Image Search Engine for
Digital History

A Deep Learning approach

Mathijs van Geerenstein, Philippe van Mastrigt,
and Laurens Vergroesen

]
Engineering Historical Memory — Bachelor Thesis 2021 TU Delft






Image Search Engine for Digital History

A deep learning approach

by
MR, van Geerenstein, P.G. van Mastrigt, and L. Vergroesen

to obtain the degree of Bachelor of Science
at the Delft University of Technology,
to be defended on Wednesday June 30, 2021 at 11:00 AM.

Student numbers: 4598660, 4893298, 4448871
Project duration: April 19, 2021 — July 2, 2021
Thesis committee: Prof. dr. ir. AHM. Smets TU Delft, Chair of the Jury

Dr. ir. J. Dauwels TU Delft, Supervisor
Dr. S. Cotofana TU Delft
Dr. ir. S. Vollebregt TU Delft

]
TUDelft






Abstract

This research investigates and describes an image search engine for digital history using deep learning
technologies. Itis part of the Engineering Historical Memory research, contributing to a multilingual and
transcultural approach to decode-encode the treasure of human experience and transmit it to the next
generation of world citizens. The engine provides a new way to search in online (historical) digital li-
braries using content-based image retrieval and makes linguistic metadata redundant. State-of-the-art
deep learning methodologies in computer vision have been investigated and tested. These method-
ologies include both template-based matching and feature-based matching. A VGG-16 Convolutional
Neural Network based approach, called D2-Net, is concluded to provide the best basis. D2-Net is then
further analyzed, improved, and optimized to run on a large dataset of more than 12k image combi-
nations related to history, heritage, and art. The final implementation shows promising results with a
precision of 0.96 and a recall of 0.44 on a challenging testing dataset. Future improvements include
speed improvement and model training.






Preface

This thesis is written to conclude our learnings of the Bachelor Electrical Engineering at the Delft Uni-
versity of Technology. The research was performed in the period April up until June of 2021. We are
available to share our experience and answer any questions related to this project.

We would like to thank loan Lager for his assistance and feedback in the process of the project. We
have really enjoyed this challenging project. Particularly its multidisciplinary aspect made it unique and
rewarding. The artificial intelligence side, currently piloted in the bachelor curriculum, opens doors for
new endeavours in the prospect of our careers. We look forward to the future endeavours by Delft
University in this field of research.

Additionally, we would like to sincerely thank Justin Dauwels and Andrea Nanetti for their support in
this project. It is an honour to have contributed to Engineering Historical Memory (EHM) and to obtain
a better understanding of heritage science and computer vision. The weekly meetings with you have
provided us with new energy and food for thought. In this fast-paced world, we are convinced that
EHM provides the future levers for transmitting human experience and aggregation of knowledge in
our digital age.

In the process of this research, we have made use of the High Performance Cluster of Delft University
of Technology. We would like to thank Frans Broos for his support, enabling us to make use of fast and
reliable hardware.

Lastly, this thesis has been created parallel to the standard approach thesis [1]. We have really enjoyed
working together. Both the study and leisure activities have been wonderful.

M.R. van Geerenstein, P.G. van Mastrigt, and L. Vergroesen
Delft, June 2021






Contents

Introduction 1
1.1 Problemdefinition . . . . . . . . . 1
1.1.1 Problemanalysis. . . . . . . . . . . 1
1.1.2 Problem scopingandbounding . . . . . ... ... ... L o 2
1.1.3 Problemstatement. . . . . . .. .. 3
Program of Requirements 5
Design process 7
3.1 Introduction to Content-Based Image Retrieval. . . . . . . ... ... ... ........ 7
3.2 Imagematching. . . . . . . . . 7
3.2.1 Template-based matching . . . . . . . .. ... .. ... .. ... 7
3.2.2 Feature-basedmatching. . . . . . . . .. .. .. 8
3.2.3 Model training and architecture . . . . . . .. ... oL oo 8
3.24 Pre-proCessing . . . . . . . .o e e e 10
3.2.5 Performanceindicators. . . . . . . .. . 10
3.3 Evaluatedmethods. . . . . . . . . . 11
3.3.1 Quality Aware Template Matching. . . . . . .. .. ... ... ... ... ..... 11
3.3.2 Autoencoders. . . . . .. 11
3.3.3 Convolutional neuralnetwork . . . . . .. .. ... .. .. ... .. 11
3.34 Siamesenetwork. . . . . .. L 12
3.35 D2-Net . . . . . . e 12
3.3.6 Conclusion . . . . . . . . 12
Prototype 13
4.1 Pre-processing . . . . . . . o i e 13
4.2 Extraction. . . . . . .. e 14
421 Featuredescription. . . . . . . . . ... e 14
4.2.2 Featuredetection. . . . . . . . . .. 14
4.3 Matching . . . . . . . e e 16
44 Training . . . . . . e e e e 17
45 Testing . . . . . e e e 17
451 Dataset . . . . . . . 18
4.5.2 High Performance Cluster . . . . . . . . . . . . . ... . 18
Results 19
5.1 Performanceresults . . . . . . . .. L 19
Conclusion 21
6.1 DISCUSSION . . . . . . . . e e 22
Appendix 23
A.1 Projectapproachandteamwork. . . . . . . .. .. .. ... L 23
A.2 Methodologies . . . . . . . . . L 24
A.2.1 Quality-Aware Template Matching. . . . . . . .. ... .. .. ... ... ..... 24
A.2.2 Autoencoders. . . . . .. L e 26
A.2.3 Convolutional Neural Network . . . . . . ... .. ... ... ... ......... 27
A.24 Siamesenetwork. . . . . . . . . . e e e 27
A.3 Multi-scale principle . . . . . . . . 27



viii Contents
B Code 29
B.1 Pre-processing . . . . . . . .. 29
B.1.1 Readandresizeimages . . . . . . . . . . . . . 29

B.1.2 Color . . . . . e 30

B.2 Extraction. . . . . . . . . e 31
B.3 Matching . . . . . . . . e 32
B.4 Results . . . . . . . e 33
B.4.1 Initialisation. . . . . . . . . e 33

B.4.2 Calculation . . . . . . . . . . e 34

B.4.3 Plotting . . . . . . . . e e e e 35

B.4.4 Dataset . . . . . . . . s 36



Introduction

This thesis, in a wider perspective, is part of an ongoing research project Engineering Historical Memory
[2] aiming to develop and experiment aggregation apps for the (re)organisation and delivery of global
historical knowledge in the digital age. Nanetti explains in his paper [3] the need for a multilingual and
trans-cultural approach to decoding-encoding human experience and transmitting this to the next gen-
erations of humanity. Advances in information technologies such as artificial intelligence and machine
learning algorithms can assist in (i) decoding knowledge and wisdom embedded in cultural artefacts
and social rituals, (ii) encoding data in machine-readable systems, (iii) aggregating information accord-
ing to the user’s needs in real time, and (iv) simulating the effects of erasing, neglecting, preserving,
and sharing human experiences.

To contribute to this need, an image search engine for digital history is developed. This thesis describes
current state-of-the-art information technologies and includes the search engine design process. Sec-
tion 1.1 covers the analysis and framing of the problem. Additionally, it includes the analysis and dis-
cussions necessary for scoping, bounding, and creating the Program of Requirements (PoR) described
in Chapter 2. In Chapter 3, the design process is discussed, specifying all decisions made on the basis
of the PoR. This is followed by Chapter 4 in which the implementation of the image search engine is
laid out and discussed. Chapters 5 and 6 will include the prototype results, project wide conclusions,
discussions, and recommendations that emerged from this research. Additional and intermediate anal-
yses, relevant in the process of this project, are described in Appendix A. Code snippets and the GitHub
can be found in Appendix B.

1.1. Problem definition

Defining the problem is crucial and requires the assessment of the context and scope. The predeter-
mined project conditions are the ten weeks of available time, the group size consisting of six electrical
engineering students, and the supervision by J. Dauwels and A. Nanetti. Additionally, some existing
suggestions and code were provided at the start by the supervisors: a proposal document, a short
description on template matching, and links to Python libraries.

To obtain a better understanding of the underlying factors and find potential levers for decision making,
an inductive logic tree has been created. Based on this, the decision was made to investigate exist-
ing historical applications, object detection concepts, image extraction and matching methodologies,
libraries, tools, and datasets.

1.1.1. Problem analysis

Looking into existing historical applications, relatively little was found on applying image search and
retrieval in a historical context. This indicates research potential for developing an image search engine
for digital history. The results found include the search of reproductions of art through visual attributes
for historians [4] [5], detecting lost heritage in historical video material [6], word-image classification
in historical document collections [7] [8] [9], indexing expert image collections specifically on heritage

1



2 1. Introduction

image datasets [10], the MARS (Multimedia Analysis and Retrieval System) used on images of ancient
African artifacts from the Fowler Museum of Cultural History at UCLA [11], and lastly the search for
artistic connections across cultures using image retrieval [12]. The specific application of using image
retrieval for improving historical research is most similar to [4] and [12]. Particularly [12] is interesting,
as it (i) finds pairs of semantically related artworks that span different cultures, media, and millennia, (ii)
builds on and improves current approaches in image retrieval, and (iii) has been implemented online.
However the algorithm distinguishes object media: objects may differ in material. Additionally, it uses
filters based on human interpretation to structure content, which is not of interest.

Zooming in on object detection, extraction, and matching, several important ideas, methodologies, and
concepts have been found. One of these is Content-Based Image Retrieval (CBIR): using color, shape
and texture of one image to find similarities in other images [13]. Experiments were performed on huge
image databases and major performances were obtained after involving neural networks [14]. Besides
color, shape, and texture, images with variations in viewing angle should also be taken into account
[15]. However, the solution proposed does not provide leverage because it requires labelling of data
and object specification. In [16] a method is explained on how to retrieve objects from a large corpus,
and resolves this through improving the visual vocabulary and incorporating spatial information into
the ranking. This is an interesting approach to improve speed in large amounts of data. However,
using a visual vocabulary, a collection of visual words which together can give information about the
meaning of the image (or parts of it) [17], is out of scope. The image meaning’ should not be involved
in the engine, because it inherently puts human interpretation into the machine. This creates, although
arguable, problems that this thesis considers out of scope. Some concerns are elaborated in the PoR
in Section 2, and a more general ethical perspective on Al and search engines is elaborated in the
documents on Ethics and Technology [18] [19]. Methodologies to perform object detection include
both standard (handcrafted) approaches and deep learning approaches [14] [20] [21] [22].

Regarding image matching, two categories exist: template-based matching and feature-based match-
ing. Template matching is a high-level machine vision technique that identifies parts of an image that
match a predefined template pixel by pixel. Advanced template matching algorithms find occurrences
of the template regardless of their orientation and local brightness. Feature based matching is used
when both source and template images contain more correspondence with respect to features and con-
trol points [23]. Image features such as edges and interest points provide rich information on the image
content. These features are unique for each image and hence, help in identifying between images. The
features of an image are not affected by change in size and orientation and therefore suitable if images
are transformed in some fashion. Additionally, this approach is more efficient to use if the image has a
large resolution: moving a template image across a large source image, one pixel at a time, repeating
it at different scales is computationally expensive [23].

Most of the code and libraries used for implementation are Python based. Libraries investigated related
to Computer Vision and Deep Learning include OpenCV [24], PyTorch [25], PyDegensac [26] [27], and
Scikit-image [28]. Existing methodologies investigated include Quality-Aware Template Matching [29],
Autoencoders [30] [31], Convolutional Neural Networks [32] [33], Siamese Networks [34], and D2net

[35].

1.1.2. Problem scoping and bounding

The necessity of this project lies in the search for visual content in the increasing amount of digital
data. In a historical context Nanetti describes the need and a general approach [3]. The additionality of
this project is the ability for historians and heritage stakeholders to find information and starting points
for research through exploring visual content. Special attention is paid to avoiding text and 'image
meaning’ interpretation. Additionally, the risks of no such research are, hypothetically speaking, loss
of information and access across the globe.

The first objective is developing an image search engine for digital history, capable of retrieving images
from various databases (e.g. Wikipedia, Europeana) similar to the user input image. A second objec-
tive is to write theses that elaborate on the approaches and results of creating such an image search
engine. Additionally, business and ethics considerations will be included in separate documents and
presentations. The first objective is completed if the engine (i) extracts and matches images, (ii) can
retrieve images from image databases, (iii) accounts for machine interpretation, and (iv) is not based



1.1. Problem definition 3

on (textual) metadata. The second objective is completed according to the manual [36].

The constraints of this project are the 10 weeks of available time for both objectives and the use of only
python related libraries or tools. Moreover, no object recognition and error feedback are implemented.

The parameters of the image search engine are the underlying thresholds and pre-trained models used
by the algorithm. These can be used to improve or change the decision making of the algorithm on
image similarity. Additional parameters are keypoints and matches detected by the algorithm. These
(can) differ per methodology used. The parameters affect the key performance indicators: time, preci-
sion, recall, and (balanced) accuracy.

1.1.3. Problem statement
Based on the analysis, scoping, and bounding, the project has been split into investigating standard
and deep learning methodologies. The following problem statement has been formulated for this report:

To develop an algorithm in ten weeks that compares image queries with other images purely based on
image content in multiple formats using a deep learning approach.






Program of Requirements

The Program of Requirements (PoR) defines the functionality of the image search engine. It consists of
key performance indicators (KPIs) and the conditions applying to the development and implementation
of the deep learning image search engine for digital history. A distinction is made between mandatory
requirements, trade-off requirements, functional requirements, and non-functional requirements. The
full Program of Requirements is depicted in Figure 2.1.

Mandatory requirements Trade-off requirements

Functional requirements Functional requirements

1. The system must find and return images that match to a

? . 14. The search time should be as low as possible
user input image

2. Image matching is based solely on image content

Non-functional requirements Non-functional requirements

3. The software must be written in the same language as 15. Precision should be as high as possible

the existing codebase of Engineering Historical Memory
16. Recall should be as high as possible
4. The software must be able to be inserted in the existing

codebase of Engineering Historical Memory 17. Balanced accuracy should be as high as possible
5. Out'qf all returned images, at least 80% must be true 18. The codebase should be structured clearly and
positives (precision > 0.8) documented in such a way that others can continue on
6. Out of all images that are supposed to be matches, at our work
0,
least 25% must be found (recall > 0.25) 19. The search engine should not be biased (should not
7. Balanced accuracy must be at least 70% include user feedback to improve the performance)
8. The software implementation must make use of libraries 20. The system should show how and why matches were
and functions free for academic use found
9. The system must accept the common image codecs jpg 21. The supported number of image formats should be as
and png high as possible

10. The system must support image files up to 10MB in size
11. The software must allow for parallel computing

12. The full implementation must be completed within 10
weeks by a group of 6 students

13. The software must be able to be tested on hardware
accessible to the group

Figure 2.1: General Program of Requirements

Its core functional requirements, shown as items 1 and 2, follow directly from the proposal document
and supervisor discussions. The qualities and attributes follow from discussion and existing literature.

5



6 2. Program of Requirements

Items 3, 4 and 8 account for further research by other scholars. Items 5, 6, and 7 are important for
performance measuring purposes. ltems 8, 9, 10, and 11 limit the implementation, and items 12 and
13 specify the product-project relation. The trade-off requirements specify what is desired. ltem 14
follows from item 1 and 2 in a end-user perspective. ltems 15, 16, and 17 specify desired attributes for
performance. Item 18 supports, again, further research and development. ltems 19 and 20 specify the
desire for transparency and understanding of underlying engine decisions. This is especially important
when considering ethical concerns [18][19]. Item 21 supports items 1, 2, and 9. Requirements specif-
ically for a Deep Learning approach are shown in Figure 2.2. These items have been decided upon to
limit the scope of the project and are based on literature study and supervisor discussions.

Deep learning

Functional requirements

22. The algorithm must make use of deep learning

Non-functional requirements

23. The algorithm must be trainable

Figure 2.2: Deep learning Program of Requirements

The requirements specified are focused on the performance, creation, efficiency, and product handling.
Considerations about safety, environment and cost are not included in the scope of this thesis due to
available time and resources. This directly implies that such considerations are open to research.
Ethical considerations are discussed in separate documents [18] [19] and includes concerns about
artificial intelligence and search engines. In the following chapters, the requirements are referred to
using the (x) notation.



Design process

The requirements specified in the previous chapter can be satisfied in multiple ways. In the following
sections the design process is elaborated, relating the PoR to the process of creating an image search
engine. Firstly, the potential of Content-Based Image Retrieval and two image matching categories
is explained. Secondly, the used pipeline for deep learning and measuring performance is described.
Thirdly, the results and conclusions of testing various methodologies are discussed. Lastly, testing
results are discussed and points of interest are concluded for the implementation and design of the
prototype in Chapter 4.

3.1. Introduction to Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is key to satisfying requirement 2, because it makes meta-data
in image retrieval redundant [13]. The main difficulty of CBIR is relating low-level features to a higher
semantic understanding, also known as the semantic gap [37]. The application of CBIR involves ob-
taining 'features’ such as texture, color, shapes, and composition from images. These features are
compared through extraction and matching. A typical approach is to use feature-based methodologies
as described in [13]. An alternative method is a template-based approach [38]; a digital image process-
ing technique for finding small parts of an image that match to a template image. Current state-of-the-art
methodologies are based on deep learning [39].

3.2. Image matching

Based on the problem analysis in Section 1.1.1, the PoR, and supervisor discussions, both template-
based and feature-based matching are investigated. Both are implemented either through standard
approaches [1] or deep learning approaches.

3.2.1. Template-based matching

Template-based matching is an approach to CBIR in which a template (query) image is traced in other
image(s) one pixel at a time [38] (see Figure 3.1). The general pipeline for template-based matching is
(i) pre-processing, (ii) 2D convolution of the template image and the source image, and (iii) determine
results based on the correlation score. Use cases for template-based matching include quality control in
manufacturing [40], image-to-GPS verification [29], and image retrieval [41]. For that reason it has the
potential to satisfy the PoR. Conventional template matching methods are computationally expensive
due to the sampling of a large numbers of points. Additionally, standard approaches in template-based
matching do not perform sufficiently if the template and source image are different in scale, lumines-
cence, contrast, and viewpoint [42]. This, in combination with requirement 22 and 23, points towards
researching faster and more novel approaches such as Quality-Aware Template Matching [29].

7



8 3. Design process

3.2.2. Feature-based matching

An alternative to template-based matching is feature-based matching (see Section 1.1.1 and Figure
3.2). The general pipeline of feature-based matching is (i) pre-processing (i.e. image decoding, con-
version, and scaling), (ii) converting decoded images into feature vectors (extraction), and (iii) feature
vector comparison between images. Feature-based matching applications include fingerprint recogni-
tion [43], sketch-to-photo matching [44], and medical image classification [45]. Next to that, feature-
based approaches are used in state-of-the-art deep learning CBIR [46].

The content of such feature vectors describe either local or global features. Local features represent
image patches and are obtained through detection and description of keypoints. Global features do
not describe the image using keypoints, but rather as a whole. Global feature matching is generally
less computationally expensive at the cost of matching performance [46]. In order to comply with
performance requirements 5, 6 and 7, as well as the search time requirement 14, both global feature
and local feature approaches are evaluated.

Global feature vectors are compared by directly comparing the values of their entries, which is often
done with the euclidean or cosine distance. Local feature vectors contain a descriptor for each detector.
Descriptors of different images are compared using a distance function, similar to how global feature
vectors are compared. After matching individual descriptors, descriptor matches that are inliers are
detected using RANSAC [26] [27] [47].

Figure 3.2: Feature-based approach example

3.2.3. Model training and architecture

In compliance with requirement 23, all models considered must be trainable. Training is done to 'teach’
the model a desired input-output relation by use of a training dataset. The parameters of the trained
model can then be stored, whereafter the model can be used to predict outputs of inputs not seen in the
training phase. Models can be trained with different levels of supervision: supervised, unsupervised
and some variations that fall in between both. Supervised approaches need labelled data in order to
verify and adjust their predictions. Supervised learning generally outperforms other forms of learn-
ing [46]. A challenge of supervised learning is the limited quantity of labelled datasets. Regardless of



3.2. Image matching 9

the supervision type, the process of training an algorithm is computationally expensive as algorithms
usually need tens of thousands of images in order to learn the correct relation. Training data should be
selected carefully so that there is no bias introduced in the model (19).

Neural networks are build up out of layers of neurons. Neurons are the nodes in the network through
which the data flows and were computations are performed. The purpose of a layer dictates how its
neurons connect to neurons of the previous layer. A convolutional layer extracts features by convolving
the previous layer with a filter/kernel. A pooling layer reduces the dimension of the previous layer by
replacing the values of a set of neurons by their average or maximum. An activation layer allows for
learning complex relations by introducing non-linearity. Fully connected and dropout layers are used
to learn non-linear combinations of high-level features and to reduce over-fitting, respectively. Model
architectures differ in layer types, number of layers, and number of neurons per layer. Because hand-
crafting a neural network architecture is out of the scope of this project (Section 1.1.2), only pre-existing
model architectures are included. VGG-16 is an example of such a model architecture. Figure 3.3 and
3.4 show the layers of that model in detail.

224 x 224 x3 224 x 224 x 64

112 x 112 x 128

56|x 56 x 256 7% 7x512
28 x 28 x 512

14 x 14 x 512 1x1x4096 1x1x 1000

) convolution+RelU

[/ max pooling
fully nected+RelLU
softmax
Figure 3.3: Visual representation of the VGG-16 model architecture.
VGG-16
'T”T‘m‘T"."m‘T"T”‘Pm‘T"T”Pm'T"?”‘?m =
54 7[R E anE mome (¢ wvwn s |88 8 D3
Q >>9 |=2/=20 |=2/=2=20 |=2/=2=2|° |=2/=2/=2° |§ &5|& =
£71858 558 5552 5558 555 88878
Q|0 Q0 OO0 Q00 Q00 o

Figure 3.4: The layers of VGG-16 shown chronologically.

By training a neural network, all connections between neurons in the network are assigned the weights
that resulted in the best performance during training. Since training doesn’t change the architecture of
the network (i.e. number of layers or number of neurons), the version of a model trained on a specific
dataset is simply described by a set of weights that resulted from training on that dataset. Most well-
known neural network models such as VGG-16, VGG-19, Xception, Inception-v3, and ResNet-101, are
available as pre-trained models. They each provide a set of their respective weights after training on
ImageNet; a large-scale hierarchical image database [48]. ImageNet is a infamous dataset with over
14 million images, organised according to WordNet [49]. Due to the time constraint of this project (12),
most evaluated methods in this report make use of pre-trained models.



10 3. Design process

3.2.4. Pre-processing

Image pre-processing is done to improve performance. It can improve the quality of retrieved images (5,
6, 7) or reduce computation time in extracting and matching (14). Depending on the architecture of the
algorithm, the model may expect a fixed number of variables (pixels) at the input. All images must then
be resised to that resolution. Image resolution may also be reduced in order to prevent running into
hardware limitations for very large images (10, 13).

Next to resizing, images can also be processed to improve the quality of the features found by the algo-
rithm. In general, this comes down to suppressing unwanted distortions/noise and enhancing important
image features. Ways to achieve this include but are not limited to: brightness correction, gray scale
transformation, gamma correction, histogram equalisation and image segmentation. Most methods of
image enhancement however hurt the performance of deep learning algorithms [50], especially when
applied next to an algorithms’ own pre-processing pipeline.

3.2.5. Performance indicators

To asses the performance of different image matching algorithms, they must be compared based on
performance indicators. Mandatory requirements for the system include minimum values for precision
(5), recall (6) and balanced accuracy (7). These metrics are commonly used in performance assess-
ment of information retrieval systems [46]. In any system that predicts a binary (true/false) label, the
performance can be evaluated by comparing the predicted labels to the ground truth. Every prediction
can then be either one of four categories: true positive (TP), false positive (FP), true negative (TN) or
false negative (FN). Precision, recall and balanced accuracy can then be found as shown below:

TP

Precision = TP+ FP (3.1)
Recall = re 3.2
At = TP T FN (3.2)

1 TP TN

Balanced accuracy = ] (3.3)

2PN T FP TN

where TP, FP, TN and FN are the number of matches that fall into their respective categories. Precision
is then the fraction of relevant images out of all retrieved images, and recall the fraction of retrieved
relevant images out of all relevant images. To yield a high score for either metric is simple. By varying
the matching threshold, a high (=1) precision score can be achieved at the cost of recall performance,
and vice versa. Finally, balanced accuracy is a metric for accuracy that accounts for imbalance in
classes by averaging the true positive rate and true negative rate.

For the performance of a search engine, an optimum balance between precision and recall should be
choosen, depending on the specific use case. Mandatory requirements for both precision (5) and recall
(6) are defined in the PoR to be at least 0.80 and 0.25 respectively. It is clear that precision is favored
over recall. As varying the decision threshold influences both metrics simultaneously, a precision-recall
curve can be used to visually show the relation. Details of precision-recall curves are elaborated on in
Chapter 5.

To test and compare the performance of different algorithms, a test dataset can be used. This set
should resemble the images present in the databases connected to Engineering Historical Memory [2].
Additionally, it should be similar in structure: a generic search should have a relatively small number of
matches compared to the total number of images in the dataset. A needle-haystack type search can
then be performed: running the algorithm for a set of different query images (needles) to retrieve match-
ing images from a large dataset (haystack). The results for a specific matching threshold can then be
shown in a confusion matrix, and in a precision-recall curve for different thresholds. For the intermedi-
ate testing of different methods, a small test set of 26 individual images is used. From these images,
a total of 162 image combinations are made to be evaluated by the different methods. Examples of
images out of the test dataset used in this chapter can be found in Appendix A.3.



3.3. Evaluated methods 11

3.3. Evaluated methods

Many possible algorithms [46] exist that can satisfy the PoR. One important limitation of many sug-
gested methods however, is that they do not share their source code publicly. Since it is not realistic to
write an own implementation of these methods in the time span of this project (12), only methods that
have code readily available are considered. The potential licensing of those code bases, libraries or
tools must allow for use in this project to satisfy requirement 8. Next to that, all methods must be writ-
ten in Python, to satisfy requirement 3. To maximise the chance of a resulting system that is compliant
with the requirements, the choice is made to diverge, and test a handful of different methods. After
a literature study and suggestions from the supervisor, 5 methods were chosen to investigate further.
After intermediate testing, one of the 5 methods was chosen to implement into a final product.

For each of the 5 methods, a basic prototype implementation was made in python. Consequently, all
prototypes were tested using the same dataset. This dataset is a relatively small set of images that are
structured in a needle-haystack manner (Appendix A.3). All predictions are compared with the ground
truth, whereafter the precision, recall and balanced accuracy are calculated for all methods. Next to
these metrics, it is also noted how computationally expensive each method is. The performance on
the tests is visualised in five respective confusion matrices (Figure A.4), where true negatives, false
positives, false negatives and true positives are shown from left to right and top to bottom, respectively.
The remainder of this section briefly discusses each method and how it performed on the test dataset.
A more technical explanation of each method can be found in Appendix A.2. After the performance
evaluation, a conclusion is drawn as to which method is chosen for implementation in the final product.

3.3.1. Quality Aware Template Matching

Quality Aware Template Matching (QATM) [29] uses template-based matching to find similar images.
It uses the standard, conventional technique, but also assesses the quality of a match to determine the
best possible one. QATM uses a qualitative function (A.1) that determines how many times a match
occurs. After that, a likelihood function (A.2) is applied. This is a type of soft-ranking that compares the
current patch with all other patches. This comparison is done with the VGG-16 pre-trained CNN [32].
A more detailed explanation on QATM can be found in Appendix A.2.1.

After testing, it can be concluded that QATM does not comply with two out of the three performance
requirements, namely precision (5) and balanced accuracy (7). Itis noted that template-based matching
conceptually does not align well with the use case of CBIR, as the query image is mostly not a template
that has to be found in a larger image frame.

3.3.2. Autoencoders

An autoencoder [30] [31] uses feature-based matching. The total system is a combination of an encoder
and a decoder. An image is encoded to a latent representation, after which it is decoded to reconstruct
the original image. This system facilitates unsupervised learning, as the optimal latent representation
can be learned by simply comparing the original and reconstructed image, and applying a loss function
on the difference. In training, both the encoder and decoder are used, but after training, merely the
encoder part of the system remains. The encoder extracts features from images by computing the
latent representations. Images are then matched by computing the euclidean distance between their
respective latent vectors; this is an example of global feature matching. A more detailed explanation
on autoencoders can be found in Appendix A.2.2.

After testing, it is clear that this implementation of an autoencoder does not satisfy any of the perfor-
mance requirements 5, 6 or 7. The limitation of this implementation lies in the type of features extracted:
these are very low level. As a result, the autoencoder matches images based only on low level features
like large shapes or background colors, which is not sufficient.

3.3.3. Convolutional neural network

Convolutional Neural Networks (CNN) are used as building blocks in various computer vision tasks. For
image matching, a CNN is used as a global feature extractor, similar to the encoder of an autoencoder.
Images are then matched by comparing the distance between their global feature vectors. Different
CNN models were tested: VGG16 [32], VGG19 [32] and Xception [33]. All were pre-trained on the
ImageNet [48] dataset. More details on this method can be found in Appendix A.2.3.



12 3. Design process

After testing, decent results are seen for the first time. The CNN, which is trained using supervised
learning, outperforms the implementation of an autoencoder. The results show two out of the three
performance requirements being met. Only requirement (5) of precision is not satisfied, due to the high
number of false positives.

3.3.4. Siamese network

A Siamese neural network [34] (also known as twin neural network) is a combination of two identical
CNNs in parallel, used to compute the similarity between two inputs. Siamese networks are trained by
supplying positive (matching) and negative (non-matching) image pairs. This is a form of supervised
learning. The algorithm learns to increase the distance between feature vectors of negative pairs,
and decrease the distance between vectors of positive pairs. After training it then uses the same
architecture to compute a similarity score between two inputs, after which matching is done based on a
threshold for that similarity score. More details on siamese networks can be found in Appendix A.2.4.

The siamese network shows poor results from testing. It does not satisfy any of the performance
requirements. The mediocre performance of the siamese network might be due to improper training
on a training set that did not resemble the testing set.

3.3.5. D2-Net

The aim of D2-Net is to obtain a sparse set of features that are robust under challenging conditions and
efficient to match and to store [35]. D2-Net uses local features (keypoints) for matching. These features
are extracted using a pre-trained CNN. Unique to D2-Net, is that it does not use a detect-then-describe
for its keypoints, but a simultaneous detect-and-describe method.

D2-Net shows very promising testing results. It yields the best score of 1.00 for precision, and re-
spectable scores for recall and balanced accuracy as well. D2-Net is the first, and only, method that
satisfies all three performance requirements.

3.3.6. Conclusion

The results for precision, recall and balanced accuracy for all methods are shown in Table 3.1. Addi-
tionally, the speed of each algorithm is scored in both extraction time and matching time (both times
are for a single match). It should be noted that this comparison of speed is only accurate in orders
of magnitude, as the tests could not be performed on identical hardware. D2-Net excels in precision,
recall and balanced accuracy. It does show limited performance for speed as the only method that uses
keypoints for matching, compared to the other methods which make use of global feature vectors for
matching. Looking at the mandatory requirements, it can be concluded that D2-Net performs best. Per-
formance gains such as an increase in speed, a decrease in computational cost and an optimisation of
the matching threshold can still be made however. For these reasons, the subjects of pre-processing,
tuning the pre-trained CNN, and tuning the matching parameters for D2-Net are elaborated on in more
technical detail in Chapter 4. Next to that, the approach for testing the algorithm on a large dataset is
discussed.

KPls QATM | Autoencoder | CNN | Siamese network | D2-Net
Precision 0.21 0.22 0.63 0.25 1.00
Recall 0.56 0.11 0.56 0.17 0.61
Balanced accuracy | 0.57 0.53 0.76 0.55 0.81
Extraction time (s) n/a 0.09 0.34 0.05 3.10
Matching time (s) 0.83 0.02 0.08 0.01 22.1

Table 3.1: Test results of evaluated methods. Time duration in seconds is calculated per image. Note that the extraction time is
per image and the matching time is per image combination



Prototype

This chapter discusses the creation, improvement, and implementation of the search engine prototype.
Chapter 3 identified shortcomings of existing deep learning methodologies. Based on the intermediary
testing, D2-Net is the most promising. However, room for improvement exists in satisfying the PoR.
Additionally, this chapter will discuss the preparation for testing on a larger dataset.

4.1. Pre-processing

The first step in pre-processing is scaling images to a user-defined size. This step influences the order
of magnitude of keypoints, scores, and descriptors. In the context of this project, the maximum edge
size (i.e. how many pixels in width or height) is set to 1200px. The sum of the edges is set to a maximum
of 2600px. Criteria for setting these values are the requirements 10, 13, and 14. Although no thorough
analysis is performed on the effects of these parameters, lower size values led to lower extraction time
and fewer matches. This holds vice-versa.

The existing color pre-processing of D2-Net is either a ‘Caffe’ or ‘Torch’ implementation. This is used
as preparation for the extraction process. The torch approach is a full color normalization: a mean
of 0 and a standard deviation of 1. The caffe approach zero-centers the input images by mean pixel
subtraction. This is based on the pixel values from the original training data by the authors of VGG [32].
In Figure 4.1 different approaches are shown: (i) no pre-processing, (ii) Torch pre-processing, and (iii)
Caffe pre-processing. Figure 4.2 shows the RGB pixel value distribution of these approaches.

Figure 4.1: Color pre-processing visual example

Apart from the D2-Net pre-processing approach mentioned above, other research in image enhance-
ment suggests that image pre-processing in Convolutional Neural Networks reduces performance [50].
This includes fine-tuning the pre-trained CNN model using contrast limited adaptive histogram equal-
ization (CLAHE), successive means quantization transform (SMQT), Wavelet transform, and Laplace
operator.

13



14 4. Prototype

Distribution of pixels Distribution of pixels Distribution of pixels

50 100 150 200 250 -2 -1 0 1

0 100
Pixel values Pixel values Pixel values

Figure 4.2: Distribution of pixel values of Figure 4.1

Based on the above, the existing implementation of D2-Net pre-processing is deemed sufficient to
evaluate the performance of the prototype on a large dataset. Some minor changes in code have been
made such as replacing deprecated code from Skimage. This is replaced by a OpenCV implementation.
Section B.1 includes the code used for pre-processing.

4.2. Extraction

The extraction process of the prototype is fully based on D2-Net. D2-Net uses a single Convolutional
Neural Network (CNN) to extract dense features serving as both descriptors and detectors (describe-
and-detect approach) [35]. The first step in the extraction process is to insert an image I into a CNN
F to obtain a 3D tensor F, shown in Equation 4.1. The letters h, w, and n are the height, width, and
number of channels of the feature maps respectively.

F = F(I), F € Rxwxn 4.1

4.2.1. Feature description

From F a dense set of descriptor vectors d is formed. This is shown in Equation 4.2, withi = 1,.., h and
j =1,..,w. These descriptors are normalized using the L2-norm (euclidean distance) of the descriptor
vectors and can be compared to descriptors of other images.

d;; =F;, deR" (4.2)
A d;:

d;j = -~ 4.3

Y ldi;ll (43)

4.2.2. Feature detection
Feature detection is conducted by obtaining a collection of 2D responses D from the 3D tensor F. This is
illustrated in Equation 4.4, where k = 1, ...,n. These n different 2D response maps are post-processed
to obtain output keypoints [35].

D¥* = F., D* € R (4.4)

This post-processing is split into hard feature detection and soft feature detection. Hard feature detec-
tion uses the multiple detection maps D*(k = 1, ...,n). For a point (i, j) to be detected, the following is
required:



4.2. Extraction 15

(i,)) is a detection < D is a local maximum in D¥.

with k = argmax D;
t

In other words, the algorithm selects the most striking channel D and verifies if a local-maximum exists
at position (i,j) on that channel. However, to become ‘learned’ at performing this task, some sort of
feedback is necessary. This is done through a process called back-propagation. The hard feature
detection is not amenable for back-propagation. For that reason soft feature detection is implemented
as is described in the paper of D2-Net [35]. First, a soft local-maximum score ag‘j is defined, shown in
Equation 4.5.

exp Dk
alkj — ( l}) —., (4.5)
(i e (i) eXp<Di'f’)

where NV (i, ) is defined as the set of 9 neighbours of the pixel (i, j) (including itself). Secondly, a soft
channel selection parameter ﬁi’j- is defined that computes a ratio-to-maximum per descriptor. In simpler
words, it calculates how large the descriptor in channel k at pixel (i, ) is compared to the maximum
value descriptor in channel t at pixel (i, j). This is expressed in Equation 4.6.

k
Dij

ﬁi’j- = (4.6)

maxg ij

These figures are combined as y;; by maximizing the product of both across all feature maps k. This
is shown in Equation 4.7. Lastly, the soft detection score s;; is calculated by performing an image-level
normalization (Equation 4.8).

Yij = maxy (“fjﬁi’}) (4.7)
Yij
S = — L — (4.8)
l] Z(i’,j’) yi,j,

Important in Sections 4.2.1 and 4.2.2 is the size of the image. It determines, or rather limits, the amount
of keypoints and descriptors. The size of images is related to resolution as well (i.e. a picture can be
scaled and therefore its resolution changes). However, the performance of the CNN is not invariant to
scale changes; extraction and matching is affected [35]. The D2-Net implementation accounts for this
by multi-scale detection. An image pyramid I” is constructed with three different resolutions p = 0.5, 1,
and 2. Subsequently, feature maps F” are extracted, and larger image structures in lower resolution
feature maps are propagated to higher resolution feature maps using Equation 4.9.

FP=FPr 4+ Yy, F¥ (4.9)

To enable this summation in different resolutions, feature maps FY are resized to resolution F? using
bilinear interpolation. Additionally, in order to avoid re-detection of features, actions are performed
in the following order: (i) start at the coarsest scale, (ii) mark and upsample the detected positions
(using nearest neighbour) to the resolutions of the next scales, and (iii) ignore detections falling into
marked regions. A perhaps more intuitive explanation on multi-scale detection in general can be found
in Section A.3.

The extraction of keypoints and descriptors is at the core of the image search engine. Using a CNN,
image features become accessible to process and extract. An illustration of feature description and
detection is shown in Figure 4.3. When extracted, keypoints, scores (how much activation per keypoint),



16 4. Prototype

and descriptors are saved to a numpy file. Part of the code used for extracting features is shown in
Section B.2.

The implemented feature extraction network F is pre-trained. It is based on the VGG16 architec-
ture, trained on ImageNet, and truncated after the conv4 3 layer. VGG16 is a neural network model
proposed by K. Simonyan and A. Zisserman from the University of Oxford [32]. More details on the
fine-tuning of the CNN can be found in the D2-Net paper [35].

joint detection and desdption -7 k sdt detetion module
w . K| (D5
I b soft-NMS
; - _ (@
d F n e
- , ]
featuwe l :
extration i /
local - N {
descriptor  F Dk sdft detetion scee
ij i

Figure 4.3: Detection and Description visual from [35]

4.3. Matching

The matching implementation consists of two parts: (i) matching of keypoints and descriptors and (ii)
validation of matches using random sample consensus (RANSAC).

The matching is based on a brute-force approach and implemented using OpenCV [24]. For each
descriptor in the first set, the closest descriptor in the second set is found by trying each one. Cross-
checking is enabled: a match is valid if both descriptors from the sets are closest (euclidean distance)
to each other. The advantage of brute-force matching is that it finds the best possible image feature
matches. However, a major drawback is the time necessary to find matches. A trade-off is necessary
between requirements 14, 15, 16, and 17. Precision and accuracy are considered more important than
the speed of the algorithm; defined in the PoR.

The random sample consensus (RANSAC) is used for geometric verification. When two images have
many supposed matches, a geometric verification is used to filter wrong feature matches that occur due
to a viewpoint difference. More fundamentally speaking, RANSAC is an iterative method capable of
identifying inliers (i.e. proper matches) and mitigating the influence of outliers (i.e. incorrect matches)
[51]. Additionally, it allows the orientation of images to be determined. This is not further investigated,
but suits future potential for algorithm transparency by indicating the interpreted orientation (contributing
to requirement 18 and 20). A visual example of RANSAC is given in Figure 4.4. The algorithm has
been implemented using pydegensac [26] [27] [52]. This particular implementation scores high and
marginally better than the OpenCV implementation [47]. The Python code implementation is shown in
Appendix B.3.

Correct correspondences Faulty correspondences

Figure 4.4: Example of RANSAC in use (inliers in blue) and identifying the incorrect matches (outliers in red) [28]



4.4. Training 17

4.4. Training

In order to train a neural network model a loss function £ is needed. A loss function is an objective
function that searches for a solution resulting in the best score. It translates all aspects from the model
into a number that reflects the improvements. In [35] the loss function used is called a triplet margin
ranking loss [53]. In the triple loss function in Equation 4.10 the s, are the soft detection scores from
Equation 4.8 at the points A and B of the two images being matched and C is the set of all matched
features of the two images. This loss function creates the sum of the weighted average m that can then
be used to minimize the loss and increase the accuracy of the matching between the descriptors.

1) ()
L1, 1) = Yeee o = ff) 5 mP(©,n(©) (4.10)

4.5. Testing

Testing preparation is necessary to evaluate the search engine and verify whether the search engine
requirements have been reached. The requirements specify precision, recall, and balanced accuracy
as KPIs. The output parameters include the duration in seconds, the amount of matches, and an inlier
count per image pair. Only the inliers are used to determine precision, recall, and balanced accuracy.
The approach is to perform analysis on how many inliers results the best performance. To prevent
overfitting the data, the dataset is split into training (70%) and testing (30%) [54]. A simple for-
loop is performed on the training subset to obtain the ideal threshold, which is based on the accuracy
values. Next, the metrics accuracy, balanced accuracy, precision and recall are calculated using the
testing subset, and a precision-recall curve is plotted. The code can be found in Appendix B.4 and is
executed in a Google Colab environment. Additionally, the time duration of running the code on the
High Performance Cluster has been recorded. In Chapter 5 the results are clarified and elaborated.
The image extraction and matching process requires a dataset and sufficient computing power. These
requirements are elaborated in the Subsections 4.5.1 and 4.5.2 respectively.

Figure 4.5: A subset of images from the dataset



18 4. Prototype

4.5.1. Dataset

The final dataset contains 159 images and is used to assess a total of 12.6k image combinations (i.e.
159 choose 2). A comma-separated values (CSV) file is used to guide the code and to write back
results. It contains the relative path of images and the ground-truth value on whether it is a match. The
images, related to history, heritage, and art, have been scraped from the web and can be found in the
GitHub repository. The code used to generate the initial CSV file can be found in Appendix B.4.4. The
set has a lot of ground-truth negatives, intentionally representing the real case scenario of images not
matching. A preview of the dataset is visible in Figure 4.5.

4.5.2. High Performance Cluster

Computing power is necessary to perform feature extraction and matching. The necessary amount of
power depends on the size of the image, the amount of images, the Python implementation, and the
demanded speed of the algorithm. Particularly for the Python implementation, some libraries support
GPU calculations through CUDA and cuDNN. This makes calculations a lot more efficient in hardware
utilisation. D2-Net recommends at least 12GB of VRAM to handle the multi-scale implementation [35].
Additionally, the brute-force matching methodology is computationally intensive. Although intermedi-
ate and small analysis have been performed using Google Colab and DeepNote, the implementation
required stronger hardware. For that reason, the High Performance Cluster (HPC) of Delft Univer-
sity of Technology has been utilised. To increase the hardware efficiency, multiprocessing has been
used for brute-force matching as OpenCV GPU support was unavailable on the HPC. The extraction
implementation has made use of CUDA and available VRAM. The large dataset required 24 hours of
calculations, mostly due to the brute-force approach.



Results

This chapter elaborates on the results of the prototype described in Chapter 4. In the following sections,
the results are illustrated and clarified for interpretation.

5.1. Performance results

Accuracy Curve Balanced Accuracy Curve

1.0 1.0
0.9 Threshold 0.91 Threshold
0.81 0.8
0.71 §0.7f
30.61 g o.ej
50.51 S 0.5
2044 g 0.4
0.31 % 0.31
0.21 ® Q.21
0.1 0.1
099 5 10 5 20 25 30 % 5 10 15 20 25 30
Inlier threshold value Inlier threshold value
Precision Curve Recall Curve
1.09 Threshold 1.01 Threshold
0.91 0.9
0.81 0.81
< 0.7 0.71
20.61 =0.61
‘9 0.5 @ 0.51
a 0.4 0.4 ———
0.31 0.31
0.21 0.21
0.11 0.1
0-05 5 0 15 20 25 30 °% 5 10 15 20 25 30
Inlier threshold value Inlier threshold value
Figure 5.1

The four graphs in Figure 5.1 represent the metric scores of the training data subset. Section 3.2.5
goes into detail on the significance of the performance indicators. Table 5.1 shows the Key Performance
Indicator values determined with a threshold value of 21 inliers.

19



20

5. Results

KPls Training Set | Testing Set
Accuracy 0.90 0.91
Balanced Accuracy 0.71 0.72
Precision 0.96 0.96
Recall 0.42 0.44

Table 5.1: Key performance indicator values on both subsets of the dataset

Based on the evaluation of the training subset, a precision-recall curve is created and shown in Figure
5.2. The determined threshold of 21 inliers is shown with an orange dot.

Precision-Recall curve

1.0

0.9 A
0.8 A
0.7 1
0.6
0.5 A1

Precision

0.4
0.3 1
0.2 A1
0.1

Optimal threshold

0.0 T T T y r
00 0.1 02 03 04 05

Recall

Figure 5.2: The precision recall-curve of the testing data subset

06 07 08 09 1.0

Next to the above metrics, the time duration of each process has also been recorded. These are
displayed in Table 5.2.

Process Duration (1 Core) | Duration (4 Cores)
Extraction 2.0 2.0
Brute Force Matching 34.0 5.66
RANSAC 0.21 0.03

Table 5.2: Average time durations in seconds: extraction is per image and both brute force matching and RANSAC are per image

combination.



Conclusion

The requirements from Chapter 2 have been fulfilled and are discussed below. In Chapter 1, the
following problem statement was defined:

To develop an algorithm in ten weeks that compares image queries with other images purely based on
image content in multiple formats using a deep learning approach.

After initial tests on multiple different methodologies in Chapter 3, D2-Net was decided as the basis for
the deep learning search engine prototype (22). The search engine has been improved and optimized
and is elaborately explained in Chapter 4. The search engine performance has been evaluated on
the High Performance Cluster using a large dataset. The results are visible Table 6.1 and satisfy the
requirements stated in Chapter 2.

KPls Requirements | D2-Net
Precision 0.80 0.96
Recall 0.25 0.45
Balanced Accuracy 0.70 0.72
Extraction time (s) ToR 2.0
Matching time (s) ToR 5.69

Table 6.1: Requirements and obtained results. Note that extraction time is per image, and the matching time is the addition of
brute-force matching time and RANSAC time per image combination.

Requirements (1) and (2) are achieved. Images are taken as an input and matches that correspond to
that image are found. The software was written completely in Python and is ready for integration with
the EHM website (3 and 4). From the comparison in Table 6.1, it is clear that the three performance
requirements (5), (6) and (7) exceed the targets that were set. Only open-source Python libraries were
used to create the algorithm, complying with (8). As requested in (9), the system can accept common
image file extensions and use them without hindrance. The size of the files can be up to 10MB (10)
but also allows for larger files by resizing images. To increase its speed in matching, multiprocessing
was implemented (11) on the HPC (13). The whole project was completed in the span of the 10 weeks
(12).

With the mandatory requirements achieved, a closer look is taken at the trade-off requirements to
asses how well the software performs. In Chapter 5 the values precision (15), recall (16) and balanced
accuracy (17) have been maximized in such a way that at least the minimum requirements stated for
each parameter were met. Precision was deemed more important than recall, and the values can be
seen in Table 6.1. The accuracy of the software weighs more than its speed. This results in a longer
search time (14), but was reduced by multiprocessing. The whole project, including the code and
datasets used for testing have been kept and organized (18). The link to the GitHub can be found in
Appendix B. Furthermore, the program works without any type of user feedback and is a deterministic

21



22 6. Conclusion

open-loop system (19). Multiple formats, e.g. jpg or png, are supported (21). The output provides the
number of inliers, and optionally an image, showing if and how a match is found (20).

6.1. Discussion

Although the performance meets the specified requirements, room for improvement exists. Implemen-
tations that seem promising include an approach for deep learning image retrieval, discussed in [39],
and a novel training method described by [55]. Its implementation and code is available on GitHub [56].
Additionally, as discussed in Chapter 4, the model is trainable because D2-Net uses deep learning (23).
Training the model increases accuracy in specific certain cases. Since the primary topic of searches
for EHM are about historical subjects and heritage science, the algorithm can be fine-tuned to perform
better on these subjects by training. Another opportunity lies in improving the matching. Different types
of feature matchers should be tested to try and increase the precision, recall, and balanced accuracy
scores. Especially matchers that make use of CUDA should be investigated. They can greatly improve
the speed of the algorithm, which is a very important point to improve upon if the prototype is to be
used on a large scale. Lastly, the bag-of-visual words approach shows potential for improving content-
based image retrieval. Currently, it is predominantly used for image classification, but has potential to
give a better balance between precision, recall, accuracy, and time. However, its limitations should be
investigated.



Appendix

A.1. Project approach and teamwork

This section elaborates on Chapters 1 and 2. To obtain a better understanding of the problem at hand,
weekly discussions with J. Dauwels and A. Nanetti have been held. Particularly understanding the
bigger picture of Engineering Historical Memory and the multidisciplinary nature adds an interesting
perspective to this project. In Figure A.1 the problem statement development is shown. In Figure A.2
the inductive logic tree is shown. This has been used to manage and make decisions in which direction
lie to the problem statement. The group held a daily starter every morning, either physically at TU Delft
and online using Microsoft Teams. A supervisor meeting was held every week in which the progress
was discussed. Additionally, a GANTT chart was sent every week on Monday.

« To develop an engine that »  Simple » Not specific enough
detects historical artifacts in a . .
large collection of images. » Addresses decision maker values » Does not address project

components

* Not time bound

First cut

« To develop an algorithm that *  Outcome focused * Not time bound
performs content-based image
retrieval using conventional and
deep learning matching
techniques.

Second cut

« To develop an algorithm in ten * More specific « Can be overwhelmed by other
weeks that compares image . factors
queries with other images purely * Allows sufficient scope for
based on image content in creativity
multiple formats using standard
and deep learning techniques.

Third cut

Figure A.1: Problem statement progression

23



24 A. Appendix

Zero Shot prediction } — Contrastive Language-Image Pre-training ]

Template matching }——747,,,,,”7777”””

;’:,:%t:—f*i Detection/recognition ]

Neural network ———

Feature matching

OpenAl ( Deformable Diversity Similarity )

SciKit Image

)

J

}

} — T To develop an
Deep Learning ] engine that

)

}

}

)

detects historical

OpenCV Python & Libraries }

artifacts in a large
collection of
images.

Tensor Flow

CLIP libary

Heritage science

|
*:—{ History related ] |
\\\

\é[ Applic‘aﬁons ]

Historical artifacts },,,,,,,,,,,,,””JW

CLIP driven image manipulation }

Deep Dream },,,77777777 _ Not necessarily
) ) History related

Search engines ]

[
[
[
[
[
[
{
[
{
[
[
[
[
[
[
[

Emoji association with ZSP ]

Figure A.2: Non-exhaustic inductive logic tree used for studying this field of research.

A.2. Methodologies

A.2.1. Quality-Aware Template Matching

As stated in Chapter 3, Quality-Aware Template Matching (QATM) uses the standard template matching
but adds an extra quality factor to the different types of matches it finds. To create a quality score, five
different matching cases are considered with a patch t from the template image T and a patch s from
the search image S.

1. 1-to-1
2. 1-to-N
3. M-to-1
4. M-to-N
5. no match

From these five possibilities only the first one is referred to as a high quality match because it means
two objects are matched and it only occurs once. For 1-to-N and M-to-1 a pattern in either the template
or search image is found such as a wall, sky or floor. The last possibility is immediately excluded and
M-to-N matches indicate many homogeneous/patterned patches are found. By excluding all but the
1-to-1 matching case the reliability of the obtained match is increased.

A quantitative assessment of the matching cases is used to find the region R of S that maximizes the
matching quality. R is the fixed size window that corresponds to the size of the template. The function
can be seen in Equation A.1.

R* = arggmax{d). max{Quality(r,t)|t € T}} (A1)

In Equation A.1, the Quality(r,t) is the function that assesses the the matching quality between s ( equal
to r) and t. For this function, the similarity between patches must be determined. This is done through
the likelihood function in Equation A.2.



A.2. Methodologies

25

M xGG_1838_Detail_Eisl...

M depositphotos_19901...

al

M match_needle6(3(lasti..

M match_needle(2).jpg

M 23916741006_2ceefb...

M match_needle6.jpg M match_needle5(3(lasti... M match_needle5(2).jpg [}

M match_needled.jpg M match_needle3(3(lasti... M match_needle3(2).jpg m

match_needle3.jpg

o §45
M match_needlel(3(lasti... M match_needle1(2).jpg M match_needlel.jpg M Fra_Mauro_jpg

M 19671732923_00fd35... M 12820831085_370d0... M 5288713708_8d357f1... m

61sb26aPTXL._AC_SY...

Figure A.3: Data set for intermediate testing of different methodologies

QATM
) . :
©
Ke]
©
©
2
[&]
<
—- 8 10
0 1
Predicted label
Siamese net
) g
©
Q
o
©
2
Q
<
—- 15 3
0 1

Predicted label

140 140 140
Autoencoder CNN

120 120 120

100 o 137 7 100 o 138 6 100

80 80 80

© ©
o Qo
K S
© ©
3 =
60 B 60 B 60
< <
- 16 2 -~ 8 10
- 40 -40 -40
-20 -20 -20
0 1 0 1
R Predicted label L Predicted label R

140 140
D2-Net

120 120

100 0 100

80 80

60

o
]
o
©
®
=}
k3] 60
<
- 7 1"
-40 -40
-20 . . -20
0 1
R Predicted label Lo

Figure A.4: Confusion matrices for the 5 evaluated methods.

exp{a-p(ft.fs)}
A.2
Xyrer exp{a-p(fe.fs)} (A.2)

L(t|s) =



26 A. Appendix

In Equation A.2, f; and f; are the feature representations of the patches sand t, p is a similarity measure
between two patches that makes use of a pre-trained neural network. The variable « is a factor that
adds extra quality discernibility to the function. The value for a is taken directly from [29] where they
empirically determined what the optimal values could be.

The quality measure can the be defined as the product of the likelihood that s is matched in T and t is
matched in S as shown in Equation A.3.

QATM(s, t) = L(t|s) - L(s|t) (A.3)
With Equation A.3, the scores of each matching case are calculated.

Matching Case | L(s|t) L(t|s) | QATM(s,t)

1-to-1 1 1 1

1-to-N 1 1/N 1/N
M-to-1 1/M 1 1M
M-to-N 1/M 1/N 1/MN

No match 1181l 1]IT|| =

Table A.1: Ideal QATM scores [29]

The matching quality of an region in S can then be found with Equation A.4.

q(s) = max{QATM(s,t)|t € T} (A.4)

The best matched region R* can then be found with Equation A.5 which maximizes the overall matching
quality.

R* = argpmax{),cr q()} (A.5)

A.2.2. Autoencoders

An autoencoder is a type of an unsupervised neural network, meaning no class labels or labeled data
is needed to train it. The autoencoder encodes an input image into a latent representation, after which
it is decoded back into an image similar to the input image. Dependent on the level of detail needed to
reconstruct the input, the the latent space can be small in size. In Figure A.5, a sample of the MNIST
[57] data set is encoded and reconstructed. For such a data set, which contains only 10 classes (all
Arabic numerals), inputs can be reconstructed with very little loss from a small latent representation.

Original Input Latent Representation Reconstructed Output

E(x) S D(s)

Therefore... 0 = D(E(x))

Figure A.5: Schematic example of the structure of an autoencoder.

n 0_ X 2
MSE = M (A.6)
n



A.3. Multi-scale principle 27

An autoencoder is trained by use of a loss function that compares the reconstructed image with the
input image, and tunes the network accordingly to minimize the error (in this case the mean square
error, shown by Equation A.6). This pipeline of encoding and decoding does not provide any use for the
task of CBIR. However, the true value of an autoencoder lies in the latent representation. The meaning
of its entries might be arbitrary, but they do describe features that are key in representing the input
image. For CBIR, one can strip the system of the decoder, and use the encoder as a global feature
extractor. The distance (Equation A.7) between these feature vectors can then be used to match their
corresponding images.

A.2.3. Convolutional Neural Network

A Convolutional Neural Network (CNN) uses multiple convolutional layers made up of filters that utilizes
neurons to process the input image into a feature map. The distance between feature maps is then
used to determine whether or not two images match. A feature map is the result of a filter that has
been applied to the input image. So at every layer of the neural network the output is a feature map
which contains the detected features of the image.

The matching itself is done by calculating the euclidean distance in between the features of the im-
age used to search and the query image from a database. The euclidean distance is calculated with
Equation A.7, where n is the dimension size of the features. To determine whether a match is found a
threshold for the maximum allowed distance can be set.

D(a,b) = \/(al —b1)?2 + (ay — by)? + (a3 — b3)? + ... + (a, — by)? (A7)

A.2.4. Siamese network

The siamese network consists of two CNN working together to maximize the euclidean distance for
negative and minimize it for positive matches. This is done through a loss layer. The loss layer function
can be seen in Equation A.8 [34].

L = 2ID* + Z(1 = N{max(0,m — D)}? (A8)

In Equation A.8, the / is a label that selects whether the input matches or not (/ can be either 0 or 1),
m>0 is the margin for dissimilar pairs and D is the euclidean distance between the image features from
Equation A.7. When the siamese network was tested, a pre-trained model was used and no labels were
attached to the files to simulate a real situation where random images have to be matched without any
prior knowledge about the images.

A.3. Multi-scale principle

Multi-scale detection is used in computer vision to detect features better and more efficiently. An intuitive
way to think about it, is to look how humans detects and looks for objects. For example, if a person
looks for a tree, he or she implicitly looks for objects in the 10! order of magnitude. In animage a person
can infer relative sizing by looking at other objects such as people, buildings, and the sky. However, a
computer cannot easily or automatically infer this. To overcome this obstacle, a computer analyses an
image in multiple resolutions. A commonly used method is the pyramid representation [58]. A visual
representation of an image pyramid is shown in Figure A.6. In this project a pyramid with 3 levels is
used with resolutions [0.5, 1, 2].



28

A. Appendix

Level 4
Blur and s 1/16 resolution
subsample // Level 3
Blur and 1/8 resolution

subsample Level 2
1/4 resolution
Blur and
subsample
Level 1
1/2 resolution
Blur and
subsample

Level O
Original
image

Figure A.6: A visual representation of an image pyramid with 5 levels



20

21

22

23

24

Code

This appendix chapter includes snippets of code used for the search engine. A significant part of its
implementation is based on the D2-Net [35] code. Other code is primarily based on OpenCV [24] and
Pydegensac [26] [27] [47]. A GitHub repository has been created that includes the dataset and Python
code for both the standard and deep learning approach [1]. It can be found here.

B.1. Pre-processing
B.1.1. Read and resize images

# Read image
image = cv2.imread (path)

if image is not None:
# format image array 1f necessary

if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)

# resize images
resized image = image
if max(resized image.shape) > MAX EDGE:
fraction = MAX EDGE / max(resized image.shape)

width = int(resized image.shape[0] * fraction)

height = int(resized image.shape[l] * fraction)

dim = (width, height)

resized image = cv2Z.resize(resized image, dim).astype('float')

if sum(resized image.shape[: 2]) > MAX SUM EDGES:
fraction = MAX SUM EDGES / sum(resized image.shape[: 2])
width = int(resized image.shape[0] * fraction)

height = int(resized image.shape[l] * fraction)
dim = (width, height)
resized image = cv2.resize(resized image, dim) .astype('float')

29


https://github.com/EHM-Search-Engines/ISEDH-Deep-Learning

10

11

13

14

15

16

30

B. Code

B.1.2. Color

def preprocess_image (image, preprocessing=None) :
image = image.astype(np.float32)
image = np.transpose(image, [2, 0, 11)
if preprocessing is None:

pass
elif preprocessing == 'caffe':
# RGB -> BGR
image = image[:: -1, :, :]

# Zero-center by mean pixel

mean = np.array([103.939, 116.779, 123.681])

image = image - mean.reshape([3, 1, 1])
elif preprocessing == 'torch':

image /= 255.0

mean = np.array([0.485, 0.456, 0.406])

std = np.array([0.229, 0.224, 0.225])

image = (image - mean.reshape([3, 1, 1]1)) / std.reshape([3,
else:

raise ValueError ('Unknown preprocessing parameter.')
return image

1,

11)




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

B.2. Extraction

31

B.2. Extraction

with torch.no grad():

if MULTISCALE:
keypoints, scores, descriptors = process multiscale (
torch.tensor (
input image[np.newaxis, :, :,
o :].astype(np.float32),
device=DEVICE
)l
model
)
else:
keypoints, scores, descriptors = process multiscale (
torch.tensor (
input image[np.newaxis, :, :,
o :].astype(np.float32),
device=DEVICE
)I
model,
scales=[1]

# Input image coordinates
keypoints[:, 0] *= fact i
keypoints[:, 1] *= fact J

# 1, 7 > u, v

keypoints = keypoints[:, [1, 0, 2]]

if OUTPUT TYPE == 'npz':
with open(path + OUTPUT EXTENSION, 'wb') as output file:
np.savez(
output file,
keypoints=keypoints,
scores=scores,
descriptors=descriptors
)
elif OUTPUT TYPE == 'mat':
with open(path + OUTPUT EXTENSION, 'wb') as output file:
scipy.io.savemat (
output file,
{
'keypoints': keypoints,
'scores': scores,
'descriptors': descriptors

else:
raise ValueError ('Unknown output type.')




10

11

12

13

14

15

16

17

18

19

20

21

32

B. Code

B

.3. Matching

# Loading the numpy data files that include keypoints, scores, and
» descriptors

featl = np.load(data urll)

feat2 = np.load(data url2)

# OpenCV Brute Force implementation

bf = cv2.BFMatcher (cv2.NORM L2, crossCheck=True)

# Match descriptors

matches = bf.match(featl['descriptors'], feat2['descriptors'])
# Sort on distance

matches = sorted(matches, key=lambda x: x.distance)

# Indexing of matches
matchl = [m.gqueryIdx for m in matches]
match?2 = [m.trainIdx for m in matches]

# Get subset of keypoints that are matches
keypoints left = featl['keypoints'][matchl, : 2]
keypoints right = feat2['keypoints'][match2, : 2]

# RANSAC implementation

H, inliers = pydegensac.findHomography (keypoints left, keypoints right,

-~ 10.0, 0.99, 10000)




B.4. Results 33

B.4. Results

B.4.1. Initialisation

1 # Import libraries

2 import pandas as pd

3 import numpy as np

4 from tqdm import tgdm

5 import sklearn.metrics as skm

6 import matplotlib.pyplot as plt
7 import seaborn as sns

10 # Read CSV file
11 data = pd.read csv(csv_path, sep=',', quotechar='"', encoding='utfs8',
o header='infer")

13 # Load image entries
14 imgl = data['imgl']
15 img2 = datal['img2']

17 # Load Inlier values
18 x = data['inliers']

20 # Calculate and load ground-truths

21 y = pd.Series (0, index=np.arange (len (imgl)))
22

23 for i in np.arange(len(imgl)):

24 if imgl[i][:16] == img2[i][:16]: # if first 16 characters in string
~ are equal
25 y[i] = 1

26
27 # For-Loop to calculate results for a given threshold value
28 def get prediction inliers(threshold, inliers):

29 y _pred = pd.Series (0, index=np.arange (len(inliers)))
30 for entry in range(len(inliers)):

31 if inliers[entry] >= threshold:

32 y_predlentry] = 1

33 else:

34 y_predlentry] = 0

35 return y pred

36

37 # Setup data-split in training and testing

33 from sklearn.model selection import train test split
39

40 # 0.7 training and 0.3 testing

41 X train, x test, y train, y test = train test split(x, vy,
-~ test size=0.3,random state=4)
42 x train = x train.to numpy ()

a3 X test = x test.to numpy ()
44 y _train = y train.to numpy ()
45 y _test = y test.to numpy ()




12

13

15

16

17

18

19

20

B. Code

B.4.2. Calculation

# Calculate accuracy, bal. accuracy, precision and recall for threshold
« values 0-100 inliers

iterator = range (100)

accuracy = [skm.accuracy score(y train, get prediction inliers(tr,
o X train)) for tr in tgdm(iterator, position=0, leave=True) ]

b _accuracy = [skm.balanced accuracy score(y train,

» get prediction inliers(tr, x train)) for tr in tgdm(iterator,
» position=0, leave=True) ]

precision = [skm.precision score(y train, get prediction inliers(tr,
o X train)) for tr in tgdm(iterator, position=0, leave=True) ]
recall = [skm.recall score(y train, get prediction inliers(tr, x_ train))

o for tr in tgdm(iterator, position=0, leave=True) ]

from sklearn import metrics
metric = accuracy
# Calculate performance on training subset
print ("Accuracy:”,metrics.accuracy_score(y_train,
» get prediction inliers (np.argmax (metric), x train)))
print (”“Precision:”,metrics.precision score(y train,
- get prediction inliers(np.argmax (metric), x train)))
print ("Recall:”,metrics.recall score(y_ train,
» get prediction inliers (np.argmax (metric), x train)))
print (“Balanced accuracy:”, metrics.balanced accuracy score(y train,
- get prediction inliers (np.argmax (metric), x train)))

# Calculate performance on testing subset
print ("Accuracy:”,metrics.accuracy score(y_ test,
» get prediction inliers(np.argmax (metric), x test)))
print (“Precision:”,metrics.precision_score(y test,
» get prediction inliers(np.argmax(metric), x test)))
print ("Recall:”,metrics.recall score(y test,
-~ get prediction inliers(np.argmax (metric), x test)))
print (”“Balanced accuracy:”, metrics.balanced accuracy score(y test,
» get prediction inliers (np.argmax (metric), x test)))




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

B.4. Results

35

B.4.3. Plotting

# Plot the above scores
data = [accuracy, b _accuracy, precision, recalll]
plots = ['Accuracy', 'Balanced Accuracy', 'Precision', 'Recall']
fig, axs= plt.subplots(l, 4)
fig.set size inches (30, 30/5-1, forward=True)
for i in range(len(plots)):
[i] .step (iterator, data[i], where='post')
[i] .set title(plots[i] + ” Curve”, fontsize=18)
axs[i].set ylabel (plots[i], fontsize=18)
[1] .set xlabel ('Inlier threshold value', fontsize=18)
[i] .scatter (np.argmax (accuracy), datal[i] [np.argmax (accuracy)],
-~ marker='o', color='orange', label='Threshold")
axs[i].set x1im((0,31))
axs[i] .axvline (np.argmax (accuracy), ymin=0,
» vymax=datal[i] [np.argmax (accuracy)], color='orange',6 1ls='--")

axs[i].set xticks(np.arange(0, 31, step=5))

axs[i].set yticks(np.arange(0, 1+0.1, step=0.1))
axs[i].tick params (axis="both', which="major', labelsize=12)
axs[i].legend()

axs[i].grid()
plt.tight layout()

plt.savefig('dataset performance.svg')

# Precision-recall curve on the testing subset
fig, ax = plt.subplots/()
plt.xlim((0,1))
plt recall = np.insert(recall,-1,0, axis=0)
plt precision = np.insert(precision,-1,1, axis=0)
plt.step(plt recall, plt precision, where='post')
plt.scatter(recall[np.argmax (metric)], precision[np.argmax (metric)],
- marker='o', color='orange', label='Optimal threshold'")
plt.axhline (precision[np.argmax (metric)], xmin=0,
o xmax=recall[np.argmax (metric)], color='orange', 1ls='--")
plt.axvline (recall[np.argmax (metric)], ymin=0,
» ymax=precision[np.argmax (metric)], color='orange',6 ls='--")
plt.xticks (np.arange (0, 1+0.1, step=0.1))
plt.yticks (np.arange (0, 1+0.1, step=0.1))
plt.tick params (axis="'both', which="major', labelsize=12)
plt.title('Precision-Recall curve')
plt.xlabel ('"Recall')
plt.ylabel ('Precision')

plt.grid()
plt.legend ()

# show the plot
plt.rcParams[”figure.figsize”] = (6, 5)
plt.tight layout ()
plt.savefig('precision recall curve.svg')
plt.show ()




10

11

13

14

15

16

19

20

21

22

23

24

25

26

27

28

29

36

B. Code

B.4.4. Dataset

import os

import pandas as pd

import glob

from os import listdir

from os.path import isfile, join
arr = os.listdir ()

writer = pd.ExcelWriter ('folderlist.xlsx', engine='xlsxwriter')

jpgs = glob.glob (”*/*.3pg”)
frame = pd.DataFrame ({

'imgl': [1,
'img2': [1,
'match': [],

})
for i in range(len(jpgs)):
for j in range(i+l, len(jpgs)):

if jpgs[i] != Jjpgsljl:
dirnamel = os.path.dirname (jpgs[i])
dirname?2 = os.path.dirname (jpgsl[j])
bool = (dirnamel==dirname?2)
new row = {'imgl': str(jpgs([i]), 'img2':

o 'match': bool}

frame = frame.append(new_row, ignore index=True)

# Convert the dataframe to an XlsxWriter Excel object.
frame.to excel (writer, sheet name='Sheetl',6 index=False)

# Close the Pandas Excel writer and output the Excel file.

writer.save ()

str(jpgs(jl),




(1]
(2]
(3]

[4]
[5]

[6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography

M. Deutman, P. Groet, and O. van Hooff, Image search engine for digital history: Standard ap-
proach, 2021.

A. Nanetti, Engineering Historical Memory, https : / /engineeringhistoricalmemory .
com, Accessed on: 21/05/2021, 2021.

A. Nanetti, “Defining heritage science: A consilience pathway to treasuring the complexity of
inheritable human experiences through historical method, ai, and ml,” Complexity, vol. 2021,
p. 4703820, 2021, ISSN: 1076-2787. DOI: 10.1155/2021/4703820.

B. Seguin, “The replica project: Building a visual search engine for art historians,” XRDS, vol. 24,
no. 3, pp. 24-29, 2018. DOI: 10.1145/3186653.

B. Seguin, C. Striolo, I. diLenardo, and F. Kaplan, “Visual link retrieval in a database of paintings,”
Springer International Publishing 2016, vol. 9913, no. 1, pp. 753-767, 2016. DOI: 10. 1007/
978-3-319-46604-0_52.

F. Condorelli, F. Rinaudo, F. Salvadore, and S. Tagliaventi, “A neural networks approach to de-
tecting lost heritage in historical video,” ISPRS International Journal of Geo-Information, vol. 9,
no. 5, 2020, ISSN: 2220-9964. DOI: 10.3390/1jg19050297.

L. Schomaker, A large-scale field test on word-image classification in large historical document
collections using a traditional and two deep-learning methods, 2019. arXiv: 1904 .08421 [cs.CV].
T. van der Zant, L. Schomaker, S. Zinger, and H. van Schie, “Where are the search engines for
handwritten documents?” Interdisciplinary Science Reviews, vol. 34, no. 2-3, pp. 224-235, 2009.
DOIl: 10.1179/174327909X441126.

T. M. Rath, R. Manmatha, and V. Lavrenko, “A search engine for historical manuscript images,”
in Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, ser. SIGIR '04, Sheffield, United Kingdom: Association for Com-
puting Machinery, 2004, pp. 369-376, ISBN: 1581138814. DOI: 10.1145/1008992.1009056.
D. Michaud, T. Urruty, P. Carré, and F. Lecellier, “Adaptive features selection for expert datasets:
A cultural heritage application,” Signal Processing: Image Communication, vol. 67, pp. 161-170,
2018, ISSN: 0923-5965. DOI: 10.1016/5.image.2018.06.011,

R. Veltkamp and M. Tanase, “Content-based image retrieval systems: A survey,” Technical report,
Utrecht University, Nov. 2000.

M. Hamilton, S. Fu, M. Lu, J. Bui, D. Bopp, Z. Chen, F. Tran, M. Wang, M. Rogers, L. Zhang, C.
Hoder, and W. T. Freeman, Mosaic: Finding artistic connections across culture with conditional
image retrieval, 2021. arXiv: 2007.07177 [cs.LG].

R. Inbaraj and G. Ravi, “A survey on recent trends in content based image retrieval system,”
Journal of Critical Reviews, vol. 7, no. 11, pp. 961-965, 2020.

M. Yasmin, S. Mohsin, and M. Sharif, “Intelligent image retrieval techniques: A survey,” Journal
of Applied Research and Technology, vol. 12, no. 1, pp. 87—-103, 2014, ISSN: 1665-6423. DOI:
10.1016/51665-6423(14)71609-8.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with dis-
criminatively trained part-based models,” IEEE transactions on pattern analysis and machine
intelligence, vol. 32, no. 9, pp. 1627-1645, 2009.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with large vocabularies
and fast spatial matching,” in 2007 IEEE conference on computer vision and pattern recognition,
IEEE, 2007, pp. 1-8.

J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo, “Evaluating bag-of-visual-words repre-
sentations in scene classification,” ser. MIR ’07, Augsburg, Bavaria, Germany: Association for
Computing Machinery, 2007, pp. 197-206, ISBN: 9781595937780. DOI: 10.1145/1290082 .
1290111.

M. van Geerenstein, P. van Mastrigt, and L. VVergroesen, An inquiry into the ethics and technology
of artificial intelligence, 2021.

37


https://engineeringhistoricalmemory.com
https://engineeringhistoricalmemory.com
https://doi.org/10.1155/2021/4703820
https://doi.org/10.1145/3186653
https://doi.org/10.1007/978-3-319-46604-0_52
https://doi.org/10.1007/978-3-319-46604-0_52
https://doi.org/10.3390/ijgi9050297
https://arxiv.org/abs/1904.08421
https://doi.org/10.1179/174327909X441126
https://doi.org/10.1145/1008992.1009056
https://doi.org/10.1016/j.image.2018.06.011
https://arxiv.org/abs/2007.07177
https://doi.org/10.1016/S1665-6423(14)71609-8
https://doi.org/10.1145/1290082.1290111
https://doi.org/10.1145/1290082.1290111

38

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[39]

[36]
[37]
[38]

[39]

M. Deutman, P. Groet, and O. van Hooff, An inquiry into the ethics and technology of search
engines, 2021.

Q. Jia, J. Cai, Z. Cao, Y. Wu, X. Zhao, and J. Yu, “Deep learning for object detection and grasping:
A survey,” in 2018 IEEE International Conference on Information and Automation (ICIA), 2018,
pp. 427-432.DOI: 10.1109/1CInfA.2018.8812318.

Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE
transactions on neural networks and learning systems, vol. 30, no. 11, pp. 3212-3232, 2019.

J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching from handcrafted to deep features:
A survey,” International Journal of Computer Vision, vol. 129, no. 1, pp. 23-79, 2021, ISSN: 1573-
1405.DOI: 10.1007/511263-020-01359-2,

R.N. Luces, Template-based versus feature-based template matching. [Online]. Available: https:
//medium.datadriveninvestor.com/template-based-versus-feature-based-
template-matching-e6e77b2a3b3a.

The opencv reference manual, 3.4, OpenCV, Jun. 2021.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates,
Inc., 2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,” in Pattern Recognition, 2003.

O. Chum, T. Werner, and J. Matas, “Two-view geometry estimation unaffected by a dominant
plane,” in CVPR, 2005.

S. van der Walt, J. L. Schonberger, J. Nunez-lglesias, F. Boulogne, J. D. Warner, N. Yager, E.
Gouillart, T. Yu, and the scikit-image contributors, “Scikit-image: Image processing in Python,”
Peerd, vol. 2, 453, Jun. 2014, ISSN: 2167-8359. DOI: 10.7717 /peer.453.

J. Cheng, Y. Wu, W. Abd-Almageed, and P. Natarajan, “QATM: quality-aware template matching
for deep learning,” CoRR, vol. abs/1903.07254, 2019. arXiv: 1903 . 07254. [Online]. Available:
http://arxiv.org/abs/1903.07254.

A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for content-based image re-
trieval.,” in ESANN, Citeseer, vol. 1, 2011, p. 2.

I. A. Siradjuddin, W. A. Wardana, and M. K. Sophan, “Feature extraction using self-supervised
convolutional autoencoder for content based image retrieval,” in 2019 3rd International Confer-
ence on Informatics and Computational Sciences (ICICoS), IEEE, 2019, pp. 1-5.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recog-
nition, 2015. arXiv: 1409.1556 [cs.CV].

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017, pp. 1251-1258.

I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for image matching,” in 2016
23rd International Conference on Pattern Recognition (ICPR), IEEE, 2016, pp. 378-383.

M. Dusmanu, |. Rocco, T. Pajdla, M. Pollefeys, J. Sivic, A. Torii, and T. Sattler, “D2-net: A train-
able cnn for joint description and detection of local features,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8084-8093.DOI: 10.1109/CVPR.
2019.00828.

I. E. Lager, K. Bertels, V. Scholten, E. Bol, C. Richie, and S. Izadkhast, EE3L 11 Bachelor Grad-
uation Project, 2020-2021. Delft University of Technology, 2020.

H. H. Wang, D. Mohamad, and N. A. Ismail, Approaches, challenges and future direction of image
retrieval, 2010. arXiv: 1006.4568 [cs.IR].

R. Brunelli, Template Matching Techniques in Computer Vision: Theory and Practice. Mar. 2009,
ISBN: 978-0-470-51706-2. DOI: 10.1002/9780470744055.

A. Gordo, J. Alimazan, J. Revaud, and D. Larlus, End-to-end learning of deep visual representa-
tions for image retrieval, 2017. arXiv: 1610.07940 [cs.CV].


https://doi.org/10.1109/ICInfA.2018.8812318
https://doi.org/10.1007/s11263-020-01359-2
https://medium.datadriveninvestor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a
https://medium.datadriveninvestor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a
https://medium.datadriveninvestor.com/template-based-versus-feature-based-template-matching-e6e77b2a3b3a
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.7717/peerj.453
https://arxiv.org/abs/1903.07254
http://arxiv.org/abs/1903.07254
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2019.00828
https://doi.org/10.1109/CVPR.2019.00828
https://arxiv.org/abs/1006.4568
https://doi.org/10.1002/9780470744055
https://arxiv.org/abs/1610.07940

Bibliography 39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[59]

[56]
[57]

[58]

M. S. Aksoy, O. Torkul, and |. H. Cedimoglu, “An industrial visual inspection system that uses
inductive learning,” Journal of Intelligent Manufacturing, vol. 15, no. 4, pp. 569-574, 2004, ISSN:
1572-8145. DOI; 10.1023/B:JIMS.0000034120.86709.8c.

A. Del Bimbo and P. Pala, “Visual image retrieval by elastic matching of user sketches,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 121-132, 1997.
DOI: 10.1109/34.574790.

I. Talmi, R. Mechrez, and L. Zelnik-Manor, Template matching with deformable diversity similarity,
2017. arXiv: 1612.02190 [cs.CV].

K. Ito, A. Morita, T. Aoki, H. Nakajima, K. Kobayashi, and T. Higuchi, “A fingerprint recognition
algorithm combining phase-based image matching and feature-based matching,” in International
Conference on Biometrics, Springer, 2006, pp. 316-325.

B. Klare and A. K. Jain, “Sketch-to-photo matching: A feature-based approach,” in Biometric
technology for human identification VII, International Society for Optics and Photonics, vol. 7667,
2010, p. 766 702.

Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with con-
volutional neural network,” in 2014 13th international conference on control automation robotics
& vision (ICARCV), IEEE, 2014, pp. 844-848.

S. R. Dubey, “A decade survey of content based image retrieval using deep learning,” IEEE
Transactions on Circuits and Systems for Video Technology, pp. 1-1, 2021, ISSN: 1558-2205.
DOIl:10.1109/tcsvt.2021.3080920.

Y. Jin, D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and E. Trulls, “Image matching across
wide baselines: From paper to practice,” International Journal of Computer Vision, vol. 129, no. 2,
pp. 517-547, Oct. 2020, ISSN: 1573-1405. DOI: 10.1007/s11263-020-01385-0.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE conference on computer vision and pattern recognition, leee,
2009, pp. 248-255.

G. A. Miller, “Wordnet: A lexical database for english,” Communications of the ACM, vol. 38,
no. 11, pp. 39-41, 1995.

X. Chen, Image enhancement effect on the performance of convolutional neural networks, 2019.
M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with ap-
plications to image analysis and automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381—
395, Jun. 1981, ISSN: 0001-0782. DOI: 10.1145/358669.358692.

D. Mishkin, J. Matas, and M. Perdoch, “Mods: Fast and robust method for two-view matching,”
Computer Vision and Image Understanding, 2015, ISSN: 1077-3142. DOI: 10.1016/7.cviu.
2015.08.005.

D. P. Vassileios Balntas Edgar Riba and K. Mikolajczyk, “Learning local feature descriptors with
triplets and shallow convolutional neural networks,” in Proceedings of the British Machine Vision
Conference (BMVC), E. R. H. Richard C. Wilson and W. A. P. Smith, Eds., BMVA Press, Sep.
2016, pp. 119.1-119.11, ISBN: 1-901725-59-6. DOI: 10.5244/C.30.119.

J. Watt, R. Borhani, and A. K. Katsaggelos, Machine Learning Refined: Foundations, Algorithms,
and Applications, 2nd ed. Cambridge University Press, 2020. DOI: 10.1017/9781108690935.
J. Revaud, J. Almazan, R. S. Rezende, and C. R. d. Souza, “Learning with average precision:
Training image retrieval with a listwise loss,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2019, pp. 5107-5116.

J. Revaud, R. de Rezende, C. de Souza, D. Larlus, and J. Almazan, Deep image retrieval. [On-
line]. Available: https://github.com/naver/deep-image-retrieval.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in
image processing,” RCA engineer, vol. 29, no. 6, pp. 33—41, 1984.


https://doi.org/10.1023/B:JIMS.0000034120.86709.8c
https://doi.org/10.1109/34.574790
https://arxiv.org/abs/1612.02190
https://doi.org/10.1109/tcsvt.2021.3080920
https://doi.org/10.1007/s11263-020-01385-0
https://doi.org/10.1145/358669.358692
https://doi.org/10.1016/j.cviu.2015.08.005
https://doi.org/10.1016/j.cviu.2015.08.005
https://doi.org/10.5244/C.30.119
https://doi.org/10.1017/9781108690935
https://github.com/naver/deep-image-retrieval

	Introduction
	Problem definition
	Problem analysis
	Problem scoping and bounding
	Problem statement


	Program of Requirements
	Design process
	Introduction to Content-Based Image Retrieval
	Image matching
	Template-based matching
	Feature-based matching
	Model training and architecture
	Pre-processing
	Performance indicators

	Evaluated methods
	Quality Aware Template Matching
	Autoencoders
	Convolutional neural network
	Siamese network
	D2-Net
	Conclusion


	Prototype
	Pre-processing
	Extraction
	Feature description
	Feature detection

	Matching
	Training
	Testing
	Dataset
	High Performance Cluster


	Results
	Performance results

	Conclusion
	Discussion

	Appendix
	Project approach and teamwork
	Methodologies
	Quality-Aware Template Matching
	Autoencoders
	Convolutional Neural Network
	Siamese network

	Multi-scale principle

	Code
	Pre-processing
	Read and resize images
	Color

	Extraction
	Matching
	Results
	Initialisation
	Calculation
	Plotting
	Dataset





