

Delft University of Technology

FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated Learning

Li, Huimin; Rieger, Phillip ; Zeitouni, Shaza ; Picek, Stjepan; Sadeghi, Ahmad Reza

DOI
10.1109/FPL60245.2023.00046
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 33rd International Conference on Field-Programmable Logic and Applications
(FPL)

Citation (APA)
Li, H., Rieger, P., Zeitouni, S., Picek, S., & Sadeghi, A. R. (2023). FLAIRS: FPGA-Accelerated Inference-
Resistant & Secure Federated Learning. In L. O’Conner (Ed.), Proceedings of the 2023 33rd International
Conference on Field-Programmable Logic and Applications (FPL) (pp. 271-276). IEEE.
https://doi.org/10.1109/FPL60245.2023.00046
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/FPL60245.2023.00046
https://doi.org/10.1109/FPL60245.2023.00046

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

FLAIRS: FPGA-Accelerated Inference-Resistant &
Secure Federated Learning

Huimin Li∗, Phillip Rieger†, Shaza Zeitouni†, Stjepan Picek‡∗ and Ahmad-Reza Sadeghi†
∗Delft University of Technology, The Netherlands, H.Li-7@tudelft.nl

†Technische Universität Darmstadt, Germany, {phillip.rieger, shaza.zeitouni, ahmad.sadeghi}@trust.tu-darmstadt.de
‡Radboud University, The Netherlands, stjepan@computer.org

Abstract—Federated Learning (FL) has become very popular
since it enables clients to train a joint model collaboratively
without sharing their private data. However, FL has been shown
to be susceptible to backdoor and inference attacks. While in
the former, the adversary injects manipulated updates into the
aggregation process; the latter leverages clients’ local models to
deduce their private data. Contemporary solutions to address
the security concerns of FL are either impractical for real-
world deployment due to high-performance overheads or are
tailored towards addressing specific threats, for instance, privacy-
preserving aggregation or backdoor defenses.

Given these limitations, our research delves into the advan-
tages of harnessing the FPGA-based computing paradigm to
overcome performance bottlenecks of software-only solutions
while mitigating backdoor and inference attacks. We utilize
FPGA-based enclaves to address inference attacks during the
aggregation process of FL. We adopt an advanced backdoor-
aware aggregation algorithm on the FPGA to counter backdoor
attacks. We implemented and evaluated our method on Xilinx
VMK-180, yielding a significant speed-up of around 300 times on
the IoT-Traffic dataset and more than 506 times on the CIFAR-10
dataset.

Index Terms—FPGA Acceleration, Federated Learning (FL),
FPGA-based FL, Backdoor-aware FL, Privacy-preserving FL

I. INTRODUCTION

FPGAs are powerful and versatile devices, providing flex-

ible platforms for custom hardware solutions. With unique

characteristics like parallel processing, support for various data

types, low latency, and lower power consumption compared to

general-purpose computing platforms, they excel in acceler-

ating computations and tackling complex challenges. FPGAs

have become indispensable across various domains, from

high-performance computing and data centers to the Internet

of Things (IoT) and embedded systems. Their widespread

adoption is evident in their deployment within commercial

cloud platforms such as Amazon EC2 [1], Microsoft Azure [2],

and Alibaba Cloud [3], underscoring their significance and

impact in today’s technological landscape.

In addition to their inherent benefits, FPGAs enable estab-

lishing a trusted execution environment (TEE), ensuring the

security of critical workloads, including the FPGA configura-

tion, which may comprise an Intellectual Property (IP) design,

and the processed data, without compromising performance.

Recent advancements in FPGA research have demonstrated

the feasibility of establishing TEEs on commodity FPGAs

deployed in cloud environments [4], [5]. Consequently, FPGAs

can provide not only acceleration but also secure processing

of clients’ workloads in hostile cloud environments. This

paradigm shift toward trusted execution on cloud FPGAs offers

numerous advantages. It grants organizations greater control

over their applications and data security, even when physical

access to the FPGA is limited or non-existent. We refer to

TEEs on FPGAs as FPGA-based TEEs to distinguish them

from TEEs on CPUs.

Federated Learning. One of the compelling applications

for FPGA-based TEEs is Federated Learning (FL), a collabora-

tive learning approach. Unlike traditional centralized learning,

FL allows clients to train their own DNN models locally

using their private datasets and share only the training results

with a central server that aggregates clients’ models or local

models into a global model and returns it to the clients. Hence,

sensitive data remains confined to clients’ computing premises.

Therefore, FL is foreseen to improve the clients’ privacy [6].

However, FL is still prone to privacy attacks during the

aggregation process. Such attacks aim to infer information

about the training data of a model, e.g., if a specific sample was

used [7] or try to reconstruct samples from the training data

[8]. Although individual clients’ contributions are anonymous,

preventing associating the inferred information with a specific

client, a malicious aggregation server can still exploit access to

the local models to analyze them and violate clients’ privacy.

Another type of attack on FL targets the model’s integrity.

Poisoning attacks aim to manipulate the global model to

misbehave, i.e., targeted or backdoor attacks [9], [10], [11],

or they aim at rendering the model useless, i.e., untargeted
attacks [12], [13]. Targeted attacks are crucial because the

adversary injects a stealthy function to influence the outcome

without violating the model’s utility.

Existing Defenses. Proposed defenses for FL typically

address only one type of attack, focusing either on protecting

clients’ privacy [14], [15], [16] against a potentially malicious

server, or mitigating specific backdoor attacks launched by

malicious clients [10], [17], [18], [19]. Mitigating both types

of attacks poses a dilemma. On the one hand, detecting and

filtering poisoned models requires the aggregator to inspect

local models. On the other hand, privacy defenses prevent the

aggregator from inspecting the local models. This presents a

challenge in striking the right balance between security and

privacy in FL presents a challenge.

To solve this dilemma, several privacy-preserving ap-

271

2023 33rd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/23/$31.00 ©2023 IEEE
DOI 10.1109/FPL60245.2023.00046

20
23

 3
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ie

ld
-P

ro
gr

am
m

ab
le

 L
og

ic
 a

nd
 A

pp
lic

at
io

ns
 (F

PL
) |

 9
79

-8
-3

50
3-

41
51

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FP

L6
02

45
.2

02
3.

00
04

6

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

proaches such as Homomorphic Encryption (HE) or Secure

Multi-Party Computation (SMPC) [20], [21], [22] have been

proposed to process models without divulging any informa-

tion. However, such solutions result in significant performance

overhead and scalability issues, particularly for complex back-

door defenses involving vector metric computations or clus-

tering. Implementing these defenses using SMPC, such as in

the case of [21], [20], becomes highly impractical due to the

associated overhead. An alternative approach is to utilize TEEs

on CPUs to ensure local models’ privacy while the aggregator

inspects them. For instance, TEE-based implementations of

Krum [17] have been explored [23], [24]. However, TEEs’ lim-

ited computation capacities introduce significant overhead for

computation-intensive algorithms like Krum, which involves

calculating Euclidean distances between local models.
Therefore, utilizing FPGA-based TEEs seems to be an

intuitive approach for achieving secure and privacy-preserving

FL. Among recent software-based proposals, FLAME aims

to address backdoor and inference attacks to be independent

of the attack strategy. To counter backdoor attacks, FLAME

combines outlier-detection-based filtering with model clip-

ping and noising. However, FLAME suffers from significant

performance overhead due to the deployment of SMPC for

protecting clients’ privacy. SMPC protocols enable the secure

evaluation of a public function, e.g., the aggregation process,

on private data, e.g., local models, from N mutually distrusting

parties. SMPC finds utility in outsourcing scenarios [25],

where multiple parties/clients can secret-share their private

inputs among two or more non-colluding, well-connected, and

powerful servers responsible for executing the SMPC protocol,

yet resulting in a significant computation overhead and hence

does not scale. In the case of FLAME, for aggregating 50

models trained on the CIFAR-10 dataset, SMPC increases

the execution time of FLAME from 2.6s to 766.1s. Addi-

tionally, SMPC requires non-colluding aggregation servers.

Consequently, the privacy guarantees of FLAME only apply

to semi-honest aggregation servers that adhere to the SMPC

protocol [21], [25].
Goals and Contributions. In this work, we propose to lever-

age FPGA-based TEEs to enable privacy-preserving backdoor-

aware aggregation for FL. Our optimized FPGA-accelerated

approach enables the aggregation server to perform a privacy-

preserving backdoor analysis of the local models with only

a negligible computation overhead. The described techniques

allow the acceleration of arbitrary backdoor defenses. We

exemplary prototype our approach using the recently proposed

defense FLAME [21].
Our contributions can be summarized as follows:

• We leverage FPGA-based TEEs, demonstrating a prac-

tical and efficient backdoor-aware FL aggregation while

protecting clients’ privacy in a stronger adversary model

than SMPC.

• Our approach generally allows implementing arbitrary

backdoor resilient aggregation schemes on secure FPGAs.

• We demonstrate the security and performance gain of

FLAIRS by realizing exemplary the entire FLAME [21]

TEE
Client

3

5

FPGAFPGAFPGAFPGAFPGA

1

6
Client

2
4
7

2
4
7

3

Aggregation Server

Fig. 1: Workflow of FLAIRS.

algorithm on FPGA, resulting in speed-ups of over 288

times on the IoT-Traffic dataset and more than 506

times on the CIFAR-10 dataset. The above results are

obtained from a single FPGA. However, the runtime can

be reduced by almost m if m FPGAs run in parallel.

• We propose the cascade structure, enabling the calcula-

tion of cosine distance with time complexity of O(n)
instead of O(n2). This structure also significantly reduces

the access time to the main memory.

II. BACKGROUND

Remote Attestation verifies the authenticity and integrity

of code or memory on a remote device. The verifier receives

a signed cryptographic hash of the content from a trusted

component on the prover device. The received digest is

compared against the expected reference value to determine

the prover’s status.

Trusted Execution Environments (TEEs) provide secure

enclave applications isolated from all other untrusted software

in the system. The TEEs aim to protect the confidentiality and

integrity of the enclave’s code and data. Remote attestation

can be used by clients before sharing confidential data with

enclaves. Code and data are processed unencrypted in the

CPU’s caches and registers but are encrypted and integrity-

protected with an enclave-specific secret key before storing

in untrusted storage. Commercial TEEs like Intel SGX [26],

AMD SEV [27], and ARM TrustZone [28] are widely de-

ployed in computing systems, including FPGA-SoCs such as

ARM TrustZone on Intel Stratix 10 SoC and AMD Xilinx

ZCU102.

TEEs on FPGAs. FPGA trusted execution protects IP config-

uration and processed data. FPGA manufacturers like Intel and

AMD Xilinx offer hardened cryptographic cores for IP confi-

dentiality and integrity. For cloud deployments without phys-

ical access, a trusted third party or vendor is necessary [29],

[30], [31], [4]. Thereafter, two methods of establishing FPGA

TEEs exist (1) loading IP design on SoCs with built-in TEEs

to guarantee FPGA trustworthiness [32], [5]; and (2) using a

trust anchor (secure shell) for FPGAs without TEEs [4] which

provides remote key generation, configuration, isolation, and

cryptographic operations. Here, remote attestation ensures the

authenticity and integrity of the FPGA configuration [33], [4].

III. PROBLEM SETTING

A. System & Adversary Model

We consider a system consisting of an aggregation server

and n clients jointly training a DNN model. Each client Ci

272

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

trains locally a model with its dataset and sends the aggregator

its local model. The aggregation runs on the cloud and can

therefore benefit from one or multiple FPGAs to accelerate

the aggregation. The system setting is visualized in Fig. 1,

together with the individual steps of FLAIRS, which will be

described in Sect. III-B.

We consider two types of adversaries: (1) A that aims to

inject a backdoor, and (2) AS that aims to infer information

about clients’ training data.

To inject a backdoor, A changes the predictions of all

samples within a trigger set I ⊂ D towards a specific label.

A must ensure that the attack is not detected, which includes

preventing a significant drop in the aggregated model’s utility

on regular samples. We assume A fully controls nA < n/2
clients and can manipulate their training process and data.

However, A does not know the data or models of other clients.

On the malicious server side, aligned with existing work,

AS aims to extract information from the individual local

models [34], [21], [20] since the aggregation anonymizes the

individual contributions of clients and prevents an adversary

from associating information gained from the aggregated

model with particular clients. We assume that AS controls the

aggregation server and a few clients, has full software-level ac-

cess, and can arbitrarily deviate from the aggregation process.

We exclude denial-of-service attacks intended to shut down

computational resources, as they can be detected. Moreover,

we assume that physical attacks on the infrastructure, including

the FPGAs, are out of scope. However, remote physical attacks

performed using malicious FPGA configurations can be miti-

gated using FPGA scanners [35], [36], as demonstrated in [4].

As we show next, all clients can vet the FPGA configurations

that represent the accelerators and verify their integrity and

authenticity as a part of attesting the TEE.

B. FLAIRS Overview

To achieve secure and practical backdoor-aware FL, we

adapt FLAME [21] to run on a FPGA-based TEE [29],

[30], [31], [4], [32], [5]. Note that the entire aggregation

algorithm (demonstrated in Sect. IV-A) is unlikely to fit on

a single FPGA, considering a large number of clients and

model parameters. Therefore, the aggregation algorithm can

be split into several accelerators and benefit from using several

FPGAs or swapping in and out the different accelerators on

a single FPGA. Hence, when multiple FPGAs/accelerators

are used, a scheduler algorithm must coordinate the work of

the accelerators and receive clients’ models. The scheduler

can be implemented as a software application in a TEE or

a hardware IP continuously running on the FPGA. In both

cases, the scheduler can be attested by clients to ensure

its authenticity and integrity. In the following, we describe

FLAIRS’s workflow (Fig. 1).

Step 1 . This step establishes a TEE on the cloud FPGA,

where clients’ models can be processed securely [4], [5].

Step 2 . The clients attest the TEE, i.e., verify the integrity

and authenticity of the FPGA configurations that process

clients’ models. Thus, the clients have the assurance that the

code processing their models is benign, i.e., not corrupted by

AS , and can exchange secret session keys with the TEE to

encrypt their models.

Step 3 . The clients encrypt their models using individual

secret session keys exchanged with the TEE.

Step 4 . The clients send their encrypted models to the

aggregator.

Step 5 . The models are then stored in memory, ready for

aggregation.

Step 6 . The TEE and FPGAs use FLAME to aggregate the

models and mitigate backdoor attacks.

Step 7 . The aggregated model is sent back to all clients.

IV. DESIGN & IMPLEMENTATION

A. Analysis of FLAME Algorithm

We adopt FLAME [21] for backdoor-aware aggregation,

which consists of three defense layers, namely Model Filter-

ing, Model Clipping, and Noising, shown in Fig. 2. Adding

noise can remove the backdoor but will also drop the models’

utility in terms of accuracy on the main task. While filtering

and clipping decrease the amount of noise required to mitigate

poisoned models. We thoroughly analyze FLAME and define

efficient hardware components or processing elements (PEs).

To optimize FLAME performance, we break down the

compute-intensive cosine distance (Model Filtering) into two

parallel components: preprocessor and cosine similarity. Pre-
processor component Prep. PE calculates the differential

vector and Euclidean distances L2 norms between local

models and the global model. Cosine-similarity component

CosinePE runs parallel to Prep. PE and computes the dot

products of clients’ differential vectors, which, along with

L2 norms, are used to calculate cosine distances for all local

models. HDBSCAN (Model Filtering) labels local models

based on cosine distances as benign models 1 or malicious

models 0. Scale (Model Clipping) calculates the median

value (St) of L2 norms and generates scaled models for all

local models. HDBSCAN and Scale PEs run in parallel with

no data dependency. The Aggregation Agg. PE comprises

clipping (Model Clipping), aggregation, and noise addition

(Nosing) steps. It generates the final aggregated model by

using models’ labels, median values, and model scales from

previous components.

�������	�
��	�
 ��������	��	�
 ��	�	�

��
��

���
��

��
��

��
��

�

��

��
��

��
��

��
	�

��
��

�
��

��
��

�

�

�

�

��
��

��
��

�

��
	�

��
��

�

��

�
�
�

�

�

�

�

��
�

��
��

��

��

��
	��

�

��
���

��

�

��
�	

��
	��

�
��

�	�
��

�	
�

��
��

�

��
��

��
��

��
��

�
�	�

��
���

��

�

��
���

��
�

���
 �

�
��

��
�!

��
�

��

��
���

��

�

��
��

	�
��

�
�

� �
��

��
�

�

Fig. 2: High-Level Overview of FLAME [21]

273

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

����

���

��	
�
��

�
���	
��

�������
��

����	
��

�������

���
����"������#����������

��	��
�������$�
%��&��������

�	 ����
	���
'��
���

���	��
�	�
���� ��&���

������

���	��

�

��
�
���
�����

���

���

����	����
�

�
��	

�	�
�����!��"

�	 ����
	���
'��
���

�	 ����
	���
'��
���

�	 ����
	���
'��
���

��(�����

Fig. 3: System Architecture of FLAIRS

B. Implementation

We implemented FLAIRS (Fig. 3) on Xilinx Vitis 2022.2

using the VMK180 Evaluation Kit, which has a built-in

ARM TrustZone in its hardened processing unit. The system

comprises a host program running on a TEE-enabled CPU

and an FPGA platform consisting of shell and kernel
components. The host program manages the FPGA’s compo-

nents and the operation process [37]. The shell provides the

essential functions for execution, security, and communication

interfaces, while the kernel is the dynamic region for

custom logic implementation. We utilized HLS to translate the

C++ kernel module into device logic fabric and RAM/DSP

block [38]. The operating frequency of the kernel is set

to 300 MHz, and a burst mode was adopted to utilize AXI4

interface throughput fully. The width of the AXI4 Memory

Mapped interface was configured to 512 bits, and the burst

length is set to transfer 4KB each time [38].

1) Preprocessor PE: The Preprocessor PE stores the global

model locally on the FPGA, followed by the sequential trans-

mission of local models from DDR-RAM to FPGA. Each local

model undergoes subtraction with the global model to obtain

its differential vector, which is then routed to the CosinePE
and back to DDR-RAM. After that, each differential value is

squared and accumulated, and the accumulated value is pro-

cessed using the square root function to yield the L2 norms
value for each client. This process operates parallel within a

pipeline structure defined by the total number of clients and

parameters per local model.
2) Cosine-similarity PE: The pairwise cosine distances can

be represented as a matrix. The values on the diagonal are
equal to 0, while the remaining positions are determined
by Eq. (1), where d denotes the differential vector and p
represents the total number of parameters. The denominator
of Eq. (1) is obtained from L2 norms, and the numerator
is derived from the dot product of two differential vectors of
clients i and j. The cosine distance matrix is symmetric, so
we only compute the upper triangular or lower part.

distij = 1− didj
‖di‖ ‖dj‖ = 1−

∑p
k=1 d

k
i d

k
j√∑p

k=1

(
dki

)2√∑p
k=1

(
dkj

)2 (1)

We use a cascade structure (Fig. 4b) to obtain dot products

with multiple stages, where each stage locally stores the first-

arriving differential vector in RAM. The cosine distance is

calculated for the entire row using this initial vector and

���	��(����)

���	��(�����

*
�)

+��) ��# ���

*��(�����

���(���

��#
�,-.

�,	. denom

�$% ���

&

���	��(�������

�	�
)� $��	�
)/
$�

�	�
)0 $��	�
)8�

(a) Cosine Process.

����	�'

����	�&

�
���	(
�
�	��

�	 ����
	���9��
���
* * *

�) �� �/�����������������������������*

*

*

�)

+��)

��(�����

*

�
���	(
�
�	��*

��

+���

**

�� �/���������������� *

�/������������������������*

* **

�� �/������������������������������*

�	�
)� $��	�
)/ $��	�
)0 $��	�
)8�

�	�
�/ $��	�
�0 $��	�
�8�

* **

**

(b) The Cascade Structure of Cosine-similarity.

Fig. 4: Cosine-similarity PE.

subsequent differential vectors in the cosine process phase

(Fig. 4a). Each stage, except the last one, sends out differential

vectors (excluding the first vector) to its subsequent stage.

The total number of stages depends on the device resources,

number of clients, and number of parameters. If the number of

stages is insufficient to calculate cosine distance for all local

models, we utilize hls :: burst maxi<> to manually read the

remaining differential vectors in bursts from DDR-RAM after

each operation of the cascade structure. The new differential

vectors are then processed through the same cascade structure

for further cosine distance computations.

3) HDBSCAN PE: HDBSCAN PE determines one cluster

representing the majority of models, thus containing at least
n/2 + 1, the minimum number of benign local models. The

remaining models not part of this cluster are then considered

noise. For clustering, FLAME uses HDBSCAN based on

the implementation of McInnes et al. [39]. Based on the

FLAME’s parametrization of HDBSCAN, a simplified version

is implemented in the HDBSCAN PE, neglecting all unused

aspects. For example, there is no need to determine whether

two closely packed dense groups of models constitute separate

clusters or a single cluster.

4) Scale PE: Here, we first sort L2 norm values from

smallest to largest and then select the median value (St) from

the sorted list. Subsequently, we calculate γ[i] = St

L2 norms[i] ,

where i represents the client order. Finally, we obtain the

model scale for each client as min(1, γ[i]).

5) Aggregation PE: In the aggregation PE, locally stored

differential vectors from cascade structures are sequentially

multiplied by corresponding scale values and added to the

global model for models labeled as 1 to get the resultant value

add sum. If RAM does not have enough space to store all dif-

274

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Runtime in seconds of FLAME using FLAIRS (F) compared to FLAME using SMPC (S) for n clients.

Dataset n Cosine Distance HDBSCAN Scale Aggregation
(+ Clipping +Noise)

Kernel
Runtime

Data Transfer
(Host↔ DDR) Runtime Speed-up

F F S F F F F F S

IoT-Traffic
10 5.3553× 10−2 1.5628× 10−5 3.64 1.420× 10−6 1.6465× 10−2 7.0034× 10−2 1.0677× 10−2 8.0711× 10−2 108.16 1 340.1
50 0.453 1.509× 10−3 41.84 1.4019× 10−5 0.238 0.693 1.1809× 10−2 0.705 269.35 382.1

100 2.072 1.1851× 10−2 253.87 5.2265× 10−5 0.939 3.023 1.2245× 10−2 3.035 876.96 288.9

CIFAR-10 10 0.21 1.5628× 10−5 3.64 1.420× 10−6 4.0984× 10−2 0.251 1.2104× 10−2 0.263 134.93 513
50 1.235 1.509× 10−3 41.84 1.4019× 10−5 0.263 1.5 1.2258× 10−2 1.512 766.12 506.7

ferential vectors, we use hls :: burst maxi<> to retrieve the

remaining vectors from DDR-RAM. add sum is accumulated

for all local models, which is then divided by accepted num
(number of benign local models with label 1) to generate a

quotient. This quotient is added to the noise created using the

MT19937IcnRng function from Xilinx’s Vitis Library [40],

generating random numbers following a normal distribution

N(0, 1). The output of MT19937IcnRng is multiplied with

the required range λ to conform to FLAME’s noise range.

6) The Scheduler: The scheduler is the host program that

runs on the TEE-enabled CPU and orchestrates the work of

the FPGA accelerators, i.e., the kernels. Once the aggregation

process is initialized, the scheduler is set as an enclave

application. Clients attest the authenticity and integrity of

the scheduler to ensure its code has not been modified. The

scheduler then receives encrypted local models, decrypts & re-

encrypts them with a unified secret key, and stores them in the

DDR-RAM. The scheduler detects the Xilinx device, attests

the FPGA binary file, and programs it into the device. Then, it

creates the buffers the kernel needs in the DDR-RAM and sets

up the kernel’s input parameters (mapping ports). Later, the

scheduler writes data into buffers, triggers kernel execution,

and waits for notification upon completion. Finally, it reads

and sends the aggregated model to clients.

C. Evaluation

To ease the comparison with FLAME, we replicated the

setup in [21] and evaluated FLAIRS on two datasets: IoT-

Traffic and CIFAR-10, with varying values of n of 10, 50,

and 100. For the FLAME algorithm, we show the runtime of

each component and overall system in Tab I. Note that the

runtime of FLAIRS includes the time taken by the Kernel

and data transfer between the host and the FPGA. For the

IoT-Traffic dataset, we have achieved significant performance

enhancement of 1 340.1, 382.1, and 288.9 times with n being

10, 50, and 100, respectively. On the CIFAR-10 dataset, we

obtained a speed-up of 513 and 506.7 for n values of 10

and 50, respectively. Compared to the implementation without

SMPC, FLAME requires approximately 2.62 seconds for 50

CIFAR10 models, whereas our approach only takes about

1.5 seconds, underscoring the superiority of using FPGAs for

accelerating operations.

Our evaluation has demonstrated the impressive ability of

our accelerators to effectively enhance performance across dif-

ferent datasets and varying values of n. The results mentioned

above are obtained from a single FPGA. However, it is worth

emphasizing that the computation of both Cosine Distance

and Aggregation can be partitioned into multiple FPGAs and

calculated simultaneously, thereby reducing latency. These two

components can account for up to 98% of the total runtime.

Therefore, running m FPGAs simultaneously can lead to

a runtime reduction of almost m. This distributed FPGA

computing approach offers a promising solution to further

enhance the performance of our proposed framework.

V. RELATED WORK

Privacy-Preserving Backdoor Defenses in FL. Baffle

et al. [34] requires clients to inspect wrong predictions of

the aggregated model, making it compatible with SMPC.

However, attackers can avoid detection by not changing not-

triggered sample predictions. Trusted hardware approaches,

such as poisoning defenses on TEEs, have been proposed but

are impractical due to significant overhead [24], [23]. SMPC

has been used for various approaches against poisoning attacks

but has limited scalability due to expensive operations [21],

[20], [41].

FPGA Acceleration for FL. Previous research studies have

used FPGAs to speed up FL with HE for client privacy

like the HE framework presented in [42] and the HW/SW

co-design utilized in [16]. However, neither of these works

addresses backdoor attacks. Currently, no work has explored

using FPGAs for SMPC acceleration.

VI. CONCLUSIONS

In this paper, we have presented FLAIRS, a framework

that capitalizes on the benefits of FPGA-based computing to

overcome performance bottlenecks inherent in software-only

solutions. We demonstrate how FPGA-based TEEs can be

leveraged to enable practical and privacy-preserving backdoor-

aware FL aggregation on cloud FPGAs. FLAIRS offers more

robust security guarantees than SMPC while minimizing the

performance overhead. Its flexibility allows for the implemen-

tation of arbitrary aggregation schemes on secure FPGAs.

Furthermore, our successful FPGA-accelerated implementa-

tion demonstrates the exceptional computational capabilities

of FPGAs for accelerating FL algorithms.

Acknowledgment. This work is supported by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation)

– SFB 1119 – 236615297, HMWK within the ATHENE

project, the Hessian Ministery of Interior and Sport within

the F-LION project, Intel as part of the Private AI Center, and

Huawei as part of the OpenS3 Lab.

REFERENCES

[1] Amazon AWS, “Amazon EC2 F1,” https://aws.amazon.com/ec2/
instance-types/f1/.

275

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

[2] Microsoft Research, “Project Catapult,” https://www.microsoft.com/
en-us/research/project/project-catapult/.

[3] A. Cloud, “FPGA-based Compute-Optimized Instance Families,” https:
//www.alibabacloud.com/help/doc-detail/108504.htm, 2019.

[4] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and
N. Mentens, “Trusted configuration in cloud fpgas,” in Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2021.

[5] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: Shielded enclaves for cloud
fpgas,” in ACM SPLOS. ACM, 2022.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in AISTATS, 2017.

[7] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in IEEE S&P,
2017.

[8] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-leak: Data set inference and reconstruction attacks in online
learning,” in USENIX Security, 2020.

[9] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To
Backdoor Federated Learning,” in AISTATS, 2020.

[10] S. Shen, S. Tople, and P. Saxena, “Auror: Defending Against Poisoning
Attacks in Collaborative Deep Learning Systems,” in ACSAC, 2016.

[11] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning
Attacks on Federated Learning-Based IoT Intrusion Detection System,”
in Workshop on Decentralized IoT Systems and Security, 2020.

[12] V. Shejwalkar and A. Houmansadr, “Manipulating the byzantine: Opti-
mizing model poisoning attacks and defenses for federated learning,” in
NDSS, 2021.

[13] M. Fang, X. Cao, J. Jia, and N. Gong, “Local Model Poisoning Attacks
to Byzantine-Robust Federated Learning,” in USENIX Security, 2020.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, B. McMahan, S. Pa-
tel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Aggregation
for Privacy-Preserving Machine Learning,” in CCS, 2017.

[15] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Möllering,
T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider, H. Yalame et al.,
“Safelearn: Secure aggregation for private federated learning,” in IEEE
Security and Privacy Workshops (SPW). IEEE, 2021.

[16] Z. Wang, B. Che, L. Guo, Y. Du, Y. Chen, J. Zhao, and W. He, “Pipefl:
Hardware/software co-design of an fpga accelerator for federated learn-
ing,” IEEE Access, vol. 10, pp. 98 649–98 661, 2022.

[17] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
Learning with Adversaries: Byzantine Tolerant Gradient Descent,” in
NIPS, 2017.

[18] N. M. Jebreel and J. Domingo-Ferrer, “Fl-defender: Combating targeted
attacks in federated learning,” Knowledge-Based Systems, vol. 260, p.
110178, 2023.

[19] P. Rieger, T. D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deepsight:
Mitigating backdoor attacks in federated learning through deep model
inspection,” in NDSS, 2022.

[20] Y. Khazbak, T. Tan, and G. Cao, “Mlguard: Mitigating poisoning attacks
in privacy preserving distributed collaborative learning,” in International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2020.

[21] T. D. Nguyen, P. Rieger, H. Chen, H. Yalame, H. Möllering, H. Ferei-
dooni, S. Marchal, M. Miettinen, A. Mirhoseini, S. Zeitouni, F. Koushan-
far, A.-R. Sadeghi, and T. Schneider, “FLAME: Taming backdoors in
federated learning,” in USENIX Security. USENIX Association, 2022.

[22] Y. Tian, R. Wang, Y. Qiao, E. Panaousis, and K. Liang, “Flvoogd:
Robust and privacy preserving federated learning,” arXiv preprint
arXiv:2207.00428, 2022.

[23] A. Mondal, Y. More, R. H. Rooparaghunath, and D. Gupta, “Poster:
Flatee: Federated learning across trusted execution environments,” in
2021 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2021, pp. 707–709.

[24] H. Hashemi, Y. Wang, C. Guo, and M. Annavaram, “Byzantine-robust
and privacy-preserving framework for fedml,” in ICLR Workshops, 2021.

[25] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[26] Intel, “Intel software guard extensions,” https://software.intel.com/
content/www/us/en/develop/topics/software-guard-extensions.html.

[27] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,”
https://developer.amd.com/wordpress/media/2013/12/AMD Memory
Encryption Whitepaper v7-Public.pdf, 2016.

[28] ARM, “ARM TrustZone technology,” https://developer.arm.com/
ip-products/security-ip/trustzone.

[29] K. Eguro and R. Venkatesan, “FPGAs for Trusted Cloud Computing,”
in IEEE International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2012, pp. 280–287.

[30] B. Hong, H.-Y. Kim, M. Kim, T. Suh, L. Xu, and W. Shi, “Fasten: An
fpga-based secure system for big data processing,” IEEE Design & Test,
2017.

[31] M. E. Elrabaa, M. Al-Asli, and M. Abu-Amara, “Secure Computing
Enclaves Using FPGAs,” IEEE Transactions on Dependable and Secure
Computing (TDSC), 2019.

[32] N. Khan, S. Nitzsche, A. G. López, and J. Becker, “Utilizing and
extending trusted execution environment in heterogeneous socs for a
pay-per-device ip licensing scheme,” IEEE TIFS, vol. 16, pp. 2548–
2563, 2021.

[33] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “Sacha: Self-
attestation of configurable hardware,” in DATE, 2019.

[34] S. Andreina, G. A. Marson, H. Möllering, and G. Karame, “BaFFLe:
Backdoor Detection via Feedback-based Federated Learning,” in ICDCS,
2021.

[35] J. Krautter, D. R. Gnad, and M. B. Tahoori, “Mitigating Electrical-
level Attacks Towards Secure Multi-Tenant FPGAs in the Cloud,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 2019.

[36] T. La, K. Mätas, N. Grunchevski, K. Pham, and D. Koch, “FP-
GADefender: Malicious Self-Oscillator Scanning for Xilinx UltraScale+
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 2020.

[37] AMD Xilinx, Inc., “Vitis Unified Software Platform Documentation,”
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration,
2022.

[38] ——, “Vitis High-Level Synthesis User Guide,” https://docs.xilinx.com/
r/en-US/ug1399-vitis-hls, 2022.

[39] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” The Journal of Open Source Software, vol. 2, no. 11,
p. 205, 2017.

[40] AMD Xilinx, Inc., “Vitis accelerated-libraries,” https://github.com/
Xilinx/Vitis Libraries, 2022.

[41] Y. Dong, X. Chen, K. Li, D. Wang, and S. Zeng, “Flod: Oblivious
defender for private byzantine-robust federated learning with dishonest-
majority,” in European Symposium on Research in Computer Security.
Springer, 2021.

[42] Z. Yang, S. Hu, and K. Chen, “Fpga-based hardware accelerator of
homomorphic encryption for efficient federated learning,” arXiv preprint
arXiv:2007.10560, 2020.

276

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 10:51:15 UTC from IEEE Xplore. Restrictions apply.

