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DistFlow Safe Reinforcement Learning Algorithm 
for Voltage Magnitude Regulation in Distribution 

Networks
Shengren Hou, Student Member, IEEE, Aihui Fu, Member, IEEE, Edgar Mauricio Salazar Duque, 

Member, IEEE, Peter Palensky, Senior Member, IEEE, Qixin Chen, Senior Member, IEEE, and 
Pedro P. Vergara, Senior Member, IEEE

Abstract——The integration of distributed energy resources 
(DERs) has escalated the challenge of voltage magnitude regula‐
tion in distribution networks. Model-based approaches, which 
rely on complex sequential mathematical formulations, cannot 
meet the real-time demand. Deep reinforcement learning (DRL) 
offers an alternative by utilizing offline training with distribu‐
tion network simulators and then executing online without com‐
putation. However, DRL algorithms fail to enforce voltage mag‐
nitude constraints during training and testing, potentially lead‐
ing to serious operational violations. To tackle these challenges, 
we introduce a novel safe-guaranteed reinforcement learning al‐
gorithm, the DistFlow safe reinforcement learning (DF-SRL), 
designed specifically for real-time voltage magnitude regulation 
in distribution networks. The DF-SRL algorithm incorporates a 
DistFlow linearization to construct an expert-knowledge-based 
safety layer. Subsequently, the DF-SRL algorithm overlays this 
safety layer on top of the agent policy, recalibrating unsafe ac‐
tions to safe domains through a quadratic programming formu‐
lation. Simulation results show the DF-SRL algorithm consis‐
tently ensures voltage magnitude constraints during training 
and real-time operation (test) phases, achieving faster conver‐
gence and higher performance, which differentiates it apart 
from (safe) DRL benchmark algorithms.

Index Terms——Voltage regulation, distribution network, safe 
reinforcement learning, energy management.
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Parameters of critic network and related gradient

Parameters of trained policy and related gradient

Small value added to control relaxation condi‐
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The maximum current limit of line connecting 
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Active and reactive power demands at node m 
and time step t

Active power from electric vehicles (EVs) at 
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The maximum and minimum active power pro‐
vided by aggregator at node m
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vided by aggregator at node m and time step t

Active and reactive power demands at node m 
and time step t

Active power generation of photovoltaic (PV) 
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B, C

D (rmn ), 
D ( )xmn

F, T

I

M

M0

m0

pN
m, qN

m

rmn, xmn

v2

vm

1 ||L
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Trained ith Q-function and target Q-function

Resistance and reactance of line connecting 
nodes m and n

The maximum and minimum voltage magnitude 
limits

Upper and lower bounds for squared voltage 
magnitude

Voltage magnitude at slack node, which is typi‐
cally considered constant and known

Current magnitude in line connecting nodes m 
and n at time step t

Flexible active power provided by aggregator at 
node m and time step t

Active and reactive power flows from node m to 
node n at time step t

Active and reactive power injections of slack 
node at time step t

Active power flexibility provided at node i

Active and reactive power of node i

Voltage magnitude of node i

Voltage magnitude of node m at time step t

Original and projected (safe) action vectors

Matrices used in linear power flow formulation

Diagonal matrices constructed from rmn and xmn

Connection matrices representing “from” and 
“to” nodes of lines

Unit matrix

Full incident matrix of distribution network

Incidence matrix of distribution network

Column of incidence matrix corresponding to 
slack node

Vectors representing net active and reactive pow‐
er injections

Vectors representing resistance and reactance of 
lines

Vector representing squared voltage magnitude 
of nodes

Vector representing voltage magnitude of node m

Unit vector with dimension equal to number of 
lines in network

I. INTRODUCTION

DISTRIBUTION networks have experienced a notable in‐
crease in distributed energy resource (DER) integration, 

including residential photovoltaic (PV) systems, energy stor‐
age systems (ESSs), and plug-in electric vehicles (EVs) [1], 
[2]. This rise in DERs contributes to sustainability efforts 

and poses operational challenges to distribution system oper‐
ators (DSOs). Among these challenges, the voltage magni‐
tude regulation has surfaced as a predominant concern [3]. 
Aggregators, who control various DERs, have stepped in to 
offer a solution. By providing significant flexibility to 
DSOs, aggregators enable the strategic procurement and de‐
ployment of this flexibility, thereby facilitating efficient volt‐
age magnitude regulation [4].

Implementing voltage magnitude regulation adopts one of 
two approaches: model-based and model-free approaches. 
Model-based approaches manage voltage magnitude regula‐
tion by solving mathematical formulations defined via an ob‐
jective function and a set of operational constraints [5]. How‐
ever, the intricacy of these model-based approaches increas‐
es with the complexity of distribution networks and sequen‐
tial regulation slots because they necessitate complete net‐
work and DER information. Therefore, solving such formula‐
tions can be computationally intensive and thus cannot meet 
real-time demand [6]. Conversely, the model-free deep rein‐
forcement learning (DRL) represents an alternative approach 
that does not require online computation by leveraging an of‐
fline training procedure and distribution network simulators 
[7]. Nevertheless, a significant drawback of such DRL algo‐
rithms is their inability to ensure action feasibility and, thus, 
safety [8], [9]. To address this, some studies have formulated 
the voltage magnitude constraint as a soft constraint, i. e., a 
fixed [10], [11] or trainable penalty term [12], which is add‐
ed to the reward function and used to guide the DRL algo‐
rithm during training. For instance, the reinforcement learn‐
ing (RL) algorithm proposed in [13] follows this approach, 
which is developed to define the ESS schedule to minimize 
operational costs while respecting voltage magnitude limits. 
Nevertheless, this approach fails to enforce such constraints 
strictly during training and real-time operation.

Several safe DRL algorithms have recently been devel‐
oped to enforce operational constraints in control systems 
[14]. In [15], a constrained soft actor-critic (SAC) algorithm 
was developed for EV charging in residential microgrids to 
cater to the increasing prominence of EVs. Using a con‐
strained Markov decision process (MDP) formulation and a 
ladder electricity pricing scheme, this algorithm showed 
promising results in reducing action space dimensionality 
and ensuring safe EV charging. Another study [16] imple‐
mented primal-dual optimization within a safe RL frame‐
work, showing superior performance in terms of energy cost 
minimization and constraint adherence. In [17], a safe DRL 
algorithm was introduced to define a fast-charging strategy 
for lithium-ion ESSs to enhance the efficiency of EV charg‐
ing without compromising ESS safety. Utilizing the SAC-La‐
grange DRL within a cyber-physical system framework, this 
algorithm optimizes charging speeds by leveraging an elec‐
tro-thermal model, outperforming existing deep deterministic 
policy gradient (DDPG) based and SAC-based DRL algo‐
rithms in terms of optimality.

To ensure that the updated policy stays within a feasible 
set, a cumulative constraint violation index was kept below 
a predetermined threshold in [18] and [19]. This approach 
was also used in [20] and [21], in which the constraint viola‐
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tion index is designed to reflect the voltage and current mag‐
nitude violation levels due to the ESS dispatch defined. Nev‐
ertheless, this constraint policy was initially developed to 
handle cumulative or chance constraints after training [19]. 
On the contrary, voltage magnitude violation issues in distri‐
bution networks are state-wise constraints, which do not rely 
on historical trajectories or random variables but hinge on 
the current state of the environment [22]. Consequently, ap‐
plying constraint policy optimization methods to voltage reg‐
ulation issues cannot offer a probabilistic sense of safety. In 
[23] and [24], the trained DRL algorithm was formulated as 
a mixed-integer programming (MIP) formulation and voltage 
magnitude constraints were added to the MIP. By solving 
this extended MIP, the actions from the DRL algorithm are 
projected into safe action spaces that strictly enforce con‐
straints. Nevertheless, this approach cannot meet the real-
time operation requirements if the formulated MIP becomes 
too large. In [25], the stability of distribution network con‐
trolled by DRL algorithms was guaranteed if the system ad‐
heres to specific Lipschitz constraints. However, formulating 
such Lipschitz sets for distribution networks is quite change‐
able. In [26], a constrained SAC algorithm was proposed to 
address volt-var control challenges. The constrained SAC al‐
gorithm combines the maximum entropy framework, the 
method of multiplier, a device-decoupled neural network 
structure, and an ordinal encoding scheme to achieve scal‐
ability, sample efficiency, and constraint satisfaction. Howev‐
er, the algorithm can only be applied to discrete action prob‐
lems.

Safety layer-based DRL algorithms are suitable to handle 
the state-wise constraints (i.e., voltage magnitude), which for‐
mulate a policy-independent safety layer to project actions 
defined by DRL algorithms into a feasible set. In [27], a 
deep neural network (DNN) assisted projection-based DRL 
algorithm was proposed for the safe control of distribution 
networks. This algorithm leverages a pre-trained DNN to ac‐
celerate the projection calculations, enabling the rapid identi‐
fication of safe actions. However, a critical limitation of this 
algorithm is the reliability of the safe actions produced by 
the DNN. Since the DNN is trained on historical data, the 
quality and representativeness of the data are paramount. Al‐
ternatively, a linear safety layer is trained by the data collect‐
ed from a random policy with the environment [28]. In [29], 
a safety layer was built upon DRL algorithms to filter out 
unsafe actions before the execution, while voltage magnitude 
was enforced by solving projection. A similar approach was 
implemented in [30] to regulate the voltage magnitude of the 
distribution network via controlling smart transformers. Yet, 
these algorithms mainly rely on training a linear safety layer 
to first capture the sensitivity between station-action pair and 
constraint violations, and then filter out unsafe actions be‐
fore they are executed. Therefore, the safety guarantee per‐
formance for these algorithms is highly dependent on the 
quality of the trained linear safety layer. Given the complex 
relationships between system dynamics and multi-dimension 
constraints involved in voltage magnitude regulation prob‐
lems, training such a linear safety layer often proves to be a 

significant challenge [28]. Consequently, the trained safety 
layer can rarely provide a safety guarantee for the voltage 
magnitude regulation problem in the distribution network, 
leading to sub-optimal performance and violations.

Drawing on the pivotal insights [31]- [33] that integrating 
expert knowledge can significantly enhance safety and agent 
performance, we introduce the DistFlow safe reinforcement 
learning (DF-SRL) algorithm. It aims to tackle state-wise 
voltage magnitude regulation issues in distribution networks 
by applying DRL algorithms, augmented with an expert-
knowledge-based safety layer. This innovation addresses ex‐
isting gaps in voltage magnitude regulation research through 
several key contributions:

1) The proposed DF-SRL algorithm incorporates a Dist‐
Flow linearization to devise a safety layer, leveraging expert 
knowledge insights to accurately map the relationship be‐
tween actions of the agent and voltage magnitude variations 
in distribution networks.

2) The DRL algorithm overlays the safety layer on top of 
the DRL policy to recalibrate potentially unsafe actions to 
conform to safe parameters by optimizing the proximity of 
these actions in Euclidean space.

3) The error of the safety layer introduced by linearization 
is corrected by the slack parameter, and a detailed sensitivity 
and scalability analysis is conducted.

4) The proposed DF-SRL algorithm ensures the practicali‐
ty and real-time viability of actions and guarantees safety 
constraints during both the training and application phases.

II. VOLTAGE MAGNITUDE REGULATION PROBLEM 

Voltage fluctuations in distribution networks are predomi‐
nantly due to variations in active power, such as those 
caused by overload conditions or high inflows from PV sys‐
tems [3]. These fluctuations are more directly linked to ac‐
tive power changes, affecting voltage magnitude significant‐
ly. By focusing on active power, aggregators can utilize 
DERs like battery storage and controllable loads more effec‐
tively. This aligns with operational strategies that maximize 
the impact of available resources while ensuring compliance 
with safety and reliability standards.

The voltage magnitude regulation framework for DSO and 
aggregators is depicted in Fig. 1.

DSO control layer
DSO

[pi�1, qi�1, vi�1] [pi+1, qi+1,

 vi+1][pi�1]
[pi, qi, vi]

Aggregatori�1
Aggregatori+1

B [pi  ]
B

Aggregatori

[pi+1]
B

Nodei�1 Nodei Nodei+1

DERs

Local control layer

Fig. 1.　Voltage magnitude regulation framework for DSO and aggregators.

302



HOU et al.: DISTFLOW SAFE REINFORCEMENT LEARNING ALGORITHM FOR VOLTAGE MAGNITUDE REGULATION IN DISTRIBUTION...

Each network node is associated with an aggregator that 
oversees a group of consumers equipped with DERs such as 
residential PV systems, ESSs, and plug-in EVs. These aggre‐
gators are empowered to fully control the DERs of their des‐
ignated consumers, playing a pivotal role in the dynamic 
management of the distribution network. Aggregators collect 
consumer data, build baseline electrical consumption pro‐
files, and share the active power flexibility with the DSO 
control center. Subsequently, the DSO control center deploys 
a voltage magnitude regulation algorithm to determine the re‐
quired active power flexibility that each aggregator must pro‐
vide.

In this paper, we focus on developing an RL-based algo‐
rithm to assist the DSO control center in accurately determin‐
ing the required flexibility provision of each aggregator to 
achieve voltage magnitude regulation.

A. Mathematical Programming Formulation

In general, the voltage magnitude regulation problem can 
be modeled using the non-linear programming (NLP) formu‐
lation given by (1)-(9). The objective function in (1) aims to 
minimize the use of flexible active power pB

mt provided by 
all aggregators within the set mÎN, aiming to regulate the 
voltage magnitude over the time horizon T.

min
pB

mt

ì
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î
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The distribution network is formulated based on the pow‐
er flow formulation shown in (2)-(5), according to the active 
power pmnt, reactive power qmnt, and current magnitude imnt 
of lines, and the voltage magnitude vmt of nodes. The ex‐
pression in (6) enforces the used flexible active power with‐
in the boundaries that each aggregator provides, while (7) 
and (8) enforce the voltage magnitude and line current lim‐
its, respectively. Finally, (9) enforces that only one node is 
connected to the substation. Flexibility for voltage magni‐
tude regulation at each aggregator can vary over day and 
time slots [3].

B. Constrained Markov Decision Process (CMDP) Formula‐
tion

The voltage magnitude regulation problem can be mod‐
eled as a case of CMDPs, represented by a 6-tuple 

(SAPRγC ). Here, S denotes a state space encompassing 
the observable states of the distribution network; A denotes 
an action space representing the possible control actions; P 
is the state transition probability function capturing the sys‐
tem dynamics; R is the reward function guiding the optimi‐
zation; γ is a discount factor reflecting the importance of fu‐
ture rewards; and C is a set of immediate constraint func‐
tions ensuring operational safety and feasibility. The decision 
as to which action at is chosen in a certain state st is gov‐
erned by a policy π (at|st ). The agent employs the policy to 
interact with the formulated CMDP and define a trajectory 
of states, actions, and rewards: τ = (s0a0s1a1). This tra‐
jectory not only aims to maximize the cumulative reward 
but also adheres to the system constraints, thereby balancing 
the objectives of operational efficiency and safety.
1)　State

The state at time t encapsulates the current operational sta‐
tus of the distribution network, providing a comprehensive 
view of the system dynamics, and it is defined by:

st = ( pN
mtvmt-p

B

mt
p̄B

mt )     mÎN (10)

where pN
mt = pD

mt - pPV
mt - pEV

mt, which captures the balance 
among the demand, PV generation, and EV consumption at 
node m.
2)　Action

The action space A consists of the set of all possible ac‐
tive power adjustments at each node m, defined as A =

{ }at
|
|
|||| at = pB

mt-p
B

mt
£ pB

mt £ p̄B
mt"mÎN .

3)　Reward
The DSO seeks to regulate the voltage magnitude into de‐

fined boundaries while minimizing the use of total active 
power flexibility provided by aggregators. Thus, the reward 
function rt is defined as the negative of the total used flexi‐
ble active power, which can be expressed as:

rt =-∑
mÎN

|| pB
mt (11)

This formulation incentivizes the minimization of the total 
active power flexibility utilized, thereby promoting energy ef‐
ficiency and cost effectiveness in voltage magnitude regula‐
tion. Given the state st and action at at time step t, the sys‐
tem transits to the next state st + 1 defined by the transition 
probability function that can be expressed as:

p (St + 1Rt| StAt ) = Pr{St + 1 = st + 1Rt = rt| St = stAt = at} (12)

where Rt| StAt is the reward distribution under the current 
state St and action At. The goal of the RL agent is to find a 
policy that maximizes the cumulative discounted return 

J (π ) =Eτ  π
é

ë
ê
êê
ê∑

t = 0

T

γtrt

ù

û
ú
úú
ú while ensuring no constraint is violated 

during the exploration and exploitation processes. Eτ  π[ ]×  is 
the expectation function of the trajectory distribution under 
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the current policy. ∑
t = 0

T

γtrt is the cumulative return in current 

trajectory. The penalty term induced by the constraint viola‐
tions Cmt(π ) denotes the voltage magnitude violation of 
node m at time step t, which is defined as:

Cmt(π ) =max{0| v0 - vmt | - v̄ - -v
2 }     "mÎN (13)

This formulation ensures that Cmt(π ) represents a positive 
penalty term when the voltage magnitude at node m deviates 
outside the acceptable range defined by -v and v̄, and is zero 
otherwise.

The voltage magnitude regulation problem formulated as a 
CMDP can then be expressed using the following con‐
strained optimization formulation:

ì

í

î

ïïïï

ïïïï

max
π

=Eτ  π
é

ë
ê
êê
ê ù

û
ú
úú
ú∑

t = 0

T
γtrt

s.t. Cmt( )π = 0    "mÎN"tÎ T
(14)

In this formulation, Cmt( )π  serves as a constraint in the 
CMDP, ensuring that the policy π leads to actions that main‐
tain the voltage magnitude within the specified limits. It is 
indirectly influenced by the policy through its impact on the 
state st and the action at.

III. PROPOSED DF-SRL ALGORITHM 

The proposed DF-SRL algorithm is defined through a pa‐
rameterized policy network, denoted by πω( )× . This policy 
network selects actions based on the current state, perform‐
ing exploration and exploitation. To enhance safety and en‐
sure that voltage magnitude constraints are met during the 
exploration, we introduce a safety layer on top of the policy 
network πω( )× . A safety layer is designed based on the pa‐
rameters and topology of the distribution network, enabling 
a projection of the original action proposed by the RL algo‐
rithm onto a safe domain. A more detailed explanation is 
provided as follows.

A. DRL Algorithms

Traditional value-based DRL algorithms fail to solve the 
voltage magnitude regulation problem due to the continuous 
nature of the state and action spaces [34]. Alternatively, poli‐
cy-based DRL algorithms such as DDPG [35] and twin de‐
layed deep deterministic policy gradient (TD3) [36] are capa‐
ble of handling continuous actions by simultaneously main‐
taining a policy (actor) network πω(st ) that is used to sample 

actions and a trained Q-function (critic) Qθ(stat ) that is 
used to guide the update direction of the policy network. 
The TD3 algorithm is an improved version of the DDPG al‐
gorithm, which uses two Q-networks and delayed critic net‐
work improvement to reduce the overestimation bias of the 
critic network in DDPG algorithm. In general, the TD3 algo‐
rithm updates the actor network as (15), while the critic up‐
date iteration is defined as (16).

ω¬ω +Ñω

1
|| B ∑stÎB

( )min
i = 12

{ }Qθi( )stπω( )st (15)

min
θ
∑
sÎB

( )rt + γ min
i = 12

{ }Qθ target
i

( )st + 1πω( )st + 1 -Qθi( )stat

2

(16)

Although the TD3 algorithm effectively handles continu‐
ous action space problems, it cannot enforce constraints dur‐
ing the training and testing. To solve the CMDP formulation 
using the TD3 algorithm, the constraint violations Cmt 
should be added as penalty term to the reward function in 
(11), defined as:

rt =-∑
mÎN

|| pB
mt - σ∑

mÎN
Cmt (17)

where σ is used to balance the weights between the total re‐
quired flexibility and the penalty incurred by the voltage 
magnitude violations. The constrained optimization problem 
is reformulated into an unconstrained one in this procedure. 
However, directly applying penalty terms to the reward func‐
tion cannot guarantee the feasibility strictly, leading to infea‐
sible operations and poor performance [8]. To overcome this, 
we introduce a linear safety layer on top of the TD3 algo‐
rithm to ensure the feasibility of committed actions during 
the training and testing procedures, as explained in the next 
subsection.

B. Linear Power Flow Formulation

Given the topology of a distribution network, the inci‐
dence matrix M0 can be defined by:

M0 =F -T = [m0M ] (18)

Fl i =
ì
í
î

1 f ( )l = ilÎLiÎN
0 otherwise

(19)

Tl j =
ì
í
î

1 t ( )l = jlÎLjÎN
0 otherwise

(20)

Given the diagonal matrices D (rmn ) and D ( xmn ), the rela‐

tionship between the voltage magnitude of nodes vm and the 
net active and reactive power injections pN

m and qN
m can be ex‐

pressed as:

Mv2
m =Mv2

01 ||L + 2 ( )D ( )rmn BTpN
m +D ( )xmn BTqN

m +Cc2  (21)

B = ( I -TF T ) -1
(22)

C = 2 ( )D (rmn ) BD (rmn ) +D ( xmn ) BD ( xmn ) -D (r 2
mn + x 2

mn )
(23)

The linear power flow formulation presented in (21) in‐
volves an approximation that neglects the quadratic term c2, 
which represents the line losses in the distribution network. 
This simplification is based on the findings in [37], where it 
is argued that in most practical scenarios, especially in distri‐
bution networks, the line losses can be considered relatively 
small compared to the other terms in the power flow equa‐
tions. Thus, the quadratic term c2 in (21) is neglected, turn‐
ing the expression linear in v2

m. This linear expression can 
further be used to derive a direct relationship between the ac‐
tion vector a, which corresponds to the dispatch decision of 

the aggregators, i. e., a = é
ëpB

1tp
B
2tpB

mtpB
||N t
ù
û, and v2

m, 

which is expressed as:
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Mv2 =Mv2
01 ||L + 2[ ]D (rmn ) BT ( pN

m - a) +D ( xmn ) BTqN
m  (24)

C. Safety Layer Formulation

The relationship expressed in (21) is utilized to establish a 
linear mathematical programming formulation to project po‐
tentially unsafe actions, defined by the RL algorithm, into a 
secure operational region. The primary objective of this for‐
mulation is to find the nearest safe action â that minimizes 
the Euclidean distance from the original potentially unsafe 
action a. Thereby, the projection can ensure minimal devia‐
tion from the intended control strategy while strictly adher‐
ing to operational and safety constraints. The safe action pro‐
jection is achieved by solving the optimization problem:

â = arg min
â

{ }1
2 ( â - a) 2

(25)

s.t.

v2
m1 ||L + 2M -1[ ]D (rmn ) BT ( pN

m - â) +D ( xmn ) BTqN
m £ v̄2 - ϵ

(26)

v2
m1 ||L + 2M -1[ ]D (rmn ) BT ( pN

m - â) +D ( xmn ) BTqN
m ³ -v

2 + ϵ
(27)

The slack parameter ϵ is introduced to manage the relax‐
ation conditions for the voltage magnitude limits, which 
compensates for the inaccuracies introduced by the linear 
model approximation of real voltage magnitudes. By incorpo‐
rating ϵ, we allow for a buffer in the operational constraints 
that accommodates potential deviations between the predict‐
ed and actual voltage magnitudes. This ensures that the pro‐
jected actions remain within safe operational boundaries, 
even when the linear relationship underestimates or overesti‐
mates the effects of control actions on the voltage levels.

D. Framework of Proposed DF-SRL Algorithm

The proposed safety layer can project action at to safe do‐
mains ât during the training and online execution process. 
The proposed DF-SRL algorithm will update the actor and 
critic networks based on the collected safe trajectories 

(stâtrtst + 1 ) in the replay buffer R. Therefore, the proposed 
DF-SRL algorithm redefines the actor-network and critic-net‐
work iteration rules by (28) and (29), respectively.

ω¬ω +Ñω

1
|| B ∑stÎB

( )min
i = 12

{ }Qθi( )stât (28)

min
θ
∑
sÎB

( )rt + γ min
i = 12

{ }Qθ target
i

(st + 1ât ) -Qθi( )stât

2

(29)

Note that the proposed DF-SRL algorithm for integrating 
the safety layer is specifically designed to be compatible 
with off-policy model-free algorithms. The off-policy nature 
of the proposed DF-SRL algorithm allows it to learn from 
experiences generated by a behavior policy that differs from 
the target policy trying to learn. This characteristic is crucial 
for the integration of the safety layer, as it allows the algo‐
rithm to handle the mismatched distribution between the 
original actions at and the safe actions ât without impairing 
the update performance. Consequently, the safety layer can 
project potentially unsafe actions into a safe domain, ensur‐

ing operational feasibility while maintaining the integrity of 
the learning process. The proposed DF-SRL algorithm main‐
tains its model-free nature by not explicitly learning the state 
transition function of the constructed MDP [38].

In addition to the integration of the safety layer, the pro‐
posed DF-SRL algorithm introduces significant novelty in 
the policy iteration and interaction process. More than just 
filtering actions, the safety layer actively changes the nature 
of the interaction data that are fed back into the learning pro‐
cess of the RL agent. By modifying the actions before they 
are executed (and thus the resulting state transitions and re‐
wards), the safety layer ensures that the data used for train‐
ing are not only rich in terms of learning opportunities but 
also aligned with operational safety requirements. This leads 
to an improvement in both the performance and safety of the 
learned policy.

Algorithm 1 presents the step-by-step procedure of the 
proposed DF-SRL algorithm, while Fig. 2 illustrates the ar‐
chitecture of proposed DF-SRL algorithm displaying the in‐
teraction of the actor and critic models with the environment 
during the training process. The proposed DF-SRL algorithm 
composes of actor and critic models and interacts with the 
environment through the formulated safe layer to ensure the 
safety and feasibility during the training, as shown in Fig. 2.

The training process begins by randomly initializing the 
parameters of the DNN functions Qθ and Qθ target, as well as 

defining the parameters of the safety layer, i. e., D (rmn ), 
D ( )xmn , B, T, and M. For each training epoch, at each time 
step t, the policy πω receives the state st and samples an ac‐
tion at. The safety layer then assesses whether the action at 
falls within the safe domain. The projection model is activat‐
ed to project actions to a safe action, denoted as ât, only if 
action at could lead to voltage magnitude violations. Next, a 
transition tuple (stâtrtst + 1 ) is compiled and stored in a re‐
play buffer R. A subset B of these samples is subsequently 
selected and used to update the parameters of the functions 
Qθi

, Qθ target
i

, and πω, as detailed in Algorithm 1. This iterative 

procedure continues until the maximum number of epochs is 
reached, ensuring that the RL agent can efficiently explore 
the action space without breaching voltage magnitude limits, 
thereby ensuring operational feasibility.

Algorithm 1: proposed DF-SRL algorithm

Define the maximum training epoch T and epoch length L
Initialize parameters of functions Qθi

, Qθ target
i

, and πω, and reply buffer R

Define the parameters of the safety layer: D (rmn ) D ( xmn ) BT and  M
for t = 1 to T do
  Sample an initial state s0 from the initial distribution
  for l = 1 to L do
    Sample an action with exploration noise at  πω (st )+ ϵ, ϵ N(0σ1 )
    if -v < v < v̄ is not statisfied, then
      Project at to safe action ât by solving {(25), s.t. (26), (27)}.
    else ât = at

    Interact with the distribution network and observe the reward rt and 
the new state st + 1

    Store the transition tuple (stâtrtst + 1 ) in R

  Sample a random mini-batch of B transitions (stâtrtst + 1 ) from R
  Update the Q-function parameters by using (29)
  Update the execution policy function parameters by using (28)
  Update the target Q-function parameters using θ target¬ τθ + ( )1 - τ θ target
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IV. SIMULATION RESULTS AND DISCUSSIONS 

A. Simulations Setup, Data, and Implementation

1)　Data and Distribution Network Case
To validate the effectiveness of the proposed DF-SRL al‐

gorithm, we construct an environment based on a CIGRE 
residential low-voltage network, as shown in Fig. 3. In this 
network, each node is associated with an aggregator, and the 

DSO interacts with them to regulate voltage magnitude 
based on the availability of flexibility at each node. The 
training data of PVs, plug-in EVs, and typical residential 
load are from [3], with a 15-min resolution. The voltage 
magnitude limits are set to be v̄ = 1.05 p.u. and -v = 0.95 p.u.. 
For the present case study, we assume that the maximal flex‐
ibility provided by the aggregator is 50 kW during the opera‐
tion [3].

2)　Benchmark Algorithms
To evaluate the performance of the proposed DF-SRL al‐

gorithm, we conduct a comparative analysis with several 
DRL benchmark algorithms, including the state-of-the-art 
DRL algorithms: DDPG, proximal policy optimization 
(PPO), TD3, and SAC, as well as a centralized model-based 
algorithm, i. e., an NLP formulation [3]. The parameters for 
different DRL algorithms, aggregators, and environment are 
summarized in Table I. TD3, DDPG, and safe DDPG algo‐
rithms are trained with the same hyperparameters as the pro‐
posed DF-SRL algorithm. Specifically, linear safety layer 
training for safe DDPG follows the default implementation 
in [28]. All implemented algorithms and their (hyper)parame‐
ters are available online. Note that while all the DRL bench‐
mark algorithms can make decisions only using current infor‐
mation and achieve online operation, the solution obtained 
by the NLP formulation requires complete information of the 
foreseen control period. To train and assess the performance 

of the DRL benchmark algorithms, we employ validation 
metrics based on the negative value of total used active pow‐
er as denoted in (11), and the voltage magnitude violation 
penalty as specified in (13). These metrics effectively gauge 
the operational efficiency and constraint adherence of each 
algorithm.

B. Performance on Training Set

Figure 4 presents a comparative analysis of the average to‐
tal reward as in (17), the summation of negative value of to‐
tal used active power (or the first term of reward in (17)), 
and the cumulative penalty for voltage magnitude violations 
(or the second term of reward in (17)) during the training 
process for the proposed DF-SRL and the DRL benchmark 
algorithms. Results shown in Fig. 4 for each algorithm are ob‐
tained as an average of over five executions. The average total 
reward increases rapidly during the training, while voltage 
magnitude violations decrease significantly at the beginning.
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Fig. 2.　Architecture of proposed DF-SRL algorithm displaying interaction among actor network, critic network, and safety layer.
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As depicted in Fig. 4(b), it is noteworthy that the negative 
values of total used active power for DDPG and TD3 algo‐
rithms (with soft penalty) eventually converges around -1.7 
MW, while that of SAC and safe DDPG converges around 
-2.4 and -4.3 MW, respectively. Compared with these DRL 
benchmark algorithms, the negative values of total used ac‐
tive power of the proposed DF-SRL algorithm is significant‐
ly lower, at approximately -0.5 MW. Figure 4(c) reveals an‐
other stark contrast in the cumulative penalty for voltage 
magnitude violations. Throughout the training process, the 
proposed DF-SRL algorithm consistently enforces the con‐
straints without any voltage magnitude violations, whereas 
the DRL benchmark algorithms experience failures in satisfy‐
ing the constraints after reaching convergence at 1000 epi‐
sodes. This disparity can be attributed to the safety layer in 
the proposed DF-SRL algorithm, which adjusts unsafe ac‐
tions during training. In comparison, the DRL benchmark al‐
gorithms initially grapple with low-quality actions due to the 
random initialization of the DNN parameters, leading to 
many initial violations. Then, based on the guidance of the 
penalty term of the reward function, the DDPG, TD3, and 
PPO algorithms reduce the voltage magnitude violations to a 
small value after about 200 episodes. Conversely, the SAC 
algorithm exhibits slower training efficiency, achieving small‐
er violation values only at the end of training (1000 epi‐
sodes). This behavior can be attributed to the complex explo‐
ration policy used by the SAC algorithm. The safe DDPG al‐
gorithm maintains relatively smaller violation values at the 
beginning compared with other algorithms (e.g., TD3) with a 
soft penalty. Nevertheless, it fails to enforce violations 
caused by the poor quality of the safety layer, trained based 
on the data collected from random policy-environment inter‐
action. Moreover, the infeasible safety layer also leads the 
action project in the wrong direction, impacting the data 
quality in the replay buffer, which causes a worse perfor‐
mance compared with the standard counterpart (i.e., DDPG), 
as shown in Fig. 4(b).

C. Performance and Constraint Enforcement Capabilities on 
Testing Set

Figure 5 displays the results of voltage magnitude of dif‐
ferent nodes before and after the regulation of the proposed 
DF-SRL, safe DDPG, and TD3 algorithms, and NLP formu‐
lation during a typical day in the test dataset. As TD3 algo‐
rithm performs best among all DRL algorithms, we use the 
TD3 algorithm as a benchmark. In the specific scenario of 
nodes 11, 16, 17, and 18 of the network operating under se‐
vere undervoltage during afternoon and night, the proposed 
DF-SRL algorithm effectively maintains the voltage magni‐
tude within the technical limits throughout the entire opera‐
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TABLE I
PARAMETERS FOR DRL ALGORITHMS, AGGREGATORS, AND ENVIRONMENT

Item

DF-SRL

SAC

PPO

Aggregator

Environment

Parameter

γ = 0.995

Optimizer adopts Adam

Learning rate is 6 ´ 10-4

Batch size is 512, replay buffer is 4 ´ 105

γ = 0.995

Optimizer adopts Adam

Learning rate is 6 ´ 10-4

Batch size is 512, replay buffer is 4 ´ 105

Entropy is fixed

γ = 0.995

Optimizer adopts Adam

Learning rate is 6 ´ 10-4

Batch size is 4096

p̄B = 50 kW
-
p B =-50 kW

Reward σ = 400

Voltage limit v̄ = 1.05 p.u., -v = 0.95 p.u.
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tion period. Notably, the safe DDPG algorithm fails to main‐
tain the voltage magnitude within the technical limits be‐
tween 20:00-21:00. This is due to the inherent limitations of 
the trained linear safety layer, which performs poorly in the 
distribution network environment with complex dynamics 
and multiple constraints involved. Similarly, DRL bench‐
mark algorithms, for instance, TD3 algorithm, trained with a 
soft penalty, cannot provide certified feasibility after conver‐
gence. Furthermore, the operational cost associated with the 
regulation of the proposed DF-SRL algorithm is 0.76 MW, a 
significant reduction of 17.7% compared with that of TD3 
and safe DDPG algorithms. This reduction can be attributed 
to the high-quality training data provided by the expert-
knowledge-based safety layer in the proposed DF-SRL algo‐
rithm. Compared with the optimal solution obtained by solv‐
ing the NLP formulation with a perfect forecast, the pro‐
posed DF-SRL algorithm demonstrates a modest error rate 
of 10.6%.

Table II presents the average total error in operational 
cost, the average number of voltage magnitude violations (in‐
cluding over- and under-voltage violations), and the average 
total computational time for the proposed DF-SRL and DRL  
benchmark algorithms assessed over 30 unseen test days. As 
illustrated in Table II, the proposed DF-SRL algorithm con‐
sistently upholds voltage magnitude constraints while achiev‐
ing a marked reduction in average error relative to the solu‐
tion obtained by the NLP formulation with perfect forecast. 
In general, the proposed DF-SRL algorithm performs the 
best among all the algorithms with the lowest average error 
of 11.6%. In contrast, the TD3 algorithm underperforms 
with an error rate of 35.9%, violating voltage magnitude con‐
straints around 14 time steps. Other DRL algorithms such as 
the DDPG, PPO, and SAC algorithms register higher errors 
at 37.2%, 44.3%, and 56.1%, respectively. With a trained lin‐
ear safety layer, the safe DDPG algorithm fails to enforce 
voltage magnitude constraints while performing worse than 
the standard DDPG algorithm. This is because the trained 
safety layer in the safe DDPG algorithm cannot accurately 
track the relationship between state, action, and multiple con‐
straints. As anticipated, due to the computation of the safety 
layer, the proposed DF-SRL algorithm requires more compu‐
tational resources compared with other DRL algorithms. De‐
spite this, the proposed DF-SRL algorithm remains a viable 
option for real-time operation as it takes less than 29 s for 
one day (96 time steps) execution.

D. Sensitive Analysis

The proposed DF-SRL algorithm capitalizes on the linear 
relationship between the voltage magnitude and the actions. 
Nevertheless, the power flow formulation can introduce er‐
rors due to the approximation assumptions. The safety layer 
formulation introduces the slack parameter ϵ to overcome 
this. Primarily, ϵ should be determined by the upper error 
boundary for the DistFlow model compared with the actual 
voltage magnitude. As the final value used for ϵ influences 
the feasibility and optimality of the actions defined by the 
proposed DF-SRL algorithm, this subsection presents an in-
depth sensitivity analysis of the slack parameter ϵ.

Figure 6 illustrates the convergence performance of the 
proposed DF-SRL algorithm for different values of the slack 
parameter ϵ. At ϵ = 0.001, the performance of the proposed 
DF-SRL algorithm is markedly diminished after conver‐
gence. In this case, the total active power provided by the 
aggregators is relatively low compared with the cases when 
ϵ takes the value of 0.002 or 0.005.
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Additionally, in the case of ϵ = 0.001, the proposed DF-
SRL algorithm fails to ensure the feasibility of the decided 
solutions during training, whereas in the cases with ϵ set at 
0.002 or 0.005, all operational constraints can be successful‐
ly enforced. In general, a low value of ϵ can make the safe 
solution of the linear projection model infeasible. Conse‐
quently, the resolved safe solution may cause voltage magni‐
tude violations during training, leading to sub-optimal perfor‐
mance after projection. If the proposed DF-SRL algorithm is 
executed with ϵ being 0.002 or 0.005, significant perfor‐
mance improvements in optimality and feasibility are ob‐
served, as illustrated in Fig. 6. Furthermore, the optimality 
score experiences a modest increase, at around 5%, when ϵ 

is reduced from 0.005 to 0.002. This can be attributed to the 
fact that a higher ϵ constrains the solution space in the ac‐
tion projection model, subsequently affecting the solution 
quality during training. The calibration of the slack parame‐
ter ϵ is intrinsically linked to the linear error inherent in the 
safety layer, which is pivotal for the efficacy of the proposed 
DF-SRL algorithm. This calibration ensures that the relax‐
ations provided by ϵ comprehensively cover the linearization 
errors, thus maintaining the integrity of the safety layer 
across varying operational scenarios. In the following sec‐
tion, we conduct a detailed scalability analysis to further ex‐
plore the range of errors induced by the linearization pro‐
cess, providing a quantitative foundation to refine the selec‐
tion of ϵ across different network sizes [37].

V. SCALABILITY ANALYSIS 

The scalability of the proposed DF-SRL algorithm is fun‐
damentally determined by the effectiveness of the DistFlow 
linearization process. This linearization approximation is es‐
sential for mapping the actions from the DRL to safe opera‐
tional domains. Substantial linearization errors can cause in‐
accuracies within the safety layer, misguiding action projec‐
tion, compromising policy iterations, and ultimately degrad‐
ing the overall efficacy of the algorithm.

Figure 7 presents the observed voltage magnitude errors 
of DistFlow for different network sizes.

We collect voltage magnitudes from all nodes within dis‐
tribution networks of 18, 34, 69, and 124 nodes and calcu‐
late the deviations between the DistFlow approximations and 
actual voltage magnitudes in one year’s data. The voltage 
magnitude error in the 18-node distribution network ranges 
from 0.00089 to 0.00163. In the 34-node distribution net‐
work, the error ranges from 0.00082 to 0.00175. The 69-
node distribution network experiences an error range of 
0.0011 to 0.00172, and the 124-node distribution network ex‐
periences an error range from 0.00073 to 0.00188. Although 
the largest distribution network exhibits a broader range of 
error, the maximum error does not exceed 0.002, suggesting 
that setting an error threshold of ϵ = 0.002 effectively accom‐
modates the inaccuracies induced by the linearization across 

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT DRL ALGORITHMS

Algorithm

DF-SRL

Safe DDPG

DDPG

TD3

SAC

PPO

Average total 
error (%)

11.6 ± 0.0

67.1 ± 5.5

37.2 ± 1.2

35.9 ± 1.5

56.1 ± 3.4

44.3 ± 1.1

Average number of 
voltage magnitude 

violations

0

19 ± 2

15 ± 4

14 ± 4

23 ± 4

12 ± 1

Average total 
computational time 

(s)

29.0 ± 2.4

25.0 ± 0.7

15.7 ± 0.2

15.7 ± 0.2

16.0 ± 0.1

15.4 ± 0.6

2

0

-2

-4

-6

-8

-10

�∑
  
  
|P

B m
,t
| (
M
W
)

m
�
N
,t
�
T

∑
  
  
C

m
,t
(v

m
,t
)

m
�
N
,t
�
T

0 50 150 200 250 300 350 400100

Episode
(a)

0

-10

10

20

30

40

50

0 50 150 200 250 300 350 400100

Episode
(b)

350 375 400
0

2.5

5.0

7.5

ϵ=0.001; ϵ=0.002; ϵ=0.005

350 375 400

-1.0

-1.5

-0.5

0

Fig. 6.　Convergence performance of proposed DF-SRL algorithm for dif‐
ferent ϵ. (a) Total flexible active power. (b) Number of voltage magnitude 
violations.

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0020

0.0018

V
o

lt
ag

e 
m

ag
n

it
u

d
e 

er
ro

r

18 34 69 124

Network size

Fig. 7.　Voltage magnitude errors of DistFlow on 18- , 34- , 69- , and 124-
node distribution networks.

309



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 13, NO. 1, January 2025

all tested distribution networks. The results demonstrate the 
robustness of the DistFlow model, which forms a solid foun‐
dation for the safety layer, facilitating its application across 
diverse distribution network configurations. This generaliz‐
ability ensures that with precise data on the parameters and 
topology of the distribution network, the safety layer can be 
tailored to maintain its accuracy and relevance, regardless of 
the specific characteristics of the distribution network.

VI. CONCLUSION 

The DF-SRL algorithm developed in this paper demon‐
strated its superior performance in handling voltage magni‐
tude constraints while maintaining performance efficiency. In 
the testing phase, the DF-SRL algorithm effectively main‐
tains voltage magnitude constraints even under severe condi‐
tions (e.g., under-voltage problem caused by extreme loading 
at the marginal node of the network), resulting in an opera‐
tional cost reduction of 17.7% compared with the bench‐
mark algorithms, while ensuring feasibility throughout the 
entire operation period. Specifically, the DF-SRL algorithm 
enforced voltage magnitude constraints without violations, 
even in unseen data. This is attributable to the safety layer 
embedded in the DF-SRL algorithm, designed to filter out 
unsafe actions during the training phase, thus eliminating 
voltage violations. The sensitivity analysis of the slack pa‐
rameter ϵ found that its value significantly impacts the opti‐
mality and feasibility of the DF-SRL algorithm. We found 
that ϵ = 0.002 provides an optimal balance between rigorous‐
ly enforcing the constraints and achieving the highest perfor‐
mance score. The scalability analysis conducted across vari‐
ous network sizes demonstrated conclusively that the DF-
SRL algorithm maintains high performance and accuracy in 
voltage magnitude regulation, effectively substantiating its 
utility and robustness for practical, large-scale applications. 
Its versatility allows for integration with any off-policy DRL 
algorithm, facilitating the resolution of continuous control 
challenges within distribution network operations under‐
pinned by state-wise constraints.
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