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Abstract. We introduce a general class of mean-field-like spin systems with random couplings that
comprises both the Ising model on inhomogeneous dense random graphs and the randomly diluted
Hopfield model. We are interested in quantitative estimates of metastability in large volumes at fixed
temperatures when these systems evolve according to a Glauber dynamics, i.e. where spins flip with
Metropolis transition probabilities at inverse temperature β. We identify conditions ensuring that
with high probability the system behaves like the corresponding system where the random couplings
are replaced by their averages. More precisely, we prove that the metastability of the former system
is implied with high probability by the metastability of the latter. Moreover, we consider relevant
metastable hitting times of the two systems and find the asymptotic tail behaviour and the moments
of their ratio. This work provides an extension of the results known for the Ising model on the
Erdős–Rényi random graph. The proofs use the potential-theoretic approach to metastability in
combination with concentration inequalities.
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1. Introduction

Over the last decade there has been increasing interest in metastability under Glauber dynamics
of the Ising model with random interactions, in particular, of the Ising model on random graphs.
Dommers (2017) considered the case of random regular graphs, Dommers et al. (2017) the configu-
ration model, in both cases in finite volume and at low temperature. Mossel and Sly (2009, 2013)
computed mixing times on sparse Erdős-Rényi random graphs and on random regular graphs, in
both cases in finite volume and at high temperature. Recently, Can et al. (2021) analysed mixing
times on random regular graphs, in large volumes and at fixed temperature.

Metastability under Glauber dynamics of the Ising model on dense random graphs has so far
only been studied for the Erdős-Rényi random graph with fixed edge retention probability, by den
Hollander and Jovanovski (2021) and by Bovier et al. (2021). In both papers, mean metastable
exit times of the random model are compared to those of the standard Curie-Weiss model, in
large volumes and at fixed temperature. In den Hollander and Jovanovski (2021) the pathwise
approach to metastability (see Olivieri and Vares, 2005) was used to prove that mean metastable
exit times are asymptotically equal to those of the Curie-Weiss model, multiplied by a random
prefactor of polynomial order in the size of the system. The prefactor estimate was improved in
Bovier et al. (2021) by using the potential-theoretic approach to metastability (see Bovier and den
Hollander, 2015), at the expense of losing generality in the initial distribution. Recently, Bovier
et al. (2022) studied metastability under Glauber dynamics of the Ising model on the complete graph
with random independent couplings in large volumes and at fixed temperature. In that model, the
product structure of the couplings allows for lumping of states, and for combining the potential-
theoretic approach with coarse-graining techniques, to obtain sharp estimates on mean metastable
exit times.

The present paper extends the results for the Erdős–Rényi random graph to inhomogeneous dense
random graphs and to more general random interactions. We compare the metastable behaviour
of a class of spin systems whose Hamiltonian has random and conditionally independent coupling
coefficients, called quenched model, with the corresponding annealed model in which the coupling
coefficients are replaced by their conditional mean. More precisely, we prove that metastability of
the annealed model implies, in large volumes and at fixed temperature, almost sure metastability of
the quenched model with respect to the metastable sets of the annealed model. Moreover, assuming
metastability of the annealed model, we consider the ratio between the mean hitting times of the
quenched model and the annealed model, and estimate both its tail behaviour and its moments,
again in large volumes and at fixed temperature.

As in Bovier et al. (2021), we follow the potential-theoretic approach to metastability, which
allows us to estimate mean metastable exit times by estimating capacities and weighted sums of
the equilibrium potential called harmonic sums. Estimates on the former can be obtained with the
help of well-known variational principles, while estimates on the latter are more involved. See, for
instance, Bianchi et al. (2009) and Bovier et al. (2021), where long and model-dependent computa-
tions were needed to prove that the relevant contribution of the harmonic sum is localised around the
starting metastable set. Schlichting and Slowik (2019), using an alternative definition of metastable
sets, prove that localisation of the harmonic sum around the starting metastable set holds in large
generality. Their work allows us to derive results for a large class of models. A second novelty of
the present paper compared to Bovier et al. (2021) concerns the techniques that are used to prove
concentration results. In Bovier et al. (2021), Talagrand’s concentration inequality was used, while
here we use McDiarmid’s concentration inequality.
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2. Model, results and methods

This section is structured as follows. In Section 2.1, we introduce the model. In Section 2.2, we
define metastability, introduce relevant quantities, and state our main results. In Section 2.3, we
summarise our strategy and methods, and give an outline of the rest of the paper.

2.1. The model. Let (Ω,F ,P) be an abstract probability space. Let G ⊂ F be a sub-σ-algebra
of F and J = (Jij)1≤i<j<∞ be a triangular array of real random variables that are conditionally
independent given G and uniformly bounded, i.e., there exists a kJ ∈ (0,∞) such that |Jij | ≤ kJ P-
a.s. for all 1 ≤ i < j < ∞. We write PG [ · ] to denote a regular conditional distribution for J given G
which exists because J is a sequence of real random variables; see Chow and Teicher (1997, p. 218).
Write E to denote the expectation with respect to P, and EG and VarG to denote expectation and
variance with respect to PG .

Given 2 ≤ N ∈ N, consider the Ising Hamiltonian with random couplings of the form

HN (σ) := − 1

N

N∑
i,j=1
i<j

Jijσiσj − h
N∑
i=1

σi, σ ∈ SN , (2.1)

with h ∈ R the magnetic field and SN := {−1, 1}N the set of spin configurations. The corresponding
Gibbs measure on SN is denoted by

µN (σ) := Z−1
N e−βHN (σ), σ ∈ SN , (2.2)

with β ∈ (0,∞) the inverse temperature and ZN the normalizing partition function. The spin
configurations evolve in time as a discrete-time Markov chain (ΣN (t))t∈N0 with state space SN and
Glauber-Metropolis transition probabilities given by

pN (σ, σ′) :=


1
N exp

(
−β
[
HN (σ′)−HN (σ)

]
+

)
, if σ ∼ σ′,

1−
∑

η ̸=σ pN (σ, η), if σ = σ′,

0, otherwise,
σ, σ′ ∈ SN , (2.3)

where σ ∼ σ′ means that σ′ is obtained from σ by a flip of a single spin. The associated (discrete)
generator LN acts on bounded functions f : SN → R as(

LNf
)
(σ) :=

∑
σ′∈SN

pN (σ, σ′)
(
f(σ′)− f(σ)

)
, σ ∈ SN .

Note that the stochastic process (ΣN (t))t∈N0 is irreducible and reversible with respect to the Gibbs
measure µN . We denote by PN

ν the law of the Markov chain (ΣN (t))t∈N0 with initial distribution
ν. The corresponding expectation is denoted by EN

ν . If the initial distribution is concentrated on
a single configuration σ ∈ SN , then we write PN

σ and EN
σ , respectively. For a non-empty subset

A ⊂ SN , let τNA be the first return time to A, i.e.,

τNA ≡ τNA
(
(ΣN (t))t∈N0

)
:= inf

{
t ∈ N : ΣN (t) ∈ A

}
.

Our main objective is to compare the evolution of the model with Hamiltonian HN and the model
with Hamiltonian H̃N defined by

H̃N (σ) := EG
[
HN (σ)

]
= − 1

N

N∑
i,j=1
i<j

EG
[
Jij
]
σiσj − h

N∑
i=1

σi, σ ∈ SN , P -a.s.

Throughout the paper, we use the superscript ∼ to denote quantities that refer to the model defined
in terms of H̃N . For instance, ((Σ̃N (t))t∈N0 , P̃

N
σ : σ ∈ SN ) denotes the discrete-time Markov chain

with transitions probabilities (p̃N (σ, σ′))σ,σ′∈SN
, which is reversible with respect to µ̃N , where both
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the transition probabilities and the Gibbs measure are defined as in (2.1) and (2.2), but with HN

replaced by H̃N . For lack of better names and with abuse of terminology, we refer to the models
defined in terms of HN and H̃N as the quenched model and the annealed model, respectively.

In the sequel, we provide a list of motivating examples for which the results stated later hold.
For this purpose, consider two sequences

(Aij)1≤i<j<∞, (Pij)1≤i<j<∞,

of triangular arrays with |Aij | ≤ kJ and Pij ∈ (0, 1) for i, j ∈ N with i < j, and let G :=
σ(Aij , Pij : 1 ≤ i < j ≤ ∞) be the σ-algebra generated by these sequences. Moreover, let

(Uij)1≤i<j<∞

be a triangular array of i.i.d. random variables distributed uniformly in (0, 1). Define

Jij := AijBij , Bij := 1{Uij≤Pij}, 1 ≤ i < j < ∞.

Note that (Jij)1≤i<j<∞ and (Bij)1≤i<j<∞ are triangular arrays of conditionally independent random
variables given G. In particular, Bij are Bernoulli random variables with mean Pij .

Example 2.1 (Ising model on the Erdős–Rényi random graph). By choosing Aij := 1 and Pij :=
p ∈ (0, 1] for 1 ≤ i < j < ∞, G becomes the set {∅,Ω} and HN in (2.1) becomes the Hamiltonian
of the Ising model on the Erdős–Rényi random graph with edge retention probability p, known as
the randomly diluted Curie-Weiss model. Its metastable behaviour was studied in den Hollander
and Jovanovski (2021) and Bovier et al. (2021). In this case the annealed model is the Curie-Weiss
model.

Example 2.2 (Ising model on inhomogeneous random graphs). By taking Aij := 1 for 1 ≤ i < j < ∞,
HN in (2.1) becomes the Hamiltonian of the Ising model on an inhomogeneous random graph, in
which an edge (ij) is present with probability Pij . Of particular interest is the case Pij = ViVj with
(Vi)i∈N a sequence of i.i.d. random variables with support in (0, 1), known as the Ising model on the
Chung-Lu random graph, see Chung and Lu (2002). The metastable behaviour of the corresponding
annealed model was studied in Bovier et al. (2022) for the case where the random variables Vi have
finite support.

Example 2.3 (Randomly diluted Hopfield model). Given n ∈ N random patterns ξ1, . . . , ξn, with
ξk = (ξki )i∈N and ξki ∈ [−1, 1] for 1 ≤ k ≤ n, set Aij :=

∑n
k=1 ξ

k
i ξ

k
j . By taking Pij ≡ p ∈ (0, 1) for

1 ≤ i < j < ∞, HN in (2.1) becomes the Hamiltonian of a Hopfield model in which the interaction
coefficients are randomly diluted by i.i.d. Bernoulli random variables with mean p. See Bovier and
Gayrard (1998) for a review on the Hopfield model. The metastable behaviour of the annealed
model, i.e., the undiluted Hopfield model, was studied by an der Heiden (2007) in a restricted
(β, h)-regime. We plan to address the metastable behaviour in a more general (β, h)-regime in a
future paper.

2.2. Metastability and main results. Before stating our main results, we recall the definition of
metastable Markov chains and metastable sets put forward in Schlichting and Slowik (2019, Defini-
tion 1.1).

Definition 2.4 (ρN -metastability). For ρN > 0 and 2 ≤ K ∈ N, let {M1,N , . . . ,MK,N} be a set of
subsets of SN such that Mi,N ∩Mj,N = ∅ for all 1 ≤ i ̸= j ≤ K. The Markov process (ΣN (t))t∈N0

is called ρN -metastable with respect to {M1,N , . . . ,MK,N} when

K
maxj∈{1,...,K} P

N
µN |Mj,N

[
τNMN\Mj,N

< τNMj,N

]
minX⊂SN\MN

PN
µN |X

[
τNMN

< τNX

] ≤ ρN ≪ 1, (2.4)
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where MN :=
⋃K

i=1Mi,N and, for a non-empty set X ⊆ SN , µN |X denotes the Gibbs measure µN

conditioned on the set X .

Remark 2.5. The advantage of this definition compared to the one given in Bovier and den Hollander
(2015, Definition 8.2) is twofold: it allows for direct control of ℓp(µN )-norms of functions, and does
not depend on the cardinality of the state space. For a more detailed comparison of the two
definitions of metastability we refer to Schlichting and Slowik (2019, Remark 1.2).

For fixed 2 ≤ K ∈ N and k1 > 0, define

Ω̃meta(N) :=
{
ω : ∃ {M1,N , . . . ,MK,N}(ω) non-empty disjoint subsets of SN s.t.

(Σ̃N (t))t∈N0(ω) is e−k1N -metastable w.r.t. {M1,N , . . . ,MK,N}(ω)
}
, (2.5)

i.e., the event that the Markov chain (Σ̃N (t))t∈N0 is ρ̃N -metastable with respect to some given
collection of mutually disjoint subsets {M1,N , . . . ,MK,N}, where we abbreviate

ρ̃N := e−k1N . (2.6)

Remark 2.6. Note that both Ω̃meta(N) and {M1,N , . . . ,MK,N} – playing the role of metastable sets
– are G-measurable, because they are defined in terms of the annealed Hamiltonian H̃N .

In our main results we impose the following assumption on the annealed model.

Assumption 2.7 (Metastability of the annealed model). For some (β, h) ∈ (0,∞)×R, the following
holds for the Markov chain (Σ̃N (t))t∈N0 of the annealed model. There exist 2 ≤ K ∈ N and k1 > 0
such that,

P
[
lim inf
N→∞

Ω̃meta(N)

]
= 1,

where Ω̃meta(N) is defined in (2.5) and depends on K and k1.

Remark 2.8. Assertion of Assumption 2.7 can be rephrased as follows: P-a.s., there exists a finite
random variable N0 ∈ N and a sequence ({M1,N , . . . ,MK,N})N≥N0 of K non-empty mutually
disjoint subsets of SN (possibly depending on ω) such that for any N ≥ N0 the process (Σ̃N (t))t∈N0

is ρ̃N := e−k1N -metastable with respect to {M1,N , . . . ,MK,N}.

Remark 2.9. Let us illustrate in the case of Example 2.1 how to identify candidates of metastable
sets. It is well know (cf. Bovier, 2006, Section 3.5) that, for any β ∈ (0,∞) and h ∈ R,

lim
N→∞

1

βN
log Z̃N = − inf

x∈[−1,1]
F̃β,h(x),

where F̃β,h : [−1, 1] → R denotes the free energy per vertex of the annealed model given by

F̃β,h(x) := −1

2
x2 − hx+

1

β

(
1− x

2
log

1− x

2
+

1 + x

2
log

1 + x

2

)
.

In particular, for any β > βc := 1 and h ∈ (−hc(β), hc(β)), where the critical strength of the
magnetic field is given by

hc(β) :=
√
1− β2 − 1

2β
log
(
β(1 +

√
1− 1/β)2

)
,

the free energy F̃β,h admits two local minima m1,m2 ∈ (−1, 1). For N ∈ N, let m1,N and m2,N

be the closest point in {−1,−1 + 2/N, . . . , 1 − 2/N, 1} to m1 and m2, respectively. Define the
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sets M1,N ,M2,N ⊂ SN as the (set-valued) pre-image of the empirical magnetization SN ∋ σ 7→
mN (σ) := 1

N

∑N
i=1 σi, i.e.,

M1,N := m−1
N (m1,N ) and M2,N := m−1

N (m2,N ).

By using arguments similar to those given in Schlichting and Slowik (2019, Lemma 4.1), it follows
that {M1,N ,M2,N} forms a pair of metastable sets in the sense of Definition 2.4.

For fixed N ∈ N, given the metastable sets {M1,N , . . . ,MK,N}, we can decompose the state
space SN into the domains of attraction with to respect the dynamics of the annealed model. More
precisely, by following Schlichting and Slowik (2019, Definition 1.4), within the event Ω̃meta(N) the
metastable sets {M1,N , . . . ,MK,N} give rise to a metastable partition {S1,N , . . . ,SK,N} of the state
space SN such that

Mi,N ⊆ Si,N ⊂ Vi,N , i ∈ {1, . . . ,K}.
The local valley Vi,N around the metastable set Mi,N is defined as

Vi,N := Mi,N ∪
{
σ ∈ Mc

N : P̃N
σ

[
τNMi,N

< τNMN\Mi,N

]
≥ max

j ̸=i
P̃N
σ

[
τNMj,N

< τNMN\Mj,N

]}
,

where we recall that MN :=
⋃K

i=1Mi,N .
Our first theorem says that, subject to Assumption 2.7, (ΣN (t))t∈N0 also exhibits metastable

behaviour in the sense of Definition 2.4.

Theorem 2.10 (Metastability). Suppose that (β, h) ∈ (0,∞)× R satisfies Assumption 2.7. Then,
for any c0 ∈ (0, k1), the event

Ωmeta(N) :=
{
ω ∈ Ω̃meta(N) : (ΣN (t))t∈N0(ω) is e−c0N -metastable w.r.t. {M1,N , . . . ,MK,N}(ω)

}
(2.7)

satisfies

P
[
lim inf
N→∞

Ωmeta(N)

]
= 1. (2.8)

Label the metastable sets M1,N , . . . ,MK,N in such a way that they are ordered decreasingly
according to their weights under the Gibbs measure of the annealed model, i.e., for all N ∈ N, on
the event Ω̃meta(N),

µ̃N

[
M1,N

]
≥ µ̃N

[
M2,N

]
≥ . . . ≥ µ̃N

[
MK,N

]
, P -a.s.

Fix i ∈ {2, . . . ,K} such that there exists a k2 ∈ (0,∞) satisfying

µ̃N [Sj,N ] ≤ e−k2N µ̃N [Si,N ], P -a.s., ∀j ∈ {i+ 1, . . . ,K}, N ∈ N, (2.9)

and set, for any N ∈ N, P-a.s. on the event Ω̃meta(N),

AN := Mi,N , BN :=

i−1⋃
j=1

Mj,N . (2.10)

Note that BN is the union of all metastable sets with weight not smaller than the weight of AN .
Furthermore, note that, since for i = K the condition in (2.9), to which we will also refer as the
non-degeneracy condition, is void, the existence of such an index i is always guaranteed. However,
if the condition holds for further i, one has more freedom in the choice of the set AN , making our
results more general.

Remark 2.11. The non-degeneracy condition in (2.9) can be relaxed by replacing e−k2N with some
δ̃N satisfying e−k2N ≤ δ̃N < e−c

√
N for some sufficiently large c ∈ (0,∞). The technical reasons can

be found in the proofs in Section 5.
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Before proceeding, we define, for N ∈ N and non-empty disjoint sets A,B ⊂ SN , the so-called
last-exit biased distribution on A for the transition from A to B by

νA,B(σ) ≡ νNA,B(σ) =
µN (σ) PN

σ

[
τNB < τNA

]∑
σ∈A µN (σ) PN

σ

[
τNB < τNA

] , σ ∈ A.

This distribution plays an essential role in the potential-theoretic approach to metastability, as can
be seen in (2.15) below.

We are now ready to state our second theorem, in which we compare the mean hitting time of BN

for the Markov chain (ΣN (t))t∈N0 starting from the set AN according to the distribution νAN ,BN

with the corresponding quantity for the Markov chain (Σ̃N (t))t∈N0 . Under the regular conditional
distribution PG , we obtain for the ratio of these metastable hitting times estimates both on its tail
behaviour and on its moments.

Theorem 2.12. Suppose that (β, h) ∈ (0,∞)× R satisfies Assumption 2.7. Set

αN :=
β2

2N2

N∑
i,j=1
i<j

VarG [Jij ]. (2.11)

(i) For t ∈ N0, P-a.s.,

lim
N→∞

PG

[
e−t−αN ≤

EN
νAN,BN

[
τNBN

]
ẼN
ν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
≥ 1− 4 e−t2/(2βkJ )

2
. (2.12)

(ii) For any q ≥ 1 and c ∈ (0,∞), let

Ωq,c(N) :=

{
ω : e−αN

(
1− c√

N

)
≤

EG

[
EN
νAN,BN

[
τNBN

]q]1/q
(ω)

ẼN
ν̃AN,BN

[
τ̃NBN

]
(ω)

≤ e4qαN

(
1 + c√

N

)}
. (2.13)

Then, for any q ≥ 1 there exists c1 ∈ (0,∞) such that

P

[
lim inf
N→∞

Ωq,c1(N)

]
= 1. (2.14)

Remark 2.13. (a) Since the random variables (Jij)1≤i<j<∞ are assumed to be uniformly bounded,
it follows that αN = O(1).

(b) The non-degeneracy condition (2.9) embedded in the definition (2.10) of AN ensures that, if
i < K, the metastable sets Mj,N , j ∈ {i + 1, . . . ,K}, are not relevant for the analysis of the
crossing times from AN to BN .

(c) The choice of the initial configuration being drawn from the (quenched) last-exit biased dis-
tribution plays an important role in the potential-theoretic approach to metastability. Indeed,
under this particular initial distribution supported on (the inner boundary of) the set AN the
mean hitting time, Eσ

[
τNBN

]
, of the set BN can be represented in terms of two analytic quanti-

ties: the harmonic function, hAN ,BN
, and the capacity, capN (AN ,BN ), see (2.15). If AN and

BN are metastable sets, one expects that the function σ 7→ Eσ

[
τNBN

]
is almost constant on

the set AN . Such regularity statement has been proven for certain spin systems by means of
coupling methods, cf. Bianchi et al. (2012); Martinelli et al. (1990); Martinelli and Scoppola
(1988). The construction of a suitable coupling in the present setting, while expected to be
possible, requires some highly non-trivial adaptation of the previously used strategies, due to
the random interaction, that goes beyond the scope of the present paper.

Remark 2.14. (a) The results still hold true for different reversible, single spin update dynamics.
However, the Glauber dynamics with Metropolis transition rate is a standard choice.
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(b) The assertions of both Theorem 2.10 and 2.12 are still valid beyond the regime of uniformly
bounded random variables. The forthcoming paper Dubbeldam et al. (2024+) studies the
Potts model with random interactions assuming that (Jij)1≤i<j<∞ are i.i.d. unbounded random
variables with finite exponential moments.

2.3. Methods and outline.

2.3.1. Key notions from the potential-theoretic approach to metastability. To prove Theorems 2.10
and 2.12, we crucially rely on potential theory, which allows us to express probabilistic objects
of interest in terms of solutions of certain boundary value problems. It is well-known (see e.g.
Bovier and den Hollander, 2015, Corollary 7.11) that, for any N ∈ N and any non-empty disjoint
A,B ⊂ SN , the mean hitting time of B starting from the last-exit biased distribution νNA,B on A is
given by

EN
νA,B

[
τNB
]
=

∥hNA,B∥µN

capN (A,B)
, (2.15)

where ∥hNA,B∥µN denotes the ℓ1(µN )-norm of the equilibrium potential hNA,B of the pair (A,B), i.e.,
the function hNA,B : SN → [0, 1] that is the unique solution of the boundary value problem{ (

LNf
)
(σ) = 0, σ ∈ SN \ (A ∪ B),

f(σ) = 1A(σ), σ ∈ A ∪ B.
Note that the equilibrium potential has a natural interpretation in terms of hitting probabilities,
namely, hNA,B(σ) = PN

σ

[
τNA < τNB

]
, for all σ ∈ SN \ (A ∪ B). The capacity capN (A,B) of the pair

(A,B) is defined by

capN (A,B) :=
∑
σ∈A

µN (σ) PN
σ

[
τNB < τNA

]
=
∑
σ∈A

µN (σ)
(
−LNhNA,B

)
(σ). (2.16)

From this definition it is clear that

PN
µN |A

[
τNB < τNA

]
=

capN (A,B)
µN [A]

, (2.17)

where µN |A denotes the Gibbs measure µN conditioned on the set A.
Capacities can be expressed in terms of variational principles that are very useful to obtain upper

und lower bounds (see Bovier and den Hollander (2015, Section 7.3) for more details). Upper bounds
are obtained by using the Dirichlet principle, which states that

capN (A,B) = inf
{
EN (f) : f ∈ HN

A,B
}
. (2.18)

Here, HN
A,B denotes the set of all functions from SN to R that are equal to 1 on A and 0 on B, and

EN (f) := ⟨f,−LNf⟩µN =
1

2

∑
σ,σ′∈SN

µN (σ)pN (σ, σ′)
(
f(σ)− f(σ′)

)2
is the Dirichlet form. We recall that the transition probabilities pN are defined in (2.3).

Lower bounds are obtained via the Thomson principle, which states that

capN (A,B) = sup
{ 1

DN (φ)
: φ ∈ UN

A,B

}
=
(
inf
{
DN (φ) : φ ∈ UN

A,B
})−1

,

where UN
A,B is the space of all unit antisymmetric AB-flows φ : SN × SN → R, and

DN (φ) :=
1

2

∑
σ,σ′∈SN
σ∼σ′

φ(σ, σ′)2

µN (σ) pN (σ, σ′)
.
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2.3.2. Strategy of proofs. The proof of Theorem 2.10 relies on Definition 2.4 and on (2.17), together
with an application of the Dirichlet principle in combination with a comparison of the quenched
Hamiltonian HN and the annealed Hamiltonian H̃N on a particular event of high probability.

We prove Theorem 2.12(i) by combining concentration inequalities for the logarithm of the mean
hitting time EN

νAN,BN

[
τNBN

]
of the quenched model with bounds on the distance between the (con-

ditional on G) mean of that logarithm and the logarithm of the mean hitting time ẼN
ν̃AN,BN

[
τ̃NBN

]
of the annealed model. Estimates of the latter type, comparing conditional means with average
means, will be called annealed estimates. The results in Theorem 2.12(ii) are annealed estimates
as well. In view of (2.15), estimates on the mean hitting time EN

νAN,BN
[τNBN

], or on its logarithm,
will follow once we have separately proven corresponding estimates for both ZN capN (AN ,BN ) and
ZN∥hNAN ,BN

∥µN .
Let us emphasis that we use a conditional version of McDiarmid’s bounded differences inequal-

ity (see Proposition A.1 below) in order to prove concentration inequalities for the quantities
log[ZN capN (AN ,BN )] and log[ZN∥hNAN ,BN

∥µN ]. This strategy for proving concentration is different
from the one used in Bovier et al. (2021), where Talagrand’s concentration inequality was used. The
advantage of McDiarmid over Talagrand is twofold. First, McDiarmid’s inequality provides exact
constants. Second, it does not require convexity of the map J 7→ log

(
ZN capN (AN ,BN )

)
, which is

crucial because we do not know how to prove convexity.
Estimates on capacities for Theorem 2.12 are proven by using the Dirichlet principle and the

Thomson principle, and do not require any assumption on metastability. Finding estimates on the
equilibrium potential, however, is more involved. We use a result that is similar to Schlichting and
Slowik (2019, Theorem 1.7) (Proposition 5.2 below), for which the non-degeneracy assumption in
(2.9) is required, together with the same comparison of the Hamiltonians HN and H̃N that is used
in the proof of Theorem 2.10, both holding with high probability. We emphasise that the constants
appearing in our statements may depend on the parameters of the model.

2.3.3. Outline. The remainder of the paper is organised as follows. In Section 3 we provide the
proof of Theorem 2.10 on metastability of the quenched model. In Section 4 we provide estimates
on capacities. Section 5 is devoted to stating and proving estimates on weighted sums of the
equilibrium potential, called harmonic sums. In Section 6 we prove Theorem 2.12 by using the
results of the previous sections. Appendix A contains the conditional version of the McDiarmid’s
inequality that is used in the paper.

3. Metastability

Before proving Theorem 2.10, we provide in Lemma 3.1 a comparison of the quenched Hamiltonian
HN and the annealed Hamiltonian H̃N . This lemma will be used both in the proof of Theorem 2.10
below and in Section 5, where we deal with estimates on the equilibrium potential.

Given a positive real sequence (aN )N∈N, let

Ξ(aN ) :=
{
max
σ∈SN

∣∣HN (σ)− H̃N (σ)
∣∣ < aN

}
⊂ Ω, N ∈ N \ {1}, (3.1)

denote the event that, uniformly in σ ∈ SN , HN differs from H̃N by at most aN . On the event Ξ(aN )

we have control on the difference between the quantities determining (ΣN (t))t∈N0 and (Σ̃N (t))t∈N0 .
Moreover, for suitably chosen sequences (aN )N∈N, the event Ξ(aN )c turns out to be negligible in
the limit as N → ∞.

Lemma 3.1. For a positive real sequence (aN )N∈N, set bN := a2N/k2J − (N +1) log 2. Then, P-a.s.,

PG
[
Ξ(aN )c

]
≤ e−bN ∧ 1, ∀N ∈ N \ {1}. (3.2)
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Proof : Fix 2 ≤ N ∈ N. Clearly, it suffices to prove (3.2) in case bN > 0. Notice that the
map J 7−→ HN (σ) satisfies a bounded difference as (A.1) with constant 2kJ/N uniformly in σ ∈
SN , because HN (σ) depends linearly on the random coupling (Jij)1≤i<j≤N and we assumed in
Section 2.1 that the |Jij | ≤ kJ P-a.s. for all 1 ≤ i < j < ∞. Since in addition the triangular array
J = (Jij)1≤i<j<∞ is assumed to be conditionally independent given G, we can apply McDiarmid’s
concentration inequality (Proposition A.1) with v = k2J(N −1)/(2N), together with a union bound,
to get that, P-a.s.,

PG

[
max
σ∈SN

∣∣HN (σ)− H̃N (σ)
∣∣ ≥ aN

]
≤
∑
σ∈SN

PG

[∣∣HN (σ)− H̃N (σ)
∣∣ ≥ aN

]
≤ 2N+1 exp

(
−

a2NN

k2J(N − 1)

)
,

where the additional factor 2 comes from the absolute value. Since (N−1)/N ≤ 1, (3.2) follows. □

Proof of Theorem 2.10: We will prove that

P
[
lim sup
N→∞

Ωmeta(N)c
]
= 0,

which is equivalent to (2.8). First note that, by the choice of µN and pN in (2.2) and (2.3),

ZNµN (σ) pN (σ, σ′) =
1

N
e−β(HN (σ)∨HN (σ′)), σ ∼ σ′ ∈ SN .

An elementary computation yields that, on the event Ξ(aN ),

H̃N (σ) ∨ H̃N (σ′)− aN ≤ HN (σ) ∨HN (σ′) ≤ H̃N (σ) ∨ H̃N (σ′) + aN , σ, σ′ ∈ SN .

Thus, by a comparison of Dirichlet forms it follows that

Z̃N ẼN (f) e−βaN ≤ ZNEN (f) ≤ Z̃N ẼN (f) eβaN ,

for any f : SN → R. In view of the Dirichlet principle (2.18), we deduce that, on the event Ξ(aN ),

e−βaN ≤ ZN capN (X ,Y)

Z̃N c̃apN (X ,Y)
≤ eβaN , ∅ ≠ X ,Y ⊂ SN disjoint. (3.3)

Moreover, for any 2 ≤ N ∈ N, on the event Ξ(aN ),

e−βaN ≤
ZNµN

[
X
]

Z̃N µ̃N

[
X
] ≤ eβaN , ∅ ≠ X ⊂ SN . (3.4)

It follows from (2.17), (3.3) and (3.4) that, on the event Ξ(aN ),

e−2βaN ≤
PN
µN |X

[
τNY < τNX

]
P̃N
µN |X

[
τ̃NY < τ̃NX

] ≤ e2βaN , ∅ ≠ X ,Y ⊂ SN disjoint. (3.5)

Thus, on the event Ξ(aN ) ∩ Ω̃meta(N),

max
j∈{1,...,K}

PN
µN |Mj,N

[
τNMN\Mj,N

< τNMj,N

]
≤ ρ̃N

K
e4βaN min

X⊂SN\MN

PN
µN |X

[
τNMN

< τNX

]
. (3.6)

Now set aN = kJ
√
Nk1 + (N + 1) log 2 for 2 ≤ N ∈ N, and note that, with this choice of aN ,

Lemma 3.1 implies that

P
[
Ξ(aN )c

]
= E

[
PG
[
Ξ(aN )c

]]
≤ e−bN = e−k1N , N ∈ N \ {1}. (3.7)
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Recall that c0 is the constant in the definition of Ωmeta(N) in (2.7), in Theorem 2.10. By choosing
N(k1, c0, β, kJ) ∈ N in such a way that c0 < k1 − 4βaN/N for all N ≥ N(k1, c0, β, kJ), it follows
from (3.6) that Ξ(aN ) ∩ Ω̃meta(N) ⊆ Ωmeta(N) for all N ≥ N(k1, c0, β, kJ). In particular,

Ωmeta(N)c ⊆ Ξ(aN )c ∪ Ω̃meta(N)c, N ≥ N(k1, c0, β, kJ). (3.8)

Therefore, using continuity of the probability measure, we get

P
[
lim sup
N→∞

Ωmeta(N)c
]

(3.8)
≤ P

[
lim sup
N→∞

(
Ξ(aN )c ∪ Ω̃meta(N)c

)]
≤ lim

N→∞

(
P
[⋃

m≥N
Ξ(am)c

]
+ P

[⋃
m≥N

Ω̃meta(m)c
])

= P
[
lim sup
N→∞

Ξ(aN )c
]
+ P

[
lim sup
N→∞

Ω̃meta(N)c
]
.

Since, by (3.7),
∑∞

N=1 P
[
Ξ(aN )c

]
< ∞, an application of the Borel Cantelli Lemma and Assump-

tion 2.7 yields that

P
[
lim sup
N→∞

Ωmeta(N)c
]
≤ P

[
lim sup
N→∞

Ξ(aN )c
]
+ P

[
lim sup
N→∞

Ω̃meta(N)c
]
= 0.

□

4. Capacity estimates

In this section we provide general estimates on the capacity of the quenched model compared
to the annealed model. These estimates are general because we do not require any assumption on
metastability, and the sets involved in the estimates are general disjoint subsets of the configuration
space.

In Section 4.1 we prove concentration for the logarithm of the capacities by using the Dirichlet
principle and McDiarmid’s concentration inequality. In Section 4.2 we first estimate the conditional
mean of ZNµN and pN in terms of the corresponding quantities of the annealed model Z̃N µ̃N and
p̃N in Lemma 4.2, and afterwards prove annealed capacity estimates by using both the Dirichlet
and the Thomson principle, together with Lemma 4.2. The latter is crucial also in the proof of
annealed estimates of ∥hNAN ,BN

∥µN in Section 5.3.
All formulas in this Section 4 are intended to hold P-a.s. In order to lighten notation, we refrain

from repeating that.

4.1. Concentration of quenched capacities.

Proposition 4.1. Let 2 ≤ N ∈ N, and consider two non-empty disjoint subsets X ,Y ⊂ SN . Then,
for any t ∈ N0,

PG

[∣∣log(ZN capN (X ,Y)
)
− EG

[
log
(
ZN capN (X ,Y)

)]∣∣ > t
]
≤ 2 e−t2/(βkJ )

2
. (4.1)

Proof : First, recall that the triangular array (Jij)1≤i<j<∞ is assumed to be conditionally inde-
pendent given G. Hence, in view of McDiarmid’s concentration inequality (Proposition A.1), the
assertion in (4.1) is immediate once we show that, for any 2 ≤ N ∈ N, the mapping

(Jij)1≤i<j≤N 7−→ FN

(
(Jij)1≤i<j≤N

)
:= log

(
ZN capN (X ,Y)

)
satisfies a bounded difference estimate. More precisely, it is sufficient to show that, for any 1 ≤ k <
l ≤ N , ∣∣FN

(
(Jij)1≤i<j≤N

)
− FN

(
(J ′

ij)1≤i<j≤N

)∣∣ ≤ 2βkJ
N

, (4.2)
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where J ′
ij := Jij for all 1 ≤ i < j ≤ N such that (i, j) ̸= (k, l), and J ′

kl is a conditionally independent
copy of Jkl given G. In the sequel, we write HJ

N , ZJ
N , EJ

N and capJN (X ,Y) to emphasise the
dependence on the random coupling J = (Jij)1≤i<j≤N .

We proceed by following the same line of argument that led to (3.3) in the proof of Theorem 2.10.
By ∣∣HJ

N (σ)−HJ ′
N (σ)

∣∣ = ∣∣Jkl − J ′
kl

∣∣
N

≤ 2kJ
N

, σ ∈ SN , (4.3)

an elementary computation yields that, for any σ, σ′ ∈ SN ,

HJ ′
N (σ) ∨HJ ′

N (σ′)− 2kJ
N

≤ HJ
N (σ) ∨HJ

N (σ′) ≤ HJ ′
N (σ) ∨HJ ′

N (σ′) +
2kJ
N

.

Thus, by a comparison of Dirichlet forms, we obtain, for any f : SN → R,

ZJ ′
N EJ ′

N (f) e−2βkJ/N ≤ ZJ
NEJ

N (f) ≤ ZJ ′
N EJ ′

N (f) e2βkJ/N .

In view of the Dirichlet principle (2.18), we deduce that

ZJ ′
N capJ

′
N (X ,Y) e−2βkJ/N ≤ ZJ

N capJN (X ,Y) ≤ ZJ ′
N capJ

′
N (X ,Y) e2βkJ/N ,

which yields (4.2). □

4.2. Annealed capacity estimates.

Notation 1. For any three sequences (aN )N≥0, (bN )N≥0, (cN )N≥0 and N ∈ N, the notation aN =
bN +O(cN ) means that there exists a C ∈ (0,∞) independent of ω and N such that

−CcN ≤ aN − bN ≤ CcN .

Before proving annealed capacity estimates, we prove the following lemma which is used both in
the current section and for proving further annealed estimates in Section 5.3.

Lemma 4.2. For 2 ≤ N ∈ N the following hold:
(i) For any σ ∈ SN ,

EG

[
e±β∆N (σ)

]
= eαN

(
1 +O(N−1)

)
, (4.4)

(ii) For any σ, σ′ ∈ SN with σ ∼ σ′,

EG

[
e±β(HN (σ)∨HN (σ′))

]
= e±β(H̃N (σ)∨H̃N (σ′)) eαN

(
1 +O(N−1/2)

)
, (4.5)

where αN is defined in (2.11) and ∆N (σ) := HN (σ)− H̃N (σ), σ ∈ SN .

Proof : (i) Denote by R ∋ t 7→ Λij(t) := logEG
[
exp
(
t(Jij − EG [Jij ])

)]
the conditional log-moment

generating function given G. By a Taylor expansion up to the third order, we get that, for any
t ∈ R,

Λij(t) =
t2

2
VarG

[
Jij
]
+

t3

2

∫ 1

0
(1− θ)2Λ′′′

ij(θt)dθ.

Since the random variables are assumed to be uniformly bounded, i.e., |Jij | ≤ kJ , an elementary
computation exploiting Cramér’s measure yields that, |Λ′′′

ij(t)| ≤ 6k3J . Hence∣∣Λij(t)−
t2

2
VarG [Jij ]

∣∣ ≤ k3J |t|3.
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Since the triangular array (Jij)1≤i<j<∞ is conditionally independent given G, we have∣∣∣logEG

[
e±β∆N (σ)

]
− αN

∣∣∣ ≤ N∑
i,j=1
i<j

∣∣∣Λij

(∓β
N σiσj

)
− (∓βσiσj)

2

2N2
VarG

[
Jij
]∣∣∣ ≤ (βkJ)

3

2N
,

which concludes the proof of (4.4). In particular, for any σ ∈ SN ,

e±βH̃N (σ)+αN e−(βkJ )
3/2N ≤ EG

[
e±βHN (σ)

]
≤ e±βH̃N (σ)+αN e(βkJ )

3/2N . (4.6)

(ii) Because the proofs of (4.5) for ±β are similar, we give a detailed proof for +β only. Since the
conditional expectation of the maximum of two random variables is bounded from below by the
maximum of their conditional expectations, it is immediate from (4.6) that, for any σ, σ′ ∈ SN ,

EG

[
eβ(HN (σ)∨HN (σ′))

]
≥ eβ(H̃N (σ)∨H̃N (σ′)) eαN

(
1− (βkJ)

3

2N

)
.

Thus, we are left with proving the desired upper bound. For this purpose, we define, for σ ∈ SN

and k ∈ {1, . . . , N},

Hk
N (σ) := −σk

(
1

N

N∑
j=1
j>k

Jkjσj +
1

N

N∑
i=1
i<k

Jikσi + h

)
,

and set H ̸=k
N (σ) := HN (σ)−Hk

N (σ). Denoting by σk ∈ SN the configuration that is obtained from
σ by flipping the spin at site k ∈ {1, . . . , N}, we get H ̸=k

N (σ) = H ̸=k
N (σk) and Hk

N (σ) = −Hk
N (σk).

Since for any σ ∈ SN the random variables H ̸=k
N (σ) and Hk

N (σ) are conditionally independent given
G, it follows that

EG

[
eβ(HN (σ)∨HN (σk))

]
= EG

[
eβH

̸=k
N (σ)

]
EG

[
eβH

k
N (σ) ∨ eβH

k
N (σk)

]
. (4.7)

In order to estimate the second term, note that for any two non-negative random variables X,Y
with finite second moment, we have

E[X ∨ Y ] = E[X] ∨ E[Y ] +
1

2

(
E
[
|X − Y |

]
−
∣∣E[X]− E[Y ]

∣∣)
≤ E[X] ∨ E[Y ] +

1

2

(
E
[
|X − E[X]|

]
+ E

[
|Y − E[Y ]|

])
≤ E[X] ∨ E[Y ] +

1

2

(√
Var[X] +

√
Var[Y ]

)
,

where we use the triangular inequality and Jensen’s inequality. Hence,

EG

[
eβH

k
N (σ) ∨ eβH

k
N (σk)

]
≤ EG

[
eβH

k
N (σ)

]
∨ EG

[
eβH

k
N (σk)

]
+

1

2

(√
VarG

[
eβH

k
N (σ)

]
+

√
VarG

[
eβH

k
N (σk)

])
.

Since,

1 +
VarG

[
e±βHk

N (σ)
]

EG
[
e±βHk

N (σ)
]2 ≤

EG

[
e±2β(Hk

N (σ)−EG [H
k
N (σ)])

]
EG

[
e±β(Hk

N (σ)−EG [H
k
N (σ)])

]2

=

exp

(∑N
j=k+1 Λkj(

∓2β
N σkσj) +

∑k−1
i=1 Λik(

∓2β
N σiσk)

)
exp

(
2
∑N

j=k+1 Λkj(
∓β
N σkσj) + 2

∑k−1
i=1 Λik(

∓β
N σiσk)

) ,
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and |Λij(t)| ≤ k2J t
2, which follows from a Taylor expansion of Λij(t) up to second order together

with the estimate |Λ′′
ij(t)| ≤ 2k2J , we obtain that

EG

[
eβH

k
N (σ) ∨ eβH

k
N (σk)

]
≤
(
EG

[
eβH

k
N (σ)

]
∨ EG

[
eβH

k
N (σk)

])(
1 +

√
e

6(βkJ )2

N − 1
)
. (4.8)

Combining (4.8), (4.7) and (4.6), we see that there exists a c ≡ c(β, kJ) such that for all 2 ≤ N ∈ N,

EG

[
eβ(HN (σ)∨HN (σk))

]
≤ eβ(H̃N (σ)∨H̃N (σk)) eαN

(
1 +

c√
N

)
.

This concludes the proof of (4.5). □

We are ready to prove the annealed capacity estimates.

Proposition 4.3. Let 2 ≤ N ∈ N, and let X ,Y ⊂ SN be two non-empty and disjoint.
(i) Then, ∣∣∣EG

[
log
(
ZN capN (X ,Y)

)]
− log

(
Z̃N c̃apN (X ,Y)

)∣∣∣ = αN +O
( 1√

N

)
. (4.9)

(ii) For any q ∈ [1,∞) there exists a c3 ∈ (0,∞) such that

e−αN

(
1− c3√

N

)
≤

EG

[(
ZN capN (X ,Y)

)q]1/q
Z̃N c̃apN (X ,Y)

≤ eqαN

(
1 +

c3√
N

)
, (4.10)

e−αN

(
1− c3√

N

)
≤

EG

[(
ZN capN (X ,Y)

)−q
]1/q

(
Z̃N c̃apN (X ,Y)

)−1 ≤ eqαN

(
1 +

c3√
N

)
, (4.11)

where αN is defined in (2.11).

Proof : Fix N ∋ N ≥ 2 and consider two non-empty disjoint subsets X ,Y ⊂ SN . Recall from
Section 2.3 the definition of the Dirichlet form EN (f) for functions f ∈ HX ,Y and the Dirichlet form
DN (φ) for unit flows φ ∈ UX ,Y . In view of Lemma 4.2(ii) we have that

EG
[
ZNEN (f)

]
= Z̃N ẼN (f) eαN

(
1 +O(N−1/2)

)
∀ f ∈ HX ,Y ,

EG
[
Z−1
N DN (φ)

]
= Z̃−1

N D̃N (φ) eαN
(
1 +O(N−1/2)

)
∀φ ∈ UX ,Y .

(4.12)

(i) The claim in (4.9) is an immediate consequence of the Dirichlet principle and the Thomson
principle combined with Jensen’s inequality. Indeed, in view of (4.12) there exists a c ≡ c(β, kJ)
such that

EG
[
log
(
ZN capN (X ,Y)

)]
≤ inf

f∈HX ,Y
logEG

[
ZNEN (f)

]
≤ inf

f∈HX ,Y
log
(
Z̃N ẼN (f)

)
+ αN + cN−1/2

= log
(
Z̃N c̃apN (X ,Y)

)
+ αN + cN−1/2. (4.13)

Likewise, we obtain that

EG
[
log
(
ZN capN (X ,Y)

)]
≥ − inf

φ∈UX ,Y
logEG

[
Z−1
N DN (φ)

]
≥ − inf

φ∈UX ,Y
log
(
Z̃−1
N D̃N (φ)

)
− αN − cN−1/2

= log
(
Z̃N c̃apN (X ,Y)

)
− αN − cN−1/2. (4.14)
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(ii) Since the proofs of (4.10) and (4.11) are similar, we present the proof for (4.11) only. To get
the lower bound, note that by Jensen’s inequality it is immediate that

EG

[(
ZN capN (X ,Y)

)−q
]1/q

≥ EG

[(
ZN capN (X ,Y)

)−1
]
≥ 1

EG
[
ZN capN (X ,Y)

] .
Hence, analogously to (4.13), by applying the Dirichlet principle and (4.12) we obtain that there
exists a c ≡ c(β, kJ) such that

1

EG
[
ZN capN (X ,Y)

] ≥ e−αN

Z̃N c̃apN (X ,Y)

(
1− cN−1/2

)
.

To get the upper bound, note that, analogously to (4.14), by the Thomson principle we have that

EG

[(
ZN capN (X ,Y)

)−q
]1/q

≤ infφ∈UX ,Y EG

[(
Z−1
N DN (φ)

)q]1/q
.

By Minkowski’s inequality and an application of (4.5) with β replaced by βq, we find that for any
q ∈ [1,∞) there exists a c′ ≡ c′(q, β, kJ) such that, for all φ ∈ UX ,Y ,

EG

[(
Z−1
N DN (φ)

)q]1/q ≤ Z̃−1
N D̃N (φ) eqαN

(
1 + c′N−1/2

)
.

Therefore, again applying the Thomson principle, we obtain

EG

[(
ZN capN (X ,Y)

)−q
]1/q

≤ eqαN

Z̃N c̃apN (X ,Y)

(
1 + c′N−1/2

)
,

and by setting c3 := c ∨ c′ we conclude the proof. □

5. Equilibrium potential estimates

This section contains all our results concerning the ℓ1(µN )-norm of the equilibrium potential
hNAN ,BN

, which we call the harmonic sum. Before proving concentration estimates in Section 5.2
and annealed estimates in Section 5.3, we provide some preliminary estimate in Section 5.1. We
emphasise that throughout this section, contrary to Section 4, metastability plays an essential role.

5.1. Preliminary estimates. As mentioned above, for estimates on the harmonic sum we restrict to
the event Ξ(aN ), which is defined in (3.1) and used in Section 3 to prove Theorem 2.10. This event
has high probability for suitably chosen sequences (aN )N∈N (recall Lemma 3.1). We use two facts:
on Ξ(aN ) we can control the quenched Gibbs measure µN in terms of the annealed Gibbs measure
µ̃N (recall (3.4)), and the harmonic sum localises on the metastable valley of AN . We state and
prove the last result in Proposition 5.2.

Notation 2. For any two random variables X,Y depending on N ∈ N, writing “X = Y holds P-a.s.
on the event Ω̃meta(N)” means that

1
Ω̃meta(N)

X = 1
Ω̃meta(N)

Y, P -a.s..

We stress that all formulas in Section 5 hold P-a.s. Moreover, formulas involving the quantities
Sj,N ,Mj,N ,AN ,BN , for fixed j ∈ {1, . . . ,K} and N ∈ N, hold P-a.s. on the event Ω̃meta(N) unless
differently specified, because those quantities are not defined in Ω̃meta(N)c.

Furthermore, recall that the sets AN and BN are defined, in terms of the fixed index i ∈
{2, . . . ,K}, in (2.10).

Remark 5.1. By G-measurability of Ω̃meta(N) (see Remark 2.6) we are allowed to compute expec-
tations and probabilities conditioned to G on the event Ω̃meta(N).
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Proposition 5.2. Suppose that (aN )N∈N is a non-negative sequence that is sublinear in N . Then
there exists a C ∈ (0, k1 ∧ k2) such that P-a.s. on the event Ξ(aN ) ∩ Ω̃meta(N), for N sufficiently
large depending on (aN )N∈N, β, k1, k2,

∥hNAN ,BN
∥µN = µN [Si,N ]

[
1 +O(e−CN )

]
. (5.1)

Remark 5.3. Proposition 5.2 holds true also for aN = cN , with c > 0, in case cβ is sufficiently small
compared to k1 and k2. We do not use this result.

Remark 5.4. Although Proposition 5.2 is similar to Schlichting and Slowik (2019, Theorem 1.7), it
is not an immediate consequence of the latter. Indeed, in (5.1) both ∥hNAN ,BN

∥µN and µN refer to
the quenched Markov chain (ΣN (t))t∈N0 , but Si,N is a set of the metastable partition of the annealed
Markov chain (Σ̃N (t))t∈N0 , while in Schlichting and Slowik (2019, Theorem 1.7) all quantities refer
to the same process. We made this modification for two reasons. First of all, we are not able to
prove Schlichting and Slowik (2019, Theorem 1.7) for the quenched Markov chain because we cannot
prove the non-degeneracy assumption needed therein. Second, even if we were able to prove it, it
would not be useful later on as we do not have estimates on the measure of the metastable partition
of (ΣN (t))t∈N0 . However, as we shall see later, (2.9) and (3.4) allow us both to prove (5.1) and to
use it later having estimates on its right hand side.

Remark 5.5. Notice that in the following proof of Proposition 5.2 we use the metastability of
(Σ̃N (t))t∈N0 and do not use the metastability of (ΣN (t))t∈N0 .

Proof of Proposition 5.2: The proof is inspired by that of Schlichting and Slowik (2019, Lemma 3.3)
and consists of two steps.
Step 1. Let (aN )N∈N be any non-negative real sequence and fix N ∈ N. We start by showing that
the following is true P-a.s. on the event Ξ(aN )∩ Ω̃meta(N), for any two j ̸= k ∈ {1, . . . ,K} and any
ε ∈ (0, 1], ∑

σ∈Sk,N

µN (σ)

µN [Sk,N ]
hNMj,N ,Mk,N

(σ) ≤ ε+ ρ̃N e4βaN log(1/ε)min

{
1,

µN [Sj,N ]

µN [Sk,N ]

}
. (5.2)

Recall that, for ℓ ∈ {1, . . . ,K}, Vℓ,N and Sℓ,N are, respectively, the local valley around the
metastable set Mℓ,N and a set of the metastable partition of the annealed model. Moreover,
MN =

⋃K
ℓ=1Mℓ,N . By applying (2.17) and (3.5), we have that, for any X ⊂ Vk,N \ Mk,N , P-

a.s. on the event Ξ(aN ) ∩ Ω̃meta(N),

µN

[
X
](3.5)
≤ e2βaN

capN (X ,Mk,N )

P̃N
µN |X

[
τ̃NMk,N

< τ̃NX
]

≤ e2βaN ρ̃N

(
max

ℓ∈{1,...,K}
P̃N
µN |Mℓ,N

[
τ̃NMN\Mℓ,N

< τ̃NMℓ,N

])−1

capN (X ,Mk,N )

(3.5)
≤ e4βaN ρ̃N

(
max

ℓ∈{1,...,K}
PN
µN |Mℓ,N

[
τNMN\Mℓ,N

< τNMℓ,N

])−1

capN (X ,Mk,N ), (5.3)

where in the second inequality we used that we are in Ω̃meta(N) and X ⊂ Vk,N \ Mk,N to apply
Schlichting and Slowik (2019, Lemma 3.1). Moreover, using (2.17) and monotonicity of capacities,
we get

max
ℓ∈{1,...,K}

PN
µN |Mℓ,N

[
τNMN\Mℓ,N

< τNMℓ,N

]
≥ max

{
capN (Mj,N ,Mk,N )

µN

[
Mk,N

] ,
capN (Mk,N ,Mj,N )

µN

[
Mj,N

] }
.

(5.4)
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Next, for t ∈ (0, 1] we write XN (t) := {σ ∈ SN : hNMj,N ,Mk,N
(σ) ≥ t} to denote the super level-

sets of hNMj,N ,Mk,N
. Note that, for any t ∈ (0, 1], XN (t) ∩ Mk,N = ∅ and Mj,N ⊆ XN (t). Using

reversibility, (2.16) and the definition of XN (t) we have

t capN (XN (t),Mk,N ) ≤
∑

σ∈XN (t)

µN (σ)
(
−LNhNXN (t),Mk,N

)
(σ)hNMj,N ,Mk,N

(σ)

= ⟨−LNhNXN (t),Mk,N
, hNMj,N ,Mk,N

⟩µN

= ⟨hNXN (t),Mk,N
,−LNhNMj,N ,Mk,N

⟩µN = capN (Mj,N ,Mk,N ). (5.5)

By expressing the expected value of a non-negative random variable in terms of the integral of the
tail of its distribution, we obtain, for any ε ∈ (0, 1],∑

σ∈Sk,N

µN (σ)

µN [Sk,N ]
hNMj,N ,Mk,N

(σ) ≤ ε+

∫ 1

ε

µN

[
XN (t) ∩ Sk,N

]
µN

[
Sk,N

] dt.

Using (5.3) with X = XN (t)∩Sk,N , together with (5.4), the symmetry and monotonicity of capacities
and (5.5), we obtain, for t ∈ [ε, 1],

µN

[
XN (t) ∩ Sk,N

]
≤ ρ̃N e4βaN

min
{
µN

[
Mk,N

]
, µN

[
Mj,N

]}
capN (Mj,N ,Mk,N )

capN (XN (t),Mk,N )

≤ ρ̃N e4βaN min
{
µN

[
Mk,N

]
, µN

[
Mj,N

]}1
t
.

Therefore, recalling that Mℓ,N ⊆ Sℓ,N , ℓ ∈ {1, . . . ,K}, we obtain∑
σ∈Sk,N

µN (σ)

µN [Sk,N ]
hNMj,N ,Mk,N

(σ) ≤ ε+ ρ̃N e4βaN min

{
µN

[
Sj,N

]
µN

[
Sk,N

] , 1}∫ 1

ε

1

t
dt,

which completes the proof of (5.2).
Step 2. In view of (5.2), the proof of (5.1) runs along the same lines as the proof of Schlichting and
Slowik (2019, Theorem 1.7). For the reader’s convenience we provide the details here. Let AN ,BN

be defined as in (2.10). In particular, recall that AN = Mi,N . Then

∥hNAN ,BN
∥µN = µN

[
Si,N

](
∥hNAN ,BN

∥µN |Si,N
+
∑
j ̸=i

µN

[
Sj,N

]
µN

[
Si,N

]∥hNAN ,BN
∥µN |Sj,N

)
. (5.6)

In order to prove a lower bound, we neglect the last term in the bracket in (5.6), while the first
term is bounded from below by

∥hNAN ,BN
∥µN |Si,N

= 1− ∥hNBN ,AN
∥µN |Si,N

≥ 1−
i−1∑
j=1

∥hNMj,N ,Mi,N
∥µN |Si,N

,

where we used that, for all σ ∈ SN \ (AN ∪ BN ),

hNBN ,AN
(σ) = PN

σ

[
τN⋃i−1

j=1 Mj,N
< τNMi,N

]
≤

i−1∑
j=1

PN
σ

[
τNMj,N

< τNMi,N

]
=

i−1∑
j=1

hNMj,N ,Mi,N
(σ).

By applying (5.2) with ε = e−k1N , recalling ρ̃N = e−k1N (see (2.6)), we obtain that P-a.s. on the
event Ξ(aN ) ∩ Ω̃meta(N),

∥hNAN ,BN
∥µN |Si,N

≥ 1−Ke−k1N
(
1 + e4βaN log(1/e−k1N )

)
.
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Hence, we get

∥hNAN ,BN
∥µN ≥ µN

[
Si,N

](
1−KNe−k1N+βaN

(
e− logN−βaN + k1

))
. (5.7)

In order to get the upper bound, we exploit the fact that (2.9), together with (3.4), implies that
µN

[
Sj,N

]
/µN

[
Si,N

]
≤ e−k2N e2βaN for all j ∈ {i+ 1, . . . ,K}. Hence,

∑
j ̸=i

µN

[
Sj,N

]
µN

[
Si,N

]∥hNAN ,BN
∥µN |Sj,N

≤ Ke−k2N e2βaN +
i−1∑
j=1

µN

[
Sj,N

]
µN

[
Si,N

]∥hNMi,N ,Mj,N
∥µN |Sj,N

,

where we used that, for j ∈ {1, . . . , i− 1} and σ ∈ SN \
⋃i

ℓ=1Mℓ,N ,

hNAN ,BN
(σ) = PN

σ

[
τNMi,N

< τN⋃i−1
ℓ=1 Mℓ,N

]
≤ PN

σ

[
τNMi,N

< τNMj,N

]
= hNMi,N ,Mj,N

(σ).

Thus, applying (5.2) with ε = e−k1N minℓ∈{1,...,i−1} µN

[
Si,N

]
/µN

[
Sℓ,N

]
, we get that, P-a.s. on the

event Ξ(aN ) ∩ Ω̃meta(N),

µN

[
Sj,N

]
µN

[
Si,N

]∥hNMi,N ,Mj,N
∥µN |Sj,N

≤ e−k1N − ρ̃N e4βaN log

(
e−k1N min

ℓ∈{1,...,i−1}

µN

[
Si,N

]
µN

[
Sℓ,N

])
for every j ∈ {1, . . . , i − 1}. Since µN

[
Si,N

]
/µN

[
Sj,N

]
≥ e−β(kJ+h)N for j ∈ {1, . . . ,K} and

∥hNAN ,BN
∥µN |Si,N

≤ 1, we can use (5.6) to conclude that

∥hNAN ,BN
∥µN ≤ µN

[
Si,N

](
1 +Ke−k2N+2βaN +K

(
e−k1N + (k1 + β(kJ + h))Ne−k1N+4βaN

))
.

(5.8)

Let

N̄ := min
{
N ∈ N : − k2N + 2βaN < 0 and − k1N + 4βaN + logN < 0

}
.

Note that N̄ depends on (aN )N∈N, β, k1, k2 and is deterministic. The minimum exists because
β, k1, k2 are fixed and aN is taken sublinear in N . By combining (5.7) and (5.8), the assertion
follows for all N ≥ N̄ . □

Corollary 5.6. There exists a C ∈ (0, k1 ∧ k2) such that, for N sufficiently large depending on
β, k1, k2, kJ , P-a.s. on the event Ω̃meta(N),

EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]
= EG

[
log
(
ZNµN [Si,N ]

)]
+O

(
e−CN

)
.

Proof : First observe that P-a.s.

e−β(kJ+h)N ≤ ZN∥hNAN ,BN
∥µN ≤ 2Neβ(kJ+h)N

for N ∈ N \ {1}. Moreover, let aN = kJ
√

Nk1 + (N + 1) log 2. In view of Proposition 5.2, we know
that there exist a C ∈ (0, k1 ∧ k2) and a c′ ∈ (0,∞) such that, for all N sufficiently large depending
on β, k1, k2, kJ ,

EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]
≤ EG

[
log
(
ZN∥hNAN ,BN

∥µN

)
1Ξ(aN )

]
+ (β(kJ + h) + log 2)N PG

[
Ξ(aN )c

]
≤ EG

[
log
(
ZNµN

[
Si,N

])]
+ log

(
1 + c′(e−CN )

)
+ (β(kJ + h) + log 2)N e−k1N ,
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where we used (3.7), which is implied by Lemma 3.1 and our choice of aN . Likewise, by using
additionally that ZNµN [Si,N ] ≤ 2Neβ(kJ+h)N , we obtain that

EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]
≥ EG

[
log
(
ZN∥hNAN ,BN

∥µN

)
1Ξ(aN )

]
− β(kJ + h)N PG

[
Ξ(aN )c

]
≥ EG

[
log
(
ZNµN

[
Si,N

])]
+ log

(
1− c′(e−CN )

)
− (2β(kJ + h) + log 2)Ne−k1N .

Since C < k1, this concludes the proof. □

5.2. Concentration inequality.

Proposition 5.7. There exist C ∈ (0, k1∧k2) and c4 ∈ (0,∞) such that, for all N sufficiently large
depending on β, k1, k2, kJ , and all t ∈ N0, P-a.s. on the event Ω̃meta(N),

PG

[∣∣log(ZN∥hNAN ,BN
∥µN

)
− EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]∣∣ > t
]
≤ 2e

−
(

t−cN
βkJ

)2
+ e−k1N, (5.9)

where cN := c4 e
−CN .

Proof : Let aN = kJ
√

Nk1 + (N + 1) log 2. In view of Proposition 5.2 and Corollary 5.6, there exist
a C ∈ (0, k1∧k2) and c4 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ , P-a.s
on the event Ξ(aN ) ∩ Ω̃meta(N),∣∣log(ZN∥hNAN ,BN

∥µN

)
− log

(
ZNµN [Si,N ]

)∣∣ ≤ c4
2
e−CN

and ∣∣EG
[
log
(
ZN∥hNAN ,BN

∥µN

)]
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ ≤ c4
2
e−CN .

Hence, by setting cN := c4 e
−CN , we obtain that

PG

[∣∣log(ZN∥hNAN ,BN
∥µN

)
− EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]∣∣ > t
]

≤ PG

[∣∣log(ZN∥hNAN ,BN
∥µN

)
− EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]∣∣ > t,Ξ(aN )
]

+ PG
[
Ξ(aN )c

]
≤ PG

[∣∣log(ZNµN [Si,N ]
)
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ > t− cN

]
+ e−k1N , (5.10)

where, as above, we used (3.7), which is implied by Lemma 3.1 and our choice of aN . In order to
bound the first term on the right-hand side of (5.10), recall that the triangular array (Jij)1≤i<j<∞
is assumed to be conditionally independent given G. Moreover, in view of (4.3), for any 2 ≤ N ∈ N
it is immediate that the mapping

(Jij)1≤i<j≤N 7−→ F̄N

(
(Jij)1≤i<j≤N

)
:= log

(
ZNµN [Si,N ]

)
satisfies the estimate ∣∣F̄N

(
(Jij)1≤i<j≤N

)
− F̄N

(
(J ′

ij)1≤i<j≤N

)∣∣ ≤ 2βkJ
N

,

where J ′
ij := Jij for all 1 ≤ i < j ≤ N such that (i, j) ̸= (k, l) and J ′

kl is a conditionally independent
copy of (Jij)1≤i<j≤N given G, for any 1 ≤ k < l ≤ N . Hence, by applying McDiarmid concentration
inequality in the version of Proposition A.1, we get that

PG

[∣∣log(ZNµN [Si,N ]
)
− EG

[
log
(
ZNµN [Si,N ]

)]∣∣ > t
]
≤ 2 e−t2/(βkJ )

2
. (5.11)

Combining (5.10) and (5.11), we get the assertion in (5.9). □
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5.3. Annealed estimate.

Proposition 5.8. Let αN be as defined in (2.11). Then the following hold:

(i) There exists a c5 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ , P-a.s.
on the event Ω̃meta(N),

− c5
N

≤ EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]
− log

(
Z̃N∥h̃NAN ,BN

∥µ̃N

)
≤ αN +

c5
N

. (5.12)

(ii) For any q ∈ [1,∞) there exists a c6 ∈ (0,∞) such that, for N sufficiently large depending on
β, k1, k2, kJ , q, P-a.s. on the event Ω̃meta(N),

eαN (1− c6N
−1) ≤

EG

[(
ZN∥hNAN ,BN

∥µN

)q]1/q
Z̃N∥h̃NAN ,BN

∥µ̃N

≤ eqαN (1 + c6N
−1).

Proof : (i) By using Jensen’s inequality, G-measurability of Si,N and Lemma 4.2(i), we find that for
2 ≤ N ∈ N

EG

[
log
(
ZNµN [Si,N ]

)]
≤ logEG

[
ZNµN [Si,N ]

]
= log

(
Z̃N µ̃N [Si,N ]

)
+ log

( ∑
σ∈Si,N

µ̃N (σ)

µ̃N [Si,N ]
EG

[
e−β∆N (σ)

])
= log

(
Z̃N µ̃N [Si,N ]

)
+ αN + log

(
1 +O(N−1)

)
. (5.13)

Likewise,

EG

[
log
(
ZNµN [Si,N ]

)]
= log

(
Z̃N µ̃N [Si,N ]

)
+ EG

[
log

( ∑
σ∈Si,N

µ̃N (σ)

µ̃N [Si,N ]
e−β∆N (σ)

)]

≥ log
(
Z̃N µ̃N [Si,N ]

)
+
∑

σ∈Si,N

µ̃N (σ)

µ̃N [Si,N ]
EG
[
−β∆N (σ)

]
= log

(
Z̃N µ̃N [Si,N ]

)
. (5.14)

Moreover, since µ̃N [Sj,N ]/µ̃N [Si,N ] ≤ eβ(kJ+h)N for all j ∈ {1, . . . ,K}, we deduce from Schlichting
and Slowik (2019, Theorem 1.7) that

Z̃N∥h̃NAN ,BN
∥µ̃N = Z̃N µ̃N

[
Si,N

](
1 +O(e−k2N +Nρ̃N )

)
. (5.15)

Thus, recalling that ρ̃N = e−k1N , the assertion in (5.12) follows from Corollary 5.6 combined with
(5.13), (5.14) and (5.15).
(ii) For given q ∈ [1,∞), take c′ ∈ (0,∞) and

aN := kJ
√

(N + 1) log 2 + qN(log 2 + 2β(kJ + h) + c′).

It follows from Lemma 3.1 that, P-a.s.,

PG
[
Ξ(aN )c

] 1
q ≤ e−bN/q = 2−Ne−2β(kJ+h)Ne−c′N . (5.16)

In order to obtain an upper bound for the q-th conditional moment given G of the harmonic
sum, we use Minkowski’s inequality, (5.16) and the facts that ZN∥hNAN ,BN

∥µN ≤ 2Neβ(kJ+h)N and
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Z̃N∥h̃NAN ,BN
∥µ̃N ≥ e−β(kJ+h)N . This gives

EG

[(
ZN∥hNAN ,BN

∥µN

)q] 1
q

≤ EG

[(
ZN∥hNAN ,BN

∥µN

)q
1Ξ(aN )

] 1
q
+ 2Neβ(kJ+h)N PG

[
Ξ(aN )c

] 1
q

≤ EG

[(
ZN∥hNAN ,BN

∥µN

)q
1Ξ(aN )

] 1
q
+ Z̃N∥h̃NAN ,BN

∥µ̃N e−c′N . (5.17)

To analyse the first term of the right-hand side of (5.17), we apply Proposition 5.2 to obtain that
there exists a C ∈ (0, k1 ∧ k2) such that, for N sufficiently large depending on β, k1, k2, kJ , q,

EG

[(
ZN∥hNAN ,BN

∥µN

)q
1Ξ(aN )

] 1
q
= EG

[(
ZNµN

[
Si,N

])q
1Ξ(aN )

] 1
q (
1 +O(e−CN )

)
. (5.18)

Moreover, a further application of Minkowski’s inequality yields that

EG

[(
ZNµN

[
Si,N

])q
1Ξ(aN )

] 1
q ≤ Z̃N

∑
σ∈Si,N

µ̃N (σ)EG

[
e−βq∆N (σ)

] 1
q

= Z̃N µ̃N [Si,N ] eqαN
(
1 +O(N−1)

)
, (5.19)

where in the last step we used Lemma 4.2(i) with β replaced by βq. Thus, combining (5.17) with
(5.18), (5.19) and (5.15), we see that there exists a c′′ ∈ (0,∞) such that for N sufficiently large
depending on β, k1, k2, kJ , q,

EG

[(
ZN∥hNAN ,BN

∥µN

)q] 1
q ≤ Z̃N∥h̃NAN ,BN

∥µ̃N eqαN
(
1 + c′′N−1

)
.

We close by proving a lower bound for the q-th conditional moment given G of the harmonic sum.
By Jensen’s inequality we get that

EG

[(
ZN∥hNAN ,BN

∥µN

)q] 1
q ≥ EG

[
ZN∥hNAN ,BN

∥µN

]
≥ EG

[
ZN∥hNAN ,BN

∥µN1Ξ(aN )

]
. (5.20)

In view of Proposition 5.2, together with (5.16) and the facts that ZNµN [Si,N ] ≤ 2Neβ(kJ+h)N and
Z̃N∥h̃NAN ,BN

∥µ̃N ≥ e−β(kJ+h)N , we get that there exists a C ∈ (0, k1∧k2) such that, for N sufficiently
large depending on β, k1, k2, kJ , q

EG

[
ZN∥hNAN ,BN

∥µN1Ξ(aN )

]
= EG

[
ZNµN [Si,N ]1Ξ(aN )

](
1 +O(e−CN )

)
≥
(
EG

[
ZNµN [Si,N ]

]
− Z̃N∥h̃NAN ,BN

∥µ̃N e−c′N
)(

1 +O(e−CN )
)
.

(5.21)

Since, by Lemma 4.2(i),

EG

[
ZNµN [Si,N ]

]
= Z̃N µ̃N [Si,N ] eαN

(
1 +O(N−1)

)
, (5.22)

we conclude from (5.20) combined with (5.21), (5.22) and (5.15) that there exists a c′′′ ∈ (0,∞)
such that, for N sufficiently large depending on β, k1, k2, kJ , q

EG

[(
ZN∥hNAN ,BN

∥µN

)q] 1
q ≥ Z̃N∥h̃NAN ,BN

∥µ̃N eαN
(
1 + c′′′N−1

)
.

By setting c6 := c′′ ∨ c′′′, we get the assertion. □
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6. Estimates on mean hitting times of metastable sets

Before proving Theorem 2.12, we state two immediate corollaries of the propositions proved in
Sections 4 and 5.

Corollary 6.1. There exist C ∈ (0, k1 ∧ k2) and c4 ∈ (0,∞) such that, for all N sufficiently large
depending on β, k1, k2, kJ , and all t ∈ N0, P-a.s.,

PG

[∣∣∣∣log(EN
νAN,BN

[
τNBN

])
− EG

[
log
(
EN
νAN,BN

[
τNBN

])]∣∣∣∣ > t, Ω̃meta(N)

]
≤ 1

Ω̃meta(N)

[
2

(
e
−
(

t−cN
2βkJ

)2
+ e

−
(

t
2βkJ

)2)
+ e−k1N

]
,

where cN := c4 e
−CN .

Proof : In view of (2.15), we have that

PG

[∣∣∣∣log(EN
νAN,BN

[
τNBN

])
− EG

[
log
(
EN
νAN,BN

[
τNBN

])]∣∣∣∣ > t, Ω̃meta(N)

]
≤ PG

[∣∣∣∣log(ZN∥hNAN ,BN
∥µN

)
− EG

[
log
(
ZN∥hNAN ,BN

∥µN

)]∣∣∣∣ > t

2
, Ω̃meta(N)

]
+ PG

[∣∣∣∣log(ZN capN (AN ,BN )
)
− EG

[
log
(
ZN capN (AN ,BN )

)]∣∣∣∣ > t

2
, Ω̃meta(N)

]
.

Thus, the assertion follows immediately from Proposition 4.1 and Proposition 5.7. □

Corollary 6.2. There exists c7 ∈ (0,∞) such that, for N sufficiently large depending on β, k1, k2, kJ ,
P-a.s. on the event Ω̃meta(N),

−αN − c7√
N

≤ EG

[
log EN

νAN,BN

[
τNBN

]]
− log ẼN

ν̃AN,BN

[
τ̃NBN

]
≤ 2αN +

c7√
N

, (6.1)

where αN is defined in (2.11).

Proof : In view of (2.15), the assertion in (6.1) follows immediately from Proposition 5.8(i) and
Proposition 4.3(i). □

Proof of Theorem 2.12: (i) Recall once again the G-measurability of Ω̃meta(N) (see Remark 2.6),
and note that an application of Corollary 6.2 yields that there exists a c7 ∈ (0,∞) such that, for N
sufficiently large depending on β, k1, k2, kJ , P-a.s.,

PG

[
e−t−αN ≤

EN
νAN,BN

[
τNBN

]
ẼN
ν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
1
Ω̃meta(N)

(6.1)
≥ PG

[
e
−(t− c7√

N
) ≤

EN
νAN,BN

[
τNBN

]
exp
(
EG

[
log EN

νAN,BN

[
τNBN

]]) ≤ e
+(t− c7√

N
)
, Ω̃meta(N)

]

≥ 1
Ω̃meta(N)

− PG

[∣∣∣∣log(EN
νAN,BN

[
τNBN

])
− EG

[
log
(
EN
νAN,BN

[
τNBN

])]∣∣∣∣ > t− c7√
N

]
1
Ω̃meta(N)

.
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Thus, from Corollary 6.1 it follows that there exists a C ∈ (0, k1 ∧ k2) such that, for N sufficiently
large depending on β, k1, k2, kJ , P-a.s.,

PG

[
e−t−αN ≤

EN
νAN,BN

[
τNBN

]
ẼN
ν̃AN,BN

[
τ̃NBN

] ≤ e+t+2αN

]
1
Ω̃meta(N)

≥
(
1− 2

(
e
−
(

t−c7N
−1/2−cN

2βkJ

)2
+ e

−
(

t−c7N
−1/2

2βkJ

)2)
− e−k1N

)
1
Ω̃meta(N)

. (6.2)

Assumption 2.7 implies that limN→∞ 1
Ω̃meta(N)

exists and is P-a.s. equal to 1. Since trivially 1 ≥
1
Ω̃meta(N)

, taking the limit N → ∞ of (6.2) yields (2.12).
(ii) Fix q ∈ [1,∞). In view of (2.15), an application of the Cauchy-Schwarz inequality yields that,
P-a.s.,

EG

[
EN
νAN,BN

[
τNBN

]q] 1
q ≤ EG

[(
ZN∥hNAN ,BN

∥µN

)2q] 1
2q EG

[(
ZN capN

(
AN ,BN

))−2q
] 1

2q
.

Hence, by Proposition 4.3(ii) and 5.8(ii), there exists a c ∈ (0,∞) such that for N sufficiently large
depending on β, k1, k2, kJ , q, P-a.s. on the event Ω̃meta(N),

EG

[
EN
νAN,BN

[
τNBN

]q] 1
q ≤ ẼN

ν̃AN,BN

[
τ̃NBN

]
e4qαN

(
1 +

c√
N

)
.

On the other hand, by using Jensen’s inequality and Corollary 6.2, we find that there exists a
c7 ∈ (0,∞) such that, for any q ∈ [1,∞) and N sufficiently large depending on β, k1, k2, kJ , q, P-a.s.
on the event Ω̃meta(N),

EG

[
EN
νAN,BN

[
τNBN

]q] 1
q ≥ exp

(
EG

[
log EN

νAN,BN

[
τNBN

]])
≥ ẼN

ν̃AN,BN

[
τ̃NBN

]
e−αN

(
1− c7√

N

)
.

Therefore, by letting c1 = c ∨ c7, for N sufficiently large depending on β, k1, k2, kJ , q, P-a.s. on the
event Ω̃meta(N),

e−αN
(
1− c1√

N

)
≤

EG

[
EN
νAN,BN

[
τNBN

]q]1/q
ẼN
ν̃AN,BN

[
τ̃NBN

] ≤ e4qαN
(
1 + c1√

N

)
.

Thus, the set Ωq,c1(N) defined in (2.13) contains Ω̃meta(N). Therefore, using Assumption 2.7, and
monotonicity of probability

1 = P
[
lim inf
N→∞

Ω̃meta(N)

]
≤ P

[
lim inf
N→∞

Ωq,c1(N)

]
which concludes the proof of (2.14). □

Appendix A. Concentration inequality

We present a concentration inequality for functionals of conditionally independent random vari-
ables that is a slight extension of the classical McDiarmid concentration inequality for functionals of
independent random variables satisfying a bounded difference estimate, cf. Boucheron et al. (2013,
Theorem 6.2), Dembo and Zeitouni (2010, Section 2.4.1).

Proposition A.1. Let (Ω,F ,P) be a probability space, G ⊂ F a sub-σ-algebra of F , 1 ≤ n ∈ N and
X a Polish space. Consider a vector X = (X1, . . . , Xn) of X -valued random variables on (Ω,F ,P)
that are conditionally independent given G, and let fn : X n → R be a measurable function. Suppose
that, for any i ∈ {1, . . . , n},∣∣fn(X1, . . . , Xn)− fn(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn)

∣∣ ≤ ci ∈ [0,∞) P -a.s., (A.1)
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where (X ′
1, . . . , X

′
n) is a conditionally independent copy of (X1, . . . , Xn) given G. Then, P-a.s. for

all t ∈ N0,

P
[
fn(X)− E[fn(X) | G] > +t | G

]
P
[
fn(X)− E[fn(X) | G] < −t | G

] } ≤ e−t2/(2v),

where v := 1
4

∑n
i=1 c

2
i .

Proof : Since there exists a regular conditional probability for X (see e.g. Chow and Teicher, 1997,
p. 217), the proof follows the line of proof of the non-conditional McDiarmid concentration inequality.

□

References

an der Heiden, M. Metastability of Markov chains and in the Hopfield model. Ph.D. thesis, Technische
Universität Berlin, Fakultät III - Prozesswissenschaften (2007). DOI: 10.14279/depositonce-1513.

Bianchi, A., Bovier, A., and Ioffe, D. Sharp asymptotics for metastability in the random field
Curie-Weiss model. Electron. J. Probab., 14, no. 53, 1541–1603 (2009). MR2525104.

Bianchi, A., Bovier, A., and Ioffe, D. Pointwise estimates and exponential laws in metastable
systems via coupling methods. Ann. Probab., 40 (1), 339–371 (2012). MR2917775.

Boucheron, S., Lugosi, G., and Massart, P. Concentration inequalities. A nonasymptotic theory of
independence. Oxford University Press, Oxford (2013). ISBN 978-0-19-953525-5. MR3185193.

Bovier, A. Statistical mechanics of disordered systems. A mathematical perspective, volume 18
of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge (2006). ISBN 978-0-521-84991-3; 0-521-84991-8. MR2252929.

Bovier, A. and den Hollander, F. Metastability. A potential-theoretic approach, volume 351 of
Grundlehren der mathematischen Wissenschaften. Springer, Cham (2015). ISBN 978-3-319-
24775-5; 978-3-319-24777-9. MR3445787.

Bovier, A., den Hollander, F., and Marello, S. Metastability for Glauber dynamics on the complete
graph with coupling disorder. Comm. Math. Phys., 392 (1), 307–345 (2022). MR4410064.

Bovier, A. and Gayrard, V. Hopfield models as generalized random mean field models. In Mathemat-
ical aspects of spin glasses and neural networks, volume 41 of Progr. Probab., pp. 3–89. Birkhäuser
Boston, Boston, MA (1998). MR1601727.

Bovier, A., Marello, S., and Pulvirenti, E. Metastability for the dilute Curie-Weiss model with
Glauber dynamics. Electron. J. Probab., 26, Paper No. 47, 38 (2021). MR4247972.

Can, V. H., van der Hofstad, R., and Kumagai, T. Glauber dynamics for Ising models on random
regular graphs: cut-off and metastability. ALEA Lat. Am. J. Probab. Math. Stat., 18 (2), 1441–
1482 (2021). MR4282194.

Chow, Y. S. and Teicher, H. Probability theory. Independence, interchangeability, martingales.
Springer Texts in Statistics. Springer-Verlag, New York, third edition (1997). ISBN 0-387-98228-
0. MR1476912.

Chung, F. and Lu, L. The average distances in random graphs with given expected degrees. Proc.
Natl. Acad. Sci. USA, 99 (25), 15879–15882 (2002). MR1944974.

Dembo, A. and Zeitouni, O. Large deviations techniques and applications, volume 38 of Stochas-
tic Modelling and Applied Probability. Springer-Verlag, Berlin (2010). ISBN 978-3-642-03310-0.
MR2571413.

den Hollander, F. and Jovanovski, O. Glauber dynamics on the Erdős-Rényi random graph. In
In and out of equilibrium 3. Celebrating Vladas Sidoravicius, volume 77 of Progr. Probab., pp.
519–589. Birkhäuser/Springer, Cham (2021). MR4237284.

Dommers, S. Metastability of the Ising model on random regular graphs at zero temperature.
Probab. Theory Related Fields, 167 (1-2), 305–324 (2017). MR3602847.

http://dx.doi.org/10.14279/depositonce-1513
http://www.ams.org/mathscinet-getitem?mr=MR2525104
http://www.ams.org/mathscinet-getitem?mr=MR2917775
http://www.ams.org/mathscinet-getitem?mr=MR3185193
http://www.ams.org/mathscinet-getitem?mr=MR2252929
http://www.ams.org/mathscinet-getitem?mr=MR3445787
http://www.ams.org/mathscinet-getitem?mr=MR4410064
http://www.ams.org/mathscinet-getitem?mr=MR1601727
http://www.ams.org/mathscinet-getitem?mr=MR4247972
http://www.ams.org/mathscinet-getitem?mr=MR4282194
http://www.ams.org/mathscinet-getitem?mr=MR1476912
http://www.ams.org/mathscinet-getitem?mr=MR1944974
http://www.ams.org/mathscinet-getitem?mr=MR2571413
http://www.ams.org/mathscinet-getitem?mr=MR4237284
http://www.ams.org/mathscinet-getitem?mr=MR3602847


Metastability of Glauber dynamics with inhomogeneous coupling disorder 1273

Dommers, S., den Hollander, F., Jovanovski, O., and Nardi, F. R. Metastability for Glauber
dynamics on random graphs. Ann. Appl. Probab., 27 (4), 2130–2158 (2017). MR3693522.

Dubbeldam, J. L. A., Lenz, V., Pulvirenti, E., and Slowik, M. Metastability for the Curie–Weiss–
Potts model with unbounded random interactions (2024+). In preparation.

Martinelli, F., Olivieri, E., and Scoppola, E. Metastability and exponential approach to equilib-
rium for low-temperature stochastic Ising models. J. Statist. Phys., 61 (5-6), 1105–1119 (1990).
MR1083898.

Martinelli, F. and Scoppola, E. Small random perturbations of dynamical systems: exponential loss
of memory of the initial condition. Comm. Math. Phys., 120 (1), 25–69 (1988). MR972542.

Mossel, E. and Sly, A. Rapid mixing of Gibbs sampling on graphs that are sparse on average.
Random Structures Algorithms, 35 (2), 250–270 (2009). MR2547535.

Mossel, E. and Sly, A. Exact thresholds for Ising-Gibbs samplers on general graphs. Ann. Probab.,
41 (1), 294–328 (2013). MR3059200.

Olivieri, E. and Vares, M. E. Large deviations and metastability, volume 100 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge (2005). ISBN 0-521-
59163-5. MR2123364.

Schlichting, A. and Slowik, M. Poincaré and logarithmic Sobolev constants for metastable Markov
chains via capacitary inequalities. Ann. Appl. Probab., 29 (6), 3438–3488 (2019). MR4047985.

http://www.ams.org/mathscinet-getitem?mr=MR3693522
http://www.ams.org/mathscinet-getitem?mr=MR1083898
http://www.ams.org/mathscinet-getitem?mr=MR972542
http://www.ams.org/mathscinet-getitem?mr=MR2547535
http://www.ams.org/mathscinet-getitem?mr=MR3059200
http://www.ams.org/mathscinet-getitem?mr=MR2123364
http://www.ams.org/mathscinet-getitem?mr=MR4047985

	1. Introduction
	2. Model, results and methods
	2.1. The model
	2.2. Metastability and main results
	2.3. Methods and outline

	3. Metastability
	4. Capacity estimates
	4.1. Concentration of quenched capacities
	4.2. Annealed capacity estimates

	5. Equilibrium potential estimates
	5.1. Preliminary estimates
	5.2. Concentration inequality
	5.3. Annealed estimate

	6. Estimates on mean hitting times of metastable sets
	Appendix A. Concentration inequality
	References

