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Abstract
The Optimal Power Flow (OPF) problem, a cornerstone of power system operations, has gained in-
creased attention since its inception by Carpentier in 1962. OPF is fundamentally an optimization
challenge aimed at enhancing electric power system operations within the bounds of physical and oper-
ational constraints. Over the decades, various methodologies have been explored to address the OPF
problem, adapting to evolving grid complexities and the integration of distributed energy resources.
These advancements have brought to the fore issues related to system randomness, fluctuation, and
the need for rapid control mechanisms.

This thesis introduces a comprehensive solution incorporating an online optimization algorithm tai-
lored for real-time OPF applications. This approach, characterized by minimal computation times,
integrates a feedback strategy that obviates the necessity for instantaneous power demand informa-
tion and employs a Shape-constrained Gaussian Process for the estimation of unknown cost functions.
The proposed control algorithm demonstrates robust tracking performance and satisfactory computa-
tion efficiency, marking a significant improvement towards optimizing future power networks fraught
with increasing size and complexity.

Moreover, this work delves into the investigation of various system design parameters, offering
insights into potential avenues for enhancing system performance. Through a meticulous examination
of these parameters, the thesis sheds light on strategies to refine the integrated system’s efficacy,
paving the way for more resilient and efficient power networks.
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1
Introduction

The Optimal Power Flow (OPF) problem has been defined variously across different papers and text-
books. However, irrespective of the terminology or descriptions employed, the core challenge inherent
in OPF remains consistent: it encompasses any optimization problems aimed at optimizing the oper-
ation of an electric power system which is subject to physical constraints dictated by electrical laws
and engineering limitations [11]. In other words, any power systems optimization problem that incor-
porates a set of power flow equations among its constraints can be deemed a form of OPF [12]. The
OPF problem is typically a time-variant, constrained, nonlinear, and non-convex optimization problem.
It involves a network comprising buses, some of which face time-varying demand loads while others
are integrated with distributed power resources. Although different studies may prioritize varying objec-
tives, the overarching goals of OPF typically includeminimizing power losses andmaximizing economic
gains.

1.1. The OPF problem formulation
For the most simplicity, the majority of OPF formulations may be represented using the following stan-
dard form [12]:

min 𝑓(𝒖, 𝒙)
s.t. 𝑔(𝒖, 𝒙) = 0

ℎ(𝒖, 𝒙) ⩽ 0
(1.1)

Where 𝒖 and 𝒙 denote control variables (Power injections 𝑃𝑔,𝑖, 𝑄𝑔,𝑖, .etc) and dependent system
states (uncontrollable voltages 𝑉𝑖, .etc) respectively.

A more specific representation for OPF could be written as follows:

min
{𝑢𝑖}𝑖∈𝒢

𝑓 (𝒖) (1.2a)

s.t. 𝑃𝑖(𝒗, 𝜽) = 𝑃𝑔,𝑖 − 𝑃𝑑,𝑖 , ∀𝑛 ∈ 𝒩 (1.2b)
𝑄𝑖(𝒗, 𝜽) = 𝑄𝑔,𝑖 − 𝑄𝑑,𝑖 , ∀𝑛 ∈ 𝒩 (1.2c)
𝑉𝑚𝑖𝑛 ≤ |�̃�𝑖| ≤ 𝑉𝑚𝑎𝑥 , ∀𝑛 ∈ 𝒩 (1.2d)
𝑢𝑖 ∈ 𝒴𝑖 , ∀𝑖 ∈ 𝒢 (1.2e)

Where 𝒩 and 𝒢 denote all the buses and the buses with control devices (generator, battery, .etc)
in the network.

Equation 1.2b and 1.2c are the power flow equations for bus 𝑖, while 𝑃𝑔,𝑖 and 𝑃𝑑,𝑖 in them are the
real power generations and the real power demand respectively at bus 𝑖, the same definitions for the
reactive power 𝑄𝑔,𝑖 and 𝑄𝑑,𝑖. Equation 1.2d represents the voltage limits 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥, and equation
1.2e denotes the limit 𝒰𝑖 for control variables.
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2 1. Introduction

The objective functions employed in addressing the Optimal Power Flow (OPF) problem, as referenced
in equation 1.2, exhibit variability due to differing system configurations. These variations ensure that
network operations are optimized in alignment with explicitly defined criteria, such as minimizing power
losses [7]. Typically, across the majority of scenarios, the objectives hinge on the real and reactive
power generation within the system [12].

1.1.1. System settings and objective functions
The general form of the objective function of the OPF problem 1.2 can be written as[7]:

𝑓𝑜(𝒗, 𝒊, 𝒑𝒈, 𝒒𝒈) ∶= 𝑐𝜌𝜌(𝒗, 𝒊) + 𝑐𝜙𝜙 (𝒑𝒈, 𝒒𝒈) + 𝑐𝜈𝜈(𝒗) (1.3)

According to different system settings, the selection of the 3 terms in equation 1.3 could be different.
𝜌(𝒗, 𝒊) captures real power losses in the network, it is described in [7] as:

𝜌(𝒗, 𝒊) ∶= ∑
(𝑚,𝑛)∈ℰ

ℜ{�̃�𝑚 ̃𝐼∗𝑚𝑛} − ℜ {�̃�𝑛 ̃𝐼∗𝑚𝑛} . (1.4)

̃𝐼𝑚𝑛 ∈ ℂ denotes the current flowing on line (𝑚, 𝑛), ℰ consists all the notes (𝑚, 𝑛) in the network.
𝜙 (𝒑𝒈, 𝒒𝒈) captures the terms related to the generated real power and imaginary power. In [7], [25]

and [6], it is described as the following form:

𝜙 (𝒑𝒈, 𝒒𝒈) =∑
𝑖∈𝒢
𝑐𝑞 (𝑄𝑔𝑖)

2 + 𝑐𝑝 (𝑃𝑘av,𝑖 − 𝑃𝑔𝑖)
2

(1.5)

Where 𝑐𝑝 and 𝑐𝑞 are design coefficients, 𝑃𝑘av,𝑖 is the total available power generated. The effort of
this term is to minimize the amount of real power curtailed and the amount of reactive power injected
or absorbed. This is typically used when there is high penetration of photovoltaic (PV) generators,
particularly, it is demonstrated in [6] how the proposed controllers can reliably prevent over-voltages
that are likely to be experienced during periods when PV generation exceeds the demand [6],[7], while
trying to maintain the real power generated by photovoltaic generators as large as possible.

In this case, the controller variables limit at time instant 𝑡 = 𝑘 are as follows [6], [25]:

0 ⩽ 𝑃𝑘𝑔,𝑖 ⩽ 𝑃𝑘𝑎𝑣,𝑖
|𝑄𝑘𝑔,𝑖| ⩽ √𝑃𝑘2𝑎𝑣,𝑖 − 𝑃𝑘2𝑔,𝑖

(1.6)

The constraints 1.6 describe the situation that a part of the available real power 𝑃𝑘𝑎𝑣,𝑖 is curtailed so that
some available reactive power can be provided in order to enforce voltage regulation, the available

reactive power is upper bounded by √𝑃𝑘2𝑎𝑣,𝑖 − 𝑃𝑘2𝑔,𝑖 .

Alternatively, another typical formation of 𝜙 (𝒑𝒈, 𝒒𝒈) in [11], [1], [5], [31]:

𝜙 (𝒑𝒈, 𝒒𝒈) =∑
𝑖∈𝒢
(𝑐𝑖,𝑝,2𝑃𝑔,𝑖2 + 𝑐𝑖,𝑝,1𝑃𝑔,𝑖 + 𝑐𝑖,𝑝,0) (1.7)

In this formulation, the coefficients 𝑐𝑖,𝑝,2, 𝑐𝑖,𝑝,1 and 𝑐𝑖,𝑝,0 serve as weighting factors. This setup exempli-
fies scenarios aiming at minimizing the generation fuel cost expressed by a quadratic function [5], [1].
In other words, controllable power injections, denoted by 𝑃𝑔,𝑖 and 𝑄𝑔,𝑖, are sourced from energy storage
systems or generators. This approach ensures the fulfillment of all load demands, with the primary aim
of 𝜙 being to minimize the total power injection.

Finally, the last term in equation 1.7 𝜈(𝒗) promotes a flat voltage profile[10],[5], [1]:

𝜈(𝒗) = ∑
𝑖∈𝒩

𝑐𝑣,𝑖 (|�̃�𝑖| − 𝑉ref ) (1.8)
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which is optimized by minimizing the load bus voltage deviation (VD) from the pre-defined voltage
reference 𝑉𝑟𝑒𝑓. 𝑐𝑣,𝑖 denotes weighting coefficients.

The cost terms in this part are some most commonly used objective functions. However, some other
terms such as voltages stability enhancement [5], [1], [16] or piece-wise quadratic cost function [1], [5],
could also be introduced into the objective function.

1.1.2. Constraints and variables
In the majority of scenarios, the equality constraints for the OPF problem, as delineated in problem
1.2, describe the flow equations that depict the power system’s dynamics. Meanwhile, the inequality
constraints generally encompass limitations on generators and voltage, as specified in problem 1.2.

Many researchers in the field often categorize the system variables into two groups: control vari-
ables 𝒖, which usually include the power injections from generators (𝑃𝑔,𝑖, 𝑄𝑔,𝑖), and state variables—
sometimes referred to as dependent variables 𝒙—encompassing voltagemagnitudes and angles. Within
this framework, the control variables, or independent variables, are described as follows [11]:

𝒖 = [𝑃𝑔,𝑖 , 𝑄𝑔,𝑖] , 𝑖 ∈ 𝒢 (1.9)

while the state variables (dependent variables) can be written as [11]:

𝒙 = [�̃�𝑖] 𝑖 ∈ 𝒩 (1.10)

Alternatively, as in [5], [26], the OPF problem 1.2 can be written as:

min
𝒖

𝑓′𝑘 (𝒖, 𝒙) (1.11a)

s.t. 𝒖𝑖 ∈ 𝒰𝑘𝑖 , ∀𝑖 ∈ 𝒢 (1.11b)

Where the new objective function 1.11a: 𝑓′𝑘 is combined with the original objective function and
a quadratic penalty term. The specific formulation of penalty terms can vary based on the system
configuration. Following the approach detailed in [5], a penalty term—constituted by the penalty factor
𝜆𝑣 and the squared deviation of the dependent variable from its limit—is appended to the objective
function to penalize unfeasible solutions:

𝑓′0 = 𝑓0 + 𝜆𝑉
𝑁

∑
𝑖=1
(𝑣𝑖 − 𝑉lim𝑖 )2 (1.12)

In this optimization framework, control variables are inherently ’self-constrained,’ as delineated in equa-
tion 1.11b. Additionally, the inequality constraints associated with dependent variables, such as load
bus voltage magnitudes, are seamlessly integrated into the objective function through the incorporation
of quadratic penalty terms, as outlined in equation 1.12.

In equation 1.12, the voltage �̃�𝑖 is derived from system models, and 𝜆𝑣 denotes the penalty factor.
The limit value 𝑉lim𝑖 for the dependent variable �̃�𝑖 is defined as follows, ensuring adherence to specified
voltage bounds [5]:

𝑉lim𝑖 = {𝑉
max
𝑖 if �̃�𝑖 > 𝑉max

𝑖
𝑉min
𝑖 if �̃�𝑖 < 𝑉min

𝑖
(1.13)

Alternatively, functional constraints can be integrated into the objective function via a logarithmic barrier
function, as exemplified in [21]. This method facilitates the handling of constraints within the optimiza-
tion process, promoting solution feasibility without explicitly enforcing boundary conditions.



4 1. Introduction

1.2. Motivation and main challenges
Based on the particular selection of variables, objective(s), and constraints, OPF formulations differ
greatly [12]. Such variable nature leads to different solutions and accuracy. This section describes
traditional OPF approaches investigated and their limitations in the past few decades.

Traditionally, classical optimization techniques have predominantly relied on gradient-based opti-
mization algorithms. These methods typically linearize the objective function and system constraints
around a specific operating point [1], although in certain instances, a direct application of nonlinear sys-
tem models is observed. Distinct classifications and methodologies, such as Linear Programming (LP)
and Sequential Linear Programming (SLP), Quadratic Programming (QP) and Sequential Quadratic
Programming (SQP), along with Gradient Methods and Newton’s Method, have been extensively uti-
lized over the past few decades. However, the limitations of these conventional OPF approaches are
well-recognized.

Challenge 1) Computation speed: It is well-known that the OPF problem is non-convex and NP-
hard [6], which results in significant computational demands for its resolution. A primary challenge
is the alignment of the solution time with the rapidly evolving system dynamics [6]. Moreover, as the
complexity of the network increases, the time required to solve the OPF task may grow exponentially
[11].

In such scenarios, a critical drawback of traditional OPF methods is that one has to wait for iterative
convergence before obtaining a usable solution for the network [26] [14]. In the near future, with more
integration of renewable power sources, such as distributed wind and solar generation into the electricity
grid, the network will face an increasing amount of unpredictable fluctuations[26] [14] [18]. This, along
with the growing size and complexity of power networks demanding enhanced control capabilities,
necessitates controllers that operate on much faster timescales—seconds [26] [6] or even sub-seconds
[30]. Traditional OPF methods, functioning on slower timescales, will fall short in addressing these
requirements [26]. Against this backdrop, the concept of real-time optimal power flow (RT-OPF), also
known as online OPF or sometimes dynamic OPF, has emerged as a compelling research area in
recent years.

challenge 2) Solution accuracy: Even when employing methods known for their faster convergence
rates, such as Linear Programming (LP) and Sequential Linear Programming (SLP), the controller’s
performance may still fall short of expectations. A significant limitation of the solution computed via a
a simplified reformulation of the original nonlinear OPF problem is that such solutions might be sub-
optimal or even not feasible for the original formulation and might not represent a global optimum or
even a feasible solution within the original Nonlinear (NL) OPF problem, especially in complex systems
[12].

This limitation is partly addressed by the Sequential Linear Programming (SLP) approach. Unlike
relying on a singular linearization, SLP facilitates the optimization of problems with nonlinear attributes
through successive linear approximations [12]. Following the resolution of a linear optimization prob-
lem, the original NL problem is re-linearized at the new optimal point, and this cycle is repeated until
convergence is achieved. The principal benefit of SLP lies in its ability to maintain the expedience of
LP while edging closer to the accuracy offered by Nonlinear Programming (NLP) methods. However,
unlike LP, SLP constructs the linear program based on the current operating point, thus inherently
converging to local optima only [12].

Challenge 3) Uncontrollable demand measurement The requirement for load demand data at each
bus for every time instant presents a significant hurdle, which may not be realistic in actual power
network operations [6], [19]. The absence of this detailed information hampers the practical implemen-
tation of the algorithm.

Challenge 4) Unknown cost functions The cost function 𝑓(𝒖) in the OPF problem, as referenced in
problem 1.2, may sometimes be unknown, particularly in scenarios where the cost functions aim to en-
capsulate user preferences, comfort, or environmental impacts such as pollution, which are inherently
difficult to model [19], [20].

Given the challenges and limitations discussed earlier, the primary objectives of this thesis are to de-
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velop an algorithm that provides sub-optimal solutions to the OPF problem while achieving:

• Rapid computation times (within seconds or sub-seconds during sampling)

• Minimal asymptotic errors compared to the actual optimal solutions

• Feasibility without direct observations of the load demands, 𝒑𝑘𝒅, 𝒒𝑘𝒅
• Applicability with unknown cost functions

1.3. Relevant work
To develop controllers capable of managing operations at significantly faster rates, onlineOPFmethods—
also referred to as ’real-time’ OPF methods—have emerged as an attractive topic of recent research.
Despite the diversity in online OPF approaches, their foundational concepts can generally be catego-
rized into previously discussed categories. For instance, [30] presents an online OPF method employ-
ing a modified ADMM algorithm originally proposed by [28], along with a linear approximation of the
network model from [9]. Similarly, utilizing the linear approximation methodology from [9] and [15], [6]
outlines a real-time OPF method based on gradient projection, demonstrating notable tracking perfor-
mance. In scenarios involving nonlinear network models, [26] evaluates a real-time OPF method utiliz-
ing quasi-Newton iterations, illustrating that, with a suitable algorithm, OPF approaches incorporating
nonlinear models can also achieve rapid computation times. Moreover, [3], [6], and [17] incorporate
a feedback strategy into the online OPF methodology, thereby obviating the need for direct load in-
formation and compensating for errors due to model mismatches. This feedback approach shows to
enhance convergence performance in numerical simulations.

Furthermore, the exploration of various predictors has been undertaken to enhance the solutions to
the OPF problem. Within this context, a predictor is defined as a model designed to forecast the future
progression of the sequence of optimization solutions based on current data. [25] explores multiple
prediction methods within time-varying optimization frameworks. Specifically, [24] introduces a first-
order optimal predictor that leverages first-order derivative information. Meanwhile, [23] expands upon
this by presenting a predictor that circumvents the need for computing the inversion of the Hessian.
Numerical simulations pertinent to these methodologies indicate that incorporating prediction into the
algorithm results in improved tracking accuracy.

1.4. Thesis outline
The primary contribution of this thesis is the development of a controller that integrates an online/real-
time Optimal Power Flow (OPF) algorithm with a linearized system model, measurement feedback
strategy, and Gaussian process to learn unknown cost functions, along with investigation of the effects
of the design parameters and potential improvements.

The thesis is organized as follows: Chapter 1 provides a fundamental introduction to the OPF problem,
including the motivation and challenges, as well as relevant work. Chapter 2 describes the mathe-
matical model and its linearization for a power network, alongside test results of linear error using a
real-world network that will be utilized in this thesis. Chapter 3 details the online algorithm Primal-Dual
Gradient Projection method and the feedback strategy employed. Chapter 4 discusses the shape-
constrained Gaussian process designed to learn the unknown cost functions. Chapter 5 presents
the simulation results and discusses the implications of the corresponding system design parameters.
Chapter 6 concludes the thesis and outlines potential avenues for future work.





2
System model and linearization

This chapter introduces the bus injection model for power systems, which forms the foundation of the
analysis conducted in this thesis. We explore the linear approximation of this model as proposed in [9].
Subsequently, we undertake a numerical verification of its accuracy.

In conventional power flow equations, all system buses are assigned to one of three bus types:

• Slack Bus: The voltage magnitude 𝑉 and angle 𝜃 are fixed and the power injections (𝑃 for real
power, 𝑄 for imaginary power) are free. Typically 𝑉 = 1.0 p.u. and 𝜃 = 0∘. There is only one
slack bus in a power system.

• Load Bus: or ’PQ’ bus, the power injections 𝑃 and 𝑄 are fixed while the voltage magnitude 𝑉 and
angle 𝜃 are free. The symbolℳ denotes the indices of PQ buses in a network.

• Voltage-Controlled bus: or ’PV’ bus, the real power injection 𝑃 and voltage magnitude 𝑉 are fixed
while the reactive power injection 𝑄 and the voltage angle 𝜃 are free. According to the symbols
defined before, there are |𝒩| − |ℳ| − 1 PV buses in the system.

We denote the Complex power as:

�̃� = [�̃�1, �̃�2, ..., �̃�𝑛]𝑇 ≜ �̃� ⋅ (Y�̃�)∗ (2.1)

Where Y denotes the admittance matrix with typical elements 𝑌𝑖,𝑗.
The equation can be also written as:

�̃�𝑖 = �̃�𝑔,𝑖 − �̃�𝑑,𝑖 ⇔ 𝑃𝑖 + 𝑗𝑄𝑖 = (𝑃𝑔,𝑖 − 𝑃𝑑,𝑖) + 𝑗 (𝑄𝑔,𝑖 − 𝑄𝑑,𝑖) . (2.2)

Where the superscripts ∗𝑔𝑎𝑛𝑑∗𝑑 indicate the generated power and the demand power respectively.

The basic two equations of the conventional power flow are:

𝑃𝑖(𝑉, 𝜃) = 𝑃𝑔,𝑖 − 𝑃𝑑,𝑖 ∀𝑖 ∈ 𝒩
𝑄𝑖(𝑉, 𝜃) = 𝑄𝑔,𝑖 − 𝑄𝑑,𝑖 ∀𝑖 ∈ 𝒩, (2.3)

Where 𝑃𝑖 is the real power injection at bus 𝑖, while 𝑄𝑖 is the imaginary power injection at bus 𝑖.

Combined with equation 2.1, 2.2 and 2.3: the following form can be derived [26]:

𝑃𝑖(𝑡) + j𝑄𝑖(𝑡) = ∑
𝑗∈𝒩

�̃�𝑖(𝑡)�̃�∗𝑗 (𝑡)𝑌∗𝑖𝑗

𝐼𝑖𝑗(𝑡) = −𝑌𝑖𝑗 (�̃�𝑖(𝑡) − �̃�𝑗(𝑡))

7
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2.1. Bus injection model
AC power flow equations can be represented through two distinct models: the Bus Injection Model and
the Branch Flow Model [11]. Both models have been extensively investigated by various researchers.
The Bus Injection Model, being the most commonly utilized of the two, will be the focus of this report.
Specifically, the Bus Injection Model is delineated in [11] in two different forms, distinguished by the
coordinate frame adopted for voltage and admittance:

1) Selection of polar coordinates for voltage, �̃�𝑖 = 𝑉𝑖∠𝜃𝑖 and rectangular coordinates for admittance
Y = G+ 𝑗B,:

𝑃𝑖(𝑉, 𝜃) =𝑉𝑖
𝑁

∑
𝑘=1

𝑉𝑘 (𝐺𝑖𝑘 cos (𝜃𝑖 − 𝜃𝑘)

+𝐵𝑖𝑘 sin (𝜃𝑖 − 𝜃𝑘)) ∀𝑖 ∈ 𝒩

𝑄𝑖(𝑉, 𝜃) =𝑉𝑖
𝑁

∑
𝑘=1

𝑉𝑘 (𝐺𝑖𝑘 sin (𝜃𝑖 − 𝜃𝑘)

−𝐵𝑖𝑘 cos (𝜃𝑖 − 𝜃𝑘)) ∀𝑖 ∈ 𝒩

(2.4)

2) Selection of polar coordinates for voltage 𝑣𝑖 = 𝑉𝑖∠𝜃𝑖, and polar coordinates for admittance,𝑌𝑖𝑘 =
𝑌𝑖𝑘∠𝛿𝑖𝑘 :

𝑃𝑖(𝑉, 𝜃) = 𝑉𝑖
𝑁

∑
𝑘=1

𝑉𝑘𝑌𝑖𝑘 cos (𝜃𝑖 − 𝜃𝑘 − 𝛿𝑖𝑘) ∀𝑖 ∈ 𝒩,

𝑄𝑖(𝑉, 𝜃) = 𝑉𝑖
𝑁

∑
𝑘=1

𝑉𝑘𝑌𝑖𝑘 sin (𝜃𝑖 − 𝜃𝑘 − 𝛿𝑖𝑘) ∀𝑖 ∈ 𝒩.
(2.5)

2.2. The admittance matrix
The admittance matrix Y used in the power system models (equation 2.1, 2.4, 2.5) derives from the
application of Ohm’s and Kirchoff’s laws to a steady-state AC electrical network [11]. Defining 𝑦S𝑖 as
the shunt admittance associated with the bus itself, the elements of Y can be computed [11]:

𝑌𝑖𝑖 = 𝑦S𝑖 + ∑
𝑘∶(𝑖,𝑘)∈ℒ

1
|𝑎𝑖𝑘|

2 (�̃�𝑖𝑘 +
1
2�̃�

Sh
𝑖𝑘 ) + ∑

𝑘∶(𝑘,𝑖)∈ℒ
(�̃�𝑘𝑖 +

1
2𝑦

Sh
𝑘𝑖 )

𝑌𝑖𝑘 = − ∑
𝑘∶(𝑖,𝑘)∈ℒ

1
𝑎∗𝑖𝑘
𝑦𝑖𝑘 − ∑

𝑘∶(𝑘,𝑖)∈ℒ

1
𝑎𝑖𝑘
𝑦𝑘𝑖 , 𝑖 ≠ 𝑘

(2.6)

Where 𝑦𝑖𝑘 can be computed as:

𝑦𝑖𝑘 =
1

𝑅𝑖𝑘 + 𝑗𝑋𝑖𝑘
= 𝑅𝑖𝑘
𝑅2𝑖𝑘 + 𝑋2𝑖𝑘

− 𝑗 𝑋𝑖𝑘
𝑅2𝑖𝑘 + 𝑋2𝑖𝑘

. (2.7)

𝑎𝑖𝑘 can be computed as:

𝑎𝑖𝑘 = 𝑇𝑖𝑘𝑒𝑗𝜑𝑖𝑘 (2.8)

Series impedance 𝑅𝑖𝑘 + 𝑗𝑋𝑖𝑘 in equation 2.7 and shunt susceptance �̃�Sh𝑖𝑘 in equation 2.6, voltage ratio
𝑇𝑖𝑘 and phase angle 𝜑𝑖𝑘 in equation 2.8 can be obtained by the system data.
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Another form of computingY is to separate equation 2.6 into real and imaginary parts using the definition
Y = G+ 𝑗B and the identity 𝑎𝑖𝑘 = 𝑇𝑖𝑘 (cos𝜑𝑖𝑘 + 𝑗 sin𝜑𝑖𝑘):

𝐺𝑖𝑖 =𝑔S𝑖 + ∑
𝑘∶(𝑖,𝑘)∈L

1
𝑇2𝑖𝑘

(𝑔𝑖𝑘 +
1
2𝑔

Sh
𝑖𝑘 ) + ∑

𝑘∶(𝑘,𝑖)∈ℒ
(𝑔𝑘𝑖 +

1
2𝑔

Sh
𝑘𝑖 ) ,

𝐺𝑖𝑘 =− ∑
𝑘∶(𝑖,𝑘)∈ℒ

1
𝑇𝑖𝑘

(𝑔𝑖𝑘 cos𝜑𝑖𝑘 − 𝑏𝑖𝑘 sin𝜑𝑖𝑘)

− ∑
𝑘∶(𝑘,𝑖)∈ℒ

1
𝑇𝑘𝑖

(𝑔𝑘𝑖 cos𝜑𝑘𝑖 + 𝑏𝑘𝑖 sin𝜑𝑘𝑖) , 𝑖 ≠ 𝑘

𝐵𝑖𝑖 =𝑏S𝑖 + ∑
𝑘∶(𝑖,𝑘)∈L

1
𝑇2𝑖𝑘

(𝑏𝑖𝑘 +
1
2𝑏

Sh
𝑖𝑘 ) + ∑

𝑘∶(𝑘,𝑖)∈ℒ
(𝑏𝑘𝑖 +

1
2𝑏

Sh
𝑘𝑖 ) ,

𝐵𝑖𝑘 =− ∑
𝑘∶(𝑖,𝑘)∈ℒ

1
𝑇𝑖𝑘

(𝑔𝑖𝑘 sin𝜑𝑖𝑘 + 𝑏𝑖𝑘 cos𝜑𝑖𝑘)

− ∑
𝑘⋅(𝑘,𝑖)∈I

1
𝑇𝑘𝑖

(−𝑔𝑘𝑖 sin𝜑𝑘𝑖 + 𝑏𝑘𝑖 cos𝜑𝑘𝑖) , 𝑖 ≠ 𝑘.

(2.9)

Where 𝑔𝑖𝑘 and 𝑏𝑖𝑘 are the real and imaginary parts of 𝑦𝑖𝑘 computed by equation 2.7 respectively.

In the simulations of this thesis, the commandmakeYbus in the MATLAB Matpower toolbox is directly
used to obtain the admittance matrix Y by providing a network as the input.

2.3. Linear approximation
In order to develop an online OPF algorithm, one approach involves linearizing the system model,
which significantly reduces computation time. More details about the specific online OPF algorithm to
be utilized will be discussed in Chapter 3. This section initially describes the linear model proposed in
[9], [6].

2.3.1. Linear approximate model
Assume that the temporal domain is discretized as 𝑡 = 𝑘𝜏, where 𝑘 ∈ ℕ and 𝜏 > 0 is a given interval.
Assigning Y𝑘 as the system admittance matrix (𝑁 ×𝑁), which can be partitioned into submatrices with
the following dimensions: Y

𝑘
∈ ℂ(𝑁−1)×(𝑁−1), y𝑘 ∈ ℂ(𝑁−1), 𝑦𝑘00 ∈ ℂ, finally, ̃𝑣0𝑘 and ̃𝑖0

𝑘
are the slack

bus voltage and current, while 𝒗𝑘 ∈ ℂ𝑁 and 𝒊𝑘 ∈ ℂ𝑁 are the voltages and currents for the rest of the
buses. Using Ohm’s and Kirchhoff’s circuit laws, the circuit relations can be compactly represented in
matrix-vector form as follows ([6]):

[ ̃𝐼0
𝑘

𝒊𝑘 ] = [ 𝑦
𝑘
00 (y𝑘)

⊤

y𝑘 Y
𝑘 ]

⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
∶=Y𝑘

[ �̃�0
𝑘

𝒗𝑘 ] , (2.10)

The standard form of the OPF problem in [6] can be written as:

(OPF𝑘) min
𝒗,𝒊,{𝑃𝑔,𝑖 ,𝑄𝑔,𝑖}𝑖∈𝒢

ℎ𝑘 (𝒗) +∑
𝑖∈𝒢
𝑓𝑘𝑖 (𝑃𝑔,𝑖 , 𝑄𝑔,𝑖)

s.t. �̃�𝑖 ̃𝐼∗𝑖 = 𝑃𝑘𝑔,𝑖 − 𝑃𝑘𝑑,𝑖 + j (𝑄𝑘𝑔,𝑖 − 𝑄𝑘𝑑,𝑖) , ∀𝑖 ∈ 𝒢
�̃�𝑛 ̃𝐼∗𝑛 = −𝑃𝑘𝑑,𝑛 − j𝑄𝑘𝑑,𝑛 , ∀𝑛 ∈ 𝒩\𝒢
𝑉min ≤ |�̃�𝑖| ≤ 𝑉max, ∀𝑖 ∈ 𝒩
(𝑃𝑔,𝑖 , 𝑄𝑔,𝑖) ∈ 𝒰𝑘𝑖 , ∀𝑖 ∈ 𝒢,

(2.11)
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Where 𝒢 collects all the buses with generators, 𝑓𝑘𝑖 (𝑃𝑔,𝑖 , 𝑄𝑔,𝑖) is a time-varying function specifying
performance objectives for the 𝑖 th generator, while ℎ𝑘(𝒗)captures system-level objectives. The details
of the objection function will be discussed later.

We now discuss the Linearization of the model which defines the constraints of problem 2.11:
Define for each bus, the voltage :

�̃�𝑖 = �̃�𝑒,𝑖 + Δ�̃�𝑖 (2.12)

where �̃�𝑒,𝑖 and Δ�̃�𝑖 are the nominal/equilibrium point and the small deviation, respectively. The
desired linear model can be written as:

𝜟𝒗𝒓𝒆 ≈ Are𝒑 + Bre𝒒 𝑖 ∈ 𝒩
𝜟𝒗𝒊𝒎 ≈ Aim𝒑 + Bim𝒒 𝑖 ∈ 𝒩 (2.13)

Where𝜟𝒗𝒓𝒆and 𝜟𝒗𝒊𝒎 are the real and imaginary parts of the deviation voltages respectively, 𝒑, 𝒒
are the actual real power and imaginary power injections at the 𝑖 th bus (𝒑 = 𝒑𝒈 − 𝒑𝒅, 𝒒 = 𝒒𝒈 − 𝒒𝒅).
Are, Aim, Bre and Bim are the linear model matrix that we want.

Assigning the power generated by generators and the power consumed by the load demands as 𝑃𝑔,𝑖,
𝑄𝑔,𝑖 and 𝑃𝑑,𝑖, 𝑄𝑑,𝑖 respectively, the net power injection at bus 𝑖 can be computed as:

𝑃𝑖 = 𝑃𝑔,𝑖 − 𝑃𝑑,𝑖
𝑄𝑖 = 𝑄𝑔,𝑖 − 𝑄𝑑,𝑖
for 𝑖 ∈ 𝒩

(2.14)

If there is no generator at bus 𝑖, then 𝑃𝑔,𝑖 = 𝑄𝑔,𝑖 = 0
Note that for computation and derivation convenience, here the form in [9] which defines the rela-

tions between control variables 𝑃𝑔,𝑖, 𝑄𝑔,𝑖 and the real part, imaginary part of voltages 𝑉𝑟𝑒, 𝑉𝑖𝑚 are used
instead of the form in [6] where the system outputs are the magnitudes and phase of voltages.

As for the selection of the linearization points, [9] and [15] both provide 2 methods.

1. Flat Voltage: Mainly used in transmission networks, the nominal voltages 𝒗𝑒 are set to be:

𝒗𝑒 = 1𝑁 (2.15)

2. No-load Voltage: Mainly used in distribution networks, the nominal voltages are set to be:

𝒗𝒆 = −Y
−1
y𝑉0 (2.16)

The second selection is used in this thesis since distribution networks will be investigated and tested.

Using equation 2.10, complex-power bus injections can be compactly written as ([9]):

𝒔 = diag(𝒗)𝒊∗ = diag(𝒗) (Y
∗
𝒗∗ + y∗𝑉∗0) (2.17)

Then replacing 𝒗 with 𝒗𝒆 + 𝜟𝒗 as equation 2.12 defines, and discarding the second order terms in
𝜟𝒗:

A′𝜟𝒗 + B′𝜟𝒗∗ = 𝒔 + 𝒗 (2.18)

Where

A′ ∶= diag (Y
∗
𝒗∗𝒆 + y

∗�̃�0
∗) (2.19)

B′ ∶= diag(𝒗𝒆)Ỹ∗ (2.20)

𝒗 ∶= −diag(𝒗𝒆) (Y
∗
𝒗∗𝒆 + y

∗�̃�0
∗) .
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Choosing the linearization points as equation 2.16 obtains the linearized power-flow expression [6]:

diag (𝒗𝒆∗)Y𝜟𝒗 = 𝒔∗ (2.21)

Which can be rewritten as:

𝜟𝒗 = Y
−1

diag−1 (𝒗𝒆∗) 𝒔∗

The system matrix for 2.13 then can be obtained as:

A𝑟𝑒 = Rdiag ( cos𝜽𝒆|𝒗𝒆|
) −Xdiag ( sin 𝜽𝒆

|𝒗𝒆|
)

B𝑟𝑒 = Xdiag ( cos𝜽𝒆|𝒗𝒆|
) +Rdiag ( sin𝜽𝒆|𝒗𝒆|

)

A𝑖𝑚 = Xdiag ( cos𝜽𝒆|𝒗𝒆|
) +Rdiag ( sin𝜽𝒆|𝒗𝒆|

)

B𝑖𝑚 = −Rdiag ( cos𝜽𝒆|𝒗𝒆|
) +Xding ( sin𝜽𝒆|𝒗𝒆|

)

(2.22)

R and X are the resistance and reactance matrix respectively, for all 𝑖 ∈ 𝒩, defined as:

R = Re (Y
−1
)

X = Im (Y
−1
)

(2.23)

𝜽𝒆 and 𝒗𝒆 are correspond to the chosen linearization points (From [6] and [9]):

𝒗𝒆 = −Y
−1
y�̃�0 (2.24)

The final voltage is:

𝒗 = 𝒗𝒆 + 𝜟𝒗 (2.25)

Assigning 𝒢 ⊆ 𝒩 to be the indices of the buses with generators. Then the linear surrogate with linear
constraints for the target OPF problem is:

min
{𝒖𝑖}𝑖∈𝒢

𝑓𝑘𝑜 (𝒖𝑖) (2.26a)

s.t. 𝑔𝑘1,𝑛 ({𝒖𝑖}𝑖∈𝒢) ≤ 0, ∀𝑛 ∈ 𝒩 (2.26b)

𝑔𝑘2,𝑛 ({𝒖𝑖}𝑖∈𝒢) ≤ 0, ∀𝑛 ∈ 𝒩 (2.26c)

𝒖𝑖 ∈ 𝒰𝑘𝑖 , ∀𝑖 ∈ 𝒢, (2.26d)

Where 𝒖𝑖 ∶= [𝑃𝑔,𝑖 , 𝑄𝑔,𝑖]
⊤
are the control variables.

Equation 2.26a is the objective function, which has different forms in different system criteria; the details
were discussed in Chapter 1.

The constraints of the optimization problem now become :

𝑔𝑘1,𝑛 ({𝒖𝒊}𝑖∈𝐺) = 𝑉min − |�̃�𝑛
𝑘|

𝑔𝑘2,𝑛 ({𝒖𝒊}𝑖∈𝐺) = −𝑉max + |�̃�𝑛𝑘|
(2.27)

Where |�̃�𝑛
𝑘| is the voltage magnitude of bus 𝑛 at 𝑡 = 𝑘 time instant:
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|�̃�𝑛
𝑘| =∣ ∑𝑖∈𝒩 {A𝑟𝑒(𝑖, 𝑛) ⋅ (𝑃𝑘𝑔,𝑖 − 𝑃𝑘𝑑,𝑖) + B𝑟𝑒(𝑖, 𝑛) ⋅ (𝑄𝑘𝑔,𝑖 − 𝑄𝑘𝑑,𝑖)}+

𝑗 ⋅ {∑𝑖∈𝒩 {A𝑖𝑚(𝑖, 𝑛) ⋅ (𝑃𝑘𝑔,𝑖 − 𝑃𝑘𝑑,𝑖) + B𝑖𝑚(𝑖, 𝑛) ⋅ (𝑄𝑘𝑔,𝑖 − 𝑄𝑘𝑑,𝑖)}} ∣
(2.28)

Note that 𝑉max and𝑉min here are N×1 vectors collecting limits applied on the voltages at each bus. 𝑃𝑔,𝑖
and 𝑃𝑑,𝑖 means the real power generation and the real power demand for bus 𝑖, the same definition for
the imaginary power 𝑄𝑔,𝑖 and 𝑄𝑑,𝑖.

2.3.2. Linear model error
To meticulously assess the impact of errors introduced by the linearized model, as delineated in equa-
tions 2.13 and 2.22, this thesis undertakes an empirical evaluation within the framework of the IEEE-85
electricity network [8]. This particular network encompasses 85 buses, with 8 PQ power sources strate-
gically located at buses 2, 3, 4, 5, 6, 7, 84, and 85. The choice of the IEEE-85 network as a testing
ground allows for a comprehensive analysis of linear error manifestations across a complex and rep-
resentative electrical system.

Combine equation 2.12 and equation 2.13, we can get the complete form of the linear model:

𝒗𝒓𝒆 = Are𝒑 + Bre𝒒 + �̄�𝒆,𝒓𝒆
𝒗𝒊𝒎 = Aim𝒑 + Bim𝒒 + �̄�𝒆,𝒊𝒎 (2.29)

where 𝒑 = 𝒑𝒈 − 𝒑𝒅, 𝒒 = 𝒒𝒈 − 𝒒𝒅.

The linear error is expected to grow as the system inputs 𝒑 and 𝒒 deviate further from the linearization
point, which is zero. To explore this behavior, we conducted 12 distinct trials, systematically increasing
the inputs 𝒑 and 𝒒 to observe the impact on linear errors. Specifically, for buses 2, 3, 4, 5, 6, 7, 84,
and 85, which are equipped with generators, the power demand components 𝑃𝑑,𝑖 and 𝑄𝑑,𝑖 were kept
constant. The variations came from the power injections 𝑃𝑔,𝑖 and 𝑄𝑔,𝑖, which were incrementally raised
from 0.1 MW/MVAr to 1.2 MW/MVAr in equal steps. For the remaining buses that lack generators,
we increased the power demands incrementally, starting from minor starting values with increments of
0.005 MW/MVAr in each trial.

(5 of the total 85 buses are shown in the figure):

Figure 2.1: The linear errors along with the increasing system inputs
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The linear errors depicted in Figure 2.1 are calculated based on the voltages computed by the linear
model (equation 2.29) and the actual voltages, where the latter are derived using the Matpower toolbox
in MATLAB. The first subplot in Figure 2.1 illustrates the voltage magnitude linear errors for a subset
of 5 buses out of the total 85, selected based on the minimum and maximum errors. The second and
third subplots present the active (𝑃𝑖) and reactive (𝑄𝑖) power inputs for 5 of the buses, respectively.

Analysis of figure 2.1 reveals that linear voltage errors escalate with increasing system inputs, denoted
by 𝒑 and 𝒒. Specifically, the maximum linear voltage error across all buses is approximately 2% —
as indicated by the yellow line in the first subplot of figure 2.1—when the maximum system inputs
from all generators are around 0.2 Mw/MVar. This error escalates to 10% as the system inputs reach
approximately 1.3 Mw/MVar. Given that the generator capacity for IEEE-85 is defined as 𝑃𝑔,𝑖 ∈ [0, 1]
Mw and 𝑄𝑔,𝑖 ∈ [−1, 1] MVar for 𝑖 ∈ 𝒢 [8], it is inferred that linear errors will not exceed 10%, which is
considered acceptable.





3
Online OPF algorithm

While traditional Optimal Power Flow (OPF) methods have been extensively explored over the past few
decades, it is only in recent years that online OPF algorithms have begun to attract significant atten-
tion. A critical limitation of conventional OPF techniques is the necessity to wait for the iterative process
to converge before obtaining a solution that is actionable within the network [26] [14]. This approach
is increasingly impractical in the context of modern electricity networks, which are rapidly evolving to
incorporate a greater share of renewable energy sources, such as distributed wind and solar genera-
tion. These sources introduce significant randomness and fluctuations into the system [26] [14] [18],
compounded by the growing complexity and scale of power networks that demand enhanced control
capabilities. To effectively manage these rapidly changing system states, controllers must operate at
much faster timescales—on the order of seconds [26] [6] or even sub-seconds [30]. Traditional OPF
methodologies, which operate on slower timescales, are not capable of addressing these challenges
[26]. Against this backdrop, the need for real-time optimal power flow (RT-OPF) solutions, also referred
to as online or dynamic OPF, has emerged as a pressing and attractive research topic in recent years.

In this chapter, we introduce the online OPF algorithms that are used in this thesis.

3.1. A primal-dual gradient online method with feedback
3.1.1. Algorithm formulation
This section delves into the Primal-Dual-Gradient-Projection (PDGP) onlineOPFmethod, which uniquely
incorporates measurement data feedback. The PDGP approach, as detailed in references [6] and [3],
builds upon the linear network model previously proposed in [9] and [15] and discussed in Chapter 2.

Recall the linearized power flow model:

𝒙(𝑘)(𝒖𝑘) = C𝒖(𝑘) +D𝒘(𝑘) (3.1)

With the output 𝒙 denoting the system states, such as voltages 𝒗, while 𝒘 represents the uncon-
trollable inputs like the power demands 𝒑𝒅 and 𝒒𝒅. Furthermore, 𝒖𝑘 = (𝒖𝑘𝑖 , 𝑖 = 1, 2, ..., 𝑁) where 𝒖𝑘𝑖
represents the active and reactive power injections (𝑃𝑔,𝑖 , 𝑄𝑔,𝑖).

It’s crucial to understand that equation 3.1 diverges from a dynamical system model, as it does not
exhibit a dependency between successive time steps (𝑘+1) and 𝑘. Rather, it establishes an algebraic
relationship, offering an approximation of the power flow equation at each individual time step.

Using the linearized model 3.1, the OPF problem can be reformulated as follows:

15
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min
𝒖

𝑓(𝑘)𝑜 (𝒙(𝑘)(𝒖)) +
𝑁

∑
𝑖=1
𝑓(𝑘)𝑖 (𝒖) (3.2a)

s.t. 𝒖𝑖 ∈ 𝒰(𝑘)𝑖 , 𝑖 = 1,… ,𝑁 (3.2b)

𝑔(𝑘)𝑗 (𝒙(𝑘)) ≤ 0, 𝑗 = 1,… ,𝑀 (3.2c)
𝒙(𝑘)(𝒖𝑘) = C𝒖(𝑘) +D𝒘(𝑘) (3.2d)

In the context of the PDGP online OPF framework, the system is characterized by 𝑁 buses and 𝑀
constraints. The formulation of the objective function encompasses both dependent variables 𝒙(𝑘)(𝒖),
such as voltages and currents, and independent variables 𝒖, like control power injections, namely
𝒖𝒊 = [𝑃𝑔,𝑖 , 𝑄𝑔,𝑖]𝑇. This relationship is succinctly captured in the expression(see equation 3.2a):

𝑓(𝑘)𝑜 (𝒙(𝑘)(𝒖)) +
𝑁

∑
𝑖=1
𝑓(𝑘)𝑖 (𝒙𝑖) (3.3)

where 𝑓(𝑘)𝑜 denotes the primary component of the objective function pertaining to dependent vari-
ables, and 𝑓(𝑘)𝑖 represents the contributions from individual independent variables.

The system’s constraints are defined by 𝑔𝑘𝑗 (𝒖𝑘) (equation 3.2c), which enforce time-varying require-
ments on the dependent variables 𝒙. Notably, the constraints are linear as per the discussions in
Chapter 2.

To illustrate, a linear constraint can be represented as follows

𝑔𝑘1,𝑛 ({𝒖𝒊}𝑖∈𝐺) = 𝑉min − �̃�𝑛
𝑘

𝑔𝑘2,𝑛 ({𝒖𝒊}𝑖∈𝐺) = −𝑉max + �̃�𝑛𝑘
(3.4)

In our OPF problem, each 𝑔𝑖 denotes the voltage constraint for the certain bus 𝑖, so that 𝑁 = 𝑀.

The online feedback method we use, which is developed by [3] is based on primal-dual gradient pro-
jection, so firstly, the time-varying Lagrangian function can be written as:

ℒ(𝑘)(𝒖, 𝝀) ∶= ℎ(𝑘)(𝒖) + 𝝀⊤𝒈(𝑘) (𝒙(𝑘)(𝒖)) (3.5)

ℎ(𝑘)(𝒖) is the total objective functions 𝑓(𝑘)0 (𝒙(𝑘)(𝒖))+∑𝑁𝑖=1 𝑓
(𝑘)
𝑖 (𝒖𝑖) for simplicity. Denote the vector of

dual variables associated with the constraints:

𝝀⊤𝒈(𝑘)(𝒙(𝑘)(𝒖) (3.6)

where 𝒈(𝑘)(𝒙(𝑘)(𝒖) ∶= 𝑔(𝑘)1,𝑛 ({𝒖𝑖}𝑖∈𝒢) , 𝑔
(𝑘)
2,𝑛 ({𝒖𝑖}𝑖∈𝒢) , 𝑛 ∈ 𝒩.

It is important to elucidate the concept of linear convergence, as this convergence property of the
algorithm allows for an explicit characterization of the error bound in a time-varying setting.

Linear convergence is characterized by comparing the distance between the algorithmically computed
sub-optimal solution, 𝒖, and the actual optimal solution, 𝒖∗, across iterations. Specifically, if the follow-
ing condition is met:

||𝒖𝒌+1 − 𝒖∗,𝒌+1|| ≤ 𝜂||𝒖𝑘 − 𝒖∗,𝑘+1||, 𝜂 ∈ (0, 1) (3.7)



3.1. A primal-dual gradient online method with feedback 17

where 𝜂 denotes the rate of convergence or the asymptotic error constant, the algorithm exhibits
linear convergence for 𝑞 = 1 and 𝜂 ∈ (0, 1). Under these conditions, the sequence of sub-optimal
solutions, �̃�𝒌, is said to converge linearly to the actual optimal solution, 𝒖∗𝒌, as cited in [25].

This principle underscores the importance of ensuring that the cost function within our system is both
𝑚-strongly convex and 𝐿-smooth. The projected gradient optimization problem’s Q-linear convergence
on such a cost function is a critical aspect of our methodology [25]. The strong convexity attribute,
in particular, is vital for guaranteeing the desired convergence behaviour and thereby justifying the
optimization strategy employed in our system.

In order to ensure linear convergence, a regularized Lagrangian function needs to be built based
on Equation 3.5 ([6] and [3]):

ℒ𝑘𝑣,𝜖(𝒖, 𝜸, 𝝁) ∶=ℒ𝑘(𝒖, 𝜸, 𝝁)

+ 𝜈2‖𝒖‖
2
2 −

𝜖
2 (‖𝜸‖

2
2 + ‖𝝁‖22)

(3.8)

Within the framework of our PDGP online OPF method, the regularization plays a pivotal role, charac-
terized by the constants 𝜈 > 0 and 𝜖 > 0.

We use these constants as design parameters to introduce regularization, which helps achieve
linear convergence in our optimization process. The regularization has two key characteristics: the
regularized Lagrangian function 3.8 is strictly convex for the control variables 𝒖 and strictly concave
for the dual variables. This combination of convexity and concavity is crucial for finding the optimal
solution 𝒖 represented as the saddle point in our optimization challenge. Finding this saddle point is
central to how our online algorithm works:

max
𝜸∈ℝ𝑀+ ,𝝁∈ℝ𝑀+

min
𝒖∈𝒰𝑘

ℒ𝑘𝜈,𝜖(𝒖, 𝜸, 𝝁) (3.9)

We define the saddle point, which includes both the optimal primal variable 𝒖∗𝑘 and the optimal dual

variables 𝜸∗,𝑘, 𝝁∗,𝑘, as 𝒛∗,𝒌 = [(𝒖∗,𝑘)⊤ , (𝜸∗,𝑘)⊤ , (𝝁∗,𝑘)⊤]
⊤
. It’s crucial to understand that the saddle point

𝒛∗,𝒌𝝐 , derived from the regularized Lagrangian function (referred to as function 3.8), is dependent on 𝜖,
and in general, means 𝒛∗,𝒌𝝐 does not coincide with the saddle point of the original Lagrangian function
3.5, making 𝒖∗,𝑘𝜖 different from 𝒖∗,𝑘. Therefore, our goal is to achieve linear convergence towards a
sub-optimal (regularized) solution.

Setting the step size as 𝛼, then the following primal-dual gradient projection method to solve the time-
varying saddle-point problem 3.9 [6] is updated:

�̃�𝑘+1𝑖 = proj𝒰𝑘𝑖 {�̃�
𝑘
𝑖 − 𝛼∇𝒖𝑖ℒ𝑘𝜈,𝜖(𝒖, 𝜸, 𝝁)|�̃�𝑘𝑖 ,�̃�𝑘 ,�̃�𝑘} , ∀𝑖 ∈ 𝒢

�̃�𝑘+1𝑛 = projℝ+ {�̃�
𝑘
𝑛 + 𝛼 (𝑔𝑘1,𝑛 (�̃�𝑘) − 𝜖�̃�𝑘𝑛 )} , ∀𝑛 ∈ ℳ

�̃�𝑘+1𝑛 = projℝ+ {�̃�
𝑘
𝑛 + 𝛼 (𝑔𝑘2,𝑛 (�̃�𝑘) − 𝜖�̃�𝑘𝑛)} , ∀𝑛 ∈ ℳ,

(3.10)

As defined in Equation 1.9, 𝒖 represents the control variables. The update mechanism, outlined in
equations 3.10, illustrates the online OPF algorithm operating in an open-loop fashion. This method
is developed based on the principles of primal-dual gradient projection, as extensively discussed in [6]
and [3].

However, as highlighted in Chapter 1, we encounter a significant challenge: the measurements of
uncontrollable demands, specifically 𝒑𝒅 and 𝒒𝒅, are often not readily available [19], [25]. Furthermore,
the reliance of Equations 3.10 on a linear approximation of the power system introduces a limitation,
as this approach does not account for linear errors inherent in such models.

To address these issues, we introduce a feedback strategy into the update equations 3.10. This
strategy is designed to mitigate the impact of unmeasurable uncontrollable demands and the limitations
of linear approximations. By incorporating real-time feedback, the algorithm adapts to actual system
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states, enhancing the accuracy and robustness of the online OPF solution. This feedback mecha-
nism represents a critical advancement in our methodology, enabling the algorithm to better handle the
complexities and uncertainties of modern power systems.

The feedback mechanism implemented in this thesis, which was proposed by [6] and [3], utilizes
voltage magnitude measurements as the core of its feedback strategy. By denoting these voltage
measurements as {𝑦𝑘𝑛 }𝑛∈𝒩, the approach adapts by substituting the theoretical predictions 𝑔𝑘1,𝑛 (�̃�𝑘)
and 𝑔𝑘2,𝑛 (�̃�𝑘) with actual voltage measurements from the system. Consequently, this substitution
transforms the original open-loop version of the update equations, referenced in equation 3.10, into
a closed-loop formulation. Substitute equation 3.4 into the update equations 3.10, and replace the
voltage �̃�𝑛

𝑘
with the measurement voltage 𝑦𝑘𝑛 , the close loop updates can be expressed as follows:

�̃�𝑘+1𝑖 = proj𝒰𝑘𝑖 {�̃�
𝑘
𝑖 − 𝛼∇�̃�𝑖ℒ𝑘𝜈,𝜖(𝒖, 𝜸, 𝝁)|�̃�𝑘𝑖 ,�̃�𝑘 ,�̃�𝑘}

�̃�𝑘+1𝑛 = projℝ+ {�̃�
𝑘
𝑛 + 𝛼 (𝑉min − 𝑦𝑘𝑛 − 𝜖�̃�𝑘𝑛 )}

�̃�𝑘+1𝑛 = projℝ+ {�̃�
𝑘
𝑛 + 𝛼 (𝑦𝑘𝑛 − 𝑉max − 𝜖�̃�𝑘𝑛)}

(3.11)

This methodological shift to a closed-loop system, through the direct incorporation of real-time voltage
measurements, significantly enhances the algorithm’s ability to dynamically adjust to the actual condi-
tions of the power system. It embodies a practical solution to the limitations associated with the linear
approximations and unavailable demands discussed previously. By aligning the optimization process
more closely with the physical realities of the network, this feedback strategy improves the precision
and reliability of the online OPF outcomes, ensuring more effective and efficient control over power
system operations.

The proposed feedback control strategy can be illustrated as follows [6]:

Figure 3.1: Feedback strategy from [6]

In the closed-loop system configuration, real-time measurements from each bus, specifically voltage
measurements denoted as 𝑦𝑘𝑖 , are systematically collected at each time instant 𝑘 (as illustrated in figure
3.1) and subsequently fed into the control algorithm. This process enables the controller to accurately
compute the optimal control variables for the forthcoming time instant, 𝑘 + 1, namely 𝑢𝑘+1𝑖 and 𝑢𝑘+1𝑗 ,
as depicted in figure 3.1. These control actions are then executed locally at each control device, such
as inverters and batteries, ensuring that adjustments are both precise and timely.

As the system progresses to time instant 𝑘 + 2, a new set of measurements is gathered, feeding
back into the controller to inform the next set of control decisions. This iterative process repeats con-
tinuously, creating a dynamic feedback loop that allows for the ongoing adjustment of control variables
in response to real-time system states. This method ensures that the control strategy is both adaptive
and responsive to the time-changing conditions of the power network, enhancing operational efficiency
and reliability.
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3.1.2. Convergence analyses
The tracking performance is analysed in [6] and [3], firstly, some assumptions should be made [6], [23]:

1. The cost functions 𝑓𝑖(𝒖) are convex and continuously differentiable for each 𝑖 ∈ 𝒢 and 𝑘 ≥ 0.
Define further the gradient map:

∇𝒇𝑘(𝒖) ∶= [∇⊤𝒖1𝑓𝑘1 (𝒖1) , … , ∇⊤𝒖𝑁𝒢 𝑓
𝑘
𝑁𝒢 (𝒖𝑁𝒢)]

⊤
. (3.12)

Then, the gradient map ∇𝒇𝑘(𝒖) is Lipschitz continuous with constant L over the compact set 𝒰𝑘,
for all 𝑘 ≥ 0:

‖∇𝒇𝑘(𝒖) − ∇𝒇𝑘(𝒖′)‖2 ⩽ 𝐿 ‖𝒖 − 𝒖
′‖2 , ∀𝒖, 𝒖′ ∈ 𝒰𝑘 (3.13)

2. For 𝑘 ≥ 0, there exists a set of feasible power injections {�̃�𝑖}𝑖∈𝒢 ∈ 𝒰𝑘 such that 𝑔𝑘1,𝑛 ({�̃�𝑖}𝑖∈𝒢) ≤ 0
and 𝑔𝑘2,𝑛 ({�̃�𝑖}𝑖∈𝒢) ≤ 0 for all 𝑛 ∈ 𝒩.

3. There exists a constant 𝜎𝑢 ≥ 0 such that ‖𝒖∗,𝑘+1 − 𝒖∗,𝑘‖ ≤ 𝜎𝑢 for all 𝑘 ≥ 0, together with the dual

variables 𝜸 and 𝝁, upon defining 𝒛∗,𝒌 = [(𝒖∗,𝑘)⊤ , (𝜸∗,𝑘)⊤ , (𝝁∗,𝑘)⊤]
⊤
, and the upper limit constant

𝜎𝑧 such that ‖𝒛∗,𝑘+1 − 𝒛∗,𝑘‖ ≤ 𝜎𝑧 .

4. There exist constants 𝜎𝑑 ≥ 0 such that |𝑔𝑘+1𝑛 (𝒖∗,𝑘+1) − 𝑔𝑘𝑛 (𝒖∗,𝑘)| ≤ 𝜎𝑑 for all 𝑘 ≥ 0 and 𝑛 ∈ 𝒩
5. There exists a scalar 𝑒 < +∞ such that the other errors including measurement error 𝒆𝒎, linear

error 𝒆𝒍, and possible actuator delay can be bounded as

max {‖𝒆𝑘𝒎‖2 , ‖𝒆
𝑘
𝒍 ‖2} ≤ 𝑒 (3.14)

With all the 5 assumptions in place, denote �̃�𝑘 the sub-optimal sequence generated by the online
feedback OPF algorithm 3.11, by Theorem 1 in [6], if the stepsize 𝛼 > 0 is chosen such that :

𝜌(𝛼) ∶= √1 − 2𝜂𝛼 + 𝛼2𝐿2𝑣,𝜖 < 1 (3.15)

that is 0 < 𝛼 < 2𝜂/𝐿2𝑣,𝜖, then the following convergence bound between the sub-optimal �̃�𝑘 and the
actual optimal 𝒛(∗,𝒌) of the OPF problem 3.2 is stated:

limsup𝑘→∞ ‖�̃�𝑘 − 𝒛∗,𝑘‖2 =
1

1 − 𝜌(𝛼) [√2𝛼𝑒 + 𝜎𝒛] (3.16)

with

𝐿𝜈,𝜖 = √(𝐿 + 𝜈 + 2𝐺)2 + 2(𝐺 + 𝜖)2 (3.17)

Where 𝐺 signifies the upper bound for the norm of the gradient of the constraint functions with
respect to the control variables 𝒖. Define 𝒈𝑘1(𝒖) and 𝒈𝑘2(𝒖) be a vector stacking all the functions
𝑔𝑘1,𝑛 ({𝒖𝑖}𝑖∈𝒢) , 𝑛 ∈ 𝒩 and 𝑔𝑘2,𝑛 ({𝒖𝑖}𝑖∈𝒢) , 𝑛 ∈ 𝒩, respectively, then, given that these functions are linear
in 𝒖, it follows that there exists a constant 𝐺 such that ‖∇𝒖𝒈1𝑘(𝒖)‖2 ≤ 𝐺 and ‖∇𝒖𝒈2𝑘(𝒖)‖2 ≤ 𝐺 for all
𝒖 ∈ 𝒰𝑘 for all 𝑘 ≥ 0 [6]

The parameter 𝜂 is defined as the minimum of 𝜈 and 𝜖, where 𝜈 > 0 and 𝜖 > 0 are the regularization fac-
tors introduced in the Tikhonov regularization terms. The stepsize for the algorithm’s iterative process
is denoted by 𝛼, a critical factor in ensuring convergence. The Lipschitz constant of the cost functions,
represented by 𝐿, is established under Assumption 1, guaranteeing that the functions’ gradients are
bounded within a certain rate of change.

The variable 𝑒 aggregates the maximum value among measurement errors and linear approxima-
tion errors, encapsulating the uncertainty and inaccuracies inherent in the system modelling and data
acquisition processes, as described in Assumption 5.
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Lastly, 𝜎𝑧 represents the upper bound that quantifies the variability of the optimal solutions across
iterations, a concept introduced in Assumption 4 to accommodate changes in the system’s optimal
state over time.

Another important remark should be noted, define:

𝜙(𝑘) ∶ 𝒛 ↦ [ ∇𝒙ℒ(𝑘)𝑣,𝜖 (𝒛)
−𝒈(𝑘) (𝒚(𝑘)(𝒙)) + 𝜖𝝀 ] (3.18)

The above linear convergence performance relays on the fact that the map 𝜙(𝑘)(𝒛) strongly monotone
over𝒳(𝑘)×𝒟(𝑘) [3], which is also the reason why the regularized Lagrangian function 3.8 is used instead
of 3.5. It is discussed in [3] that the map 𝜙(𝑘)(𝒛) is not strongly monotone if the original Lagrangian
function 3.5 is used, so that the linear convergence can not be guaranteed.

However, as mentioned before, since the sub-optimizer 𝒛(∗,𝑘) computed by the online algorithm 3.11
is not in the set of saddle points of the original Lagrangian ℒ(𝑘)(𝒙, 𝝀) 3.5 [3], [6]. As a result, larger values
of 𝜈 and 𝜖 lead to larger perturbations of the solution trajectories of the original time-varying optimization
problem 3.2, meaning that optimality and constraint satisfaction are partly sacrificed. On the other hand,
small values of 𝑣 and 𝜖 lead to a larger asymptotic bound 3.16, so that the values of 𝜈 and 𝜖 should be
selected numerically (or analytically, whenever possible) based on specific implementation goals[3].

The effects of the design parameters such as 𝛼, 𝜈, 𝜖 and system parameters such 𝐿will be discussed
and tested in Chapter 5.



4
Gaussian process and application to

OPF with unknown cost
Supervised learning is the task of inferring input-output mappings based on empirical data, known as
the training dataset [29]. Among the different approaches utilized in supervised learning, the Gaussian
process (GP) stands out due to its widespread application and flexibility. Unlike a Gaussian probability
distribution, which describes the behaviour of random variables that are scalar or vector in nature, a
Gaussian process extends this concept to the realm of functions, offering a framework to govern their
properties [29].

This chapter is aimed at exploring the Gaussian process in depth. It will commence with an introductory
overview of GP, illustrating its basic principles and how it generalizes the notion of probability distribu-
tions to function spaces. Following this, we will delve into the kernel functions that play a pivotal role in
the GP methodology, influencing the GP’s ability to learn and adapt to data. The chapter will conclude
with an examination of how Gaussian processes can be extended to estimate functions that are subject
to specific shape constraints, showcasing the function and power of GP in solving complex supervised
learning problems.

4.1. Gaussian process
This thesis is dedicated to the development of an online OPF algorithm designed for scenarios where
the exact cost functions are unknown, such as those involving subjective measures of personal discom-
fort or environmental concerns like air pollution. These factors, although critically important, present
significant modelling challenges due to their inherent complexity and variability. To address this is-
sue, our approach leverages real-time feedback to learn the cost functions dynamically. Specifically,
we incorporate feedback from air pollution sensors deployed around generators, which provide instan-
taneous data on the environmental impact, serving as an approximation for the cost associated with
pollution [19] .

To effectively model and incorporate these dynamically learned cost functions into the OPF frame-
work, we employ the shape-constrained Gaussian Process (SC-GP). This method allows us to not only
approximate the cost functions with a high degree of accuracy but also to adhere to certain pre-defined
shape constraints that reflect the underlying requirements. The shape-constrained GP thus serves as
a powerful tool to bridge the gap between the need for precise mathematical models of cost functions
and the practical challenges of quantifying subjective or complex costs in real-time.

In the realms of probability theory and statistics, Bayesian analysis lays the groundwork for understand-
ing Gaussian processes. Consider a foundational linear regression model with Gaussian noise:

𝑓(𝒙) = 𝒙⊤𝒘, 𝑦 = 𝑓(𝒙) + 𝜀 (4.1)

where 𝒙 is the input vector, and 𝒘 is a vector of unknown weights (parameters) of the linear model.

21
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The function value is denoted by 𝑓, with 𝑦 capturing the observed target value. The Gaussian noise,
𝜀, is characterized by a zero mean and variance 𝜎2𝑛 :

𝜀 ∼ 𝒩 (0, 𝜎2𝑛) (4.2)

The Bayesian framework needs the specification of a prior distribution over the parameters, opting
for a zero mean Gaussian prior with covariance matrix Σ𝑝 for the weights, with this prior, one can prove
(see [29], eq. 2.8) that 𝒘 is normally distributed with the distribution :

𝒘 ∼ 𝒩 (0, Σ𝑝) (4.3)

Given a dataset (𝒙, 𝒚), Bayesian inference doesn’t merely extrapolate a singular value 𝑓∗ at a new
input 𝑥∗; it computes the probability distribution encompassing all possible 𝑓∗ values, by marginalizing
over 𝒘, and substituting the definition, and by noting that 𝒘 is normally distributed, one computes:

𝑝 (𝑓∗ ∣ 𝑥∗, 𝒙, 𝒚) = ∫𝑝 (𝑓∗ ∣ 𝑥∗, 𝒘) 𝑝(𝒘 ∣ 𝒙, 𝒚)𝑑𝒘 = ∫𝑥∗⊤𝒘𝑝(𝒘 ∣ 𝒙, 𝒚)𝑑𝒘

= 𝒩( 1𝜎2𝑛
𝑥∗⊤𝐴−1𝒙𝒚, 𝑥∗⊤𝐴−1𝑥∗)

(4.4)

Consequently, the predictive distribution of the unknown value 𝑓∗ is normal following equation 4.4,
with a mean given by the posterior mean of the weights multiplied by the test input. Moreover, the
explicit computation of 𝒘 becomes unnecessary.

Gaussian processes allow one to perform Bayesian inference over functions. We define a Gaussian
process as a collection of random variables indexed in 𝑥, that is, {𝑓(𝑥) ∶ 𝑥 ∈ ℝ} such that every finite
subset of random variables is a multivariate normal distribution:

𝑓 ∼ 𝒩(𝜇(𝒙), 𝜎2(𝒙)) (4.5)

with 𝜇(𝒙) and 𝜎2(𝒙) are mean and covariance function respectively.
let 𝒙 = (𝑥𝑖)𝑛𝑖=1and let 𝑦 = (𝑓(𝑥𝑖))𝑛𝑖=1 be a finite number of samples of the unknown Gaussian

process (training dataset). Let 𝒙∗ be a set of points at which one wishes to extrapolate the values
𝑦∗ = (𝑓(𝑥∗𝑖 ))𝑛𝑖=1. The definition of Gaussian processes allows one to compute 𝑦∗ via Bayesian inference
because they are normally distributed [29]:

[ 𝑓𝑓∗ ] = 𝒩 ([ 𝜇(𝒙)𝜇∗ (𝑥∗) ] , 𝜎
2 (𝒙, 𝑥∗)] (4.6)

For a detailed derivation of these steps, one can refer to Chapter 2 in [29].
Ultimately, the predictive model for 𝑓∗ is Gaussian, described by

𝑓∗ ∼ 𝒩 (𝜇 (𝑥∗) , 𝜎2 (𝑥∗)) (4.7)

with the mean and variance:

𝜇 = 𝒌𝑇∗ (K+ 𝜎2𝑛I)
−1 𝒚

𝜎2 = 𝑘 (𝑥∗, 𝑥∗) − 𝒌𝑇∗ (K+ 𝜎2𝑛I)
−1 𝒌∗

(4.8)

where

• 𝒌∗ is the vector of covariances between the new point 𝑥∗ and all points in 𝒙

• K is the covariance matrix computed from all pairs of points in 𝒙.

• 𝜎2𝑛 is the noise variance in the observations.

• 𝜎2∗ is the variance of the predictive distribution at 𝑥∗
• 𝒚 is the vector of observed outputs.

• I is the identity matrix.
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4.1.1. Covariance functions
In the preceding section, we highlighted that the covariance function, as K and 𝒌∗ outlined in equation
4.8, serves as a foundational element in Gaussian process prediction. This function’s significance lies
in its role in encapsulating the presumptions regarding the function to be learned [29]. This section
delves into the specific covariance functions employed, alongside their characteristics.

At its core, a covariance function, also referred to as a kernel, is denoted by 𝑘. It is a binary function
that maps a pair of inputs, 𝒙 ∈ 𝒳 and 𝒙′ ∈ 𝒳, to a real number ℝ [29]. Within the domain of Gaussian
processes, these covariance functions are synonymous with kernel functions.

An essential concept to understand is the covariance matrix K, which can be derived from a set of
input points {𝒙𝑖 ∣ 𝑖 = 1,… , 𝑛}. The elements ofK, given by 𝐾𝑖,𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗), are determined by the covari-
ance function. Consequently, if 𝑘 represents a covariance function, then K becomes the covariance
matrix, pivotal for the Gaussian process.

One of the most commonly used covariance functions that will be utilised in this thesis is the squared
exponential (SE) covariance function (D-dimensional):

𝑘SE (𝑥𝑖 , 𝑥𝑗) = 𝜎2𝑓 exp(−
1
2

𝐷

∑
𝑑=1

(𝑥𝑑,𝑖 − 𝑥𝑑,𝑗)
2 𝑙−2𝑑 ) (4.9)

Where 𝑙𝑑 is the characteristic length-scale which will be discussed in detail later, 𝜎2𝑓 is another design
parameter which can be multiplied in order to get any desired process variance.

For one-dimensional inputs and outputs(input 𝒙 and output 𝒚 are one-dimensional vectors), a more
compact form of SE function can be written as:

𝑘SE(𝑟) = 𝜎2𝑓 exp(−
𝑟2
2𝑙2𝑑

) (4.10)

Where 𝑟 = 𝑥𝑖 − 𝑥𝑗.
This covariance function is infinitely differentiable, which means that the GP with this covariance

function has mean square derivatives of all orders and is very smooth; given these ideal properties, it
is argued in [29] that it might be unrealistic for modelling many physical processes. However, the SE
covariance function is probably the most widely-used kernel within the kernel machines field.

Apart from the SE covariance functions, other typical ones include Linear Kernel, The 𝛾-exponential
Covariance function, Rational Quadratic Covariance Function, Matern Kernel, and Periodic Kernel; the
details and attributes are outside the scope of this thesis, the interested readers can find the details in
[29].

4.1.2. Adaptation of hyperparameters
Among the covariance functions previously discussed, certain design parameters, known as hyper-
parameters—such as length scales 𝑙𝑑—remain to be determined. In the realm of GP learning, the
selection of a covariance function along with its hyper-parameters is often integrated into the training
process [29], [13]. While this approach adds a layer of complexity, it is crucial for tailoring the GP model
to specific applications.

For a majority of models aimed at function learning, the task of integrating over the parameter space to
compute the necessary values is analytically infeasible. As a result, finding suitable approximations be-
comes a challenging task. Nevertheless, Gaussian process regression models that incorporate Gaus-
sian noise stand out as a notable exception. These models not only allow for the analytical tractability
of integrals over parameters but also exhibit remarkable flexibility [29].

This section will explore the role of hyper-parameters within the Gaussian process framework, focusing
on their influence on model performance. Additionally, we will introduce a method for training these
hyper-parameters, using the Squared Exponential (SE) covariance function as a case study.

Take the SE covariance function as an example; recall the SE function in the following form:
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𝑘SE(𝑥𝑖 , 𝑥𝑗) = 𝜎2𝑓 exp(−
(𝑥𝑖 − 𝑥𝑗)2
2𝑙2𝑑

) (4.11)

The hyper-parameter 𝑙𝑑 here plays the role of characteristic length-scale, loosely speaking, how far it
is needed to move in input space for the function values to become uncorrelated [29]. The following
plots show the influence of 𝑙𝑑.

(a) 𝑙𝑑 = 0.3, too narrow (b) 𝑙𝑑 = 3, too wide (c) 𝑙𝑑 = 1, good-fit

Figure 4.1: The influence of 𝑙𝑑 Source: [29]

For a function tested in [29], ’+’ in figure 4.1 denotes the observed data points while the grey areas in
between represent 95% confidence region for the underlying function. Hyper-parameters (𝑙𝑑 , 𝜎𝑓 , 𝜎𝑛 =
(0.3, 1.08, 0.00005)) are used to in figure 4.1c while (𝑙𝑑 , 𝜎𝑓 , 𝜎𝑛 = (3, 1.16, 0.89)) are used in figure 4.1b.
𝑙𝑑 is the dominant parameter, and the remaining two parameters are set by optimizing the marginal
likelihood and will be discussed later.

Figure 4.1 shows that if the length-scale 𝑙𝑑 is too narrow, with the noise parameter reduced to
𝜎𝑛 = 0.00005, the signal has the greater flexibility and lower noise as figure 4.1c, in this case, the
prediction can capture more accuracy but is also over-fit with noise. In contrast, figure 4.1b shows that
when 𝑙𝑑 is too broad, with the noise parameter 𝜎𝑛 increased to 0.89, the data is explained by a slowly
varying function with much noise, so-called under-fit.

In this function, a combination of hyper-parameters of (𝑙𝑑 , 𝜎𝑓 , 𝜎𝑛 = (1, 1, 0.1)) is appropriate for
good-fit as figure 4.1c shows.

To ascertain the optimal set of hyper-parameters, such as the length scale 𝑙𝑑 and signal variance 𝜎𝑓
within the SE covariance function, the principle of maximal marginal likelihood is commonly employed.
This method plays a pivotal role in fine-tuning the SE covariance function to achieve superior model
performance.

Nonetheless, insights from simulation tests presented in the subsequent chapter reveal another pos-
sibility: the introduction of a shape constraint may skip the necessity for this optimization step. This
advancement suggests that under certain conditions, we can simplify the model calibration process,
thereby enhancing efficiency without compromising the model’s integrity, which is our main goal, con-
sidering that a short period of computation time is desired. Detailed discussions and implications of
this finding will be further elaborated in the following sections.

4.2. Estimating shape-constrained functions using Gaussian pro-
cesses

As mentioned in Chapter 3, the efficacy of most online OPF algorithms relies on the presence of a
strongly convex objective function. The integration of shape constraints into this framework is feasible
through the employment of shape-constrained GPs, as demonstrated by [19] and [20]. This approach
leverages the inherent property that the derivative processes of GPs are, in themselves, Gaussian
Processes [13], [27]. Consequently, the cornerstone of implementing a shape-constrained Gaussian
Process involves utilizing derivative information. This facilitates the construction of joint Gaussian pro-
cesses that align with the original process, enhancing the algorithm’s robustness and efficacy [27].
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The use of derivative information with GPs is not new and has variant methods; for this thesis, we focus
on the method proposed by [27], which has been tested in online OPF application in [19], [20].

For the covariance function, the squared exponential (SE) correlation function can be used [27], [20]
since it has derivative processes of all orders and, hence, is particularly useful for incorporation of
shape constraints. For instance, the first-order derivative information can be utilized when the learnt
function is monotonic, while the second-order derivative is incorporated for convex functions.

Same definitions as in section 4.1, denote 𝒚 for noised observed function values, 𝒙 for inputs, 𝜎𝑓
and 𝑙𝑑 for the hyper-parameters, 𝜇 for the mean.

For the first-order derivative process, the corresponding variance, covariance, and mean function
(joint with the original process) can be written as follows [27]:

E [𝜕𝑦(𝑥)𝜕𝑥 ] = 𝜕𝜇(𝑥)
𝜕𝑥 = 0,

cov [𝜕𝑦(𝑥)𝜕𝑥 , 𝜕𝑦
(𝑥′)
𝜕𝑥′ ] = 𝜎2𝑓 exp(−

1
2𝑙2𝑑

(𝑥 − 𝑥′)2) 1𝑙2𝑑
(1 − 1

𝑙2𝑑
(𝑥 − 𝑥′)2)

cov [𝜕𝑦(𝑥)𝜕𝑥 , 𝑦 (𝑥′)] = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑥 − 𝑥′)2)(− 1𝑙2𝑑
(𝑥 − 𝑥′)) .

(4.12)

Similarly, the second-order derivative process of the GP and its corresponding mean and covariance
function (joint with the original process and the first-order derivative process) are [27], [20] :

E [𝜕
2𝑦(𝑥)
𝜕𝑥2 ] = 𝜕2𝜇(𝑥)

𝜕𝑥2 = 0,

cov [𝜕
2𝑦(𝑥)
𝜕𝑥2 , 𝜕

2𝑦 (𝑥′)
𝜕𝑥′2 ] = 𝜎2𝑓 exp(−

1
2𝑙2𝑑

(𝑥 − 𝑥′)2) 1𝑙4𝑑
( 1𝑙4𝑑

(𝑥 − 𝑥′)4 − 1
𝑙2𝑑
6 (𝑥 − 𝑥′)2 + 3) ,

cov [𝜕
2𝑦(𝑥)
𝜕𝑥2 , 𝑦 (𝑥′)] = 𝜎2𝑓 exp(−

1
2𝑙2𝑑

(𝑥 − 𝑥′)2)( 1𝑙4𝑑
(𝑥 − 𝑥′)2 − 1

𝑙2𝑑
) ,

cov [𝜕
2𝑦(𝑥)
𝜕𝑥2 , 𝜕𝑦

(𝑡′)
𝜕𝑥′ ] = −𝜎2𝑓 exp(−

1
2𝑙2𝑑

(𝑥 − 𝑥′)2) (𝑥 − 𝑥′) ( 3𝑙4𝑑
− 1
𝑙6𝑑
(𝑥− = 𝑥′)2) .

(4.13)

Denote the input 𝒙 as the points where the noisy observations are obtained, and the 𝒅 as the points
where the derivative constraints will be put.

Denote 𝜕𝑦(𝑑)
𝜕𝑑 as 𝑦′(𝑑), and 𝑛,𝑚 for the element numbers of 𝒙 and𝒅, respectively, let 𝒚(𝒙) = [𝑦(𝑥1), 𝑦(𝑥2), ..., 𝑦(𝑥𝑛)]𝑇

and 𝒚′(𝒅) = [𝑦′(𝑑1), 𝑦′(𝑑2), ..., 𝑦′(𝑑𝑚)]𝑇 be the vectors of corresponding GP and derivative values, it
follows that [27]:

[ 𝒚(𝒙)𝒚′(𝒅) ] ∼ 𝒩 ([ 𝜇1𝑛0𝑚 ] , [ K(𝒙, 𝒙) K01(𝒙, 𝒅)
K10(𝒅, 𝒙) K11(𝒅, 𝒅) ]) (4.14)

Where the different matrix K are computed by the following functions:

𝐾 (𝑥, 𝑥′) = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑥 − 𝑥′)2)

𝐾11 (𝑑, 𝑑′) = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑑 − 𝑑′)2) 1𝑙2𝑑
(1 − 1

𝑙2𝑑
(𝑑 − 𝑑′)2) ,

𝐾01(𝑥, 𝑑) = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑠 − 𝑑)2)(− 1𝑙2𝑑
(𝑥 − 𝑑)) .

(4.15)

When utilizing shape constraints on the second derivatives of the GP, OPF problems with convex ob-
jective functions in [20], [19], the joint distribution of the GP and its second-order derivatives is:
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[ 𝒚(𝒙)
𝒚′′(𝒅) ] ∼ 𝒩 ([ 𝜇1𝑛0𝑚 ] , [ K(]𝑥, 𝒙) K02(𝒙, 𝒅)

K20(𝒅, 𝒙) K22(𝒅, 𝒅) ]) (4.16)

With the new k functions for K:

𝐾22 (𝑑, 𝑑′) = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑑 − 𝑑′)2) 1𝑙4𝑑
( 1𝑙4𝑑

(𝑑 − 𝑑′)4 − 1
𝑙2𝑑
6 (𝑑 − 𝑑′)2 + 3)

𝐾02(𝑥, 𝑑) = 𝜎2𝑓 exp(−
1
2𝑙2𝑑

(𝑥 − 𝑑)2)( 1𝑙4𝑑
(𝑥 − 𝑑)2 − 1

𝑙2𝑑
)

(4.17)

A Gaussian Process (GP) can be steered to adhere to specific shape constraints by suitably constrain-
ing its derivatives, as elucidated in [27]. For instance, to induce an increasing function, one could
ensure that the GP’s first-order derivative remains positive at a selected set of inputs, as demonstrated
in [27]. Similarly, to achieve convexity, the second-order derivative of the GP could be constrained to
non-negative values at chosen inputs, following the approach in [20].

It is crucial to acknowledge, however, that constrained GP realizations might not strictly adhere to these
constraints across all input values. This limitation arises because it is impractical to impose constraints
universally (e.g., constraints are typically applied to discrete input points as shown in Equation 4.14 and
4.16). Nonetheless, by selecting a sufficiently dense array of constrained inputs—a methodology de-
tailed subsequently—the resulting posterior distribution effectively conforms to the desired constraints
for all practical intents and purposes [27].

The following steps aim to predict a convex function using the second-order derivative information.
Defining the matrix that will be used in computations:

𝐴1(𝒙, 𝒅) =K02(𝒙, 𝒅)K22(𝒅, 𝒅)−1

𝐴2 (𝑥∘, 𝒅) =K02 (𝑥∘, 𝒅)K22(𝒅, 𝒅)−1
𝐵1(𝒙, 𝒅) =𝜎2I+K(𝒙, 𝒙)

−K02(𝒙, 𝒅)K22(𝒅, 𝒅)−1K20(𝒅, 𝒙)
𝐵2 (𝑥∘, 𝒅) =K (𝑥∘, 𝑥∘)

−K02 (𝑥∘, 𝒅)K22(𝒅, 𝒅)−1K20 (𝒅, 𝑥∘)
𝐵3 (𝒙, 𝑥∘, 𝒅) =K (𝑥∘, 𝒙)

−K02 (𝑥∘, 𝒅)K22(𝒅, 𝒅)−1K20(𝒅, 𝒙)
𝐴 (𝒙, 𝑥∘, 𝒅)) =𝐵2 (𝑥∘, 𝒅)

− 𝐵3 (𝒙, 𝑥∘, 𝒅) 𝐵1(𝒙, 𝒅)−1𝐵3 (𝒙, 𝑥∘, 𝒅)
⊤ ,

(4.18)

Assign to 𝑓(.) a GP prior, and consider obtaining an estimated function that is 𝐿𝑈-smooth and 𝛾𝑈-
strongly convex, for a given 𝐿𝑈 > 0 and 𝛾𝑈 > 0, suppose the goal is to predict 𝑓(.) at a new set of 𝑛∗
inputs points 𝒙∗, given the current inputs 𝒙 and resulting observations 𝒚, according to Lemma 3.1 in
[27], the joint distribution (𝒚 (𝑥∗) ∣ 𝒚′′(𝒅), 𝒙∗, 𝒚∗) is a GP with mean, covariance, and standard deviation
given by [27], [20]:

�̄�𝑝∘ (𝑥∗) = 𝜇1𝑝∘ + 𝐵3 (𝒙, 𝑥∗, 𝒅) 𝐵1(𝒙, 𝒅)−1 (𝒚∗ − 𝜇1𝑝)
+ (𝐴2 (𝑥∗, 𝒅) − 𝐵3 (𝒙, 𝑥∗, 𝒅) 𝐵1(𝒙, 𝒅)−1𝐴1(𝒙, 𝒅)) 𝒚′′(𝒅)
�̄�𝑝∘ (𝑥∗, 𝑥∗′) = 𝐴 (𝒙, 𝑥∗, 𝒅) ,
�̄�𝑝∘ (𝑥∗) = √𝐴 (𝒙, 𝑥∗, 𝒅),

(4.19)

Where 𝜇 is the original mean, and the posterior distribution of (𝒚′′(𝒅) ∣ 𝒙∗, 𝒚∗) is given by:

(𝒚′′(𝒅) ∣ 𝒙∗, 𝒚∗) ∝ 𝒩(𝝁(𝒅),D(𝒅, 𝒅))1{𝛾𝑈≤𝑈′′(𝑑𝑖)≤𝐿𝑈 ,𝑖=1,…,𝑞} (4.20)
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Note that the inequality {𝛾𝑈 ≤ 𝑈′′ (𝑑𝑖) ≤ 𝐿𝑈 , 𝑖 = 1,… , 𝑞} in Quation 4.20 represents the shape con-
straints for the objective function: 𝐿𝑈-smooth and 𝛾𝑈-strongly convex, for a given 𝐿𝑈 > 0 and 𝛾𝑈 > 0.

The mean and covariance in 4.20 are:

𝝁(𝒅) =K20(𝒅, 𝒙) (𝜎2I+K(𝒙, 𝒙))−1 (𝒛𝑝 − 𝜇1𝑝)
D(𝒅, 𝒅) =K22(𝒅, 𝒅)

−K20(𝒅, 𝒙) (𝜎2I+K(𝒙, 𝒙))−1K02(𝒙, 𝒅)
(4.21)

One crucial step in shape constrained Gaussian process is to estimate the truncated distribution 𝒚′′(𝒅)
in equation 4.20 that satisfies the limit 𝛾𝑈 ≤ 𝑈′′ (𝑑𝑖) ≤ 𝐿𝑈 , 𝑖 = 1,… , 𝑞. Here we use the Gibbs sampling
procedure [27] to sample from the original second-order distribution 𝒚′′(𝒅) to establish the new distri-
bution 𝑦′′(𝑑)𝛾𝑈≤𝑈′′(𝑑𝑖)≤𝐿𝑈 . In this method, the vector consisting of all the second-order derivatives of
the selected constraint points 𝒅 is treated as a multi-variable normal distribution 𝒖′′(𝒅) = 𝑈′′(𝑑𝑖), 𝑖 =
1, 2, ..., 𝑞. The basic idea of the Gibbs sampler is that the conditional density of a multi-variable normal
distribution is multivariate normal again [gibbs].At each step 𝑗, the 𝑖 − 𝑡ℎ element can be calculated as
follows [19] [27]:

𝐸 {𝑃 (𝑢′′(𝑗)𝑖 ∣ 𝒖′′(𝑗)−𝑖 )} = 𝜇𝑖 + Σ𝑖,−𝑖Σ−1−𝑖,−𝑖 (𝒖
′′(𝑗)
−𝑖 − 𝜇−𝑖) (4.22)

Where Σ𝑖,−𝑖 is the 𝑖 th row of the covariance matrix Σ without the entry from the 𝑖 th column. The
approach is to sample from the original second-order derivative 𝒖′′(𝒅) to form a new set of 2-order
derivatives that fulfil the limit 𝛾𝑈 ≤ 𝑈′′ (𝑑𝑖) ≤ 𝐿𝑈 , 𝑖 = 1,… , 𝑞.

Algorithm 1 Gibbs sampler to sample from the second order derivatives
1: procedure Gibbs sampler for 𝒖′′(𝒅)
2: for iteration 𝑗 = 1, 2, 3, … do
3: for element 𝑈′′(𝑑𝑖) = 1, 2, 3, … , 𝑞 do
4: Calculate the new 𝑈′′(𝑗+1)(𝑑𝑖) by 𝐸{𝑃(𝑈′′(𝑗)(𝑑𝑖) ∣ 𝒖′′

(𝑗)
−𝑖 )} Equation 4.22

5: if 𝑈′′(𝑗+1)(𝑑𝑖) is inside the limit 𝛾𝑈 ≤ 𝑈′′ (𝑑𝑖) ≤ 𝐿𝑈 , 𝑖 = 1,… , 𝑞 then
6: Pin it
7: else if 𝑈′′(𝑗+1)(𝑑𝑖) is outside the limit then
8: Go to the next element 𝑈′′(𝑗)(𝑑𝑖+1)
9: end if

10: end for
11: if all 𝑈′′(𝑑𝑖) are in the limit then
12: break
13: end if
14: end for
15: end procedure

After completing several updates in algorithm 1, one can estimate the multivariate distribution that
every element is within the limit.

The following results show the impact of the shape constraint:
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(a) Functions curves for the real functions, the original over-fit GP
prediction, the shape-constrained GP prediction (b) The gradient and its estimations of the 3 function curves

Figure 4.2

(a) The original 2-order derivitive (b) The new 2-order derivative

Figure 4.3

In Figure 4.2a, an over-fit prediction is illustrated by the orange dashed line, a result of employing a
small length scale, 𝑙𝑑 = 1, in the Gaussian process model. This over-fitting is further evidenced in
Figure 4.3a, where it’s observed that most of the second-order derivatives of the original vector fall
outside the prescribed bounds 𝛾𝑈 ≤ 𝑈′′ (𝑑𝑖) ≤ 𝐿𝑈. However, through multiple iterations of the Gibbs
sampler, these derivatives are adjusted to fit within these limits, culminating in the acquisition of a
strongly convex function, as depicted by the purple line in Figure 4.2a.

This phenomenon underpins our strategy of employing a consistently small length scale, 𝑙𝑑, within
the Squared Exponential (SE) kernel function (referenced in 4.11) to initially generate an over-fit Gaus-
sian prediction. Subsequent application of appropriate limit estimations through shape constraints en-
sures the derivation of a well-fitted model. This methodology allows us to bypass the computationally
intensive step of maximal marginal likelihood hyper-parameter optimization typically required during
each Gaussian process learning iteration.

The efficacy and outcomes of employing the Shape-constrained Gaussian Process will be thor-
oughly examined and discussed in Chapter 5.



5
Results and discussions

This chapter outlines various simulation results, delving into theories and discussions on the impact of
different factors on the system. Our analysis employs the data and system specifications of a real-world
power system, specifically the IEEE-85 [8], [31], to investigate the effectiveness and efficiency of the
proposed algorithm and method.

The IEEE 85 node test feeder, comprising 85 buses and equipped with 8 power storage resources
located at buses 2, 3, 4, 5, 6, 7, 84, and 85, serves as the network under investigation. The control
variables within this network are defined as:

u = {𝑃𝑔,𝑖 , 𝑄𝑔,𝑖} , for 𝑖 ∈ 𝒢, 𝒢 = 2, 3, 4, 5, 6, 7, 84, 85 (5.1)

For the purpose of testing the formulated controller, a dataset representing load demand is essential.
Researchers reveal two prevalent methods for acquiring load data for numerical simulations: one in-
volves utilizing actual electricity consumption datasets from a specified period [6], [22], while the other
employs an artificially generated random sequence [5], [11]. This thesis opts for the latter approach,
utilizing load demand data generated in Matlab for the subsequent simulations.

Tomodel the variability in demands across the network’s buses for our simulations, we generate random
sequences that mirror realistic fluctuations in power consumption. The initial demand values for each
bus are derived from the baseline data provided in the Matpower case file. Subsequently, for each
time step beyond the first (𝑘 > 1), the demands are dynamically updated according to the following
equations:

𝑃𝑑𝑖(𝑘 + 1) = (1 + 𝛼𝑖,𝑘) 𝑃𝑑𝑖(𝑘), 𝑖 ∈ 𝑛, 𝑘 = 2, 3, ... 𝑄𝑑𝑖(𝑘 + 1) = (1 + 𝛽𝑖,𝑘)𝑄𝑑𝑖(𝑘), 𝑖 ∈ 𝑛, 𝑘 = 2, 3, ...
(5.2)

This method ensures that the simulation reflects the operational constraints of the system, particularly
the necessity for it to function within its linearization range. Empirical analysis, including insights drawn
from actual data in studies such as [6] and [22], indicates that the variation in load demands between
two consecutive sampling instances does not exceed 10%. Accordingly, the coefficients 𝛼𝑖,𝑘 and 𝛽𝑖,𝑘,
which dictate the rate of change in power demands, are randomized within the range of [−0.1, 0.1]. This
approach provides a controlled yet variable environment to simulate realistic operational conditions.
Figure 5.1 presents the set of power demand data which will be used in our simulations.

29
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Figure 5.1: The active and reactive power 𝒑𝒅 and 𝒒𝒅 for all 85 buses used in the simulations

In aligning with methodologies outlined in [11] and [5], the objective function for this segment of our
investigation is tailored to emphasize the costs associated with real and reactive power injections.
Specifically, the objective function is constructed around the term 𝑐𝜙𝜙 (𝒑𝒈, 𝒒𝒈) as delineated in Equation
1.3, prioritizing this component while nullifying the influence of the other two terms, 𝑐𝜌𝜌(𝒗) and 𝑐𝜈𝜈(𝒗),
by setting them to zero.

We use quadratic functions to represent the objective functions in the following form:

𝑓𝑜 =∑
𝑖∈𝑁
𝐶𝑖 (𝑃2𝑖,𝑔 + 𝑄2𝑖,𝑔) (5.3)

This quadratic formulation effectively encapsulates the power injection costs, with terms for both the
square and linear components of power injections by the generators within the network. Such a for-
mulation is particularly advantageous in OPF problems where the primary goal is to minimize the total
power injections, aligning with the studies set in [7], [11], and [5].

The system settings and limits are as:

𝑃𝑔 = 1𝑀𝑊, 𝑃𝑔 = 0𝑀𝑊, 𝑄𝑔 = 1𝑀𝑊𝐴𝑟, 𝑄𝑔 = −1𝑀𝑊𝐴𝑟
0.9 ⩽ |𝑉𝑖| ⩽ 1.1 (p.u) , −10 ⩽ 𝜃𝑖 ⩽ 10 (degree)

(5.4)

The coefficients 𝐶𝑖 in the quadratic objective function, as delineated in Equation 5.4, play a pivotal
role in representing the relative impact associated with each generator’s operation within the network.
Essentially, these coefficients are indicative of the cost implications of utilizing a particular generator;
a higher coefficient value signifies a higher cost for power generation, thereby guiding the optimization
algorithm to allocate generation responsibilities across the network. For the purposes of our analysis,
these parameters have been chosen arbitrarily, with the understanding that the control variables include
both 𝑃𝑔,𝑖 and 𝑄𝑔,𝑖 for each generator 𝑖 within the set 𝒢 = 2, 3, 4, 5, 6, 7, 84, 85.

This arbitrary selection allows us to explore the impact of different cost structures on the overall
optimization strategy and the resulting power flow solutions. It underscores the flexibility of the OPF
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model in accommodating various scenarios and provides insights into how changes in the cost coef-
ficients can influence the optimization outcome, prioritizing efficiency and cost-effectiveness in power
distribution.

In our investigation, firstly, we start with a scenario characterized by low Gaussian noise, selecting the
parameter 𝛼 appropriately to illuminate the integrated system’s performance under (relatively) optimal
conditions. This initial setup allows us to showcase the potential of our algorithm in achieving superior
control outcomes. The parameters for this phase of our analysis are specified as follows:

𝑙𝑑 = 1.5, 𝜎𝑛 = 0.001, 𝛼 = 0.4, 𝛾 = 𝜖 = 0.01 (5.5)

To establish a benchmark for evaluating the effectiveness of the control inputs generated by our algo-
rithm, we compute baselines reflecting the ideal scenario where complete information about the un-
controllable power demand at each bus is available as perfect predictions. This computation leverages
the CVX optimization solver in Matlab, ensuring precision and reliability in the baseline establishment
process.

With these carefully chosen parameters and baselines in place, we proceed to examine the simu-
lation results derived from our system under study. These results, obtained under the aforementioned
conditions, serve as a critical foundation for our subsequent analysis, wherein we will delve into the
impacts of various factors that could potentially degrade performance. This structured approach en-
ables a comprehensive understanding of the system’s dynamics and the algorithm’s robustness across
different scenarios.

(a) Controller inputs for generators 2, 3, and 4 (b) Controller inputs for generators 5, 6 and 7

Figure 5.2: Controller inputs comparison
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(a) Controller inputs for generator 84 and 85 (b) Voltage magnitude for all buses

Figure 5.3

An examination of the voltage measurements in Figure 5.3b across the system reveals a consistent
adherence to voltage constraints, underscoring the effectiveness of both control strategies in main-
taining system stability and operational integrity. To assess the efficacy of the algorithm developed
in this thesis, we adopt a performance metric inspired by the methodologies outlined in [19] and [4].
Specifically, we utilize the ’Cost value error’ as the overarching metric for evaluation:

𝑓𝑜 (�̃�𝑘) − 𝑓𝑜 (𝒖∗𝒌) (5.6)

Here, 𝑓𝑘𝑜 (�̃�𝑘) represents the total cost value associated with the sub-optimal solution �̃� at time
instant 𝑘, while 𝑓𝑜 (𝒖∗,𝒌) denotes the total cost value of the actual optimal solution (the baseline) 𝒖∗,
also at time 𝑘. This metric effectively quantifies the deviation of the algorithm’s performance from the
optimal scenario, providing a clear measure of the algorithm’s accuracy and effectiveness over time.

With the system factors carefully selected and low noise conditions ensured, the metric yields in-
sightful results under the best scenario, which are as follows:

Figure 5.4: Cost value errors
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Within the context of control variables, Figure 5.2 illustrates the performance of different control
strategies. The blue dashed lines depict the control inputs computed by the Primal-Dual-Gradient-
Projection online algorithm, which assumes known cost functions, whereas the orange thick lines rep-
resent the baseline for comparison. This comparison reveals that the Primal-Dual-Gradient-Projection
online algorithm is capable of tracking closely with the actual optimal solution; figure 5.4 shows a clearer
comparison that the discrepancies between the computed and optimal solutions diminish to nearly zero
over time.

The cost value error, as depicted in Figure 5.4, exhibits a significant reduction at the outset, a
result attributed to the relative large stepsize 𝛼 employed in the initial stages of the algorithm. Despite
subsequent fluctuations, the error stabilizes and consistently hovers around zero, aligning with our
expectations for the algorithm’s performance. This initial drop and subsequent stability underscore the
algorithm’s capacity to rapidly adjust towards an optimal solution, even in the presence of dynamic
conditions.

Moreover, Figure 5.4 further elucidates the sources of error within the system. Under conditions
of low Gaussian noise, denoted as 𝜎𝑛 = 0.001, it becomes apparent that the primary source of the
cost value error in the system’s performance—represented by the blue line in Figure 5.4—accounts
for approximately 6% to 8% of the total discrepancy. In contrast, the error attributable to the Gaussian
Process, illustrated by the red line in Figure 5.4, constitutes a smaller fraction, ranging from 2% to 3%.
This differentiation in error contribution highlights the relative impact of the online algorithm and the
Gaussian Process in shaping the system’s overall accuracy and reliability.

Furthermore, when incorporating the Shape-constrained Gaussian Process for the inference of un-
known cost functions, the red lines in Figure 5.2 demonstrate the system’s behaviour under this sce-
nario. Despite some fluctuations, the control strategy leveraging the Shape-constrained Gaussian
Process aligns with expectations, indicating a robust capacity to handle uncertainty in cost function
parameters. The specifics regarding the metric of comparison and convergence performance of these
approaches will be elaborated upon in subsequent discussions.

In our investigation of known function learning within the context of optimal power flow (OPF) control,
we direct our focus towards understanding the cost functions associated with generators 2 and 5.
These generators serve as primary examples to illustrate the methodology and effectiveness of our
learning process. For the purposes of our simulations, we start with a scenario where only two noisy
observations for each generator’s cost function are available at the onset of the learning process.

This initial condition is designed to mimic the practical challenges often encountered in real-world
systems, where complete and accurate information about cost functions may not be readily accessible.
The presence of noise in these observations further replicates the uncertainty and measurement errors
that typically characterize operational data in power systems. Through this simulation setup, we aim to
demonstrate how our algorithm can effectively learn and adapt to the given cost functions, despite the
limited and imperfect initial data.

The subsequent sections will delve into the specifics of the learning algorithm’s performance, detailing
how it navigates the challenges posed by sparse and noisy data to achieve accurate and reliable cost
function estimations. This approach not only highlights the robustness of the learning process but also
showcases its potential applicability in enhancing the efficiency and reliability of OPF solutions under
realistic operational constraints.
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(a) Cost function learning for Generator 2 (b) Cost function learning for generator 2 with 95% confidence interval

Figure 5.5: Cost function learning for Generator 2 𝑃𝑔,2 at sampling time 𝑘 = 1, 20𝑎𝑛𝑑100

(a) Cost function learning for Generator 5 (b) Cost function learning for generator 5 with 95% confidence interval

Figure 5.6: Cost function learning for Generator 5 𝑃𝑔,5 at sampling time 𝑘 = 1, 20𝑎𝑛𝑑100

The core objective of the Shape-constrained Gaussian Process within our framework is the precise
estimation of the cost function gradient, which plays a critical role in updating control variables. This
estimation process is pivotal, as the accuracy of gradient estimation directly influences the effectiveness
and efficiency of the controller’s performance. The precise estimation enables a more informed and
accurate adjustment of control variables, leading to improved system optimization and performance.

To elucidate the relationship between gradient estimation accuracy and controller performance, we
conduct an in-depth analysis focusing on generators 2, 3, and 5. This analysis includes plotting both
the estimated gradient values and their associated errors over time. Through this approach, we aim
to provide a clear visual representation of how gradient estimation accuracy evolves throughout the
control process and to quantify its impact on the overall system performance.
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This examination not only sheds light on the technical capabilities of the Shape-constrained Gaus-
sian Process in capturing and utilizing cost function gradients but also underscores the importance of
accurate gradient information in the context of optimal power flow control. By analyzing the gradient
estimation and its error dynamics for selected generators, we gain valuable insights into the strengths
and potential areas for improvement within our control strategy.

Figure 5.7: Cost function gradient estimation and its error for 𝑃𝑔,2, 𝑃𝑔,3 and 𝑃𝑔,5

An initial review of the simulation results, particularly with a focus on the early stages of the learning
process, reveals that gradient estimation errors for the cost functions start off relatively large. This
is clearly illustrated in Figure 5.7, where the initial phase is marked by significant errors in gradient
estimation. Correspondingly, Figures 5.5b and 5.6b depict a high level of uncertainty (indicated by
the grey shaded areas) at the outset of the learning process. This initial uncertainty underscores the
challenges faced when beginning with a sparse dataset, in this case, only two observations.

Despite these early challenges, the imposition of shape constraints plays a pivotal role in guiding
the learning process towards the expected outcomes. Even with limited initial observations, the learned
prediction curves exhibit strong convexity, aligning with the anticipations of the online algorithm. This
demonstrates the efficacy of shape constraints in steering the learning process in the desired direction,
ensuring that the essential characteristics of the cost functions are preserved and accurately captured,
even in the face of data scarcity.

As the learning process progresses, marked by the inclusion of additional observations into the
training dataset, a notable improvement in the accuracy of gradient estimation is observed. Figure 5.7
highlights a consistent reduction in gradient estimation errors over time, with errors stabilizing within a
minimal range around zero. This trend signifies the growing precision of the algorithm in capturing the
true gradient of the cost functions as more data becomes available.

Moreover, the uncertainty associated with the Gaussian Process, as evidenced in Figures 5.5b and
5.6b, diminishes significantly with the accumulation of more observations. This reduction in uncer-
tainty is particularly pronounced in regions of the function input range that witness a higher density
of observations, such as the intervals [0.4, 0.45] and [0.15, 0.2] for generators 5 and 2, respectively.
The decreased uncertainty in these figures underscores the Gaussian Process’s ability to refine its
predictions and reduce ambiguity as it is fed more data, enhancing the reliability and robustness of the
learning outcomes.
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5.1. Computation time
Addressing the challenge of insufficient computation time is essential; an evaluation of our algorithm’s
performance speed within the specified system is necessary. Simulations were conducted on a Mac-
Book Pro equipped with 16GB of RAM and an Apple M2 chip:

Figure 5.8: Computation time for the online OPF algorithm

Figure 5.8 shows that the time required for the online algorithm (the blue part in figure 5.8) remains
similar during the whole program, while the computation time for the shape-constrained Gaussion pro-
cee increases. This is due to the more observations added into the training data. Consider that the
sampling time in our system is 1 second, the keep increasing total computation time could lead to issues
when there are more observations added. However, from figure 5.7 it can be seen that when there are
about 100 or 150 observations available, (𝑘 = 100𝑜𝑟𝑘 = 150 in figure 5.7), the gradient estimation
accuracy doesn’t improve much with small errors of 5% to 10%. So the strategy here can be set to
be, limit the total observations in the training data set, in this system, 200 for instant, and the gradient
estimation with this amount of observations is accuary enough, while the total computation time only
cost about 20% of the sampling time.

As depicted in Figure 5.8, the computation time attributed to the online algorithm component (il-
lustrated by the blue section in Figure 5.8) remains relatively constant throughout the simulation. In
contrast, the computation time associated with the shape-constrained Gaussian process escalates as
the volume of training data observations increases. Given that our system operates with a sampling
interval of 1 second, the cumulative increase in total computation time may pose challenges with the
introduction of additional observations. However, as indicated in Figure 5.7, the gradient estimation
accuracy stabilizes with minimal improvement beyond 100 to 150 observations, exhibiting small errors
within the range of 5% to 10%. Consequently, a strategic approach involves capping the number of
training data observations, for instance, at 200. This limitation ensures sufficient gradient estimation
accuracy while maintaining the total computation time at approximately 20% of the sampling interval.

5.2. Numerical sensitivity analysis
5.2.1. Objective’s smoothness constant
One pivotal factor that significantly impacts the convergence performance of optimization algorithms
is the Lipschitz constant, denoted as 𝐿. A function is considered Lipschitz continuous if its variation is
bounded by the one of an affine function with slope 𝐿 > 0, known as the Lipschitz constant. The formal
mathematical expression for this concept is provided as follows [2]:
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|𝑓 (𝑥1) − 𝑓 (𝑥2)| ≤ 𝐿 |𝑥1 − 𝑥2| (5.7)
Here, 𝑓 ∶ ℛ → ℛ represents a real-valued function. A function 𝑓 is termed Lipschitz continuous if

there exists a positive real constant 𝐿 satisfying equation 5.7 for all real numbers 𝑥1 and 𝑥2. The as-
sumption of Lipschitz continuity forms a cornerstone of the theoretical framework discussed in Chapter
3.

The Lipschitz constant 𝐿 is crucial not merely as a foundational assumption but also for its significant
influence on the asymptotic error bounds and, consequently, the convergence performance of the al-
gorithm. It has been articulated in previous discussions that the asymptotic error bound is critically
dependent on 𝐿, underscoring the importance of accurately determining or estimating this constant to
ensure robust and efficient algorithmic performance.

The expression for the asymptotic tracking error in equation 3.15, 3.16 and 3.17, shows that an
increase in the Lipschitz constant 𝐿 consequently elevates the value of 𝐿𝜈,𝜖 in Equation 3.17. This
elevation directly influences 𝜌(𝛼) in Equation 3.15, driving it closer to 1. As a result, the error bound
delineated in equation 3.16 experiences an increase, provided that 𝐿 does not reach a magnitude that
propels 𝜌(𝛼) beyond 1.

To elucidate this relationship with greater clarity, we have conducted an analysis focusing on the
cost-value error across four distinct generators. Each generator is characterized by differing cost func-
tion coefficients(𝐶𝑖 in Equation 5.4 offering a varied perspective on how 𝐿 and its associated parameters
impact performance. The results of this analysis are presented graphically, showcasing the cost value
error trends for each generator:

Figure 5.9: Cost value errors for 4 different cost functions and their 𝐿

In Figure 5.9, the observed trends corroborate our theoretical discussion on the influence of the
Lipschitz constant 𝐿 on cost value errors. Specifically, the blue line, representing the generator with
the highest 𝐿 exhibits the most significant error among all generators. Conversely, the green line,
associated with the lowest 𝐿, demonstrates the ability to achieve the lowest cost value error, even
starting from a high error level. This behaviour underscores the inverse relationship between 𝐿 and
the algorithm’s performance in minimizing cost value errors. The errors associated with the other two
generators display minimal variance, attributed to their similar 𝐿 values, further validating the theoretical
framework established in this section.
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It is crucial to recognize the potential for instability when the Lipschitz constant 𝐿 of any cost function
becomes excessively large, pushing 𝜌(𝛼) in Equation 3.15 above 1. Given that the cost functions in
this study are intended to model air pollution levels as measured by sensors, the variation in hardware
settings across different equipment providers can lead to significantly different 𝐿 values. Consequently,
raw data from sensors might yield cost functions with an 𝐿 large enough to compromise controller
stability.

In practical applications, conducting preliminary experiments and simulations is vital for identifying
potentially ’dangerous’ cost functions—those with an 𝐿 so high that they risk destabilizing the controller.
A practical solution involves applying a common normalization factor across all cost value measure-
ments, effectively reducing 𝐿 across all cost functions by scaling down the cost penalty coefficients 𝐶𝑖.
This approach, akin to the regularization strategies discussed in earlier chapters, introduces a trade-
off: while it enhances stability by lowering 𝐿, it may also perturb the original time-varying optimization
problem, affecting the balance between stability and tracking accuracy.

5.2.2. Algorithm step size
The selection of the stepsize parameter 𝛼 plays a critical role in optimizing the tracking performance
of our controller. As delineated by Equations 3.15 and 3.16, an increased 𝛼 value contributes to a
reduction in 𝜌(𝛼), which, in turn, leads to a decrease in the error bound. This relationship suggests that
larger 𝛼 values are generally favourable for enhancing tracking accuracy by minimizing the deviation
from the optimal trajectory.

However, it is imperative to approach the selection of 𝛼 with caution, as excessively large values
can push 𝜌(𝛼) beyond 1 (the optimal selection for convergence is 𝛼 = 𝜂/𝐿2𝜈,𝜖 [6]), a condition that risks
destabilizing the controller. This delicate balance between achieving optimal tracking performance and
maintaining system stability underscores the importance of careful parameter tuning.

The theoretical considerations mentioned above find practical validation in our simulation results,
which illustrate the impact of different 𝛼 values on the system’s behaviour:

Figure 5.10: Cost value errors with different stepsize 𝛼

Incorporating a Gaussian Process (GP) into the system introduces additional considerations, par-
ticularly concerning the update equations:
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𝛾𝑘+1𝑛 = projℝ+ {𝛾
𝑘
𝑛 + 𝛼 (𝑉min − 𝑦𝑘𝑛 − 𝜖𝛾𝑘𝑛 )}

𝜇𝑘+1𝑛 = projℝ+ {𝜇
𝑘
𝑛 + 𝛼 (𝑦𝑘𝑛 − 𝑉max − 𝜖𝜇𝑘𝑛)}

𝒙𝑘+1𝑖 = proj𝒳𝑘𝑖 {𝒙
𝑘
𝑖 − 𝛼∇𝒙𝑖ℒ𝑘𝑣,𝜖(𝒙, 𝜸, 𝝁)|𝒙𝑘𝑖 ,𝜸𝑘 ,𝝁𝑘}

(5.8)

A larger stepsize 𝛼 increases the sub-optimal solution’s sensitivity to gradient estimation errors.
This sensitivity manifests as follows:

Figure 5.11: Cost value error caused by Gaussian process with different stepsize 𝛼

Figure 5.11 delineates the cost value error - the discrepancy between the sub-optimal solutions
derived with the GP and those obtained with known cost functions. As 𝛼 escalates to 0.6 and 0.8,
the figure exhibits pronounced peaks. These peaks are indicative of situations where the gradient
estimation from the GP deviates slightly, but the elevated value of 𝛼 significantly exacerbates this
discrepancy.

5.2.3. Noise variance
The critical role of gradient estimation in the update of control variables, as highlighted by Equation 5.11,
underscores the necessity of accurately estimating the cost function. This estimation, when learned
through a shape-constrained Gaussian process, is susceptible to Gaussian noise, potentially originat-
ing from equipment measurement inaccuracies, among other sources. Thus, a thorough examination
of Gaussian noise’s influence on convergence performance is essential.

In this study, a noise level represented by 𝜀 ∼ 𝒩 (0, 𝜎2𝑛) was employed, revealing that the error
attributable to Gaussian noise at this magnitude is relatively insignificant when compared to the overall
error. Subsequent analyses will explore the effects of elevated noise levels:
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Figure 5.12: Cost value error by different levels of Gaussian noise

Observations from Figure 5.12 indicate that for small 𝜎𝑛 values, the error introduced by the Gaussian
process remains inferior. Conversely, an escalation in noise levels proportionally amplifies the cost
value error. Notably, all trends within Figure 5.12 converge towards a maximal error initially, eventually
stabilizing near zero. This pattern is attributed to the more observations added to the training dataset,
a phenomenon previously discussed in figures 5.5, 5.6, and 5.7.

The significance of the shape constraint escalates with the increase in noise variance. Without
this constraint, the learned function curve risks overfitting, like figure 5.13a shows, particularly when
the Gaussian process’s length-scale hyper-parameter 𝑙𝑛 is intentionally minimized, bypassing the op-
timization of the maximal marginal likelihood hyper-parameter, as detailed in chapter 4.1. Moreover,
even with an optimal length-scale 𝑙𝑛 that facilitates accurate Gaussian predictions, the absence of a
shape constraint might yield a concave learned function curve during the initial stages with limited
observations, as illustrated in Figure 5.13b.

(a) function learning without shape constraint for 𝑃𝑔,5 with 𝜎𝑛 = 0.005 (b) A concave learnt function without shape constraint

(c) (d)

Figure 5.13: Function learning without shape constraint
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In summary, the application of a shape constraint not only obviates the need for maximal marginal
likelihood hyper-parameter optimization at each learning iteration but also enables precise convex func-
tion learning from the outset, with minimal available data. The estimation error diminishes rapidly as
the dataset expands, highlighting the shape constraint’s efficacy in enhancing model accuracy and
convergence performance.

5.2.4. Regularization factors
The calibration of regulation factors 𝜈 and 𝜖 is critical, as their inappropriate magnitudes can adversely
affect the solution to the original time-varying optimization problem. Numerical selection is essential, as
larger values of 𝜈 and 𝜖 induce more significant perturbations due to the adjustments in the ’regulated’
Lagrangian function. Conversely, these larger values contribute to reducing the asymptotic error, as
evidenced by equations ??, ??, and ??. In this context, a higher set of 𝜈 and 𝜖 results in a smaller
𝜌(𝛼), given that 𝜂 = 𝑚𝑖𝑛(𝜈, 𝜖). On the contrary, smaller values of 𝜈 and 𝜖 bring equation ?? closer to
1, leading to a larger asymptotic bound. Therefore, an optimal selection of the regulation factors 𝜈 and
𝜖 necessitates a balanced trade-off to minimize both perturbation error and asymptotic error.

This theory is illustrated by the following experimental results:

(a) Cost value error with different regulation factors 𝜈 and 𝜖 (b) Norms of cost value error with different regulation factors

Figure 5.14: Cost value errors with different regulation factors 𝜈 and 𝜖

Figures 5.14 and 5.14b demonstrate that as 𝜈 and 𝜖 increase from 0, the cost value errors ini-
tially decrease, reaching a minimum at 𝜈 = 𝜖 = 0.05 (indicated by the orange line/dot in figures 5.14
and 5.14b). This minimum primarily results from asymptotic error influences (equation ??). Beyond
this optimal point, further increases in 𝜈 and 𝜖 lead to an escalation in error, with perturbation effects
introduced by the regulation becoming predominant.

5.3. Reference tracking
Taking practical considerations into account, the system’s design was augmented to include reference
tracking as a crucial component. Previously, we posited that the cost functions associated with each
generator could be represented as quadratic functions, exemplified by the equation for bus 1:

𝑓𝑜,1 = 𝑐𝑝,1𝑃21 + 𝑐𝑞,1𝑄21 (5.9)

However, in real-world electricity distribution networks, the output from bus 1, also referred to as
the reference bus, cannot be directly controlled. The terms 𝑃1 and 𝑄1 usually represent the power
supplied by a higher-level network, such as a transmission electricity system, where this power is often
a predetermined value for a specific duration. Consequently, rather than treating 𝑃1 and 𝑄1 as variables
subject to control, we reinterpret them through the lens of reference tracking behavior:

𝑓𝑘′0 = 𝛽 (|𝑃𝑘1 − 𝑃𝑘𝑟𝑒𝑓|
2
+ |𝑄𝑘1 − 𝑄𝑘𝑟𝑒𝑓|

2
) +∑

𝑖∈𝒢
𝐶𝑖 (|𝑃𝑘𝑔,𝑖|

2
+ |𝑄2𝑔,𝑖|

2
) (5.10)
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This modification underscores the necessity of adjusting the system to align with the inherent con-
straints and behaviors of actual power distribution frameworks. By shifting focus to reference tracking,
the model better accommodates the operational realities where the reference bus’s power output is a
given, rather than a variable under our control.

Understanding the roles of 𝑃1 and 𝑄1 is essential, as they can be calculated once the internal control
variables, 𝑃𝑔,𝑖 and 𝑄𝑔,𝑖, are defined. The power sourced from bus 1 is designed to equilibrate the entire
system. In essence, once the network’s control variables are established, 𝑃1 and 𝑄1 become pivotal in
soliciting the requisite power from the higher-level system to achieve system equilibrium. Consequently,
a linear mapping from the control vector 𝒖 to 𝑃1 and 𝑄1 is feasible, given the system’s linear model.
With this framework, the revised cost function 5.10 is articulated as:

𝑓𝑘′0 = 𝛽 (|𝑃1 (𝑢𝑘) − 𝑃𝑘𝑟𝑒𝑓|
2
+ |𝑄1 (𝑢𝑘) − 𝑄𝑘𝑟𝑒𝑓|

2
) +∑

𝑖=𝑐
𝐶𝑖 (|𝑃𝑘𝑔,𝑖|

2
+ |𝑄2𝑔,𝑖|

2
) (5.11)

Here, 𝛽 denotes the penalty coefficient associated with reference tracking. The primary objective
of this cost function is to optimize the utilization of power supplied by the higher-level system while
concurrently minimizing the total costs associated with power injections within the network.

The simulation results, employing the revised cost function, are presented below:

(a) Cost value error for reference tracking (b) Reference tracking error

Figure 5.15

Analysis of Figure 5.15a reveals cost value error spikes corresponding to abrupt changes in the ref-
erence signal. Despite these fluctuations, both the cost value error and the tracking error remain within
acceptable bounds, demonstrating that the inclusion of reference tracking behavior does not signifi-
cantly detriment the overall performance compared to simulations conducted without this behavior.

The determination of the penalty coefficient, 𝛽, was empirically based for this study. The analytical
derivation of an optimal 𝛽 value represents a promising avenue for future research, potentially leading
to even more refined control strategies.



6
Conclusion and future work

This thesis presents the development and integration of an online optimization algorithm known as the
Primal-Dual-Gradient-Projection (PDGP) method. This novel algorithm is designed to compute sub-
optimal solutions that closely track the actual optimal solution with Q-linear convergence while requir-
ing minimal computational time. A key innovation within this method is the introduction of a feedback
strategy that bypasses the need for explicit information about power demands at each bus. Addition-
ally, the incorporation of a shape-constrained Gaussian process enables the learning of unknown cost
functions, further enhancing the system’s efficiency.

The seamless integration of the PDGP algorithm, the feedback strategy, and the shape-constrained
Gaussian process results in a complete system. Simulation results demonstrate commendable tracking
performance, with a cost value error margin of 5% to 10%, and a computation time that is merely 20% of
the sampling interval for a system comprising 85 buses. The study also delves into the impact of system
design parameters, revealing that a larger Lipschitz constant 𝐿 or Gaussian noise intensity results in
a larger asymptotic error. Conversely, an increased step size contributes to reducing the asymptotic
error. Furthermore, it is observed that regulation parameters that are either too large or too small can
be detrimental; optimal parameter selection is attainable through empirical experimentation.

Nonetheless, this research is not without its limitations, which open avenues for future exploration.
For instance, another performance metric known as ’dynamic regret’—which evaluates not only the
instantaneous sub-optimal error but also incorporates the cumulative effect of all past performance—is
also defined and tested by some OPF researchers. The influence of system design parameters on
dynamic regret could prove to be substantial and needs further investigation.

Moreover, while heuristic guidelines for stepsize selection have been established, the determina-
tion of regulation parameters currently relies on trial-and-error. An analytical exploration into this aspect
could streamline the process, leading to a more straightforward approach for identifying optimal regu-
latory parameters.

Finally, the methodologies developed and tested in this thesis are tailored specifically to electricity
distribution networks. For transmission networks, where the choice of linearization points and other
system configurations differ significantly, the applicability of our methods remains to be verified. Future
work should include validating these methods within the context of transmission networks to ensure
broader applicability.
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