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Abstract

Purkinje cell is a type of neuron that can be found in the cerebellum. What characterises Purkinje cell neural
activity is the fact that it exhibits two types of spiking behaviour; the so-called simple and complex spikes.
These two types of spikes are thought to play a role in motor functionality. In order to better understand the
relationship between Purkinje cell neural activity and the motor-cortex, neuroscientists record such neural
activity in mice. However, current experimental setups pose a challenge as they involve a wired connection
between the animal’s head stage and the recording device, which limits the mouse’s natural behaviour by
restricting its movement. This work proposes a lightweight neural-spike detection and classification archi-
tecture for acquiring Purkinje cell neural activity. The proposed design discards unneeded information, by
detecting and classifying spikes in real-time. This type of compression enables data storage on a removable
device in the head stage, freeing mice from wires. Its small form factor allows unrestricted movement during
experiments, while a power-efficient design ensures long-term operation. The performance of the algorithm
has been evaluated using a software implementation, yielding a combined accuracy for detection and clas-
sification ranging from 92.74% to 94.54%. The system has been synthesised using the 45 nm Nangate Open
Cell library resulting in an ASIC with an area of 0.22 mm2 and a power consumption of 0.412 mW.

D.A. Vrijenhoek
Delft, July 2023
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1
Introduction

1.1. Motivation & Problem Statement
This thesis is the result of a collaboration between the Computer Engineering lab of the TU Delft and the
Whisker Lab. The Whisker Lab is a research laboratory that focuses on studying topics related to the brain,
mainly focusing on the brain of mice. For this particular research project, they try to correlate the neural
activity of the Purkinje cells, which are located in the cerebellum, with neural activity from the motor cortex
in the brain of a mouse. The neural activity of these Purkinje cells is especially interesting because it mani-
fests in two types of spikes, each with its own distinctive waveform. The exact function of each type of spike
within the neural circuits of the cerebellum and motor cortex is not yet known. Splitting these two types of
spikes and looking into their relationship with another part of the brain helps to further our understanding
of the dependence of different brain functions. This could, potentially, have application in the field of neural
implants which aim to restore the (paralysed) patients’ ability to move. It is, of course, hard to say what the
direct applications could be, due to the early stage of the research. However, it is a promising topic to look
into.

Figure 1.1: Tethered mice are not able to move around freely[9].

What makes the Purkinje cell unique, is the fact that it is one of the largest types of neuron found in the
mammalian brain. Out of the two types of spikes, the most common type of spike is called the simple spike
and characterised by only having a downward deflection. The second type of spike is called the complex
spike and is characterised by having a downward as well as an upward deflection. The current method of
data acquisition is recording required data (i.e. neural signals) via a tethered device, which directly streams
the neural recordings to an off-site personal computer for data logging (see figure 1.1). Restricting the mouse’s
movement through this tether hinders mimicking ideal behaviour, so a different method is preferred. In order
to tackle this problem, two solutions are possible: either send raw data wirelessly to the off-site computer for
logging or save all the data on-chip within the mouse head stage, so it can be downloaded after the exper-
iment has been conducted. The wireless solution introduces a plethora of additional problems, relating to
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2 1. Introduction

latency, reliability, and power issues, and is not really a viable option without addressing these issues, which
is a time-consuming process. Saving the recorded data on-chip for later extraction avoids these problems,
but would require a lot of chip real-estate to facilitate (sufficient) data storage. The solution of the Whisker
Lab for this problem is simple because they are only interested in the timestamp of the occurrence of the
spike, as well as its classification. Currently, there is no solution for this kind of "compression" within the
mouse head stage, and this thesis work aims to provide such a solution (see figure 1.2). The solution which
is presented in this work also solves another problem: the software implementation of the proposed design
can aid in post-processing the recorded experiments and automating the labelling of spikes. Currently, this
is performed manually, which is labour intensive work.

Amplifier

Filter ADC Acquisition
device

Our approach

ADC Spike
detection

Storage

This work

Simple spike

Complex spike
Head stage
electronics

Spike type

a Simple

Simple

Complex

Simple

b

a b

c

d

c

d

Sample Index

Spike
classifcation

Wired connection

Figure 1.2: Current wired solution for recording Purkinje cell activity and proposed solution to allow free natural behaviour (i.e. omit
wired connection).

The spike detection and classification workload is very similar to a more generic workload which is in-
creasingly being utilised in neural implantable medical devices (henceforth referred to as neural IMDs), called
spike sorting. Spike sorting is the process of identifying the individual contribution of neurons in a recorded
signal. Neural signals can be recorded in several ways, each with its own level of precision. The easiest sig-
nal type to record is called the EEG and records the neural activity of a large proportion of brain tissue, from
outside the skull. To get a more localised view of the neural dynamics, brain activity must be recorded from
inside the brain. By means of a recording shank, the neural activity of several thousands of neurons can be
recorded. These types of neural recordings are called Local Field Potentials (henceforth referred to as LFP).
By reducing the size of the recording shanks, the neural activity of individual neurons can be recorded. These
types of brain signals are the hardest to acquire but give the most detailed insight of the brain dynamics. The
neural activity of individual neurons is called Action Potentials (APs) However, the (small) size of the recorded
neurons makes it too hard to record the neural activity of just one typical neuron. The recording shanks al-
ways record the activity of 3-5 neurons [34]. By applying a spike sorting algorithm to this recorded signal, each
recorded spike can be mathematically attributed to one individual neuron and hence the spikes are sorted.

Even though the formal definition of spike sorting and the definition used in this thesis are not identical,
they represent the same type of workload and share a great many similarities. Therefore, the work done for
this thesis can be utilised in a broader context of neural implants and its scope exceeds that of the application
it was intended for.

Even though the concept of spike sorting has been around for 20+ years, there still has not been reached
a consensus regarding the preferred method to perform it[34]. Due to the many design considerations that
need to be taken into account, no one method is preferred over the others. These design considerations are
often about the fact that most neural IMDs have to follow a strict budget in terms of energy consumption
and chip area. Moreover, the recorded data often has a poor signal-to-noise ratio with a signal’s amplitude of
some µV[71]. These factors contribute massively to the fact that a spike sorting system is always a trade-off
between available resources and performance and is often tailored for the specific application.

The recording shank cannot be firmly attached to brain tissue and therefore, some electrode drift over
time is inevitable. A spike sorting algorithm should therefore be able to deal with these kinds of issues and be
robust enough to consistently perform its task. This means that some parameters might need on-the-fly cali-
bration, but generally this means that the algorithm should be designed well. One of the main limitations for
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spike sorting algorithms is the fact that the methods that deliver the most performance often introduce a high
computational load to the system. These methods often comprise of "traditional" mathematical techniques,
such as Principal Component Analysis, which make the spike sorting algorithms well suited for offline spike
sorting on a recorded signal.
In order to facilitate real-time spike sorting with the required performance and robustness levels, new tech-
niques need to be devised. The use of Deep Neural Network (i.e. DNNs) can be a solution to these limiting
factors when applied well. DNNs tend to generalise well, when trained appropriately, and should therefore be
able to make a spike sorting algorithm robust enough to operate under varying circumstances (e.g. amplitude
change due to electrode drift).

1.2. Research Topics
In this section, the research questions are introduced. In order to address the aforementioned problem state-
ment, the following research question needs to be addressed:

"How to develop a system that is able to detect and classify neural activity from a Purkinje cell in a real-time
fashion as an embedded implant?"

In order to answer the main research question, it is often useful to break up the research question into
smaller sub-questions which address a specific issue. which are the following:

• "How can techniques for spike sorting be utilised to detect and classify neural activity from a Purkinje cell
in real-time?"

• "How can deep learning techniques aid in classifying spiking activity from a Purkinje cell?"

• "What techniques can be used to deploy the proposed system as an embedded implant?"

1.3. Thesis Contribution
The following states the contributions made based on the research opportunities as discussed in 1.1.

The main contribution of this thesis can be divided into three parts: the use of conventional spike-
detecting techniques to allow for real-time detection of Purkinje cell neural spikes combined with novel neu-
ral network-based classification stage, implementing the resulting algorithm in a lightweight system archi-
tecture and utilise this system architecture in a small-form-factor CMOS implementation.

1.3.1. Real-time Detection and Classification of Purkinje Cell Neural Activity
Generally, the detection and classification of neural activity of Purkinje cells is performed manually and of-
fline. This work is not the first attempt to automate this process, as there are other research groups working
on detecting and classifying the Purkinje cell’s unique neural behaviour (with varying levels of complexity and
features). To the author’s best knowledge, there exists no other system which aims to detect and classify com-
plex and simple spikes in a real-time and lightweight fashion apart from this work. Applying techniques from
regular spike sorting solutions, the proposed system is able to accomplish its task in an energy-efficient mat-
ter. By doing so, it is able to filter out the scarce spiking events and dispose of unwanted information. This
greatly reduces requirements for data storage, which in turn leads to conducting longer experiments. The
main goal of this work is to design an ASIC for an implantable device. However, the software implementation
of the proposed system is already aiding neuroscientists from the Whisker Lab. Manually labelling spiking
events from Purkinje cells offline is a cumbersome and time-consuming process. Time and resources which
could otherwise have been spent on other activities. The software implementation of the proposed system is
able to automate this process and save time and resources.

1.3.2. Lightweight System Architecture
By far the most resource-hungry part of the proposed system is the spike classifier. Given the fact that spiking
events are fairly rare, it would be a waste of energy to have the classifier run continuously. Therefore, the
proposed system uses a two-tier approach, where the spike detection and classification step are separated.
The spike detector runs continuously in a very energy-efficient matter and raises a flag whenever a spike is
detected. The system then proceeds to disable the spike detector and save a number of neural samples, which
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then get fed to the spike classifier. Only at this point, the classifier is enabled and does its job. After the spike
is classified, the classifier is disabled again and the spike detector continues to process the incoming neural
samples in order to detect the next spike.

1.3.3. CMOS Implementation
In order for the system to run in an embedded context (i.e. as an implantable device), a small-form-factor
CMOS implementation is proposed. This CMOS implementation allows for low-power operation for an ex-
tended period of time without hindering the mice in their natural behaviour. Several techniques have been
applied to the design to make this possible. The aforementioned two-tier approach limits the power con-
sumption of the system by only enabling each module when it is needed. Moreover, through quantisation
of the neural network classifier, the computational complexity has been reduced by implementing integer-
only arithmetic (contrary to the more commonly used floating-point arithmetic). Through quantisation, the
memory usage to store the synaptic weights has also been reduced by a factor of four (8 bits vs. 32 bits). This
greatly influences the used chip real-estate and the power consumption of the system as a whole in a positive
way.

1.4. Outline
The first chapter after the introduction presents background knowledge of all relevant topics.The topics dis-
cussed are a basic background in Purkinje cell studies, background knowledge and state-of-the-art of neural
IMDs, and the various steps of spike sorting. Lastly, the basics of artificial neural networks are explained.
The next chapter will present the proposed design. It will cover a system overview explaining the whole spike
sorter system. Also, a more in-depth analysis of the spike detector and spike classifier is given. The spike
sorter’s performance was evaluated and the findings of this evaluation can be found in chapter 4. The system
was evaluated in two different ways, first off the performance of the algorithm was assessed. Next up, the
performance of the ASIC implementation was presented.
This report concludes with a chapter where the proposed system design is summarised. Suggestions for im-
provements for future iterations are also presented and things that could have been done better are touched
upon.

This does not cover all topics treated in this thesis, hence background knowledge of neural IMDs as a
whole is also given. The data acquisition part of these systems is treated, as well as how these systems stim-
ulate the surrounding brain tissue. Lastly, different workloads between the recording and stimulation steps
are discussed. This is a nice transition to a section explaining the basics of spike sorting, which is such a
workload. Of course, for both topics, the current state-of-the-art in their respective fields are also presented.
Lastly, the basics of artificial neural networks are explained. This gives the reader the required background
knowledge to understand the material with regard to the spike classifier, which is implemented as such an
artificial neural network.



2
Background & State-of-the-art

This chapter presents background knowledge for all the topics touched upon by this work. In case it applies,
the state-of-the-art of these topics is also discussed. The first section is about Purkinje cells. Their physiology
is discussed as well as different systems that are designed to classify Purkinje neural activity. The next section
presents a brief overview of neural implantable medical devices or neural IMDs. The recording of neural
activity is discussed as well as the stimulation of neural tissue. Lastly, different types of workloads for neural
IMDs are presented. These workloads can be used to close the loop by enabling recording-driven stimulation.
One of those workloads is called spike sorting, which will be discussed in detail. Lastly, a brief introduction
to artificial neural networks will be given.

2.1. Purkinje Cells
Purkinje cells are neurons which are found in the cerebellum, a brain region generally found in the lower part
of the brain. This kind of neuron is named after its discoverer, the Czech anatomist Jan Purkyně [2]. The
first topic discussed in this chapter is Purkinje cells, especially what makes them unique from other types of
neurons. All relevant information with regard to the context of this thesis work is provided. Moreover, the
state-of-the-art with respect to classifying neural activity of Purkinje cells is also given. Several state-of-the-
art systems for classifying Purkinje cell neural activity will also be discussed.

2.1.1. Physiology
As mentioned before, Purkinje cells can be found in the cerebellum (also called the cerebellar cortex). This
part of the brain is responsible for governing motor functions. The Purkinje cells can be found on the outer
edge of the cerebellar cortex, where they form neural circuits with neighbouring Purkinje cells as well as neu-
rons located deeper in the cerebellar cortex. Being one of the biggest types of neurons, Purkinje cells have a
large number of dendrites (extensions of neurons that enable them to connect to one another). The resulting
neural circuits play an important role in learning and controlling movements, as well as coordination [23].
Another differentiating factor that set Purkinje cells apart from other types of neurons is the fact that they
exhibit two types of spikes, called the simple and complex spike [77] (see figure 2.1). As can be seen in figure
2.1, a simple spike is characterised by a downward reflection of the neural signal, after which the spike is over.
As the name suggests, the complex spike exhibits more complex behaviour as it initially reflects downwards,
followed by an upwards overshoot. The spike ends with a high-frequency (dampened) oscillation. In gen-
eral, neurons exhibit spiking behaviour, also known as firing. This behaviour is achieved by accumulating a
certain concentration of Sodium or Potassium Ions. This causes a membrane potential to occur (i.e. action
potential), which in turn is perceived as neural activity [34]. Purkinje cells also use concentrations of Calcium
Ions to generate action potentials [81]. By doing so, Purkinje cells are able to generate complex spikes as well.
Most of the spiking activity of Purkinje cells consists of simple spikes, while the occurrence of complex spikes
is relatively scarce. The simple spiking frequency of a Purkinje cell ranges between 17 and 150 Hz, while the
complex spiking frequency is about 1-3 Hz [57].

5
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Figure 2.1: Two types of spikes characterising the Purkinje cell. The complex spike can be seen on the left side and the simple spike on
the right side.

2.1.2. Classifiers
The relatively rare occurrence of complex spikes, together with their complex waveform result in the fact that
the exact functionality of a complex spike remains a topic of research. In order to look into this topic, the
neural dynamics of Purkinje cells need to be mapped. This can be done by recording neural activity from
Purkinje cells. These recordings can be processed by a system that is able to detect and classify both types
of spikes. The requirements for such a system depend greatly on the research project. For example; in some
cases, it might suffice to process prerecorded neural signal offline, while other cases require online detecting
and classification.
Markanday et al.[44] propose a system that uses Deep Neural Network techniques for detecting and classify-
ing complex spikes from prerecorded neural recordings from monkeys. Their proposed solution (see figure
2.2) consists of a Convolutional Neural Network which takes both action potentials (i.e. APs) and local field
potentials (i.e. LFPs) as input. The neural network is able detect and classify complex spikes from these
recordings. Its functionality extends beyond the regular classification of spikes as the system is also able to
provide the start and end times of the detected complex spikes. Moreover, the system is able to process neural
recordings which contain spiking activity of several Purkinje cells and identify which neuron is causing the
detected spike. In order to optimise the performance of the system, three post-processing steps are intro-
duced. The first post-processing step corrects a mismatch between reported start and end times and actual
start and end times. The system does this by realigning the detected complex spike and by doing so it can
correct the timing window up to ±2 ms [44]. The second step involves mapping the recorded APs and LFPs
on a two-dimensional plane, 2 ms after the occurrence of a CS spiking event. After a dimensionality reduc-
tion, the acquired features are fed to a clustering algorithm to pick out false positives (e.g. simple spiking
event). This is the third post-processing step. Optionally, Markanday et al. suggest other post-verification
steps, such as tracking electrode drift through the tissue. The authors do not report an explicit performance
metric and state that their system is on par with human experts. Considering that their proposed design is
relatively complex (31,482 floating-point 32-bit values) and requires two types of neural recordings, it is not a
feasible solution for online embedded deployment.

Sedaghat-Nejad et al. proposed a method to sort the spikes of Purkinje cells as well and they have called
their algorithm PSort[70]. The PSort algorithm (which is implemented using Python) takes APs and LFPs as
input. Both neural signals are sampled with a frequency of 24,414 Hz and are band-pass filtered between 100
Hz and 10 kHz (AP) and 3 and 300 Hz (LFP). Initially, the algorithm will filter both input signals again using
a 4th order Butterworth filter with a band-pass of 50-5000 Hz and 10-200 Hz respectively. To suit the specific
conditions of the data, these parameters can be tweaked using the provided GUI. The next step is to detect the
occurrence of spiking events. This happens under the assumption that simple spikes produce negative peaks
in the AP channel and that complex spikes produce positive peaks in the LFP channel. Simple thresholding
is then employed to separate spikes from the background noise. In order to calculate the threshold, PSort
computes the histogram of peaks for each channel. On these histograms, PSort will attempt to fit a Gaussian
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Figure 2.2: Graphical representation of the workflow of the proposed algorithm by Markanday et al. [44].

Mixture Model, which will result in two Gaussian distributions per channel. The Gaussians describe the dis-
tribution of the noise floor as well as the signal of interest (i.e. the neural spikes). The intersection between
both Gaussians is used as a threshold. Since this method is applied, the result of this step is two thresholds;
one threshold which is used to detect simple spikes from the AP channel and another threshold which is used
to detect complex spikes from the LFP channel. The next step is to relate peaks in one input channel to peaks
in the other input channel. PSort offers three methods to do so: simple spike index, simple spike template,
and complex spike template. In the first instance, there is no data to compute a template for either spike type.
Thus, the spike index is used to calculate a template. Both types of spikes are characterised by an initial neg-
ative deflection. So, initially, these sharp negative deflections (SS index) are used to align the complex spike
or simple spike waveforms. A distinction between the two types of spikes is made using the threshold which
detected them. In case of the complex spikes, PSort will move the complex spike template (with a width of 3
ms) over a 5 ms time-window on the AP signal and it will calculate the correlation between the template and
the AP in the template window. The timestamp that results in the maximum correlation value is then saved.
The time window, which again is 5 ms, is centred around the detected LFP peak. It is not centred symmetri-
cally as the time window starts 4 ms before the LFP peak and therefore ends 1 ms after the LFP peak. Similar
to the other functionalities of PSort, the construction of both templates can be configured by the user via the
GUI.
Apart from detecting and classifying Purkinje cell spikes, PSort also offers additional features. PSort is equipped
with a clustering module which clusters detected spikes. Being one of the key features of PSort, it allows
the user to (automatically) form groups of spike waveforms and study their statistical interaction with other
spikes. PSort is equipped with two feature reduction algorithms, namely UMAP which was proposed in [45],
and Principle Component Analysis. The user is then able to specify which clustering algorithm can use the
reduced feature set for clustering. The first option is to apply the Gaussian Mixture Model to the feature set.
For this clustering algorithm, the user needs to specify the number of clusters as well as their respective cen-
troids. This will not be the case for the other two clustering algorithms, which are able to do their job in an
automated fashion. The second choice for clustering the spike waveforms is the use of the ISO-Split algorithm
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and, lastly, the third option is the use of the HDBSCAN (hierarchical density-based spatial clustering of appli-
cations with noise) algorithm. PSort is also able to detect outliers (i.e. spikes that do not really fit in any of the
clusters) using the Local Outlier Factor Density algorithm. References to all these algorithms can be found
in [70]. The last feature of PSort is its dissect module, which allows the user to better inspect individual spikes.

The performance of the PSort system has been evaluated using a dataset containing neural recordings
from the cerebellum of both mice, marmosets and macaques. In total, the dataset contains recordings of 300
different Purkinje cells. The recordings from these three types of animals were found to be relatively similar,
although differences were reported on average spiking rate, duration of simple spike suppression after the
occurrence of a complex spike and the interspike interval distribution (i.e. the distribution of spikes over
time). In order to set the baseline, an expert manually labelled the simple and complex spikes in the afore-
mentioned dataset and results from applying PSort to this dataset were then compared to this baseline. It was
found that PSort and the expert agreed on roughly 99% of the simple spikes and 92% of the complex spikes.
The median differences between PSort and the expert annotation’s spike timing (i.e. the start time of the
spike) were 0.06 ± 0.01 ms (median ± median absolute deviation, MAD) for simple spikes and -0.12 ± 0.05 ms
for complex spikes. It is hard to say whether or not PSort is more optimistic or conservative than the expert,
because PSort identified 74 simple spikes that were not identified by the expert. However, Psort also missed
382 simple spikes that were annotated by the expert. Similarly, PSort identified 111 complex spikes that were
not identified by the expert (effectively raising the average complex spiking rate from 1 Hz to 1.19 Hz, a 19%
increase). PSort missed 8 complex spikes that the expert did identify. PSort was also compared to another
PC sorting algorithm, namely the one proposed by Markanday et al.[44], discussed previously. Only the de-
tected complex spikes of PSort were used for comparison since the CNN-based system of [44] is only able to
detect complex spikes. Since no ground truth was established, it was difficult to draw a fair comparison. The
authors of [70] attempted to solve this by calculating a similarity score. This score is calculated by measuring
the number of matched spikes (using a 1 ms time window) and dividing this by the total number of detected
spikes by both systems, minus the number of matched spikes. It was found that the similarity score between
both systems was 99.0% and 93.0% for two clusters of complex spikes.

Even though the goal of [70] is similar to the goal set out for this work, the context of the application differs
significantly. Whereas this works aims to automate the detection and classification of PC neural activity in an
embedded and real-time fashion, PSort aims to provide offline spike detection and classification. Because it
operates offline, its requirements with respect to the computational load are more relaxed compared to those
set for this work. An example of these relaxed requirements is the use of templating since this is a relatively
expensive method in terms of memory usage and computation. Moreover, PSort offers some features which
are not of interest in the scope of this work. One of these features is, for example, the clustering module.
Another such feature is the great degree of configurability. As mentioned before, a great many aspects of
PSort can be configured by the user, such as filter parameters and template settings. This allows the user to
tailor the algorithm to their specific needs, however, the algorithm will be less robust out-of-the-box. The
aim of this work is to deliver a robust system that is able to operate adequately under varying circumstances
(within limits). Lastly, and very importantly, PSort requires two different types of neural inputs signal (similar
to [44]), namely LFPs and APs.

2.2. Neural IMDs
A neural implantable medical device is a device that is (partly) implanted in the brain to monitor and stimulate
brain tissue. These neural IMDs come in a variety of configurations and cover a diverse application range.
Neural IMDs are either capable of recording neural activity or stimulating brain tissue and often combine
both features in a closed-loop system. Neural IMDs can either be fully implanted or partly, where often only
the recording and/or stimulation devices are implanted. Computational heavy tasks can then be performed
outside of the host body by streaming the recorded data (either wirelessly or tethered) or process it directly
on the implant.

2.2.1. Data Acquisition
Neural IMDs typically work one of three types of neural signals, namely EEG/ECoG, local field potentials, and
action potentials. These three types of neural signals differ in the amount of information they contain (i.e.
the number of neurons contributing to the recorded signal) as well as the complexity of data acquisition. An
example of all three signals can be found in figure 2.3.
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Figure 2.3: Illustration of a rat’s brain together with various recording and stimulation techniques. On the right side of the figure is an
overview of the four types of neural signals. [71].

In this regard, EEG/ECoG contains neural activity from millions of neurons. It is recorded using electrodes
on the scalp (EEG) or on the direct surface of the brain (ECoG). EEG/ECoG signals are typically used to iden-
tify neural activity in certain frequency bands. These frequency bands are commonly referred to as "brain
waves". However, generally speaking, EEG/ECoG are not often used for neural IMDs, due to the fact that
the EEG/ECoG signals are obtained through recording electrodes on the scalp which makes it impractical for
long-term use.

A more commonly used neural signal is recording the LFP of a number of neurons (several thousands of
neurons). The LFP is the combined potential of all neurons in the vicinity of the recording electrode array
which is located inside or on the brain tissue. It is therefore better suited for long-term deployment and it
provides detailed insights in the neural dynamics of the targeted brain region. Recording LFPs is possible
through an electrode grid [43], which is a high-density electrode grid, placed inside the brain tissue. An
example of such a grid can be found in figure 2.4.

Figure 2.4: Example of a recording electrode grid [78].

Lastly, some neural IMDs work with the recorded action potentials of the targeted neurons. This is the
most detailed form of neural recordings which is also the hardest to record. Generally a very small recording
electrode (or several on some occasions) is placed on a shank-like object (see figure 2.5) which is embedded
in the brain tissue. These shanks often contain several recording electrodes packed on small surface, with
areas from 25-150 µm2 [12]. These recording electrodes are able to record the action potentials of three to
five neurons that are near the recording shank. Action potentials give a very detailed overview of the neural
dynamics within a part of the brain since it records the individual spiking behaviour of neurons. However, its
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scope is very limited since it is restricted in terms of the number of neurons that can be recorded.

Figure 2.5: Example of a recording shank [68].

Some recording systems are also able to deal with several types of neural signals. For example, [14]
presents a neural recording system that is able to process both LFPs and APs. Through timesharing of the
available hardware, the system can process up to 16 input recording channels simultaneously. The analog
front-end (i.e. AFE) of the system comes with a low noise amplifier, after which the amplified signal is digi-
tised using a 10-bit ADC. Since LFPs and APs require different filter parameters (i.e. LFPs are band-filtered
1-300 Hz and APs are band-filtered between 0.3-10 kHz), the system comes with adaptive 2nd order digital IIR
filter. By implementing an LMS algorithm (i.e. least mean square), the system is able to cancel slow recording
electrode offset, which would otherwise degrade the signal’s integrity. [40] describes an implantable platform
for neural recordings and is designed to handle recorded action potentials. The system is not outfitted with
a recording probe, instead, it is compatible with several commercially available recording probes. The signal
conditioning stage of the system is comprised of an amplifier. This amplified signal passes through several
cascaded filters which form a pass-band filter. First off, the signal is passed through 3r d order Butterworth
low-pass filter which is tuneable. What follows is a 1st order high-pass filter in the analog domain. After digi-
tisation (through a 16-bit ADC), the signal is again high-pass filtered using a 1st order IIR filter. The cut-off
frequencies are 300 Hz and 5 kHz respectively.

The development of neural IMDs is not merely a matter of academic research as commercial parties are
also investigating its possibilities. The San Francisco-based company Neuralink developed a neural IMD
platform that is capable of recording and processing several thousands of channels[48]. The system works
with recording threads containing 32 recording electrode contacts which are spaced by 50-75 µm (depending
on the configuration), the dimensions of the electrode pads are 14x24µm. Up to 96 of these recording threads
can surgically be implanted in the brain and are connected to a neural processing ASIC. This ASIC is equipped
with programmable amplifiers and band-pass filters to accommodate variations in the signal quality. The
ASIC is also equipped with a 10-bit ADC which samples the recordings at 19.3 kHz. Lastly, the ASIC serialises
the data coming from all the channels, so it can be read out using a USB-C port. Each ASIC is capable of
processing 256 channels in parallel, so 12 ASICs are mounted on a PCA (i.e. printed circuit assembly) to
achieve the reported number of recording channels (12 x 256 = 3072 channels). Due to the reconfigurable
gain and filter properties, the system is able to handle both LFPs and APs, even though it is designed to handle
APs in the first place.
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2.2.2. Tissue Stimulation
Some neural IMDs are equipped with the means to stimulate neural tissue. This is commonly referred to
as deep brain stimulation (i.e. DBS). Neurons communicate which each other through electrical pulses (i.e.
neural spikes) and these pulses are generated by building up a potential through the separation of ions in
the cell’s membrane[8]. This difference in ion concentration is achieved through manipulating so-called ion
channels in the cell. The purpose of neural stimulation in the context of neural IMDs to is open these ion
channels. This will cause the neuron to lose some of its action potentials and cause it to fire off a spike less. In
this sense, neural stimulation has an inhibitory effect on the brain region of interest which in turn suppresses
the effects of Parkinson’s disease, essential tremor, and epileptic seizures[15, 82].

Several methods of neural stimulation are possible, each with its own merits and challenges. Currently,
the most used type of neural stimulation is electrical stimulation since this method is relatively easy to apply
[26]. One of the main drawbacks of using electrical stimulation is the fact that it tends to damage the tis-
sue surrounding the stimulation electrode [82]. Over time, this will lead to the growth of scar tissue around
said electrode, which in turn reduces the effectiveness of DBS. Electric stimulation of brain tissues comes
in a variety of configurations. For example, DBS can be performed using a constant current[61] or constant
voltage source[60]. A significant difference between the effectiveness of constant current and constant volt-
age were not found, although constant current stimulation seems to be the safer option since it leads to less
scarring[58]. The stimulation pulses can also be either mono or biphasic in nature. Similarly to constant cur-
rent stimulation pulses, biphasic stimulation pulses tend to lead to less scarring and are considered the safer
option. However, no significant difference have been found between monophasic and biphasic stimulation
pulses [91].

Another way to stimulate neural tissue is through optical means. This method eliminates many of the
downsides of electrical stimulation. However, as of now, it is not the preferred method of DBS since preparing
the tissues for optical stimulation. The brain tissue itself does not respond to light pulses and needs to be
genetically altered in order to respond to the light pulses[4]. Apart from the ethical concerns this method
raises, it is relatively hard to genetically alter the brain region of interest to be sensitive to light. However, it
is not impossible and it would lead to little to no scarring to the surrounding brain tissue. Apart from this, it
is also possible to very precisely stimulate certain neurons since surrounding tissue is not affected. Neurons
can be made sensitive to light across the entire spectrum, which adds to this fact. Lastly, µLEDs can be used
to provide the required light source[13], which are less stringent on the energy budget of a neural IMD. An
example of such a µLED can be found in figure 2.6. This would greatly aid the battery life of the system, which
lengthens the duration of deployment, especially for embedded devices. It is a very promising technique but
due to various reasons, its utility remains merely academic.

2.2.3. Workloads
Ideally speaking, a neural IMD is capable of both recording neural activity as well as stimulating brain tissue,
since stimulating brain tissue without feedback is not desirable and the merits of merely recording neural ac-
tivity are not as significant as using the recorded data directly as feedback for stimulation. When a neural IMD
is equipped with both functionalities and these are integrated in a closed-loop feedback system, the neural
IMD often employs an operation of some kind of recorded neural activity to govern the stimulation settings.
One of the most prominent workloads in closed-loop neural IMDs is the stimulation control algorithm. Such
a feedback algorithm is able to control the stimulation parameters (e.g. the amplitude, duration, and duty
cycle of the stimulation waveform) based on signature features in the recorded neural signal [33]. Adjusting
the stimulation parameters can be based on several features which can be extracted from the recorded neural
signal. Often if such a feature exceeds a calibrated threshold, stimulation of neural tissue is required. This
is called event or activity-driven stimulation [75]. For example, neural biomarkers (i.e. a measurable neural
event) can be detected if the spectral power of the signal exceeds a certain threshold [96]. If such a biomarker
is detected, it can be suppressed through stimulation. Another way to detect these biomarkers is by looking
at the number of spiking events in a (sliding) time window[16, 32, 67]. When the number of spikes exceeds a
certain threshold, then stimulation is enabled to stir an inhibitory effect. Another example of activity-driven
stimulation is by looking at the phase-lock value of the incoming neural signal. This value tells something
about the tendency of a neuron to fire a spike at a particular phase. Kassiri et al. propose to use a CORDIC-
based processor to calculate this value and neural stimulation is enabled if the PLV value exceeds a certain
threshold[27].
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Figure 2.6: Example of a µLED on a needle, the right side depicts part of the (coil) antenna[74].

However, not all feedback algorithms are event-driven, and some aim to continuously adjust the stimulation
parameters. For example, Stanslaski et al. propose a closed-loop neural stimulator that uses a support vec-
tor machine to control the stimulation parameters[76]. Most systems that use a continuous feedback loop
borrow techniques from control engineering, such as PID controllers, both in the digital[86] and analog[38]
domain.

Others aim to utilise deep learning ideas to generate patient-specific stimulation waveform patterns[51].
Lastly, event-driven stimulation does not necessarily need to be in the context of a feedback loop. Stimulation
can be timing-based and depend on events detected from LFP neural signals[59]. Using canonical correlation
analysis, the system proposed in [59] can detect the intent to push a lever in a rat’s motor cortex. Based on
this intent it can stimulate the spinal cord of the rat in order to trigger a muscle response. The application
is the reanimation of a (lost) limb. In a way, this system can bridge a (broken) connection in the brain and
restore motor functions in case of paralysis.

Another category of workloads for neural IMDs frequently seen is compressed sensing. Generally speak-
ing, the Nyquist-Shannon sampling theorem states that to accurately reconstruct a periodic signal, one must
sample it at twice the highest frequency of interest[73]. This could potentially lead to sampling frequencies up
to 40 kHz for sampling action potentials[87]. This could lead to resource overhead when trying to process the
sampled data. Compressed sensing is a signal processing technique that allows for accurately reconstructing
a sampled signal without adhering to the Nyquist-Shannon sampling theorem. The resulting (reconstructed)
signal will pose less overhead to further processing steps. Another advantage of utilising compressed sensing
is the reduction of required bandwidth for wireless streaming of telemetry[6], which can be as much as two
to three orders of magnitude [40]. Others report a more than four-fold increase in energy efficiency com-
pared with state-of-the-art FPGA-based event-driven neurostimulators [67] (with wireless data transmission
capabilities). Compressed sensing can also be used to reduce the computational load for a neural IMD. Be-
cause of compressed sensing, feedback loops for closed-loop neurostimulators can be simplified without
compromising for performance[37]. This can for example be done by using a 2nd order differential pulse code
modulator (i.e. DPCM) in conjunction with an encoding engine [42]. This encoding engine is based on an
adaptive Golomb coding algorithm which compresses the recorded neural data based on optimal parame-
ters obtained from the signals in real-time[42]. Compressed sensing can also be used partially. For example,
only detected spikes can be fed to a compressor module[3]. These compressed spikes are then processed fur-
ther and because of their simplified representation will lead to a reduced computational load for the system.
Another popular method of compressed sensing is through the discrete wavelet transform (DWT) [7, 24]. By
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doing so, only a subset of the wavelets (and therefore corresponding coefficients) is used in further steps. For
example, DWT is a commonly used technique in the detection of spikes (see 2.3.1) and by only considering a
part of the DWT, adequate spike detection can still be achieved [24].

The last common category of neural IMD workloads is the cancellation of recording artefacts that nega-
tively impact a given system’s performance. Generally, there are two types of artefacts that might end up in the
recorded signal. The used recording electrode might introduce recording artefacts when it moves (slightly)
when deployed. [39] presents a PD-controller that allows for the removal of these recording artefacts in the
signal of interest. The amplitude of (recorded) neural signals is inversely proportional to the neuron’s distance
to the recording electrode. The amplitude of the neural signal will therefore vary as the recording electrode
can not be firmly attached without damaging surrounding tissue. This problem will also cause recording
artefacts. [56] aims to cancel out these types of recording artefacts by implementing an auto-ranging loop, by
means of a DC servo loop (i.e. DCSL). Such a loop tries to keep the amplitude of the neural signal constant.
Doing so mitigates the negative effects of varying amplitudes (relative over time). Lastly, recording artefacts
can also arise by the DC offset which recording electrodes introduce[14]. These offsets slowly vary over time
and should, ideally, be cancelled out in a dynamic fashion. Fathy et al. aim to solve this problem by utilising
an LMS (i.e. least mean squares) interference-canceling filter. The least mean square values are used to con-
figure an adaptive high-pass filter, which filters out the offset.

Figure 2.7: Example of a closed-loop neurostimulator IMD with stimulation artefact removal [95].

Stimulation of brain tissue also causes artefacts to show up in the recorded neural signal, especially when
it concerns electrical stimulation[84]. The stimulation artefacts have a negative impact on the effective-
ness of the feedback system. One way of dealing with these stimulation artefacts is to cancel them through
interpolation[96]. Since the stimulation waveform is known, it is possible to reconstruct the neural signal
without these stimulation artefacts by estimating it[96]. When brain tissue is stimulated, the recorded signal
will be a combination of the neural activity as well as the simulation waveform. Since the stimulation wave-
form is known upfront, the stimulation artefacts can easily be removed in the analog front-end (i.e. AFE) of the
neural IMD, by simply subtracting the stimulation waveform from the recorded signal using an amplifier[95].
An example of a closed-loop neurostimulator IMD with (stimulation) artefact cancellation can be found in
figure 2.7.

Yet another common workload for neural IMDs is spike sorting. In the context of this work, spike sorting
is an important workload and is therefore treated indepth in the following section.

2.3. Spike Sorting
Spike sorting is the practice of identifying the spiking activity of individual neurons from a recorded neural
signal through mathematical means. Recorded signal implies that spike sorting algorithms are only able to
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operate on pre-recorded sets of neural samples, however, plenty of spike sorting solutions are also able to
operate in a real-time fashion. Some recording electrodes in neural IMDs are able to record APs, however, it is
inevitable that the APs of several neighbouring neurons are picked up by the recording electrode. So in order
to get the most insights into the neural dynamics happening in the brain, it is required to know the individual
contribution of each neuron. This is where spike sorting comes into play. In the literature, it is generally
agreed upon that spike sorting can be broken down into four distinct steps. The spike sorting algorithm takes
neural samples as input in a sequential way. The first step is to detect the occurrence of a spiking event from
these samples. This is called the detection step. In order to properly sort the spikes, the detected spikes
are aligned in a consistent way, during the alignment step. These (aligned) spike waveforms are classified
to identify from which neuron they originate. Often, the number of features (i.e. every sample point of the
spike waveform) is too big to efficiently perform the classification step. So after aligning the spike, a feature
reduction step is needed to achieve a smaller feature set. This (reduced) feature set is then used in the last
step where the spike is classified. An overview of the spike sorting process can be found in figure 2.8.

Figure 2.8: The spike sorting process[25]

The next subsections will provide an in-depth analysis of each step, together with the most commonly
used methods in the field of spike sorting.

2.3.1. Detection
Detecting spikes from a recorded neural signal can be a cumbersome task due to the nature of the input signal
(i.e. the neural signal). The neuron’s spike often is not clearly distinguishable from the background noise
due to the high noise floor of the recorded signal. Generally speaking, simple thresholding (i.e. amplitude
thresholding) of the neural signal does not yield satisfactory results with respect to the detection accuracy,
even though it is still employed in some cases [53][94][30][49]. In order to increase the potential of amplitude
thresholding, one could also look at the absolute sample values in order to use both the negative and positive
threshold simultaneously [50]. Another factor that contributes to the need for more sophisticated detection
methods is the fact that recording neural activity with this resolution (i.e. recording action potentials from
individual neurons) inherently introduces variation in the recorded signal. Because of the fact that such a
recording electrode cannot be fixated due to the soft nature of the brain tissue, amplitudes of recorded spikes
will differ over time. So detection of spikes by comparing the amplitude of a candidate spike with a given
threshold, always boils down to a trade-off between detection performance and lack of robustness, while also
considering restrictions on resource consumption.

Several methods have been proposed to mitigate the lack of robustness by looking at other features of the
recorded signal. Most of the spike detection methods happen in the digital domain after the recorded neural
recordings have been converted to a binary representation. However, one method remains in the analog do-
main for detecting spikes by making use of memristors [18]. Gupta et al. make use of the fact that the resistive
properties of a memristor depend on both the voltage over its terminals as well as the duration of applying
this voltage. The resistance of this memristor changes in a characteristic way since spike waveforms tend to
remain constant over time. Via a readout circuit, this change in resistance is measured and used to detect a
spiking event. However, their proposal tends to suffer from saturation in the event of many spikes in a short
period of time, which facilitates the need for a reset signal. This also tends to happen when there are a lot of
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recording artefacts. The authors recognise that their work is a promising candidate for future spike-sorting
implants, but it is still in an early development phase.

Digital methods range from traditional mathematical methods to newer methods, such as employing ar-
tificial intelligence techniques. For example, [54] proposes a spike sorting spiking neural network (i.e. SNN)
which encodes incoming neural recordings in a spike train. The amount of spikes in the input spike train of
the SNN (i.e. the encoded neural recordings, so not the actual spikes in the neural recordings) is determined
by the amplitude of the input signal. The occurrence of a spiking event can then be determined by looking
at the number of spikes in the input spike train (which, to avoid confusion, is the encoded representation
of the input neural signal). Even though SNNs are a promising deep learning technique, the performance of
this system could not match some of its more traditional alternatives, both in terms of accuracy and resource
consumption. Another proposed system that leans on deep learning techniques is the system proposed by
Rácz et al.[63]. Their proposed system uses a Recurrent Neural Network (i.e. RNN) in conjunction with a Con-
volutional Neural Network (i.e. CNN) in order to detect spikes from an incoming stream of neural recordings.
This detection method is not suitable for real-time embedded spike detection as it features a relatively large
number of neurons (and hence parameters that need to be saved in memory). Moreover, the performance of
the system is not adequate as on no occasion (tested on 10 datasets) did it exceed a detection accuracy level
of 88%.
An example of a spike detection system which is based on a more traditional mathematical technique em-
ploys the use of wavelet transforms. The method described in [17] uses discrete wavelet transforms (DWT)
for spike detection. This results in a set of wavelet coefficients which differ when a spike occurs. The spike is
detected by applying a threshold to these coefficients. The DWT method yields good results in signals with a
lot of background noise. However, generally speaking, it does not perform really well relative to the resources
it consumes.

The most widely used method for spike detection employs ideas from the radio engineering. Mukhopad-
hyay and Ray were the first to make use of the Non-linear Energy Operator (also called the Teager Energy
Operator) as a method for detecting spikes [47]. Originally, it was used to quantify sinusoidal signals which
were modulated using either AM or FM. Applying the non-linear energy operator (henceforth referred to as
NEO) to a signal accentuates the high-frequency components of the signal. The high-frequency components
are at the base of sudden increases (or decreases) in the signal’s amplitude, which is very typical in neural
spikes (hence the name; spikes). Moreover, the relatively cheap computational cost of the operator makes
it an ideal candidate for spike detection. It only requires two multiplications and one addition to calculate
a NEO value. It is therefore the preferred method for spike detection in spike sorting systems, both offline
[28, 80] and online systems [11, 25, 69, 89, 90, 93].

One of the disadvantages is that NEO-based spike detection still relies on thresholding in order to de-
tect spikes. Applying NEO to a neural recording signal accentuates the spikes and decreases the influence of
background noise, however, choosing the threshold dictates how well the spike detector will perform. When
NEO first became the more commonly used method for spike sorting, this threshold was often determined
by calculating the average NEO value over the recorded experiment and multiplying this average by an em-
pirically found constant[47]. Later papers proposed methods to dynamically calculate this threshold [31][88]
to make the spike detector robust against varying recording circumstances (which is often the case for neural
recordings).

2.3.2. Alignment
A spike cannot be detected if it has not occurred yet, so often the detection point lies somewhere halfway
through the spike’s waveform. In order to properly sort the spikes, the detected spikes need to be aligned in
order to capture its entire waveform. Properly aligning spikes also increases the consistency of the remaining
two steps. However, given the fact that this step is often overlooked in terms of optimisation and is barely
mentioned in the literature, its total influence on a spike sorter system is significantly less compared to the
other three steps. Jongkil et al.[53] mention that the detected spike is aligned by including the 20 neural
samples before the point of detection. Another way to align detected spikes is by looking at the peak of the
spike and using this as a reference point for spike alignment [80, 92]. Valencia and Alimohammad propose a
system that also uses the peak of the detected spike as aligning point. Their proposed design saves 24 samples
before the spike’s peak as well as 48 samples following the spike’s peak (capturing the spike’s waveform in 72
samples total) [25]. A more methodic procedure to determine the alignment point is proposed in [46]. The
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alignment point of a detected spike is found by applying a centroid filter to the recorded neural signal. The
main idea is to view a spike’s waveform as a polygon with the time on its x-axis and its amplitude on y-axis.
By finding the centroid of the surface of the spike, the optimum alignment point is found. The centroid filter
can efficiently be implemented, relatively speaking, in hardware as an 8th order FIR filter.

2.3.3. Feature Extraction
When a detected spike gets aligned and fed to the classification stage, the set of neural samples in the cap-
tured spike waveform that the classifier uses can be regarded as the feature set. The size of this feature set
is rather large and spike sorting systems could benefit from reducing the feature set in order to alleviate the
computational load on the spike classifier [53]. Generally speaking, it is beneficial to a spike sorter’s efficiency
to implement an additional step where certain features of the detected spikes are extracted (hence the name
of the third step: feature extraction). The spike classification is then run on this reduced feature set (i.e. di-
mensionality reduction of the spike). Extracting features from spike often boils down to a trade-off between
effectiveness (how distinctive are the features) and cost-efficiency (the complexity of the feature extractor).
A simple feature extractor which results in a feature set with little variation, offloads the computational load
to the classification step, as the classifier needs to work with input that is harder to classify. A complex fea-
ture extractor will ease the computational load on the classifier but will require more resources. Therefore, a
variety of features can be used, such as looking at the spike’s integral or (double) derivative [17].

For offline spike sorting, the most used method for feature extraction is by applying a Principal Compo-
nent Analysis (i.e. PCA) to the detected spikes. Generally speaking, the first and second principal component
scores are used as feature set [17, 34, 53]. The main downside of this method is that it is computationally heavy
and not suitable for embedded applications. Due to its resource requirements, it is not used for real-time (em-
bedded) spike sorting. However, some systems aim to overcome these obstacles by reducing the complexity
of a PCA. For example, neural networks have been trained to approximate the correct principal components
given certain input spikes [35]. This results in an online spike sorting system that is more resource-efficient
relative to its traditional counterpart (i.e. an actual PCA) without compromising performance. It should be
noted that this PCANN is part of a larger neural network that also does clustering (i.e. classification), so it is
not clear if the PCANN could be used as a standalone module.

An alternative way to reduce the feature set is applying a DWT to the detected spikes (see 2.3.1 and using
the resulting coefficients as a feature set [65]. This VLSI implementation is able to perform online spike sort-
ing and is suitable for embedded systems. The reduced feature set (i.e. the DWT coefficients) is used to assign
a neural fingerprint ID to each neuron. These fingerprints are stored in a look-up table, which is then used
to point to the responsible neuron of the detected spike. DWT is a suitable method for neural signals with
high-noise content [65], but cannot generalise well. Hence the authors of [65] report an overall spike sorting
accuracy of 84.5%.

Another feature that can be used for spike classification is the double derivative of the detected and
aligned spike as proposed by [25]. The double derivative of each neural sample is not calculated continu-
ously. Rather, the double derivative of the neural is calculated periodically and thus reducing the feature set.
This is a cost-effective solution for feature extraction since it is relatively simple to calculate a number of dou-
ble derivative values. Because of this, the VLSI implementation of their design is able to handle 64 channels
of neural data, while only consuming 130 µW of energy. The authors elaborate on the double derivative idea
by first decomposing the detected spike over seven frequency bands by filtering the spike[92]. The double
derivative of these seven bands is then calculated and the extrema of these double derivative values are used
as a feature set.

One could extend the double derivative idea by also taking the first derivative into account. In [52], a
feature extraction method is proposed that looks at the first and second derivative of a detected spike and
uses the extrema as spike features. The shape of spikes from individual spikes remains relatively constant
over time (both in amplitude and width), under the assumption that the recording electrode stays fixed [52].
Taking this, together with the fact that each neuron has a distinctive spike, into account, the first and second
derivatives of a spike waveform are excellent candidates for a (reduced) feature set. What adds to this is the
fact that it is relatively cheap to compute these values, since only requires some registers and an adder. [19]
shows that it can even be done in the analog domain, although this would require some additional steps if
the rest of the spike sorting system operates in the digital domain.
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Feature extraction does not necessarily mean that one needs to extract the feature indirectly (e.g. apply-
ing a DWT to the spike). For some features, it suffices to process the spike and extract the feature directly.
For example, [89] describes a full spike sorting system. In which feature extraction happens by filtering the
detected spikes through a band-pass filter. The peaks of the spikes are the reduced feature set. The parame-
ters of the filter (i.e. the passband) have been determined through spectral analysis of real neural recordings.
The pass-band is chosen such that the influence of the noise is minimised and the peaks of the spikes form a
distinctive enough feature set. This is a simple method to reduce the feature set, but it might be subjected to
the conditions of the data and specific applications might need recalibrating the filter’s parameters.

Another popular feature set is by looking at the zero-crossing time interval[22]. The authors of this paper
propose using two of these time intervals (named zero-crossing features 1 and 2, i.e. ZCF1 and ZCF2) as the
reduced feature set. These two-time intervals are defined as the time interval between the first and second
zero-crossing after the detection moment and the time interval between the second and third zero-crossing
after the detection moment. This method is simple to implement because it only requires detecting a change
in the sign bit of the neural samples and a counter to determine the length of the time interval. The authors
recognise that determining ZCF1 and ZCF2 is computationally cheap but also offloads the computational
load to the classification phase. However, they also mention that it outperforms more conventional methods
such as PCA.

Lastly, in [72] a framework for on-implant spike sorting is presented. The framework is split up into an
internal and external part. The internal module performs unsupervised spike sorting and the external module
calculates the parameters used by the internal module for online spike sorting, this means that the spike
sorting method is split up into two parts: an offline training phase on the external module and the main spike
sorting phase on the internal module. What sets this system apart in terms of feature extraction is the fact that
different features are considered and the most salient (i.e. the feature which stands out the most) is used. The
proposed method is compared with a variety of feature extraction methods normally used and outperforms
them significantly.

2.3.4. Classification
The last step in the spike sorting step is to classify which of the (known) neurons is the source of the detected
spike. A graphical representation of this last step can be found in figure 2.9. Most spike sorting systems are
designed to make a distinction between three and five individual neurons [66], making it a multiclass clas-
sification problem. One way to solve such problems using traditional mathematical means (i.e. not using
machine learning techniques) is by forming clusters inside the reduced feature set, where each cluster repre-
sents a neuron. A popular clustering algorithm used in spike sorting is the k-means clustering algorithm (or
variations thereof, such as moving centroid k-means clustering) [66]. The main advantage of this algorithm
is that it is simple and fast, however, its main drawback is that it requires supervision. This is another way of
saying that the user of the spike sorting system needs to specify k. This is a design trade-off when it comes
to spike sorting systems. Supervised classifiers are superior in terms of performance, however, it requires
extensive effort to determine the number of neurons that need to be sorted. On the other hand, unsuper-
vised classifiers are able to learn how many neurons are contributing to the recorded neural signal, with their
main drawback being that they generally perform poorly relative to their supervised counterparts [17]. Gen-
erally speaking, good-performing spike classifiers tend to use a lot of hardware resources and are therefore
not suited for embedded deployment [66]. One solution to this problem is to offload the classification stage
to an offline post-processing step [25]. The embedded device will only detect and align the spikes and save
the extracted features. These features are downloaded after the experiment has been conducted for classifi-
cation. However, this solution is not feasible if the entire spike sorting system needs to run in real-time in an
embedded environment. Traditional spike classifier methods leave little headroom in terms of resource op-
timisation [66]. More and more spike sorting systems are, therefore, discovering the merits of applying deep
neural network techniques to the classification step of spike sorting, because these neural network classifiers
have the potential to be scaled down without compromising for performance [20, 55].

Classifying spikes does not require a complex neural network necessarily. Kim and Kim [28] proposed a
spike sorting system that uses a multilayer perceptron (i.e. MLP classifier (see 2.4.1) in conjunction with a
NEO-based spike detector. Their classifier uses only one hidden layer containing 10 neurons, which keeps
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Figure 2.9: Visual representation of clustered spikes. There are five clusters, each representing a spike. The picture contains multiple
numerous spiking events from each neuron (top). The average spike waveform is depicted in the bottom part[17].

to network’s size in check sufficiently well for it to be suitable for embedded deployment. The spike sorting
design they proposed is suitable to run on an FPGA and its classification accuracy is over 90% for several
datasets containing neural recordings with varying SnRs. Similarly, in [85] a spike classifier is proposed which
is also based on an MLP neural network. This network is trained in such a way that the overlap in the spikes’
feature map is minimised, which in turn results in better classification results. The network’s size, however,
significantly increases as the number of hidden layers is set to two, containing 600 and 60 neurons per hidden
layer respectively.

Zhu et al.[97] propose another neural network-based spike classifier that also uses an MLP architecture.
They altered the network’s activation function to an exponential activation function. Because of this, the
network is easily trained and tends to generalise well for classification problems such as sorting spikes. The
network was implemented on both Matlab and an FPGA-based implementation. It was found that the FPGA-
based implementation was able to correctly identify spikes 44.37 times faster than the Matlab script, without
compromising for performance. This makes the design suitable for real-time operation. An overall classifica-
tion result of 93.83% was found, using 32-bit floating-point weights and activations.

The feature extracting neural network from Li et al.[35] has already been treated in 2.3.3. Their spike
sorting system is comprised of two neural networks (in a hybrid configuration). The second neural network
(i.e. the classifier) takes the output of the feature extracting PCA Neural Network and performs clustering.
This neural is a so-called self-organising map (i.e. SOM) neural network which allows it to do clustering
without supervision. Therefore, no training stage with a predetermined number of clusters is necessary. Both
neural networks (i.e. the PCANM and SOM NN) are merged into one neural network, which is the reason why
the authors refer to it as a hybrid neural network. Their design is able to correctly classify spikes 97.91% of the
time [35].

Valencia and Alimohammad [80] propose a combination of NEO-based spike detection and neural network-
based spike classification. In order for their design to run in an embedded environment as an ASIC (i.e. appli-
cation specific integrated circuit), they propose to apply an optimisation technique called binarization to their
neural network classifier. By doing so, the weights and activations of the neurons are binarized by turning the
full precision weights/activations into one-bit values, effectively reducing the memory and computational
load significantly. This resulted in an ASIC design that only uses 0.33 mm2 of chip real-estate in a 0.18 µm
technology while consuming 2.02 µW energy from a 1.8 V power supply and using a 24 kHz clock.

All the neural network-based spike classifiers which have been discussed up to this point use the MLP
architecture (also called fully-connected neural networks), which is a relatively simple type of neural network.
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More complex neural network architectures are usually beneficial for performance, albeit with an increase in
computational load [79]. Rácz et al.[63] propose a spike sorting system that uses a combination of recurrent
neural network (i.e. RNNs) and convolutional neural networks (i.e. CNNs) to detect and classify neural spikes.
The spike detection neural network has already been discussed in subsection 2.3.1 and this neural network
consists of a combination of an RNN and CNN to detect spikes. An additional CNN is utilised to perform
the spike classification. Given the size of the system, it is not suitable for embedded operations. However,
the authors recognise that several issues need to be addressed in order for their design to be suitable for a
functional real-time BCI. The aim of their proposal was to show the benefits of using deep learning techniques
and stepping away from the current spike sorting paradigm.

The issue with using neural networks for spike sorting (i.e. from detection to classification) is the fact that
the neural network will be active all of the time, while the occurrence of spikes is relatively rare. This means
that the spike sorter system is using energy while it could remain idle. Bernert and Yvert try to solve this
problem in their proposed SNN-based spike sorting system. The network is continuously supplied with neu-
ral recording samples, which are fed through several layers to identify the activity of neurons. In order to cope
with energy loss during the interspike period (i.e. the time interval between two consecutive spikes), special
"attention neurons" are used in the network. These neurons can have an inhibitory effect on the remaining
neurons, which inhibits their activity during the interspike time interval. These neurons do not detect spikes
themselves, that is part of the functionality of the rest of the system. They are merely able to detect possi-
ble spiking activity in the recorded neural signal and they "tell" the rest of the network to pay attention by
not inhibiting the rest of the neurons anymore. The network is trained in an unsupervised manner and is,
therefore, a suitable candidate for embedded deployment, since no prior knowledge of the target neurons is
required. The network was assessed to see how well it performed and an overall classification accuracy of
85% was reported. This shows that the use of SNNs for spike sorting is a promising technique.

However, one of the main issues with the use of SNN classifiers is the fact that they are generally hard
to train. [54] aims to solve this problem by implementing an SNN spike classifier that is equipped with a
K-means supervised training engine. This combines traditional clustering techniques with 3r d generation
neural networks. The SNN has three output neurons, which is based on the maximal number of separate
neurons (i.e. number of classes). The K-means training module can periodically be activated in order to
improve the classifier’s performance and it can be shared among several spike classifiers if the system is scaled
up. The spike sorting system has been implemented in 90 nm technology and the SNN spike classifiers use
∼40 nW for one classification operation, which is approximately 4 times less than the k-means classifier used
to train the SNN.

2.4. Neural Networks
Neural networks are a field within artificial intelligence, where biological neural circuits are mathematically
modelled. This section aims to provide the reader with a basic understanding of neural networks. The basic
topology of a neural network is discussed, as well as a more detailed description of the neurons in the network.
Lastly, the algorithm used to train the network is discussed and, additionally, some important parameters for
training the neural network are presented.

2.4.1. Network Topology
Neural network topologies vary greatly in structure and complexity, each with its own merits regarding the
context of their application. Many of these topologies are beyond the scope of this work and therefore not
treated. This subsection will focus on perceptron neural networks only, since they fit the application con-
text of this work. Perceptron neural networks are considered the simplest of all feed-forward neural network
topologies and come in two variants: the single-layer and multilayer perceptrons [62]. In case of single-layer
perceptrons, the input neurons are directly connected to the output neurons and no additional steps are per-
formed. As the name suggests, multilayer perceptrons contain additional neurons in between the input and
output neurons. These additional neurons are said to be contained in hidden layers as their output is only
considered internally. The perceptron neural network is a mathematical model, modelled after neurons in
the brain. Instead of electrical pulses, they work with numerical values. Like mentioned before, neurons are
arranged in layers, where the outputs of all neurons from the previous layer form the input for each neu-
ron. Hence, the name fully connected neural networks is a more common name for single and multilayer
perceptrons. A graphical representation of a fully connected neural network can be found in figure 2.10.
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Figure 2.10: Example of an MLP with one hidden layer and three neurons in each layer.

2.4.2. Artificial Neurons
In the previous subsection, the basic network topology for fully connected neural networks (i.e. FCN) was
discussed. This subsection is dedicated to what actually happens in each artificial neuron during operation.
As mentioned before, all neurons in an FCN are connected to each other in order of layers. Each neuron
outputs a numerical value (called the post-activation output) which gets sent to all the neurons in the next
layer (in case it does not concern the output layer). So each neuron will collect all the outputs from neurons
in the previous layer and multiply each output with a certain (numerical) weight and accumulate the result
in one value. Each neuron has its own bias which it will add to the MAC result (i.e. multipy and accumulate).
The resulting value is called the pre-activation output. These weights are updated in the training phase of the
neural network in order for the neural network to behave as expected given certain input. The neuron then
proceeds to generate its eventual output by applying an activation function to the result of the MAC operation.
A common activation function is the ReLU (i.e. rectified linear unit)[5], which causes the neuron to output
0 if the MAC result is less than 0 and the MAC value itself otherwise. Another popular activation function
is the sigmoid activation function[5]. This activation function is a popular choice for binary classifiers as it
outputs the likelihood of the correct classification. Graphical representations of both activation functions
can be found in figure 2.11.

2.4.3. Backpropagation
Updating the weights and biases of a neural network is done via a process called backpropagation, which is a
supervised learning algorithm [5]. It is used to optimise the weights and biases of the neurons in the network
in order to minimise the error between the predicted output (i.e. the output of the neural network) and the
ground truth (i.e. the labels). A loss function is used to quantify the error (or loss). Backpropagation works by
computing the gradient of this loss function with respect to the weights and biases in the neural network. This
gradient is then used to update the weights and biases in the opposite direction to the gradient, effectively
reducing the error. Backpropagation is based on the chain rule of differentiation and is used to compute
gradients for each layer of the network in a backward direction. It starts from the output layer and then
computes the gradient for each subsequent layer in a recursive manner until the input layer is reached. The
gradients are then used to update the weights and biases using an optimisation algorithm, such as gradient
descent.
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Figure 2.11: Visual representation of the ReLU and sigmoid activation function[64].

2.4.4. Training Neural Networks
A neural network is trained using a dataset containing samples of input data together with the desired out-
come (called labels). The dataset is split up into two datasets for validation purposes. This will result in a
training dataset and a validation dataset. This train/validation split generally favours the training dataset,
often used ratios (called the training ratio in this work) vary between 70:30 and 80:20. The dataset needs to be
sufficiently large in order for the network to generalise well, meaning that the network will perform well for
any given input (within reason of the context) and not just converge to perform well for the training samples.
The verification is therefore not used for training, in order to see how well the network responds to unknown
input.
The network uses the training samples several times to update the network’s weights and how often the net-
work iterates over the training dataset is referred to as the number of epochs (or simply epochs). The number
of epochs influences the performance of the network up to some point, as the network will eventually con-
verge to a stable state and no significant changes in performance will be achieved. The ideal number of
epochs greatly depends on the complexity of the network and is therefore considered a design choice. Lastly,
each training sample will result in some error which can be used to update the network’s weights. This can be
a cumbersome process when the network’s training dataset is sufficiently large as a great number of training
samples needs to be considered. Often it suffices to accumulate the error over several training samples and
update the weights using the average error value. This greatly speeds up the training process without com-
promising performance. A common way to do this is to update the weights after a batch of input samples has
been processed. The amount of input samples in this batch is referred to as the batch size.





3
Proposed Spike Sorter Design

3.1. Design Approach
Given the fact that applying spike sorting principles to the (detection and) classification of the neural activity
of Purkinje cells is a novel idea, implementing and testing the system required a certain level of flexibility to
allow for easy changes and inevitable bug fixes. Secondly, the data which was used to verify the functionalities
of the system came in such a format, that it would need much more processing in order to be useful. These
are the main two reasons why the system was first, in its entirety, implemented in software. After verifying
that it worked properly it was then implemented as a hardware design using VHDL. Verification of the hard-
ware design was done by checking if its output (obtained through RTL simulations) matched the output of
the software implementation.
Another example of the usefulness of this approach is the fact that it was relatively easy to construct and
train/test various neural network topologies to see which one would be most suitable. After deciding upon
a neural network classifier, training the neural network in software was also relatively easy. The obtained
weights can be used in a hardware implementation. The purpose of the hardware implementation is to do
inference only, so it does not feature the required subsystems to allow for training and updating the weights.
Moreover, the used machine learning libraries are extensively optimised and well-documented, so imple-
menting all required parts from scratch (e.g. algorithm for training the neural network) will (very) likely result
in a non-optimal solution.
Based on the two-tier spike sorting approach, certain flexibility with this design approach was possible.
Specifically, this meant that work on the hardware description of the spike detection module could already
start while the software implementation of the spike classifier module was not yet finalised.

Python 3.9 
(software

implementation)

Xilinx Vivado 
(RTL simulation)

Cadence Genus 
(Logic synthesis)

TFLite Converter
Netron

(extract weights and
biases)

Tensorflow

Matlab

Figure 3.1: Flow diagram of the used toolchain.

The software implementation of the spike sorter was implemented using python, because of its ease of
use and well-supported libraries (especially in regards to the neural network-based classifier). The data used
to test and verify the system was formatted in Matlab and saved in a Matlab-based file format (which could
be handled by a Python library). The hardware implementation was written in VHDL and simulated using the
Xilinx Vivado software. An overview of the used toolchain can be found in figure 3.1. As mentioned before,
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Matlab is used to pre-process the data. Python is used to implement the detector and classification mod-
ule in software. The detector module does not require additional tooling. When successfully implemented
as a Python program, it can be translated to a hardware description in VHDL. This implementation can be
simulated using Xilinx Vivado. The classifier needs additional tooling to train the neural network, this is done
using TensorFlow. The neural network is then converted to a TFLite model. By doing so, the network’s weights
and activations get quantized to integers. A program called Netron [41] is used to visualise the neural network
and extract the weights and biases. The weights and biases are then used to create a hardware description of
the classifier in VHDL. Similarly to the detector, the VHDL functionalities of the classifier are verified using
Vivado. Both modules are combined resulting in the complete system. When the complete system is verified
using Vivado, Cadence Genus is used to perform a logic synthesis of the design.

3.2. Proposed System Overview
In terms of hierarchy, the resulting work from this thesis will not operate entirely in an independent fashion.
This means that it was designed under certain assumptions. The spike sorter will be used in conjunction with
another neural activity monitoring system. This system will analyse the LFPs of a different brain section and
a (yet to-be-defined) top module will process the data from both systems and handle the timing synchronisa-
tion. So the assumptions under which this work was concluded is that an external module needs to process
the output of the spike sorter and deal with the clock synchronisation.
An overview of the spike sorter system can be seen in figure 3.2. The two main modules of the system are
highlighted by two inner dotted squares. The system is fed with 10-bit input samples and is filtered using a
1st-order exponential IIR filter. The Non-Linear Energy operator (i.e. NEO) is applied to the filtered signal
and the resulting energy indicator is filtered yet again by another 1st order exponential IIR filter, albeit with
different filter coefficients: filter-specific information can be found in section 3.3. The output value of the
second filter is then compared with a previously calculated threshold. The threshold calculator[88] is able to
dynamically (re)calculate the threshold and minimise the performance loss in case of changes to the input
signal (e.g. changes in amplitude). More information on how this threshold is calculated will be provided in
section 3.3.2.
In case of the detection of a spike, the next 40 neural samples are saved in a memory block. These 40 samples
are then be fed to the neural network classifier which runs the inference on the input spike. The classifier
proceeds to output its activation value for further (offline) post-processing steps.

Exponential 
Filter 1

Exponential 
Filter 2

Threshold 
Register Comp

Registers FC NN  
Classifier

NEO
Calculator

RMS Freq 
Calculator

Std
Calculator

Threshold 
Calculator

N

C0 Register

Automatic  
Threshold Calculator

Neural Signal Enable

Spike Type

Control FSM

Detection Flag

Enable

Enable + modus
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module

Classifier
module

Complete
System

Top Entity

Figure 3.2: General schematic of the spike sorter. The detector and classifier modules can be seen, together with control logic.

The need for constantly running all of the modules in the spike sorter is not a necessity, given the fact that
the occurrence of spikes is relatively rare. In fact, once the threshold has been calculated, the only block in
the system that runs continuously is the NEO calculator and the comparator. Once a spike has been detected,
there is no need to try to detect another one, whilst running inference on the initial spike. This means that
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there is a "flow" of information through the system which needs some kind of control logic to govern it. For
the spike sorter system, a finite state machine (FSM) is implemented for this exact purpose and a visual rep-
resentation of the FSM can be seen in figure 3.3.

The initial state is the RESET state, in which all signals are reset to their initial value. This state is not
explicitly defined as a state in the hardware implementation and after one clock cycle, the state machine will
transition to the INIT state. The spike sorter will only be in this state when the system is initially started or
reset and the purpose of this state is to calculate a threshold that is used in the spike detection. This means
that all other subsystems will be disabled. When the threshold calculator converges to a threshold, a flag will
be set indicating that the threshold is ready. At this point, the control block will transition into the RUNNING
state in which the NEO calculator is enabled and the system will perform spike detection. There is no need
to enable the threshold calculator or classifier. This is the state in which the system will be most of the time.
When a calculated NEO value exceeds the threshold, a flag will be set, indicating the detection of a spike. At
this point, the system will be in the DETECTION state and in this state, the next 40 filtered input samples
will be saved. It should be noted that the precision of the samples is reduced to 8 bits, in order to facilitate
proper classification. This is done by dividing the 10-bit input sample by 4, which practically is performed by
only saving the 8 MSBs of the input signal (i.e. a bit-shift to the right by 2). Again, the exact motivation and
additional information will be provided in later sections (3.4). The system will always be in this state for 40
consecutive clock cycles, after which it will go to the CLASSIFICATION state, in which, the saved spike will be
classified. The system will transition back into the RUNNING state in order to repeat the whole process.

RESET

INIT  RUNNING DETECTION

CLASSIFYING

Thresh_flag ='1'
Detection_flag ='1'

i = N (i.e. 40)

Classification_flag ='1'

Figure 3.3: FSM graph of the main control FSM.

The main feature of the on-board threshold calculator is to have an adaptive threshold that minimises
performance loss when the input signal conditions change. Relatively speaking, it takes some time for the
threshold to converge to the right value. So when the threshold is recalculated, it is desirable that the system
can continue to detect and classify spikes using the previous threshold. Adding this feature to the control
logic will result in a significant increase in the state space and complexity of the control FSM. Given the fact
that all this happens inside of the detector module, is opted to implement a separate control FSM for the
detection module specifically. The FSM graph can be found in figure 3.4. There are three states in which
the spike detector operates. The spike detector can either calculate a threshold, calculate the NEO values
of the input signal or do both simultaneously. The initial state of the spike detector is the state in which
it only calculates the threshold (depicted as Threshold_calc in figure 3.4). After the first initial threshold is
calculated, the control FSM will take the system to the regular operating state (called NEO in figure 3.4) in
which the actual spike detection is done. It is also possible (and recommended) to recalculate the threshold
without seizing normal operation. This can be done by setting an external pin. The reason behind this is the
fact that the threshold needs to be calculated periodically. As mentioned at the beginning of the chapter, it is
assumed that an external top module will handle such timing issues. Hence, the spike sorter can recalculate
the threshold per demand.
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Figure 3.4: FSM graph of the detector control FSM.

3.3. Spike Detection
This section will describe the inner workings of the spike detector module, which consists of two main mod-
ules and a comparator. These two modules, i.e. the NEO calculator and threshold calculator, will be explained
in more detail in the following subsections. Moreover, the spike detector module contains two first-order in-
finite impulse response (IIR) exponential filters. The transfer function of these filters is the following:

yI I R (n) =αx(n)+ (α−1)y(n −2) (3.1)

The first filter in the spike sorter’s schematic (figure 3.2) has a value of 1
4 for α (equation 3.1) and is used

to smooth the input signal to mitigate high-frequency noise components which have an adverse effect on the
performance of the spike detector. This particular value allows for a low computational burden because it
can be implemented by simple bit-shifts and multiplications. The second filter in the schematic (figure 3.2)
is used to estimate the expected NEO values (E [Ψ(n)]) [88]. Normally, a moving average filter is used for this
very purpose, but this results in significant overhead in terms of chip area as several registers are required.
In order to minimise this overhead, [88] proposes to use an exponential IIR filter to approximate a moving
average filter. Such a filter would only require one register. They suggest a value of 3

32 for α (equation 3.1) for
the best approximation of a moving average filter with length N=15 while keeping the computational burden
low (i.e. the use of bit-shifts and multiplications only).

3.3.1. NEO Detector
Spike detection using the non-linear energy operator (NEO) is a relatively simple method of detecting spikes
and is also well-suited to differentiate spikes from the background noise. The reason behind this is the fact
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that the NEO operator accentuates the instantaneous rise in the signal’s energy, which becomes more ap-
parent during a spiking event. It, therefore, seems to filter out the effect of the noise on the recorded signal.
Originally it was used to quantify AM-FM modulation in sinusoidal signals, and Mukhopadhyay first recog-
nised its spike detection capabilities in 1998 [47].
By applying the NEO operator (equation 3.2 to the recorded brain signal, one gets the NEO values of this sig-
nal. In order to actually detect spikes, a threshold is used (section 3.3.2). A spiking event will occur when the
calculated NEO value exceeds this threshold.

Ψ(x(n)) = x(n)2 −x(n −1)x(n +1) (3.2)

Equation 3.2 shows the NEO operatorΨ() of neural signal x(n). Because of the second term in the equa-
tion, applying the NEO operator requires two registers to save x(n) and x(n+1). The basic operation can be
achieved by using two multipliers and an adder and is therefore relatively cheap in terms of computational
load.

3.3.2. Automatic Threshold Calculator
In order to utilise NEO for spike detection, a threshold is still required for the actual detection. For offline
analysis of a neural recording consisting of N samples, this threshold is often calculated using 3.3. This
method was first described in [90].

T hrΨ(n) = 8

N

N∑
j=0
Ψ j (n) (3.3)

However, this solution is not feasible for real-time applications, since it requires a large number of sam-
ples for an accurate approximation. It is also susceptible to changes in the spiking frequency and can lead
to poor performance. Yang and Mason propose a hardware-efficient automatic threshold calculator which
adapts to changes in the recorded neural signal [88].

Setting the threshold such that the spike detector is not too conservative or optimistic requires studying
the statistical properties of the neural signal. A thorough analysis of these properties can be found in [88], but
a brief summary will be provided in this work for completeness.

A recorded neural signal x(n) can be considered as a spike train signal (s(n) together with background
noise v(n) as can be seen in 3.4.

x(n) = s(n)+ v(n) (3.4)

Assuming the spike train signal and background noise are uncorrelated, the expected NEO value can be
expressed as:

E [Ψ(x(n)) = E [Ψ(s(n))]+E [Ψ(v(n))] (3.5)

The term which dictates the performance of the NEO-based spike detector in 3.5 is the last one (i.e.
E [Ψ(v(n))]), so setting the threshold to an optimal value requires studying the probability density function of
E [Ψ(v(n))]. The noise component of the recorded neural signal can be represented as a weighted sum of K
frequency components and can be expressed as:

v(n) =
K∑

k=1
Bk cos(Ωk n +θk );Ωk = 2π

fk

fs
(3.6)

Where Bk and θk are the amplitude and phase offset of the k th frequency component fk . fs is the sampling
frequency of the neural signal. When the noise is expressed as in 3.6, E [Ψ(v(n))] can be approximated as [10]:

E [Ψ(v(n))] ≈
K∑

k=1
B 2

kΩ
2
k =

K∑
k=1

B 2
k ∗

∑K
k=1 B 2

kΩ
2
k∑K

k=1 B 2
k

(3.7)

The first term in equation 3.7 (i.e.
∑K

k=1 B 2
k ) describes the signal’s energy in the frequency domain and can

be expressed in the time domain using Parseval’s Theorem (equation 3.8):
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N−1∑
n=0

[v(n)]2 = N

2

K∑
k=1

B 2
k (3.8)

The second term in equation 3.7 (i.e.
∑K

k=1 B 2
kΩ

2
k∑K

k=1 B 2
k

) is referred to as the RMS frequency of the recorded signal

and is denoted asΩ2
RMS . This is the weighted sum of the squared radial frequencies of the signal. Combining

3.7 and 3.8 yields:

E [Ψ(v(n))] = 2

N

N−1∑
n=0

[v(n)]2Ω2
RMS (3.9)

It is generally assumed that the background noise of neural signals has a Gaussian distribution with a

mean around zero [34]. Therefore,
∑N−1

n=1 [v(n)]2

σ2 can be described by a chi-square distribution with N degrees of
freedom: ∑N−1

n=1 [v(n)]2

σ2
2(N ) (3.10)

Using the fact that v(n) can be expressed as a chi-square distribution, so E [Ψ(v(n))] can be expressed as a
chi-square distribution by substituting 3.9 into 3.10. This yields the following expression:

Z noi se ≡ N

2σ2Ω2
RMS

E [Ψ(v(n))] ∼χ2(N ) (3.11)

NEO represents the instantaneous rise in a signal’s energy and is defined as the sum of the square of the
signal’s amplitude and the signal’s frequency squared [21]. Therefore the threshold T hrΨ can be expressed
as:

T hrΨ =C0σ
2
nΩ

2
RMS (3.12)

From equation 3.12 it becomes apparent that the threshold indicates the energy of the signal’s noise floor.
So in order to detect spikes within a reasonable limit of false detections, E [Ψ(v(n))] needs to be compared to
this threshold. This yields:

Pr ob[E [Ψ(v(n))] > T hrΨ] (3.13)

= Pr ob[E [Ψ(v(n))] >C0σ
2
nΩ

2
RMS ] (3.14)

= Pr ob[
N

C0σ
2
nΩ

2
RMS

E [Ψ(v(n))] > NC0

2
] (3.15)

= 1−Fχ2 (
NC0

2
, N ) (3.16)

Equation 3.16 shows that this probability can be calculated using the cumulative distribution function
of a chi-square distribution (i.e. Fχ2 ), which is a function of C0 and N only. C0 is some scalar indicating
the sensitivity of the spike detector to background noise and N is the length of the moving average filter
approximating E [Ψ(v(n))]. Both values can be determined offline using heuristics functions. [88] found the
optimum values for C0 and N to be 9.5 and 15 respectively.

To be able to calculate a new threshold for spike detection, two things need to be known. The amplitude
of the noise (i.e. its standard deviation) needs to be approximated, as well as its RMS frequency. The Fourier
transform of the signal is required to calculate its RMS frequency. This operation is computationally heavy,
relatively speaking. It has been shown that it can be approximated by calculating the average zero-crossing
frequency of the signal [88], which is better solution in terms of hardware efficiency. [88] proposes a sim-
ple circuit to calculate the value of ΩRMS by comparing the sign bits of two consecutive samples using an
XOR gate. Every time the signal encounters a zero-crossing, the XOR will output a 1. The number of 1’s are
accumulated in a register for 2Nz clock cycles. The final output of the RMS frequency calculator is given by
dividing the number of zero-crossings (nz by twice the total number of clock cycles and multiplying this by
2π to get the angular frequency. This yields the following expression:



3.4. Spike Classifier 29

ΩRMS =π
nz

2Nz
(3.17)

To avoid floating point arithmetic (due to the π term in equation 3.17), a value of 100/32 (i.e. 3.125) is used
instead. By doing so, equation 3.17 can in its entirety be calculated by bit-shifts and multiplications only.

Calculating the standard deviation (σn) of the noise is slightly more complex. [88] proposes a method
to do this in digital hardware without adding significant chip real-estate overhead. They utilise a statistical
theory that the probability of Gaussian noise exceeding its σn is exactly 0.159. Their proposed system con-
verges to a value of σn such that it is exceeded 15.9% of the time by the background noise. This is done by
comparing the neural signal to the estimated σn (i.e. σest

n ). If the amplitude of the neural signal exceeds
σest

n , then the comparator will produce a 1 as output, otherwise, a 0 will be outputted. A counter will keep
track of the outputs of the comparator and count the number of 1s over M clock cycles. The result from this
counter is then compared to 0.159*M, which is the desired value. The estimate σest

n is updated using the dif-
ference between the actual and desired output. The estimated value is updated every M clock cycles until a
convergence detector has detected the convergence of the estimated value of σn .

3.4. Spike Classifier
After the detection of a spike, the spike waveform is saved for classification. The type of classifier used to
do this is a neural network. The following section motivates the design of the neural network classifier in
terms of its topology and characteristic features (e.g. activation functions). Two different network topologies
are presented and discussed, each with its own advantages and disadvantages. Moreover, techniques will be
presented to make the neural network run efficiently in dedicated a hardware. Lastly, two post-processing
steps are discussed which aid in increasing the system’s performance.

3.4.1. Binary Classifier
Because the spike sorter will be embedded in a neural implant, it is vital to keep the amount of spent re-
sources in check. This often implies reducing the complexity of a system and finding the optimal trade-off
between performance and area/energy consumption. The classification problem itself can be regarded as a
binary classification problem (i.e. simple or complex spike), so the network needs only one output neuron.
Because this spike sorter does not utilise dimensionality reduction, the full feature set is used as input for the
neural network (i.e. all the samples of the spike). The type of neural network used was a multilayer perceptron
[5], i.e. a feed-forward fully connected network (see figure 3.5). This network has an input vector length of
forty, features a hidden layer consisting of four neurons, and, as mentioned before, has one output neuron.
The resulting 164 weights (signed bytes) are saved using DFlipflops in the synthesised design.

Being a binary classifier, the network is trained on a dataset consisting of two types of spikes, complex
and simple spikes. These spikes are captured in waveforms of 40 neural samples. Two examples of train-
ing samples can be found in figure 3.6. Normally, neural networks that work on these binary classification
problems use the sigmoid activation function, because its output directly corresponds to the likelihood of a
correct classification. However, implementing such an activation function is not trivial, as the sigmoid out-
puts a value between 0 and 1 (sometimes -1 and 1). This implies that floating-point arithmetic should be
used. Moreover, the sigmoid activation function is not a linear function (equation 3.18), which adds to the
computational complexity. Quite often, this type of activation function is implemented as a lookup table,
which might be a considerable burden on the resource budget.

f (x) = 1

1+ex (3.18)

As can be observed in figure 3.6, the two types of spikes differ significantly from each other. If the network
is trained properly, it might be robust enough to still perform well enough while using a simpler activation
function. A less complex activation function is called the Rectified Linear Unit:

f (x) =
{

x if x > 0,

0 otherwise



30 3. Proposed Spike Sorter Design

Output

Input layer Hidden layer Output layer

Input 0

Input 1

Input 2

Input 38

Input 39

Input 37

Neuron 0

Neuron 1

Neuron 2

Neuron 3

Figure 3.5: Visual representation of neural network classifier with one output neuron.

The use of this activation function significantly reduces the computational load of the neural network and
is therefore used in all 4 of the neurons.

Figure 3.6: Recorded waveforms of annotation (blue) and detected simple (red) and complex spikes (green).

Conventionally, software implementation of neural network uses floating-point number representation
which adds to the computational burden of the classifier. Through a technique called quantisation [20],
the network is transformed to integer format to increase the efficiency of the arithmetic. The weights and
activation values of the neurons are mapped to signed 8-bit (signed) values according to this quantisation
scheme[20], where r is a real number, q is an integer and S and Z are quantisation parameters:

r = S(q −Z ) (3.19)

Similarly, biases are mapped to 32-bit signed values. Calculating the output of one layer of a fully-connected
neural network is equivalent to performing a matrix multiplication of the weight matrix and an input matrix.
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Since both the weights and activations can be expressed in this quantized form (3.19), the output calculation
of one layer can be expressed in the following form (3.20) and can be rewritten to 3.21, where M = S1S2

S3 . Since
S1, S2 and S3 are all static quantisation factors, M can be calculated offline.

S3(q (i ,k)
3 −Z3) =

N∑
j=1

S1 = (q (i , j )
1 −Z1)S2(q ( j ,k)

2 −Z2) (3.20)

q (i ,k)
3 = Z3 +M

N∑
j=1

(q (i , j )
1 −Z1)(q ( j ,k)

2 −Z2) (3.21)

It was empirically determined that M is in the interval (0,1) [20] which makes it unusable for integer-only
arithmetic. M can therefore be expressed in the following form (3.22) which preserves the value of M while
facilitating integer-only arithmetic:

M = 2−n M0 (3.22)

Where M0 is in the range of [0.5,1) and n is a positive integer. Multiplication with M0 can be implemented
by fixed-point multiplication, while multiplication with 2−n can be implemented by a simple bit-shift to the
right [20].

When we take q1 to be the weight matrix and q2 to be the input matrix, then q3 will be the activation
matrix (equation 3.21). Since both q1 and q2 are in int8 format, the accumulation of the product of both
requires 32 bits. So in order to get 8-bit output values for the output matrix q3, the final result in the 32-bit
accumulator needs to be scaled down. This is done by performing said fixed-point multiplication and bit-
shift (3.22). After scaling down, a saturating cast to int8 is performed, because the result of the scaled-down
value might still exceed the upper or lower bound of a signed byte. The ReLU activation function is fused in
this saturating cast.

The neural network was trained on a dataset containing a total number of 63504 spikes with an equal
distribution of complex and simple spikes. This dataset was constructed using the spike detection module
and the neural recordings from the Whisker Lab. The composition of the data structure containing the neural
recordings (and labels of spike occurrence) can be found in table 3.1.

Data
name Name of recording
wave Array of sample points
cs Timestamps complex spikes
ss Timestamps simple spikes
start Start time
stop Stop time
time_vector Array of timesteps

Table 3.1: Composition data structure.

Because the spike classifier performs inference on the spikes detected by the spike detector, the spikes in
the training dataset need to be very similar to the actually detected spikes. The spikes in the neural recording
are manually labelled, thus, the exact timestamp can differ from the timestamp provided by the automatic
spike detector. Because of this, not all spikes in the datasets were used for training. Instead, the spike detector
was used to construct the training dataset for the neural network. First of all, the spike detector returned an
array of all detected spike occurrences, and the subsequent 40 samples of all true positive spikes were saved.
Lastly, a label in the form of either a 1 (simple spike) or a 0 (complex spike) was added. Because these neural
recordings are still in 10-bit format, the whole waveform (not the label) was divided by 4 in order for it to be
suitable for the neural network (which requires 8-bit inputs). Even though the occurrence of complex spikes
is less frequent than that of simple spikes, the training dataset was balanced by including equal numbers of
both simple and complex spikes (called undersampling). This prevents the neural network from being biased
too much towards one class in a classification problem such as this one.
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Training Parameters Binary Classifier
Size Dataset 63504
Training Ratio 0.75
Epochs 100
Batch size 10
Loss function Binary cross-entropy
Optimiser Adam

Table 3.2: Training parameters binary classifier.

A summary of all relevant training parameters can be found in table 3.2. As mentioned before, 75% of the
spikes in the dataset are used for training, while the remaining 25% is used for testing the trained network.
The weights of the network are updated over 100 epochs, in batches of 10. The loss function used for training
is the binary cross-entropy loss function. As the name suggests, this loss function is eminently well-suited
for a binary classification problem. This loss function works well if the target is 0 or 1, which is the case for
this classifier. Updating the weights is optimised by using the Adam optimiser algorithm. Adam[29] is an
improved version of stochastic gradient descent and varies the learning rate in order to converge to a solution
faster.

3.4.2. Multi-class Classifier
One of the drawbacks of using a binary classifier in this system is that the classifier assumes that the input
spike originates from a Purkinje cell. This, and the fact that the detector detects false positives, has a detri-
mental effect on the system’s ability to detect complex spikes. The spike detector will report a relatively low
number of false positives under normal operation, relative to the total number of spikes. The total number of
spikes mainly consists of simple spikes. Therefore, classifying a detected false positive spikes as simple spikes
only mildly affects the sorter performance when it comes to simple spikes. Quite the opposite is true when it
comes to complex spikes because of their lower frequency of occurrence. Note the number of false negatives
generally tends to be lower (i.e. all complex spikes are detected) than the number of false positives.
One solution for this problem is to mitigate the (inevitable) shortcomings of the spike detector by adding an
extra class to the classifier. Extending the classifier to also be able to classify false positives, gives the system
the opportunity to catch faulty spike detections in a later stage. In order to accomplish this, the network
topology needs to be revisited. In case of a binary classifier, one output neuron suffices for both classes. The
number of output neurons need to be extended to three, one for each class. The output neuron with the
highest activation corresponds to the most likely class.
Training such a network requires a slightly different approach to the binary classifier. Each training sample is
labelled using a one-hot vector (i.e. vector where all but one indices have the value zero). This causes the net-
work to converge to a state where the activation of the output neurons is in line with the labels (i.e. 1 for the
implied class and 0 for the other two classes). Adding an extra output class also introduces an extra degree of
uncertainty to the classification problem, since the likelihood of correctly classifying a given spike decreases.
As a result, the overall sorter accuracy might decrease and the overall variation might increase. The drawback
of this extra degree of uncertainty might be offset by the fact that the overall complex spike sorter accuracy
will increase. This makes it a worthwhile trade off.

A new design space exploration was performed (see section 4.1.2), because of the revised neural network
topology. Building upon the result from the initial design space exploration (see 4.1.1), a final network was
chosen which can be seen in figure 3.7. The choice of the activation function was kept the same, as well as the
number of input samples (i.e. 40). An additional layer was added and the number of neurons in the hidden
layer was increased to eight. An overview of the training details can be found in table 3.3. Most parameters
were kept the same, apart from the number of training samples. In order to preserve the symmetry in the
dataset, the number of simple spikes, complex spikes and false positives was kept the same. The number
of false positives is the limiting factor in this sense as they are not as abundant as the simple spikes or even
complex spikes. Another key difference with table 3.2 is, of course, the choice of loss function. Essentially
speaking both loss functions differ only slightly. As the name suggests, binary cross-entropy is tailored for
binary classification problems, whereas categorical cross-entropy is geared towards multi-class classification
problems.
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Figure 3.7: Visual representation of neural network classifier with three output neurons.

Training Parameters Multi-class Classifier
Size Dataset 17854
Training Ratio 0.75
Epochs 100
Batch size 10
Loss function Categorical Cross-Entropy
Optimiser Adam

Table 3.3: Training parameters multi-class classifier.

3.5. Post-Processing
Additional steps can be undertaken to improve the performance of the system by post-processing the sorter
results. Two post-processing steps are introduced, both of which can be applied offline. The main goal of
this thesis is to aid in the data acquisition of Purkinje cell neural activity for research purposes. The post-
processing steps described in the subsequent subsections use several parameters. The value of some of these
parameters can be calculated, but not in all cases. For those parameters, input from the Whisker lab was
needed. Their requirements with respect to these parameters were used to give them a value.

3.5.1. Detection
The first post-processing step aims to mitigate shortcomings in the detection algorithm by introducing a dead
zone after a detection event. What tends to happen is that one actual spike results in several spike detections,
since the calculated NEO value will exceed the threshold several times in a short amount of time. The time
interval between these detection events is often in the sub-millisecond domain, which is not possible due to
the anatomy of Purkinje cells. Neurons need time to build up the required charge (i.e. ion concentration) to
produce a spike[57], which typically exceeds 1-2 ms. Moreover, the likelihood of a neuron firing two consec-
utive spikes right after one another (assuming it is able to produce a spike of course) is slim. The duration
of the detection dead zone can therefore be more than the required time for the neuron to recharge. For this
work, a dead zone interval of 2 ms is chosen but this dead zone can also be extended to 4 ms. A small dead
zone interval can lead to a larger number of false positives but will result in a smaller number of false nega-
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tives. The opposite is true for a larger dead zone interval.
One of the fundamental differences between complex and simple spikes is the way the Purkinje cell produces
them. The Purkinje cell uses a concentration of calcium ions to produce a complex spike and a concentration
of sodium ions to produce a simple spike[81]. Because the Purkinje cell uses two kinds of ions, no additional
time is needed to restore the needed concentration. It is therefore possible to have a complex spike right after
a simple spike (or vice versa). Generally speaking, there is still at least 1 ms between the occurrence of one
type of spike followed by the other type of spike. This slightly complicates this post-processing step. The solu-
tion to this is to break up this post-processing step into two steps further. First off, we discard any additional
spike detections which are less than 1 ms after an initial spike detection. The second step is applied after the
spikes have been classified. If two spike events of the identical type happen within a 2 ms time frame, the
most recent spike event will be ignored.

3.5.2. Classification
The following post-processing step only applies to the binary classifier. As previously mentioned, one of
the shortcomings of this approach is the fact that the classifier tries to classify each detected spike as either
type. Often when it concerns a false positive (i.e. neither of both spike types), the classifier output will be
close to the classification threshold. Ideally, the classifier output of a complex spike is 0 and 1 for a simple
spike, corresponding to the training labels. Therefore, the classification threshold is in the middle of this
interval and equal to 0.5. To catch false positives, all spike events which are relatively close to this threshold
are ignored. Similar to the detection post-processing step, a dead zone is introduced. In this case the dead
zone lies within the classification dimension. All spike events within a certain range situated around the
classification threshold are ignored. The bounds of this interval are determined empirically by averaging the
classification output of all false positive complex (i.e. lower bound) and simple (i.e. upper bound) spiking
events. It was found that a considerable amount of simple spikes were falsely disregarded, resulting in a
significant rise in false negative simple spikes. The purpose of the post-processing step is to address the
negative impact of false positives on the sorter’s performance, especially with regard to complex spikes. Given
that this does not appear to be problematic for simple spikes, which occur in large numbers relative to the
number of complex spikes and false positive spike detections, it is logical to exclude this post-processing step
for them. As a result, the upper bound for the dead zone interval is set at the classification threshold of 0.5.
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Results

In this chapter, the test results of the spike sorter are presented. The system is evaluated in two different ways.
First off, the performance of the algorithm is evaluated in terms of its prediction accuracy. Because the spike
sorter is comprised of two modules, the detector and the classifier, each of these modules is evaluated sepa-
rately as well. This is to see which of the two modules influences the performance of the overall system the
most. Also, the performance of the original neural network is compared to that of its quantized counterpart.
Since the spike sorter will perform its functionalities embedded in a neural implant, the power consumption
and on-chip area of the synthesised ASIC design are also evaluated.

4.1. Design Space Exploration
This section describes the results from both design space explorations. The motivation behind the choice of
parameters for both design space explorations is also provided. The first design space exploration describes
the path of finding the relative optimum network topology for the binary classifier. Later on it was found
that the performance of this type of classifier suffered from false positive spike detections. The possibility
of extending the classifier to three classes was therefore explored and a second design space exploration was
required as the complexity of this neural network varied from the binary classifier neural network. The second
design space exploration builds upon the results found in the first design space exploration.

4.1.1. Binary Classifier
In order to explore the effectiveness of using a simple fully-connected neural network, a test network with 32
input samples, eight neurons in the hidden layer, and one output neuron was constructed. The preliminary
results were very promising (approximately 95% test accuracy). So in order to find an optimal solution, sev-
eral other networks were implemented and tested. Because of the restricted resource budget of the system,
a trade-off had to be made between the performance of the spike sorter and its resource consumption. Ex-
ploring this design space can be time-consuming, because of the many possible combinations which can be
explored. To limit the time spent on this, only a few parameters were changed. These specific parameters
were chosen, because they have a significant effect on both the performance of the classifier as well as on the
resources. The design space exploration was performed by varying said parameters and training the resulting
network on 75% of the total dataset. The remaining 25% of the samples were used to validate the network.
This test accuracy was then used as an indicator to see how well a certain combination performed.
One of the parameters which was changed is the topology of the neural network. In total, 6 different networks
were compared, ranging from a simple neural network without a hidden layer to a more complex network
with two hidden layers and dozens of neurons. Generally, the deeper the network and the more neurons
there are in the network, the better it performs in terms of (test) accuracy. However, this will also result in a
significant increase in weights and biases that need to be stored. The number of stored weights scales expo-
nentially when additional neurons are added to a given layer. This also implies that the consumed area and
power consumption will scale with it. Adding layers to the network will cause the number of stored weights
to scale linearly, but have a different effect on the performance of the system. Broader neural networks (i.e.
with more neurons per layer and fewer layers per network) tend to converge faster. Deeper neural networks
(increased number of hidden layers with relatively low numbers of neurons per layer) generally require ex-
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tensive and proper training [36, 83]. The number of neurons chosen in the different network topologies are
all powers of two, in case some addressing was needed. By choosing a power of two, the full address space
can be used. No addressing was eventually needed, so the number of neurons is quite arbitrary in this sense.
Different topologies were chosen to represent a design space with networks of varying complexity.// Another
parameter that could influence the performance of the classifier is the width of the input waveform. Each
sample can be considered as a feature of the spike, so by increasing the feature set, one generally increases
the performance as well. However, this increase in performance is bound by the fact that spikes have a cer-
tain duration, which is relatively constant. 32 input samples were used for initial testing and the number of
input samples was either incremented or decremented by four to establish a design space. Smaller or bigger
steps could have been chosen, but steps of four allowed for a variety of design choices without making the
exploration unnecessarily long.
After identifying the two parameters of interest, neural networks with different configurations were trained
and tested. A summary of this combination with corresponding test results can be found in figure 4.1. All
networks were trained over 50 epochs with a batch size of 16. The number of epochs was lowered compared
to the training setting of the eventual network, to facilitate faster training. Due to the stochastic nature of the
neural network, results might vary slightly when the experiment is repeated. It can be seen in figure 4.1, that
increasing the input vector size has a positive effect on the test accuracy up to 40 samples. Increasing the
input size beyond this point yields little improvement.
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Figure 4.1: Test accuracy of different neural networks as a function of their input vector size.

It can also be observed that the most simple network of the six, the network without a hidden layer (no
hidden layer in legend), is not able to keep up with the more complex networks. The other five networks all
seem to converge to a test accuracy of approximately 95.50% for 40 input samples. In some cases, the test
accuracy actually decreases if the input vector size is increased even more. This might be due to the fact that
increasing the sample length of the spike might introduce extra sample points that are either not part of the
spike anymore, or add little to the distinctiveness of the spike. However, increasing the input sample width
still improves the test accuracy somewhat in most cases. This gain in performance is not really worthwhile
considering the additional cost in terms of chip real-estate and energy consumption. Based on this, the op-
timal number of input samples is set at 40. Out of the five networks (not considering the network without a
hidden layer since it performs considerably worse), the network with four neurons in the hidden layer (H4 in
the legend) and 40 input samples performed the best considering its complexity.
Based on the exploration of the design space, it was therefore established that a fully-connected neural net-
work with 40 input neurons and 4 neurons in the hidden layer, is the optimal solution for classifying neural
spikes on-implant. It should be noted, of course, that this is the optimum solution for the design space ex-
plored in this work. Another set of parameters might yield different results. Also, if the design space was
broadened (i.e. more parameters), the results might have been different. Considering the duration of such
an exploration, it might just be too time-consuming for this work. In fact, most of the combinations tried
out during this exploration may suffice for this application. In brief, the decision to go for this particu-
lar network (FC4 with 40 input samples) is grounded, but there is likely a better configuration in terms of
costs/performance.
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4.1.2. Multi-class Classifier
The addition of an extra output class in the case of the multi-class neural network classifier gave rise to a sec-
ond design space exploration. Using a neural network with one hidden layer with four neurons and three out-
put neurons is not sufficient to produce satisfactory classification results. Therefore a new network topology
needs to be determined with the aim of minimising the resource overhead and maximising the classification
performance. The second design space exploration builds upon the results of the first design space explo-
ration in terms of the width of the input samples. One of the conclusions of the first design space exploration
was the fact that enough information about the spikes is captured in 40 neural samples. Each network tested
in the second design space exploration, therefore, uses 40 input samples as well. The parameters which were
varied in this second design space exploration are the breadth (i.e. the number of neurons per layer) and
depth (i.e. the number of hidden layers) of the network. The influence of both parameters on the perfor-
mance and resource overhead varies as discussed in section 4.1.1.

Figure 4.2: Test accuracy of different neural networks as a function of the number of neurons per hidden layer.

The results of the second design space exploration can be seen in figure 4.2. A clear trend can be seen as
the number of neurons in the hidden layers increases. A significant increase in performance can be observed
when the number of neurons in each hidden layer is increased from four to eight. Increasing the number
of neurons per hidden layer beyond this point does not seem to aid the performance of the classifier, as the
classification accuracy only increases slightly. It follows the expectation that increasing the number of hid-
den layers is beneficial to classification accuracy. The differences tend to be greater for lower neuron counts,
albeit they are still relatively small.

Figure 4.2 shows that the benefit of adding additional hidden layers does match the additional overhead it
poses in terms of resource consumption. Each added hidden layer essentially doubles the number of weights
that need to be stored. The choice, therefore, falls on the neural network with the least number of hidden
layers explored, which amounts to a network with two hidden layers. It can also be concluded from figure
4.2 that adding neurons to each hidden layer beyond eight neurons is not beneficial to the overall system
performance. The total number of weights increases quadratically with the increase of neurons per hidden
layer and therefore does not warrant a slight increase in classification accuracy. Similar to the first DSE, the
list of parameters and their range that could be explored is extensive. Given, the time constraints of this thesis,
only a subset could be explored. From the explored options the neural network with two hidden layers, each
with eight neurons, seems to be the optimal solution in terms of performance and resource overhead. This
network will suffice in the context of this work, but it is highly likely that a more optimal network exists in
terms of cost/performance.
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Dataset Number of Experiments Complex Spike Simple Spikes Total
Initial 63 18 130 1 071 778 1 089 233
New 134 37 485 2 317 966 2 355 451

Table 4.1: Table containing a summary of the datasets.

4.2. Evaluation Setup and Performance Metrics
This section will elaborate on the data used to verify the performance of the system. A brief explanation of the
evaluation methodology is also provided. This explanation includes a summary of the performance metrics
as well as a summary of the test setup.

4.2.1. Data

The spike sorter was tested and evaluated on two datasets, each containing data from several experiments
(see table 4.1). The data structure of one experiment can be found in table 3.1. The first dataset contains
data of better quality than the data in the second dataset. More specifically, the signal-to-noise ratio is better
in case of the first dataset. The noise floor is not known in either of the datasets, however. So this claim
cannot be supported by a definitive number. The person who recorded the experiments visually inspected
the data and grouped it into two datasets. In order to evaluate the system, it was tested using each of these
experiments, which resulted in a number of performance figures. This data has been plotted to show how
well the system behaves over different sample sets (i.e. the individual experiments). The first dataset, the
one containing the good data, is called the initial dataset, because on this dataset the system was initially
tested. This dataset contains 63 different experiments from 35 were suitable to be used. The second dataset,
containing data of lesser quality, is called the new dataset and contains 134 different experiments of which
66 were actually used. The reason why not all experiments were suitable for evaluating the spike sorter, is
the fact that the data of some experiments did not accurately depict the situation in case the spike sorter is
actually deployed. An example would be an experiment where there is excessive recording electrode drift
(some recording electrode drift is unavoidable). Saturated sample points (significantly higher than other
sample points) were also frequently encountered, as well as offsets in the data. In this last case, all the sample
points received some offset in such a way that the neural signal was not concentrated around the x-axis (the
threshold calculator works under the assumption that the noise is zero-mean).

4.2.2. Evaluation Setup

How well the spike sorter performs, is determined by its sorting accuracy. This in turn is influenced by the
performance of the spike detector, as well as the performance of the spike classifier. Each requires their own
specific method in order to determine its accuracy. If the spike detector can detect all the spikes at the right
time, then you will have a flawless system. Such a detection is called a true positive (Tp ). It is also possible
that the spike detector detects a spike when there is none, this is called a false positive (Fp ). A detector which
is too sensitive will exhibit a lot of false positives. When a detector is not so perceptive, it will tend to miss a lot
of spikes. These are called false negatives (Fn). These three statistics need to be collected in order to calculate
the accuracy according to equation 4.1. The classical formula for calculating an accuracy figure also takes
into account true negatives (i.e. Tn). During this evaluation, this parameter is omitted. The reason for this is
the fact that the number of samples that correctly not detected greatly exceeds any of the other possibilities,
due to the fact that the sampling frequency is significantly higher than the spiking frequency of neurons.
What is important for this is to correctly determine which of the three categories a detected spike belongs to.
This can be determined by using the provided labels in the datasets. These labels indicate the timestamps
of the occurrence of both types of spikes. However, the data is manually labelled, so not all timestamps will
correspond to the exact timestamp of the detected spike. So in order for a detected spike to be regarded as
a true positive, it needs to be sufficiently close to the labelled spike. For evaluating the spike detector, this
time interval was chosen to be the duration of such a spike, which is 1 ms on average. So if a detected spike
is within 1ms of the labelled spike, it is counted as a true positive. In case a detected spike is not in range of
any of the labelled spikes, it is counted as a false positive. Lastly, the remaining number of labelled spikes are
counted as false negatives, as they are not detected.
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Accur ac y = 100%∗ Tp

Tp +Fp +Fn
(4.1)

In case of determining the accuracy of the spike classifier, things are less complicated. Test datasets of
each recorded experiment are constructed similarly to the way the training dataset is constructed (see sec-
tion ??), with the only difference being that the training dataset contains spikes from all experiments of both
datasets and each test set contains spikes from only one experiment. These entire test datasets are fed to the
spike classifier and the prediction outcome is compared to the label. The accuracy is calculated by dividing
the number of right predictions by the total number of spikes in the test dataset. The performance difference
between the normal and quantized neural networks is evaluated the same way.
Lastly, these two methods are combined to determine the overall accuracy of the spike sorter. Essentially,
the evaluation setup is the same as the evaluation setup of the spike detector. The only difference is that the
two types of spikes are evaluated separately, instead of looking at all the labelled spikes combined. A figure
of accuracy is still calculated using equation 4.1, where the total number of true positives, false positives and
false negatives is the sum of these values for both types of spikes.
As the software implementation of the system allows for more flexibility, the performance of the system is
evaluated using the software implementation. Since the hardware design is essentially the same as the soft-
ware implementation, it is assumed that the evaluation also holds for the hardware design. This is under the
assumption that the quantization of the neural network does not degrade the performance significantly.

Synthesising the logic design based on the RTL description will yield some results in terms of area and
power consumption, and timing. This will be discussed in section 4.4.
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4.3. Accuracy
The performance of the spike sorting algorithm is evaluated by looking at its detection, classification and
overall sorting accuracy. First, the two separate parts of the algorithm are evaluated, followed by a perfor-
mance evaluation of the entire spike sorting algorithm. Because the initial neural network is not going to
be included in the physical implementation of the algorithm, the performance difference between the initial
and quantized neural network is also treated.

4.3.1. Spike Detection
The detection accuracy of all experiments in the initial dataset and the new datasets are depicted in bar-
charts as can be seen in figure 4.3 and 4.4 respectively. The first thing that can be observed in both plots is
quite some variation between experiments. There are some notable dips in detection accuracy. For exam-
ple, experiments 6 and 37 of the initial datasets perform significantly worse compared to other experiments.
The reason behind this lack of performance is the fact that the detection algorithm detects a lot of false pos-
itives. A closer (visual) inspection of these datasets reveal that the detected false positives are in fact spikes
from neurons in the background of the recording site. These spikes have not been labelled as activity from a
Purkinje cell as they are not. However, the spike detector does not discriminate between neurons and detects
spikes if they are there. Proper placement of the recording electrode can mitigate this problem.

Figure 4.3: Detection accuracy of all experiments in the initial dataset.

In order to get better insights into the performance of the spike detector, it would also make sense to look
at the distribution of the detection accuracies of both datasets. Figure 4.5 contains two boxplots correspond-
ing to both datasets. Several interesting observations can be made from these boxplots. The first one being
that most of the dips in figure 4.3 are considered outliers in the corresponding boxplot. To a lesser extent, this
is also the case for figure 4.4. Another observation that can be made is the fact that there is more variation
in detection accuracy when it comes to the new dataset. Intuitively this makes sense as the initial dataset
contains neural recordings of "better quality" which facilitates the detection algorithm.
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Figure 4.4: Detection accuracy of all experiments in the new dataset.

Another key observation is the fact that there seems to be more variation in the lower 50% of the data
in both datasets. This means that the average detection accuracy does not give a clear indication of the
performance of the spike detector. This is because the performance data is skewed due to the presence of
(unrealistic) noisy datasets. Instead, it would make more sense in this situation to use the median instead. A
summary of all relevant metrics can be found in table 4.2 or 4.3.

Figure 4.5: Boxplots of detection accuracies of both datasets.
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4.3.2. Spike Classification
Classification Accuracy
Similarly to the evaluation of the detection accuracy, the spike classifier was evaluated by seeing how well the
classifier performed on every single experiment (i.e. neural recording session). Both the binary and multi-
class classifiers have been evaluated. The results from these evaluations are visualised in barcharts which
can be seen in figures 4.6, 4.7, 4.8 and 4.9. The first 20 experiments are shown to maintain readability. The
complete results can be found in appendix A

Figure 4.6: Classification accuracy of the first 20 experiments in the initial dataset using a neural network with one output neuron.

It can be seen that the binary classifier is able to identify both types of spikes with at least 95% accuracy in
most cases. This figure is a bit lower in case of the multi-class classifier, where most experiments report a clas-
sification accuracy of 90% or more. It is interesting to see that some experiments (for example experiments
6 and 36 of the initial dataset) show similar dips in performance when compared to the detection accuracy.
However, this does not seem to be the case for the multi-class classifier. There is also a significant difference
between complex and simple spike accuracy for some experiments which use the binary classifier, notably
experiments 6 and 36 of the initial dataset (figure 4.6) and experiments 6 and 28 of the new dataset (figure
4.8). This does not seem to be the case for the multi-class classifier, which shows great consistency for most
experiments (figure 4.7 and 4.9).

Figure 4.7: Classification accuracy of the first 20 experiments in the initial dataset using a neural network with three output neurons.

Yet again it would make sense to look at the distribution of the classification accuracies to discover other
trends in the classification data. Figure 4.10 contains four boxplots showing the performance distribution
of simple and complex spikes for both datasets (using the binary classifier). The main takeaway from these
boxplots is the fact that the classification performance over all experiments is very skewed. There seems to
be a lot of variation beneath the 50th percentile, which seems to be the result of the apparent dips which can
be observed in the bar charts (figure 4.6 and 4.8).
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Figure 4.8: Classification accuracy of the first 20 experiments in the new dataset using a neural network with one output neuron.

The boxplots showing the performance distribution of the multi-class classifier show a different story
(figure 4.11). Overall, the multi-class classifier can not match the performance of the binary classifier. This
makes sense since the classifier needs to deal with an additional class which adds another degree of uncer-
tainty. Generally speaking, the data does not tend to be as skewed compared to the binary classifier. This
consistency is also reflected in the bar charts (figure 4.7 and 4.9), as the differences between complex and
simple spike accuracies tend to be minor.

Figure 4.9: Classification accuracy of the first 20 experiments in the new dataset using a neural network with three output neurons.

Due to the classification performance being skewed for the binary classifier, using the mean value gives
a pessimistic view of the classifier’s performance and the median would be a more suitable metric to give an
indication of how well the classier performs. In case of the multi-class classifier, the mean and median are
very similar because the data does not tend to show some degree of skewness. In this sense, it is fair to also
use the median as a performance metric for the multi-class classifier. By doing so a fair comparison between
the binary and multi-class classifiers can be made. In general, the binary classifier outperforms the multi-
class classifier by about 5%. However, both classifiers were evaluated using a set of true positives complex and
simple spikes. The reason to use a multi-class classifier is to mitigate the negative influence of falsely detected
spikes in the whole system. The setback in raw classification accuracy might therefore be offset by an increase
in overall performance. Therefore making the trade-off worthwhile. The next subsection will elaborate on the
system’s overall performance.
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Figure 4.10: Boxplots of classification accuracies of both datasets for the classifier with one output neuron.

Figure 4.11: Boxplots of classification accuracies of both datasets for the classifier with three output neurons.

Normal vs. Quantised Network
Generally speaking, quantizing a regular neural network has an adverse effect on the performance of said
network [20]. It is therefore important to evaluate the impact of quantizing the neural network classifier on
the performance of the classifier, as the quantized version will be implemented in hardware. In order to
compare the performance of both neural networks, the evaluation of the regular neural network needs to be
redone with the quantized neural network as a classifier.
Out of the 107 total experiments, only three of them showed different results. In all other 104 cases, the
classification accuracy was identical up to two digits after the decimal point. In case of experiment 46 of the
initial dataset, the difference between the regular and quantized network is 4.09% (absolute difference). For
experiment 47, the difference is 0.99% and for experiment 48 the difference is -1.43%.
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4.3.3. Spike Sorter
After evaluating the performance of each individual module (i.e. detection and classification module), both
modules in conjunction were evaluated. Similarly to section 4.3.1 and 4.3.2, bar charts and boxplots are
used to evaluate the system’s overall performance. Figure 4.12 and 4.13 show the performance distribution
of the binary classifier-based system and the multi-class classifier-based system on both the initial and new
datasets. What stands out from these different boxplots is the fact that the overall sorter performance for
the multi-class system is less compared to the binary classifier system. The multi-class spike sorter is also
showing more variation. The boxplots illustrating the sorter’s accuracy in detecting simple spikes appear to
resemble this scenario. Moreover, the multi-class system seems to be doing better for complex spikes, in the
context of the entire system. This makes sense since the multi-class option was explored to increase the com-
plex spike sorting performance. The purpose of the multi-class classifier is to detect false positive spikes. The
origin of these spikes might come from neurons residing in the background.

Figure 4.12: Distribution comparison of the accuracies of the detection and classification modules and the entire system. This concerns
the experiments in the initial dataset. Results from both types of classifiers are shown.

The spikes from these background neurons slightly resemble simple spikes, hence a number of actual
simple spikes might be considered false positives. The overall accuracy is the weighted average of both the
complex and simple spike accuracy and since simple spikes are in abundance relative to complex spikes, their
influence on the overall accuracy is significant. This is reflected in the overall performance of the system, re-
sulting in less performance with more variation for the multi-class classifier.

Figure 4.13: Distribution comparison of the accuracies of the detection and classification modules and the entire system. This concerns
the experiments in the new dataset. Results from both types of classifiers are shown.

Since the sorter is a combination of both the detection and classification module, it is interesting to see
the influence of both on the overall performance of the system. Figures 4.14, 4.15, 4.16 and 4.17 show the de-
tection, classification, and overall accuracy for binary and multi-class based systems, for both datasets. Only
the first ten experiments of each dataset have been shown to maintain readability. Complete results can be
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found in the appendix. 5.3.

Figure 4.14: Accuracy comparison of the first ten experiments in the initial dataset. The performance of the individual modules can be
compared with the performance of the entire system.

Some interesting observations can be made from both figures, which can be used to give an indication of
which module can be considered the bottleneck of the system in terms of performance. Also, the functional-
ity of both types of classifiers can be verified by looking at the performance contribution of each module. The
multi-class classifier is used to compensate for false positive spike detections but is less well-equipped for
classifying complex and simple spikes. The binary classifier is well-equipped for classifying simple and com-
plex spikes but suffers in case the spike detector is performing relatively poorly. This can also be observed
in figure 4.14 and 4.16, experiment 6. Experiment 6 reports a relatively poor detection accuracy of 82.87%.
The multi-class and binary classifiers perform very similarly when it comes to classifying complex and sim-
ple spikes (median of 91.84% vs. 92.40%, respectively). However, only the multi-class-based system is able to
properly deal with the shortcomings of the detector module. In the case of the multi-class classifier, the total
accuracy is 94.24% vs. 79.41 (figure 4.14 and 4.16, experiment 6) for the binary classifier-based system.

Figure 4.15: Accuracy comparison of the first ten experiments in the new dataset. The performance of the individual modules can be
compared with the performance of the entire system using a binary classifier.

For experiments where the detector module does function adequately, for example, experiment four of
the initial dataset, the binary classifier-based system is expected to perform better than the multi-class-based
system. In these situations, nearly all spike waveforms which are fed to the classifier are either complex or
simple spikes (i.e. true positive spike detections). The binary classifier is better equipped in this situation
to correctly classify the input spike. Experiment four of the initial dataset reports a detection accuracy of
95.34%. Both classifiers perform relatively similarly (97.86% vs. 96.36%, for the binary and multi-class classi-
fier respectively). The binary classifier-based system is better able to translate this to a sufficiently high total
accuracy of 87.34% (see figure 4.14), while the multi-class-based system only reaches 82.58% (figure ??).
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Figure 4.16: Accuracy comparison of the first ten experiments in the initial dataset. The performance of the individual modules can be
compared with the performance of the entire system using a multiclass classifier.

The effects of the binary and multi-class classifiers on the total performance of the system only become
apparent in situations where either of the sub-modules do not perform adequately well. In most cases, the
performance is similar for both classifiers. The distribution of the system’s performance (figure 4.12 and 4.13)
does reveal that adding an extra output class to the classifier does introduce additional variation (standard
deviation of 12.85% and 24.94% for the initial and new dataset respectively) to the system, which is not nec-
essarily desirable. This can also be seen in table 4.2 and 4.3. In some cases, using an additional output class is
effective in increasing the performance of the system. However, due to the added resource overhead and vari-
ation, it is not worth the trade-off. Adequately applying post-processing steps as described in section 3.5 can
already mitigate some of the problems false positive spike detections pose, without adding to the variation of
the system.

Figure 4.17: Accuracy comparison of the first ten experiments in the new dataset. The performance of the individual modules can be
compared with the performance of the entire system using a multiclass classifier.
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Detection Classification CS Classification SS
Dataset initial new initial new initial new
Mean 95.35% 97.34% 97.79% 96.61% 98.21% 96.61%
Median 92.76% 95.62% 100% 99.20% 98.50% 97.81%
Std. Dev. 4.85% 6.87% 6.17% 7.54% 1.54% 4.04%

Complete System Totaal Complete System CS Complete System SS
Dataset initial new initial new initial new
Mean 92.85% 88.82% 59.32% 43.70% 94.22% 90.60
Median 94.54% 92.74% 65.84% 43.97% 95.92% 93.65%
Std. Dev. 6.41% 9.73% 23.59% 27.83% 5.31% 8.41%

Table 4.2: Table containing results of the performance evaluation using the binary classifier.

Figure 4.12 and 4.13 give an insight into the distribution of all three types of performance metrics, to see
how the detection and classification accuracy influence the overall accuracy. In line with expectations, the
overall accuracy seems to follow the trend which the detection and classification accuracies exhibit. It can
be observed that the variation in the overall levels of accuracy (i.e. the accuracy of the complete system)
increases. This in turn leads to fewer outliers.

Detection Classification CS Classification SS
Dataset initial new initial new initial new
Mean 95.35% 97.34% 95.56% 89.39% 93.86% 89.19%
Median 92.76% 95.62% 95.77% 89.89% 94.45% 89.17%
Std. Dev. 4.85% 6.87% 1.11% 2.54% 2.15% 2.85%

Complete System Totaal Complete System CS Complete System SS
Dataset initial new initial new initial new
Mean 88.06% 78.06% 62.78% 48.83% 88.93% 79.35%
Median 93.15% 89.56% 71.58% 48.06% 95.37% 90.67%
Std. Dev. 12.85% 24.94% 22.15% 25.21% 13.34% 25.21%

Table 4.3: Table containing results of the performance evaluation using the multi-class classifier.

4.4. ASIC Performance
A logic synthesis of the RTL description of the proposed system has been performed using the Nangate 45
nm Open-Cell library [1]. This open-source library is developed in order to facilitate research, testing and ex-
ploring EDA design flows. Because of this, design synthesised using this library cannot be fabricated. This in
turn is the reason why only a logic level synthesise was performed and not a complete place-and-route, which
would require additional library files describing the physical characteristics of the used technology node. The
results are therefore not final, but give a good estimation of the eventual performance of the physical design.
A summary of the synthesis report can be found in table 4.4. Normally speaking, the synthesis reports the
estimated chip area, the maximum power consumption and the timing slack relative to the configured clock
period. Because the used clock frequency follows the sampling frequency and is therefore relatively low, the
slack is not reported as it is not of interest. In order to get a better idea of the resource consumption of the
individual modules, they were also synthesised separately. Hence, three entries can be found in table 4.4. As
can be seen in this table, the classifier takes up the bulk of the chip real-estate. However, the occurrence of a
spike is relatively rare so the classifier is used sparsely. The classifier needs two clock cycles to perform a clas-
sification. Therefore the energy needed per classification is 24.8 nW, assuming a 24414 kHz clock frequency.

Detector Classifier Complete System
Area 6240 µm2 15896 µm2 22136 µm2

Power Consumption 0.109 mW 0.303 mW 0.412 mW

Table 4.4: Table containing a summary of the logic synthesis results.
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5.1. Summary
Presented in this work is an ASIC design that is able to take 10-bit neural recordings of action potentials of
a single Purkinje cell of a mouse and detect the occurrence of a spiking event. Purkinje cells manifest more
elaborate neural behaviour, as this type neuron is able to generate two types of spikes (complex and simple
spikes), each with its own distinctive waveform. The proposed design is also able to capture the waveform of
a detected spike and classify it as either a complex or simple spike. After the classification has been done, the
ASIC will set a detection flag and output the classification result which is used in the offline post-processing
step. Both the detection and classification can be done in real-time, making the ASIC suitable for applica-
tions in neural implants. The spike detection is performed by applying the non-linear energy operator to the
recorded neural signal. By doing so, the instantaneous rise in the signal’s energy is amplified. In case of a spik-
ing event, the energy of the signal already increments relatively fast as it is a spike. Detecting neural spikes
using this method still requires a threshold. The ASIC also features a dynamic threshold calculator, which is
able to periodically recalculate the threshold to maximise the detection performance. This is needed due to
the fact that traditional thresholding methods are sensitive to the ever-changing circumstances of recording
neural activity. Due to the nature of brain tissue (i.e. it is soft), it is not possible to firmly anchor a recording
electrode without damaging surrounding tissues. This causes electrode drift which influences the amplitude
(and duration to some extent) of the recorded spikes. Combining this with a variable firing rate of the Purk-
inje cells (and neurons in general) leads to the need for adaptive thresholding. The use of a neural network as
a spike classifier is grounded using the same motivation. Neural networks are well-equipped to show robust
performance under varying circumstances. Captured spike waveforms are sent to a fully-connected neural
network to be classified. The power of such neural networks is the fact that they generalise well given proper
training. This allows the neural network to still perform its task adequately despite the varying amplitude of
the recorded spikes. Two types of neural network classifiers were explored. The binary classifier assumes that
the spike waveform at its input is either a simple or complex spike. It will try to classify false positive spike de-
tections as either spike, resulting in poor performance for complex spikes. This is because complex spikes are
relatively rare and the influence of false positive detections is therefore relatively large. Part of this problem
can be mitigated in post-processing steps. Another solution to this problem was to extend the classifier to
three classes by adding false positives as an output as well. It was found that both the binary and multi-class
classifier showed similar results for the overall performance of the system. Because the multi-class classifier
has a more intricate network topology compared to the binary classifier, which leads to higher resource over-
head, the binary classifier is considered the preferred solution.
Tested on two large datasets containing real-life recordings of Purkinje cells of mice, the complete system was
able to correctly detect and classify Purkinje cell neural activity 92.85% and 88.82% of the time on average. To
be more precise: 94.22% and 90.60% for simple spikes, likewise 59.32% and 43.70% for complex spikes. How-
ever, the data resulting from the performance evaluation is not evenly distributed around the mean. This
skewness causes the mean to be relatively low and hence the median gives a better indication of how well
the system performs. The median overall accuracy level on both datasets is 94.54% and 92.74%. For both the
mean and median, a discrepancy in performance is caused by the difference in signal-to-noise ratio between
both datasets. The system performs better on the dataset containing better recordings. The system has been
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synthesised using the 45 nm Nangate Open Cell library resulting in an ASIC with an area of 22136 µm2 and a
power consumption of 0.412 mW.

The main problem statement presented in the introduction of this work was twofold; the current solu-
tion to detecting and classifying neural activity from Purkinje cells requires streaming the neural recordings
through a wired connection to a personal computer. These recordings would then be manually processed in
order to detect and classify the occurrences of spiking events. The first aspect of this problem statement re-
lates to the wired connection. This hinders mimicking the ideal behaviour of the mice from which the neural
activity is recorded and needs to be replaced by another solution. This (general) solution entails compressing
the recorded data by only saving the spike class and the timestamp if its occurrence. The second aspect of
the problem statement relates to the manual processing of the recorded data. Ideally, this process would be
automated. The essence of this problem is captured in one research question which in turn broken down into
three sub-questions. These questions are repeated for completeness:

"How to develop a system that is able to detect and classify neural activity from a Purkinje cell in a real-time
fashion as an embedded implant?"

• "How can techniques for spike sorting be utilised to detect and classify neural activity from a Purkinje cell
in real-time?"

• "How can deep learning techniques aid in classifying spiking activity from a Purkinje cell?"

• "What techniques can be used to deploy the proposed system as an embedded implant?"

The answer to the first sub-question is that not all steps of spike sorting are needed. By applying the
Non-Linear Energy operator to the recorded neural signal, spikes can be detected from the background noise
using a (dynamic) threshold. This first step is important for the functionality of the proposed system since
the neural activity needs to be detected in the first place. The entire waveform of the detected spike is used
to classify it, hence the third step (i.e. feature extraction) is omitted. Because of this, the spike does not need
to be aligned, which is the reason why the second step (i.e. spike alignment) is also omitted. Classifying
the detected spike (the fourth step in the spike sorting paradigm) is required and done through the use of
neural networks. This reduces the computational complexity required by traditional methods for spike clas-
sification. This also answers the second sub-question. The differences between simple and complex spikes
are quite noticeable and hence a relatively simple neural network suffices for the classification of both types
of spikes. The detection stage of the proposed system is very resource efficient and very well-suited for an
embedded application. By converting the neural network to 8-bit integer-based weights and activations, the
classifier can also be deployed in an embedded context such as a neural implant. Despite this, the classifier
is still responsible for most of the consumed resources. By splitting up the detection and classification stage,
the resource-hungry classifier is only used relatively sparsely. This allows the system to be deployed as an
embedded implant. Combining these three answers also answers the main research question.

5.2. Discussion
The system was trained and evaluated using datasets containing neural recordings with manually labelled
spiking events. It is highly unlikely that a person would be accurate 100% of the time when it comes to detect-
ing and classifying spikes from neural recordings. It is therefore inevitable that the "ground truth" contains
errors on its own. So the performance evaluation is relative to this ground truth and might (and probably
does) differ from a real-world situation. The proposed system can either outperform the person(s) who per-
formed the manual labelling or be worse at it, it is impossible to know. The difference will likely be slight,
however, it needs to be kept in mind nonetheless.
The proposed system performs its task under the assumption that no spiking event will occur for four mil-
liseconds after the occurrence of another spike. This "dead zone" of 4 ms is quite conservative and the system
might behave differently in terms of its performance when another value is chosen (2 ms for example, which
is quite optimistic). The influence of the dead zone on the performance of the proposed system should be
looked into further in order to establish the optimum value to maximise the performance of the proposed
system.
Furthermore, the evaluation method used in this work can be considered quite optimistic. If a detected spike
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falls within a time frame of 1 ms of the labelled spike, it is assumed to be a true positive. This time interval was
chosen because of the average length of a simple spike (of the two types of spikes, the one with the shortest
duration) is 1 ms. Evaluating the performance of the proposed design using this method makes sense when
the manual labelling is performed inconsistently. In this case, the labelled timestamp can deviate quite a bit
from the occurrence of the actual spike. Being lenient by accepting detected spikes as true positives using a
relatively large time frame (the aforementioned 1 ms), can mitigate the influence of poor manual labelling.
However, it is an optimistic way of evaluating the design if most of the manually labelled timestamps are quite
accurate. This is very likely the case, so optimising the way the system is evaluated could give better insights
in how well the system performs.

5.3. Opportunities for future research
Even though the initial results are promising, the next iterations of the proposed design may benefit from
several additions and improvements. For example, the neural network classifier can be optimised even fur-
ther. The neural network used in this work is a fully-connected and even though it is relatively simple it still
consumes most of the silicon resources to store the synaptic weights. Not of these weights contribute signif-
icantly to the performance of the classifier. Via a technique called pruning, the number of weights could be
reduced without compromising the performance of the classifier. This could result in a significant increase
in the efficiency of the classifier both in terms of power and area.
The main problem of the proposed design is the fact that it is built under the assumption that the recording
electrode is placed in such a way that it only records the neural activity from one Purkinje cell. If the posi-
tion of the electrode shifts over time, it might also pick up activities from surrounding neurons. This activity
will also be detected and classified, resulting in a number of false positives. A suggestion for future iterations
might be to extend the classifier from a binary classifier to a ternary classifier. With the added third class, the
classifier will also be able to identify false positives and disregard these detected spikes. Naturally, a study has
to be conducted to determine the feasibility of such a solution in order to maintain a certain level of perfor-
mance. Also, extending the classifier might result in a silicon resource overhead which is not worth the added
benefits. This is a trade-off which needs to be looked into.
The third suggestion for future research is to extend the design to process multiple recording channels. The
current design is single-channel and has a relatively low clock frequency which is the same as the sampling
frequency (i.e. 24 kHz). The design can be altered to run with a higher clock frequency so the system is able to
process multiple channels. Extra care should be given to allow the system to properly process simultaneous
spikes on different channels. The adaptive threshold calculator is able to calculate a new threshold for 64
individual channels continuously in a sequential matter [88].

All the aforementioned suggestions for further development of the proposed design assume the use of
CMOS technology, which has its own benefits and drawbacks. The type of classifier (artificial neural net-
work) lends itself well to be implemented using CMOS technology. Constant developments in the field of
neural networks lead to the proposition of new types of neural networks. One such type of neural network
is called a spiking neural network (SNN) which differs quite significantly from traditional neural networks.
Instead of using numerical values as input, synaptic weights, and outputs, information is encoded as a se-
ries of spikes called spike trains. This type of neural network aims to mimic biological neural dynamics even
further compared to more traditional neural networks. The use of such a spiking neural network as a spike
classifier comes with a number of advantages and disadvantages. One such advantage is the fact that these
spiking neural networks can be implemented in hardware using memristive devices. These can lead to an
area reduction of up to four times (depending on the type of memristor) over regular CMOS technology. This
would greatly reduce the silicon real-estate occupied by the design. Which in turn would reduce the power
consumption of the system or allow for the expansion of the number of channels. Often, spiking neural net-
works are less complex compared to their ANN counterparts. This would reduce the needed area even further.
However, spiking neural networks operate in the analog domain so a conversion step is needed to take the
digitally detected spikes back to the analog domain for classification. This would mean that the neural signal
is converted from analog to digital by the recording front-end, so a digital spike detector could do its job and
detect spike occurrences from the recorded neural activity. These detected spikes would then be converted
back to the analog domain so that they can be encoded as a spike train in order to be classified by the SNN. In
order to interpret the output of the classifier, the output spike train needs to be converted back again to the
digital domain for further processing. This process would be rather inefficient because, generally speaking,
analog-to-digital (ADC) and digital-to-analog converters tend to be a burden on the energy budget for sys-
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tems such as this one. Several solutions might solve this problem. For one, the detection of spikes might also
be done in the analog domain, which would lead to only a conversion step after the spike has been detected.
It is hard to say what such an implementation would do to the complete system in terms of its performance.
Another solution would be to abandon the two-tier approach and implement an SNN which would take care
of both the detection and classification stages. The power of this two-tier approach is the fact that it is energy
efficient because the classification stage takes up the bulk of the energy budget and spiking events are rela-
tively rare. So implementing an SNN, which entails the entire process, might have a detrimental effect on the
energy consumption of the system. However, the merits of using an SNN might also prove worthwhile for an
application such as this one.
Another big issue with SNNs that needs to be addressed is the fact that training such networks is a hard task
and not as straightforward as training an ANN. Unless trained properly, the performance of the SNN (detector
and) classifier might not suffice for the intended application.
Even though quite some hurdles need to be taken, the use of SNNs for detecting and classifying neural activity
might prove fruitful and should at least be looked into.
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Comprehensive Classifier Results

Figure A.1: Classification accuracy of all experiments in the initial dataset using a neural network with one output neuron.

Figure A.2: Classification accuracy of all experiments in the initial dataset using a neural network with three output neurons.
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Figure A.3: Classification accuracy of all experiments in the new dataset using a neural network with one output neuron.

Figure A.4: Classification accuracy of all experiments in the new dataset using a neural network with three output neurons.



B
Comprehensive Sorter Results

Figure B.1: Sorter accuracy of all experiments in the initial dataset using a neural network with one output neuron.

Figure B.2: Sorter accuracy of all experiments in the initial dataset using a neural network with three output neurons.
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Figure B.3: Sorter accuracy of all experiments in the new dataset using a neural network with one output neuron.

Figure B.4: Sorter accuracy of all experiments in the new dataset using a neural network with three output neurons.
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