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Abstract
We consider the thin-film equation ∂th + ∂y

(
m(h)∂3

y h
)
= 0 in {h > 0} with

partial-wetting boundary conditions and inhomogeneous mobility of the form
m(h) = h3 + λ3−nhn, where h � 0 is the film height, λ > 0 is the slip length,
y > 0 denotes the lateral variable, and n ∈ (0, 3) is the mobility exponent
parameterizing the nonlinear slip condition. The partial-wetting regime implies
the boundary condition ∂yh = const. > 0 at the triple junction ∂{h > 0}
(nonzero microscopic contact angle). Existence and uniqueness of traveling-
wave solutions to this problem under the constraint ∂2

y h → 0 as h →∞ have
been proved in previous work by Chiricotto and Giacomelli (2011 Commun.
Appl. Ind. Math. 2 e-388, 16). We are interested in the asymptotics as h ↓ 0
and h →∞. By reformulating the problem as h ↓ 0 as a dynamical system for
the difference between the solution and the microscopic contact angle, val-
ues for n are found for which linear as well as nonlinear resonances occur.
These resonances lead to a different asymptotic behavior of the solution as
h ↓ 0 depending on n. Together with the asymptotics as h →∞ characterizing
the Cox–Voinov law for the velocity-dependent macroscopic contact angle as
found by Giacomelli, the first author of this work, and Otto (2016 Nonlinearity
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29 2497–536), the rigorous asymptotics of traveling-wave solutions to the thin-
film equation in partial wetting can be characterized. Furthermore, our approach
enables us to analyze the relation between the microscopic and macroscopic
contact angle. It is found that the Cox–Voinov law for the macroscopic contact
angle depends continuously differentiably on the microscopic contact angle.

Keywords: lubrication approximation, viscous thin films, traveling waves,
invariant manifolds, transversality, rigorous asymptotics

Mathematics Subject Classification numbers: 34B08, 34B40, 35C07, 35K25,
35K65, 37D10, 76D08.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. The thin-film equation formulated as a classical free-boundary problem

The following thin-film equation with boundary conditions in a moving domain (Y,∞) is
studied:

∂th + ∂y

(
(h3 + λ3−nhn)∂3

y h
)
= 0 for t > 0 and y > Y, (1.1a)

h = 0 for t > 0 and y = Y, (1.1b)

∂yh = k > 0 for t > 0 and y = Y, (1.1c)

lim
y↓Y

(h2 + λ3−nhn−1)∂3
y h =

dY
dt

for t > 0. (1.1d)

Here, h = h(t, y) denotes the height of a liquid thin film on a flat surface at time t > 0 and
base point y ∈ (Y,∞), where Y is a function of time t � 0, which is visualized in figure 1. For
simplicity we assume translation invariance in the third physical direction (perpendicular to
the (y, z)-plane). Equation (1.1a) is a lubrication model, describing the flow of the fluid of a
thin and viscous film in which the dynamics in the vertical direction z are averaged out. It has
the form of a continuity equation

∂th + ∂y (hu) = 0,

where h is the film height and u is the velocity of the fluid in the horizontal direction y which
is averaged in the vertical direction z. In the case of equation (1.1a), the velocity of the flow
u is given by u = (h2 + λ3−nhn−1)∂3

y h. The equation can be derived from the Navier–Stokes
free-boundary problem, which has been done in detail for instance in [48, chapter 2, section B].

The exponent n is called mobility exponent and we consider n ∈ (0, 3). This is because on
one hand, if n � 0 the speed of propagation of the film is infinite. On the other hand, in case of
n � 3 or λ = 0 (vanishing slip length), the boundary of the film does not move [20, 38]. Note
that the regime n ∈ (0, 1) is physically not justified as well, as the film height h can in certain
situations become negative (see for instance [5]). Hence, our results for n ∈ (0, 1) should be
considered as purely motivated from the mathematical perspective while the parameter regime
n ∈ [1, 3) is of mathematical as well as physical interest. In particular, this interval contains
the physically relevant values n = 1 (free slip in the Hele-Shaw cell, see e.g. [31, 39, 40], or
the Greenspan slip condition [33]) and n = 2 (linear Navier slip, see e.g. [4, 41, 47, 48]).
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Figure 1. Example of a thin film as described by (1.1).

Figure 2. Surface tensions acting on a liquid at the triple junction.

The film covers the interval (Y,∞) and has a free boundary at y = Y called contact line
or triple junction since it parametrizes the in our case straight but time-dependent line where
liquid, gas, and solid meet. The trivial constraint (1.1b) entails that the height of the thin film
at the triple junction is zero. Condition (1.1c) implies that the contact angle between the solid
and the film at the contact line is equal to θ = arctan k, where k > 0 (partial-wetting regime).
Since in lubrication approximation k is necessarily small, we simply call k the (microscopic)
contact angle. The kinematic condition (1.1d) implies that, on approaching the contact line,
the vertically averaged horizontal velocity u is the same as the free boundary’s velocity dY

dt .

1.2. Microscopic versus macroscopic contact angle

The capillary forces acting at the triple junction are depicted in figure 2. Young’s law (cf [4])

γgs = γls + cos(θ)γgl (1.2)

gives the relation between the microscopic contact angle θ and the surface tensions γgs, γls, and
γgl between gas and solid, liquid and solid, and gas and liquid, respectively. If γgs < γ ls + γgl,
then θ > 0 (nonzero contact angle), a global equilibrium can be attained, and the liquid thin
film is said to partially wet the solid. If on the other hand γgs � γ ls + γgl, then θ = 0 (zero
contact angle), a global equilibrium is not attained, and the thin film eventually covers the
entire solid (complete-wetting regime).

While microscopically Young’s law (1.2) applies, the apparent macroscopic contact angle
is dynamic and in general depends on the flow (for instance through the velocity at the contact
line, cf [53] and references therein). The difference is schematically visualized in figure 3.

The main purpose of this note is to investigate the relation between the microscopic and
macroscopic contact angle k and K, respectively, in the regime of quasi-stationary motion,
where K meets the Cox–Voinov law [12, 37, 54, 56] in an intermediate asymptotic regime
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Figure 3. (A) Schematic of the apparent macroscopic contact angle K. (B) The previous
schematic plot zoomed in near the triple junction. The macroscopic contact angle K and
the microscopic contact angle k are shown. The traveling wave is depicted as a dashed
line.

which needs to be matched to the bulk solution. This justifies the use of a traveling-wave ansatz,
which only captures two asymptotic regimes (Young’s and the Cox–Voinov law) and is further
explained in section 2.2. We expect that this behavior is generic, that is, general solutions
exhibit the same behavior in corresponding asymptotic regimes, depending on which addend in
the mobility dominates the dynamics. The matched asymptotic expansions of Cox [12] indicate
that the same behavior is to be expected for Stokes flow. Note that significant deviations from
the behavior characterized in what follows can be expected if the initial datum dominates the
qualitative behavior (see for instance waiting-time phenomena investigated in [9, 13, 14, 24, 26,
29] in the complete-wetting regime and references therein), or if the film thickness decreases
below the slip length λ, so that the term hn in (1.1a) is dominating (see for instance self-similar
asymptotics investigated in [2, 6–8, 32, 52] in the complete-wetting regime and references
therein). Additionally note that for very thin films (at the order of only a few fluid molecules
thickness), thermal fluctuations modelled by an additional stochastic forcing play a role (see
[16, 35], where the corresponding stochastic thin-film equation was proposed first). Rigorous
analytic results on the latter model can be found in [15, 25, 27, 34, 46, 51].

2. Setting and main result

In this section, the ordinary boundary-value problem describing the traveling wave is for-
mulated and suitably transformed. Afterwards our main theorem is stated. Note that the
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transformations presented in the sequel are similar to those used in [28, section 1], where
complete-wetting boundary conditions have been treated.

2.1. The traveling-wave problem of the thin-film equation

Using the traveling-wave ansatz h = H, where H only depends on x = y + Vt and V is the con-
stant and finite velocity of the film, and assuming that Y|t=0 = 0 by translation invariance, the
above problem (1.1) can be rewritten in terms of the third-order ordinary differential equation
(ODE)

(H2 + λ3−nHn−1)
d3H
dx3

= −V in (0,∞) (2.1a)

with boundary conditions

H = 0 at x = 0, (2.1b)

dH
dx

= k at x = 0, (2.1c)

(H2 + λ3−nHn−1)
d3H
dx3

= −V at x = 0. (2.1d)

Indeed, the boundary conditions (2.1b)–(2.1d) follow trivially from the boundary conditions
(1.1b)–(1.1d), respectively. Furthermore, the partial differential equation (PDE) (1.1a) turns
into the ODE

V
dH
dx

+
d

dx

(
(H3 + λ3−nHn)

d3H
dx3

)
= 0 in (0,∞).

Integrating in x leads to

VH + (H3 + λ3−nHn)
d3H
dx3

= c in (0,∞),

where c is a constant. The boundary conditions (2.1b) and (2.1d) entail c = 0, so that (2.1a) is
obtained by dividing through H.

Under the additional assumption of vanishing curvature in the bulk, that is,

d2H
dx2

→ 0 as x →∞. (2.1e)

Chiricotto and Giacomelli have found in [10] that the boundary-value problem (2.1) for n = 2
has a unique classical solution H = HCG which is three times continuously differentiable in
x > 0 with HCG and dHCG

dx continuous in x � 0. Their reasoning also applies to n ∈ (0, 3), which
is why we can assume from hereon that a unique H = HCG solving (2.1) for n ∈ (0, 3) exists.
For the reader’s convenience, we give a streamlined version of the existence and uniqueness
proof in [10] in a different set of variables in theorem A.1 in appendix A.

Note that by applying the scalings

H �→ λH, x �→ (3V)−
1
3 λx, and k �→ (3V)

1
3 k, (2.2)
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we may without loss of generality assume λ = 1 and V = 1
3 , so that problem (2.1) turns into

finding H such that

(
H2 + Hn−1

) d3H
dx3

= −1
3

for x > 0, (2.3a)

H = 0 at x = 0, (2.3b)

dH
dx

= k at x = 0, (2.3c)

d2H
dx2

→ 0 as x →∞, (2.3d)

which is uniquely solved by H = HCG.

2.2. The Cox–Voinov law

Recall that we have chosen n ∈ (0, 3), so that as x →∞ the term H2 dominates Hn−1 in
equation (2.3a). This is why the expected behavior of the differential equation (2.3a) is
determined by

H2 d3H
dx3

= −1
3

as x →∞. (2.4)

Then, it can be easily recognized that (2.4) is approximately solved by the asymptotic

H = x(ln x)
1
3 (1 + o(1)) as x →∞. (2.5)

In fact, an implicit solution of (2.4) in terms of Airy functions was found by Duffy and Wilson
in [19], from which the asymptotic (2.5) can be derived. Formally differentiating (2.5) with
respect to x, raising it to the power of three, and reverting the normalization of the speed V
gives (

dH
dx

)3

= 3V ln x(1 + o(1)) as x →∞. (2.6)

Again, we note that equation (2.6) can be made rigorous using [19]. Because the lubrica-
tion approximation assumes small slopes, dH

dx is in this approximation, as x →∞, equal to
the macroscopic contact angle. Hence, this asymptotic implies that the cube of the macro-
scopic contact angle is, up to a logarithmic correction, proportional to the speed of the free
boundary. This will be referred to as the Cox–Voinov law [12, 56], in what follows, though
the relation between microscopic and macroscopic contact angle has been analyzed also by
Tanner [54] and Hocking [36]. Corresponding rigorous results regarding intermediate-in-time
asymptotics, known as Tanner’s law [54], can be found in [18, 30].

Note that the subsequent results are limited in the sense that we are considering a droplet
that infinitely extends to x →∞. In realistic situations, the apparent/macroscopiccontact angle
can be measured at an inflection point close to the contact line (point of maximum slope, see
[54]). Thus, the Cox–Voinov law is only an intermediate asymptotic and needs to be matched
to a bulk solution (see [22] for matched-asymptotics arguments). Carrying this out rigorously
is rather delicate and exceeds the presentation of this note.

For the subsequent results, it is important to note that the solution to (2.4) is invariant under
translation in x, that is, replacement of x �→ x + c for any c ∈ R, and the scaling transformation
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(x, H) �→ (Bx, BH) for any B > 0, which leads to a two-parameter family of solutions meet-
ing the asymptotic (2.5). The translation invariance will be removed by a suitable coordinate
transformation in the following section. The remaining parameter B will be used in order to
rigorously match the asymptotic (2.5) to the microscopic Young angle k of the unique classical
solution to (2.3). The precise mathematical result is given in theorem 2.1 in section 2.5 below.

2.3. Coordinate transformation

Obviously, equation (2.3a) is translation-invariant in x. For the classical solution H = HCG of
problem (2.3), we also have the following properties:

(a) It holds HCG > 0 for all x > 0. This is true because HCG > 0 for 0 < x � 1 due to (2.3b),
(2.3c) and k > 0. On the other hand, continuity of HCG and d3HCG

dx3 , and (2.3a) prevent HCG

from becoming zero, which yields HCG > 0 for all x > 0.
(b) We have d3HCG

dx3 < 0 for all x > 0 by (2.3a) and (a).

(c) We get d2HCG
dx2 > 0 for all x > 0 by (2.3d) and (b).

(d) We have dHCG
dx > 0 for all x > 0 by (2.3c), k > 0, and (c).

The above shows that HCG is a strictly increasing function, so that (2.3a) can be rewritten in
terms of x = xCG as a function of H, thus removing the translation invariance in x and leading
to a second-order ODE instead of the third-order ODE (2.3a). This equation, however, includes

xCG, dxCG
dH , and d2xCG

dH2 , which makes it inconvenient for monotonicity arguments. Instead, we opt
for the choice

ψ :=

(
dH
dx

)2

=

(
dx
dH

)−2

> 0 as a function of H (2.7)

in what follows. Then, problem (2.3) turns into finding ψ such that

d2ψ

dH2
+

2
3

(H2 + Hn−1)−1ψ− 1
2 = 0 for H > 0, (2.8a)

where the boundary conditions are given by

ψ = k2 at H = 0, (2.8b)

dψ
dH

→ 0 as H →∞. (2.8c)

Indeed, we have

dψ
dH

(2.7)
= 2

dH
dx

d2H
dx2

dx
dH

= 2
d2H
dx2

,
d2ψ

dH2
= 2

d3H
dx3

dx
dH

(2.7)
= 2

d3H
dx3

ψ− 1
2 ,

and thus

d2ψ

dH2

(2.3a)
= − 2

3

(
H2 + Hn−1

)−1
ψ− 1

2 ,

which yields (2.8a). On the other hand, the boundary conditions (2.8b) and (2.8c) follow
directly from the definition of ψ in (2.7) and the boundary conditions (2.3b)–(2.3d). The main
result of Chiricotto and Giacomelli in [10] implies that (2.8) has a unique classical solution
ψ = ψCG being twice continuously differentiable in H > 0 and right-continuous at H = 0.
The result and proof generalized to n ∈ (0, 3) and adapted to the system (2.8) can be found in
appendix A, theorem A.1.
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2.4. The Cox–Voinov law in new coordinates

With help of (2.8a), the leading-order equation (2.4) can now be rephrased as

d2ψ

dH2
+

2
3

H−2ψ− 1
2 = 0 for large H > 0 (2.9a)

with Cox–Voinov asymptotic

ψ = (ln H)
2
3 (1 + o(1)) as H →∞. (2.9b)

The family of solutions to (2.9a) meeting (2.9b) is now one-parametric because of the scaling
invariance H �→ BH for any B > 0. It is proved in [28, proposition 3.1] that problem (2.9a)
has a unique solution ψ = ψCV being twice continuously differentiable for H > 0 large if we
additionally demand the refined asymptotic

ψ
3
2 = ln H − 1

3
ln (ln H) + o(1) as H →∞. (2.9c)

We select this solution ψCV from now on.

2.5. The main result

The rest of this paper is devoted to proving the following result, giving a precise characteriza-
tion of the asymptotic regimes as H →∞ and H ↓ 0 and their dependence on the parameters
n (mobility exponent) and k (microscopic contact angle).

Theorem 2.1. Suppose n ∈ (0, 3) and k > 0. The unique solution ψ = ψCG to (2.8) being
twice continuously differentiable in H > 0 and right-continuous at H = 0, has the following
asymptotic regimes:

(a) There exists a real parameter B > 0 and a function R∞ of H such that

ψCG = ψCV|H �→BH(1 + R∞) for H > 0 sufficiently large, (2.10)

where C > 0 is a constant, ψCV is chosen as in section 2.4, and

R∞ = O
(
(ln(H))−1H−(3−n)

)
as H →∞.

The parameter B and the correction R∞ are continuously differentiable functions of k > 0.
(b) It holds

ψCG = k2(1 + μ) as H ↓ 0, (2.11)

where μ has the following properties:

1. For n ∈ (0, 3)\
{

3 − 1
m : m ∈ N

}
(non-resonant case) it holds μ = v|(ζ,�)=(H,H3−n) as

H ↓ 0, where v is analytic in (ζ, �) around (ζ , �) = (0, 0) and smooth in k > 0 with
v|(ζ,�)=(0,0) = 0.

2. For n = 3 − 1
m with m ∈ N (resonant case) it holds μ = v|(ζ,�,σ)=(H,H3−n ,H ln H) as

H ↓ 0, where v is analytic in (ζ, �, σ) around (ζ, �, σ) = (0, 0, 0) and smooth in k > 0
with v|(ζ,�,σ)=(0,0,0) = 0.
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We emphasize that theorem 2.1 is the analogue of [28, theorem 2.1] in which complete-
wetting boundary conditions (k = 0) are studied. The asymptotic (2.10) of theorem 2.1 contains
information on the apparent (macroscopic) contact angle. Indeed, because the parameter B and
the remainder R∞ depend continuously differentiably on the microscopic contact angle k > 0,
we obtain from (2.7), (2.9c), and (2.10) that

(
dH
dx

)3

= ln(BH) − 1
3

ln (ln H) + o(1) as H →∞,

where B > 0 and o(1) depend continuously differentiably on k > 0. This separable ODE yields

H = x(ln(Bx))
1
3 (1 + o(1)) as x →∞,

so that we obtain

(
dH
dx

)3

= ln(Bx) + o(1) as x →∞,

which after undoing the scalings (2.2) yields

(
dH
dx

)3

= 3V ln
(

B(3V)
1
3 λ−1x

)
+ o(1) as x →∞,

where B > 0 and o(1) depend in all instances continuously differentiably on k > 0. In conclu-
sion, we have shown that the macroscopic contact angle depends continuously differentiably
on the microscopic contact angle and thus by Young’s law (1.2) on the physically adjustable
surface tensions acting at the interfaces. This is the novelty compared to [28], where k = 0
was considered and the dependence of the asymptotic as H →∞ on the parameter n ∈

(
3
2 , 7

3

)
(mobility exponent) was studied. Further note that Eggers in [21] has studied the same problem
and by matched asymptotics has determined an expansion of B in terms of the inverse of a
rescaled capillary number (proportional to the velocity V of the contact line divided by the
cube k3 of the microscopic contact angle). Our result provides a rigorous justification of an
existence of such an expansion to leading order. Further note that we strongly believe that
the arguments provided in the present note can be lifted to prove smoothness of B and R∞ in
theorem 2.1 in k > 0. However, this would require to revisit many of the technical steps carried
out in [28, section 5] in order to prove smoothness in B > 0 of the solution manifold meeting
the Cox–Voinov law, characterized in [28, proposition 3.1] (proposition 4.2 in this note), while
not providing any significantly new mathematical insights.

The asymptotics (2.11), on the other hand, give information about the behavior of the solu-
tion close to the contact line (microscopic regime). We recognize that the value ofψCG as H ↓ 0
is equal to k2 with a precisely characterized correction continuously differentiably depending

on k > 0. In particular, on noting that d2HCG
dx2 gives up to a constant the pressure at the interface

(it is proportional to the curvature which in lubrication approximation is merely the second
derivative of the profile in the spatial variable), the derivative dψCG

dH gives up to a constant the
pressure, that is, we obtain the singularity
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dψCG

dH
= k2 ∂ζv|(ζ,�)=(H,H3−n) + (3 − n)k2 ∂�v|(ζ,�)=(H,H3−n)H2−n as H ↓ 0

for n ∈ (0, 3)\
{

3 − 1
m : m ∈ N

}
and

dψCG

dH
= k2 ∂ζv|(ζ,�,σ)=(H,H3−n,H ln H)

+ (3 − n)k2 ∂�v|(ζ,�,σ)=(H,H3−n,H ln H)H2−n

+ k2 ∂σv|(ζ,�,σ)=(H,H3−n,H ln H) (1 + ln H) as H ↓ 0

for n = 3 − 1
m with m ∈ N. Here, we have v := bζ +w|ξ=bζ , where b = bCG ∈ R is a uniquely

determined parameter matching the solution to the Cox–Voinov manifold characterized by the
asymptotics (2.10) and w is uniquely determined in propositions 3.5 and 3.6 in section 3.4
below. Similar singular expansions have been found in [1, theorems 3.2 and 3.3] in case of
source-type self-similar solutions with dynamic contact angle condition and in [41–43] in case
of the thin-film equation with homogeneous mobility and partial-wetting boundary conditions.
In case of partial wetting, we also refer to [17] for existence, uniqueness, and regularity in
higher dimensions, to [23, 44] for existence, uniqueness, and stability, and to [3, 45, 49] for
existence results on weak solutions.

2.6. Outline

The rest of the paper is devoted to the proof of theorem 2.1. This relies on one hand on a precise
characterization of the solution manifold near the contact line (cf section 3) using dynamical-
systems techniques and the matching of this solution manifold with the solution manifold as
H →∞ as characterized in [28, proposition 3.1] (cf proposition 4.2). This matching argument
is carried out in section 4. In appendix A we give a streamlined version of the existence and
uniqueness proof of [10] for the system (2.8) instead of (2.3).

3. The solution manifold near the contact line

Note that the construction of a solution manifold at the contact line is in part based on the
analysis in [1, sections 4.2–4.4] in which partial-wetting boundary conditions for the source-
type self-similar solution with homogeneous mobility are treated. Our reasoning is different in
that we choose to study a dynamical system that is changed compared to [1, sections 4.2–4.4]
with the advantage that the contact line corresponds to a hyperbolic fixed point. Furthermore,
we additionally discuss the smooth dependence on the parameter k > 0.

3.1. Reformulation as a dynamical system

In this section, a dynamical system will be formulated to characterize the difference between
ψ solving (2.8a) and (2.8b), and the squared microscopic contact angle k2 as H ↓ 0.

3.1.1. Coordinate transformations. We first apply the coordinate transformation

s := ln H, (3.1a)
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which shifts the contact line H = 0 to s = −∞. Secondly, we introduce the new dependent
variable μ with

μ :=
ψ

k2
− 1, (3.1b)

determining the error between ψ and k2. On noting that d
dH

(3.1a)
= e−s d

ds , the transformations
(3.1) turn problem (2.8) into

d2μ

ds2
− dμ

ds
+

2
3k3(1 + e−(3−n)s)

(1 + μ)−
1
2 = 0 for s ∈ R, (3.2a)

μ→ 0 as s →−∞, (3.2b)

e−s dμ
ds

→ 0 as s →∞, (3.2c)

which is uniquely solved by μ = μCG given by (3.1) with ψ = ψCG.

3.1.2. The dynamical system. Equation (3.2a) will now be reformulated as an autonomous
three-dimensional continuous dynamical system using the functions

r := e
3−n

3 s, q := e−
3−n

3 sμ and p := e−
3−n

3 s dμ
ds

. (3.3)

If μ = μCG we write (r, q, p) = (rCG, qCG, pCG). The dynamical system becomes

d
ds

(r, q, p) = F, (3.4a)

where

F :=

(
3 − n

3
r,−3 − n

3
q + p,

n
3

p− 2
3k3

r2

1 + r3
(1 + rq)−

1
2

)
. (3.4b)

It can be easily verified that for our choice n ∈ (0, 3) the point (0, 0, 0) is the unique fixed point
of the system (3.4a). In the next lemma we will see that any solution (r, q, p), which under the
transformations (3.3) meets (3.2a) and (3.2b), converges to this fixed point as s →−∞ and we
additionally characterize the asymptotic behavior.

Lemma 3.1. Suppose k > 0, n ∈ (0, 3), that μ is an in s ∈ R twice continuously differen-
tiable solution to (3.2a) and (3.2b), and let (r, q, p) be defined by (3.3). Then it holds

r = e
3−n

3 s for all s ∈ R, (3.5a)

q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O
(

e
n
3 s
)

for 0 < n < 2,

− 2
3k3

s e
n
3 s(1 + o(1)) for n = 2,

2
3(3 − n)(n − 2)k3

e
2
3 (3−n)s(1 + o(1)) for 2 < n < 3,

as s →−∞,

(3.5b)
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p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O
(

e
n
3 s
)

for 0 < n < 2,

− 2
3k3

s e
n
3 s(1 + o(1)) for n = 2,

2
3(n − 2)k3

e
2
3 (3−n)s(1 + o(1)) for 2 < n < 3,

as s →−∞, (3.5c)

so that in particular (r, q, p) → (0, 0, 0) as s →−∞.

Proof. We have r
(3.3)
= e

3−n
3 s so that (3.5a) immediately follows.

In order to determine the asymptotic behavior of p, we compute

p
(3.3)
= e−

3−n
3 s dμ

ds
(3.1b)
=

e−
3−n

3 s

k2

dψ
ds

(3.1a)
=

e
n
3 s

k2

dψ
dH

. (3.6)

Hence, the asymptotic of p is determined by the asymptotic of dψ
dH . Therefore, note that from

(3.1b) and (3.2b) it follows that ψ = k2(1 + (1)) as H ↓ 0 and equation (2.8a) (which by virtue
of (3.1) is equivalent to (3.2a)) gives

d2ψ

dH2
= −2

3
(H2 + Hn−1)−1ψ− 1

2 = − 2
3k

H1−n(1 + o(1)) as H ↓ 0.

In order to obtain an expression for dψ
dH , take ε > 0 and write

dψ
dH

=
dψ
dH

∣∣∣∣
H=ε

−
∫ ε

H

d2ψ

dH2

∣∣∣∣
H=H̃

dH̃ =
dψ
dH

∣∣∣∣
H=ε

+
2
3k

(1 + o(1))
∫ ε

H
H̃1−ndH̃

=

⎧⎪⎪⎨
⎪⎪⎩

C(ε) − 2
3(2 − n)k

H2−n(1 + o(1)) as H ↓ 0 for n 	= 2,

C(ε) − 2
3k

(ln H)(1 + o(1)) as H ↓ 0 for n = 2,

where C(ε) is a constant only depending on ε. This implies

dψ
dH

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(ε)(1 + o(1)) as H ↓ 0 for 0 < n < 2,

− 2
3k

ln H(1 + o(1)) as H ↓ 0 for n = 2,

2
3(n − 2)k

H2−n(1 + o(1)) as H ↓ 0 for 2 < n < 3,

so that because of (3.1a) and (3.6) we obtain (3.5c).
Finally, since

q
(3.2b),(3.3)

= e−
3−n

3 s
∫ s

−∞
e

3−n
3 s̃p|s=s̃ds̃,

we obtain (3.5b) from (3.5c). �
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3.2. Characterization of the unstable manifold

3.2.1. Hyperbolicity and linearization. Equation (3.4a) can be linearized around the fixed point
(r, q, p) = (0, 0, 0), resulting in

DF
(3.4b)
=

⎛
⎜⎜⎜⎜⎜⎝

3 − n
3

0 0

0 −3 − n
3

1

− 2
3k3

2r − r4

(1 + r3)2
(1 + rq)−

1
2 +

1
3k3

r
1 + r3

rq

(1 + rq)
3
2

1
3k3

r3

1 + r3
(1 + rq)−

3
2

n
3

⎞
⎟⎟⎟⎟⎟⎠ ,

so that

DF|(r,q,p)=(0,0,0) =

⎛
⎜⎜⎜⎜⎝

3 − n
3

0 0

0 −3 − n
3

1

0 0
n
3

⎞
⎟⎟⎟⎟⎠ ,

where DF denotes the Jacobian matrix of F evaluated in (0, 0, 0). The eigenvalues are distinct
and equal to 3−n

3 ,− 3−n
3 , and n

3 , so that because of n ∈ (0, 3) the fixed point (r, q, p) = (0, 0, 0) is
hyperbolic with two-dimensional unstable manifold M− and one-dimensional stable manifold
M+. Note that hyperbolicity is ensured by including the factors e−

3−n
3 s in the definitions of r,

q, and p, as otherwise the system would have infinitely many non-hyperbolic fixed points.
The linearized system can be diagonalized, that is,

DF|(r,q,p)=(0,0,0) =

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠
⎛
⎜⎜⎜⎜⎝

3 − n
3

0 0

0 −3 − n
3

0

0 0
n
3

⎞
⎟⎟⎟⎟⎠
⎛
⎝1 0 0

0 1 −1
0 0 1

⎞
⎠ .

(3.7)

The representation (3.7) is convenient in order to characterize the unstable manifold.

3.2.2. The unstable manifold.

Lemma 3.2. For n ∈ (0, 3) and k > 0, let μ be an in s ∈ R twice continuously differentiable
solution to (3.2a) and (3.2b) and let (r, q, p) be defined by (3.3). Then (r, q, p) lies on the
unstable manifold M− of the fixed point (0, 0, 0) of the dynamical system (3.4). The unstable
manifold M− can be parameterized by p = p−, where p− as a function of (r, q, k) is analytic
in (r, q) in a neighborhood of (r, q) = 0 meeting the partial differential equation

(
r∂r − q∂q −

n
3 − n

)
p− +

3
3 − n

p−∂q p− = − 2
(3 − n)k3

r2

1 + r3
(1 + rq)−

1
2

(3.8)

and smooth in k > 0 with
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p− = 0 at (r, q) = (0, 0), (3.9a)

∂r p− = 0 at (r, q) = (0, 0), (3.9b)

∂q p− = 1 at (r, q) = (0, 0), (3.9c)

∂2
r p− = − 4

3k3(3 − n)
at (r, q) = (0, 0), (3.9d)

∂ j
r∂

�
q p− = 0 at (r, q) = (0, 0) for ( j, �) ∈ N

2
0 with j � �− 2. (3.9e)

Proof. The tangent space to the unstable manifold M− at (0, 0, 0) is spanned by the vectors
(cf (3.7))

v1 := (1, 0, 0) and v2 := (0, 1, 1).

A vector perpendicular to v1 and v2 is given by

v1 × v2 = (0,−1, 1),

so that the tangent space to M− at (0, 0, 0) is given by

p = q. (3.10)

Hence, M− can be parameterized by p = p−, where p− is a function of (r, q, k). The analyt-
icity of F in (r, q, p) = (0, 0, 0) (cf (3.4b)) implies that M− is analytic in a neighbourhood of
(r, q, p) = (0, 0, 0) by [11, theorem 4.1]. The first three partial derivatives (3.9a)–(3.9c) eval-
uated in (r, q) = (0, 0), are immediate from (3.10) and the smoothness in k > 0 is proved for
instance in [50, p 165–166] or [55, section 9.2, theorem 9.6].

We now compute ∂2
r p−

∣∣
(r,q)=(0,0)

in (3.9d). Observe that on M− it holds p = p−, so that

dp
ds

= ∂r p−
dr
ds

+ ∂q p−
dq
ds

and thus using (3.4) to substitute derivatives in s, we obtain the partial differential equation

3 − n
3

r∂r p− +

(
p− − 3 − n

3
q

)
∂q p− =

n
3

p− − 2
3k3

r2

1 + r3
(1 + rq)−

1
2 ,

which is equivalent to (3.8). Using the already computed (3.9a), (3.9b), and (3.9c), it follows
after differentiating (3.8) in r twice and evaluating at (r, q) = (0, 0) that

(
2 − n

3 − n

) (
∂2

r p−
)∣∣

(r,q)=(0,0)
+

3
3 − n

(
∂2

r p−
)∣∣

(r,q)=(0,0)
= − 4

(3 − n)k3
,

leading to
(
∂2

r p−
)∣∣

(r,q)=(0,0)
= − 4

3(3−n)k3 as stated in (3.9d).
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For the proof of (3.9e) we argue by induction in j + �. Taking ∂r and ∂q derivatives of (3.8)
we get (

r∂r − q∂q −
n + (�− j)(3 − n)

3 − n

)
∂ j

r∂
�
q p− +

3
3 − n

∑
0� j ′� j

∑
0��′��

(
j
j ′

)(
�

�′

)

×
(
∂ j− j ′

r ∂�−�′
q p−

)(
∂ j ′

r ∂�′+1
q p−

)

= −2(−1)�+1

(3 − n)k3

1
2
· 3

2
· . . . · 2�− 1

2
∂ j

r

(
r�+2

1 + r3
(1 + rq)−

2�+1
2

)

and evaluating at (r, q) = (0, 0) leads to

(n + (�− j)(3 − n))
(
∂ j

r∂
�
q p−

)∣∣
(r,q)=(0,0)

− 3
∑

0� j ′� j

∑
0��′��

(
j
j ′

)(
�

�′

)

×
(
∂ j− j ′

r ∂�−�′
q p−

)∣∣∣
(r,q)=(0,0)

(
∂ j ′

r ∂�′+1
q p−

)∣∣∣
(r,q)=(0,0)

= 0, (3.11)

where we suppose ( j, �) ∈ N
2
0 with j � �− 2. If we assume that

(
∂ j ′′

r ∂�′′
q p−

)∣∣∣
(r,q)=(0,0)

= 0 for

( j ′′, �′′) ∈ N
2
0 provided

• j′′ + �′′ � j + �− 1 and
• j′′ � �′′ − 2,

then it follows from (3.9a)–(3.9c) and (3.11) that

((�− j − 1)(3 − n) − 3�)(∂ j
r∂

�
q p−)|(r,q)=(0,0) = 0,

which because of j ≥ 0 implies (3.9e). �

3.3. The ODE lifted on the unstable manifold

3.3.1. Formulation of the ODE. In what follows, motivated by (3.3) and (3.9), we define

g := rp−
∣∣
q=r−1μ

− μ+
2

3k3(3 − n)
r3 (3.12a)

and

� := r3. (3.12b)

We have the following result:

Corollary 3.3. Let n ∈ (0, 3). Then the dependent variable g as a function of (�,μ, k)
is analytic in (�,μ) in a neighborhood of (�,μ) = (0, 0), smooth in k > 0, and meets the
conditions

g = ∂μg = ∂�g = 0 at (�,μ) = (0, 0). (3.13a)

Furthermore, for any in s ∈ R twice continuously differentiable μ solving (3.2a) and (3.2b) it
holds for H > 0 sufficiently small(

H
d

dH
− 1

)
μ = g|�=H3−n −

2
3k3(3 − n)

H3−n. (3.13b)
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Proof. Because of (3.9e) of lemma 3.2 and (3.12a), it holds

g =
∑

j�0, ��0,
j+��1

1
( j + �− 1)!�!

∂ j+�−1
r ∂�

q p−
∣∣
(r,q)=(0,0)

r jμ� − μ+
2

3k3(3 − n)
r3,

(3.14)

so that g is analytic in (r,μ) in a neighborhood of (r,μ) = (0, 0) and smooth in k > 0. In view
of (3.1a), (3.3), and (3.12a), it holds(

H
d

dH
− 1

)
μ = g|

r=H
3−n

3
− 2

3k3(3 − n)
H3−n.

Because of

p−
(3.12a)
= r−1g + r−1μ− 2

3k3(3 − n)
r2,

r∂r p−
(3.12a)
= − r−1g + ∂rg + r−1μ∂μg − 4

3k3(3 − n)
r2,

∂q p−
(3.12a)
= ∂μg + 1,

q∂q p−
(3.12a)
= r−1μ∂μg + r−1μ,

on identifying μ = rq, the PDE (3.8) of lemma 3.2 turns into

− r−1g + ∂rg + r−1μ∂μg − 4
3k3(3 − n)

r2 − r−1μ∂μg − r−1μ− n
3 − n

r−1g

− n
3 − n

r−1μ+
2n

3k3(3 − n)2
r2 +

3
3 − n

(
r−1g + r−1μ− 2

3k3(3 − n)
r2

)(
∂μg + 1

)

= − 2
(3 − n)k3

r2

1 + r3
(1 + μ)−

1
2 ,

which simplifies to(
(3 − n)r∂r + 3μ∂μ −

2
k3(3 − n)

r3∂μ

)
g + 3g∂μg

=
2
k3

r3
(

1 −
(
1 + r3

)−1
(1 + μ)−

1
2

)
. (3.15a)

We obtain with help of (3.14)

g|(r,μ)=(0,0) = 0, (3.15b)

∂rg|(r,μ)=(0,0) = p−
∣∣
(r,q)=(0,0)

(3.9a)
= 0, (3.15c)

∂μg|(r,μ)=(0,0) = ∂q p−
∣∣
(r,q)=(0,0)

− 1
(3.9c)
= 0. (3.15d)
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Writing

g =
∞∑

j,�=0

a j,�r
jμ� and

2
k3

r3
(

1 −
(
1 + r3

)−1
(1 + μ)−

1
2

)
=

∞∑
j,�=0

c j,�r
jμ�,

where

a j,� = c j,� = 0 for ( j, �) ∈ {(0, 0), (1, 0), (0, 1)} (3.16a)

by (3.15b)–(3.15d) and the definition, respectively, we obtain after insertion into (3.15a) the
relation

a j,� =
c j,� +

2(�+1)
k3(3−n) a j−3,�+1 − 3

∑
j ′+ j ′′= j

∑
�′+�′′=�+1 �

′′a j ′,�′a j ′′,�′′

(3 − n) j + 3�
for j + � � 1,

(3.16b)

where we let a j−3,�+1 = 0 if j � 2. Note that because of (3.16a) it holds �′′a j′,�′aj′′,�′′ = 0 if
j′ + �′ � j + � or j′′ + �′′ � j + �. Hence, for j + � = m fixed, (3.16b) uniquely determines
aj,m− j for j ∈ {0, . . . , m} inductively starting from j = 0. Induction in m = j + � using (3.16)
then uniquely determines the coefficients aj,� with ( j, �) ∈ N

2
0 and thus g in a neighborhood of

(r,μ) = (0, 0), where it is analytic in (r,μ).
Using � = r3 and 3�∂� = r∂r, (3.15a), (3.15b), and (3.15d) turn into(

(3 − n)�∂� + μ∂μ −
2

3k3(3 − n)
�∂μ

)
g + g∂μg =

2
3k3

�
(

1 − (1 + �)−1(1 + μ)−
1
2

)
,

(3.17a)

where

g = 0 at (�,μ) = (0, 0) by (3.15b), (3.17b)

∂μg = 0 at (�,μ) = (0, 0) by (3.15d). (3.17c)

Taking a derivative ∂� of (3.17a) and using (3.17b) and (3.17c), we infer that

∂�g = 0 at (�,μ) = (0, 0). (3.17d)

Writing

g =
∞∑

j,�=0

A j,��
jμ� and

2
3k3

�
(

1 − (1 + �)−1(1 + μ)−
1
2

)
=

∞∑
j,�=0

Cj,��
jμ�,

where

A j,� = Cj,� = 0 for ( j, �) ∈ {(0, 0), (1, 0), (0, 1)} (3.18a)

by (3.17b) and (3.17c) and the definition, respectively, we get inserted into (3.17a) the relation
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A j,� =
Cj,� +

2(�+1)
3k3(3−n) A j−1,�+1 −

∑
j ′+ j ′′= j

∑
�′+�′′=�+1 �

′′A j ′,�′A j ′′,�′′

(3 − n) j + �
for j + � � 1,

(3.18b)

where we use the convention A j−1,�+1 = 0 if j = 0. Because of (3.18a) we have �′′Aj′,�′A j′′,�′′ =
0 if j′ + �′ � j + � or j′′ + �′′ � j + �. Thus, for j + � = m fixed, (3.18b) determines Aj,m− j

with j ∈ {0, . . . , m} inductively in j starting with j = 0. Then all coefficients Aj,� with ( j, �) ∈
N

2
0 are determined by induction in m = j + �. Hence, problem (3.17) has a solution that is ana-

lytic in (�,μ) in a neighborhood of (�,μ) = 0, thus meeting the boundary conditions (3.13a).
On identifying � = r3, this is in particular a solution to (3.15) that is analytic in (r,μ) in a
neighborhood of (r,μ) = (0, 0), for which we have proved uniqueness beforehand. �

3.3.2. Uniqueness.

Lemma 3.4. Let n ∈ (0, 3) and k > 0. Suppose that μ1 and μ2 are continuously differen-
tiable in H > 0 and solve(

H
d

dH
− 1

)
μ j = g|(�,μ)=(H3−n,μ j) −

2
3k3(3 − n)

H3−n for H > 0 sufficiently small.

(3.19a)

Further suppose that there exists δ > 0 such that

lim
H↘0

H−δμ j = 0 for j ∈ {1, 2}. (3.19b)

Then it holds

μ j =

⎧⎪⎪⎨
⎪⎪⎩
O (H) for 0 < n < 2,

O (−H ln H) for n = 2,

O
(
H3−n

)
for 2 < n < 3,

as H ↓ 0, (3.20a)

and there exists a constant β ∈ R such that

μ1 − μ2 =

⎧⎪⎪⎨
⎪⎪⎩
βH (1 +O (H)) for 0 < n < 2,

βH (1 +O (−H ln H)) for n = 2,

βH
(
1 +O

(
H3−n

))
for 2 < n < 3,

as H ↓ 0. (3.20b)

Proof. We have

(H
d

dH
− 1)μ j

(3.19a)
= g|(�,μ)=(H3−n,μ j) −

2
3k3(3 − n)

H3−n

= a|(�,μ)=(H3−n,μ j)μ j −
2

3k3(3 − n)
H3−n(1 + o(1)),
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where by (3.13a) the dependent variable a is a function of (�,μ, k) being analytic in (�,μ) and
smooth in k > 0 such that a = 0 at (�,μ) = (0, 0). This implies

H
d

dH

(
H−1exp

(∫ ε

H
a|(�,μ)=(H̃3−n,μ j|H=H̃ )

dH̃

H̃

)
μ j

)

= − 2
3k3(3 − n)

H2−n(1 + o(1)) exp

(∫ ε

H
a|(�,μ)=(H̃3−n,μ j|H=H̃ )

dH̃

H̃

)

for ε > 0 small and thus

H−1 exp

(∫ ε

H
a|

(�,μ)=
(

H̃3−n,μ j|H=H̃

) dH̃

H̃

)
μ j

= ε−1μ j|H=ε +
2

3k3(3 − n)

∫ ε

H
H2−n

1

× exp

(∫ ε

H1

a|
(�,μ)=

(
H3−n

2 ,μ j|H=H2

) dH2

H2

)
dH1

H1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O (1) for 0 < n < 2,

O (− ln H) for n = 2,

O
(
H2−n

)
for 2 < n < 3,

as H ↓ 0. This gives (3.20a).
For proving (3.20b), observe that

H2 d
dH

(
H−1(μ1 − μ2)

)
=

(
H

d
dH

− 1

)
(μ1 − μ2)

(3.19a)
= g|(�,μ)=(H3−n,μ1) − g|(�,μ)=(H3−n,μ2)

= c|�=H3−n (μ1 − μ2) ,

that is,

H
d

dH

(
H−1(μ1 − μ2)

)
= c|�=H3−nH−1 (μ1 − μ2) for H > 0, (3.21)

where by (3.13a) the dependent variable c is a function of (μ1,μ2, �, k) which is analytic in
(μ1,μ2, �) and additionally c = 0 at (μ1,μ2, �) = (0, 0, 0). Integrating (3.21) from H = ε > 0
yields

H−1(μ1 − μ2) = ε−1(μ1 − μ2)|H=ε

× exp(−
∫ ε

H
c|(μ1,μ2,�)=(μ1|H=H̃ ,μ2|H=H̃ ,H̃3−n)

dH̃

H̃
).

Because of (3.20a) the integral
∫ ε

0 c|�=H3−n
dH
H is finite, so that the limit

β := lim
H↘0

H−1 (μ1 − μ2)
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exists. Integrating (3.21) from H = 0 then yields

H−1(μ1 − μ2) = β exp

(∫ H

0
c|(μ1,μ2,�)=(μ1|H=H̃ ,μ2|H=H̃ ,H̃3−n)

dH̃

H̃

)

(3.20a)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β (1 +O (H)) for 0 < n < 2,

β (1 +O (−H ln H)) for n = 2,

β
(
1 +O

(
H3−n

))
for 2 < n < 3,

from which (3.20b) is immediate. �

3.4. Fixed-point problem

In this subsection, we characterize a one-parametric family of solutions to the ordinary initial-
value problem (3.19) of lemma 3.4. This is split in the non-resonant case in section 3.4.1 and the
resonant case in section 3.4.2. Note that resonances have been characterized in [1, section 4.3]
in case of the source-type self-similar solution with dynamic nonzero contact angle and that
the resonances in the situation at hand are the same. The relevant resonances occur for values
n = 3 − 1

m , where m ∈ N.
In what follows, suppose that μ ∈ C0 ([0,∞)) ∩ C1 ((0,∞)) meets (3.19), that is,(

H
d

dH
− 1

)
μ = g|�=H3−n −

2
3k3(3 − n)

H3−n for H > 0 sufficiently small

(3.22a)

and

μ = 0 at H = 0. (3.22b)

In view of (3.20) of lemma 3.4 a solution μ to (3.22) cannot be expected to be smooth. In what
follows we characterize the singularity of μ in H = 0 and the dependence on k > 0 explicitly.

3.4.1. Non-resonant case. Consider n ∈ (0, 3)\
{

3 − 1
m : m ∈ N

}
. We unfold the singularity

in H = 0 by identifying

μ = w + ξ provided ξ = bH and � = H3−n (3.23)

for a constant b ∈ R, where w is a function of (ξ, �, k) such that

(
ξ∂ξ + (3 − n)�∂� − 1

)
w = g|μ=w+ξ −

2
3k3(3 − n)

� around (ξ, �) = (0, 0)

(3.24a)

subject to the boundary conditions

(
w, ∂ξw

)
= (0, 0) at (ξ, �) = (0, 0). (3.24b)
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In the following proposition we will construct a solution to (3.24) which is analytic in (ξ, �)
and smoothly depends on k > 0. Using (3.1a), (3.3), (3.5b) of lemma 3.1, corollary 3.3, lemma
3.4, and the existence and uniqueness result of [10] or theorem A.1 in appendix A, it fol-
lows that there exists exactly one b = bCG ∈ R such thatμCG = w + ξ provided ξ = bCGH and
� = H3−n.

Proposition 3.5 (Non-resonant case). For n ∈ (0, 3)\
{

3 − 1
m : m ∈ N

}
problem

(3.24) has a solution w which is analytic in (ξ, �) in a neighborhood of (ξ, �) = (0, 0) and
smooth in k > 0.

Proof. The proof of existence of an in (ξ, �) analytic solution to (3.24) follows with almost
the same reasoning as in [1, proposition 4.9] using Banach’s fixed-point theorem. Since we
additionally prove smoothness in k > 0, we apply the Banach-space valued version of the
implicit-function theorem instead of Banach’s fixed-point theorem. Therefore, we rewrite
(3.24) in the following way: using a power-series expansion around (ξ, �) = (0, 0), it is
straight-forward to verify that (3.24) is equivalent to

G = 0 with G :=w − T
[
g|μ=w+ξ −

2
3k3(3 − n)

�

]
, (3.25)

where the linear operator T is defined for in (ξ, �) around (ξ, �) = (0, 0) analytic functions φ
with (φ, ∂ξφ) = (0, 0) in (ξ, �) = (0, 0) by

T φ :=
∑

( j,�)∈I

1
( j + (3 − n)�− 1) j!�!

∂ j
ξ∂

�
�φ
∣∣∣
(ξ,�)=(0,0)

ξ j��

with I := (N0)2\{(0, 0), (1, 0)} in view of (3.24b). Note that the choice of n /∈
{

3 − 1
m : m ∈ N

}
and the definition of I ensure that j + (3 − n)�− 1 	= 0 for all ( j, �) ∈ I. In order to construct
a solution w to (3.25), we use the norm

‖φ‖ε :=
∑

( j,�)∈N2
0

ε j+2�

j!�!

∣∣∣∣∂ j
ξ∂

�
�φ
∣∣∣
(ξ,�)=(0,0)

∣∣∣∣
for in (ξ, �) around (ξ, �) = (0, 0) analytic φ with (φ, ∂ξφ) = (0, 0) in (ξ, �) = (0, 0), where
ε > 0 will be chosen sufficiently small. The corresponding Banach space of all such φ with
‖φ‖ε < ∞ is denoted by Wε. From the definition, it is elementary to see that ‖·‖ε is sub-
multiplicative, that is, it holds ‖φ1φ2‖ε � ‖φ1‖ε‖φ2‖ε for φ1,φ2 ∈ Wε. One further obtains

‖T φ‖ε =
∑

( j,�)∈I

ε j+2�

j!�! | j + (3 − n)�− 1|

∣∣∣∣∂ j
ξ∂

�
�φ
∣∣∣
(ξ,�)=(0,0)

∣∣∣∣
� C

∑
( j,�)∈I

ε j+2�

j!�!

∣∣∣∣∂ j
ξ∂

�
�φ
∣∣∣
(ξ,�)=(0,0)

∣∣∣∣
= C‖φ‖ε,

where C−1 :=min( j,�)∈I | j + (3 − n)�− 1| > 0. Hence, Wε � φ �→ T φ ∈ Wε is a bounded
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linear operator and thus in particular analytic. For any w ∈ Wε, we recognize that by the chain
rule G is analytic in w with Gâteaux (and Fréchet) derivative

(DwG)φ = φ− T
[
∂μg|μ=w+ξφ

]
,

where φ ∈ Wε. With help of corollary 3.3 it follows that for w ∈ Wε such that ‖w‖ε < δ with
δ > 0 sufficiently small and ε > 0 sufficiently small there exists C1 < ∞ independent of ε and
δ such that

‖ T [∂μg|μ=w+ξφ] ‖ε � C‖ ∂μg|μ=w+ξφ ‖ε
� C‖ ∂μg|μ=w+ξ ‖ε‖ φ ‖ε

(3.13a)
� C1(ε+ δ)‖ φ ‖ε.

This implies that for δ > 0 and ε > 0 sufficiently small, DwG is invertible for w ∈ Wε with
‖w‖ε < δ by the Neumann series, that is, Wε � φ �→ DwGφ ∈ Wε is forw ∈ Wε with ‖w‖ε < δ
an isomorphism of Banach spaces.

Now, by the chain rule we recognize that G has infinitely many Fréchet derivatives for w ∈
Wε and k > 0, so that in particular Wε × (0,∞) � (w, k) �→ G ∈ R is continuously Fréchet
differentiable. The Banach-space valued implicit-function theorem yields for ε > 0 and δ > 0
small existence of a unique and in k > 0 continuously differentiable w = wk such that (3.25)
holds true. Hence,wk in particular solves (3.24). Implicitly differentiating (3.25) yields ∂kwk =

−
(

DwG|w=wk

)−1
∂kG|w=wk

. Now,∂kG|w=wk
is continuously differentiable in k > 0 and because

(
DwG|w=wk

)−1
=

∞∑
j=0

(
T
[
∂μg|μ=wk+ξ ·

]) j
,

we see by partially differentiating the above series in k > 0 that
(

DwG|w=wk

)−1
is continuously

differentiable in k > 0. Hence, wk is twice continuously differentiable in k > 0 and a bootstrap
argument yields smoothness in k > 0. As a consequence, we have proved the theorem for
w = wk. �

3.4.2. Resonant case. Consider the resonant case n = 3 − 1
m for an m ∈ N. We now identify

μ = w + ξ if ξ = bH, � = H3−n = H
1
m , and σ = H ln H (3.26)

for a constant b ∈ R, where w is a function of (ξ, �, σ, k) such that in view of (3.22) we have

(
mξ∂ξ + �∂� + m (σ + �m) ∂σ − m

)
w

= mg|μ=w+ξ −
2m

3k3(3 − n)
� around (ξ, �, σ) = (0, 0, 0), (3.27a)

(
w, ∂ξw, ∂m

� w
)
= (0, 0, 0) at (ξ, �, σ) = (0, 0, 0). (3.27b)
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The condition ∂m
� w = 0 at (ξ, �, σ) = (0, 0, 0) is necessary in order to exclude non-

uniqueness of w under the identification (3.26).
The following proposition provides an existence result of an in (ξ, �, σ) analytic solution

to (3.27) which smoothly depends on k > 0. With help of (3.1a), (3.3), (3.5b) of lemma 3.1,
corollary 3.3 , lemma 3.4, and the uniqueness result proved in [10] or theorem A.1 in appendix
A, we conclude that there exists exactly one b = bCG ∈ R such that μCG = w + ξ provided
ξ = bCGH and � = H3−n.

Proposition 3.6 (Resonant case). Suppose n = 3 − 1
m for an m ∈ N. Then (3.27) has a

solution w which is analytic in (ξ, �, σ) around (ξ, �, σ) = (0, 0, 0) and smooth in k > 0.

Proof. As in the proof of proposition 3.5, we do not entirely rely on the reasoning in [1,
proposition 4.10], establishing existence of an analytic solution in an analogous case using
Banach’s fixed-point theorem, but opt for an application of the implicit-function theorem in
order to additionally obtain smoothness in k > 0.

Therefore, we first define for an in (ξ, �, σ) around (ξ, �, σ) = (0, 0, 0) analytic φ the norm

‖φ‖ε :=
∑

( j,�,p)∈N3
0

ε j+m�+p

j!�!p!

∣∣∣∂k
ξ∂

�
�∂

p
σφ
∣∣
(ξ,�,σ)=(0,0,0)

∣∣∣ .
It is easy to see that ‖·‖ε is sub-multiplicative.

As a second preliminary step, we consider the linear problem(
mξ∂ξ + �∂� + m (σ + �m) ∂σ − m

)
T φ = φ around (ξ, �, σ) = (0, 0, 0), (3.28a)(

T φ, ∂ξT φ, ∂m
� T φ

)
= (0, 0, 0) at (ξ, �, σ) = (0, 0, 0).

(3.28b)

Choosing φ :=mg|μ=w+ξ − 2m
3k3(3−n)

�, we recognize that

φ = mg|μ=w

(3.27b)
= mg|μ=0

(3.13a)
= 0 at (ξ, �, σ) = (0, 0, 0), (3.29a)

∂ξφ = m∂μg|μ=w(1 + ∂ξw)
(3.27b)
= m∂μg|μ=0(1 + ∂ξw)

(3.13a)
= 0

at (ξ, �, σ) = (0, 0, 0), (3.29b)

∂σφ = m∂μg|μ=w∂σw
(3.27b)
= m∂μg|μ=0∂σw

(3.13a)
= 0 at (ξ, �, σ) = (0, 0, 0).

(3.29c)

Hence, we may use the power-series expansions

φ =
∑

( j,�,p)∈N3
0

1
j!�!p!

∂ j
ξ∂

�
�∂

p
σφ
∣∣∣

(ξ,�,σ)=(0,0,0)
ξ j��σp,

T φ =
∑

( j,�,p)∈N3
0

1
j!�!p!

∂ j
ξ∂

�
�∂

p
σT φ

∣∣∣
(ξ,�,σ)=(0,0,0)

ξ j��σp,
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where in view of (3.27b) and (3.29) we have

∂ j
ξ∂

�
�∂

p
σφ = 0 in (ξ, �, σ) = (0, 0, 0) if ( j, �, p) ∈ N

3
0\I, (3.30a)

∂ j
ξ∂

�
�∂

p
σT φ = 0 in (ξ, �, σ) = (0, 0, 0) if ( j, �, p) ∈ N

3
0\J , (3.30b)

where I :=N
3
0\ {(0, 0, 0), (1, 0, 0), (0, 0, 1)} and J :=N

3
0\ {(0, 0, 0), (1, 0, 0), (0, m, 0)}.

Inserted into (3.28a), this yields for ( j, �, p) ∈ N
3
0 with � < m,

(m j + �+ mp− m) ∂ j
ξ∂

�
�∂

p
σT φ = ∂ j

ξ∂
�
�∂

p
σφ at (ξ, �, σ) = (0, 0, 0), (3.31a)

while for � � m it holds

(m j + �+ mp− m) ∂ j
ξ∂

�
�∂

p
σT φ+ m

�!

(�− m)!
∂ j
ξ∂

�−m
� ∂ p+1

σ T φ

= ∂ j
ξ∂

�
�∂

p
σφ at (ξ, �, σ) = (0, 0, 0). (3.31b)

For ( j, �, p) ∈ {(0, 0, 0), (1, 0, 0), (0, 0, 1)} equation (3.31a) is fulfilled because of (3.30), while
for ( j, �, p) ∈ I with � < m we get

∂ j
ξ∂

�
�∂

p
σT φ

(3.31a)
=

∂ j
ξ∂

�
�∂

p
σφ

m j + �+ mp− m
. (3.32a)

In the case ( j, �, p) = (0, m, 0) it holds

∂σT φ
(3.31b)
= ∂m

� φ at (ξ, �, σ) = (0, 0, 0) (3.32b)

and for ( j, �, p) ∈ J with � � m we have

∂ j
ξ∂

�
�∂

p
σT φ

(3.31b)
=

∂ j
ξ∂

�
�∂

p
σφ

m j + �+ mp− m
− m

�!

(�− m)!

∂ j
ξ∂

�−m
� ∂ p+1

σ T φ

m j + �+ mp− m
. (3.32c)

Note that equations (3.30b) and (3.32) uniquely determine T by complete induction. Further-
more, in the proof of [1, proposition 4.10] it is shown how equations (3.32) imply that there
exists C < ∞ independent of φ and ε > 0 such that ‖T φ‖ε � C‖φ‖ε.

As in the proof of proposition 3.5, we can then reformulate (3.27) as

G = 0 with G :=w − T
[

mg|μ=w+ξ −
2m

3k3(3 − n)
�

]
. (3.33)

Constructing an in (ξ, �, σ) around (ξ, �, σ) = (0, 0, 0) analytic and in k > 0 smooth solution
to (3.33) follows by an application of the Banach-space valued implicit-function theorem. The
proof is the same as the one given in proposition 3.5 as the necessary conditions, the sub-
multiplicativity of ‖·‖ε, the boundedness of the linear operator T , and the boundary conditions
(3.13a) on g in (�,μ) = (0, 0), remain unchanged. �
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4. Proof of the main result

In this section, we prove the main result, theorem 2.1. This is split into the characterization
of two one-parametric solution manifolds ψb and ψB, where ψb meets (2.8a) and (2.8b), and
ψB fulfills (2.8a) and (2.8c) (cf section 4.1). These solution manifolds are then matched in
three-dimensional phase space

(
H,ψ, dψ

dH

)
using a transversality argument (cf section 4.2).

4.1. Solution manifolds at the contact line and in the bulk

The following two propositions characterize the solution manifolds meeting (2.8a) and (2.8b),
and (2.8a) and (2.8c), respectively. The second one, proposition 4.2, is the same as [28,
proposition 3.1] since the boundary condition (2.8b) at H = 0 is immaterial.

Proposition 4.1 (Solution manifold at the contact line). Suppose n ∈ (0, 3). For all
b ∈ R and k > 0 there exists a function μb of H > 0 such that

ψb = k2(1 + μb) for H > 0 sufficiently small, (4.1a)

where ψb is twice continuously differentiable for H > 0 sufficiently small and right-continuous
continuous at H = 0 solving (2.8a) for H > 0 sufficiently small and (2.8b), and μb is analytic
in b ∈ R and smooth in k > 0 for H > 0 small with

∂bμb = H (1 + o(1)) as H ↓ 0. (4.1b)

More precisely, in the non-resonant case n ∈ (0, 3)\
{

3 − 1
m : m ∈ N

}
there exists a function

w being analytic in (ξ, �) around (ξ, �) = (0, 0) and smooth in k > 0 such that w = 0 and
∂ξw = 0 at (ξ, �) = (0, 0), and such that

μb = bH +w|(ξ,�)=(bH,H3−n) for H > 0 sufficiently small. (4.2a)

Likewise, in the resonant case n = 3 − 1
m where m ∈ N, there exists a function w which is

analytic in (ξ, �, σ) around (ξ, �, σ) = (0, 0, 0) and smooth in k > 0 such that w = 0, ∂ξw = 0,
∂m
� w = 0 at (ξ, �, σ) = (0, 0, 0), and such that

μb = bH +w|(ξ,�,σ)=(bH,H3−n,H ln H) for H > 0 sufficiently small. (4.2b)

Furthermore, there exists b = bCG ∈ R such that ψbCG = ψCG, where ψCG is the unique
classical solution to (2.8) constructed in [10] or theorem A.1 in appendix A.

Proof. We define w by proposition 3.5 (non-resonant case) and proposition 3.6 (resonant
case), respectively. Using thatw solves (3.24) and (3.27), respectively, definingμ = μb through
(3.23) and (3.26), respectively, we obtain the asymptotics (4.2) and that μb is a solution to
problem (3.22). In view of (3.12) and (3.22a) implies

H∂Hμb = H
3−n

3 p−
∣∣
q=H− 3−n

3 μb

for H > 0,
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so that with (r, q, p) defined as in (3.3) and employing (3.1a) we get p = p−. Hence, (r, q, p)
lies on the unstable manifold M− of the stationary point (r, q, p) = (0, 0, 0) of the dynamical
system (3.4). In particular, μ solves (3.2a), which in view of (3.1a) and defining ψ through
(3.1b) implies that ψ solves (2.8a) for H > 0 small enough and that (4.1a) holds true. The
representations (4.2b) as well as (3.24b) and (3.27b), respectively, imply that μb = 0 at H = 0,
which in view of (4.1a) shows that (2.8b) is satisfied. Additionally, equation (4.2b) implies

∂bμb =

⎧⎪⎨
⎪⎩

H + ∂ξw|(ξ,�)=(bH,H3−n)H for n ∈ (0, 3)\
{

1
m

: m ∈ N

}
,

H + ∂ξw|(ξ,�,σ)=(bH,H3−n,H ln H)H for n =
1
m

with m ∈ N,

which by virtue of (3.24b) and (3.27b), respectively, yields (4.1b). �
We combine this with the following result, which is valid for complete as well as partial

wetting:

Proposition 4.2 (Solution manifold in the bulk, cf [28]). Suppose n ∈ (0, 3). For all
B > 0 there exists a function RB of H > 0 large enough such that ψ = ψB with

ψB = ψCV|H �→BH(1 + RB) for H > 0 sufficiently large

defines a solution of (2.8a) and (2.8c), where ψCV is the unique twice for large H > 0
continuously differentiable solution to (2.9). Furthermore, it holds

RB = O
(
B3−n(ln(H))−1H−(3−n)

)
as H ↓ 0.

The correction RB depends, locally in H, continuously differentiably on B > 0. Additionally,
the boundary condition

∂H∂BψB = − 2
9B

(ln(H))−
4
3 H−1(1 + o(1)) as H →∞ (4.3)

holds true. Furthermore, there exists a B = BCG > 0 such that the unique solution ψ = ψCG

of (2.8) constructed in [10] or theorem A.1 in appendix A is the same as ψB.

Proof. See [28, proposition 3.1] for the statement and [28, sections 4–5] for its proof. �

4.2. Matching and transversality

This part mainly follows the reasoning in [28, section 3.3] with the difference of deriving
continuous differentiability in k > 0. Our goal is to study the solution manifolds constructed
in propositions 4.1 and 4.2 in three-dimensional phase space

(
H,ψ, dψ

dH

)
which intersect in the

unique solution curve
(

H,ψCG, dψCG
dH

)
.

Lemma 4.3. Take n ∈ (0, 3), k > 0, and let b = bCG ∈ R and B = BCG > 0 such that
ψb = ψB = ψCG. Then ψb and ψB are for every H > 0 continuously differentiable in b around

b = bCG and in B around B = BCG, respectively, and η ∈
{
∂bψb|b=bCG

,∂BψB|B=BCG

}
is twice

continuously differentiable in H > 0 with

d2η

dH2
− 1

3
(H2 + Hn−1)−1ψ

− 3
2

CG η = 0 for H > 0. (4.4)
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Proof. Because of (4.1a) and (4.2) of proposition 4.1, the fact that ψbCG = ψCG is a global
solution (i.e. a solution of (2.8a) for all H > 0), and continuously differentiable dependence
on the data for H taken from any compact subset of (0,∞) using standard ODE theory, it fol-
lows that η = ∂bψb|b=bCG

is twice continuously differentiable in H > 0 and by differentiating
(2.8a) meets the ordinary differential equation (4.4). Likewise, using proposition 4.2, the fact
that ψBCG = ψCG is a global solution to (2.8a), and standard ODE theory to obtain continuous
differentiability on the parameter B > 0 for all H > 0, taking η = ∂BψB|B=BCG

, we recognize
that η is twice continuously differentiable and by differentiating (2.8a) that (4.4) is satisfied,
too. �

We use the following uniqueness result for solutions to (4.4).

Lemma 4.4 (Uniqueness of the linearized problem, cf [28]). Suppose that n ∈
(0, 3), k > 0, and that η is twice continuously differentiable in H > 0 and right-continuous
at H = 0 such that (4.4),

η = 0 at H = 0, (4.5a)

and

dη
dH

→ 0 as H →∞ (4.5b)

are satisfied. Then η = 0 for all H � 0.

Proof. The proof uses the convexity of η2 (which easily follows from (4.4)) and is contained
in [28, lemma 3.3]. �

The following corollary implies that the solution manifolds
(

H,ψb, dψb
dH

)
and

(
H,ψB, dψB

dH

)
(parametrized by (b, H) and (B, H), and constructed in propositions 4.1 and 4.2, respectively)

intersect transversally in the solution curve
(

H,ψCG, dψCG
dH

)
constructed in [10].

Corollary 4.5. Suppose n ∈ (0, 3), k > 0, and choose b = bCG ∈ R and B = BCG > 0 such
that ψb = ψB = ψCG. Then the vectors(

∂bψb|b=bCG
,∂H∂bψb|b=bCG

)
and

(
∂BψB|B=BCG

,∂H∂BψB|B=BCG

)
are linearly independent for all H > 0.

Proof. Because of propositions 4.1 and 4.2, b = bCG ∈ R and B = BCG > 0 such that

ψb = ψB = ψCG exist. By lemma 4.3, η ∈
{
∂bψb|b=bCG

,∂BψB|B=BCG

}
is a solution to (4.4)

for which by standard theory of ODEs existence and uniqueness of classical solutions for

given data
(
η, dη

dH

)
at one H > 0 holds true. This implies that

(
∂bψb|b=bCG

,∂H∂bψb|b=bCG

)
and

(
∂BψB|B=BCG

,∂H∂BψB|B=BCG

)
are linearly independent for all H > 0 if they are linearly

independent for one H > 0, which in turn is equivalent to ∂bψb|b=bCG
and ∂BψB|B=BCG

being
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linearly independent as functions of H > 0. The latter will now be proved in the following
way: suppose that

α0 ∂bψb|b=bCG
+ α∞ ∂BψB|B=BCG

= 0 for all H > 0, (4.6)

where α0,α∞ ∈ R are constants. From (4.1b) of proposition 4.1 we see that ∂bψb|b=bCG
= 0 at

H = 0, ∂bψb|b=bCG
is non-trivial, and from lemma 4.3 that∂bψb|b=bCG

is a solution to the linear
ODE (4.4). By lemma 4.4 it follows that ∂H∂bψb|b=bCG

→ 0 as H →∞ cannot hold. On the
other hand, (4.3) of proposition 4.2 implies∂H∂BψB|B=BCG

→ 0 as H →∞, so that (4.6) yields
α0 = 0. Since (4.3) of proposition 4.2 also implies that∂BψB|B=BCG

is nontrivial, we must have
α∞ = 0. �

We are now in position to prove our main result.

Proof of theorem 2.1.
By propositions 4.1 and 4.2, there exist unique b = bCG ∈ R and B = BCG > 0 such that

ψb = ψB = ψCG. Writing R∞ :=RBCG and v := bζ +w|ξ=bζ , this implies all statements of
theorem 2.1 except for the continuously differentiable dependence of B and R∞ on k > 0.
In order to prove the latter, define f := (ψb − ψB, ∂Hψb − ∂HψB). Then it holds f = 0 for all
H > 0 if b = bCG and B = BCG. Hence, in particular f = ∂H f = 0 for all H > 0 if b = bCG

and B = BCG. Corollary 4.5 implies

det

(
∂b f ∂B f

∂b∂H f ∂B∂H f

)
= det

(
∂bψb −∂BψB

∂b∂Hψb −∂B∂HψB

)
	= 0 for all H > 0

(4.7)

if b = bCG and B = BCG. Fix a H > 0, then f and ∂H f are functions of b ∈ R, B > 0, and k > 0
only and by propositions 4.1 and 4.2 and standard theory of ODEs in the bulk, are smooth in
b ∈ R, continuously differentiable in B > 0, and smooth in k > 0. Because of (4.7) we infer
with help of the implicit-function theorem that BCG and bCG are continuously differentiable
functions of k > 0. Since RB is a continuously differentiable function of B > 0, by the chain
rule R∞ = RBCG is a continuously differentiable function of k > 0. �

Appendix A. Existence and uniqueness of traveling waves

In this appendix, we adapt the existence and uniqueness proof of classical solutions to (2.3) in
[10, theorem 1.1, section 3] carried out for quadratic mobilities n = 2 to prove existence and
uniqueness of classical solutions to (2.8) for all n ∈ (0, 3). Though there are no significantly
new insights, we present the proof for the sake of providing a complete presentation and since
in our chosen set of coordinates the proof turns out to be simpler. The proof of uniqueness
follows the reasoning of [28, lemma 3.3], which is lemma 4.4 in this note.

Theorem A.1 (cf [10] for n = 2). Suppose n ∈ (0, 3) and k > 0. Then there exists a
unique classical solution ψ = ψCG to (2.8), that is, ψ > 0 for H > 0, and ψ is twice
continuously differentiable in H > 0 and right-continuous at H = 0.
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Proof. We first prove uniqueness. Suppose thatψ1 andψ2 are two classical solutions to (2.8).
We set φ :=ψ1 − ψ2 and have

d2

dH2
φ2 = 2

(
dφ
dH

)2

+ 2φ
d2φ

dH2
for H > 0.

With help of (2.8a) it follows

φ
d2φ

dH2
= −2

3
φ
(
H2 + Hn−1

)−1
(
ψ
− 1

2
1 − ψ

− 1
2

2

)

=
2
3

(
H2 + Hn−1

)−1
ψ
− 1

2
1 ψ

− 1
2

2

(
ψ

1
2
1 + ψ

1
2
2

)−1

φ2 � 0 for H > 0.

Hence, d2

dH2 φ
2 � 0 for H > 0. Since φ = 0 at H = 0 by (2.8b) and φ2 � 0, necessarily

d
dHφ

2 � 0 for H > 0 small enough. Because of d2

dH2 φ
2 � 0 for H > 0 we need to have d

dHφ
2 � 0

for all H > 0. This implies with help of (2.8a)

d
dH

(
dφ
dH

)2

= 2
dφ
dH

d2φ

dH2
= −4

3
dφ
dH

(
H2 + Hn−1

)−1
(
ψ
− 1

2
1 − ψ

− 1
2

2

)

=
2
3

(
H2 + Hn−1

)−1
ψ
− 1

2
1 ψ

− 1
2

2

(
ψ

1
2
1 + ψ

1
2
2

)−1 d
dH

φ2

� 0 for H > 0.

Since
(

dφ
dH

)2 � 0 and
(

dφ
dH

)2 → 0 as H →∞ by (2.8c), we obtain dφ
dH = 0 for all H > 0,

which together with φ = 0 at H = 0 by (2.8b) implies φ = ψ1 − ψ2 = 0 for all H � 0.
In order to prove existence, first consider the approximating problems

d2ψ

dH2
+

2
3

(
H2 + Hn−1

)−1
ψ− 1

2 = 0 for ε < H < ε−1, (A.1a)

ψ = k2 at H = ε, (A.1b)

dψ
dH

= 0 at H = ε−1, (A.1c)

where 1 > ε > 0. Integrating (A.1a) twice using the boundary conditions (A.1b) and (A.1c),
we obtain the equivalent fixed-point problem

ψ = S[ψ] := k2 +
2
3

∫ H

ε

∫ ε−1

H1

(
H2

2 + Hn−1
2

)−1
(
ψ|H=H2

)− 1
2
dH2 dH1 for ε � H � ε−1.

(A.2)

Suppose that ψ is continuous for ε � H � ε−1 with ψ � k2. Then we obtain with help of (A.2)
that
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0 � d
dH

S[ψ] � 2
3k

(
χ

∫ 1

H
H̃1−n dH̃ +

∫ ε−1

1
H̃−2 dH̃

)

�

⎧⎪⎪⎨
⎪⎪⎩

2
3k

(
χ

1 − H2−n

2 − n
+ 1

)
if n ∈ (0, 3)\{2}

2
3k

(−χ ln H + 1) if n = 2

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
3k

3 − n
2 − n

if 0 < n < 2

2
3k

(− ln ε+ 1) if n = 2

2
3k

ε2−n

n − 2
if 2 < n < 3

for ε � H � ε−1,

(A.3)

where χ = 1 if 0 � H � 1 and χ = 0 else, and

k2 � S[ψ] �

⎧⎪⎪⎨
⎪⎪⎩

k2 +
2
3k

∫ H

ε

(
χ|H=H̃

1 − H̃2−n

2 − n
+ 1

)
dH̃ if n ∈ (0, 3)\{2}

k2 +
2
3k

∫ H

ε

(
−χ|H=H̃ ln H̃ + 1

)
dH̃ if n = 2

�

⎧⎪⎪⎨
⎪⎪⎩

k2 +
2
3k

(
ϑ

2 − n
− ϑ3−n

(3 − n)(2 − n)
+ H

)
if n ∈ (0, 3)\{2}

k2 +
2
3k

(ϑ− ϑ ln ϑ+ H) if n = 2

� Kε :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k2 +
2
3k

(
1

2 − n
+ ε−1

)
for 0 < n < 2

k2 +
2
3k

(
1 + ε−1

)
for n = 2

k2 +
2
3k

(
1

(3 − n)(n − 2)
+ ε−1

)
for 2 < n < 3

(A.4)

for ε � H � ε−1, where ϑ = H if 0 � H � 1 and ϑ = 1 if H > 1. Denote by Ψε the set of
all on ε � H � ε−1 continuous ψ such that k2 � ψ � Kε. Then (A.4) implies that S maps
Ψε into itself. By (A.3) the image {S[ψ] : ψ ∈ Ψε} is equi-continous and therefore compact
due to the Arzelà–Ascoli theorem. Hence, Schauder’s fixed-point theorem yields existence
of an in ε � H � ε−1 continuous solution ψ = ψε to (A.2) which is thus twice continuously
differentiable for ε � H � ε−1 and solves (A.1).

As a last step, we pass to the limit ε ↓ 0 for the approximating solutions (ψε)1>ε>0, where
we continuously extend according to

ψε :=

{
ψε|H=ε for 0 � H < ε.

ψε|H=ε−1 for H > ε−1.
(A.5)
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Since ψε = S[ψε], it holds by the first and second line of (A.4) for any R > 0

k2 � ψε �

⎧⎪⎪⎨
⎪⎪⎩

k2 +
2
3k

(
ϑ

2 − n
− ϑ3−n

(3 − n)(2 − n)
+ H

)
if n ∈ (0, 3)\{2}

k2 +
2
3k

(ϑ− ϑ ln ϑ+ H) if n = 2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k2 +
2
3k

(
1

2 − n
+ R

)
for 0 < n < 2

k2 +
2
3k

(1 + R) for n = 2

k2 +
2
3k

(
1

(3 − n)(n − 2)
+ R

)
for 2 < n < 3

for ε−1 � H � R,

(A.6)

which in view of (A.5) implies that (ψε)1>ε>0 is bounded on 0 � H � R for any R > 0. Further-
more, (A.3) implies that also

(
dψε
dH

)
ε0>ε>0

is almost everywhere bounded on R0 � H � R1 with

arbitrary 0 < R0 < R1 < ∞ if 0 < ε0 < min
{

R0, R−1
1

}
, so that in particular (ψε)ε0>ε>0 is equi-

continuous on R0 � H � R1. Hence, additionally taking (A.1a) and (A.6) into account, also(
d2ψε
dH2

)
ε0>ε>0

is bounded and equi-continuous on R0 � H � R1 with arbitrary 0 < R0 < R1 <

∞ if 0 < ε0 < min
{

R0, R−1
1

}
. The Arzelà–Ascoli theorem and a diagonal-sequence argument

imply that there exists a sub-sequence of (ψε)1>ε>0, which we do not re-label, and a limiting

function ψ depending on 0 < H < ∞ such that
(

d jψε
dH j

)
1>ε>0

converges uniformly to d jψ
dH j as

ε ↓ 0 on R0 � H � R1 for all 0 < R0 < R1 < ∞ and j ∈ {0, 1, 2}. In view of (A.1a) in particu-
lar (2.8a) is satisfied. Equation (A.5) and the first line of (A.6) imply thatψ can be continuously
extended to 0 � H < ∞ with ψ = k2 at H = 0, thus verifying (2.8b). For H > 0 and ε � H−1

we obtain from (A.2) that

0 � dψε

dH
� 2

3k

∫ ε−1

H
H̃−2 dH̃ � 2

3k
H−1,

which implies that dψ
dH → 0 as H →∞, thus proving (2.8c). �
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