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Abstract

Soil structure interaction is a phenomena often neglected or under estimated in earthquake engineering.
From the point of few of many engineers, neglecting soil structure interaction is seen as a conservative and
save way to calculate. However, soil structure interaction can have great effects on the dynamic behaviour of
the superstructure. Especially for large and heavy superstructures, e.g. liquid storage tanks and power plants,
soil structure interaction is of great importance.

Modelling techniques to capture this phenomena are often over simplified or need a lot of computational
effort. Therefore, it is proposed to develop a semi-analytical linear elastic model, which describes the soil
structure interaction based on fundamental physics. The thesis outline is as follows:

Chapter 1 states the problem definition and objectives of this thesis. The research questions are mentioned
and the research approach to answer these questions and fulfil the objective are described here.

Chapter 2 gives an introduction about the fundamental knowledge needed for this thesis. An introduction
about earthquakes is given, including the different waves that are generated by earthquakes. It gives insight
in the principles of dynamics. Furthermore, other modelling techniques are explained, including their pros
and cons.

In chapter 3, the soil behaviour is described for a 2D plane strain case. This is done based on Green’s func-
tions. The soil behaviour is described for a single layer on bedrock. Flexibility function of the soil are derived
in the frequency-wavenumber domain and transformed back by making use of contour integration and the
residue theorem. The convergence of the solution is verified and the soil behavior is evaluated.

In chapter 4, a inextensible bending strip is combined with the soil model. This chapter gives insight in how
both are combined. The model is validated by literature. A case study is proceeded including different loads
at different frequencies. Furthermore, the influence of the flexibility of the strip on the stiffness and damping
of the system is evaluated.

Chapter 5 and 6 follow the same procedure as chapter 3 and 4. Instead of the 2D plane strain case, a 3D
model is developed for the soil. The model is coupled to a inextensible bending plate. The behaviour of the
coupled model is evaluated and validated in these chapters.

Chapter 7 summarizes the conclusions made during this thesis. It discusses the choices made and give rec-
ommendation about further research.
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1
Problem definition

Soil structure interaction (SSI) analysis evaluates the interaction between structure, foundation and soil.
When a structure is subjected to a dynamic load, it interacts with the soil and changes the motion of the
soil. Vice verse, the soil motion due to an earthquake excites a structure, but the structure will never exactly
follow the soils free field movement of the soil, even when the foundation is embedded. The inability of the
foundation to match the free field motion of the soil is called the kinematic interaction. Generally the SSI
can be divided into two principles: kinematic interaction and inertial interaction. The inertial interaction
follows from the inertia of accelerated mass of the super structure. These inertial forces transmitted to the
soil through the super structure and foundation, causing additional deformations of the soil (Wolf, 1985).

Conventionally, SSI is not taken into account during the dynamic evaluation of a structure. In conventionally
belief of engineers, SSI is believed to be beneficial and can be neglected in conservative design. Neglecting
SSI is reasonable for light and small structures on a rather stiff soil. However, SSI is of greater importance for
heavy, large and relatively stiff structures, e.g. high-rise buildings, power plants, liquid-storage tanks, build
on relative soft soil. In general, the effective damping ratio will increase by considering the effects of SSI.
For low-level excitation, the kinematic effects will typically be dominant causing lengthening of the system
period and increase in radiation damping. However, for strong excitation, the inertial effects will dominate
(Wolf, 1985).

Past earthquakes have confirmed that the seismic behaviour of a structure is not only influenced by the struc-
ture itself but also heavily by the surrounding soil. After the 1995 Kobe earthquake, the influence of SSI on the
collapse of the Hanshin Expressway, i.e. a 4-lane elevated highway, has been researched. The influence was
double and detrimental: the spectral acceleration at low frequencies was amplified and the natural period of
the building was elongated due to the SSI. It is also shown from numerical examples that SSI does not always
lead to beneficial effects when considering the seismic response of a structure. Soft soil elongates both the
period of seismic waves and the increase in natural period of the structure, which may lead to resonance for
low-frequency ground motion (Mylonakis et al., 2006).

Problems with practical application of SSI principles are rooted in bad understanding of the principles, in-
comprehensible literature about the subject, the absence of proper guidelines or over simplification of codes
and standards on the principles (Consultants Joint Venture, 2012). Furthermore, there exists a traditional split
between geotechnical and structural engineers. The two disciplines are also separated in earthquake engi-
neering. Therefore, it is often preferred consider SSI as simple as possible. On the one hand, a finite element
model with SSI fully included is very time consuming and often at the limit of computational possibilities.
Moreover, considering the required effort, it is generally not feasible to run a finite element analysis. On the
other hand, simplified analysis methods are based on boundary conditions that are often not valid, e.g. fully
rigid foundation slab. Therefore, it would be of significant added value to develop a semi-analytical modelling
approach for SSI that deals with the shortcoming of both aforementioned conventional methods.
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2 1. Problem definition

1.1. Objective
The objective of this thesis is to find a general approach in which: the SSI for shallow foundations can be
modelled and the effects of SSI can be determined in b a linear designed structural model. The model should
give more insight in the SSI compared to the basic approaches described in codes and be faster than time
consuming finite element (FE) analysis. To accomplish this, a semi-analytical approach is proposed, i.e. an
analytical (mathematical) model using some numerical (computational) modelling techniques. The model
has been developed to be coupled in a subsequent phase to a semi-analytical model of a tank superstructure,
based on earlier work carried out by Canny (2018). This thesis focuses on the SSI part and investigates the
effects of the flexibility of a shallow foundation on the (beneficial) radiation damping. Coupling of SSI and
superstructure models has not yet been covered by the present thesis but is rather trivial. The model should
allow for coupling with a liquid storage tank superstructure model at a later stage.

1.2. Research question
Develop and implement a semi analytical analysis method to describe SSI for rigid and flexible shallow foun-
dations on soil.

1.3. Subquestions
• What are the implications of the semi-analytical methodology for SSI and how does it compare to alter-

native methods?

• Can the obtained model performance be validated by means of comparison to other studies available in
literature?

• How does flexibility of the foundation on a shallow foundation affect the SSI, compared with a rigid
plate?

1.4. Research approach
Both 2D plane-strain and 3D soil model of the soil are combined with a shallow foundation. The generic
analysis model is build along the steps shown in figure 3.13. The model is based on fundamental physics in
the frequency domain. The soil, structure and interaction parts are solved for independently. This is benefi-
cial since the structural part can easily be replaced for another structure. The soil model is based on Green’s
functions, which describe the flexibility of the soil due to a local force. Since the model is linear, the Green’s
functions may be summed to construct a flexibility and stiffness matrix. The structure analysis in this thesis is
limited to a modal analysis of a simple strip or circular plate foundation. However, the model is also suitable
to be coupled to more complex structures or FE models. The stiffness matrix in this thesis is coupled to a
foundation by matching modes of the foundation. In case of coupling to a FE model, the stiffness matrix of
the soil are straightforwardly coupled to the FE model. In this situation, the equilibrium of interaction forces
and displacements can be solved.
After the model is derived, it is validated with well-known studies of Gazetas (1983) and Richart et al. (1970).
The influence of the relative flexibility of the foundation with respect to the soil is investigated, which can
be considered a new achievement compared to the well-known literature that mainly focus on rigid plates.
Although this thesis does not include the evaluation of a fully-coupled superstructure, the SSI model works
for foundation slabs and can evaluate the kinematic effects.
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Figure 1.1: The approached steps to constructed the semi-analytical SSI model





2
Literature

This chapter gives an introduction to the fundamental knowledge this thesis is based on. The principles of
earthquakes, dynamics of structures, dynamics of a linear elastic medium and soil structure interaction are
introduced.

2.1. Earthquakes
In earthquake engineering all around the world, various disciplines of engineering are combined to deal with
the consequences of an earthquake. "Earthquakes are rare, low probability events with consequences that
are large in terms of destruction. ... Earthquakes are a special category of hazards in that most human losses
are due to failure of human-made structures - buildings, dams, lifelines, and so on. Therefore, in principle,
with sufficient resources for research, development, education, followed by necessary investments in hazard
reduction, earthquakes are a hazard that are within our power to respond to". (Press, 1985). The fact that
earthquakes are hardly forecastable differs from many other hazards as for example hurricanes. People can
be warned for hurricanes due to high level weather monitoring, but the only way for earthquake hazard re-
duction, is by smart engineering.

Earthquakes occur all around the world under distinctive circumstances, but earthquake engineering dif-
fers a lot due to differences in: types of earthquakes, frequency of occurrence, local regulation and wealth.

Since the aim of this thesis is to improve modelling of the structural response due to an earthquake, the
fundamentals of earthquakes are briefly discussed.

2.1.1. Cause of an earthquake
Earthquakes are classified by their cause. A distinction is made between two types of earthquakes; tectonic
earthquakes and human induced earthquakes.

Tectonic earthquakes
Most natural earthquakes are caused by movement of the tectonic plates. The tectonic plates want to move
relative to each other but since the boundaries of these plates are not smooth this movement is restricted and
stress builds up. An earthquake occurs when the stress reaches a limit and suddenly releases. The release of
stress is accompanied by displacements of the earth. The boundary interaction of tectonic plates is divided
in three types shown in figure 2.1 of which also combinations are possible (Semper, 2017).

• Divergent fault or extensional movement of plates: At a divergent boundary, two plates move apart
from each other. The tension weakens the plate crust until the rocks fracture and one block moves
downwards compared to another. This results in shallow earthquakes with vertical movement. Fur-
thermore, this phenomena create space between two plates resulting in rifts and volcanic activity, for
example at the Mid-Atlantic Ridge.

• Convergent fault or compressional movement of plates: A convergent boundary is the opposite of a
divergent boundary. Two plates are pushed to each other resulting in mountains, e.g. the Himalayas,

5



6 2. Literature

Figure 2.1: Tectonic plate motion: A) divergent fault line; B) convergent fault line; C) transform fault line (Source: J.D. Fix - Astronomy:
Journey to the Cosmic Frontier)

are formed by collision between the Eurasian and Indian plate. Corresponding earthquakes vary in
depth from just below the surface to many kilometres deep. The movement of the two plates relative to
each other is vertical. When such earthquake takes place under the sea, the risk of a tsunami increases.
The 2004 Sumatra earthquake is an example of such an earthquake causing a tsunami. Volcanic activity
can be expected around the fault line and this type of earthquake results in the largest magnitudes
measured.

• Transform boundaries or sliding movement of plates: Earthquakes occur due to tectonic plates slid-
ing past each other, since the plates are not smooth and stress build up due to friction. When this stress
is released, large horizontal displacements can be expected along the fault line like the San Andreas
fault.

Tectonic earthquakes can also occur at local fault lines within a tectonic plate, also called intra-plate earth-
quakes. The magnitude of these intra-plate earthquakes is typically relatively small compared to earthquakes
located at boundaries of tectonic plates (Semper, 2017).

Human induced earthquakes
Natural processes such as migration of fluids, atmospheric pressure changes, sediment unloading and ground-
water loss can load stress in the earth crust. These natural events can induce seismic activity, in most cases of
unnoticeable scale. But since industry grows, more often earthquakes are linked to human causes. Mining-
and dam-induced earthquakes are recognized for many decades. Since a couple of years the concern is grow-
ing about earthquakes induced by gas extraction, waste fluid injection and nuclear testing. Maximum global
magnitudes are shown in figure 2.2 (Foulger et al., 2017).

Figure 2.2: Maximum magnitude measured worldwide for human induced earthquakes with different causes (Source: Foulger et al.
(2017))
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The largest earthquake in The Netherlands is the 2012 Huizinge earthquake with a local magnitude (ML)
of 3.6. In total 12 earthquakes occurred with a magnitude > 3.0, strongly related to the Groningen gas-field
as shown in figure 2.3. The first seismic activity was recorded in 1991 when the reservoir reached about 28
% depletion, 28 years after the start of the gas extraction. Typical for the earthquakes in the Groningen area
is that they are shallow (2.5 - 3.5 km), are short in duration but have a large peak ground acceleration (PGA)
compared to the magnitude. However, the combination of frequencies, shallow depth and PGA can cause
severe damage to construction and infrastructure at the surface.

Figure 2.3: The Groningen gas-field with earthquake epicentres for events with a magnitude > 1.5 in the period 1995-2012, shown on
a model of reservoir compaction for 1960-2012. Thin gray lines show faults at the level of extraction. The black line closes around the
gas-field. (Source: Foulger et al. (2017))

2.1.2. Wave types
With the sudden release of energy during an earthquake, waves are generated that carry energy away from
the source to the surface. Waves travelling through the earth are called body waves. When a wave approaches
a surface, other types of waves can be formed. These waves travel along the surface instead of through a body
and are called surface waves. Depending on the frequency and wavelength, surface waves evanesce in depth
relatively fast and are not noticeable any more at large depths.

There are two main types of body waves, a compressional wave and a shear wave. The compressional waves
induce motion of the soil particles parallel to wave group direction. Therefore, compressional waves propa-
gate by expansion and compression of the body they propagate through. This makes it possible for a com-
pressional wave to travel through solids, liquids and gases, e.g. sound waves. The shear waves induce motion
of the soil particles perpendicular to the direction of wave group propagation. It propagates by moving solid
material. Therefore, this wave cannot exists in liquids or gases. The motion of both waves through a medium
is shown in figure 2.5. The compressional wave propagates faster than the shear wave, which is why they are
also called the primary wave (P-wave) and secondary wave (S-wave) respectively (Tomic, 2017). When a sig-
nificantly large earthquake occurs, the body waves are measurable almost all around the world. Around 1930,
Inge Lehmann declares why there are shadow zones for the P- and S-wave by making use of the properties
of the P- and S-wave. She also found out by that fact, that the earth has a solid inner-core within the fluid
outer-core shown in figure 2.4.

Surface waves can be formed at the surface of a solid, in case of earthquakes the surface is the Earth’s crust.



8 2. Literature

Figure 2.4: P- and S-wave propagation through the earth leading to the discovery of the earth core build up. (Source: Bakersfield college)

There are also two main types of surface waves: Rayleigh waves and Love waves. Rayleigh waves are character-
ized by particle motion both parallel (horizontal) and perpendicular (vertical) to the surface. The amplitude
parallel to the surface is along the propagating direction. The wave propagates in an elliptic ’rolling’ manner,
comparable with ocean waves. If a section of the earth is made along the propagating direction of the wave,
this wave will only have amplitudes in-plane. The amplitude of a Love wave is out-of-plane and based on
shear deformation and has a side-to-side motion. The Love wave only has a amplitude parallel to the sur-
face but perpendicular to its propagating direction. Surface waves are in contradiction to the body waves
dispersive, meaning that they are not only material dependent but also frequency-dependent. Surface waves
propagate slower than the body waves and the Love wave speed is smaller than the Rayleigh wave speed. Fre-
quency influences the dissipative behaviour of surface waves in depth. The higher the frequency the faster
the surface waves decay in depth. A visualisation of both surface waves is shown in figure 2.5.

Figure 2.5: Wave types generated by an earthquake (Source: Tomic (2017))
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2.2. Dynamic analysis
Structural analysis concerns the behaviour of structures. A structure can be loaded with many types of loads
e.g. self-weight, wind, impact, snow and earthquakes. A distinction can be made between static loads and
dynamics loads. Static loads are loads which (approachable) do not vary in time, self-weight is the most
straightforward example of this 1. Load cases that are called dynamic, vary (constantly) in time, such as
wind, ocean waves or seismic loading. Therefore, time dependency is introduced in dynamic analysis, these
analysis are in general more complex and time consuming than static analysis. Therefore, dynamic analysis
are mainly performed when time dependency is of great important, such as in earthquake engineering. This
chapter will introduce different dynamic analysis methods used in structural design, the frequency domain
and fundamental knowledge of some simple linear dynamic systems.

2.2.1. Structural dynamic analysis methods
Different methods are used for seismic analysis of structures, from complex to rather simplified methods. The
more simplified methods, used for less complex problems, have a larger uncertainty but are also respectively
fast. Four often used methods (Normcommissie 351 001 "Technische Grondslagen voor Bouwconstructies",
2015) from simple to complex are:

• Lateral force method: In the lateral force method, dynamic forces are replaced with a static equiva-
lents. The dynamic problem is simplified to a static problem, this is often done for wind loading.

• Modal response method: The modal response method is based on an eigenmode analysis of the un-
damped structural system, determining the eigenfrequencies and eigenmodes. These are determined
by the mass and stiffness of a structure. The response of a structure is determined by the expected forces
at the particular frequencies exciting the eigenmodes of the structure. The modal response method is
often combined with a representation of the earthquake demand by a response spectrum.

• Non-linear push-over method: In this method a structure is incrementally laterally loaded into the
range of a non-linear response. (Lateral modal) Forces are applied on a structure, they increase incre-
mentally and the non-linear behaviour of the structure during loading is analysed.

• Non-linear time history analysis: Time history analysis analyses the dynamic response of a structure
in time when subjected to a time dependent load. For example, measured earthquake records are ap-
plied on a structure. This method is the most complex method, but is the only method of the above
which uses time dependent loading. Transient dynamics of structures and time dependent non linear
response can be analysed.

2.2.2. Time and frequency domain
Any time signal can be constructed by a summation of harmonic frequencies functions with varying frequen-
cies, amplitude and phase. The superposition of harmonic functions to construct a time domain function is
done with Fourier series (Van Dalen, 2015).

f (t ) = a0

2

∞∑
n=1

(an cos(ωn t )+bn cos(ωn t )) , ωn = n
π

T
(2.1)

In which ωn denotes an angular frequency of a harmonic function and

an = 1

T

ˆ T

−T
f (t )cos(ωn t )dt , bn = 1

T

ˆ T

−T
f (t )sin(ωn t )dt (2.2)

Figure 2.6 gives an example of an, at first instance, random function constructed by a summation of only 4
harmonic functions. The Fourier series can be replaced by an integral over the time to translate a time de-
pendent problem to a frequency dependent problem. This integral is called the Fourier integral. The Fourier
integral may be applied forward and backward to translate a problem to the frequency domain and vice versa.
Many problems are mathematically easier to solve in the frequency domain or a frequency domain can be

1Static loads are characterised by a rate of application of the load which is extremely slow compared to the fundamental eigenperiod of
the structure.
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Figure 2.6: Summation of harmonic waves

created of multiple time records. During the translation from time to frequency and vice versa, the initial
phases are lost.

f (t ) = 1p
2π

ˆ ∞

−∞
F (ω)e iωt dω

F (ω) = 1p
2π

ˆ ∞

−∞
f (t )e−iωt dt

(2.3)

The Fourier integral can be used for the translation from the time to the frequency domain but similarly from
the space to the wavenumber domain. This translation is also necessary to solve many linear dynamic prob-
lems, especially in continua. The Fourier transform may be used with different signs and premultiplications.
The convention of the Fourier transforms used in this thesis is:

u(x, y, z, t ) =
(

1

2π

)4ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
ũ(kx ,ky ,kz ,ω)e i (ωt−kx x−ky y−kz z)dkx dky dkz dω

ũ(kx ,ky ,kz ,ω) =
ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞

ˆ ∞

−∞
u(x, y, z, t )e−i (ωt−kx x−ky y−kz z)dxdydzdt

(2.4)

In which k j are the wavenumbers in the directions x,y and z.

2.2.3. Damped mass-spring systems
The most simple dynamic system is the (damped) mass-spring system. This system contains only one degree
of freedom and is called a single degree of freedom (SDOF) system, an example is shown in figure 2.7. The
solution to this system contains the most fundamental knowledge of structural dynamics and is often used
to understand the fundamental phenomena of dynamics. The model in figure 2.7 consists of a mass (m)
connected to a constrained spring (k) and a damper/dashpot (c) excited by a time dependent force (F (t )).
The displacement in x is denoted as u. To find the differential equation to solve this problem, three general
equations need to be solved (Hölscher, 2016):

• The equilibrium equations: Are based Newton’s equilibrium theory, which states that all acting forces
present should be in equilibrium at any moment in time.

• The constitutive equations: Describe a relation between two physical quantities. Often related to ma-
terial properties, such as stress strain relations. In linear elasticity we use Hooke’s law.

• The kinematic equations: Describe the motion of points, bodies and systems without considering its
mass or the force which is related to it. Kinematics describe the geometry of motion.
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Figure 2.7: A single degree of freedom system

In case of the SDOF of figure 2.7, assuming a constant mass (m), the equilibrium equations state that the sum
of all forces acting on the mass are equal to a multiplication with its acceleration.∑

F = mü(x) (2.5)

in which a dot denotes the products time derivative such that ẋ = ∂x
∂t denotes the first time derivative and

ẍ = ∂2x
∂t 2 denotes the second time derivative. The constitutive equations contain the force dependence of the

spring and dashpot on respectively the change in displacement and velocity of the mass.

Fspr i ng +Fd ashpot = k∆u + c∆u̇ (2.6)

The kinematic equations describe the change in motion.

∆u̇ = u̇ − u̇0, ∆u = u −u0 (2.7)

u0 and u̇0 are respectively the initial displacement and velocity. Assuming zero initial conditions the equation
of motion (EQOM) of the system is described as:

mü + cu̇ +ku = F (t ) (2.8)

When a system consists of more degrees of freedom, the equation of motion is extended to matrix form, the
size of the matrices and vectors equals the degrees of freedom. Figure 2.8 shows an example of a two degrees
of freedom system with an acting force on the second mass. The corresponding equation of motion, Eq. (2.9),
is similar to the one for a SDOF system and solvable in the same manner.[

m1 0
0 m2

][
ü1

ü2

]
+

[
c1 + c2 −c2

−c2 c2

][
u̇1

u̇2

]
+

[
k1 +k2 −k2

−k2 k2

][
u1

u2

]
=

[
0

F (t )

]
, Mü+Cu̇+Ku = F (2.9)

Figure 2.8: Two degrees of freedom system

The EQOM of the SDOF is solved for harmonic waves by substituting u = e−iωt and assuming harmonic
forcing with a frequency-dependent amplitude F0. Eq. (2.8) can be rewritten as:

(ω2m − iωc +k)u = F0(ω) (2.10)

From the spring mass system without damping problem (c = 0) the natural frequency can be found from the
homogeneous situation.

ω2
n = k

m
(2.11)
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In a MDOF system, the number (n) of natural frequencies is equal to the number of degrees of freedom. The
natural frequencies of a structure is the frequency in which the structure tends to oscillate without damping,
the structure is not stable. Therefore, the natural frequency of a structure is important since excitation of a
structure in a frequency close by its natural frequency amplifies the response with respect to other frequen-
cies.The solution to the problem of Eq. (2.10) in the frequency domain is:

u(ω) =
F0(ω)

k

1+2iζ ω
ωn

− ω2

ω2
n

, 2ζ= c

mωn
= cp

km
(2.12)

From Eq. (2.12) it can be derived that, if the exciting frequency ω approaches the natural frequency ωn , the
displacement of the system goes to infinity (when there is only little or no damping in the system).

2.2.4. Continuum systems
In the previous section, only discrete masses with discrete springs and dash-pots with no internal forces are
considered. Contrary to that, there are also many examples of systems which can be represented better as
a continuum system instead of a discrete system. The most simple example is a one dimensional rod, but
also a beam or a plate is an example of a continuum system. This section will evaluate continuum systems
based on the dynamic beam equations of a pure bending or Euler Bernoulli beam. The distributed mass and
internal stiffness of a continuum system can respectively be seen as an infinite number of small masses and
internal springs. The internal stiffness of a continuum system wants to force the system back to its original
shape ones deformed, this component is included in the EQOM.
From the equilibrium, constitutive and kinematic equations of a beam, similar to a SDOF, the EQOM of a
beam is formed:

E I
∂4uz

∂z4 (x)+ρAüz (x, t ) = q(x, t ) (2.13)

Where E ,I ,ρ,A,uz and q are respectively the Young’s modulus, second moment of area, material density,
cross-sectional area, displacement and external distributed force. A continuum system has an infinite amount
of eigenfrequencies with corresponding eigenmodes. A summation of the eigenmodes can represent most of
the deformations of a continuum system. The general solution to the free vibration (no external forcing) of a
Euler Bernoulli beam, assuming harmonic motions, leads to the eigenfrequencies and corresponding modal
shapes. The general solution can be written in different ways, but to solve for the wavenumbers (kx ), the
following representation is used instead of an exponential representation:

uz (x) = A1cos(kx x)+ A2sin(kx x)+ A3cosh(kx x)+ A4sinh(kx x) (2.14)

In which:

kx =p
ω

4

√
ρA

E I
, ωn = k2

n

√
E I

ρA
(2.15)

The four unknown coefficients in the general equation can be expressed in each other by applying three of
the four the boundary conditions, so one unknown remains. All boundary conditions must be satisfied for
every value of the last unknown, the conditions can be satisfied by particular wavenumbers kn which can be
determined from the boundary conditions with respect to kx . For a free-edge beam with length L, the natural
wavenumbers to solve the system for are derived from the equation (Gonçalves et al., 2007).

cos(knL)cosh(knL) = 1 (2.16)

Substitute Eq. (2.16) in the general solution results in Eq. (2.15) with n modal shapes with n unknowns. The
displacement is expressed in a summation over all modal shapes φ, which results in

uz (x) =
∞∑

n=1
Anφn(kn) (2.17)

The sum of the modal shapes can be solved for the prescribed boundary conditions and any particular exter-
nal harmonic load.
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2.3. Dynamic soil structure interaction models
SSI models vary from discrete approaches to continuum approach. The discrete approaches assume a rigid
base below a super structure and represent the soil with a single spring per degree of freedom. The continuum
approach describes the behaviour of the soil from the kinematic, constitutive and equilibrium equations
(Caselunghe and Eriksson, 2012). Both methods have advantages and disadvantages. A discrete model is easy
to implement, but based on assumptions and simplifications. A discrete model is often not able to describe
the kinematic interaction2, but only considers the inertial interaction3. Continuum models can include both
effects but are often described with time consuming FEM software. An intermediate method would be the
(semi-) analytic approach. FE models are able to give detailed insight in SSI but due to their time consuming
characteristic, FE models are not further considered.

2.3.1. Simplified spring model
A system commonly used for simplified analysis consists of a single degree of freedom representation of the
structure and a flexible foundation described with (frequency-dependent) complex translational and rota-
tional springs k̄u and k̄θ shown in figure 2.9. The model can be used for e.g. single story structures that can
be represented by a SDOF, or multi story structures that are dominated by the fundamental mode response.
The model can only describe the inertial interaction. Therefore, the model neglects kinematic interaction.
The frequency-dependent complex springstiffness can be described by an impedance function expressed in
the form (Stewart et al., 1999):

k̄ j = k j (a0,ν)+ iωc j (a0,ν) (2.18)

Where a0 denotes a dimensionless frequency, ν the soil Poisson’s ratio, k j the frequency-dependent stiffness
and c j the frequency-dependent damping. The stiffness and damping parameters can be found in litera-
ture by Kausel (1974), e.g. under assumption of a rigid foundation over a homogeneous layer or half space.
Modifications for soil layering or a bedrock at a certain depth are available as well.

Figure 2.9: Simplified model for analysis of the intertial SSI of a SDOF structure (Source: Stewart et al. (1999))

2.3.2. Winkler model
An old but frequently used well-known SSI model is the Winkler model. The Winkler model is based on a
foundation on linear elastic independent vertical springs. The two major shortcomings of the Winkler model
are that: the springs act independent and the (complex) spring parameters need to be assumed. In case of
a Winkler model with a uniform stiffness along the foundation, the stress and deformation profiles will not
match reality as shown in figure 2.10. The foundation stiffness at the structures edges will be underestimated.
A solution to this problem is to add additional spring stiffness at the edge of the structure. However, the addi-
tional stiffness is hard to estimate. In consequence of the independent response of the vertical springs, math-
ematically the stiffness matrix describing the stiffness of the Winkler springs will be diagonal (Caselunghe and
Eriksson, 2012).

Possible additions to improve the Winkler models behaviour and to overcome the independence of the springs

2The presence of a (stiff) foundation interacting with the soil cause foundation motion that deviate with the free-field motion of the soil.
The kinematic interaction relates motion of a (massless) foundation to the free-field motion (Stewart et al., 1999).

3Inertia developed in the structure due to its vibration results in interaction forces and moments on the soil, which in turn cause dis-
placements of the foundation relative to the free-field (Stewart et al., 1999).
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Figure 2.10: a) Schematization of a Winkler spring model; b) Deformation of a Winkler spring model compared with continuum (dashed);
c) Deformation of the soil by a Winkler model; d) Real deformation of the soil (Source: Caselunghe and Eriksson (2012))

can be carried out by e.g. couple a interaction element to redistribute forces, split the springs in two layers
or add additional elements which can transfer shear force only, as shown in figure 2.11. Although these ad-

Figure 2.11: a) Winkler springs including an interaction elemnt; b) Hybrid model with two layers of Winkler springs with a pre-tensioned
layer inbetween; c) Additional shearforce elements inbetween the Winkler springs (Source: Caselunghe and Eriksson (2012))

ditions improve the Winkler model, they also introduce additional variables which are more difficult to be
approximated and introduce uncertainties. When a Winkler model interacts with a rigid foundation, it has
almost no benefits compared to the SDOF system aforementioned. Furthermore, a Winkler model is not able
to distribute forces, which results in unrealistic stress and deformation patterns.

2.3.3. Linear elastic model
The representation of the soil as continuum is often done with a FEM, but there are also analytical ways to
determine the soil behaviour, restricted to a linear elastic approach. The general equations for a linear elastic
material underlie the method. The behaviour of the soil can be expressed in stresses and deformations of a
soil deposit under the influence of a load applied on the surface. An approximation is often made in a analyt-
ical approach is an elastic half-space (Verruijt, 2010). The half-space approximation includes a homogeneous
linear elastic continuum with a stress-free surface. The soil can also be represented in other configurations
than a half-space as a homogeneous linear elastic medium. The conditions describing the medium are in
terms of stresses, strains and displacements in a linear elastic continuum. These relations are called the con-
ditions of equilibrium, the constitutive relations and the compatibility conditions, respectively the conditions
can be described in both a Cartesian coordinate system (x, y , z), with corresponding displacements (ux ,uy ,
uz ) and in cylindrical coordinate system (r ,θ,z), with corresponding displacements (ur , uθ, uz ). Both Ein-
stein’s summation convention (i.e. summation over repeated indices) and the tensor form are used in this
section.

Cartesian coordinate system
The strain-displacement relation from basic linear elasticity theory covers both the normal strain (εi= j ) and
the shear strain (εi 6= j ) relations for a Cartesian coordinate system.

εi j = 1

2
(u j ,i +ui , j ) (2.19)

Symmetry implies that εi j = ε j i . The volume strain is defined as the sum of the normal strains in the three
principle directions:

ε= εxx +εy y +εzz (2.20)



2.3. Dynamic soil structure interaction models 15

The constitutive equations (i.e. the stress-strain displacements) follow from the generalized form of the
Hooke’s law. The stress equations are described as:

σi j =λεkkδi j +2µεi j (2.21)

In which δi j is the Kronecker delta function (δi j = 1 if i = j and δi j = 0 if i 6= j ). Since εi j = ε j i , it also holds
that σi j =σ j i . λ and µ are Lamé constants and can be expressed in terms of the Young’s modulus E and the
Poisson’s ratio ν:

λ= νE

(1+ν)(1−2ν)

µ= E

2(1+ν)

(2.22)

µ is also called the shear modulus. In the absence of any external dynamic forces, the free-vibration equations
of motion read:

σ j i , j +bi = ρüi (2.23)

Wherein ρ is a mass density constant (kg /m3) and bi are body forces.

Cylindrical coordinate system
In a cylindrical coordinate system the same relations exist as for the Cartesian coordinate system. The con-
stitutive relations are identical, only the indices (x,y,z) are replaced with (r,θ,z). A radial factor is included in
the strain-displacement equations leading to:

εr r = ur,r , εrθ =
1

2

(
1

r
ur,θ+uθ,r −

uθ
r

)
εθθ =

1

r

(
uθ,θ+ur

)
, εθz =

1

2

(
uθ,z +

1

r
uz,θ

)
εzz = uz,z , εzr = 1

2

(
ur,z +uz,r

)
(2.24)

The equations of motion in cylindrical coordinates read:

σr r,r + 1

r
σrθ,θ+σr z,z + 1

r
(σr r −σθθ)+br = ρür

σrθ,r +
1

r
σθθ,θ+σθz,z +

2

r
σθr +br = ρüθ

σr z,r + 1

r
σrθ,z +σzz,z + 1

r
σr z +bz = ρüz

(2.25)

2.3.4. The wave equation
The equation of motion can be expressed in terms of displacements by substituting the constitutive equa-
tions and strain-displacement equation in the equation of motion. This equation is called the Caushy-Navier
equation or wave equation and holds for both Cartesian and cylindrical coordinate systems. The wave equa-
tion is one of the basic equations of elastodynamics.

(λ+µ)∇(∇·u)+µ∇2u+b = ρü (2.26)

The bold symbols refer to vectors, the Laplace operator ∇2 is equal to the divergence of the gradient (∇ ·∇).
The Laplace operator may be rewritten in two terms describing dilatation and rotation. This is a practical
substitution, used to distinguish the two different types of waves within the wave equation.

∇2u =∇(∇·u)−∇×∇×u (2.27)

Wherein ∇, ∇· and ∇× denote respectively the divergence, gradient and curl. By substituting Eq. (2.27) in
Eq. (2.26), the wave equation can be written as:

ρü = (λ+2µ)∇(∇·u)−µ(∇×∇×u) (2.28)
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The two different waves types that can propagate within a body are the compression wave and the shear
wave. The compression wave, also called the longitudinal wave or P-wave induce motion of the soil particles
parallel to the direction of the group velocity, the shear wave, also called the transverse or S-wave induce
motion of the soil particles perpendicular to the direction of the group velocity. Both waves propagate with
different group velocities, of which the P-wave has the highest group velocity. The group velocity squared can
be found from the Navier equations by dividing the wave equation by the mass density ρ and expanding the
Laplace operator ∇2. The wave equation is rewritten as:

ü = c2
p∇(∇·u)− c2

s (∇×∇×u) (2.29)

In which the P- and S-wave group velocity are described respectively by:

cp =
√
λ+2µ

ρ

cs =
√
µ

ρ

(2.30)



3
2D plane-strain soil model

This chapter considers the derivation of a dynamically loaded 2D plane-strain model of the soil. Further ex-
pansion of the model including the SSI will be based on the 2D plane-strain modelling technique. A model is
called plane-strain if the out-of-plane principle strain is set to zero (i.e. ui ,y = 0, a constant deformation in the
out-of-plane direction). By assuming a plane-strain model, the wave equation is decoupled into potentials
for the coupled in-plane PSV-wave, i.e. the compressional wave and vertically polarized shear wave, and the
decoupled anti-plane SH-wave, i.e. the horizontally polarized shear wave. This decoupling is derived later on
in this chapter. The 2D plane-strain model can be expanded to a 3D cylindrical model which uses the same
decoupling of in-plane and anti-plane waves.

The soil problem in this thesis is linearly approached, and therefore the soil behavior is assumed linear elas-
tic, isotropic and homogeneous. For the soil structure interaction of structures with a shallow foundation,
the soil behavior at the surface is most interesting. Therefore, a continuous model in horizontal en vertical
direction with only a boundary at the surface could be suggested. A disadvantage of this model is that due
to an infinite depth, numerical singularities in for infinite displacements occur since the bottom boundary
is only described by its non-reflective behavior. Therefore, in the present thesis, a single layered model is
chosen, which includes a bedrock (rigid) boundary at a certain depth.

The starting point for combining soil and superstructure are Green’s equations. These equations describe
the pulse response reaction at a certain distance from the pulse. So Green’s principle describes a force-
displacement relation for every possible location. In this thesis the force is chosen to be a stress over a certain
width instead of a point load. The advantage of a stress over a width is that it overcomes the singularity which
exists right below a point load. A schematization of the model is shown in figure 3.1. The solution of the

Figure 3.1: schematization of the 2D soil model.
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force-displacement relation is found in the frequency-wavenumber domain and is transferred back to the
frequency-space domain. This is done by decomposition of the potentials and a (inverse) Fourier transform
for the wave equation. The soil properties used in this chapter are defined in table 3.1.

Characteristic Symbol Value Unit
Young’s modulus E 7∗107 N /m2

Density ρ 1700 kg /m3

Poisson’s ratio ν 0.4 -
Shear modulus µ 2.5∗107 N /m2

Lame parameter λ 1∗108 N /m2

Table 3.1: Soil parameters



3.1. The decomposition of the wave equation by its potentials 19

3.1. The decomposition of the wave equation by its potentials
A method to solve the wave equation by separation of potentials is the Helmholtz decomposition. This tech-
nique is used to solve the wave equation by separation of variables. The equation is rewritten such that there
is a component describing the volumetric strain and a component describing the rotational vector. The P-
wave propagates by a change in volumetric strain, and the S-wave propagates by shear deformation perpen-
dicular to the propagating direction, so the S-wave is based on rotations. This will follow from the separation
of variables. The starting point will be the wave equation from Eq. (2.29):

ü = c2
p∇(∇·u)− c2

s (∇×∇×u) (3.1)

The volumetric strain (scalar) and the rotation vector are respectively defined by:

ε=∇·u, Ω= 1

2
∇×u (3.2)

Substituting Eq. (3.2) in Eq. (3.1) the wave equations is written as:

ü = c2
p∇ε−2c2

s (∇×Ω) (3.3)

To separate Eq. (3.3) into two equations describing the motions of the P- or S-waves, either the divergence
or the curl of both sides of Eq. (3.3) is taken. Taking first the divergence leads to separation of the volumetric
strain component.

∇· ü = ε̈= c2
p∇·∇ε−2c2

s ∇· (∇×Ω) (3.4)

The volumetric component is separated by making use of the fact that the rotational vector is zero in every
case. Since the volumetric strain is a scalar, the volumetric strain may be replaced by the Helmholtz scalar
potential.

∇· (∇×Ω) = 0, ε̈= c2
p∇2ε,

ε≡φ, φ̈= c2
p∇2φ

(3.5)

The rotational vector is separated by the taking the curl of both sides of the wave equation, Eq. (3.1).

∇× ü = 2Ω̈= c2
p∇×∇ε−2c2

s ∇× (∇×Ω) (3.6)

The rotational vector is separated by making use of the fact that the volumetric strain is zero in every case.
Furthermore, the rotational vector may be replaced by the Helmholtz vector potential.

∇× (∇ε) = 0, Ω̈= c2
s ∇2Ω,

2Ω≡ψ, ψ̈= c2
s ∇2ψ

(3.7)

The Helmholtz decomposition holds that any vector field can be represented by a combination of the gradient
of some scalar potential and the curl of a vector. These potentials are called the "Helmholtz potentials"(MIT
OpenCourseWare, 2008). Assuming harmonic waves (φ̈=−ω2φ) the Helmholtz potentials may be written as.

∇2φ+ ω2

c2
p
φ=∇2φ+k2

pφ = 0

∇2ψ+ ω2

c2
s
ψ=∇2ψ+k2

sψ = 0

(3.8)

The conditions of Eq. (3.5) and Eq. (3.7) hold for the Helmholtz potentials:

∇× (∇φ) = 0, ∇· (∇×ψ) = 0 (3.9)

From which it follows that the vector ψ has only two independent components as shown in Eq. (3.10).

∂ψy

∂y
=−

(
∂ψx

∂x
+ ∂ψz

∂z

)
(3.10)
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Figure 3.2: Compressional (P) wave, vertically polarized shear wave (SV) and horizontally polarized shear wave (SH)

Figure 3.2 shows the coupled in-plane compressional P-wave, the vertically polarized in-plane shear SV-wave
and the horizontally polarized out-of plane SH-wave. The general solution in 3D for the Helmholtz potentials
in Eq. (3.8) is:

φ̃(x, y, z,ω) = (a1e ikx x +a2e−ikx x )(a3e iky y +a4e−i ky y )(a5e ikz z +a6e−i kz z ), k2
x +k2

y +k2
z = k2

p

ψ̃(x, y, z,ω) = (b1e ikx x +b2e−ikx x )(b3e iky y +b4e−iky y )(b5e ikz z +b6e−ikz z ), k2
x +k2

y +k2
z = k2

s

(3.11)

The tilde-sign refers to the frequency domain. Eq. (3.8) can also be found by substituting u = ∇φ+∇×ψ in
Eq. (3.1). Through this substitution,the displacements in 3D, expressed in the Helmholtz potentials are:

ũx = ∂φ̃

∂x
+

(
∂ψ̃z

∂y
− ∂ψ̃y

∂z

)
ũy = ∂φ̃

∂y
−

(
∂ψ̃z

∂x
− ∂ψ̃x

∂z

)
ũz = ∂φ̃

∂z
+

(
∂ψ̃y

∂x
− ∂ψ̃x

∂y

) (3.12)
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3.2. The stress and displacement field
A 2D plane-strain situation is considered, i.e. ∂

∂y = 0. Therefore, Eq. (3.12), describing the displacements,
reduces to:

ũx = ∂φ̃

∂x
− ∂ψ̃y

∂z
= ∂φ̃

∂x
− ∂ψ̃

∂z

ũy = ∂ψ̃x

∂z
− ∂ψ̃z

∂x
= ∂χ̃

∂z
− ∂χ̃

∂x

ũz = ∂φ̃

∂z
+ ∂ψ̃y

∂x
= ∂φ̃

∂z
+ ∂ψ̃

∂x

(3.13)

Where ψ is the Helmholtz potential to the vertical polarized SV-wave and χ Helmholtz potential to the hori-
zontal polarized SH-wave. The latter is decoupled from the P-wave as shown from Eq. (3.13). The expressions
for the Helmholtz potentials from Eq. (3.11) also reduce due to the plane-strain assumption. Since wavenum-
ber of the propagating waves in 2D is found by Pythagoras rule as shown in figure 3.3. A wave is evanescent in
a direction when a wavenumber is imaginary or complex, although this does not affect the phase of the wave
(Van Dalen, 2015).

φ̃(x, z,ω) = (a1e ikz,p z +a2e−ikz,p z )e−ikx x , kz,p =
√

k2
p −k2

x

ψ̃(x, z,ω) = (b1e ikz,s z +b2e−ikz,s z )e−i kx x , kz,s =
√

k2
s −k2

x

χ̃(x, z,ω) = (c1e ikz,s z + c2e−ikz,s z )e−ikx x , kz,s =
√

k2
s −k2

x

(3.14)

The stresses are found by the stress-strain relations from Eq. (2.21). After substitution, Eq. (3.13) results in:

σ̃xz =µ
(
∂ũz

∂x
+ ∂ũx

∂z

)
=µ

(
2
∂2φ̃

∂x∂z
+ ∂2ψ̃

∂x2 − ∂2ψ̃

∂z2

)
σ̃y z =µ

∂ũy

∂z
=µ

(
∂2χ̃

∂z2 − ∂2χ̃

∂x∂z

)
σ̃zz =λ

(
∂ũx

∂x
+ ∂ũz

∂z

)
+2µ

∂ũz

∂z
=λ

(
∂2φ̃

∂x2 + ∂2φ̃

∂z2

)
+2µ

(
∂2ψ̃

∂z2 + ∂2ψ̃

∂x∂z

) (3.15)

Substituting Eq. (3.14) in Eq. (3.13), yields the expressions for the displacements. A modification is done by
shifting the z axis with the height of the layer for the reason that these exponents do not approach infinity
for large z. The anti-plane SH- wave describes only a shear displacement in the anti-plane direction, and
therefore the SH-wave is decoupled from the in-plane PSV- wave describing a coupled P- and SV- wave in-
plane. Therefore, there are four unknowns, which need to be solved for the PSV-wave and two for the SH-

Figure 3.3: Harmonic propagating waves (left) and harmonic evanescent wave (right)
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wave.

ũx =−i
[

kx

(
a1e ikz,p (z−h) +a2e−ikz,p z

)
−kz,s

(
b1e ikz,s (z−h) −b2e−ikz,s z

)]
e−ikx x

ũy =−i
[

c1e ikz,s (z−h) + c2e−ikz,s z
]

e−ikx x

ũz = i
[

kz,p

(
a1e ikz,p (z−h) −a2e−ikz,p z

)
−kx

(
b1e ikz,s (z−h) +b2e−ikz,s z

)]
e−ikx x

(3.16)

By substituting Eq. (3.16) in Eq. (3.15), the expressions for the stresses are found, with the same unknowns as
in Eq. (3.16).

σ̃xz =µ
[

2kx kz,p

(
a1e ikz,p (z−h) −a2e−ikz,p z

)
+ (

k2
z,s −k2

x

)(
b1e ikz,s (z−h) +b2e−ikz,s z

)]
e−ikx x

σ̃y z =µkz,s

[
c1e ikz,s (z−h) − c2e−ikz,s z

]
e−ikx x

σ̃zz =µ
[
−(

k2
z,s −k2

x

)(
a1e ikz,p (z−h) +a2e−ikz,p z

)
+2kz,s kx

(
b1e ikz,s (z−h) −b2e−ikz,s z

)]
e−ikx x

(3.17)

The SH-wave equation is described linear, while the PSV-wave is written in matrix notation:

ũ = Ru Ez ae−ikx x

σ̃= Rs Ez ae−ikx x
(3.18)

In which:

ũ = [
ũx ũz

]T
, σ̃= [

σ̃xz σ̃zz
]T

Ru = i

[−kx −kx −kz,s kz,s

kz,p −kz,p −kx −kx

]
, Rs =µ

[
2kx kz,p −2kx kz,p −k2

x +kz,s −k2
x +kz,s

k2
x −kz,s k2

x −kz,s 2kx kz,s −2kx kz,s

]
,

Ez = diag
[
e ikz,p (z−h) e−ikz,p z e ikz,s (z−h) e−ikz,s z

]
,

a = [
a1 a2 b1 b2

]T

(3.19)

3.2.1. Free vibration solution
The solution to the free vibration of the soil is found by applying the homogeneous boundary conditions.
Only the PSV-waves are considered hereafter. A solution is found for every wavenumber, with an unknown
amplitude. The following homogeneous boundaries are applied at the surface:

σ̃xz = σ̃zz = 0 (3.20)

The rigid boundary (bedrock) introduced at z = h does not allow displacements. Therefore, the other bound-
ary conditions are:

ũx = ũz = 0 (3.21)

By applying the boundary conditions from Eq. (3.20) and Eq. (3.21) on Eq. (3.17) and Eq. (3.18) the unknowns
a, can be found by:[

σ̃

ũ

]
=

[
Rs E0

Ru Eh

]
ae−ikx x = 0 (3.22)

This equation has a non-trivial solution in the absence of external load only when the determinant of the
matrix is equal to zero. The matrix is solved for the wavenumbers kx :

∆= Det
[

Rs E0

Ru Eh

]
= 0 (3.23)

The determinant has infinite complex solutions kn for variable k. The four unknowns can be substituted into
each other by making use of 3 of the four equations of the boundary conditions and set one of the unknowns
equal to one. The best solution is determined from sixteen sets of three equations (i.e. for each variable set to
one there are four options). The best set is chosen by taking the condition number of the reduced matrix (i.e. a
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3x3 matrix) which is the closest to one. This results in an infinite number of mode shapes φn , depending on a
corresponding wavenumbers kn with an unknown amplitude An . The solution can be found by a summation
over all modes.

u(x, z,ω) =
∞∑

n=1
Anφn(x, z,ω,kn) (3.24)

3.2.2. Root-finder algorithm
An algorithm is used to find the unique solutions for the wavenumbers (roots) kn by setting the determinant
equal to zero. These roots are found along paths in the complex frequency wavenumber domain, as shown
in figure 3.4 The roots are found by making use of two different algorithms. The two different techniques

Figure 3.4: Path of symmetric roots in the complex frequency wavenumber domain for ν= 0.31. (source: Kausel (2006))

are used to find respectively the pure real & imaginary roots and the complex roots. The two techniques the
root-finder uses are:

• A linear line-search: This method searches linear along the real and imaginary axis to find a solution
of which the real and imaginary part of the determinant is zero. The search domain on the real axis
can be estimated by a multiplication of the S wavenumber. The search domain on the imaginary axis is
more difficult to estimate. They are expected to be close to the origin. The only way to check whether
all imaginary roots are found is by the convergence of the solution.

• A search in the complex plane: The roots k are found for which the dispersion relation is equal to zero.
The search in the complex plane is based on the principle of the argument for a first estimation of the
total roots in a pre-described area in one of the four quadrants of the complex domain since the roots
can be mirrored by both axis. The algorithm divides the area in subregion, each containing one single
root. Finally the roots are found by the position where the determinant is at a minimum.

Practically the algorithm will give the best approximation for the wavenumbers, which will never give a to-
tal zero solution of the determinant. The method is more extensively described in (Tsouvalas, 2015). The
wavenumbers are found for normalized frequencies. The frequency (ω) is normalized by the shear-wave
group velocity multiplied with the depth. The wavenumbers kn are normalized with the shear-wavenumber
which can be simplified by a multiplication with the height. Figure 3.5 shows the wavenumbers found for
three normalized angular frequencies. The lowest frequency does not provide any roots corresponding to
propagating waves while the other two higher frequencies do. The modes of the layer corresponding to the
roots should fulfil the boundary conditions and the orthogonality principle. An impression of the first, second
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Figure 3.5: First ~30 roots (k) found in the fourth quadrant for normalized frequencies 1, 4 and 25. (ωnor m. = ωh
cs

)

and fourth mode-shapes at x = 0 over the height of the layer are shown in respectively figure 3.6, figure 3.7
and figure 3.8. The errors corresponding to the first 100 modes of the boundary conditions are shown in fig-
ure 3.9 and are negligible small. The modes fulfil the orthogonality principle, which confirms the correctness
of the modes found.

Figure 3.6: First modal deformation Figure 3.7: Second modal deformation

Figure 3.8: Fourth modal deformation Figure 3.9: Normalized modal error at the boundaries
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3.3. Force-displacement relation of the surface
In this subsection the force-displacement relation along the surface is determined. Therefore, z = 0. To
obtain the force displacement relation, both a vertical and horizontal (shear) load are applied on the surface
as shown in figure 3.1. From these two cases the relation between stress and displacement can be derived in
a matrix form. The relation is written in the following way:[

ũx (x +δx)
ũz (x +δx)

]
=

[
Rxx (δx) Rzx (δx)
Rxz (δx) Rzz (δx)

][
σ̃xz (x)
σ̃zz (x)

]
(3.25)

δx expresses the distance from the location where the stress is applied in x. The relations can be found by
substituting a unit force in either the horizontal or vertical stress boundary condition. So there are two cases
of boundary conditions at the free surface (z = 0).The boundaries are applied in the frequency wavenumber
domain. The wavenumber domain is denoted with a hat above the variables. The two cases of boundary
conditions can be written as:

Case 1:

σ̂xz = 0, σ̂zz = F̂zz (kx ,ω)

Case 2:

σ̂zz = 0, σ̂xz = F̂xz (kx ,ω)

(3.26)

The bedrock boundary at z = h remains as described in Eq. (3.21). The force is transferred to the frequency-
wavenumber domain. The combination of the surface- and bedrock-boundary conditions for the first case,
i.e. a vertical load is applied, reads:

σ̂xz

σ̂zz

ûx

ûz

=
[

Rs E0

Ru Eh

]
a =


0

F̂zz (kx ,ω)
0
0

 (3.27)

The unknowns a in Eq. (3.27) are found analytically by making use of Maple. Substituting these unknowns
into Eq. (3.18) give the full expression for the displacements and stresses.

a1 = −F̂zz (kx ,ω)

∆

(
−(k2

x −k2
z,s )(k2

x +kz,p kz,s )e−ih(kz,p+2kz,s + (k2
x −k2

z,s )(k2
x −kz,p kz,s )e−ikz,p h

+ 4k2
x kz,p kz,s e−ikz,s h

)
a2 = −F̂zz (kx ,ω)

∆

(
4kx2kz,p kz,s e−ih(kz,p+kz,s ) + (k2

x −k2
z,s )

(
(k2

x −kz,p kz,s )e−2ikz,s h −k2
x −kz,p kz,s

))
b1 = −F̂zz (kx ,ω)

∆
2kz,p kx

(
(−k2

x −kz,p kz,s )e−ih(2kz,p+kz,s ) + (k2
x −k2

z,s )e−ikz,p h − (k2
x −kz,p kz,s )e−ikz,s h

)
b2 = −F̂zz (kx ,ω)

∆
2kz,p kx

(
(−k2

x +k2
z,s )e−ih(kz,p+kz,s ) + (k2

x −kz,p kz,s )e−2ikz,p h +k2
x +kz,p kz,s

)
(3.28)

Where the determinant ∆written out is:

∆=µ
((

e−2ih(kz,p+kz,s ) −e−2ikz,p h −e−2ikz,s h +1
)

k6
x

+
((

5kz,p kz,s −2k2
z,s

)(
e−2i(kz,p+kz,s )h +1

)
+ (

5kz,p kz,s +2k2
z,s

)(
e−2ikz,p h +e−2ikz,s h

)
−16kz,p kz,s e−i(kz,p+kz,s )h

)
k4

x +
((

k4
z,s +kz,p kz,s

(
4kz,p kz,s −2k2

z,s

))(
e−2i(kz,p+kz,s )h +1

)
+ (−k4

z,s +kz,p kz,s
(
4kz,p kz z, s −2k2

z,s

))(
e−2ikz,p h +e−2ikz,s h

)
+16kz,p k3

z,s e−i(kz,p+kz,s )h
)

k2
x

+
(
kz,p k5

z,s

(
e−2ikz,s h +e−2ikz,p h +e−2i(kz,p+kz,s )h +1

)))
(3.29)

Exactly the same procedure is done for the second case for a horizontal load:
σ̂xz

σ̂zz

ûx

ûz

=
[

Rs E0

Ru Eh

]
a =


F̂xz (kx ,ω)

0
0
0

 (3.30)
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The unknowns a for this case are:

a1 = F̂xz (kx ,ω)

∆
2kz,s kx

(
(k2

x +kz,p kz,s )e−ih(kz,p+2kz,s ) + (k2
x −kz,p kz,s )e−ikz,p h + (−k2

x +k2
z,s )e−ikz,s h

)
a2 = −F̂xz (kx ,ω)

∆
2kz,s kx

(
(−k2

x +k2
z,s )e−ih(kz,p+kz,s ) + (k2

x −kz,p kz,s )e−2ikz,s h +k2
x +kz,p kz,s

)
b1 = F̂xz (kx ,ω)

∆

(
(−k2

x +k2
z,s )(k2

x +kz,p kz,s )e−ih(2kz,p+kz,s ) + (k2
x −k2

z,s )(k2
x −kz,p kz,s )e−ikz,s h

+ 4k2
x kz,p kz,s e−ikz,p h

)
b2 = F̂xz (kx ,ω)

∆

(
(k2

x −k2
z,s )

(
(k2

x −kz,p kz,s )e−2ikz,p h − (k2
x +kz,p kz,s )

)
+4k2

x kz,p kz,s e−ih(kz,p+kz,s )
)

(3.31)

The solution in the frequency-space domain is obtained by taking the inverse Fourier integral over Eq. (3.18)
substituting the unknowns as shown in Eq. (3.32).

σ̃zz = 1

2π

ˆ ∞

−∞

[
−(

k2
z,s −k2

x

)
a1e ikz,p z − (

k2
z,s −k2

x

)
a2e−ikz,p z +2kz,s kx b1e ikz,s z −2kz,s kx b2e−ikz,s z

]
e−ikx x dkx ,

σ̃xz = 1

2π

ˆ ∞

−∞

[
2kx kz,p a1e ikz,p z −2kx kz,p a2e−ikz,p z + (

k2
z,s −k2

x

)
b1e ikz,s z + (

k2
z,s −k2

x

)
b2e−ikz,s z

]
e−ikx x dkx ,

ũx = −i

2πµ

ˆ ∞

−∞

[
kx a1e ikz,p z +kx a2e−ikz,p z −kz,s b1e ikz,s z +kz,s b2e−ikz,s z

]
e−ikx x dkx ,

ũz = i

2πµ

ˆ ∞

−∞

[
kz,p a1e ikz,p z −kz,p a2e−ikz,p z −kx b1e ikz,s z −kx b2e−ikz,s z

]
e−ikx x dkx

(3.32)

The applied force is assumed to be a stress-block around x = 0, with a normalized area, as shown in figure 3.1.
Therefore, the reaction of this stress-block is in units of force. Since a linear approach is used, an amplification
of the force linearly effects the displacements. For the derivation of the flexibility functions, the area Si i is set
to one. The force Si i later-on will be the interaction force between the superstructure and the soil. Instead of
a stress-block, a point load could be chosen, but a stress-block is preferred to overcome singularities.

F̃i i (x,ω) =− 1

b
H

(
b

2
−|x|

)
(3.33)

Wherein H(x) is the Heaviside formula i.e H(x > 0) = 1 and H(x < 0) = 0. Taking its Fourier transform in x to
write it in the applicable domain results in:

F̃i i (x,ω) =− 1

b
H

(
b

2
−|x|

)
(3.34)

F̂i i (kx ,ω) =−
ˆ ∞

−∞
F̃i i (x,ω)e ikx x d x =−

ˆ ∞

−∞
1

b
H

(
b

2
−|x|

)
e ikx x d x (3.35)

F̂i i (kx ,ω) =−
ˆ b

2

− b
2

1

b
e ikx x d x = 1

ikx b
e ikx x

∣∣∣∣ b
2

− b
2

=− 1

ikx b

[
e i b

2 x −e−i b
2 x

]
=− 1

ikx b

[
2isin

kx b

2

]
(3.36)

F̂i i (kx ,ω) =− 2

kx b
sin

(
kx b

2

)
(3.37)

Eq. (3.37) can be substituted in Eq. (3.28) and Eq. (3.31). Since we are mainly interested in the surface loads,
the substitution of z = 0 is made for both situations. Obviously, as boundary condition, the stresses are equal
to zero or equal to the applied stress. Therefore, the relation between stress and displacement at the surface



3.3. Force-displacement relation of the surface 27

follows from the equations for the displacement. The flexibility functions are expressed as Ri j , where i is the
direction of the stress and j is the direction of the displacement.

R̃xx =− i

2π

ˆ ∞

−∞
F̂xz

∆
kz,s

(
(k2

x +k2
z,s

)(
(k2

x +kz,p kz,s )e−2ih(kz,p+kz,s ) + (k2
x −kz,p kz,s )e−2ikz,p h

+ (−k2
x +kz,p kz,s )e−2ikz,s h −k2

x −kz,p kz,s

)
e−ikx x dkx ,

R̃zz = i

2π

ˆ ∞

−∞
F̂zz

∆
kz,p (k2

x +k2
z,s )

(
(−k2

x −kz,p kz,s )e−2ih(kz,p+kz,s ) + (k2
x −kz,p kz,s )e−2ikz,p h

+ (−k2
x +kz,p kz,s )e−2ikz,s h +k2

x +kz,p kz,s )
)

e−ikx x dkx ,

R̃zx = i

2π

ˆ ∞

−∞
F̂zz

∆
kx

(
−(k2

x +kz,p kz,s )(k2
x +2kz,p kz,s −k2

z,s )e−2ih(kz,p+kz,s )

+(12k2
x kz,p kz,s −4kz,p k3

z,s )e−ih(kz,p+kz,s ) + (k2
x −2kz,p kz,s −k2

z,s )(k2
x −kz,p kz,s )(e−2ikz,p h +e−2ikz,s h)

−(k2
x +kz,p kz,s )(k2

x +2kz,p kz,s −k2
z,s )

)
e−ikx x dkx ,

R̃xz =−R̃zx

(3.38)

Together the terms in Eq. (3.38) form the flexibility matrix, i.e. it describes the displacement of a distance x
from a stress-block with an area of 1 around x0. As mentioned before, the flexibility matrix is linear. Therefore,
it may be multiplied with the interaction force Si to derive displacements for any force amplitude.[

ũx

ũz

]
=

[
R̃xx R̃zx

R̃xz R̃zz

][
S̃x

S̃z

]
ũ(x) = R(x −x0)S̃(x0)

(3.39)
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3.4. Contour integration
To solve the expression in the frequency-space domain, contour integration is used in combination with the
residues theorem. The contour integral is formed by a summation of the integral from −∞ to ∞ excluding
singularities on the integration path, integration around the singularities on the integration path, and inte-
gration over the contour going to infinity. Figure 3.10 shows an integration path (C∞) around the complex
plane for a set of roots, indicating the php and nhp. There is one singularity on the complex plane at kx = 0
(C0), which is excluded out of the integration path. The positive real roots are included in the nhp and the
negative real roots in the php as indicated.

Figure 3.10: Integration around the complex plane

˛
c
=
 ∞

−∞
+
ˆ

c0

+
ˆ

c∞
(3.40)

The contour integral equals the positive or negative sum of the residuals for respectively anticlockwise and
clockwise integration.˛

c
=∓2πi

∞∑
n=1

Res(kn) (3.41)

Since the integral from −∞ to ∞ needs to be solved and the integral over the contour drops, the integral
results in: ∞

−∞
=∓2πi

∞∑
n=1

Res(kn)−
ˆ

c0

(3.42)

3.4.1. Residue in a complex analysis
Residues are found for poles of a function in the complex plane. For simple poles, the residue can be found
by setting a limit.

Res( f (z),c) = lim
z→c

(z − c) f (z) (3.43)

Considering a function f (z) can be written as a fraction of complex valued functions with the following con-
dition:

f (z) = g (z)

h(z)
, h′(c) 6= 0, lim

z→c
(z − c) f (z) = lim

z→c

zg (z)− cg (z)

h(z)
= lim

z→c

g (z)+ zg ′(z)− cg ′(z)

h′(z)
= g (c)

h′(c)
(3.44)
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3.5. Solution in the frequency-space domain
Eq. (3.45) is the result of the substitution of Eq. (3.37) in Eq. (3.38). This resulting equation can be solved by
making use of Eq. (3.42).

R̃xx = i

πb

ˆ ∞

−∞

sin
(

kx b
2

)
kx∆

kz,s
(
(k2

x +k2
z,s

)(
(k2

x +kz,p kz,s )e−2ih(kz,p+kz,s ) + (k2
x −kz,p kz,s )e−2ikz,p h

+ (−k2
x +kz,p kz,s )e−2ikz,s h −k2

x −kz,p kz,s

)
e−ikx x dkx

R̃zz = −i

πb

ˆ ∞

−∞

sin
(

kx b
2

)
kx∆

kz,p (k2
x +k2

z,s )
(
(−k2

x −kz,p kz,s )e−2ih(kz,p+kz,s ) + (k2
x −kz,p kz,s )e−2ikz,p h

+ (−k2
x +kz,p kz,s )e−2ikz,s h +k2

x +kz,p kz,s )
)

e−ikx x dkx ,

R̃zx = −i

πb

ˆ ∞

−∞

sin
(

kx b
2

)
kx∆

kx

(
−(k2

x +kz,p kz,s )(k2
x +2kz,p kz,s −k2

z,s )e−2ih(kz,p+kz,s )

+(12k2
x kz,p kz,s −4kz,p k3

z,s )e−ih(kz,p+kz,s ) + (k2
x −2kz,p kz,s −k2

z,s )(k2
x −kz,p kz,s )(e−2ikz,p h +e−2ikz,s h)

−(k2
x +kz,p kz,s )(k2

x +2kz,p kz,s −k2
z,s )

)
e−ikx x dkx ,

R̃xz =−R̃zx

(3.45)

All integrals of Eq. (3.45) are of the following form:

Ĩi i = 1

2π

ˆ ∞

−∞
2

kx b
sin

(
kx b

2

)
fi i (kx )

∆(kx )
e−ikx x dkx (3.46)

sin

(
kx b

2

)
= 1

2i

(
e i kx b

2 −e−i kx b
2

)
(3.47)

e−ikx x = e−ixℜ(kx )+xℑ(kx ) (3.48)

To apply the contour integral, Eq. (3.47) and Eq. (3.48) are substituted in Eq. (3.46). Two separate integrals
appear since a sin is a summation of two exponential function.

I = I1 + I2

I1 = 1

i2πb

ˆ ∞

−∞
1

kx

fi i (kx )

∆(kx )
e i( b

2 −x)ℜ(kx )−( b
2 −x)ℑ(kx )dkx

I2 = −1

i2πb

ˆ ∞

−∞
1

kx

fi i (kx )

∆(kx )
e−i( b

2 +x)ℜ(kx )+( b
2 +x)ℑ(kx )dkx

(3.49)

To satisfy that the integral over the contour drops out, the real part of the integral may approach infinity, when
x in the exponent approaches ∞, the following condition needs to be satisfied for both parts of the integral:
∓( b

2 ∓x)×ℑ(kx ) < 0. This leads to the following conditions:

For I1 :

b

2
−x > 0 ⇒ x < b

2
→ ℑ(kx ) > 0

b

2
−x < 0 ⇒ x > b

2
→ ℑ(kx ) < 0

For I2 :

b

2
+x > 0 ⇒ x >−b

2
→ ℑ(kx ) < 0

b

2
+x < 0 ⇒ x <−b

2
→ ℑ(kx ) > 0

(3.50)

Eq. (3.50) leads to four equations: for every condition one equation, where km = ℑ(kx ) > 0 (i.e. the roots in
the php) leads to anticlockwise contour integrating over the positive half plane (php) and kn =ℑ(kx ) < 0, i.e.
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the roots in the nhp, leads to clockwise contour integrating over the negative half plane (nhp). The residue
for a pole kn of I1 and I2 are found from Eq. (3.43) and Eq. (3.44). The same procedure is done for km instead
of kn , which gives the results for the residues in the php.

Res(I1(kx ),kn) = 1

i2πb

1

kn

fi i (kn)
∂∆(kn )
∂kx

e i( b
2 −x)ℜ(kn )−( b

2 −x)ℑ(kn ),

Res(I2(kx ),kn) = −1

i2πb

1

kn

fi i (kn)
∂∆(kn )
∂kx

e−i( b
2 +x)ℜ(kn )+( b

2 +x)ℑ(kn )
(3.51)

The integral around the singularity kx = 0 depends on rotational coefficientφ and radius δ, of which the limit
from δ→ 0 is taken.

kx0 = lim
δ→0

δe iφ, dkx0 = lim
δ→0

iδe iφdφ (3.52)

Depending on the integration path φ= [π,0] or φ= [−π,0] for respectively anticlockwise and clockwise inte-
gration. The contour integral around the origin is taken by substituting Eq. (3.52) in Eq. (3.49). The integral
around the singularity results in:

ˆ
c0

I1|x< b
2
= 1

i2πb
lim
δ→0

ˆ 0

π

1

δe iφ

fi i (δe iφ)

∆(δe iφ)
e i( b

2 −x)ℜ(δe iφ)−( b
2 −x)ℑ(δe iφ)iδe iφdφ

= 1

2πb
lim
δ→0

ˆ 0

π

fi i (δe iφ)

∆(δe iφ)
e i( b

2 −x)ℜ(δe iφ)−( b
2 −x)ℑ(δe iφ)dφ

= 1

2πb

ˆ 0

π

fi i (0)

∆(0)
dφ

= −π
2πb

fi i (0)

∆(0)

(3.53)

ˆ
c0

I1|x> b
2
= 1

i2πb
lim
δ→0

ˆ 0

−π
1

δe iφ

fi i (δe iφ)

∆(δe iφ)
e i( b

2 −x)ℜ(δe iφ)−( b
2 −x)ℑ(δe iφ)iδe iφdφ

= π

2πb

fi i (0)

∆(0)

(3.54)

ˆ
c0

I2|x>− b
2
= −1

i2πb
lim
δ→0

ˆ 0

π

1

δe iφ

fi i (δe iφ)

∆(δe iφ)
e−i( b

2 +x)ℜ(δe iφ)+( b
2 +x)ℑ(δe iφ)iδe iφdφ

= −π
2πb

fi i (0)

∆(0)

(3.55)

ˆ
c0

I2|x<− b
2
= −1

i2πb
lim
δ→0

ˆ 0

−π
1

δe iφ

fi i (δe iφ)

∆(δe iφ)
e−i( b

2 +x)ℜ(δe iφ)+( b
2 +x)ℑ(δe iφ)iδe iφdφ

= π

2πb

fi i (0)

∆(0)

(3.56)

Substituting Eq. (3.51), Eq. (3.53), Eq. (3.54),Eq. (3.55) and Eq. (3.56) in Eq. (3.42) gives the solution to the
complete integral, making use of Heaviside functions.

ˆ ∞

−∞
Ii i = 1

b

 m∑
m=1

1

km

fi i (km)
∂∆(km )
∂kx

e i( b
2 −x)ℜ(km )−( b

2 −x)ℑ(km )H

(
b

2
−x

)
− 1
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fi i (km)
∂∆(km )
∂kx

e−i( b
2 +x)ℜ(km )+( b

2 +x)ℑ(km )H
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−b

2
−x

)

+
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− 1
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fi i (kn)
∂∆(kn )
∂kx

e i( b
2 −x)ℜ(kn )−( b

2 −x)ℑ(kn )H

(
−b

2
+x

)
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kn

fi i (kn)
∂∆(kn )
∂kx

e−i( b
2 +x)ℜ(kn )+( b

2 +x)ℑ(kn )H

(
b

2
+x

)

+ 1

2

fi i (0)

∆(0)

(
H

(
b

2
−x

)
−H

(
−b

2
−x

)
−H

(
−b

2
+x

)
+H

(
b

2
+x

)))
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(3.57)

Eq. (3.57) is a general solution of the integrals within the flexibility function described in Eq. (3.45). Applying
this integration to the flexibility functions describes a linear relation between one stress-block and a displace-
ment at any point. Since the relations are all linear, in the case of multiple stress-blocks, the displacements
can be found by the sum of the effect of each, or in a more analytic way, the total displacement can be found
by integrating over all stress-blocks having infinite small width dx (resulting in the Dirac method). For the
SSI later-on, numerical integration is used, which results in the summation over all forces Si i present at the
interface. Therefore, a full flexibility matrix is formed and from the inverse, a stiffness matrix. As an example,
figure 3.11 shows the solution of the flexibility function with the material properties of the soil from table 3.1
for harmonic loads with frequencies 0.77, 3.09 and 19.30 Hz and a corresponding amplitude of 1 kN over a
width of 1 meter.

Figure 3.11: Resulting displacements due to stress-block around 0, derived from the flexibility functions

3.5.1. 2D soil stiffness matrix
A global stiffness matrix is formed by summation of flexibility functions. The global matrix is based on an
elements with a single node in the center. Therefore, the flexibility function relates n displacements at a
distance r corresponding to n stress-blocks.

ũn = Rr S̃ =
[

Rxx Rzx

Rxz Rzz

]
r

[
S̃x

S̃z

]
n

(3.58)

This can be written in a 2n x 2n global matrix, where the flexibility functions in xx, zz and the cross relations
are separated.

ũx,1
...

ũx,n

ũz,1
...

ũz,n


=



 R̃xx,[n,n]

  R̃zx,[n,n]


 R̃xz,[n,n]

  R̃zz,[n,n]







S̃x,1
...

S̃x,n

S̃z,1
...

S̃z,n


ũ = R̃S̃

(3.59)
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By inverting the global flexibility matrix the frequency-dependent stiffness matrix can be formed, i.e. K̃s =
R̃−1. This stiffness matrix is widely used in dynamics and is used for the SSI wherein the subscript s indicates
soil.

S̃s = K̃s ũs (3.60)



34 3. 2D plane-strain soil model

3.6. Convergence of the 2D soil problem
The correctness of the solution depends on the amount of soil modes included. In theory there is an infinite
amount of soil modes which should be included, but from theory, it is known that the higher complex modes
have less influence on the solution since their influence is very local. Missing one of the real or imaginary
roots on the contrary has a rather large effect on the accuracy of the solution. To control whether enough
complex roots are included and no major roots are missing, the convergence of the solution is checked. A way
to verify whether the solution converges, is to check the smoothness of the flexibility functions. The solution
is build up out of four,of which two symmetrical domains, separated with Heaviside formulas, on both sides
of the borders of the applied stress block. For the frequencies 3.09 Hz and 19.30 Hz both flexibility functions
Rzz and Rxx are shown with and without complex modes in figure 3.12. The difference in smoothness around

Figure 3.12: Discontinuity in displacement field with and without including complex modes

±0.5 is clearly visible. The size of the discontinuity reduces a lot by including complex modes. The amount
of complex roots included mainly influences the near field since their influence will decay rapidly further
away from the source. The effect of the real, imaginary and complex roots on the size of the discontinuity
are shown in figure 3.13 and figure 3.14. The two graphs on top show the influence of every single root on
the discontinuity for respectively the real (left) and imaginary (right) part of the flexibility functions Rxx (red)
and Rzz (blue), where the bottom two graphs show respectively the cumulative influence, i.e. zero means no
discontinuity. The frequencies 3.09 Hz and 19.30 Hz have respectively two and twelve real roots and one and
four imaginary roots. Both cases clearly show that the real and imaginary roots have the largest influence
on the continuity of the flexibility functions. If the function does not converge, it is most likely that a real
or imaginary root is missing. The complex roots cause the final convergence. Loads with a high frequency
need more complex roots to converge than low frequency loads. It is expected that when SSI is applied, the
solution will be sensitive to the amount of complex roots included.



3.6. Convergence of the 2D soil problem 35

Figure 3.13: Convergence of the flexibility function in terms of the size of the discontinuity Rxx and Rzz (f = 3.09 Hz)

Figure 3.14: Convergence of the flexibility function in terms of the size of the discontinuity Rxx and Rzz (f = 19.30 Hz)
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3.7. Validation for the static case (ω= 0)
The 2D soil model is validated for the static case. The static situation is approximated by a very low frequency
of 0.08 Hz. This frequency is a lot lower than the first resonance frequency of the system. Therefore, it ap-
proximates the static case. The model is validated with respect to well-known work of Gazetas (1983), which
refers to a rigid massless strip foundation on a shallow soil layer over a rigid bedrock. The static stiffness is de-
scribed for the vertical, horizontal and rocking stiffness, depending on the depth-width ratio of the soil layer
and strip. The vertical and horizontal stiffness of the model are determined by integration over the interac-
tion stress that corresponds to an applied uniform vertical or horizontal displacement. The ’rocking’ stiffness
of the model is determined by integration over the vertical interaction stresses corresponding to linearly de-
caying vertical displacement of the beam. The strip is not restricted to rotate in case of horizontal loading
and vice versa. All cases are shown in figure 3.15.The values for the stiffness are found by Eq. (3.61) (Gazetas,
1983).

Figure 3.15: Convergence of the flexibility function in terms of the size of the discontinuity Rxx and Rzz (f = 3.09 Hz)

Kz = Fz

uz
= 1.23µ

1−ν
(
1+ 7a

2h

)
1 ≤ h

a
≤ 10

Kx = Fx

ux
= 2.1µ

2−ν
(
1+ a

2h

)
1 ≤ h

a
≤ 8

Kr =
My

ϕy
= πµa2

8(1−ν)

(
1+ a

5h

)
1 ≤ h

a
≤ 3

(3.61)

Wherein the width of the strip used by Gazetas (1983) is equal to half of the width used aforementioned:
a = b

2 . However the range of validity is limited, Gazetas (1983) states that also outside the range the expres-
sions provide a good estimation of the stiffness. The vertical and horizontal stiffness are also compared to
the stiffness of a single element derived from Eq. (3.45). The stiffness is determined by dividing the average
displacement under the load. It is assumed that the load over the element is constant, the response of the soil
is not restricted, and therefore the soil is fully flexible.

h/a Gazetas Rigid plate Error Single element Error

2 1.41e8 1.50e8 7% 1.39e8 -1%
3 1.11e8 1.10e8 -1% 1.02e8 -8%
4 9.61e7 9.06e7 -6% 8.48e7 -13%
25 5.84e7 4.45e7 -31% 3.92e7 -33%

Table 3.2: Validation of the vertical stiffness Kz of a rigid strip in [N/m] and relative error [%]
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The stiffnesses are compared in table 3.2 to table 5.3. The 2D model matches the analytical of Gazetas (1983)
within 7% in all cases within the domain of validity. The stiffness of a single element is obviously less, since
the deformation of the soil is not restricted. In general, the model preforms as expected compared to the
reference.

h/a Gazetas Rigid plate Error Single element Error

2 6.56e7 6.53e7 0% 6.24e7 -5%
3 5.47e7 5.51e7 1% 5.28e7 -3%
4 4.92e7 4.94e7 0% 4.75e7 -3%
25 3.54e7 2.93e7 -17% 2.86e7 -19%

Table 3.3: Validation of the horizontal stiffness Kx of a rigid strip in [N/m] and relative error [%]

h/a Gazetas Rigid plate Error

2 1.12e10 1.2e10 7%
3 4.85e9 4.88e9 1%
4 2.68e9 2.65e9 -1%
25 6.60e7 6.27e7 -5%

Table 3.4: Validation of the rocking stiffness Kr of a rigid strip in [N/m] and relative error [%]
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3.8. Frequency dependency of the soil stiffness
The complex stiffness of the soil varies for different frequencies. The frequencies in the model are represented
normalized with respect to the height and shear wave speed of the soil layer (ωnor m. = ωh

cs
). The normalized

frequencies considered are 0.5, 1, 2, 3, 4, 5, 10, 15, 20 and 25 corresponding to respectively 0.39, 0.77, 1.54,
2.32, 3.09, 3.86, 7.72, 11.58, 15.44 and 19.30 Hz. To examine the frequency-dependent stiffness of the layer,
first the frequencies of the resonance modes of the soil are found. The dispersion relation for the ten lowest
modes of the layer vibrations are shown in figure 3.16 based on a zero determinant from Eq. (3.27). Resonance
frequencies of the layer are found forkx = 0. The first frequency of the fundamental shear and compression

Figure 3.16: Dispersion relation for the ten lowest modes

mode of a single layer on bedrock can be found by the 1D approximation from Dobry et al. (1976). Based
on the first mode shape φ = cos(ωc )z with ω1 = πc

2h to satisfy the boundary conditions. The fundamental
frequencies of the shear and compression mode are found by substituting the shear and compression wave
speed in c.

ωs,1 = πcs

2h
⇒ ωs,1h

cs
= π

2
≈ 1.57

ωp,1 =
πcp

2h
⇒ ωp,1h

cs
= πcp

2cs
≈ 3.85

(3.62)

The frequencies found in Eq. (3.62) match the first and second fundamental frequency shown in figure 3.16.
To examine the frequency-dependent stiffness of the soil, the complex stiffness K is split in a real and imag-
inary part representing the stiffness and damping. The frequency-dependent stiffness and damping are nor-
malized with respect to the static stiffness Ks :

K = Ks (k + iωc) (3.63)

It is convenient to normalize the frequency with the half of the strip width and shear wave length ratio to
compare results of different h/a ratios:

a0 = ωa

cs
(3.64)
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Therefore, the damping coefficient in Eq. (3.63) modifies:

c0 = c
cs

a
(3.65)

Substituting Eq. (3.65) in Eq. (3.63) results in:

K = K (k + ia0c0) (3.66)

Figure 3.17 to figure 3.22 show the dependence of the stiffness and damping-coefficient on normalized fre-
quencies for different h/a ratios. The first three normalized frequencies from figure 3.16 of the fundamental
modes for ratio 3,4, and 25 are:

h/a a0,1 = a0,s1 a0,2 = a0,p1 a0,3

3 0.52 1.28 1.57
4 0.39 0.96 1.18
25 0.06 0.15 0.19

Table 3.5: First three natural frequencies of a single layer

Vertical stiffness and damping
The vertical stiffness and damping are strongly sensitive to a variation in frequency. The material is un-
damped and fully elastic, and therefore no damping is observed for the static case. Since no propagating
surface waves can exist for frequencies under the first resonance frequency, no energy propagates horizon-
tally away from the beam and because of the bedrock condition energy cannot leave the system downwards.
The steep fluctuation in stiffness and damping can be declared by the absence of hysteretic and material
damping. Figure 3.17 and figure 3.18 show the normalized frequency-dependent vertical stiffness and damp-
ing for h/a ratios 3, 4 and 25. The vertical lines show the second (and ninth) resonance frequency that match
noticeably good with the reduction in stiffness. The second resonance frequency matches the frequency of
the first fundamental compression mode as aforementioned. This is reasonable since the vertical stiffness of
the shallow soil layer corresponds to compression of the soil by a rigid plate.

Horizontal stiffness and damping
The horizontal stiffness and damping similar to the vertical stiffness and damping are strongly sensitive to
a variation in frequency. No damping is observed before the first resonance frequency of the layer and the
fluctuation of both stiffness and damping is rather steep. Figure 3.19 and figure 3.20 show the normalized
frequency-dependent horizontal stiffness and damping for h/a ratios 3, 4 and 25. The vertical lines show
the first, third and seventh resonance frequency that match noticeably good with the reduction in horizontal
stiffness. As aforementioned, the first natural frequency is related to the frequency of the fundamental shear
mode. It is reasonable that the horizontal stiffness and damping strongly depend on the fundamental shear
mode, since the displacement of the rigid strip is parallel to the bedrock.

Rocking stiffness and damping
The rocking stiffness and damping are less sensitive to the frequency. The stiffness reduces slightly with
an increasing frequency. Damping is observed after the first resonance frequency of the soil, but quickly
approaches an almost constant value. Figure 3.20 and figure 3.21 show the normalized frequency dependent
rocking stiffness and damping. The vertical lines show the first and second resonance frequency of the layer,
corresponding to the fundamental shear and compressional mode of the layer. The rocking stiffness is not
clearly susceptible to one of the two.
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Figure 3.17: Normalized stiffness coefficient kz . Figure 3.18: Normalized damping coefficient cz .

Figure 3.19: Normalized stiffness coefficient kx . Figure 3.20: Normalized damping coefficient cx .

Figure 3.21: Normalized stiffness coefficient kr . Figure 3.22: Normalized damping coefficient cr .



4
2D Soil structure interaction

To determine the influence of the soil on the super structure, a coupling between them needs to be estab-
lished. The soil structure interaction is constructed in the frequency domain. There are multiple ways to cou-
ple a linear structure to the soil model derived in chapter 3. However, it is chosen to elaborate the coupling
of an inextensible foundation strip based on the orthogonality of the structural modes. The orthogonality of
the modes of the foundation are used to include the soil behaviour in the dynamic response of the combined
system. Numerical integration is used to solve the coupled equations. The SSI between the soil and a simple
Euler Bernoulli, i.e. a pure bending beam, due to a point-load on the beam is performed first. The beam is
assumed to be inextensible, and therefore has a constant horizontal displacement. Therefore, the system in
x direction is reduced to a single degree of freedom system. The applied force used in this chapter, is either a
point load or an incident soil displacement field.

4.1. General equations of a free-edge Euler Bernoulli beam
In this chapter, a foundation strip is coupled to the soil. The behaviour of the foundation strip is chosen to
be equal to an inextensible Euler Bernoulli beam. In this case, a concrete strip of one meter height and a
length of 10 meters is used. On top of the beam at some point x0 a harmonic load or an incident harmonic
displacement field of the soil is applied. The depth of the soil is chosen to be 25 meters. The case is shown
in 4.1. For the SSI the interface is discretized in n single node elements with the node in the center of the
element (n = L/b). The material properties of the beam are summarized in table 4.1.

Figure 4.1: Schematisation of a finite beam supported on linear elastic soil

The governing equations of the SSI system for this case consist of the stiffness equation of the soil (Eq. (3.60)),
the vertical and horizontal system equation of motion (Eq. (4.1) & Eq. (4.2)), the boundary condition of the
foundation strip (Eq. (4.3) & Eq. (4.4)), the kinematic equilibrium of the displacement of the soil and founda-

41
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Characteristic Symbol Value Unit
Young’s modulus E 30∗109 N /m2

Second moment of area I 1/12 m4

Denisity ρ 2407 kg /m3

Table 4.1: Beam material properties

tion (Eq. (4.5)) and the assumption of an in-plane inextensible foundation strip (Eq. (4.6)).

E I
d 4ũz,b

d x4 −ω2ρb Ab ũz,b + S̃z,s = F̃zδ(x −x0)S̃z,i (4.1)

−ω2ρb AbLb ũx,b + S̃x,s = F̃x + S̃x,i (4.2)

d 2ũz,b

d x2 x=0
= d 2ũz,b

d x2 x=L
= 0 (4.3)

d 3ũz,b

d x3 x=0
= d 3ũz,b

d x3 x=L
= 0 (4.4)

uz,b = uz,s , ux,b = ux,s (4.5)

ux,b = constant for 0 ≤ x ≤ L (4.6)

(4.7)

Where S̃z,s and S̃x,s are respectively the vertical and horizontal interaction forces, S̃z,i and S̃x,i respectively
the vertical and horizontal stresses due to an incident wave field and F̃z and F̃x are respectively vertical and
horizontal harmonic point loads. The subscripts b, s and i refer to the beam, soil and incident field respec-
tively.
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4.2. Homogeneous solution of a free-edge EB beam
The out-of-plane equation of motion, Eq. (4.1) of the beam is solved for by a summation over the modal
displacements of the beam. To find these modal displacements, first the homogeneous equation of motion
is solved, and therefore homogeneous boundaries are applied, i.e. no interaction with the soil and external
loads (S̃i z,s = S̃z,s = F̃z = 0). Eq. (4.1) is rewritten after the substitution of λ as:

E I
d 4ũz,b

d x4 −ω2ρb Ab ũz,b = 0

d 4ũz,b

d x4 − ω2ρb Ab

E I
ũz,b = 0

d 4ũz,b

d x4 −λ4ũz,b = 0

λ4 = ω2ρb Ab

E I

(4.8)

The general solution of ũz,b in Eq. (4.8) is a combination of both positive and negative, both real and imagi-
nary exponents times unknowns which may be rewritten as.

ũz,b = Aeλx +Be−λx +Ce iλx +De−iλx

ũz,b = A1 sin(λx)+ A2 cos(λx)+ A3 sinh(λx)+ A4 cosh(λx)
(4.9)

By Applying the boundary conditions (Eq. (4.2) and Eq. (4.3)) at x = 0 it results that:

A3 = A1, A4 = A2 (4.10)

The boundary conditions at x = L results in two homogeneous equations with two unknowns:[−sin(λL)+ sinh(λL) −cos(λL)+cosh(λL)
−cos(λL)+cosh(λL) sin(λL)+ sinh(λL)

][
A1

A2

]
=

[
0
0

]
(4.11)

This matrix is solved by setting the determinant of the matrix to zero. This leads to:

cos(λL)cosh(λL) = 1 (4.12)

Since the length of the beam is unequal to 0, the equation is solved for an infinite amount of wavenumbers
λm . The wavenumbers correspond to modal shapes φm , which can be found by solving Eq. (4.11) for A2,
leaving one unknown, and substituting the wavenumbers λm .

φm = 1

cos(λmL)−cosh(λmL)
(−sinh(λm x)− sin(λm x))cosh(λmL)

+ (sin(λm x)+ sinh(λm x))cos(λmL)+ (cos(λm x)+cosh(λm x))(−sin(λmL)+ sinh(λm x))
(4.13)

ũz,b =∑
m

Amφm (4.14)

The eigenfrequencies corresponding to the modes are found from the substitution of λ done in Eq. (4.8).

λ4
m = ω2

mρb Ab

E I
, ωm =λ2

m

√
E I

ρb Ab
(4.15)

The first two beam modes correspond to the rigid body modes of the beam (ωm = 0). All uneven modes are
symmetric and all even modes asymmetric. The first 5 modes shapes for both the displacement and its 4th

spatial derivative are shown in 4.2. The rigid body modes do not influence the spatial derivatives of the mode
shapes, since there is no deformation of the beam.
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Figure 4.2: First 5 beam mode shapes
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4.3. Soil stiffness matrix decomposition
The frequency-dependent stiffness matrix found in Eq. (3.59), corresponds to full matrix, depending both
on the horizontal and vertical forces and displacements. The dimensions of the stiffness-matrices are given
in-between the square brackets, to clarify how the stiffness matrix is modified.

S̃x1
...

S̃xn

S̃z1
...

S̃zn


=



 K̃xx,[n,n]

  K̃zx,[n,n]


 K̃xz,[n,n]

  K̃zz,[n,n]







ũx1
...

ũxn

ũz1
...

ũzn


(4.16)

The forces due to the incident wave field are derived directly from Eq. (4.16). Due to the assumption of an
infinite stiff in-plane foundation strip in Eq. (4.6), the horizontal system of the foundation are reduced from
an continuum system to an SDOF system. Therefore, the displacements in x are all equal and the forces in x
can be summed:

S̃x,i =
n∑

j=1
S̃x j ,i

S̃x,s =
n∑

j=1
S̃x j ,s

ũx1,s = ũx2,s = ũxn,s = ũx,s

(4.17)

The stiffness matrix of the soil coupled to the foundation is split and reduced in size by making use of Eq. (4.17):

S̃x,s = K̃xx,[1,1]ũx,s +
[

K̃zx,[1,n]
]ũz1,s

...
ũzn,s

 ⇒ S̃x,s = K̃xx ũx,s + K̃zx ũz,s

S̃z1,s
...

S̃zn,s

=
K̃xz,[n,1]

 ũx,s +
 K̃zz,[n,n]


ũz1,s

...
ũzn,s

 ⇒ S̃z ,s = K̃xz ũx,s + K̃zz ũz,s

(4.18)

Eq. (4.18) is substituted in the horizontal equation of motion from Eq. (4.2), to express the horizontal rigid
body motion into the vertical displacements and external forces. The substitution of the horizontal interac-
tion force results in:

−ω2ρb AbLb ũx,b + K̃xx ũx,s + K̃zx ũz,s = F̃x + S̃x,i (4.19)

Since ũx,s = ũx,b , the horizontal displacement is separated and expressed in terms of the vertical displace-
ment and external forces.

ũx,s =
F̃x + S̃x,i

K̃xx −ω2ρb AbLb
− K̃zx ũz,s

K̃xx −ω2ρb AbLb
(4.20)

By substituting Eq. (4.20) into the second equation of motion Eq. (4.18), the vertical interaction forces are
found independent of the horizontal displacement and interaction forces, but only depend on the external
load and vertical displacement.

S̃z ,s = K̃xz

(
F̃x + S̃x,i

K̃xx −ω2ρb AbLb
− K̃zx ũz,s

K̃xx −ω2ρb AbLb

)
+ K̃zz ũz,s

=
(

K̃zz − K̃xz K̃zx

K̃xx −ω2ρb AbLb

)
ũz,s + K̃xz

K̃xx −ω2ρb AbLb

(
F̃x + S̃x,i

)
= K̃z−uz ũz,s +C̃x

(
F̃x + S̃x,i

)
(4.21)
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Where the matrix K̃z−uz and vector C̃x represent respectively the effective vertical stiffness of the soil and the
vertical displacement due to horizontal forcing.

K̃z−uz =
(

K̃zz − K̃xz K̃zx

K̃xx −ω2ρb AbLb

)
& C̃x = K̃xz

K̃xx −ω2ρb AbLb
(4.22)

By substituting Eq. (4.21), the vertical system equation of motion, Eq. (4.1) is independent from the horizontal
displacement and can be solved by making use of the orthogonality principle.
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4.4. The orthogonality principle
To solve the system equation of motion, the principle of orthogonality is used. A condition of modes is that
they are orthogonal to each other, which is checked for all modes derived in Eq. (4.13). For normalized modes
of a 2D beam, it holds that the multiplication of two different modes result in a zero solution and two the same
modes results in length integrating over:

ˆ L

0
φl (x)φm(x)d x = Lδml (4.23)

The orthogonality of modes is applied on Eq. (4.1) to solve the dynamic SSI. First Eq. (4.14) and Eq. (4.21)
are substituted in Eq. (4.1). This results in the SSI dynamic equation of motion, expressed in a summation
of modal shapes. Since the stiffness matrix of the soil is discretized and the modal shapes of the beam are
continuous, the same discretization is applied on the modal shapesφ of the beam. The single node elements,
with size b equal to the soil boundary elements is used, resulting in the same size vectors. All external force
components are put on the right-hand side in the system equation of motion.

∑
m

Am

[
λ4

mE Iφm
ρb Ab

ρb Ab
−ω2ρb Abφm + K̃z−uzφm

]
+C̃x

(
F̃x + S̃x,i

)= F̃zδ(x −x0)+ S̃z,i∑
m

Am
[
(ω2

m −ω2)ρb Abφm + K̃z−uzφm
]= F̃zδ(x −x0)+ S̃z,i −C̃x

(
F̃x + S̃x,i

) (4.24)

Whereδml is the Kronecker delta function. The orthogonality is applied by multiplying Eq. (4.24) with another
mode l and integrating over the length. This results in an infinite number of non-homogeneous equations,
with an equal amount of unknowns Am , which describe the amplification of each mode.

∑
m

Am

ˆ L

0

[
(ω2

m −ω2)ρb Abφl ·φm +φl · K̃z−uzφm
]=φl ·

(
F̃zδ(x −x0)+ S̃z,i −C̃x

(
F̃x + S̃x,i

))
dx (4.25)

To solve Eq. (4.25), numerical integration is used by summation over the indices of the vectors. By making
use of the characteristics of the modes from Eq. (4.23), the properties of the Dirac delta and Kronecker delta
function Eq. (4.25) results in:∑

m
Am

[
(ω2

m −ω2)ρb AbbφT
mφmδlm +φT

l K̃z−uzφm
]=φl (x0)F̃z +φT

l S̃z,i −φT
l C̃x

(
F̃x + S̃x,i

)
∑
m

Am
[
(ω2

m −ω2)ρb AbLbδlm +φT
l K̃z−uzφm

]=φl (x0)F̃z +φT
l S̃z,i −φT

l C̃x
(
F̃x + S̃x,i

) (4.26)

Calling the equation between the square brackets M and the right-hand side F , Eq. (4.26) has m−1 unknowns
Am , but since there are an equal number of modes l and m considered, M results in a square matrix. By taking
the inverse, the unknowns are found for every discrete number of modes considered:

Mml Am = F̃l

Am = M−1
ml F̃l

(4.27)

The total vertical displacement is found by substituting Eq. (4.27) in Eq. (4.14). From the vertical displacement
and external forces, the horizontal displacement is found by Eq. (4.20) and the vertical interaction forces from
Eq. (4.21).
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4.5. 2D SSI case study
Three analysis are performed for three different frequencies, 0.77, 3.09 and 19.30 Hz to observe how the model
behaves. For all cases the convergence is discussed. The frequencies are chosen such that the first frequency
is a rather low frequency in absence of any propagating waves, the second frequency includes propagating
waves and is commonly expected during an earthquake, the third frequency is a relatively high frequency
during an earthquakes. This section shows results of load cases in terms of the displacements of both the
beam and the soil. It shows how both foundation and soil influence each other. Furthermore, for frequency
3.09 Hz, the interaction stresses and moment- and shear-line of the foundation are shown. The length and
height of the beam considered are respectively 10 and 1 meter. Further material properties of the beam are
described in table 4.1. The first 20 natural frequencies corresponding to the free-edged beam considered
are derived from Eq. (4.15) and shown in table 4.2. The first two beam modes are related to the rigid body

Mode nr. Hz Mode nr. Hz
1 0 11 1445
2 0 12 1765
3 36 13 2117
4 100 14 2501
5 196 15 2918
6 324 16 3366
7 484 17 3846
8 676 18 4358
9 900 19 4903

10 1157 20 5479

Table 4.2: First 20 free-free beam natural frequencies

displacements of the beam (rocking and uniform displacement). Due to the stiffness of the beam, the third
beam mode is already larger than the frequencies occurring in an earthquake. Therefore, it is expected that
mainly the rigid body motions and the first deflection mode will be dominant in all load cases.The three load
cases considered are: first, a point load of 1 kN at x0 = L/3, second, a uniform vertical inorcident wave field
and third, a incident propagating (Rayleigh) wave. The response to the three cases are discussed separately.

Point load
The first load case considered is a harmonic point of 1 kN load at x = L/3. The point load is asymmetric, and
therefore both symmetric and asymmetric beam modes are triggered. Figure 4.3 shows the vertical displace-
ment of both beam and soil, the vertical interaction stresses between the beam and soil and the moment &
shear line of the beam due to the point load. The largest interaction stresses are found at the edge of the foun-
dation, what is expected due to load spreading effects of a rather stiff foundation. The largest moment and
shear force are obviously located at the place where the point load is applied. Both moment and shear force
are zero at the edge of the beam, and therefore fulfil the boundary conditions. Although 100 beam modes are
used to describe the deformation of the beam. More are needed to describe shear-force smoothly, in case of
a point load. For three frequencies, the vertical and horizontal displacement of the beam and soil due to a
point load are shown in figure 4.6. The vertical displacement at 0.77 Hz is in phase with the load, while due to
the soil properties, the higher frequencies have a clear phase difference. The horizontal displacement of the
beam is only little due to the asymmetric load.

Incident uniform vertical displacement
The second load case is based on a uniform vertical incident displacement of the soil. The uniform displace-
ment is symmetric, and therefore only symmetric modes are triggered. The interaction stresses, moment-
and shear-line are also symmetric, shown in figure 4.4. The amplitude of the incident uniform displacement
is 10−3m. Figure 4.7 shows the vertical and horizontal displacement field for the three frequencies. At 0.77 Hz,
the displacement almost matches the incident wave field and the imaginary displacement is zero. Therefore,
the system has no damping, what is reasonable since the frequency is to low for propagating waves to exist.
The two other frequencies show a clear difference between the incident and reaction wave field. The inertial
interaction of the beam cause propagating waves, and therefore energy propagates away from the beam.
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Incident propagating wave
The incident propagating wave contains a coupled vertical and horizontal motion. The motion is asymmetric,
and therefore both symmetric and asymmetric beam modes are activated. The interaction stresses, moment
and shear-force along the beam changes with the phase of the load but always fulfil the boundary conditions.
The beam follows the displacement of the soil respectively good at 0.77 Hz and 3.09 Hz as shown in figure 4.8.
However, at 19.30 Hz, the kinematic SSI has great influence. The beam is too stiff to match the incident wave
of the soil. Therefore, the wave field changes significantly due to the presence of the foundation on both left
and right side of the soil.

Figure 4.3: Deformation, interaction stress, moment and shear line of the strip,
excited by a harmonic point load (f = 3.09 Hz).

Figure 4.4: Deformation, interaction stress, moment and shear line of the strip,
excited by an incident uniform displacement (f = 3.09 Hz).
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Figure 4.5: Deformation, interaction stress, moment and shear line of the strip, excited by a propagating wave (f = 3.09 Hz).

Figure 4.6: Displacement of strip and surrounding, excited with a harmonic point load (f = 0.77 Hz, 3.09 Hz & 19.30 Hz).



4.5. 2D SSI case study 51

Figure 4.7: Displacement of strip and surrounding, excited with a incident uniform displacement field (f = 0.77 Hz, 3.09 Hz & 19.30 Hz).

Figure 4.8: Displacement of strip and surrounding, excited with a incident propagating wave (f = 0.77 Hz, 3.09 Hz & 19.30 Hz).
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4.6. Convergence of the 2D model
The convergence of the model depends mainly on the number of elements, beam modes and soil modes
included. For the three cases from section 4.5 the convergence is observed. To check the influence of the
number of beam and soil modes included, a reference run is done with 110 beam modes and 220 soil modes.
The error with respect to the reference run is calculated by:

Error = |uz,bi −uz,br z |
|uz,br |

(4.28)

In which r denotes the reference run.

Number of elements
The starting point for the number of elements included, is that there are at least 6 elements needed to describe
a full sinus (Wolf, 1985). Therefore, the model has a minimum of 3 elements per beam mode, because the
first flexible beam mode shape corresponds to a half sinus, the second to a full sinus etc. From numerical
test, it results that this assumption is sufficient in almost all cases, only when few beam modes and many
soil modes are included, this starting point does not hold any more. This is validated by taking the difference
in displacement of the beam compared to a case with 10 additional elements. When the results differ less
than 0.1%, the number of elements was assumed sufficient. For frequencies significantly smaller than the
first ten eigenfrequencies of the structure, making use 100-300 elements will be sufficient for the SSI, since it
is expected that the beam will mainly deform in the first few modal shapes.

Number of beam modes
The number of beam modes that influence the SSI outcome is expected to be little. Figure 4.9 confirms that
expectation, since the outcome converges already after 5 to 10 beam modes in both cases of a point load and
uniform incident displacement field. Convergence of the modes, has little dependence of the range of fre-
quencies used in this case, but is influenced by the load type strongly (local or uniform). The displacement of
the beam is described by its first four modal shapes for more than 95%, in all load cases. Generally, the higher
modes are activated by local loads only for the range of frequencies considered. To describe the response of
uniform or smooth load cases, including a few beam modes seems to be sufficient.

Figure 4.9: Influence of the number of included beam modes on SSI analysis for a point load (PL) and uniform displacement (UD) for
the normalized frequencies 1, 4 and 25, 200 soil modes are included.

Number of soil modes
The SSI analysis is more sensitive to the number of soil modes included. Figure 4.10 indicates that even a high
number of complex soil modes do still contribute to the SSI analysis, although the convergence is logarith-
mic. Including 100 beam modes should be sufficient since the results differ less than 1% with respect to the
reference case, except for the case of a high frequency point load. It appears that the number of soil modes
that need to be included to reach convergence is dependent on frequency and type of load case. However,
in earthquake engineering local forces are not expected and the higher frequency included does almost not
occur during an earthquake, including 100 soil modes will lead to a solution within 1 % of the exact solution.
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Figure 4.10: Influence of the number of included soil modes on SSI analysis for a point load (PL) and uniform displacement (UD) for the
normalized frequencies 1, 4 and 25, 100 beam modes are included
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4.7. Influence of the foundation stiffness
The stiffness of the SSI system depends on both soil and structure stiffness. The stiffness of the foundation
influences the stress profile acting on the soil. A complete flexible foundation will transfer the load on top
of the strip, directly to soil. However, the interaction stress of a rigid strip differs to an applied stress on
top of the strip. For symmetrical loads, the distribution of the interaction stress will be the largest at the
edge and the smallest in the center due to load spreading effects. Figure 4.12 illustrates the influence of a
flexible foundation on the load spreading effects. Figure 4.12 also illustrates that the static stiffness of the soil

Figure 4.11: Redistribution of stresses due to a rigid strip

fluctuates over the interaction area. For both flexible and rigid strips, the soil stiffness is the largest at the
edges since the stress-displacement ratio is the largest.
To give a normalized value to the stiffness of the foundation, the relative flexibility formulation of Gazetas
(1983) is used:

RF = Eb

Es

(
tb

a

)3 (
1−ν2

b

)
(4.29)

For different relative flexibility ratios, the system stiffness and damping are determined with respect to the
rigid strip foundation from section 3.7. Only the kinematic interaction is evaluated. Therefore, inertial forces
are neglected since the mass will add force but should not affect the stiffness, i.e. the mass of the strip is set
equal to zero. Only the vertical and rocking stiffness and damping are evaluated. The system equation of
motion, Eq. (4.24) turns into:∑

m
Am

[
Eb Ibλ

4
mLbδlm +φT

l Kz−uzφm
]=φl (x0)F̃z (ω)+φT

l S̃i zn,s (4.30)

The rigid foundation is approached as a single degree of freedom system, stiffness and damping do not vary
over the width of the foundation. This does not hold for a flexible foundation. The stiffness of the flexi-
ble foundation is evaluated by the average displacement, center displacement and edge displacement. Fig-
ure 4.12 shows how the complex stiffness is obtained. The damping is obtained by taking the imaginary part
of the stiffness. The stiffness and damping of the system turn out to be almost independent on the frequen-
cies. Therefore, the stiffness and damping are averaged over the frequencies 0 ≤ a0 ≤ 1 for ratios h

a = 4 and
h
a = 25. Table 4.3 and table 4.4 show the differences in stiffness and damping for both ratios. The influence of

the flexibility of the beam is only little for ratio h
a = 25. Only fully flexible beams, e.g. without stiffness show

significant reductions in stiffness. Furthermore, the stiffness and damping increase at the edge of a flexible
plate and decrease in the center with respect to the average stiffness and damping. This is expected due to
stress distribution patterns as aforementioned. The small influence are declared by the large depth width
ratio, since the soil stiffness will be dominant in the stiffness of the SSI system for all cases.

The variation of stiffness and damping is larger for ratio h
a = 4. The rocking stiffness and damping are more

sensitive to the flexibility of the plate than the vertical. The reduction average reduction of the vertical and
rocking stiffness is respectively 5% and 20%. The reduction in damping is even larger with respectively 15%
and 35%.

The system stiffness differs more along the width of the strip for flexible foundation strips. The vertical and
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Figure 4.12: Derivation of the SSI stiffness including a rigid and flexible foundation

rocking system stiffness can reduce in the center of the strip with respectively 10% and 30% and increase at
the edges with 20% and 25%. The damping is even more sensitive to the stiffness of the plate.

From these results, it concludes that the flexibility of the foundation is important for determining both the
stiffness and damping of the SSI. Furthermore, the flexibility of the foundation influences the stress distribu-
tion between soil and foundation. In case of a relatively stiff foundation strip, the system reduces to a system
with one rotational, vertical and horizontal spring, explained in section 2.3, but for more flexible foundations
this assumption is not valid any more due to the large variation along the interaction plane.

Averaged ka Averaged ca Center kc Center cc Edge ke Edge ce

RF kz kr cz cr kz kr cz cr kz kr cz cr

0 -5% -20% -14% -36% -13% -32% -21% -71% 18% 24% 27% 13%
0,001 -5% -15% -15% -28% -12% -27% 15% -58% 12% 13% 15% 25%
0,01 -4% -4% -12% -10% 7% -10% 16% -24% 7% 5% 16% 14%
0,1 -1% 1% -4% 0% 2% 0% 6% -2% 2% 2% 6% 3%
1 0% 2% 0% 1% 0% 2% 1% 1% 0% 2% 1% 2%
10 0% 2% 0% 2% 0% 2% 0% 2% 0% 2% 0% 2%
100 0% 2% 0% 2% 0% 2% 0% 2% 0% 2% 0% 2%

Table 4.3: Relative SSI stiffness and damping for a strip over a single layer on bedrock ( h
a = 4)

Averaged ka Averaged ca Center kc Center cc Edge ke Edge ce

RF kz kr cz cr kz kr cz cr kz kr cz cr

0 -1% -18% 9% -33% 3% -30% -3% -56% -30% 26% 46% 52%
0,001 0% 1% -1% -6% -1% 1% 2% -7% -1% 1% 2% -5%
0,01 0% 1% 0% -6% 0% 1% 0% -6% 0% 1% 0% -6%
0,1 0% 1% 0% -5% 0% 1% 0% -6% 0% 1% 0% -6%
1 0% 1% 0% -6% 0% 1% 0% -6% 0% 1% 0% -6%
10 0% 1% 0% -6% 0% 1% 0% -6% 0% 1% 0% -6%
100 0% 1% 0% -6% 0% 1% 0% -6% 0% 1% 0% -6%

Table 4.4: Relative SSI stiffness and damping for a strip over a single layer on bedrock ( h
a = 25)





5
3D model soil model

This chapter considers the derivation, which describes the response of a dynamically loaded 3D soil model
on the surface in cylindrical coordinates. A cylindrical area is loaded with a harmonic force and the displace-
ments at every point expressed in cylindrical coordinates are derived. This case includes both cylindrical
symmetric (due to vertical) and non-symmetric (due to horizontal) load cases. Both cylindrical symmetric
and non-symmetric load cases correspond to a circumferential mode number n. The circumferential mode
number n is respectively zero and one for a cylindrical symmetric and antisymmetric load. Higher mode
numbers are not considered, since only a vertical and horizontal load on an element are included. For both
a vertical and horizontal load, Green’s functions are derived to describe the flexibility of the soils surface.
Hereafter, the surface is discretized and the flexibility and stiffness matrix are constructed.

Figure 5.1: Schematisation of the applied harmonic load on the soil

5.1. Hankel-transform of the wave equation
For the general derivation which includes both cylindrical symmetric and non-symmetric modes, the wave
equation is rewritten in Helmholtz potentialsφ,ψ&χ corresponding to the P-, SV- and SH- waves respectively,
as introduced in Aki and Richards (2002). A brief derivation of the potentials and Eq. (5.1) by Helmholtz
decomposition is preformed in appendix B. The displacement field is expressed as:

ũ(r,θ, z,ω) =∇φ̃+∇×∇× (0,0,ψ̃)+∇× (0,0, χ̃) (5.1)

The vector potential related to the P-wave can easily be obtained. The SV- and SH- wave vectors are described
by:

∇×∇× (0,0,ψ̃) =
[
∂2ψ̃

∂r∂z
r̂ + 1

r

∂2ψ̃

∂θ∂z
θ̂− 1

r

(
∂

∂r

(
r∂ψ̃

∂r

)
+ 1

r

∂2ψ̃

∂θ2

)
ẑ
]

,

∇× (0,0, χ̃) =
[

1

r

∂χ̃

∂θ
r̂ − ∂χ̃

∂r
θ̂

] (5.2)
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This results in:

ũr (r,θ, z,ω) = ∂φ̃

∂r
+ ∂2ψ̃

∂r∂z
+ 1

r

∂χ̃

∂θ
,

ũθ(r,θ, z,ω) = ∂φ̃

r∂θ
+ 1

r

∂2ψ̃

∂θ∂z
− ∂χ̃

∂r
,

ũz (r,θ, z,ω) = ∂φ̃

∂z
− 1

r

∂

∂r

(
r∂ψ̃

∂r

)
− 1

r 2

∂2ψ̃

∂θ2

(5.3)

The corresponding stresses are obtained by the standard stress strain relations:

σ̃zr (r,θ, z,ω) =µ
(
∂ũr

∂z
+ ∂ũz

∂r

)
,

σ̃zθ(r,θ, z,ω) =µ
(

1

r

∂ũz

∂θ
+ ∂ũθ
∂z

)
,

σ̃zz (r,θ, z,ω) = (λ+2µ)
∂ũz

∂z
+λ

(
1

r

∂(r ũr )

∂r
+ 1

r

∂ũθ
∂θ

) (5.4)

Each potential is chosen such that is satisfies a decoupled equation of motions in the frequency domain:

∇2φ̃(r,θ, z,ω)+ ω2

c2
p
φ̃(r,θ, z,ω) = 0,

∇2ψ̃(r,θ, z,ω)+ ω2

c2
s
ψ̃(r,θ, z,ω) = 0,

∇2χ̃(r,θ, z,ω)+ ω2

c2
s
χ̃(r,θ, z,ω) = 0

(5.5)

Wherein the lambda operator in circular coordinates is given as:

∇2 = ∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂θ2 + ∂2

∂z2 (5.6)

The separation of variables creates a θ independent function:

φ̃(r,θ, z,ω) = cos(nθ)φ̂(r, z,ω),

ψ̃(r,θ, z,ω) = cos(nθ)ψ̂(r, z,ω),

χ̃(r,θ, z,ω) =−sin(nθ)χ̂(r, z,ω)

(5.7)

Substitute Eq. (5.7) in the wave equations described in Eq. (5.5) results in wave equations of which the general
solution is described with Bessel J functions:(

∂2

∂r 2 + 1

r

∂

∂r
− n2

r 2 + ∂2

∂z2

)
φ̂(r, z,ω)+ ω2

c2
p
φ̂(r,θ, z,ω) = 0,(

∂2

∂r 2 + 1

r

∂

∂r
− n2

r 2 + ∂2

∂z2

)
ψ̂(r, z,ω)+ ω2

c2
s
ψ̂(r,θ, z,ω) = 0,(

∂2

∂r 2 + 1

r

∂

∂r
− n2

r 2 + ∂2

∂z2

)
χ̂(r, z,ω)+ ω2

c2
s
χ̂(r,θ, z,ω) = 0

(5.8)

By substituting Eq. (5.7) in both equations for displacements and stresses, the θ dependence is separated
such that:

ũr (r,θ, z,ω) = cos(nθ)ûθ(r, z,ω), σ̃zr (r,θ, z,ω) = cos(nθ)σ̂zr (r, z,ω),

ũθ(r,θ, z,ω) =−sin(nθ)ûθ(r, z,ω)), σ̃zθ(r,θ, z,ω) =−sin(nθ)σ̂zθ(r, z,ω),

ũz (r,θ, z,ω) = cos(nθ)ûz (r, z,ω), σ̃zz (r,θ, z,ω) = cos(nθ)σ̂zz (r, z,ω)

(5.9)

Which results in:

ûr (r, z,ω) = ∂φ̂

∂r
+ ∂2ψ̂

∂r∂z
− n

r
χ̂,

ûθ(r, z,ω) = n

r
φ̂+ n

r

∂ψ̂

∂z
− ∂χ̂

∂r
,

ûz (r, z,ω) = ∂φ̂

∂z
− 1

r

∂

∂r

(
r∂ψ̂

∂r

)
+ n2

r 2 ψ̂

(5.10)
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And:

σ̂zr =µ
(
∂ûr

∂z
+ ∂ûz

∂r

)
,

σ̂zθ =µ
(

n

r
ûz + ∂ûθ

∂z

)
,

σ̂zz = (λ+2µ)
∂ûz

∂z
+λ

(
1

r

∂(r ûr )

∂r
− n

r
ûθ

) (5.11)

To find the general solution of the wave equations, the Hankel transform is applied with respect to the radial
coordinate.

f Hn =
ˆ ∞

0
r f (r )Jn(kr )dr,

f (r ) =
ˆ ∞

0
k f Hn Jn(kr )dk

(5.12)

By applying this transform Eq. (5.5) reads:

∂2φ̂Hn

∂z2 −α2φ̂Hn = 0,

∂2ψ̂Hn

∂z2 −β2ψ̂Hn = 0,

∂2χ̂Hn

∂z2 −β2χ̂Hn = 0

(5.13)

The general solution of Eq. (5.13) is

φ̂Hn = A1e−αz + A2eαz ,

ψ̂Hn = A3e−βz + A4eβz ,

χ̂Hn = A5e−βz + A6eβz

(5.14)

With:

α=
√√√√k2 − ω2

c2
p

, β=
√

k2 − ω2

c2
s

(5.15)

And in accordance with the definition of the Hankel transform:

φ̂(r, z,ω) =
ˆ ∞

0
kφ̂Hn (k, z,ω)Jn(kr )dk,

ψ̂(r, z,ω) =
ˆ ∞

0
kψ̂Hn (k, z,ω)Jn(kr )dk,

χ̂(r, z,ω) =
ˆ ∞

0
kχ̂Hn (k, z,ω)Jn(kr )dk

(5.16)

Substituting Eq. (5.16) in the equations for the displacements,Eq. (5.10) results in:

ûr (r, z,ω) =
ˆ ∞

0
k

{[
φ̂Hn + ∂ψ̂Hn

∂z

]
Jn(kr ),r − χ̂Hn

n

r
Jn(kr )

}
dk

ûθ(r, z,ω) =
ˆ ∞

0
k

{[
φ̂Hn + ∂ψ̂Hn

∂z

]
n

r
Jn(kr )− χ̂Hn Jn(kr ),r

}
dk

ûz (r, z,ω) =
ˆ ∞

0
k

{[
∂φ̂Hn

∂z
− (−k2r 2 +n2)

r 2 ψ̂Hn + n2

r 2 ψ̂
Hn

]
Jn(kr )

}
dk

(5.17)

Since all ζHn functions contain arbitrary integration constants, they are allowed to be scaled with any constant
(Kausel, 2006). This is necessary to obtain converging integrals after turning the order of the integral with
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respect to k and derivatives with respect to r and z. A rescaling factor 1
k is applied to ψ̂Hn and χ̂Hn . By

considering 1
k Jn(kr ),r = Jn(kr ),(kr ), Eq. (5.17) results in:

ûr (r, z,ω) =
ˆ ∞

0
k

{[
kφ̂Hn + ∂ψ̂Hn

∂z

]
1

k
Jn(kr ),r − χ̂Hn

n

kr
Jn(kr )

}
dk

=
ˆ ∞

0
k

{
r1(z)Jn(kr ),(kr ) + l1(z)

n

kr
Jn(kr )

}
dk,

ûθ(r, z,ω) =
ˆ ∞

0
k

{[
kφ̂Hn + ∂ψ̂Hn

∂z

]
n

kr
Jn(kr )− χ̂Hn

1

k
Jn(kr ),r

}
dk

=
ˆ ∞

0
k

{
r1(z)

n

kr
Jn(kr )+ l1(z)Jn(kr ),(kr )

}
dk,

ûz (r, z,ω) =
ˆ ∞

0
k

{[
∂φ̂Hn

∂z
+kψ̂Hn

]
Jn(kr )

}
dk

=
ˆ ∞

0
k {r2(z)Jn(kr )}dk

(5.18)

And after some algebra, the corresponding stress equations result in:

σ̂zr (r, z,ω) =µ
ˆ ∞

0
k

{
∂r1(z)

∂z

1

k
Jn(kr ),r − ∂l1(z)

∂z

n

kr
Jn(kr )+kr2(z)

1

k
Jn(kr ),r

}
dk

=
ˆ ∞

0
k

{
r3(z)Jn(kr ),(kr ) + l2(z)

n

kr
Jn(kr )

}
dk,

σ̂zθ(r, z,ω) =µ
ˆ ∞

0
k

{
kr2(z)

n

kr
Jn(kr )+ ∂r1(z)

∂z

n

kr
Jn(kr )+ ∂l1(z)

∂z

1

k
Jn(kr ),r

}
dk

=
ˆ ∞

0
k

{
r3(z)

n

kr
Jn(kr )+ l2(z)Jn(kr ),(kr )

}
dk,

σ̂zz (r, z,ω) =
ˆ ∞

0
k

{
(λ+2µ)

∂r2(z)

∂z
Jn(kr )−λkr1(z)Jn(kr )

}
dk

=
ˆ ∞

0
k {r4(z)Jn(kr )}dk,

(5.19)

A collaboration of the z-dependent variables, wherein rn corresponds to the coupled PSV-waves and ln to the
SH-wave:

r1(z) = kφ̂Hn (z)+ ∂ψ̂Hn (z)

∂z
, r2(z) = ∂φ̂Hn (z)

∂z
+kψ̂Hn (z), l1(z) =−χ̂Hn (z)

r3(z) =µ
(
kr2(z)+ ∂r1(z)

∂z

)
, r4(z) = (λ+2µ)

∂r2(z)

∂z
−kλr1(z), l2(z) =µ∂l1(z)

∂z

(5.20)

The equations for the displacements and stresses in the frequency domain are:

ũr (r,θ, z,ω) = cos(nθ)

ˆ ∞

0
k

{
r1(z)Jn(kr ),(kr ) + l1(z)

n

kr
Jn(kr )

}
dk,

ũθ(r,θ, z,ω) =−sin(nθ)

ˆ ∞

0
k

{
r1(z)

n

kr
Jn(kr )+ l1(z)Jn(kr ),(kr )

}
dk,

ũz (r,θ, z,ω) = cos(nθ)

ˆ ∞

0
k {r2(z)Jn(kr )}dk,

σ̃zr (r,θ, z,ω) = cos(nθ)

ˆ ∞

0
k

{
r3(z)Jn(kr ),(kr ) + l2(z)

n

kr
Jn(kr )

}
dk,

σ̃zθ(r,θ, z,ω) =−sin(nθ)

ˆ ∞

0
k

{
r3(z)

n

kr
Jn(kr )+ l2(z)Jn(kr ),(kr )

}
dk,

σ̃zz (r,θ, z,ω) = cos(nθ)

ˆ ∞

0
k {r4(z)Jn(kr )}dk,

(5.21)
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It is convenient to rewrite the equations in matrix form, such that the dependence on r , θ and z is separated.

ũ(r,θ, z,ω) =
ˆ ∞

0
kTn(θ)Jn(k,r )Ru (z)

σ̃(r,θ, z,ω) =
ˆ ∞

0
kTn(θ)Jn(k,r )Rs (z)

(5.22)

In which T is a translation matrix around θ, J is a matrix containing the Bessel J functions, describing the
propagating and decaying behaviour of the waves and Rn are vectors containing the z-dependence, including
the unknowns An that are found by the boundary conditions.

Tn = diag.[cos(nθ),−sin(nθ),cos(nθ)],

Jn =
Jn(kr ),(kr )

n
kr Jn(kr ) 0

n
kr Jn(kr ) Jn(kr ),(kr ) 0

0 0 Jn(kr )

 ,

Ru (z) = [r1(z), l1(z),r2(z)]T ,

Rs (z) = [r3(z), l2(z),r4(z)]T

(5.23)

The kernel Ru (z) and Rs (z), containing the unknowns An is written out in matrix form as:

[
Ru (z)
Rs (z)

]
=



ke−αz keαz −βe−βz βeβz 0 0
0 0 0 0 −e−βz −eβz

−αe−αz αeαz ke−βz keβz 0 0
−2kµαe−αz 2kµαeαz µe−βz

(
β2 +k2

)
µeβz

(
β2 +k2

)
0 0

0 0 0 0 µβe−βz −µβeβz

µ
(
β2 +k2

)
e−αz µ

(
β2 +k2

)
eαz −2kµβe−βz 2kµβeβz 0 0





A1

A2

A3

A4

A5

A6


(5.24)
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5.2. Homogeneous boundary conditions
The unique solutions of the homogeneous boundary conditions are expressed in terms of roots and are found
by solving the homogeneous boundary conditions (Eq. (5.25)) that holds for all r and θ.

ũ(r,θ,h,ω) = 0, σ̃(r,θ,0,ω) = 0 (5.25)

Since Tn and Jn depend on either r or θ, Ru (h) and Rs (0) should be zero to fulfil the boundary conditions for
the stress and displacements. The unknowns from Eq. (5.24) for considering homogeneous boundaries are
found by solving:

[
Ru (h)
Rs (0)

]
=



ke−αh keαh −βe−βh βeβh 0 0
0 0 0 0 −e−βh −eβh

−αe−αh αeαh ke−βh keβh 0 0
−2kµα 2kµα µ

(
β2 +k2

)
µ

(
β2 +k2

)
0 0

0 0 0 0 µβ −µβ
µ

(
β2 +k2

)
µ

(
β2 +k2

) −2kµβ 2kµβ 0 0





A1

A2

A3

A4

A5

A6

= 0 (5.26)

The components depending on the anti-plane wave (SH) and the coupled PSV-wave are collected and decou-
pled, resulting in two matrices, that are solved separately.

[
Ru (h)
Rs (0)

]
=


ke−αh keαh −βe−βh βeβh

−αe−αh αeαh ke−βh keβh

−2kµα 2kµα µ
(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

) −2kµβ 2kµβ


psv


A1

A2

A3

A4


+

[−e−βh −eβh

µβ −µβ
]

sh

[
A5

A6

]
= 0

(5.27)

The determinant of the kernel related to both the PSV- and SH- wave coefficients should be solved to find the
unique wavenumbers.

∆psv =∆= Det
[
. . .

]
psv = 0, ∆sh =∆∗ = Det

[
. . .

]
sh = 0

∆ =µ
((
αβ+k2)(−4βαk2 − (

β2 +k2)2
)(

eh(α−β) +e−h(α−β)
)

+ (
αβ−k2)(4βαk2 − (

β2 +k2)2
)(

e−h(α+β) +eh(α+β)
)
+16k2βα

(
β2 +k2))

∆∗ =µβeβh +µβe−βh = 0

(5.28)

The solution to the determinant corresponding to the PSV-wave is exactly the same as found in the 2D plane-
strain case as described in Eq. (3.23). Therefore, the same roots are used. The solution of the determinant
corresponding to the SH-wave is set to zero results in an infinite amount of roots ksh :

ksh =
{±ks

±
p

4k2
s h2−π2(2n+1)

2h

(5.29)

The unknowns A1 to A6 are solved for different boundary conditions. The modes of the soil are similar to the
2D plane-strain case decoupled in a PSV- and SH-wave component and can be solved separately. The roots
corresponding to Eq. (5.29) for normalized frequencies are shown in figure 5.2
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Figure 5.2: First ~30 roots (ks h) found in the negative half plane for normalized frequencies 1, 4 and 25. (ωnor m. = ωh
cs

)
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5.3. A cylindrical symmetric vertical load
The case considered is a vertical load over a circular area. This load is equal for every θ. Therefore, it is called
cylindrical symmetric. The index s refers to the cylindrical symmetric vertical load. The magnitude of the
stress is normalized to the area, such that the total stress over the area equals 1. The boundary conditions
that are applied in this load case are:

ũr (r,θ,h,ω) = 0, σ̃zr (r,θ,0,ω) = 0,

ũθ(r,θ,h,ω) = 0, σ̃zθ(r,θ,0,ω) = 0,

ũz (r,θ,h,ω) = 0, σ̃zz (r,θ,0,ω) =− Fz

πr 2
e

H(re − r ),

(5.30)

Eq. (5.30) is solved in the Hankel domain by applying a forward Hankel transform (Wolf, 1985):

p̃(k) =−an

ˆ ∞

0
r Jn

ˆ 2π

0
Tn T0

0
0
1

 Fz

πr 2
e

H(re − r )dθdr (5.31)

Where re is the radius of the foundation plate and an is a normalization constant:

an =
{

1
2π n = 0
1
π n 6= 0

(5.32)

Since the orthogonality conditions need to be satisfied, the integral in the azimuth θ only gives a solution for
n = 0 (Kausel, 2006):

ˆ 2π

0
Tm Tn dθ = 1

an
δmn (5.33)

Applying this orthogonality, Eq. (5.31) results in:

p̃(k) =−
ˆ re

0
r

J0(kr ),(kr ) 0 0
0 J0(kr ),(kr ) 0
0 0 J0(kr )

0
0
1

 Fz

πr 2
e

dr

=−
ˆ re

0
r J0(kr )

Fz

πr 2
e

0
0
1

dr =− Fz

πkre
J1(kre )

0
0
1


(5.34)

The equations for the displacements are reduced, since only n = 0 is considered. Therefore, Eq. (5.18) be-
comes:

ũs
r (r,θ, z,ω) =

ˆ ∞

0
k

{
r1(0)J0(kr ),(kr )

}
dk,

ũs
θ(r,θ, z,ω) = 0

ũs
z (r,θ, z,ω) =

ˆ ∞

0
k {r2(0)J0(kr )}dk

(5.35)

Since the z-dependent functions ln related to the SH-wave equals zero, A5 and A6 are zero and only the un-
knowns A1 to A4 are found by solving for the boundary conditions. Similar to the homogeneous case, the
boundary conditions should hold everywhere, and should be independent of θ and r . The kernel is con-
structed from Ru (h) and Rs (0) as preformed in Eq. (5.26) for the homogeneous case.

[
R s

u (h)
R s

s (0)

]
=


ke−αh keαh −βe−βh βeβh

−αe−αh αeαh ke−βh keβh

−2kµα 2kµα µ
(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

) −2kµβ 2kµβ




As
1

As
2

As
3

As
4

= −Fz

πkre
J1(kre )


0
0
0
1

 (5.36)
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The coefficients for this case result in:


As

1
As

2
As

3
As

4

=



−(
αβ+k2

)(
β2 +k2

)
eh(α−β) + (−αβ+k2

)(
β2 +k2

)
eh(α+β) +4βαk2

−(
αβ+k2

)(
β2 +k2

)
eh(−α+β) + (−αβ+k2

)(
β2 +k2

)
e−h(α+β) +4βαk2

−2kα
(
eh(α+β)αβ−eh(α+β)k2 −eh(−α+β)αβ−eh(−α+β)k2 +β2 +k2

)
2kα

(
β2 +k2 +e−h(α+β)αβ−e−h(α+β)k2 −eh(α−β)αβ−eh(α−β)k2

)


−Fz

πkre

J1(kre )

∆(k)
(5.37)

The equations for the unknowns are substituted into Eq. (5.21). Together with substituting n = 0, the flexibility
functions due to a vertical force are given in form of the inverse Hankel transform.

ũs
r (r,θ,0,ω) =− Fz

πre

ˆ ∞

0

f s
r1

(k)

∆(k)
J1(kre )J0(kr ),(kr )dk = Fz

πre

ˆ ∞

0

f s
r1

(k)

∆(k)
J1(kre )J1(kr )dk

ũs
z (r,θ,0,ω) =− Fz

πre

ˆ ∞

0

f s
r2

(k)

∆(k)
J1(kre )J0(kr )dk

(5.38)

In which f s
r1

and f s
r2

are related to the numerator of r1 and r2 for the cylindrical symmetric (s ) case.

f s
r1

(k) =−k
((
αβ+k2)(2αβ+β2 +k2)(eh(α−β) +e−h(α−β)

)
− (−αβ+k2)(−2αβ+β2 +k2)(e−h(α+β) +eh(α+β)

)
−4αβ

(
β2 +3k2))

f s
r2

(k) =−α (
β2 −k2)((αβ+k2)(−eh(α−β) +e−h(α−β)

)
+

(
eh(α+β) −e−h(α+β)

)(−αβ+k2)) (5.39)

The integrals in Eq. (5.38) contain two Bessel J functions, both depending on the integration variable k. The
function can be expanded from the positive domain to the complete domain by making use of the derivation
done in appendix A, in which the integration over a Bessel J function is rewritten into the integration over
either a Hankel H1 or Hankel H2 function. It is arbitrarily chosen to use the Hankel function of first kind
during the further derivation, this is allowed as long as the dispersion conditions are fulfilled. Both equations
for both domains fulfil the condition, mentioned in appendix A, that the symmetry (odd or even) of the pre-
multiplication is contrary to the Bessel J function, that is rewritten into a Hankel H1 function. Therefore,
Eq. (5.38) is rewritten as either:

ũs
r (r,θ,0,ω) = 1

2

Fz

πre

ˆ ∞

−∞

f s
r1

(k)

∆(k)
H (1)

1 (kre )J1(kr )dk = 1

2

Fz

πre

ˆ ∞

−∞

f s
r1

(k)

∆(k)
J1(kre )H (1)

1 (kr )dk

ũs
z (r,θ,0,ω) =−1

2

Fz

πre

ˆ ∞

−∞

f s
r2

(k)

∆(k)
H (1)

1 (kre )J0(kr )d =−1

2

Fz

πre

ˆ ∞

−∞

f s
r2

(k)

∆(k)
J1(kre )H (1)

0 (kr )dk

(5.40)

5.3.1. Contour integration for the cylindrical symmetric load
Eq. (5.40) can be solved by making use of contour integration and the residue theorem. In Eq. (5.41), a quick
recap is written how to solve an integral over equation φ by making use of contour integration. Further ex-
planation about contour integration and the php and nhp is preformed in section 3.4, including a figure with
the used integration path.

ˆ ∞

−∞
φ=±2πi

∑
n

Res(kx ,φ)−
ˆ

C1

φ−
ˆ

C2

φ−
ˆ

Cn

φ−
ˆ

C∞
φ (5.41)

The series expansion for r →∞ of the H (1)
0 (kr ) function is in the form of e iC (k). To fulfil the dispersive con-

dition, i.e. that the Hankel function decays for r →∞, anticlockwise integration around the positive complex
half plane is applied (ℑ(k) > 0) including the negative real roots. The integration should hold for all values of
r and therefore, it is not allowed to approach infinity at any r. Since the largest multiplication of r within the
Bessel J function is dominant, the integration domain must be split into two domains: 0 < r < re and re < r ,
since in the exponential representation of the Bessel J functions, r is only dominant if it is larger than re . This
is shown in Eq. (5.42) in which the exponential part is dominant.

Series of lim
k→∞

Jn(ak)H (1)
m (bk) = f (k, a,b,n,m)e−ik(a−b), holds for : ℑ(k) > 0 & a ≤ b (5.42)
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Applying the residue theorem on Eq. (5.40), this results in:

ũs
r (r,θ,ω) = Fz

2πre
×

2πi
∑

k=km

f s
r1

(k)

∆(k),k
H (1)

1 (kre )J1(kr )−´C∞ 0 < r < re

2πi
∑

k=km

f s
r1

(k)

∆(k),k
J1(kre )H (1)

1 (kr )−´C∞ re ≤ r

ũs
z (r,θ,ω) =− Fz

2πre
×

2πi
∑

k=km

f s
r2

(k)

∆(k),k
H (1)

1 (kre )J0(kr )−´C0
−´C∞ 0 < r < re

2πi
∑

k=km

f s
r2

(k)

∆(k),k
J1(kre )H (1)

0 (kr )−´C∞ re ≤ r

(5.43)

The integral around a complex integration contour vanishes when its radius approaches infinity. Therefore,
this term will drop out of the equations. All except for one of the equations, are 0 for k = 0 since the series
expansion of the Hankel functions is in the form of a logarithmic function and the series expansion of the
Bessel J1 function is in the form of a1k +a2k3 +a3k5 + .... The multiplication of a logarithmic function with
a linear (or higher order) function will go to 0 when its argument approaches 0. The singularity at k = 0 is
solved by integrating around the singularity and by making use of the assumptions in Eq. (3.52):

k0 = lim
δ→0

δe iφ, dk0 = lim
δ→0

iδe iφdφ (5.44)

Substituting Eq. (5.44) into Eq. (5.40) leads to:

ˆ
C0

=
ˆ 0

π

lim
δ→0

f s
r2

(δe iφ)

∆(δe iφ)
H (1)

1 (δe iφre )J0(δe iφr )δie iφdφ, 0 < r < re

=
ˆ 0

π

lim
δ→0

f s
r2

(0)

∆(0)
H (1)

1 (δe iφre )J0(0r )δie iφdφ, 0 < r < re

(5.45)

Making use of the series expansion of the Hankel H1 function at k = 0 and J0(0) = 1:

ˆ
C0

=
ˆ 0

π

lim
δ→0

f s
r2

(0)

∆(0)

 −2i

reπ(δe iφ)
+

re

(
2i ln( (δe iφ)re

2 )+2iγ+π− i
)

(δe iφ)

2π
+O

(
(δe iφ)3)δie iφdφ,

=
ˆ 0

π

lim
δ→0

f s
r2

(0)

∆(0)

−2iδie iφ

reπδe iφ
dφ=

ˆ 0

π

2 f s
r2

(0)

reπ∆(0)
dφ=

[ 2 f s
r2

(0)

reπ∆(0)
φ

]0

π

=−2 f s
r2

(0)

re∆(0)

(5.46)

Eq. (5.46) is substituted in Eq. (5.43) obtaining the final flexibility functions due to a force in z direction:

ũs
r (r,θ,ω) =− Fz

2πre
×

2πi
∑

k=km

f s
r1

(k)

∆(k),k
H (1)

1 (kre )J1(kr ) 0 < r < re

2πi
∑

k=km

f s
r1

(k)

∆(k),k
J1(kre )H (1)

1 (kr ) re ≤ r

ũs
z (r,θ,ω) = Fz

2πre
×

2πi
∑

k=km

f s
r2

(k)

∆(k),k
H (1)

1 (kre )J0(kr )+ 2 f s
r2

(0)

re∆(0) 0 < r < re

2πi
∑

k=km

f s
r2

(k)

∆(k),k
J1(kre )H (1)

0 (kr ) re ≤ r

(5.47)
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5.4. An antisymmetric horizontal load
In this case, a horizontal load in x, i.e. in θ = 0, is applied over a circular area. The case is antisymmetric
with respect to every r . The antisymmetric case is referenced to with index a . The boundary conditions
corresponding to this load case are:

ũr (r,θ,h,ω) = 0, σ̃zr (r,θ,0,ω) = Fx

πr 2
e

H(re − r )cos(θ),

ũθ(r,θ,h,ω) = 0, σ̃zθ(r,θ,0,ω) =− Fx

πr 2
e

H(re − r )sin(θ),

ũz (r,θ,h,ω) = 0, σ̃zz (r,θ,0,ω) = 0,

(5.48)

Similar to the the cylindrical symmetric load case, the applied load is transformed into the Hankel domain:

p̃(k) = an

ˆ ∞

0
r Jn

ˆ 2π

0
Tn T1

1
1
0

 Fx

πr 2
e

H(re − r )dθdr (5.49)

And due to orthogonality obtained in Eq. (5.33), only the modes corresponding to n = 1 remain:

p̃(k) =
ˆ re

0
r

J1(kr ),(kr )
1

kr J1(kr ) 0
1

kr J1(kr ) J1(kr ),(kr ) 0
0 0 J1(kr )

1
1
0

 Fx

πr 2
e

dr

= Fx

πr 2
e

ˆ re

0
r J0(kr )

1
1
0

dr = Fx

πkre
J1(kre )

1
1
0


(5.50)

The equations for the displacements of Eq. (5.18), when only n = 1 is considered, become:

ũa
r (r,θ,0,ω) = cos(θ)

ˆ ∞

0
k

{
r1(0)J1(kr ),(kr ) + l1(0)

1

kr
J1(kr )

}
dk,

ũa
θ (r,θ,0,ω) =−sin(θ)

ˆ ∞

0
k

{
r1(0)

1

kr
J1(kr )+ l1(0)J1(kr ),(kr )

}
dk,

ũa
z (r,θ,0,ω) = cos(θ)

ˆ ∞

0
k {r2(0)J1(kr )}dk

(5.51)

In which:

J1(kr ),(kr ) = J0(kr )− 1

kr
J1(kr ) (5.52)

The z-dependent functions rn and ln related to the PSV- and SH-wave respectively, are both included in the
equation. Therefore, the unknowns A1 to A4 and A5 & A6 are solved by the boundary conditions and the
PSV- and SH-kernel respectively. The kernel is constructed from Ru (h) and Rs (0) similar to Eq. (5.27) for the
homogeneous case.

[
Ru (h)a

Rs (0)a

]
=




ke−αh keαh −βe−βh βeβh

−αe−αh αeαh ke−βh keβh

−2kµα 2kµα µ
(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

)
µ

(
β2 +k2

) −2kµβ 2kµβ




Aa
1

Aa
2

Aa
3

Aa
4

= Fx
πkre

J1(kre )


0

0

1

0


[
−e−βh −eβh

µβ −µβ

]
sh

[
Aa

5

Aa
6

]
= Fx

πkre
J1(kre )

[
0

1

] (5.53)

Eq. (5.53) can find the variables An resulting in:
Aa

1
Aa

2
Aa

3
Aa

4

=


2β

((
αβ+k2

)
eh(α−β) + (−αβ+k2

)
eh(α+β) −k2 −β2

)
k

2kβ
(
e−h(α+β)αβ−e−h(α+β)k2 −eh(−α+β)αβ−eh(−α+β)k2 +β2 +k2

)
−(
αβ+k2

)(
β2 +k2

)
eh(−α+β) + (−αβ+k2

)(
β2 +k2

)
eh(α+β) +4βαk2

−(
αβ+k2

)(
β2 +k2

)
eh(α−β) + (−αβ+k2

)(
β2 +k2

)
e−h(α+β) +4βαk2

 Fx

πkre

J1(kre )

∆

[
Aa

5
Aa

6

]
=

[
eβh

−e−βh

]
Fx

πkre

J1(kre )

∆∗

(5.54)
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Eq. (5.54) and Eq. (5.52) are substituted into Eq. (5.51) giving the flexibility function in the form of the inverse
Hankel transform due to a load in horizontal direction.

ũa
r (r,θ,0,ω) = Fx

πre
cos(θ)

ˆ ∞

0

{
f a

r 1(k)

∆(k)

(
J0(kr )− 1

kr
J1(kr )

)
+ f a

l1(k)

kr∆∗(k)
J1(kr )

}
J1(kre )dk,

ũa
θ (r,θ,0,ω) = −Fx

πre
sin(θ)

ˆ ∞

0

{
f a

r 1(k)

kr∆(k)
J1(kr )+ f a

l1(k)

∆∗(k)

(
J0(kr )− 1

kr
J1(kr )

)}
J1(kre )dk,

ũa
z (r,θ,0,ω) = Fx

πre
cos(θ)

ˆ ∞

0

f a
r 2(k)

∆(k)
J1(kre )J1(kr )dk

(5.55)

Wherein:

f a
r 1(k) =β (

β2 −k2)((αβ+k2)(−eh(α−β) +e−h(α−β)
)
−

(
eh(α+β) −e−h(α+β)

)(−αβ+k2))
f a

l1(k) =−eβh +e−βh

f a
r 2(k) =−k

((
αβ+k2)(2αβ+β2 +k2)(eh(α−β) +e−h(α−β)

)
− (−αβ+k2)(−2αβ+β2 +k2)(e−h(α+β) +eh(α+β)

)
−4αβ

(
β2 +3k2))

(5.56)

Similar to the cylindrical symmetric case Eq. (5.55) is extended from the positive integration domain to the
full integration domain by making use of the derivation done in appendix A. This is done for both Bessel J
functions in Eq. (5.55). Again the condition of (anti)symmetry described in appendix A is fulfilled in all cases.
Therefore, Eq. (5.55) is rewritten as:

ũa
r (r,θ,0,ω) = Fx

2πre
cos(θ)

ˆ ∞

0

{
f a

r 1(k)

∆(k)

(
H (1)

0 (kr )− 1

kr
H (1)

1 (kr )

)
+ f a

l1(k)

kr∆∗(k)
H (1)

1 (kr )

}
J1(kre )dk,

= Fx

2πre
cos(θ)

ˆ ∞

0

{
f a

r 1(k)

∆(k)

(
J0(kr )− 1

kr
J1(kr )

)
+ f a

l1(k)

kr∆∗(k)
J1(kr )

}
H (1)

1 (kre )dk,

ũa
θ (r,θ,0,ω) = −Fx

2πre
sin(θ)

ˆ ∞

0

{
f a

r 1(k)

kr∆(k)
H (1)

1 (kr )+ f a
l1(k)

∆∗(k)

(
H (1)

0 (kr )− 1

kr
H (1)

1 (kr )

)}
J1(kre )dk,

= −Fx

2πre
sin(θ)

ˆ ∞

0

{
f a

r 1(k)

kr∆(k)
J1(kr )+ f a

l1(k)

∆∗(k)

(
J0(kr )− 1

kr
J1(kr )

)}
H (1)

1 (kre )dk,

ũa
z (r,θ,0,ω) = Fx

2πre
cos(θ)

ˆ ∞

0

f a
r 2(k)

∆(k)
J1(kre )H (1)

1 (kr )dk

= Fx

2πre
cos(θ)

ˆ ∞

0

f a
r 2(k)

∆(k)
H (1)

1 (kre )J1(kr )dk

(5.57)

5.4.1. Contour integration for the antisymmetric load

Eq. (5.57) can be solved by making use of contour integration and the residue theorem similar as in the cylin-
drical symmetric load case. The integration is split into domains for 0 < r < re and re ≤ r . The same properties
of the Hankel functions and contour integrals are used as explained for Eq. (5.41) and Eq. (5.43). The integrals
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in Eq. (5.57) is rewritten as:

ũa
r (r,θ,0,ω) = Fx

2πre
cos(θ)×



2πi
∑

k=km

f a
r 1(k)
∆(k),k

(
J0(kr )− 1

kr J1(kr )
)

H (1)
1 (kre )

+2πi
∑

k=ksh

f a
l1(k)

kr∆∗(k),k
J1(kr )H (1)

1 (kre )−´C0
−´C∞ 0 < r < re

2πi
∑

k=km

f a
r 1(k)
∆(k),k

(
H (1)

0 (kr )− 1
kr H (1)

1 (kr )
)

J1(kre )

+2πi
∑

k=ksh

f a
l1(k)

kr∆∗(k),k
H (1)

1 (kr )J1(kre )−´C0
−´C∞ re ≤ r

ũa
θ (r,θ,0,ω) = −Fx

2πre
sin(θ)×



2πi
∑

k=km

f a
r 1(k)

kr∆(k),k
J1(kr )H (1)

1 (kre )

+2πi
∑

k=ksh

f a
l 1(k)

∆∗(k),k

(
J0(kr )− 1

kr J1(kr )
)

H (1)
1 (kre )

−´C0
−´C∞ 0 < r < re

2πi
∑

k=km

f a
r 1(k)

kr∆(k),k
H (1)

1 (kr )J1(kre )

+2πi
∑

k=ksh

f a
l 1(k)

∆∗(k),k

(
H (1)

0 (kr )− 1
kr H (1)

1 (kr )
)

J1(kre )

−´C0
−´C∞ re ≤ r

ũa
z (r,θ,0,ω) = Fx

2πre
cos(θ)×


2πi

∑
k=km

f a
r 2(k)
∆(k),k

H (1)
1 (kre )J1(kr )−´C∞ 0 < r < re

2πi
∑

k=km

f a
r 2(k)
∆(k),k

J1(kre )H (1)
1 (kr )−´C∞ re ≤ r

(5.58)

Eq. (5.58) only holds for the condition that ℑ(k) > 0. The integration along the contour vanish when the radius
of the integration path approaches infinity. Therefore,

´
C∞ = 0. There are four types of singularities at k = 0

in Eq. (5.57), since limz→0 of 1
z J1(az) = a

2 and J0(z) = 1. Integration around the singularities is applied:

ˆ
C0−1

= lim
k→0

ˆ 0

π

f a
i (k)

∆i (k)
J0(kr )H (1)

1 (kre )dk 0 < r < re

ˆ
C0−2

= lim
k→0

ˆ 0

π

f a
i (k)

kr∆i (k)
J1(kr )H (1)

1 (kre )dk 0 < r < re

ˆ
C0−3

= lim
k→0

ˆ 0

π

f a
i (k)

kr∆i (k)
J1(kre )H (1)

1 (kr )dk re ≤ r

(5.59)

Again, making use of the substitution for k as performed in Eq. (5.44), the integration around the singularities
results in:

ˆ
C0−1

= lim
δ→0

ˆ 0

π

f a
i (δe iφ)

∆i (δe iφ)
J0(δe iφr )H (1)

1 (δe iφre )iδe iφdφ 0 < r < re

= lim
δ→0

ˆ 0

π

f a
i (0)

∆i (0)
H (1)

1 (δe iφre )iδe iφdφ 0 < r < re

ˆ
C0−2

= lim
δ→0

ˆ 0

π

f a
i (δe iφ)

δe iφr∆i(δe iφ)
J1(δe iφr )H (1)

1 (δe iφre )iδe iφdφ 0 < r < re

= lim
δ→0

ˆ 0

π

f a
i (0)

2∆i (0)
H (1)

1 (δe iφre )iδe iφdφ 0 < r < re

ˆ
C0−3

= lim
δ→0

ˆ 0

π

f a
i (δe iφ)

δe iφr∆i(δe iφ)
J1(δe iφre )H (1)

1 (δe iφr )iδe iφdφ re ≤ r

= lim
δ→0

ˆ 0

π

re f a
i (0)

2r∆i (0)
H (1)

1 (δe iφr )iδe iφdφ re ≤ r

(5.60)

The series expansion of the H (1)
1 is performed in Eq. (5.46) and results in:

lim
δ→0

ˆ 0

π

H (1)
1 (δe iφr(e))iδe iφdφ=

ˆ 0

π

2

r(e)π
dφ (5.61)
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Substituting Eq. (5.61) into Eq. (5.60) gives:

ˆ
C0−1

=
ˆ 0

π

2 f a
i (0)

reπ∆i (0)
dφ=

[ 2 f a
i (0)

reπ∆i (0)
φ

]0

π

=− 2 f a
i (0)

re∆i (0)
0 < r < re

ˆ
C0−2

=
ˆ 0

π

f a
i (0)

reπ∆i (0)
dφ=

[ f a
i (0)

reπ∆i (0)
φ

]0

π

=− f a
i (0)

re∆i (0)
0 < r < re

ˆ
C0−3

=
ˆ 0

π

re f a
i (0)

r 2π∆i (0)
dφ=

[ re f a
i (0)

r 2π∆i (0)
φ

]0

π

=− re f a
i (0)

r 2∆i (0)
re ≤ r

(5.62)

Through the substitution of Eq. (5.62) in Eq. (5.58), the final expression for the displacements are obtained.

ũa
r (r,θ,0,ω) = Fx

2πre
cos(θ)×



2πi
∑

k=km

f a
r 1(k)
∆(k),k

(
J0(kr )− 1

kr J1(kr )
)

H (1)
1 (kre )

+2πi
∑

k=ksh

f a
l1(k)

kr∆∗(k),k
J1(kr )H (1)

1 (kre )

+ f a
r 1(0)

re∆(0) +
f a

l1(0)
re∆∗(0) 0 < r < re
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(5.63)

The displacements in x and y, in Cartesian coordinates, can be obtained by transforming Eq. (5.63) through
straight forward multiplication with a sin and cosine.

ũx = cos(θ)ũr − sin(θ)ũθ

ũy = sin(θ)ũr +cos(θ)ũθ
(5.64)

A stiffness matrix is constructed similar to the 2D case, by Eq. (3.58) to Eq. (3.60).
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5.5. Flexibility functions
The flexibility functions in the 3D case are similar to these obtained in the 2D case. The flexibility for the
cylindrical symmetric load case, i.e. a vertical load, is shown in figure 5.3 and figure 5.4. Figure 5.8 to fig-
ure 5.11 show the flexibility function related to the horizontal antisymmetric load in x (θ = 0). The radius and
frequency corresponding to the figures is respectively 1 m and 3.09 Hz. The flexibility functions are compared
to the flexibility function of the 2D case. Obviously, for the same frequencies, the period of the waves is equal.
It is noticeable that the amplitude in 2D does not decay in distance, while in 3D the amplitude of the propa-
gating waves reduces quickly. This is due to the wave energy spreading over the surface (2D). Instead like in
the 2D case, the waves propagate along a line (1D).

Figure 5.3: Flexibility function for the displacement in r due to a vertical load Figure 5.4: Flexibility function for the displacement in r due to a vertical load
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Figure 5.5: Flexibility function for the displacement in r due to a horizontal load in
x (θ = 0)

Figure 5.6: Flexibility function for the displacement in θ due to a horizontal load in
x (θ = 0)

Figure 5.7: Flexibility function for the displacement in z due to a horizontal load in
x (θ = 0)
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Figure 5.8: Comparison of the flexibility function Rzz in 3D and 2D for the fre-
quency 3.09 Hz.

Figure 5.9: Comparison of the flexibility function Rzz in 3D and 2D for the fre-
quency 19.30 Hz.

Figure 5.10: Comparison of the flexibility function Rxx in 3D and 2D for the fre-
quency 3.09 Hz.

Figure 5.11: Comparison of the flexibility function Rxx in 3D and 2D for the fre-
quency 19.30 Hz.
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5.6. Validation
The 3D model is validated with work of Gazetas (1983) with adapted earlier work of Kausel (1974). Both static
stiffness and dynamic stiffness are compared. Both the stiffness of a discretized rigid plate and a single ele-
ment are determined. To determine the stiffness and flexibility of a single element, the average displacement
over the area is determined. The equivalent vertical flexibility of a single element Rzz is found by:

1
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ˆ re
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0
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Substituting Eq. (5.47) into the integral results in:
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The same procedure is followed for the horizontal flexibility Rxx :
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In which Ũ a
r and Ũ a

θ
are the amplitudes of the functions ũa

r and ũa
r without the factors cos(θ) and sin(θ). The

amplitudes are determined from Eq. (5.63):
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(5.68)

The integration is solved by:
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5.6.1. Static stiffness
The static stiffness derived by Kausel (1974) for a circular rigid foundation on a linear elastic single layer over
bedrock with the corresponding range of validity are:

Kz = Fz

uz
= 4µrp

1−ν
(
1+1.28

rp

h

)
2 < h

rp

Kx = Fx

ux
= 8µrp

2−ν
(
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1 < h
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Kr =
My

ϕy
=

8µr 3
p

3(1−ν)

(
1+ rp

3h

)
1 < h

rp
≤ 4

(5.70)

The equations give a good approximation of the stiffness, even outside the range of validity. The rigid founda-
tion is simulated by applying a constant displacement on the stiffness matrix constructed from the flexibility
functions Eq. (5.58) and Eq. (5.63). The static case is approximated by the obtained model with a frequency
of 0.39Hz. The stiffness is determined almost exactly the same as in the 2D case, shown in figure 3.15. The
only difference is that the integration domain is changed from the width of the strip, to the interaction area
of the circular plate. The obtained model is compared to stiffness from Eq. (5.70) in table 5.1 to table 5.1. The
vertical and horizontal stiffness of the model are within 4% of the expected stiffness, the rocking stiffness of
the model is 8-9% less than the stiffness expected from Eq. (5.70). Obviously, the stiffness of a single element
describing the plate is less than the stiffness of a rigid plate. However, the reduction in stiffness is only about
8-9%. In general, the 3D model responds properly, validated with earlier work of Gazetas (1983). The 3D soil
model improved the horizontal stiffness since, contrary to the plane-strain case, the 3D model performs as
expected.

h/rp Gazetas Rigid plate Single element

2 3.42e9 3.44e9 1% 3.16e9 -7%
3 1.98e9 1.92e9 -3% 1.77e9 -11%
4 1.38e9 1.32e9 -4% 1.22e9 -11%
25 1.75e8 1.69e8 -3% 1.59e8 -9%

Table 5.1: Difference of the vertical stiffness Kz of a rigid cylindrical plate and single element compared to Eq. (5.70)

h/rp Gazetas Rigid plate Single element

2 1.95e9 1.88e9 -4% 1.75e9 -11%
3 1.22e9 1.17e9 -4% 1.09e9 -10%
4 8.79e8 8.49e8 -3% 7.93e8 -10%
25 1.28e8 1.24e8 -3% 1.17e8 -8%

Table 5.2: Difference of the horizontal stiffness Kx of a rigid cylindrical plate and single element compared to Eq. (5.70)

h/rp Gazetas Rigid plate

2 2.35e11 2.16e11 -8%
3 6.79e10 6.18e10 -9%
4 2.83e10 2.59e10 -8%
25 1.12e8 1.03e8 -8%

Table 5.3: Difference of the rocking stiffness Kr of a rigid cylindrical plate compared to Eq. (5.70)

5.6.2. Dynamic stiffness
The dynamic stiffness of a rigid plate and single element on the soil model are compared with the results
obtained in Gazetas (1983). It is noted that the material properties do not exactly match. Therefore, trends are
compared. The two differences are fristly the Poisson’s ratio differs between the model and Gazetas (1983).
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The Poisson’s ratio is respectively 0.40 and 0.33. Secondly, the soil of Gazetas (1983) includes 5% material
damping, contrary to the soil model developed in this thesis, which has no damping.
The same steps are taken as in the 2D case explained in section 3.8. The stiffness and damping ratio are
described by Eq. (3.66) and the normalized frequency by Eq. (3.65). The resonance frequencies of a single
layer corresponding to the PSV-wave are equal to those found in section 3.8. The first and second resonance
frequency found correspond respectively to the frequency of the fundamental shear mode and the frequency
of the fundamental compressional mode of the soil layer. The first three resonance frequencies for a single
layer for different h/rp ratios are repeated in table 5.4. Due to the hysteretic damping in the model of (Gazetas,

h/rp a0,1 = a0,s1 a0,2 = a0,p1 a0,3

3 0.52 1.28 1.57
4 0.39 0.96 1.18
25 0.06 0.15 0.19

Table 5.4: First three natural frequencies of a single layer

1983), it is expected that that model will be less sensitive to the resonance pattern and will have more gradual
fluctuation of the stiffness for different frequencies.
In figure 5.12 to figure 5.17 the dynamic dependence of the stiffness and damping is compared for different
ratios h

rp
.

Vertical stiffness and damping
Similar to the 2D case, the vertical stiffness damping and stiffness are strongly sensitive to variation in fre-
quency. The first steep decay in stiffness is found at the second resonance frequency of the layer. Figure 5.12
and figure 5.13 show respectively the frequency dependent normalized vertical stiffness and damping. The
second resonance frequency corresponding to the frequency of the fundamental compressional mode of the
soil layer is indicated with the vertical dashed lines. Therefore, the reduction of the stiffness for this frequency
can be expected, since the layer is loaded in compression. The developed model behaves by the same trends
as the reference model from Gazetas (1983). However, it is more sensitive to damping what can be declared
by the absence of material damping.

Horizontal stiffness and damping
The horizontal stiffness and damping are similar to the vertical stiffness and damping strongly sensitive to
a variation in frequency.Figure 5.14 and figure 5.15 show the horizontal stiffness and damping, the vertical
lines show the first and second resonance frequency of the soil layer. This is especially noticeable for higher
frequencies. A decrease in stiffness is observed at the first and second resonance frequency corresponding
to the fundamental shear and compression mode of the soil. Contrary to the vertical stiffness, the horizontal
stiffness is influenced by the fundamental shear mode, which is reasonable since the load is parallel to the
bedrock. The first damping is observed after the first resonance frequency. Both stiffness and damping match
the behavior of the reference for low frequencies, independent of the h

rp
ratio. However, the developed model

is more sensitive to higher frequencies, plausibly due the absence of material damping.

Rocking stiffness and damping
Figure 5.16 and figure 5.17 show the rocking stiffness and damping, the vertical lines show the first and sec-
ond resonance frequency of the soil layer. The rocking stiffness is less sensitive for variation in frequency and
a correlation to the resonance frequencies of the soil layer are not observed. The rocking stiffness and damp-
ing of the developed model behaves similar as derived in Gazetas (1983). However, the damping continues
increasing for higher frequencies.

Overall, the model behaves as expected. The reduction in stiffness at a specific frequency can be declared
for the horizontal and vertical case. The behavior of the model follows, especially for low frequencies, the
same trends as the reference model of Gazetas (1983), even despite slightly different material properties.
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Figure 5.12: Normalized stiffness coefficient kz . Figure 5.13: Normalized damping coefficient c0z .

Figure 5.14: Normalized stiffness coefficient kx . Figure 5.15: Normalized damping coefficient c0x .

Figure 5.16: Normalized stiffness coefficient kr . Figure 5.17: Normalized damping coefficient c0r .





6
3D Soil structure interaction

This chapter describes how the interaction between soil and structure is established for a circular inextensible
plate on linear elastic soil. The deformation of the foundation plate is limited to cylindrical symmetrical and
antisymmetry out-of-plane motions, since only circumferential wavenumber n = 0 and n = 1 are considered.
The load is applied in terms of an initial harmonic displacement field. These circumferential wavenumbers
are the most likely dominant. In most construction codes only these circumferential modes are considered.
The plate is assumed to be a thin plate, considering only bending deformation. Furthermore, the plate is
inextensible in-plane.

6.1. SSI of a plate in cylindrical coordinates

The inextensible Kirchoff-Love plate (pure bending) is chosen to have a height of 1 meter and a 5 meter radius.
The soil properties and material properties of the plate are consistent with the 2D case (table 3.1,table 4.1). A
scheme of the 3D SSI case is shown in figure 6.1. The governing equations for the soil structure interaction
are comparable with Eq. (4.1) to Eq. (4.6) from the 2D case. The only difference with the 2D case is that the

Figure 6.1: Schematization of a finite circular plate supported on linear elastic soil in cylindrical coordinates

79
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beam equations are now replaced with plate equations. This yields the following set of equations:

D∇4ũz,p −ρp tpω
2ũz,p +∑

m
S̃zm,s =

∑
m

S̃i zm,s (6.1)

Mp,r=rp = 0 (6.2)

Vp,r=rp = 0 (6.3)

ux,p (r,θ) = constant for 0 ≤ r ≤ rp , 0 ≤ θ ≤ 2π (6.4)

−ω2ρp Ap Lp ũx,p +∑
m

S̃xm,s =
∑
m

S̃i xm,s (6.5)

uz,p = uz,s , ux,p = ux,s (6.6)

Indices ,p refer to the plate and indices ,s to the soil. The summation over m refers to a summation of, in this
case initial and reaction forces, on element m. The decomposition of the stiffness matrix is executed in the
same manner as in section 4.3. Furthermore, is the horizontal equation of motion reduced to a single degree
of freedom system, as performed in the 2D case. The force components are rewritten as:

S̃i x,s =
∑
m

S̃i xm,s = Kx ũi ,s

S̃i zm,s = Kz ũi ,s

S̃xm,s = Kxx ũx,s +Kxz ũzm,s

S̃zm,s = Kz−uz ũzm,s +Cx S̃i x,s

(6.7)

With:

ũx,s =
S̃i x,s∑

m Kxx −ω2ρb AbLb
−

∑
m Kxz ũzm,s∑

m Kxx −ω2ρb AbLb

Cx = Kzx,[n,1]∑
n Kxx −ω2ρb AbLb

(6.8)

6.1.1. Free-edge plate equations
The governing plate equations for plates are described in (Rao, 1999) are used and validated for. Starting from
the free-edge boundary conditions to describe the free vibrations of the plate. The equations of motion of the
plate is:

D∇4uz,p +ρp tp üz,p = 0 (6.9)

In which:

D = Eh3

12(1−ν2)
(6.10)

And since for harmonic motion üz,p =−ω2ũz,p . The equation of motion is rewritten as:(∇2 +β2)(∇2 −β2) ũz,p = 0 (6.11)

With:

β2 =
√
ρp tp

D
ω (6.12)

The solution to equation Eq. (6.11) is written as:

ũz,p =[
A1 Jn(βr )+ A2Yn(βr )+ A3In(βr )+ A4Kn(βr )

]
sin(nθ)

+[
B1 Jn(βr )+B2Yn(βr )+B3In(βr )+B4Kn(βr )

]
cos(nθ)

(6.13)

Jn and Yn are Bessel functions of order n and In and Kn are modified Bessel functions of order n. Kn and Yn

approach infinity as r approaches zero. Since ũz,p is finite for all r , A2, A4,B2 and B4 are zero. Therefore, the
solution for the displacement is written as:

ũz,p = W̃n
[

Jn(βr )+µn In(βr )
]

cos(n(θ−εn)) (6.14)
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With unknown amplitude Wn and cos(n(θ−εn)) describing the circumferential variation:

cos(nεn) = A1n

W̃n
= A2n

µnW̃n

sin(nεn) = B1n

W̃n
= B2n

µnW̃n

(6.15)

The boundary conditions of the plate described in Eq. (6.2) and Eq. (6.2) in terms of moment and shear force
are:

Mp,r=rp =−D

[
∂2ũz,p
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∂ũz,p

∂r
+ 1

r 2

∂2ũz,p
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= 0

(6.16)

Applying the boundary conditions Eq. (6.16) on Eq. (6.14). The equation is solved for β. The frequency equa-
tion corresponding to the free-edge plate is:

β2rp
2
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= 0 (6.17)

Eq. (6.17) gives the natural frequencies for all values of n except for n = 0. The natural frequencies for n = 1
are found by substituting in Eq. (6.17), resulting in:

1/2β2rp
2 (
β4rp

4 (
J0

(
βrp

)
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(
βrp
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(
βrp

)
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(
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The frequency equation for zero nodal diameters is:

βrp
(

J0
(
βrp

)
I1

(
βrp

)+ I0
(
βrp

)
J1

(
βrp

))− (2−2ν) I1
(
βrp
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J1

(
βrp

)= 0 (6.19)

From both Eq. (6.18) and Eq. (6.19) the frequencies for respectively one and zero nodal diameters are found
by:

ωns =β2
ns

√
D

ρp tp
(6.20)

Where βns are the roots of the frequency equations, in which s gives the number of nodal circles for each
nodal diameter n. The corresponding modal shapes assuming εn = 0.

φns (r,θ) = [
Jn(βns r )+µns In(βns r )

]
cos(nθ) (6.21)

Where:
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(6.22)

The equation for of the anti-plane displacement of the plate is found by a summation of the modes.

ũz,p =
∞∑

n=0

∞∑
s=0

Ansφns cos(nθ) (6.23)

The modal shapes are substituted in the equation of motion of the coupled system, Eq. (6.1) results in:
∞∑

n=0

∞∑
s=0

Ans
{
Dβ4

nsφ̃ns −ρp tpω
2φ̃ns

}
cos(nθ)+∑

m
S̃zm,s =

∑
m

S̃i zm,s (6.24)

Since:

∇4Φns cos(nθ) =β4
nsΦns cos(nθ) (6.25)

After some rewriting and substituting Eq. (6.7), the equation of motion is written as:
∞∑

n=0

∞∑
s=0

Ans

{(
ω2

ns −ω2)ρp tp φ̃ns +
∑
m

Kz−uz φ̃ns

}
cos(nθ)+Cx S̃i x,s =

∑
m

S̃i zm,s (6.26)
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6.1.2. Discretization of a circular area
The soil structure interface is discretized in single node circular elements. For every node, the SSI conditions
are fulfilled. It is chosen to divide the circular plate into rings and divide the rings in elements such that the
distance between the elements is about equal to the radius of a single ring. The location of the node within
the ring is determined by the assumption that the angular rotation of the ring around r is constant over the
element. The radius of the nodes within a ring is determined by figure 6.2 and Eq. (6.27).

Figure 6.2: Schematization of the disretization of the 9th and 10th ring of a circle
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(6.27)

In which C is a constant which describes the rotational angle of the element in r . rm and rm−1 are respectively
the outer and inner radius of the ring, rc is the radius the nodes are put on, all visualized in figure 6.2. The
number of elements in a ring are calculated from 2rcπ

rm−rm−1
. The influence area of a single element is deter-

mined by dividing the total area over the number of elements, and it is checked that the area of the every ring
corresponds to the area of the elements in it. An example of a discretized plate in either 5 or 15 rings results
and respectively 80 and 709 elements is shown in figure 6.3.

Figure 6.3: Discretization of a plate in either 80 or 709 elements.
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6.2. Orthogonality of the structural modes
To determine which modes are activated and what their amplitude is, the principle of orthogonality is used,
similar to the 2D case. The orthogonality equation applied in cylindrical coordinates is:

an

ˆ 2π

0

ˆ rp

0
rφns (r )cos(nθ)φl t (r )cos(lθ)dr dθ (6.28)

With the normalization constant an :

an =
{

1
2π n = 0
1
π n 6= 0

(6.29)

The orthogonality equation is separated into a the orthogonality in θ and in r . The orthogonality equation in
θ results in:

ˆ 2π

0
cos(nθ)cos(lθ)dθ = 1

an
δnl (6.30)

So a cylindrical symmetric load cannot activate an antisymmetric deformation and vice versa. The orthogo-
nality relation of Eq. (6.28) is rewritten as:

ˆ rp

0
rφns (r )φl t (r )δnl dr = Γδnlδst (6.31)

The orthogonality relation is applied on Eq. (6.26) by premultiplying the equation with another modal de-
formation and integrating over r and θ. Making use of Eq. (6.30) and putting al force components on the
left-hand side, the equation results in:

∞∑
n=0

∞∑
s=0

Ans

ˆ rp

0
r φ̃l t

{(
ω2

n −ω2)ρp tp φ̃ns +
∑
m

Kz−uz φ̃ns

}
δnl dr =

ˆ 2π

0

ˆ re

0
r φ̃l t

(∑
m

S̃i zm,s −Cx S̃i x,s

)
cos(nθ)dθdr

(6.32)

To solve Eq. (6.32) for every Ans , the same amount of orthogonality equations are applied. The only two
load cases considered are the cylindrical symmetric and antisymmetric. Therefore, only n, l = 0 and n, l = 1
are considered. Eq. (6.32) solved by numerical integration. Therefore, the modal shapes of the plate are
discretized (φi j (r )cos(iθ) =φi j ) the same way as the soil is. By making use of Eq. (6.31), Eq. (6.32) is:

1∑
n=0

∞∑
s=0

1∑
l=0

∞∑
t=0

Ans
[(
ω2

n −ω2)ρp tpΓnl st + φ̃T
l t Kz−uz φ̃nsδnl

]= φ̃T
l t

(
S̃i z,s −Cx S̃i x,s

)
(6.33)

In which:

Γnl st = φ̃T
l t φ̃ns Aeδnlδst (6.34)

And Ae is the area of a single element. Eq. (6.33) is solved for a finite number of circumferential modes s and
t . The first modes are expected to have the most influence and the effect of higher modes declines quickly.
The exact solution is accurately approached by choosing a sufficient large number of modes should. The
equation in between the square brackets is called M and the right-hand side F . The unknowns are found for
every discrete number of modes considered:

Mnsl t Ans = F̃l t

Ans = M−1
nsl t F̃l t

(6.35)

The vertical displacement is found by substituting Eq. (6.35) in Eq. (6.23). The horizontal displacement are
found by Eq. (6.8).
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6.3. 3D SSI case study
For the 3D SS case study presented in this section, ten circumferential symmetric modes and ten antisymetric
modes including the rigid body modes are considered, describing the vertical motion of the plate. The plate
is assumed inextensible, and therefore the horizontal displacement is described by only the horizontal rigid
body motion. The first five circumferential symmetric and antisymmetric modes of the plate are shown in
figure 6.4. The plate considered in this section has a five meter radius and one meter thickness. The E-

Figure 6.4: The first five circumferential symmetric (top) and antisymmetric (bottom) modes of a free-edge plate

modulus of the plate is 30∗ 109N/m2 and the Poisson’s ratio is set to 0.33. The natural frequencies of the
plate, that correspond to the modes in figure 6.4 are given in table 6.1. The response of the plate due to a

Mode n=0 n=1

0 0 0
1 62 Hz 141 Hz
2 265 Hz 411 Hz
3 604 Hz 818 Hz
4 1078 Hz 1360 Hz

Table 6.1: Natural frequencies of the free-edge plate

horizontal and vertical uniform incident displacement fields are evaluated for the frequencies: 3.09 Hz and
19.30 Hz. The wavelength of the Rayleigh wave corresponding to these frequencies and the soil properties
considered, is almost 37 and 7 meters based on Eq. (6.36). In the next sections the response of the plate for
incident displacement fields is evaluated and a comparison with a Winkler model subject to same loading is
made.

λr = cr

ω
≈ 0.862+1.14ν

1+ν
cs

ω
(6.36)

Incident uniform vertical displacement
Due to an incident uniform vertical displacement of 10−3 m, the cylindrical symmetric modes (n=0) of the
plate are activated. The plate itself has no horizontal displacement due to the symmetry and the fact that is
has been set inextensible. However, the inertial interaction of the foundation plates generates waves propa-
gating away from the plate, with both a vertical and a horizontal amplitude. The wavelength at both frequen-
cies in x and z seems to correspond to the wavelength of the Rayleigh wave.

Due to an incident harmonic displacement of the soil at 3.09 Hz, shown in figure 6.5, the plate mainly deforms
in its first modal shape, however, this amplitude is very small and less then 5% of the incident displacement.
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This is reasonable since the frequency of excitation is significantly lower than the first natural frequency of
the plate. The soil displacement is dominant and the plate only deviate slightly due to the mass inertia. As
expected, the stresses are the largest at the edges of the plate due to stress distribution. The stress distribu-
tion of the vertical stress is symmetric and the stress in x antisymmetric. The resultant interaction force in x
is equal to zero and cause no rotation of the plate. Therefore, the plate stays at is horizontal position.

At 19.30 Hz, shown in figure 6.6, the deformation of the plate is more significant. The difference between
top and center is almost 10 % of the incident displacement. This is reasonable since the frequency of excita-
tion is closer to the first natural frequency of the soil. Stress patterns are similar to those of at 3.09 Hz, except
a phase difference for the interaction stresses in x.

Figure 6.5: Response of a plate excited at 3.09 Hz with an incident uniform vertical displacement
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Figure 6.6: Response of a plate excited at 19.30 Hz with an incident uniform vertical displacement
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Incident uniform horizontal displacement

The horizontal motion of the soil, excites the plate both horizontally and vertically. The plate deforms in the
antisymmetric mode shapes. Figure 6.7 and figure 6.8 show the deformations and stresses at 3.09 Hz and
19.30 Hz respectively. In both cases, the rigid body rotation is dominant in the displacement in z. Further-
more, the amplitude of the vertical displacement due to a horizontal motion is 1% and 10% of the incident
motion at 3.09 Hz and 19.30 Hz respectively. The higher frequency causes more rotation what is reasonable
since the wavelength of the waves, generated from the motion of the plate is shorter for high frequencies,
and therefore the plate rotates more. The wave length of the vertical wave seems to be related to the Rayleigh
wave. However, the dominant wave length for both frequencies in x is longer than the Rayleigh wave. The
wave propagating in x could relate to a compressional wave, with a wavelength of 15 m and 96 m at 3.09 Hz
and 19.30 Hz respectively.

Figure 6.7: Response of a plate excited at 3.09 Hz with an incident uniform displacement in x
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Figure 6.8: Response of a plate excited at 19.30 Hz with an incident uniform displacement in x
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Comparison with Winkler springs
A comparison is made with a independent Winkler spring foundation at 3.09 Hz and 19.30 Hz. The complex
stiffness for the Winkler springs is determined by work of Gazetas (1983). The vertical stiffness and damping
are determined by:

Kz =
4µrp

1−ν
(
1+1.28

rp

h

)
Cz =

3.4r 2
p

1−ν
p
µρ

K = Kz + iωCz

(6.37)

The stiffness and damping is taken constant over the area. Figure 6.9 shows the deformations of the plate
foundation on both a linear elastic soil layer and on Winkler springs due to a uniform incident vertical dis-
placement of 10−3 m. The results differ strongly, especially at 19.30 Hz, where the deformation of the plate
on Winkler springs is 10 times smaller then the foundation plate in the linear elastic soil model and there
is a significant phase difference. Furthermore it is noticeable that the deformation of the plate at 3.09 Hz is
contrary. This can be explained by the independency of the Winkler springs along the foundation. Since the
plate displacement is larger than the incident displacement of the soil, the edges of the plate should have the
smallest displacement to be continuous with the soil. The stress distribution of both differ as well, since the
stress distribution of the Winkler springs is exactly the same as the deformation shape, while in the linear
elastic model the stresses are located at the edge. Furthermore, only the vertical case is considered. Because
the plate is inextensible in x and the Winkler spring model does not couple the horizontal and vertical dis-
placement, the horizontal system reduces to a SDOF system. It is tricky and uncommon to couple the vertical
and horizontal stiffness in the Winkler spring model. Therefore, the Winkler model does not include the ef-
fects of a coupled vertical and horizontal soil, e.g. it is unable to capture the rotation of the foundation due
to a horizontal incident displacement. Aforementioned, the effects of coupling the horizontal and vertical
displacements, up to 10% of the incident displacement, is observed in ?? and ??. This confirms the relevance
of this phenomena, which is not captured by the Winkler model.

Figure 6.9: Comparison of the vertical displacement with a Winkler spring model at 3.09 Hz and 19.30 Hz
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6.4. Influence of the flexibility of a circular plate
The flexibility of a foundation plate influences the kinematic SSI. To determine the influence of the flexi-
bility of the foundation, inertial forces are not included. All forcing is done by either a uniform, parabolic(
2p0(1− r 2/r 2

p )
)

or linear decreasing (rocking) vertical load on top of the foundation, representing a force

from the super structure. The system equation of motion. Therefore, Eq. (6.33) is rewritten into:

1∑
n=0

∞∑
s=0

1∑
l=0

∞∑
t=0

Ans
[
Dβ4

nsΓnl st + φ̃T
l t Kz−uz φ̃nsδnl

]= φ̃T
l t S̃i z,s (6.38)

The stiffness of the foundation influences the interaction stresses. Therefore, variation in the foundation stiff-
ness influences the complex stiffness of the system. Richart et al. (1970) show that the stress distribution of a
machine foundation can influence both period and stiffness of system. The influence of the flexibility of the

Figure 6.10: Influence of stress distribution on frequency-dependent stiffness. (source: (Richart et al., 1970))

circular plate is determined for two plates with h
rp

ratio 4 and 25. The stiffness of the system is determined

similar as in the 2D case, schematized in figure 6.11. The average stiffness is determined based on the average
displacement of the plate. The edge and center stiffness are determined by the displacement of an element
respectively closest to the edge and closest to the center of the plate. The difference in stiffness of the system
including a flexible foundation are compared with respect to the rigid stiffness. The comparison is made for
the edge, center and average stiffness, shown in table 6.2 and table 6.3 for circular plates with ratio h

rp
4 and

25. The flexibility of the plate is quantified by Eq. (4.29). The effect of the variation in flexibility of the plate is
approximately constant for low frequencies with respect to the radius of the plate, as shown in figure 6.12 to
figure 6.15. At high frequencies, it is hard to quantify the effect of the flexibility due to resonances, however a
change in global stiffness is clearly visible. It is also shown that, a plate with a larger radius is more sensitive
to resonance. Therefore, the values in table 6.3 are more reliable than table 6.2. The h

rp
ratio does not seem to

affect the stiffness significantly. The stiffness is influenced by different resonance patterns of the soil layer as
discussed in section 5.6.2. Therefore, the results of ratio h

rp
= 25 in table 6.3 are used to draw conclusions.

Figure 6.12 to figure 6.15 show that the average stiffness and damping of the system reduce for flexible plates,
with respect to rigid plates. The average stiffness is reduced with 6% for flexible plates under a constant har-
monic load. The average damping is more sensitive and reduces with 11%. Figure 6.16 to figure 6.19 show the
variation in stiffness at the edge and center of the plate, due to a variation of the foundation stiffness. At the
center the stiffness and damping are reduced three times the reduction of the average stiffness and damping.
Contrary at the edge, the stiffness and damping increase with respectively 11% and 29%. In case of a parabolic
load case, the effect of the reduced foundation stiffness is similar but the effect is twice as large for all cases.

In general, the rocking stiffness is more sensitive to variation in stiffness of the foundation. The average
stiffness and damping can reduce with respectively 14% and 23% observed from table 6.3. At the center the
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Figure 6.11: Schematization and formulation on how the stiffness is determined

reduction can even be respectively 36% and 58%, while at the edge the stiffness and damping respectively
increase with 15% and 33%. Compared to the vertical stiffness, the SSI is more sensitive to the flexibility of
the plate for rocking. For a low flexibility indicated with 0-0.01, the effect on the complex rocking stiffness
compared to the complex vertical stiffness is about 2-3 times larger, while for a flexibility indicated by 0.1-1
the effect is 3-5 times larger. So also for foundations with a moderate stiffness, SSI is important.

Previous research of Gazetas (1983) describes static stiffness reduction factors of a flexible, circular plate on
a half space for both a uniform and parabolic load and the same definition of the flexibility. The reduction
found by Gazetas (1983) of the average static stiffness due to the flexibility of the plate is significantly larger
than found in this thesis, namely -23%, -28%, -8%, -1% and 0% due to a uniform load and -54%, -46%, -
18%, -3% and -2% due to a parabolic load corresponding with flexibility indicated by 0.01, 0.1, 1, 10 and 100
respectively. The difference can be declared by the half-space that is considered. Since a half-space does
not conciser a bedrock boundary, a higher possible flexibility in assumed, while the layer with bedrock is re-
stricted for vertical displacements. Furthermore, Gazetas (1983) determines the average stiffness out of the
average of the edge and center displacement, while in this thesis the displacement is over the area, which
is more influenced by the edge displacements than the center displacements. For both reasons it is reason-
able that the results are slightly different but it is clear that the flexibility of the foundation does influence SSI
strongly.

Average stiffness Average damping Center stiffness Center damping Edge stiffness Edge damping

kz kr cz cr kz kr cz cr kz kr cz cr

RF const. para. const. para. const. para. const. para. const. para. const. para.
0 -7% -11% -18% -9% -17% -25% -19% -35% -61% -28% -58% -60% 3% 29% 10% 15% 67% 29%
0.001 -5% -10% -18% -1% -10% -25% -17% -34% -40% -23% -54% -60% 5% 30% 10% 25% 76% 29%
0.01 -5% -10% -18% -1% -10% -25% -17% -34% -40% -23% -54% -59% 5% 30% 10% 25% 76% 29%
0.1 -5% -10% -18% -1% -10% -25% -17% -34% -40% -23% -54% -59% 5% 30% 10% 24% 76% 29%
1 -5% -10% -18% -1% -10% -25% -17% -34% -40% -23% -54% -59% 5% 29% 10% 22% 74% 27%
10 -4% -8% -16% -1% -8% -23% -16% -30% -41% -21% -49% -61% 4% 24% 7% 16% 58% 20%
100 -2% -4% -9% 0% -3% -14% -7% -14% -27% -8% -26% -44% 2% 8% 3% 6% 18% 8%

Table 6.2: Relative SSI stiffness and damping for a cylindrical plate over a single layer on bedrock ( h
rp

= 4)
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Average stiffness Average damping Center stiffness Center damping Edge stiffness Edge damping

kz kr cz cr kz kr cz cr kz kr cz cr

RF const. para. const. para. const. para. const. para. const. para. const. para.
0 -4% -12% -14% -11% -22% -13% -21% -40% -36% -37% -64% -58% 11% 22% 5% 29% 67% 33%
0.001 -5% -11% -14% -11% -22% -13% -20% -39% -36% -36% -64% -58% 11% 22% 15% 28% 67% 31%
0.01 -5% -11% -14% -10% -21% -12% -20% -38% -36% -36% -63% -51% 10% 21% 13% 26% 63% 27%
0.1 -4% -8% -12% -7% -16% -20% -16% -31% -36% -30% -54% -58% 7% 14% 9% 16% 40% 17%
1 -1% -3% -4% -2% -5% -8% -5% -11% -15% -10% -21% -28% 2% 3% 3% 4% 8% 5%
10 0% -1% 0% 0% -1% -1% -1% -2% -2% -1% -4% -4% 0% 0% 1% 0% 0% 1%
100 0% -1% 0% 0% -1% 0% 0% -1% 0% 0% -1% 0% 0% -1% 0% 0% -1% 0%

Table 6.3: Relative SSI stiffness and damping for a cylindrical plate over a single layer on bedrock ( h
rp

= 25).

Figure 6.12: Average damping under the plate for a variation in flex-

ibility of the plate ( h
rp

= 4)

Figure 6.13: Average damping under the plate for a variation in flex-

ibility of the plate ( h
rp

= 4)

Figure 6.14: Average stiffness under the plate for a variation in flexi-

bility of the plate ( h
rp

= 25)

Figure 6.15: Average damping under the plate for a variation in flex-

ibility of the plate ( h
rp

= 25)
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Figure 6.16: Stiffness at the edge (e) and at the center (c) for a varia-

tion in flexibility of the plate ( h
rp

= 4)

Figure 6.17: Damping at the edge (e) and at the center (c) for a vari-

ation in flexibility of the plate ( h
rp

= 4)

Figure 6.18: Stiffness at the edge (e) and at the center (c) for a varia-

tion in flexibility of the plate ( h
rp

= 25)

Figure 6.19: Damping at the edge (e) and at the center (c) for a vari-

ation in flexibility of the plate ( h
rp

= 25)





7
Conclusions, recommendations and

discussion

This chapter covers the conclusions and recommendations follow from both 2D and 3D case. In addition,
selected methods, assumptions made and possible further generalizations are discussed.

7.1. Conclusions
To conclude on the research subquestions, the method is evaluated and compared to other methods in a
stepwise manner, the validation is discussed and interesting results among other about the influence of a
flexible foundation are presented. Hereafter the research question is answered.

The modelling method
The main objective of this thesis is the development of a powerful mathematical semi-analytical calculation
model for SSI. The model is based on fundamental physics, starting from the wave equation for a linear elas-
tic material without damping. The geometry of the model is based on a single layer over bedrock. The soil
behaviour is described by potentials and these are solved for in the wavenumber (2D) or Hankel (3D) - fre-
quency domain. The translation back to the space domain is proceeded by making use of contour integration
and the residue theorem, resulting in Green’s functions. By superposition of the Green’s function, a stiffness
matrix describing the complex soil behaviour is created. The soil is combined with a superstructure by nu-
merical integration and the principle of orthogonality.
The foundation used during this thesis is assumed to be inextensible in-plane. However, coupling to an inex-
tensible plate is not a limitation of the model. Since the soil is discretized, the soil model can even be applied
on a FEM structure.
Further details of this model cannot be captured in a few sentences and for this information the reader is
advised to read the corresponding preceding chapters.

• The Green’s functions of the soil are determined by making use of Helmholtz potentials. This turned
out to be a convenient way to describe the soil behaviour. The soil boundary conditions could be solved
in either the wavenumber or Hankel domain which both turned out to give a correct solution.

• The solution method makes use of contour integration and the residue theorem. Therefore, the conver-
gence of Green’s functions, describing the soil flexibility are strongly sensitive to the number of (com-
plex) roots included. This holds especially for forces concentrated on a small area relative to the soil
layer depth.

• The interaction model is not capable to allow for gaps or sliding because the interaction stresses of
model and foundation are equal at any moment.

Compared to other modelling methods described in section 2.3, the obtained model has the following added
values:

95
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• The flexibility of the foundation is included in the developed model while the foundation is often as-
sumed rigid in simplistic models. Moreover, the shift of natural period of the coupled model can be
observed by including the flexibility of the foundation.

• Compared to simplistic models, phase differences of soil motion at different locations of the foundation
and radiation damping are captured by the model.

• Frequency-dependent stiffness and damping are included, while many simplified models assume a
frequency independent stiffness and damping.

• Due to the method used to couple both soil and structure, the stiffness matrix of the soil only needs to
be derived once per frequency. Since this is the only relatively ’time consuming’ step in the analysis,
large benefits in terms of computational effort is achieved compared to FE modelling of the soil.

Validation of the model
The developed and implemented SSI model is validated by comparison with earlier derived analytical solu-
tion of both the static (2D & 3D) and dynamic (3D) stiffness of a rigid foundation on a layer over bedrock.
The dynamic validation cases available in literature are not exactly identical to the calculations performed
with the newly developed model. For example, material damping differs. These deviations are caused by the
limited time that was left at the stage of model validation combined and the fact that reference papers not in
all cases did present the results for exactly the model parameters that were used in the analysis of the present
study.
The static stiffness for both 2D and 3D model are observed to be within a 7% error compared with the vali-
dation cases included from literature. The dynamic trends are the same for low frequencies and differences
can clearly be explained. For frequencies expected during an earthquake, the interaction is sensitive to only
a small number of foundation modes. On the contrary, the number of (complex) soil modes influences the
SSI outcome strongly. The number of interaction elements is sufficient when a full sinusoidal wave is de-
scribed with at least 6 elements. For the studied range of frequencies and load cases considered, including 10
foundation modes and 100 soil modes should be sufficient.

Results
The soil response shows a strong frequency dependency. Interesting results obtained from the model con-
cerning the behavior of the soil are:

• Due to the absence of hysteretic damping the stiffness of the model is strongly sensitive to resonance
frequencies of the soil.

• Both vertical and horizontal stiffness are strongly sensitive to a variation in frequency. The vertical
stiffness decays strongly at the frequency of the fundamental compressional mode of the soil layer,
while the horizontal stiffness is sensitive to the frequency of the fundamental shear mode of the soil
layer. The rocking stiffness is moderately sensitive to the frequency and shows a linear decay with
increasing frequency.

• No damping is observed before the cut-off frequency for propagating waves of the soil layer. Due to the
bedrock boundary, energy cannot dissipate in vertical direction and since propagating waves cannot
exist for these frequencies, no energy dissipate in horizontal direction.

• In 3D, geometrical spreading of energy over the surface reduces the amplitude of propagating waves
compared with the 2D case.

The complex SSI stiffness depends on the stiffness of the foundation. The variation in complex SSI stiffness
for flexible foundations with respect to the rigid foundations is observed for different frequencies. It can be
concluded that:

• Depending on the type of load, the average stiffness and damping for low frequencies can reduce re-
spectively with up to ~20% and ~25% for a small flexible foundations compared with rigid foundations.

• The distribution of the system stiffness depends on the stiffness of the foundation. Generally, the stiff-
ness and damping contributions at the edges increase for a decreasing foundation stiffness and vice
versa for the center of the foundation.
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• The rocking stiffness and damping is more sensitive to the flexibility of the foundation compared to the
vertical stiffness.

• The flexibility of the foundation influences the complex SSI stiffness strongly for high frequencies within
the earthquake domain. However, the influence is hard to quantify or generalize due to resonance of
the soil layer, variation in stiffness and damping for flexible and non flexible foundations is clearly no-
ticeable.

Research question: Develop and implement a semi analytical analysis method to describe SSI for rigid and
flexible shallow foundations on soil.
During this thesis a model is developed which is able to couple a superstructure to soil, the model is able to
capture frequency dependency and the flexibility of a foundation. Moreover, the model describes radiation
damping and takes into account phase differences at the interaction plane in 2D and 3D. Therefore, the model
overcomes problems that are associated to simplistic models. The soil model is able to be combined with
any other linear model by linear superposition. The coupling can be done, either by matching modes or by
coupling to a superstructure model with a discretized SSI interface.
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7.2. Recommendations
The modelling technique needs further improvement and validation before it can be used to its full extent
in practice. The authors recommend the following main improvements to be implemented in the present
model:

• It is recommended to include hysteretic damping in the model to reduce the sensibility on the reso-
nance frequencies of the soil. Therefore, another root finder algorithm needs to be used since the one
used for this thesis cannot find the propagating roots when material damping is included.

• The model is based on a single layer on a bedrock. A situation that is not representative for real cases.
The model could be extended with additional layers to improve the usability.

• The model needs additional validation e.g. by a comparison with a FE model, also for more complex
situations.
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7.3. Discussion
During the development of the model, selections for methods, techniques, and assumptions have been made.
After finishing the entire thesis some reflection on the selected approach is valuable. The modelling tech-
nique used in this thesis starts from the derivation of Green’s functions and describes the behaviour of the
soil by superposition of Green’s functions.

A stress block is used instead of a point load. In my opinion this is a justified choice, since it does overcome
a singularity at the origin. Moreover, force distributed over the area of an element represents the average be-
haviour of a single element better than a point load at its center.

The Green’s functions are derived by contour integration and applying the residue theorem. This procedure
is exact when all roots are included, however there are infinite many roots. Therefore, there is always a reduc-
tion in accuracy. This especially plays a role for relative small elements with respect to the height of the soil
layer.

The interaction is established by discretizing the modal deformations of the foundation and match Green’s
functions to the elements. The displacement of both soil and structure are solved by applying the orthogonal-
ity principle on the kinematic equilibrium, i.e. the global system of equation of motion. From my perspective
this is not the most straight-forward method of combining both soil and structure. I think that the soil model
developed in this thesis fits better on a discretized super structure. For a simple beam or plate, a dynamic
stiffness matrix can be formed and the coupling is straight forward omitting the principle of orthogonality.
For coupling soil to a superstructure which is described in the summation of modes, it is more straight for-
ward to describe the soil as well in a summation of modes. The amplitudes of the modes can be coupled
and the problem can be solved for linearly without discretization by matching modes and making use of the
principle of orthogonality. Then, the accuracy of the solution can be determined by convergence, while the
accuracy is now partly determined by engineering judgement.

However the object of this thesis was to develop a model that describes SSI and is generalized such that it
is applicable on multiple applications. Moreover, the model should allow coupling with a fluid-tank super-
structure which behaviour is described by a summation over modes. The present model is able to do both.
However, applying the model on a structure response described by the summation of modes is concluded to
be less straight-forward.

Finally, extending the model with soil material damping will give significant added value. Excluding soil
material damping as done in this thesis provides interesting insights in the physical phenomena related to
SSI and radiation damping. However, by including soil material damping the frequency dependent sensitiv-
ity to resonances will reduce and results will become more realistic, representing the actual SSI response of
systems.





A
Rewriting the Hankel transform

In this appendix, an integral over a Bessel J function from 0 to a is rewritten into an integral from −a to a
premultiplied with both a symmetric and antisymmetric function. Both occur often as result of a (inverse)
Hankel transform.

A.1. An integral over a Bessel J transform premultiplied with an antisym-
metric function

In the first case considered, the Bessel J function is premultiplied with a linear antisymmetric equation ξ.

A.1.1. A cylindrical symmetric load (n=0)
Rewriting the integral over a Bessel J function starting from:

ˆ a

0
ξJ0(ξ)dξ (A.1)

J0(ξ) = 1

2

(
H (1)

0 (ξ)+H (2)
0 (ξ)

)
(A.2)

ˆ a

0
ξJ0(ξ)dξ= 1

2

ˆ a

0
ξ
(
H (1)

0 (ξ)+H (2)
0 (ξ)

)
dξ (A.3)

Since the BesselJ function is purely real:

ˆ a

0
ξJ0(ξ)dξ=

ˆ a

0
ξℜ(J0(ξ))dξ= 1

2

ˆ a

0
ξ
(
ℜ(H (1)

0 (ξ))+ℜ(H (2)
0 (ξ))

)
dξ (A.4)

For ξ> 0 it holds that:

ℜ(H (1)
0 (ξ)) =ℜ(H (2)

0 (ξ)) (A.5)

and
ˆ a

0
ξℜ(H (2)

0 (ξ))dξ=
ˆ a

0
ξℜ(H (1)

0 (ξ))dξ (A.6)

Substitute Eq. (A.6) into Eq. (A.4):

ˆ a

0
ξℜ(J0(ξ))dξ=

ˆ a

0
ξℜ(H (1)

0 (ξ))dξ=
ˆ a

0
ξℜ(H (2)

0 (ξ))dξ (A.7)
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For ξ→−ξ:

ˆ a

0
ξℜ(H (1)

0 (ξ))dξ=
ˆ −a

0
−ξℜ(H (1)

0 (−ξ))−dξ=−
ˆ 0

−a
ξℜ(H (1)

0 (−ξ))dξ (A.8)

Due to antisymmetry:

−ℜ(H (1)
0 (−ξ)) =ℜ(H (1)

0 (ξ)) (A.9)

Therefore:

ˆ a

−a
ξℜ(H (1)

0 (ξ))dξ=
ˆ 0

−a
ξℜ(H (1)

0 (ξ))dξ+
ˆ a

0
ξℜ(H (1)

0 (ξ))dξ= 2

ˆ a

0
ξℜ(H (1)

0 (ξ))dξ (A.10)

Substitute Eq. (A.10) into Eq. (A.7):

ˆ a

0
ξℜ(J0(ξ))dξ= 1

2

ˆ a

−a
ξℜ(H (1)

0 (ξ))dξ (A.11)

Considering the combination of both real and imaginary parts of the Hankel function:

ˆ a

−a
ξ(H (1,2)

0 (ξ))dξ=
ˆ a

−a
ξℜ(H (1,2)

0 (ξ))dξ+
ˆ a

−a
ξℑ(H (1,2)

0 (ξ))dξ (A.12)

Due to symmetry of the imaginary parts:

ˆ a

−a
ξℑ(H (1,2)

0 (ξ))dξ= 0 (A.13)

Therefore:
ˆ a

0
ξJ0(ξ)dξ= 1

2

ˆ a

−a
ξH (1)

0 (ξ)dξ (A.14)

Furthermore:

1

2

ˆ a

−a
ξH (1)

0 (ξ)dξ=
ˆ a

−a
ξJ0(ξ)dξ− 1

2

ˆ a

−a
ξH (2)

0 (ξ)dξ (A.15)

Due to the symmetry of the Bessel J function for n = 0:

ˆ a

−a
ξJ0(ξ)dξ= 0 (A.16)

For a =∞, this results in:

ˆ ∞

0
ξJ0(ξ)dξ= 1

2

ˆ ∞

−∞
ξH (1)

0 (ξ)dξ=−1

2

ˆ ∞

−∞
ξH (2)

0 (ξ)dξ (A.17)

A.1.2. An antisymmetric case (n=1)
Simpler than the axissymmetric case the Bessel J function of n = 1 is antisymmetric therefore, for ξ→−ξ:

ˆ a

0
ξJ1(ξ)dξ= 1

2

ˆ a

−a
ξJ1(ξ)dξ⇒

ˆ ∞

0
ξJ1(ξ)dξ= 1

2

ˆ ∞

−∞
ξJ1(ξ)dξ (A.18)

A.2. A integral over a Bessel J transform premultiplied with a symmetric
function

In the first case considered, the Bessel J function is premultiplied with a symmetric quadratic equation ξ2.
The approach is similar to the case of an antisymmetric premultiplication.
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A.2.1. A cylindrical symmetric load (n=0)
The solution to the cylindrical symmetric load is rather obvious since the Bessel J function itself is also sym-
metric for n = 0. Therefore, for ξ→−ξ:

ˆ a

0
ξ2 J0(ξ)dξ=

ˆ −a

0
ξ2 J0(−ξ)−dξ=

ˆ 0

−a
ξ2 J0(−ξ)dξ=

ˆ 0

−a
ξ2 J0(ξ)dξ (A.19)

Therefore:ˆ a

0
ξ2 J0(ξ)dξ= 1

2

ˆ a

−a
ξ2 J0(ξ)dξ⇒

ˆ ∞

0
ξ2 J0(ξ)dξ= 1

2

ˆ ∞

−∞
ξ2 J0(ξ)dξ (A.20)

A.2.2. An antisymmetric case (n=1)
The antisymmetric case starts from:

ˆ a

0
ξ2 J1(ξ)dξ= 1

2

ˆ a

0
ξ2

(
H (1)

1 (ξ)+H (2)
1 (ξ)

)
dξ (A.21)

Since the Bessel J function is purely real:
ˆ a

0
ξ2 J1(ξ)dξ=

ˆ a

0
ξ2ℜ(J1(ξ))dξ= 1

2

ˆ a

0
ξ2

(
ℜ(H (1)

1 (ξ))+ℜ(H (2)
1 (ξ))

)
dξ (A.22)

For ξ> 0 it holds that:

ℜ(H (1)
1 (ξ)) =ℜ(H (2)

1 (ξ)) (A.23)

and ˆ a

0
ξ2ℜ(H (2)

1 (ξ))dξ=
ˆ a

0
ξ2ℜ(H (1)

1 (ξ))dξ (A.24)

Substitute Eq. (A.24) into Eq. (A.22):
ˆ a

0
ξ2ℜ(J1(ξ))dξ=

ˆ a

0
ξ2ℜ(H (1)

1 (ξ))dξ=
ˆ a

0
ξℜ(H (2)

1 (ξ))dξ (A.25)

For ξ→−ξ:
ˆ a

0
ξ2ℜ(H (1)

1 (ξ))dξ=
ˆ −a

0
ξ2ℜ(H (1)

1 (−ξ))−dξ=
ˆ 0

−a
ξ2ℜ(H (1)

1 (−ξ))dξ (A.26)

Due to symmetry of Eq. (A.26):

ℜ(H (1)
1 (−ξ)) =ℜ(H (1)

1 (ξ)) (A.27)

Therefore:
ˆ a

−a
ξ2ℜ(H (1)

1 (ξ))dξ=
ˆ 0

−a
ξ2ℜ(H (1)

1 (ξ))dξ+
ˆ a

0
ξ2ℜ(H (1)

1 (ξ))dξ= 2

ˆ a

0
ξ2ℜ(H (1)

0 (ξ))dξ (A.28)

Substitute Eq. (A.28) into Eq. (A.25):
ˆ a

0
ξ2ℜ(J1(ξ))dξ= 1

2

ˆ a

−a
ξ2ℜ(H (1)

1 (ξ))dξ (A.29)

Considering the combination of both real and imaginary parts of the Hankel function:
ˆ a

−a
ξ(H (1,2)

0 (ξ))dξ=
ˆ a

−a
ξℜ(H (1,2)

0 (ξ))dξ+
ˆ a

−a
ξℑ(H (1,2)

0 (ξ))dξ (A.30)

Due to antisymmetry of the imaginary parts:
ˆ a

−a
ξ2ℑ(H (1,2)

1 (ξ))dξ= 0 (A.31)
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Therefore:
ˆ a

0
ξ2 J1(ξ)dξ= 1

2

ˆ a

−a
ξ2H (1)

1 (ξ)dξ (A.32)

Furthermore:

1

2

ˆ a

−a
ξ2H (1)

1 (ξ)dξ=
ˆ a

−a
ξ2 J1(ξ)dξ− 1

2

ˆ a

−a
ξ2H (2)

1 (ξ)dξ (A.33)

Due to the antisymmetry of the Bessel J function for n = 1:

ˆ a

−a
ξ2 J1(ξ)dξ= 0 (A.34)

For a =∞, this results in:
ˆ ∞

0
ξ2 J2(ξ)dξ= 1

2

ˆ ∞

−∞
ξ2H (1)

1 (ξ)dξ=−1

2

ˆ ∞

−∞
ξ2H (2)

1 (ξ)dξ (A.35)

A.2.3. General solution
In general, there are four cases. The combination of a symmetric and antisymmetric Bessel J premultiplied
with either a symmetric (even) or antisymmetric (odd) function. The symmetric and antisymmetric Bessel J
functions correspond respectively to an even or odd n. Therefore, the general solution may be written as:

ˆ a

0
f (ξ)Jn(ξ)dξ=



1
2

´ a
−a f (ξ)H (1)

n (ξ)dξ=− 1
2

´ a
−a f (ξ)H (2)

n (ξ)dξ f (ξ) = odd & n = even
1
2

´ a
−a f (ξ)Jn(ξ)dξ f (ξ) = odd & n = odd

1
2

´ a
−a f (ξ)Jn(ξ)dξ f (ξ) = even & n = even

1
2

´ a
−a f (ξ)H (1)

n (ξ)dξ=− 1
2

´ a
−a f (ξ)H (2)

n (ξ)dξ f (ξ) = even & n = odd

(A.36)



B
Derivation of the potential representation

of the displacement by Helmholtz
decomposition

A generalized derivation of the coupling of between P- and SV-waves and the independent SH-wave is pre-
formed in here based on work of Aki and Richards (2002). Starting from the wave equations based on Lamé’s
theorem:

φ̈= Φ
ρ
+α2∇2φ

ψ̈= Ψ
ρ

+β2∇2ψ

(B.1)

Eq. (B.1) is satisfied by potentials related to displacement u and force f via:

u =∇φ+∇×ψ
f =∇Φ+∇×Ψ (B.2)

With:

∇·ψ= 0

∇·Ψ= 0
(B.3)

The wave equations, Eq. (B.1) are equivalent to three scalar equations:

φ̈= Φ
ρ
+α2∇2φ

d2

dt 2

(∇×ψ)
z =

1

ρ
(∇×Ψ)z +β2∇2 [(∇×psi

)
z

]
ψ̈z = Ψz

ρ
+β2∇2ψz

(B.4)

In absence of body forces,Eq. (B.4) can be decomposed into three kinds of motion; namely those which two
out of the three functions φ,

(∇×ψ)
z and ψz vanish everywhere:

For
(∇×ψ)

z and ψz equal to zero,clearly the P-waves motion remains:

u =∇φ (B.5)

For φ and ψz equal to zero and ∇·ψ= 0, ∂ψx
∂x + ∂ψy

∂y = 0. Therefore, some function M exists that ψx = ∂M
∂y and

ψy =− ∂M
∂x , i.e. ψ=∇× (0,0, M). It is chosen to rename M as scaler ψ. The remaining wave is in the category

that describes SV-waves:

u =∇×∇× (0,0,ψ) (B.6)
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φ and
(∇×ψ)

z equal to zero corresponds to ∇·u = 0 and uz = 0. Therefore, the displacement is like ψ in the
previous situation. Therefore, a function χ exists, like M and the motion is clearly like a SH-wave.

u =∇× (0,0,χ) (B.7)

Combining the aforementioned results in the displacement field in terms of potentials. Similarly, the three
types of body forces can be described:

u =∇φ+∇×∇× (0,0,ψ)+∇× (0,0,χ)

f =∇Φ+∇×∇× (0,0,Ψ)+∇× (0,0, X )
(B.8)

Where the P-, SV- and SH- wave equations being respectively:

φ̈= Φ
ρ
+α2∇2φ

ψ̈= Ψ
ρ

+β2∇2φ

χ̈= X

ρ
+β2∇2χ

(B.9)
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