errors of the IDM model to increase to ev ∈ [−13.3,10.2]% and es ∈ [−44.0,52.7]%,
while for the sACC models they rise to ev ∈ [−12.1,15.1]% and es ∈ [−46.9,37.4]%.

The trajectory allows for the creation of 7 folds of 25 seconds for model validation, which is suffi-
cient based on earlier findings. The results for the model validation are included in Table 6-1. In
contrast to what was expected, the performance of the models on representing the distance-gap is
comparable. The IDM model outperforms the sACC model on representing the velocity.

Table 6-1: Table showing obtained model parameters and cross-validation results for the CF
trajectory. The considered error-measure in the model calibration is the RMSE using equal weight
on the velocity and distance-gap ws = wv = 0.5.

Calibration Model
IDM sACC Alternative sACC

FRMSE ,mi x 3.33 4.06 4.06
FRMSRE ,v 3.45 ·10−2 3.78 ·10−2 3.78 ·10−2

FRMSRE ,s 1.36 ·10−1 1.95 ·10−1 1.95 ·10−1

Parameters a = 2.97, b = 1.86 ·103,
T = 0.734, v0 = 35.57,
s0 = 3.42

kp = 0.0301, kd = 0.294,
td = 1.20

kp = 0.0301, kd = 0.294,
td = 1.20, s0 = 0∗

* Parameter calibrated to bound of calibration region.

In summary, even while the requirements for excitation were not met, both models show good
behaviour in representing the velocity. The found performance on representing the distance-gap
is not that good. The behaviour of the IDM model seems to be most in line with the actual vehicle
behaviour. The damped behaviour of the two sACC models causes the maximum representation
error in both the velocity and distance-gap signal to be higher than in the IDM model. Both models
were not able to reproduce the asymmetry in the velocity signal.

6-4 Cut-In and Cut-Out

Figure 6-4 shows the considered trajectory and the obtained model trajectories. The fitness land-
scapes and parameter sensitivity plots are of similar shape as for the CF trajectory, only the position
of their optimum has been changed. The obtained parameter sensitivity plots for all models and
the model response using mean parameters for the CI trajectory are included in Appendix E-2. The
found calibration parameters are included in Table 6-2

The first trajectory contains one cut-in (around 10:26:15) and two cut-outs (around 10:26:30 and
10:28:00). At the cut-in, the velocity of the cut-in vehicle is just below the velocity of the ego-vehicle
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Figure 6-4: Figure showing the response of the IDM (left column) and sACC (right column)
models on the CI (top row) and CI2 (bottom row) trajectories. The models are calibrated using
the RMSE error-measure with equal weight on the velocity and distance-gap (ws = wv = 0.5).

(∆v =−0.35m/s), such that only a slight deceleration is necessary to avoid a collision. The second
trajectory contains a single cut-in (just before 14:40:00), in which the cut-in vehicle has to brake
very hard immediately after the cut-in to equal the velocity of its lead vehicle, resulting in a large
velocity difference of 5m/s.

The IDM model shows a relatively good representation of the two cut-out events and closes the
opened gap in the same manner as observed for the actual vehicle. The sACC models let more
time pass before the gap is closed. This is something that is noticed in both trajectories, where
the sACC model seems to show damped behaviour and therefore is not able to show all dynamics.
Both models furthermore overshoot the velocity after the second cut-out. This same behaviour is
found in the reaction after cut-ins. The IDM model is too sensitive to a small distance-gap and is
not able to show the comfortable behaviour of the actual ACC system. The sACC model, on the
other hand, shows a good representation of the first cut-in. At the second cut in the model lets the
time-gap decrease to 0.3 seconds, as compared to 0.6 seconds for the actual vehicle, which means
there is almost a collision.
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Looking at the errors in the model response, the errors of the IDM model are generally bounded by
ev ∈ [−3.65,5.51]% and es ∈ [−15.2,33.3]%. The errors at the cut-in and cut-out events are larger,
where ev ∈ [−9.47,7.42]% and es ∈ [−23.2,34.5]%. Considering the mean parameters, the gen-
eral errors remain approximately unchanged, while the specific errors at the cut-in and cut-out
events increase to ev ∈ [−26.9,8.30]% and es ∈ [−50.2,65.5]%. Errors in the sACC model are ap-
proximately equal to the observed errors in the IDM model, where in general ev ∈ [−3.40,6.40]%
and es ∈ [−28.3,14.5]%. Errors at the cut-in and cut-out events are lower than in the IDM model,
where ev ∈ [−13.3,9.52]% and es ∈ [−31.3,42.1]%.

The trajectories allow for the creation of 11 (CI) and 7 (CI2) folds of 25 seconds for model valida-
tion. The results for the model validation are included in Table 6-2. In both trajectories, the IDM
model outperforms the sACC model in terms of the RMSE measure and the two Root Mean Square
Relative Error (RMSRE) measures considered. Performance on representing the velocity is much
higher than performance on representing the distance-gap. Including s0 in the sACC model, only
increases representation performance on the distance-gap from the CI2 trajectory by 2%.

Table 6-2: Table showing obtained model parameters and cross-validation results for the CI (a)
and CI2 trajectories. The considered error-measure in the model calibration is the RMSE using
equal weight on the velocity and distance-gap ws = wv = 0.5.

(a)

Calibration Model
IDM sACC Alternative sACC

FRMSE ,mi x 2.22 2.68 2.61
FRMSRE ,v 2.51 ·10−2 2.74 ·10−2 2.79 ·10−2

FRMSRE ,s 1.13 ·10−1 1.55 ·10−1 1.45 ·10−1

Parameters a = 1.96, b = 8.75,
T = 0.515, v0 = 40.9,
s0 = 10.0∗

kp = 0.0465, kd = 0.500,
td = 1.08

kp = 0.0447, kd = 0.505,
td = 0.712, s0 = 10.0∗

* Parameter calibrated to bound of calibration region.

(b)

Calibration Model
IDM sACC Alternative sACC

FRMSE ,mi x 9.43 ·10−1 1.26 1.12
FRMSRE ,v 1.66 ·10−2 1.70 ·10−2 1.66 ·10−2

FRMSRE ,s 5.45 ·10−2 9.77 ·10−2 7.55 ·10−2

Parameters a = 1.79, b = 12.5,
T = 0.692, v0 = 46.7,
s0 = 7.45

kp = 0.0719, kd = 0.316,
td = 1.09

kp = 0.0715, kd = 0.318,
td = 0.918, s0 = 4.58

* Parameter calibrated to bound of calibration region.

In summary, both models are sensitive to overshoot in case the actual vehicle approaches the de-
sired velocity. The IDM model shows fast response in adapting its velocity in case of both a cut-in
and cut-out and outperforms the sACC model in representing the overall vehicle dynamics. While
the damped response of the sACC model ensures good performance at cut-in events, it causes the
model to lack the ability to represent all dynamics in the data accurately.
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6-5 Hard-Braking

Figure 6-5 shows the considered trajectory and the obtained model trajectories. The trajectory
starts with a closing action from a time-gap of just above 1.8 seconds, after which the vehicle is in
constrained, slightly oscillating driving conditions. At around 14:44:30, the vehicle in front sud-
denly performs a hard-braking action (v̇max = 3.33m/s2), after which the vehicles decelerate to a
standstill at the end of the trajectory. For all models, the fitness landscape is smooth and of similar
shape as in the CF trajectory. The parameter sensitivity plots are included in Appendix E-2. The
found calibration parameters are included in Table 6-3.
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Figure 6-5: Figure showing the response of the IDM (a) and sACC (b) models on the HB
trajectory. The models are calibrated using the RMSE error-measure with equal weight on the
velocity and distance-gap (ws = wv = 0.5).

During the section before the hard-braking action, the behaviour represented by the IDM model
is relatively good in line with the actual vehicle behaviour. The model allows slightly less distance-
gap variations. Errors of the IDM model on representing the distance-gap and velocities are gen-
erally bounded by ev ∈ [−2.50,4.41]% and es ∈ [−9.19,17.4]%, respectively. Performance on rep-
resenting the hard-braking action itself is approximately similar, where the observed errors are
ev ∈ [−2.94,4.14]% and es ∈ [−6.26,5.58]%. The two sACC models show very similar behaviour in
representing the velocity of the vehicle. At low velocities, parameter mainly parameter s0 causes
the distance-gap representation of the alternative sACC model to be much better. The sACC model
even shows negative distance-gaps. Errors for the models on representing the velocity and distance-
gap before the braking action are generally bounded by ev ∈ [−3.31,3.37]% and es ∈ [−6.92,22.7]%.
Representation on the vehicle behaviour around the hard-braking event is quite bad, where the
model is not able to reproduce the intensity of the braking action. As a result, the distance-gap
becomes much smaller than observed in the data. The found errors are ev ∈ [−3.15,15.0]% and
es ∈ [−45.0,5.10]%.

The trajectory allows for the creation of 6 folds of 25 seconds for model validation. The results
for the model validation are included in Table 6-3. The visual performance and calibration errors
of both models on representing the velocity and distance-gap, suggests that the performance on
representing the velocity is approximately equal for both models, whereas performance on repre-
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sentation the distance-gap is much less for the sACC model. However, the validation errors indi-
cate that the performance of the two sACC models on representing the velocity and distance-gap
is about two times worse for the IDM model.

Table 6-3: Table showing obtained model parameters and cross-validation results for the HB
trajectory. The considered error-measure in the model calibration is the RMSE using equal weight
on the velocity and distance-gap ws = wv = 0.5.

Calibration Model
IDM sACC Alternative sACC

FRMSE ,mi x 9.59 ·10−1 1.57 1.35
FRMSRE ,v 1.31 ·10−2 2.42 ·10−2 2.29 ·10−2

FRMSRE ,s 5.97 ·10−2 1.19 ·10−1 9.70 ·10−2

Parameters a = 1.31, b = 17.3,
T = 0.797, v0 = 69.4∗,
s0 = 6.03

kp = 0.110, kd = 0.349,
td = 1.07

kp = 0.0978, kd = 0.359,
td = 0.771, s0 = 7.72

* Parameter calibrated to bound of calibration region.

In summary, both models show sufficient performance on representing the overall velocity of the
actual vehicle. The IDM model can react faster to sudden changes than the over-damped sACC
model and furthermore seems to perform better in balancing the magnitude of its reaction. It,
therefore, performs better on representing the hard-braking event, where the sACC model shows
overshoot in the distance-gap caused by this overly damped reaction.

6-6 Stop-and-Go

Figure 6-6 shows the considered stop-and-go trajectory and the obtained model trajectories. The
calibration landscape is for the IDM and alternative sACC model of similar shape as for the CF
trajectory. For the sACC model, the shape is different, showing a small correlation between param-
eters kp and kd that was not there before. This fitness landscape, and the parameter sensitivity
plots of this and the other models are included in Appendix E-2. The found parameters are in-
cluded in Table 6-4. Because of lacking a parameter s0 in the sACC model, higher accelerations
are needed in the low-velocity region to match the velocity of the actual vehicle. This results in kp

being larger than kd .

Representation of the dynamics by the IDM and alternative sACC models is very good. The er-
rors of the IDM model are generally bounded by ev ∈ [−2.10,4.40]% and es ∈ [−7.37,6.23]% in the
high velocity region. When considering the low-velocity region, the absolute error approximately
stays the same, such that the relative error increases to ev ∈ [−22.4,28.1]% and es ∈ [−15.7,28.2]%.
Performance of the two sACC models on representing the velocity in the high-velocity region is
approximately equal to the performance of the IDM model, where the errors are bounded by ev ∈
[−3.33,7.35]%. Due to the lack of a parameter s0, the sACC model can only accurately represent the
distance-gap at a single location. Errors for the distance-gap are bounded by es ∈ [−10.9,13.1]%
for the sACC model and es ∈ [−10.4,10.3]% for the alternative sACC model. In the low veloc-
ity region these errors increase significantly to es ∈ [−100,−18.0]% for the sACC model and es ∈
[−72.5,27.0]% for the alternative sACC model.

Within the trajectory, 10 folds of 25 seconds are created for model validation. The results for the
model validation are included in Table 6-4. In contrast to what was expected from the represen-
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Figure 6-6: Figure showing the response of the IDM (a) and sACC (b,c) models on the SG
trajectory. The models are calibrated using the RMSE error-measure with equal weight on the
velocity and distance-gap (ws = wv = 0.5).

tation errors, the performance of the IDM and alternative sACC model is very similar. The mod-
els outperform the sACC model on representing the distance-gap with almost 3 times the perfor-
mance and on representing the velocity with over 1.5 times the performance.

Table 6-4: Table showing obtained model parameters and cross-validation results for the SG
trajectory. The considered error-measure in the model calibration is the RMSE using equal weight
on the velocity and distance-gap ws = wv = 0.5.

Calibration Model
IDM sACC Alternative sACC

FRMSE ,mi x 8.92 ·10−1 1.95 8.55 ·10−1

FRMSRE ,v 3.24 ·10−2 5.17 ·10−2 3.21 ·10−2

FRMSRE ,s 8.19 ·10−2 2.36 ·10−1 8.08 ·10−2

Parameters a = 2.15, b = 32.8,
T = 0.774, v0 = 50.9,
s0 = 6.74

kp = 0.245, kd = 0.156,
td = 1.13

kp = 0.181, kd = 0.303,
td = 0.830, s0 = 6.86

* Parameter calibrated to bound of calibration region.

In summary, the IDM and alternative sACC models show good performance on representing the
driving behaviour of the considered vehicle in a stop-and-go scenario, partly due to the presence
of a term defining the minimum distance at standstill s0. Lacking such a parameter in the sACC
model causes underestimation of the gap at low velocities. This increases the instability of traffic
flow in these conditions, which could lead to too many accidents in the model simulation.
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6-7 Cross-Comparing Results from the IDM Model

Table 6-5 gives an overview of all obtained calibration parameters, as well as published, best and
mean parameter values for the CI2, HB and SG trajectories. For the validity of the investigation, the
parameters defining the equilibrium distance-gap (T and s0) are replaced by the mean parameters.
Variations in most parameter values on the trajectories that were sufficiently exciting are limited.
Inconsistencies in parameter calibration are only found in the trajectories that could not be used for
calibration and v0 in the hard-braking trajectory.

The parameter with the largest sensitivity in all trajectories is T , the parameter having the most in-
fluence in determining the equilibrium distance-gap. Followed by a, s0 and v0 and finally b. The
sensitivity of a increases with increasing accelerations, the sensitivity of s0 at low velocities are con-
sidered, and the sensitivity of v0 when the considered velocity-range becomes smaller. The most
remarkable results are however found for b, of which the sensitivity is low in every trajectory. This
could either mean that the considered ACC system does not include an intelligent braking strategy,
or that situations in which this strategy was active were just not present enough to result in a sensi-
tive calibration. For b → ∞, the performance on representing the SG trajectory shows an absolute
decrease of 21% in the distance-gap and 28% in the velocity. This is just above the minimum im-
provement required for considering an additional parameter of 20% (Ossen, 2008). However, it looks
like the intelligent braking strategy itself is not considered in the system.

Table 6-5: Table showing results for the calibrated parameters for each of the trajectories for the
IDM model. The considered error-measure is the RMSE using equal weight on the velocity and
distance-gap ws = wv = 0.5.

a, m/s2 b, m/s2 T, s v0, m/s s0, m

Car-Following 2.97 1.86 ·103 0.734 35.6 3.42
Cut-In 1.96 8.75 0.515 40.9 10.0*

Cut-In 2 1.79 12.5 0.692 46.7 7.45
Hard-Braking 1.31 17.3 0.797 69.4* 6.04
Stop-and-Go 2.15 32.8 0.774 50.9 6.74

Published 1.25 2.09 0.754** 33.3 6.74**
Mean (CI2/HB/SG) 1.75 20.9 0.754 55.7 6.74
Best 1.98 12.1 0.657 41.5 7.77

* Parameter calibrated to bound of calibration region.
** Parameters defining equilibrium (T and s0) are set to the mean of the calibrated parameters.

Table 6-6 shows the results for the cross-comparison of the obtained IDM parameters on other tra-
jectories. What is noticeable immediately, is that model performance using published parameter
values is in most considered trajectories not inferior to the performance using obtained parameters
from model calibration. A maximum deviation from the optimal performance of only 7% is observed.
However, the model response is much too sensitive to deviations from the desired distance-gap. Con-
sidering the mean of the calibration parameter values often performs as one of the best parameter
sets with on average sub-percentage worse and maximum 5% worse results from the optimal perfor-
mance. Except for the SG trajectory, the performance of the mean parameter set is lower than for the
set calibrated on that trajectory. Mainly because of the high sensitivity to deviations from the desired
distance-gap. Because of the increased sensitivity, deviation in model trajectories is mostly visible at
cut-in and cut-out manoeuvres. As compared to the calibrated parameters, the errors at these events
increase with |ev | = +5% and |es | = +30%. Moreover, the increased desired velocity causes a slight
overshoot in the velocity of the car-following manoeuvre, where |ev | = +8% and |es | = +30%.
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Compared to the mean parameters, the “best” parameters show more agile driving behaviour
while keeping a relatively shorter following distance. The observed sensitivity to deviations from
the desired distance-gap is a bit less than for the mean parameter set. As compared to the cali-
brated parameters, the error at cut-in increases with |ev | = +1% and |es | = +25%. The overshoot
from the desired velocity increases with |ev | = +6% and |es | = +20%. For both situations, this is less
than when considering the mean parameter set.

In terms of local performance, the mean and “best” parameter show comparable performance on
the CF and HB trajectories. The mean outperforms the “best” parameter set on the CI2 trajec-
tory and the “best” parameter set outperforms the mean on the other two trajectories. In terms
of global performance, Table 6-6 indicates slightly different results. Except for the HB and SG tra-
jectories, the “best” parameter set outperforms the mean parameters. Representation of the HB
trajectory is best for both models. Calibrated parameters from the CI2 trajectory relatively show
the best performance on representing the other trajectories. As compared to common values for
the RMSRE in the distance-gap of 15% for model calibration (Brockfeld et al., 2005) and just above
20% for model validation (Punzo and Simonelli, 2005) on human driving data, the obtained results
are much better. Plots indicating the mismatch in vehicle trajectories when considering the mean
and “best” parameter sets are included in Appendix E-5.

Table 6-6: Table showing cross-comparison results for the IDM model. The considered error-
measure in the model calibration is the RMSE using equal weight on the velocity and distance-gap
ws = wv = 0.5. Shown are the RMSRE errors for the velocity and distance-gap of the obtained
trajectories. FRMSRE ,s is abbreviated as Fs and FRMSRE ,v as Fv .

Trajectory
Car-Following Cut-In Cut-In 2 Hard-Braking Stop-and-Go

Parameter Set Fs Fv Fs Fv Fs Fv Fs Fv Fs Fv

Car-Following 0.136* 0.0345* 0.318 0.0518 0.319 0.0499 0.148 0.0388 0.212 0.0713
Cut-In 0.153 0.0379 0.113* 0.0251* 0.101 0.0231 0.130 0.0543 0.151 0.0487

Cut-In 2 0.141 0.0391 0.135 0.0315 0.0545* 0.0166* 0.0807 0.0369 0.0857 0.0430
Hard-Braking 0.150 0.0405 0.206 0.0417 0.105 0.0293 0.0597* 0.0131* 0.109 0.0488
Stop-and-Go 0.144 0.0427 0.193 0.0441 0.123 0.0274 0.0853 0.0392 0.0819* 0.0324*

Published** 0.149 0.0417 0.168 0.0376 0.109 0.0279 0.130 0.0286 0.111 0.0462
Mean (CI2/HB/SG) 0.148 0.0420 0.160 0.0404 0.104 0.0265 0.0699 0.0367 0.0766 0.0432
Best 0.115* 0.0285* 0.109* 0.0221* 0.0535* 0.0158* 0.0734* 0.0218* 0.0826* 0.0310*

* Validation error.
** Parameters defining equilibrium (T and s0) are set to the mean of the calibrated parameters.

6-8 Cross-Comparing Results from the sACC Model

In Table 6-7, an overview of all obtained calibration parameters is shown. The table also includes
published, best and mean parameter values. For the published parameter values, the parameter
defining the equilibrium distance-gap (td ) is replaced by the mean. Obtained parameter values
vary more between different trajectories than for the IDM model. The range of accelerations and
velocities included in the models increases in the order the trajectories are discussed throughout
this chapter. An exception is the HB trajectory, which considers a wider velocity range than the
SG trajectory. The non-completeness of the sACC model is considered as a limiting factor in the
selection of trajectories. As discussed earlier, this model is linear and therefore, does not have
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orthogonal parameters and only a single operating mode. Each of the parameters can, therefore,
uniquely be determined in each trajectory.

When considering a larger range, the weight of the gains seems to shift from kd in case small ranges
are considered, to kp in case large ranges and low-velocity conditions are considered. The param-
eter sensitivity for td is found to be constant, regardless of the considered ranges. The parameter
with the largest sensitivity in most trajectories is td . Followed by kp and finally kd . The sensitivity
of kp is higher in case a limited velocity range is present, and the sensitivity of kd is, except for the
SG trajectory, approximately constant.

Table 6-7: Table showing results for the calibrated parameters for each of the trajectories for the
sACC model. The considered error-measure is the RMSE using equal weight on the velocity and
distance-gap ws = wv = 0.5.

kp , s−2 kd , s−1 td , s

Car-Following 0.0301 0.294 1.20
Cut-In 0.0465 0.500 1.08

Cut-In 2 0.0719 0.316 1.09
Hard-Braking 0.110 0.349 1.07
Stop-and-Go 0.245 0.156 1.13

Published 0.230 0.0700 1.10*
Mean (CI2/HB/SG) 0.142 0.274 1.10
Best 0.0757 0.403 1.12

* Parameter defining equilibrium (td ) is set to the mean
of the calibrated parameters.

Table 6-8 shows the results for the cross-comparison of the obtained sACC parameters on other
trajectories. What is noticeable immediately, is that optimal model calibration using a mixed er-
ror does not have to mean that the validation error on representing the velocity and distance-gap
is also optimal. Model performance differs much among different trajectories, and there is not a
single parameter set that yields good performance on all trajectories. The trajectory that comes
closest is the HB trajectory, with a maximum deviation from the optimal performance of 22.7%.
Low performance is especially obtained using parameters of the CF trajectory, of which the perfor-
mance is up to 49.7% lower than the optimal performance found.

The high gain on deviations from the desired gap kp from the published parameter set results in
many occasions of overshoot in both the velocity and distance-gap. On the other hand, consid-
ering the mean parameter results in too sensitive model behaviour, where the model often over-
shoots and shows negative distance-gaps. Except for the CF trajectory, the performance of the
mean parameter set is lower than for the set calibrated on that trajectory. Deviation in model tra-
jectories is mostly visible at cut-in and cut-out manoeuvres when approaching the desired-velocity
and during low-velocity conditions. As compared to the calibrated parameters, the errors increase
with |ev | = +9% and |es | = +15 (overshooting desired-velocity) to |es | = +40% (low velocity) and
|es | = +65% (cut-in).

As for the mean parameter set, performance of the “best” parameter set varies per trajectory. At
high velocities, the same damped representation of the dynamics is present. At low velocities, the
dynamics seem better represented, but the distance-gap still becomes negative. As compared to
the calibrated parameters, the errors at the cut-ins increase with |ev | = +2.5% and |es | = +35. The
errors at low-velocity conditions are the highest with |ev | = +17% and |es | = +60%, as compared to
the calibrated parameters.

M. Blauw Thesis Report



6-9 Cross-Comparing Results from the Alternative sACC Model 51

The mean parameter set is derived from the trajectories, including driving situations at low veloc-
ities. Since the model shows different optimal parameter values for different velocity ranges, this
results in worse local performance in trajectories only considering high velocities, as compared to
the “best” parameter set. In terms of global performance, the “best” parameter set outperforms
the mean parameter set on all trajectories. As for the IDM model, validation performance on most
trajectories is better than for human driving data. Plots indicating the mismatch in vehicle trajec-
tories when considering the mean and “best” parameter sets are included in Appendix E-6.

Table 6-8: Table showing cross-comparison results for the sACC model. The considered error-
measure in the model calibration is the RMSE using equal weight on the velocity and distance-gap
ws = wv = 0.5. Shown are the RMSRE errors for the velocity and distance-gap of the obtained
trajectories. FRMSRE ,s is abbreviated as Fs and FRMSRE ,v as Fv .

Trajectory
Car-Following Cut-In Cut-In 2 Hard-Braking Stop-and-Go

Parameter Set Fs Fv Fs Fv Fs Fv Fs Fv Fs Fv

Car-Following 0.195* 0.0378* 0.282 0.0378 0.198 0.0369 0.344 0.122 0.594 0.108
Cut-In 0.147 0.0403 0.155* 0.0274* 0.141 0.0268 0.237 0.0597 0.375 0.0707

Cut-In 2 0.143 0.0409 0.198 0.0260 0.0977* 0.0170* 0.289 0.0643 0.396 0.0762
Hard-Braking 0.149 0.0430 0.170 0.0306 0.159 0.0253 0.119* 0.0242* 0.324 0.0577
Stop-and-Go 0.159 0.0473 0.236 0.0557 0.205 0.0373 0.227 0.0581 0.0970* 0.0229*

Published** 0.159 0.0498 0.249 0.0668 0.213 0.0434 0.257 0.0796 0.284 0.0521
Mean (CI2/HB/SG) 0.151 0.0448 0.191 0.0375 0.171 0.0283 0.244 0.0485 0.303 0.0526
Best 0.126* 0.0309* 0.123* 0.0237* 0.0989* 0.0173* 0.146* 0.0292* 0.263* 0.0562*

* Validation error.
** Parameter defining equilibrium (td ) is set to the mean of the calibrated parameters.

6-9 Cross-Comparing Results from the Alternative sACC Model

In Table 6-9, an overview of all obtained calibration parameters is shown. Again, the table includes
published, best and mean parameter values. For the published parameter values, the parameters
defining the equilibrium distance-gap (td , s0) are replaced by the mean. What can immediately be
noticed from the calibration results is that kd > kp for all trajectories. Obtained parameter values
for s0 are relatively close to the ones obtained for the IDM model. As compared to the sACC model,
variations in parameter values have decreased. However, there is still a factor 6 difference between
the smallest and largest parameter values for kp . Parameter values for the published, mean and
“best” parameters are very similar to the ones from the sACC model.

As in the other models, parameter values for td are found to be most sensitive to correct calibration.
Followed by kp , kd and finally s0. The sensitivity of kp is the highest when large variations in the
velocity are considered, the sensitivity of kd is constant, and the sensitivity of s0 is highest in case
low-velocity conditions are considered.

Table 6-10 shows the results for the cross-comparison of the obtained sACC parameters on other
trajectories. In contrast to obtained results form the sACC model, model performance using the
calibrated parameters is now not much worse than for the IDM model, and for the SG trajectory,
even better results are obtained. While model performance using published parameters is not
very good in most cases, considering the mean of the calibration parameter values performs at
maximum 5.5% worse than the parameter set resulting in optimal performance.
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Table 6-9: Table showing results for the calibrated parameters for each of the trajectories for the
alternative sACC model containing s0. The considered error-measure is the RMSE using equal
weight on the velocity and distance-gap ws = wv = 0.5.

kp , s−2 kd , s−1 td , s s0, m

Car-Following 0.0301 0.294 1.20 0.00*
Cut-In 0.0447 0.505 0.712 10.0*

Cut-In 2 0.0715 0.318 0.918 4.58
Hard-Braking 0.0978 0.359 0.771 7.72
Stop-and-Go 0.181 0.303 0.830 6.86

Published 0.230 0.0700 0.840** 6.38**
Mean (CI2/HB/SG) 0.117 0.327 0.840 6.38
Best 0.0707 0.419 0.901 5.76

* Parameter calibrated to bound of calibration region.
** Parameters defining equilibrium (td and s0) are set to the mean
of the calibrated parameters.

Since the parameters defining the dynamics are similar, observed dynamics are approximately
equal to the ones obtained using the sACC model. Most differences in performance are found
in case low-velocity conditions are considered. The large variation in parameter values kp indi-
cate that the model is still prone to overshoot and negative distance-gaps. Negative distance-gaps
are observed for the “best” parameter set in the HB trajectory. As compared to the calibrated pa-
rameters, the errors for the mean parameter set increase with |ev | = +5% and |es | = +45 at low-
velocity conditions. This is an improvement of 5% on the velocity and equal performance for the
distance-gap, as compared to the sACC model. The errors of the “best” parameter set increase
with |ev | = +9% and |es | = +60 at low velocity conditions. This is an improvement of 8% on the
velocity and equal performance for the distance-gap, as compared to the sACC model. Plots indi-
cating the mismatch in vehicle trajectories when considering the mean and “best” parameter sets
are included in Appendix E-7.

Table 6-10: Table showing cross-comparison results for the alternative sACC model containing
s0. The considered error-measure in the model calibration is the RMSE using equal weight on
the velocity and distance-gap ws = wv = 0.5. Shown are the RMSRE errors for the velocity and
distance-gap of the obtained trajectories. FRMSRE ,s is abbreviated as Fs and FRMSRE ,v as Fv .

Trajectory
Car-Following Cut-In Cut-In 2 Hard-Braking Stop-and-Go

Parameter Set Fs Fv Fs Fv Fs Fv Fs Fv Fs Fv

Car-Following 0.191* 0.0373* 0.282 0.0378 0.198 0.0369 0.344 0.122 0.594 0.108
Cut-In 0.146 0.0405 0.145* 0.0279* 0.164 0.0269 0.157 0.0498 0.231 0.0651

Cut-In 2 0.145 0.0417 0.194 0.0270 0.0755* 0.0166* 0.214 0.0572 0.276 0.0743
Hard-Braking 0.158 0.0442 0.165 0.0322 0.112 0.0253 0.0970* 0.0229* 0.157 0.0561
Stop-and-Go 0.160 0.0475 0.191 0.0481 0.139 0.0317 0.113 0.0460 0.0808* 0.0321*

Published** 0.169 0.0538 0.262 0.0808 0.186 0.0468 0.167 0.0999 0.0921 0.0601
Mean (CI2/HB/SG) 0.155 0.0452 0.171 0.0358 0.110 0.0263 0.135 0.0405 0.136 0.0526
Best 0.125* 0.0309* 0.114* 0.0232* 0.0826* 0.0175* 0.124* 0.0244* 0.161* 0.0454*

* Validation error.
** Parameters defining equilibrium (td and s0) are set to the mean of the calibrated parameters.
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6-10 Conclusions

The goal of this chapter was to obtain insights on the capability of commonly used parametric
car-following models on representing the driving behaviour of the considered ACC system. By
selecting different trajectories containing typical highway scenarios commonly considered when
investigating string stability, the capability of the models on representing five different types of
events, and the overall fitting quality of the models on different trajectories of vehicle data was
investigated.

An extensive capability investigation pointed out that a proper model calibration or validation er-
ror does not necessarily imply good model performance on representing other trajectories and
specific events. Cross-comparison using different parameter sets on different trajectories provides
information about the model being the correct model to represent the driving behaviour.

In the model calibration process, selection of a model correctly matching the behaviour, a proper
calibration trajectory containing sufficient system excitation and a calibration trajectory which is
as complete as the model, is critical. Events in the calibration trajectory that cannot be repre-
sented by the model by default induce parameter value changes to match the observed behaviour.
Incorrectly calibrated and non-identifiable parameters have the possibility of influencing calibra-
tion values of other parameters. A model calibrated on an improper trajectory cannot be used to
represent model performance on other trajectories. A trajectory containing sufficient excitation
and considering a correct representation of the driving behaviour causes the order of parameter
sensitivities to be equal to the found order in the analysis of synthetic data. The relatively low er-
ror in model calibration and model validation indicates the driving behaviour is more in line with
the proposed models. Indicating more deterministic driving behaviour and/or less spatial- and/or
temporal anticipation, as compared to human drivers. The low parameter sensitivity for IDM pa-
rameter b indicates that the ACC system most probably does not consider an intelligent braking
strategy. Increasing parameter values kp in the alternative sACC model in trajectories that contain
lower velocities are an indication that accelerations depend on the current velocity. Furthermore,
the large overshoot of the sACC model after the cut-out, as compared to the IDM model, indicates
that there exists a relation between accelerations and the desired velocity.

The non-linearity of the IDM model allows it to balance the intensity of its reactions. The model
behaviour is robust to parameter changes, and the model is not sensitive to overshoot in case
strong reactions are needed. Dynamics are preserved when selecting the mean or “best” parame-
ter sets. The calibration trajectory of “best” parameter set includes comfortable driving behaviour
and therefore considers the disability to represent this behaviour. As compared to the mean pa-
rameter set, the model increases performance on representing these events by compensating for
this mismatch. Most errors originate from situations in which the vehicle shows extra comfort-
able driving behaviour. The linear sACC model is not able to vary the intensity of its reaction. The
model is not robust to parameter variations, can in its current form not represent low-velocity con-
ditions and has a high risk of showing velocities above vdes . Furthermore, the model must show a
trade-off between fitting power and overshoot. This causes the model to show a damped version of
the system dynamics when considering calibrated parameter sets, and show overshoot and nega-
tive distance-gaps when considering mean or “best” parameter sets. The alternative model, which
considers a parameter s0, decreases variations in obtained parameter values. The model results in
similar mean and “best” parameter values for kp and kd . The model mostly increases performance
at low velocities. In terms of validation errors, its performance is more related to that of the IDM
model. However, the model is still linear and lacks a comfort mode.
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Chapter 7

Conclusions and Recommendations

7-1 Conclusions

In this research, the sensitivity of the model calibration and capability of representing the driv-
ing behaviour of an ACC system using commonly applied parametric car-following models was
investigated. The models investigated were the Intelligent Driver Model (IDM) model, the newly
introduced sACC model and a variant on this model including a parameter defining the minimum
standstill distance.

An analysis on synthetic data has revealed that calibration of the models is characterised by a
smooth objective function showing a single optimum, such that gradient-based optimisation al-
gorithms can be applied to obtain parameter estimates. Selecting Root Mean Square Error (RMSE)
error-measures and considering more weight on correctly matching the distance-gap signal was
found to increase the sensitivity of the model parameters. For high parameter sensitivity, it was
furthermore found to be important that the simulation contains continuous intervals sufficiently
long to allow the model to develop its dynamics entirely, that model behaviour is in line with the
behaviour in the data, and that the data contains all events described by the considered models.
Calibration performance was found to decrease when the dynamics are not visible in the calibra-
tion data, or when the model is not well in line with the dynamics in the data. Noise was found
to reduce the visibility of the dynamics, requiring proper noise reduction techniques before model
calibration. In case a model parameter was calibrated incorrectly, other parameters compensate
to obtain good model performance. This caused the calibration performance of other parameters
in the same mode or even in the complete model to be affected negatively. Resulting in a model
that performs well locally, but shows bad results on representing other driving situations.

In the real-world analysis, it was found that the models are not entirely in line with the actual
driving behaviour. This mismatch was found to decrease the sensitivity of the model parameters.
When calibrating a capable model to a proper calibration trajectory, the order of most sensitive
parameters to a correct calibration was found to be equal to the order found in the analysis of
synthetic data. The only exception being parameter b from the IDM model, which could not be
calibrated. Together with the fact that the alternative sACC model could not represent the driving
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behaviour, this indicates that the ACC system does not consider an intelligent braking strategy.
Both simplified ACC (sACC) models showed a damped version of the actual vehicle dynamics and
were not able to vary the intensity of their reactions. Therefore, the models must show a trade-off
between fitting quality and overshoot. The non-linearity of the IDM model allows it to balance the
intensity of its reactions. In general, this increased the ability to represent actual driving behaviour.
The model furthermore considers a maximum desired velocity, which prevents overshoot in case
an opening gap becomes too large. Errors in representation were mainly found during situations
in which the Adaptive Cruise Control (ACC) system was showing comfortable driving behaviour.

In terms of overall fitting quality, the best performance was found for the non-linear IDM model,
followed by the linear alternative sACC model. As a result, the obtained parameter sets from IDM
model calibration to show least variations over the different calibration trajectories, while other
models have to adapt their parameters locally to increase performance. As a conclusion, a capa-
ble model can describe multiple trajectories considering a single set of optimal parameters, robust
overall performance to changes in parameter values and shows high local performance on describ-
ing specific events. Therefore, the IDM model and (to a lesser extent) alternative sACC model are
capable models to represent the driving behaviour of the ACC system.

7-2 Discussion

In line with the methodology adopted in many papers, this thesis assessed the capability of the
considered models on representing the driving behaviour by comparing obtained simulation tra-
jectories with actual vehicle trajectories. Beyond what these papers generally consider, this thesis
considered a further division between the overall performance and performance on represent-
ing specific events. The analysis based on synthetic data allowed for investigation of the absolute
performance on finding the optimal model parameters. Results from the model validation have
proven that most findings also apply to the calibration of models to real-world data. The real-world
data considered realistic traffic scenarios, enabling the application of the applied methodology and
results also outside of the scope of this thesis.

For the investigated ACC system, lower calibration and validation errors indicate that the models
are more in line with the driving behaviour of the system. This means that the system shows more
deterministic driving behaviour and/or less spatial- and/or temporal anticipation, as compared
to human drivers. Various assumptions present in both the sACC models, such as symmetric and
velocity independent acceleration, cause parameter values to vary more over the different trajec-
tories and to be dependent on the considered velocity range in the calibration data-set. From a
different point of view, this proves that the maximum acceleration of the system depends on the
current velocity and the desired velocity. The non-linear IDM model is better in balancing the in-
tensity of its reactions than the linear sACC models, indicating that the driving behaviour of the
ACC system is non-linear. Bad model performance on representing the vehicle behaviour at cut-
ins indicates that the system contains another objective in the controller enforcing comfortable
vehicle behaviour. Finally, as discussed earlier, the ACC system does not consider an intelligent
braking strategy. As a result, the system is not able to handle safety-critical situations, and deacti-
vation must occur if such a situation is encountered.

The performed research in this report was limited to only a single ACC system. However, results can
be used to hypothesise on the expectations of the performance on modelling other ACC systems
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using the studied models. To prevent the driver from deactivating the system, systems should show
comfortable, predictable and safe driving behaviour. The non-linear control approach with addi-
tional comfort mode allows the vehicle to balance the intensity of its reaction while ensuring com-
fortable behaviour at cut-ins. As a result, the vehicle can prevent oscillations around the equilib-
rium distance-gap and avoids most safety-critical events. For these reasons, the found non-linear
control towards a constant time-gap found in the Audi ACC system is also expected to be present
in other systems. When a safety-critical event does happen, system deactivation is expected in
all systems lacking an intelligent braking mode and should be considered in the simulation. The
high overall fitting quality obtained in the research was partly the result of limited anticipation of
the system. To reduce unnecessary accelerations and hence increase comfort, spatial- and tempo-
ral anticipation are expected to improve when ACC systems become more advanced. By default,
these are not considered in the models, which will probably cause overall model performance to
decrease.

Because the control is expected to remain non-linear, the IDM model will continue to give a better
fit. Eventually, it is expected that the systems will also be able to carry out the emergency braking
procedure, for which a mode is already built into the IDM model. Currently, most modelling errors
are located at times in which the system shows comfortable behaviour. Probably including such a
parameter in the model will improve performance. At the same time, this means that the perfor-
mance of the sACC models will lag behind that of the IDM model. Although these models allow a
relatively simple linear stability analysis, there is a chance that the results will be negatively influ-
enced by the damped representation of the dynamics and overshoot in the model response. Also,
both models have only limited applicability. In case someone wants to use the models, at least the
alternative version will have to be considered.

7-3 Recommendations upon Further Research

The IDM and sACC models show different sensitivity to each of the methodological factors inves-
tigated in the analysis of synthetic data. Results from the IDM model have proven that if a model
can be considered as the right model to represent the driving behaviour, there must exist a single
parameter set obtaining proper performance in most driving situations. Interesting could, there-
fore, be to research how both models perform in representing the different events considered in
this thesis in case they are calibrated to a trajectory which allows for calibration of all parameters
using an optimal calibration methodology for that model.

Since the performance of the model calibration process is not equal in case of synthetic data and
real-world data, the synthetic analysis only allows for indicative norms defining, for example, the
minimum length and system excitation needed in the considered model calibration trajectory. An
analysis of the decrease in validation error when varying each of the factors investigated in the
synthetic analysis could lead to more insights in the real world sensitivity of the model calibration.

In addition to this, one could investigate the impact on the calibration and validation performance
in case parameters which cannot be determined using the selected calibration trajectory are fixed
to “common” values in the calibration procedure.

Based on the assessment criteria considered in this research, the IDM model and alternative sACC
models are the better model to represent the driving behaviour of ACC systems. The problem
with these criteria is that they do not directly reflect their impact on the conclusions which will be
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drawn from the application of these models (i.e. traffic stability and equilibrium traffic flow). A
final interesting research would be how the performance of the considered models increases when
common variations are considered. For the sACC model, a variant taking into account a minimum
standstill distance s0 has been investigated, indicating a significant improvement in overall model
performance and applicability. Other variations could, for example, be those that would increase
comfortable behaviour after cut-in events.
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Appendix A

Kalman Filter: Theory for Matlab
Implementation

In the Kalman filter problem from this thesis, the aim is to obtain the state of a system by applying
a state observer. The schematic of the Kalman filter is shown in Figure 3-3 on page 11. It is assumed
that the plant dynamics are defined as

x(t +∆t ) = Ax(t )+Bu(t ) (A-1)

z(t ) =C x(t )+Du(t )

where x = [x, v, v̇]T , A and C are as defined in Equation 3-4 on page 10 and B = D = 0 (no input is
considered). For notation simplicity, subscript i is dropped in all equations. Considering a mea-
surement model equivalent to the plant, one can use the state observer (Equation A-2) to define
the error and error dynamics between the estimated state and actual state of the system (Equations
A-3 and A-4).

x̂(t +∆t ) = Ax̂(t )+K (t ) (z(t )−C x̂(t )) (A-2)

xe (t ) = x̂(t )−x(t ) (A-3)

xe (t +∆t ) = (A−K (t )C )xe (t ) (A-4)

Given that the pair (A,C ) is observable and (A−K (t )C ) < I, ∀t , it follows that

lim
t→∞(x̂(t )−x(t )) = 0

which means the actual model state is observed by the Kalman filter. However, both the plant
dynamics and measurements are subject to noise. Due to this noise, xe (t ) = 0 cannot be reached.
Including the noise in the plant model and error dynamics results in the following set of equations:

x(t +∆t ) = Ax(t )+Bu(t )+w(t ) (A-5)

z(t ) =C x(t )+Du(t )+v(t ) (A-6)

xe (t +∆t ) = (A−K (t )C )xe (t )−w(t )+K (t )v(t ) (A-7)
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The goal is now to define K (t ) in such a way that the approach rate of x̂ to x is optimal. The noise
covariance matrices are defined as E

[
w(t )wT (t )

] = Q and E
[
v(t )vT (t )

] = R. The best possibility
is to obtain xe as such, that it yields a minimum variance (E

[
xe (t )xe (t )T

] = P (t )) and unbiased
(E [xe (t )] = 0) estimation of the actual state. Here, P (t |t ) denotes the state covariance matrix at
time t using all information up to time t .

A measurement update gives the current filtered state estimate x̂(t |t ) based on the current mea-
surements and all prior information as:

K T (t ) =P (t |t −∆t )C T (
R +C P (t |t −∆t )C T )−1

(A-8)

P (t |t ) =(
I−K T (t )C

)
P (t |t −∆t ) (A-9)

x̂(t |t ) =x̂(t |t −∆t )+K T (t ) (z(t )−C x̂(t |t −∆t )) (A-10)

After advancing in time (t = t +∆t ), this state estimate and the state covariance matrix are updated
using a time-update, defined as:

x̂(t |t −∆t ) = Ax̂(t −∆t |t −∆t ) (A-11)

P (t |t −∆t ) = AP (t −∆t |t −∆t )AT +Q (A-12)

After taking these steps, the cycle will repeat again starting from Equation A-8.

To remove bias from the measurement signals an additional bias state v̇bi as is introduced, such
that x̂ = [x, v, v̇ , v̇bi as]T . Matrices A and C in Equations A-8 - A-12 are be updated as:

A =


0

A 0
1

0 0 0 1

 , C =
 0

C 0
1



which makes it possible to filter the bias from the measurement signals.

For a more elaborate introduction on the Kalman filter, bias filtering using a Kalman filter, and a
proof of its workings, see Verhaegen and Verdult (2007) and Magnusson and Odenman (2012).
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Appendix B

Moving Average Filter: Theory and
ResultsB-1 Theory

Considering a case in which a measurement sequence of infinite length only contains zero-mean
white noise, taking the mean of all measurement values results in a zero value (since E[X ] = 0,
this leads to: 1

N limN→∞
∑N

n=1 X [n] = 0). The moving average filter utilises this to filter noise from
a measurement signal. Actual measurement signals contain noise, as well as information about
the dynamics of the system. Taking the (weighted) average over a relatively small number of mea-
surement values preserves the dynamics of the signal, but at the same time approaches taking the
limit of the noise sequence and thus removing noise from the measurement signal. The moving
average filter replaces measurement i by the average over the last (N −1)/2 to the next (N −1)/2
measurement values. The moving average filter is defined as

z(t ) = 1

N

N−1∑
n=0

z

(
t +

(
n − N −1

2

)
∆t

)
(B-1)

B-2 Results
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Figure B-1: Figure showing a histogram containing final jerk values before and after the smooth-
ing of measurement signals from the ego- (a) and lead-vehicle (b) using a window size of 4 and
9 measurement samples, respectively.
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Figure B-2: Figure showing the final results of the smoothing of measurement signals from the
ego- (a) and lead-vehicle (b) using a window size of 4 and 9 measurement samples, respectively.
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Appendix C

Data Selection

C-1 ACC Operating Times

In order for vehicle data to be suitable to be used within the research, accurate empirical evidence
on when the Adaptive Cruise Control (ACC) system is active and the input variables to which the
ACC system reacts must be known. The following set of criteria is defined to determine whether
data from a vehicle can be used within the research

1. Distance-gaps between the ego vehicle and the vehicle driving in front must be known

2. The velocity of the ego vehicle must be known

3. The ACC status of the ego vehicle must be known. This involves having evidence on

(a) (De)activation times of the ACC system

(b) Whether the driver or ACC system is braking

(c) Whether the driver or ACC system is throttling

(d) The (desired) gap between the ego vehicle and the vehicle driving in front

In Figures C-1 and C-2, an overview of the logged data for the Audi vehicle is shown. The numbers
included in the figures indicate different events that can be used as proof of the data meeting the
criteria from the above list. Distance gaps (1) and velocities (2) are logged at all times for the Audi.
In Figure C-1, (3a) points to locations at which the ACC system is being (de)activated. A 0 value
indicates the system is not active, whereas 2 indicates the system is active. From (3b), it can be seen
that during times at which the ACC system is activated, brake lights are turned on without brake
pedal positions to be logged. Therefore, it can be concluded that only manual braking is logged
within the data. Similar reasoning yields for the throttle pedal (3c), making it very easy to observe
overruling of the ACC system by throttling while the system is active. In this case, throttle positions
different from zero will be observed while the ACC state is logged as active. The (desired) gap
can be obtained from a point in time at which steady-state (or close-to steady state) car-following
behaviour is observed (3d).
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Figure C-1: Figure showing logged evidence for the ego vehicle.
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Figure C-2: Figure showing logged evidence for the lead vehicle.
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C-2 Results

In each of the Figures C-3 - C-4, the “flags” indicate whether a certain event is considered as “true”.
Therefore, data with the following flags is removed from the dataset: ACC overrule, manual throttle,
manual brake, left (L) lane-change, right (R) lane-change, left (L) indicator and right (R) indicator.

14:27:00 14:27:30 14:28:00 14:28:30 14:29:00

0

0.5

1

Figure C-3: Figure showing detection of ACC system (de)activation and overruling using data
from the CAN bus.
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Figure C-4: Figure showing detection of a lane-change using data from the MobilEye and CAN
bus.
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Appendix D

Sensitivity of the Model Calibration:
More Results
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D-1 Creation of Synthetic Data
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Figure D-1: Plot showing an example of generated follower trajectories on the CF (a),
OSC (b), SG1 (c) and SG2 (d) trajectories for the IDM model using parameters p I DM =
[2.63, 2.81, 1.33, 54.13, 3.53]T and sACC model using parameters ps ACC = [0.28, 0.09, 1.33]T .
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D-2 Impact of Calibration Methodology

D-2-1 Error-Measure
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Figure D-2: Figure showing the parameter sensitivity of the IDM model for different error
measures: RMSE (a), RMSRE (b), MAE (c) and MARE (d). The calibration was performed on
the noise-free SG1 trajectory using full weight on the distance-gap (ws = 1).
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Figure D-3: Figure showing the parameter sensitivity of the sACC model for different error
measures: RMSE (a), RMSRE (b), MAE (c) and MARE (d). The calibration was performed on
the noise-free SG1 trajectory using full weight on the distance-gap (ws = 1).
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Figure D-4: Figure showing the fitness landscape of the IDM (a) and sACC (b) models. The
analysis was performed using the RMSE error-measure with equal weight on the distance-gap and
velocity (ws = wv = 0.5).
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D-2-2 Reset Interval
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Figure D-5: Figure showing the distribution of the distances of the calibrated parameters to
the actual model parameters of the IDM (a) and sACC (b) models for different simulation reset
intervals. The calibration was performed on the noise-free SG1 trajectory using the RMSE error-
measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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D-3-1 Noise: Lead Vehicle
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Figure D-6: Figure showing the parameter sensitivity of the IDM model for the case where noise
(N (0,0.1)) is injected to the distance-gap measurements. The calibration was performed on the
SG1 trajectory using the RMSE error-measure with full weight on the distance-gap (ws = 1).
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Figure D-7: Figure showing the fitness landscape of the IDM (a) and sACC (b) models in case
noise (N (0,0.1)) is injected to the distance-gap measurements. The analysis was performed using
the RMSE error-measure with full weight on the distance-gap (ws = 1).
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D-3-2 Incorrect Car-Following Model
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Figure D-8: Figure showing the fitness landscape of the IDM (a) and sACC (b) models, where
the trajectories are created using the other model. The analysis was performed using the RMSE
error-measure with full weight on the distance-gap (ws = 1).
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Figure D-9: Figure showing the distribution of the distances of the calibrated parameters to the
actual model parameters of the IDM (a) and sACC (b) model for different trajectory lengths. The
calibration was performed on the noise-free CF (i), OSC (ii) and SG2 (iii) trajectories using the
RMSE error-measure with full weight on the distance-gap (ws = 1).
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D-4-2 System Excitation
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Figure D-10: Figure showing the median distance of the calibrated parameters to the actual
model parameters of the IDM (a) and sACC (b) models for different excitation levels. The
calibration was performed on all data-sets using a trajectory length of 10 seconds and using the
RMSE error-measure with full weight on the distance-gap (ws = 1).
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Figure D-11: Figure showing the median distance of the calibrated parameters to the actual
model parameters of the IDM (a) and sACC (b) models for different excitation levels. The
calibration was performed on all data-sets using a trajectory length of 10 seconds and using the
RMSE error-measure with full weight on the distance-gap (ws = 1).
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Figure D-12: Figure showing the median distance of the calibrated parameters to the actual
model parameters of the IDM (a) and sACC (b) models for different excitation levels. The
calibration was performed on all data-sets using a trajectory length of 10 seconds and using the
RMSE error-measure with full weight on the distance-gap (ws = 1).
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Appendix E

Real World Validation of Adaptive
Cruise Control (ACC) Models: More

Results

E-1 Steady-State Car-Following
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Figure E-1: Figure showing the response of the IDM model on the CF trajectory using mean
parameters from the CI2, HB and SG trajectories. The model is calibrated using the RMSE
error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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Figure E-2: Figure showing the parameter sensitivity of the IDM (a), sACC (b) and alternative
sACC (c) models on real world vehicle data of the CF trajectory. The analysis was performed using
the RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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Figure E-3: Figure showing the fitness landscape of the IDM (a), sACC (b) and alternative sACC
(c) models on real world vehicle data of the CF trajectory. The analysis was performed using the
RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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E-2 Cut-In
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Figure E-4: Figure showing the response of the IDM model on the CI trajectory using mean
parameters from the CI2, HB and SG trajectories. The model is calibrated using the RMSE
error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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Figure E-5: Figure showing the parameter sensitivity of the IDM (a), sACC (b) and alternative
sACC (c) models on real world vehicle data of the CI trajectory. The analysis was performed using
the RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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Figure E-6: Figure showing the parameter sensitivity of the IDM (a), sACC (b) and alternative
sACC (c) model on real world vehicle data of the CI2 trajectory. The analysis was performed using
the RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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E-3 Hard-Braking
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Figure E-7: Figure showing the parameter sensitivity of the IDM (a), sACC (b) and alternative
sACC (c) models on real world vehicle data of the HB trajectory. The analysis was performed using
the RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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E-4 Stop-and-Go
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Figure E-8: Figure showing the parameter sensitivity of the IDM (a), sACC (b) and alternative
sACC (c) models on real world vehicle data of the SG trajectory. The analysis was performed using
the RMSE error-measure with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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Figure E-9: Figure showing the fitness landscape of the IDM (a) and sACC (b) models on real
world vehicle data of the SG trajectory. The analysis was performed using the RMSE error-measure
with equal weight on the distance-gap and velocity (ws = wv = 0.5).
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E-5 Cross-Comparing Results from the IDM Model
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Figure E-10: Figure showing the response of the IDM model on the CF (a) and CI (b) trajectories
using the calibrated, mean and “best” calibration parameters. The figures indicate an overshoot
of the desired velocity in both figures and too sensitive response at the cut-in and second cut-out
in Figure E-10b.

M. Blauw Thesis Report



E-6 Cross-Comparing Results from the sACC Model 91

E-6 Cross-Comparing Results from the sACC Model

10

20

30

40

1
0

:1
7

1
0

:1
8

1
0

:1
9

1
0

:2
0

0

20

40

60

1
0

:2
2

1
0

:2
3

1
0

:2
4

Jun 13, 2018   (a)

10

20

30

40

1
0

:2
6

1
0

:2
7

1
0

:2
8

1
0

:2
9

1
0

:3
0

1
0

:3
1

0

20

40

60

(b)

Thesis Report M. Blauw



92 Real World Validation of ACC Models: More Results

0

20

40
1
4
:4

1

1
4
:4

2

1
4
:4

3

1
4
:4

4

1
4
:4

5

1
4
:4

6

0

20

40

60

(c)

0

20

40

1
4
:1

7

1
4
:1

8

1
4
:1

9

1
4
:2

0

1
4
:2

1

1
4
:2

2

0

20

40

(d)

Figure E-11: Figure showing the response of the sACC model on the CF (a) CI (b) and SG (c)
trajectories using the calibrated, mean and “best” calibration parameters. The figures indicate an
overshoot of the desired velocity in Figures E-11a and b, negative distance-gaps for the “best”
parameter set in Figure E-11c too sensitive response at the cut-in and second cut-out in Figure
E-11b and zero distance-gap in Figure E-11d.
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Figure E-12: Figure showing the response of the alternative sACC model on the CF (a) CI (b)
and SG (c) trajectories using the calibrated, mean and “best” calibration parameters. The figures
indicate an overshoot of the desired velocity in Figures E-12a and b, negative distance-gaps for
the “best” parameter set in Figure E-12c and too sensitive response at the cut-in and second
cut-out in Figure E-12b and zero distance-gap in Figure E-12d.
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Glossary

List of Acronyms

ADAS Advanced Driving Assistance Systems

ACC Adaptive Cruise Control

sACC simplified ACC

IDM Intelligent Driver Model

OBD On-Board Diagnostics

CAN Controller Area Network

RMSE Root Mean Square Error

RMSRE Root Mean Square Relative Error

MAE Mean Absolute Error

MARE Mean Absolute Relative Error

SQP Sequential Quadratic Programming

CF Refers to the “Car-Following” trajectory

OSC Refers to the “Oscillating” trajectory

SG1 Refers to the “Stop-and-Go 1” trajectory

SG2 Refers to the “Stop-and-Go 2” trajectory

CI Refers to the “Cut-In” trajectory

HB Refers to the “Hard-Braking” trajectory

SG Refers to the “Stop-and-Go” trajectory

DDT Dynamic Driving Task

VMC Vehicle Motion Control
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96 Glossary

List of Symbols

Model Calibration
∆t Simulation time-step / sampling-interval s
es Distance-gap representation error m
ev Velocity representation error m/s
S+ Parameter sensitivity overestimation (right) −
S− Parameter sensitivity underestimation (left) −
t+ Measurement immediately after time s
t0 Initial time s
te End time s
ws Calibration weight, distance-gap −
wv Calibration weight, velocity −
Data Analysis
δ∗GP S GPS lag s
A,C Kalman state matrices −
K Kalman gain −
v Measurement noise −
w Process noise −
z Sensor measurements −
δ∗C AN Speedometer bias factor s
Notation
β̂= argminβF (z, ẑ) Optimisation problem
Model Parameters
β Set of model parameters −
a Maximum comfortable acceleration (IDM) m/s2

b Maximum comfortable deceleration (IDM) m/s2

kd Velocity gain ((alternative) ACC) s−1

kp Distance-gap gain ((alternative) ACC) s−2

s0 Minimum standstill distance (IDM) m
s0 Minimum standstill distance (alternative ACC) m
T Desired time-gap (IDM) s
td Desired time-gap ((alternative) ACC) s
v0 Desired velocity (IDM) m/s
State Variables
v̇ Acceleration m/s2

j Jerk m/s3

l Vehicle length m
s Distance-gap m
v Velocity m/s
x Driven distance m
Subscripts
AC L Accelerometer variable −
C AN CAN-bus variable −
GPS GPS variable −
i Ego-vehicle −
i −1 Lead-vehicle −
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