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Executive summary
Improving road safety is a common global interest which can be supported in several domains,
one of which is safer road infrastructure. To identify and localize the most critical elements
on our road network, one has to be able to measure how (un)safe a particular location is.
The most common way to evaluate safety, also widely applied in practice, is investigating
the occurrence and severity of crashes using historical data. This approach however has a
number of limitations, the most important of which is probably its reactive nature.

An alternative method using non-crash events has gained a lot of attention recently, es-
pecially thanks to the rapid improvement of sensing technologies. By gathering trajectory
data and calculating various Surrogate Measures of Safety it has become possible to analyse
safety without waiting for accidents to happen. Using these indicators combined with Ex-
treme Value Theory (EVT) one can estimate the probability of crashes as extreme (unobserved)
events. EVT offers two approaches: the Block Maxima (BM) approach divides the sample time
into blocks and samples the largest value in each block, whereas the Peak-over-Threshold
(POT) approach takes all peak values over a pre-defined threshold.

The primary goal of this thesis is to contribute to the research that has been done so far
on the application of Extreme Value Theory to Surrogate Measures for traffic safety anal-
ysis. After a thorough literature review two main research questions with altogether four
subquestions were formulated addressing issues to which less or no attention has been paid
so far. These questions seek for answers to what we can learn from applying univariate EVT
using indicators describing collision course and crossing course interactions, and how we
can predict nearness to collision and severity using bivariate EVT models. To answer these
questions data gathered at a signalized intersection in Minsk (Belarus) for left-turning and
straight moving vehicle-vehicle interactions were analyzed and both univariate and bivariate
EVT models were fitted.

The univariate models used and compared two temporal indicators, one of which is a
collision course (𝑇𝑇𝐶 ) and the other is a crossing course indicator (𝑇 ). Both the BM and
POT approaches were applied in the univariate case and their performance were compared.
𝑇𝑇𝐶 represents the minimum value of Time-to-Collision limited to situations when the two
vehicles are on a collision course. Research has shown that when vehicles were about to miss
each other by a very short time margin, they behaved as if they were on a collision course,
even though technically speaking they were not. 𝑇 shows the time required for the second
vehicle to arrive at the potential conflict point, thus addresses this issue by considering all
crossing course interactions.

The univariate models showed that the BM approach overestimates crash probabilities
and that the POT approach gives more reliable results, which could be also proved by val-
idation using historical crash data. The validation on the other hand also showed that the
crossing course indicator 𝑇 tends to overestimate crash frequencies and crash estimates
based on the collision course indicator 𝑇𝑇𝐶 are closer to reality.

Applying the Block Maxima approach in the univariate case revealed an issue related to
the pre-selection of near-crash situations. This sub-sampling step is needed to select those
observations that can be used as extremes for modeling. This initial threshold was set to be
3.5s for both indicators. Due to the small sample size in case of 𝑇𝑇𝐶 the question was to
which level the near-crash threshold should be increased to have enough data points and
a reasonable model fit. 𝑇 on the other hand offered a more appropriate sample size and
the possibility to reduce the pre-selected threshold to a more reasonable level from a traffic
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a safety point of view. Similarly, the threshold selection in case of the POT approach showed
that a lower value has to be used for 𝑇 compared to 𝑇𝑇𝐶 , which practically means that
one has to be ”stricter” against crossing course indicators, as compared to collision course
indicators when selecting thresholds.

Since POT gave more reliable results in the univariate case, the bivariate threshold excess
models are used for analyzing four variable pairs, in which the two temporal indicators are
accompanied with two speed related indicators, relative speed and Extended Delta-V0. The
former indicates the speed of a moving vehicle relative to another moving vehicle, the latter
the change of the velocity vector by a road user during a crash. Extended Delta-V0 extends
the severity measure by taking into account vehicle masses as well as the angle of collision.

Taking a temporal vs. a speed related indicator a plane along with so-called severity levels
can be constructed like in the Swedish Traffic Conflict Technique, where quite intuitively
severity worsens as the value of the temporal indicator decreases or the value of the speed
related indicator increases. Another way to interpret this plane is to investigate the joint
probability of exceeding a given pair of values. Points yielding the same probability form
lines, which were named probability based risk levels.

Depending on whether temporal based and/or speed related indicators exceed their thresh-
olds, this plane can be divided into four quadrants: both indicators exceed the thresholds,
both are below, or only one indicator exceeds the threshold while the other does not. In this
research primarily the extreme region was analyzed but the other three regions were also
briefly addressed.

Bivariate models have two components, the marginal distributions and the dependence
structure. These can be modeled either simultaneously by using bivariate threshold excess
models with parametric distributions describing the dependence, or separately by building
a bivariate model from the univariate POT models and a copula describing the dependence
structure between the two components. Both methods were investigated and it was con-
cluded that there is weak or no dependence in between temporal and speed related indica-
tors at extreme levels. This means that road users getting closer to each other in time do not
necessarily show high relative speed or Delta-V0. In other words, judging the severity of an
interaction using only a temporal based indicator can be misleading and thus it should be
accompanied with another surrogate measure describing the differences in speeds/masses
of vehicles.

The main result of the bivariate models is the probability based risk levels which stem
from the calculated joint probabilities. It is proposed that this plane can be combined with
the severity levels between temporal and speed related indicators and as a result not only the
actual severity but also the probability of interactions would be known. Since these severity
levels are unknown for the given variable pairs, constructing this plane could be a promising
future research direction.

An important aspect related to the bivariate models is that by using a temporal indicator
along with a speed related one, it is possible to estimate crash probabilities along the speed
dimension on condition that the temporal indicator equals zero, that is the crash severity
distribution can be constructed. An important future research direction in order to validate
these models would be to investigate the speeds of vehicles at the time of collision.
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1
Introduction

1.1. Problem statement
Road safety has a considerable impact on our society. According to the latest WHO report
1.35 million people died in 2016 in road accidents worldwide (WHO, 2018). Road crashes
are the leading cause of death among young people aged between 15 and 29 years. Crashes
also result in an enormous economic loss, they cost governments approximately 3% of their
GDP. There is an increasing global concern for road safety - it is at the top of the agenda for
both developed and developing countries.

In 2001 the European Union set an ambitious road safety objective of halving the number
of road fatalities in the EU Member States in 10 years (European Commission, 2001). This
objective has been renewed for another 10 years in 2011 (European Commission, 2011) with
a long-term goal to reach zero fatalities by 2050. This stems from the Swedish concept of
Vision Zero where “the long-term goal for Swedish road safety policy is that nobody should
be killed or seriously injured in the transport system” (Johansson, 2009). Since the above
indicated EU targets have not been met, recently new strategies have been adopted to reach
Vision Zero in the EU (European Commission, 2019). The UN General Assembly officially
proclaimed the Decade of Action for Road Safety 2011–2020 in March 2010 with an intention
to save millions of lives.

In order to meet these ambitious goals, well-targeted safety measures are needed. To
improve safety and to make sure that it is done in an efficient way, one must quantify safety
in order to support evidence-based policy making. The most plausible way to evaluate safety
is investigating the occurrence and severity of crashes using historical data. This approach
however has a number of limitations (Tarko et al., 2009), which are:

• Accidents are rare events (Hauer, 1997) and are therefore associated with the random
variation inherent in small numbers (Svensson and Hydén, 2006).

• In order to derive sensible implications based on historical data one needs to have a few
years of observations. A typical period of time would be at least three years (Nicholson,
1985).

• The use of crash records for safety analysis is a reactive approach. There is an ethical
issue related to this as well, since it requires accidents to occur, which we originally
want to avoid (Songchitruksa and Tarko, 2006).

• Accident records are prone to underreporting (especially priority damage only crashes
or light accidents with vulnerable road users).

• Quality of data is not always sufficient (due to missing records, false identification of
location etc.).

1
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1.2. Methodological aspects
In order to overcome the above limitations, the use of non-crash events have gained a great
deal of attention especially due to the rapid improvement of sensing technologies facilitating
the collection of trajectory data. Over 30 years ago Hydén (1987) pointed out that the inter-
action between road users can be described as a continuum of safety related events. The
pyramid in Figure 1.1 shows that we usually base our safety estimates on a minute percent-
age of safety related events, i.e. accidents where damage, injury or death occur (Svensson
and Hydén, 2006). Crashes as the rarest events are followed by conflicts of different lev-
els of severity (serious, slight and potential). Below the conflicts, the majority of events are
undisturbed passages or normal traffic processes (Laureshyn et al., 2010).

Figure 1.1: The safety pyramid (Hydén, 1987)

In the past few decades proactive methods gradually became more common. Several
methodologies can be found in the literature: traffic conflict techniques such as the Swedish
Traffic Conflict Technique, the Dutch Doctor method, and the use of surrogate measures of
safety. Over the years, a vast number of indicators of surrogate safety have been developed to
investigate traffic safety (Mahmud et al., 2017). These indicators mostly express the proxim-
ity to a crash either in time or space. As Laureshyn et al. (2017a) pointed out, very few of the
existing traffic conflict indicators and techniques take into account the severity of conflicts
and how to measure nearness-to-collision and severity at the same time.

Linking accident frequencies with these approaches has been also researched, however
this relationship still relies on the assumption that historical accident data are accurate. An
alternative approach has developed over the past few years using Extreme Value Theory to
estimate the frequency of accidents using surrogate measures of safety.

Recently the Extreme Value Theory (EVT) to estimate crash probabilities using surrogate
measures of safety has been applied more frequently. This theory offers two approaches
to sample extreme events: the block maxima (or minima using Generalized Extreme Value
distribution) and the Peak-over-Threshold (using Generalized Pareto distribution). In the
former case, the method divides the sample time into blocks of a specified length and samples
the largest value in each block, whereas in the latter case all peak values are sampled and
the values over a certain threshold are used to model the extremes.
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1.3. Thesis outline
This thesis examines Extreme Value Theory applied to Surrogate Measures of Safety by an-
alyzing data that are gathered at a signalized intersection for vehicle-vehicle interactions,
focusing on interactions between left-turning and straight moving vehicles.

The structure of the thesis is as follows. In Chapter 2 a literature review is done and the
state-of-the-art is summarized. Here two aspects are dealt with, a detailed description of
Surrogate Measures of Safety and an introduction of Extreme Value Theory and its applica-
tion to surrogate safety indicators. This introduction places emphasis on the application of
EVT to the field of traffic safety and the experiences gained up until now. Chapter 3 outlines
the research framework by identifying the research gaps and formulating the research ques-
tions. Chapter 4 contains site description and an introduction to data gathered. Chapters 5
and 6 contain the univariate and bivariate models, respectively, including the presentation
and discussion of results. In Chapter 7 final comments and conclusions are given indicating
limitations, practical use of results, and possible future research directions. In this final
chapter, a summary of publications based on the thesis is also given.



2
Literature review

This chapter focuses on providing a literature review on two clearly distinguishable aspects:

• The evolution of Surrogate Measures of Safety, indicators used, their advantages and
disadvantages.

• An overview on the use of Extreme Value Theory in traffic safety, its applicability and
limitations.

2.1. Surrogate Measures of Safety
In this section, a more detailed and extended interpretation of the safety pyramid presented
in Chapter 1 is given followed by a detailed description of surrogate indicators used for safety
evaluation.

2.1.1. The severity hierarchy
The safety pyramid (Hydén, 1987) implies that there is a relationship between the frequency
and the severity of events; the tip of the pyramid shows the least frequent and most severe
interactions between road users, whereas the bottom of the pyramid contains the most fre-
quent and least severe interactions. The former are rare events that result in crashes of
different severity levels (fatal, serious injury, light injury, and property damage only), the
latter are a vast number of normal interactions. Critical events that do not result in a crash
but are very close to that can be used as surrogate safety measures (Tarko et al., 2009).

With regard to the shape of the severity hierarchy Svensson (1998) made an important
suggestion that it is not necessarily a pyramid. She proposed a diamond-shape based on
the frequency of pedestrian-vehicle conflicts observed at signalized and unsignalized inter-
sections (Figure 2.1). The idea behind the diamond shape is that at a particular site the
majority of the interactions will be of moderate severity. Tarko (2012) also noted that this
was the first evidence proving that there is a heterogeneity in the frequency-severity relation-
ship due to the type of road facility influencing traffic conflicts. Other conditions, such as
vehicle type, road users, collision angle and speed (Laureshyn et al., 2010) as well as weather
may effect this relationship.

It has to be noted, however, that Svensson limited the events in the hierarchy only to
interactions with a collision course (Svensson, 1998, Svensson and Hydén, 2006). A very
important implication of this is that even low-severity interactions should be utilized because
they may carry useful safety information (Tarko, 2012). This statement is highly relevant as
interactions with severe conflicts usually come with low frequencies.

In an attempt to apply Svensson’s reasoning, later researchers tried to adapt it by broad-
ening the concept of traditional approaches. In Canada, St-Aubin et al. (2015) for instance

4
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developed an approach called Probabilistic Surrogate Measures of Safety (PSMS) with a more
general framework for safety analysis considering all possible paths that may lead two road
users to collide. The novelty of this approach is relaxing the traffic conflict by allowing a non-
zero risk of collision for road users who are not on a colliding course (Tarko, 2012). Following
the same reasoning Laureshyn et al. (2010) suggested a new indicator called 𝑇 broadening
the concept of the most common nearness-to-collision measure, time-to-collision, by includ-
ing both collision and non-collision course states and allowing a smooth transition between
both. (More details on this can be found in Subsection 2.1.2).

Figure 2.1: Relation between severity and frequency proposed by (Svensson, 1998) cited in (Tarko, 2012)

2.1.2. Indicators for safety evaluation
In order to overcome the shortcomings of safety analyses based on crash data (underreport-
ing, quality issues and rare nature) a number of Surrogate Measures of Safety have been
developed and proposed by various researchers. There is a consensus among researchers
that observable non-crash events can be used for safety analysis as a complementary tool or
may even replace analyses based on crash data (Ceunynck, 2017, Laureshyn et al., 2010).

At this point it has to be briefly mentioned that a number of traffic conflict techniques
have been developed over the years. Probably the most well known is the Swedish Traffic
Conflict Technique (Hydén, 1987), but other countries such as the US (Parker and Zegeer,
1989), the Netherlands (DOCTOR) (Kraay et al., 2013), the UK (Baguley, 1984), Finland (Kul-
mala, 1984), France (Muhlrad and Dupre, 1984), Austria (Risser and Schutzenhofer, 1984),
the Czech Republic (Kočárková, 2012) also developed their own techniques. By looking at
the number of studies on Traffic Conflict Techniques versus surrogate safety measures, Ce-
unynck (2017) pointed out that in the past few years there has been a shift towards the
latter which is a clear sign that surrogate safety measures are gaining more attention. Most
traffic conflict techniques are closely related to surrogate safety indicators. For instance, the
Swedish traffic conflict technique uses the time-to-accident and conflicting speed, the Dutch
DOCTOR technique uses 𝑇𝑇𝐶 and Post-Encroachment Time. These techniques are well
documented in the literature, however a more detailed introduction of these goes beyond the
scope of this thesis.

Several papers summarized or compared a subset of indicators, for instance (Laureshyn
et al., 2010) and (Laureshyn et al., 2017a) provided an overview focusing on nearness-to-
collision and severity indicators. Mahmud et al. (2017) gave a more comprehensive overview
on indicators by grouping them into temporal, distance based, deceleration based and other
indicators, and identified 38 of them. Ceunynck (2017) in his doctoral dissertation did a
literature review on the application of surrogate safety indicators and also looked into the
frequency of use. He grouped indicators using the Time-to-Collision, the Post-Encroachment
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Time, and the Deceleration families, plus two extra groups for other and unspecified indica-
tors. The following paragraphs give a summary of these indicators as well as identify their
advantages and disadvantages. Primarily using the above mentioned literature sources a
non-exhaustive summary of indicators is given below. The interested reader is referred to
the above mentioned sources for other indicators or further explanation.

One of the most widely used temporal indicator is Time-to-Collision (TTC) which can be
calculated for any moment as long as the road users are on a collision course. TTC is defined
as ”the time until a collision between the vehicles would occur if they continued on their
present course at the present rates” (Hayward, 1972). TTC can be easily calculated for right-
angle (Equation 2.1), rear-end (Equation 2.2), and head-on collisions (Equation 2.3) (Figure
2.2). However, as two road users can meet at any angle and several collision types can occur,
calculations can be more complicated (details on calculations can be found in (Laureshyn
et al., 2010)). The lowest TTC value during the interaction, abbreviated as TTCmin, is the
most commonly used indicator.

𝑇𝑇𝐶 = 𝑑
𝑣 , 𝑖𝑓 𝑑

𝑣 < 𝑑
𝑣 < 𝑑 + 𝑙 + 𝑤

𝑣 , 𝑇𝑇𝐶 = 𝑑
𝑣 , 𝑖𝑓 𝑑

𝑣 < 𝑑
𝑣 < 𝑑 + 𝑙 + 𝑤

𝑣 (2.1)

𝑇𝑇𝐶 = 𝑋 − 𝑋 − 𝑙
𝑣 − 𝑣 , 𝑖𝑓 𝑣 > 𝑣 (2.2)

𝑇𝑇𝐶 = 𝑋 − 𝑋
𝑣 + 𝑣 (2.3)

where 𝑑 and 𝑑 are distances from the front of the vehicle to the conflict area; 𝑙 , 𝑙 , and
𝑤 , 𝑤 are lengths and widths of vehicles, respectively, 𝑣 and 𝑣 are vehicle speeds, 𝑋 and
𝑋 are vehicle positions.

Figure 2.2: Calculation of TTC (perpendicular and parallel trajectories) (Laureshyn et al., 2010)

There is a consensus among researchers that a threshold value of 𝑇𝑇𝐶 can be used to
differentiate between severe and non-severe events. The magnitude of this value is not yet
agreed upon. Generally, TTC lower than the perception and reaction time should be consid-
ered unsafe (Mahmud et al., 2017). Most common values are 1.5s, 2s and 3s (Ceunynck,
2017), probably with a more frequent use of the 1.5s value. Mahmud et al. (2017) provided a
summary of threshold values known from previous researches. As for signalized intersections
the threshold value ranges from 1.6s to 3s.

Notwithstanding, 𝑇𝑇𝐶 represents only one of the two important moments in time de-
scribing the nearness-to-collision, namely it gives the lowest value of TTC during an inter-
action. The other important moment described by another indicator based on TTC is the
Time-to-Accident (used in the Swedish Traffic Conflict Technique), which is defined as the
moment when the first evasive action is taken by one of the road users (Hydén, 1987).
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There are many other TTC related indicators, three further examples are given below (Time
Headway, Extended Time-to-Collision, and Modified Time-to-Collision). Time Headway is a
simple indicator taking the time that passes between two vehicles reaching the same point
in space (Time Gap is an indicator that is highly similar to Time Headway and is used to
express the distance between two consecutive vehicles in terms of time units). Extended
Time-to-Collision comes with two possible indicators, the Exposed Time-to-Collision (TET) and
Time Integrated TTC (TIT). The former one measures the length of time a TTC-event remains
below a certain threshold, whereas the latter one represents the integral of the TTC-profile
during the time it is below the pre-specified threshold. To overcome the limitations of TTC
(constant speeds, speed of the following vehicle is greater than that of the leading vehicle)
Ozbay et al. (2008) proposed a new indicator called Modified Time-to-Collision taking into
account all possible combinations of speed and acceleration relations of the leading and the
following vehicles.

Post-Encroachment Time (PET) can be used when the two road users pass the conflict area
with a time margin. PET is the time between the first road user leaving the common spatial
zone and the second arriving at it (Allen and Shin, 1977). It has a single value and may be
observed and measured directly. Time Advantage (TAdv) broadens the concept of PET as it
gives for each moment the expected PET if the road users continue with the same speeds and
path (Laureshyn et al., 2010). TAdv uses predicted travel lines, the lowest found TAdv has
to be used, the same way as with TTC.

Laureshyn et al. (2010) proposed a supplementary indicator to Time Advantage in order
to describe the nearness of the encroachment. This indicator measures the expected time
that it takes for the second road user to arrive at the potential collision point, hence it is
called 𝑇 . The logic behind this indicator is that most TTC related indicators assume the two
road users to be on a collision course, which however sets a limitation to the situations to
be considered in safety analysis. Laureshyn et al. (2017a) argued that encounters without a
collision course might have crash potential as well due to the possibility of minor changes in
the spatial or temporal relationship between road users.

Looking at the possible intersections between road users (Figure 2.3) they can be classified
into three groups: collision course, crossing course and non-crossing course. As it was
previously mentioned there is a continuum between these, whichmeans that for instance just
a minor change in road users’ trajectories or speeds can put them from crossing course into
a collision course encounter. According to Svensson (1998) when road users were about to
miss each other by a very short time margin, they behaved as if they were on a collision course
even though strictly speaking they were not. The Dutch DOCTOR traffic conflict technique
for instance (Kraay and van der Horst, 1985) includes both with and without collision course
situations given that the time margin in the latter case is small enough. This difference is
also present in the scope of certain indicators; PET can be measured relatively easily for all
events that have a crossing course, while TTC can only be calculated for events that have a
collision course (Ceunynck, 2017).

Based on the above line of reasoning, 𝑇 tells more about safety since the arrival at the
potential collision point is the very last necessary condition for a collision to occur and it
provides a smooth transfer between the collision course and crossing course situations (Lau-
reshyn et al., 2017a). 𝑇 assumes unchanged speeds and planned trajectories (Figure 2.4). If
the road users are on a collision course, 𝑇 equals TTC. In the event that the two road users
pass the conflict point with a time margin, 𝑇 reflects the maximum time available to take
evasive actions and alleviate the severity of the situation. 𝑇 is no longer calculated after the
first road user has left the conflict zone (since the crash is no longer possible) (Laureshyn
et al., 2017a). 𝑇 is a similar indicator to TTC in the sense that it is also continuous, therefore
can be calculated for any time instance. The last possible value is when the first road user
leaves the potential conflict area (the same meaning as PET). An alternative value is 𝑇
which shows the moment when the two vehicles are closest in time. These two values can be
different in case of significant speed changes.
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A summary of the above discussed indicators is given in Table 2.1.

Figure 2.3: Classification of encounters (Laureshyn et al., 2010)

Figure 2.4: Illustration of (Laureshyn et al., 2017a)
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Table 2.1: Selection of surrogate safety indicators (adapted from (Mahmud et al., 2017))

Indicator Definition Limitations Advantages

Time-to-Collision
(TTC)

The time until a
collision between
the vehicles would
occur if they con-
tinued on their
present course at
their present speeds

Assuming same
speed and direction
is not practical and
unlikely. Ignores
many potential
conflicts due to
acceleration and
deceleration dis-
crepancies. Speed
of following vehicle
should be higher
than that of the
leading one. Does
not account for
severity. Require
the road users to
be on a collision
course.

Frequently used, in-
formative, also used
in automobile colli-
sion avoidance sys-
tems.

Time-to-Accident
(TA)

The TTC value at the
moment when the
first evasive action is
taken.

Heavily relies on
the evasive action.
Other same as TTC.

Widely used, can be
measured manually
or by video analysis.

Time Exposed
Time-to-Collision
(TET)

Summation of all
moments that a
driver approaches a
front vehicle with a
TTC-value below a
certain threshold.

Attainable only in
a simulation envi-
ronment. Does not
provide information
about the severity
levels of different
TTC values below
the threshold.

Suited for appli-
cation in micro-
scopic simulation
studies. Easy
to include small
TTC values due
to time-dependent
TTC values of all
subjects.

Time Integrated
Time-to-Collision
(TIT)

Integral of the TTC-
profile during the
time it is below a
certain threshold.

Difficult to interpret
its meaning. Not
preferable to use in
comparative studies
in which simulation
tools are applied to
generate trajecto-
ries. Benefits are
small due to the un-
certainties in driver
behavior.

Level of safety of
collision can be
derived. Suitable
for microscopic
studies. Easy
to include small
TTC values due
to time-dependent
TTC values of all
subjects.

Modified Time-to-
Collision (MTTC)

Considers all of the
potential longitudi-
nal conflict scenar-
ios due to accelera-
tion or deceleration
discrepancies.

Obtaining the speed
of both users and
the distance gap in
an evolution process
is difficult. Does not
reflect the severity of
collision.

More advanced than
TTC. Considers driv-
ing discrepancies.

Continued on next page
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Table 2.1 – Continued from previous page
Indicator Definition Limitations Advantages

Headway

Elapsed time be-
tween the front of
the lead vehicle
passing a point on
the roadway and the
front of the following
vehicle passing the
same point.

Does not take into
account conflicts
due to lateral move-
ment.

Easy to measure.
Level of safety can
be distinguished.

Post-
Encroachment
Time (PET)

The time between
the moment a vehi-
cle leaves the poten-
tial collision point
and the other road
user arrives at it.

Only useful in the
case of transversal
trajectories. Levels
of severity as well as
impact of a conflict
are not taken into
account.

More appropriate
for intersecting con-
flicts, can be easily
estimated.

Time advantage
(TAdv)

Expected PET for
each moment if the
road users con-
tinue with the same
speeds and paths.

Not sufficient to de-
scribe the collision
risk.

Broadens the con-
cept of PET.

𝑇

The time needed
for the second road
user to arrive at the
potential conflict
point.

Also based on the
prediction of the po-
tential conflict point
using planned paths
and current speeds.

Provides a smooth
transfer between
collision course and
crossing course
situations.

The above discussed indicators were exclusively temporal indicators, however there are
many other indicators that take into account distance (named distance based indicators
looking into for instance stopping distance) or deceleration (named deceleration based indi-
cators looking into for instance deceleration rate to avoid a crash). These will not be further
discussed here, a comprehensive summary can be found in Mahmud et al. (2017).

Another aspect that of relevant interest is modeling the severity of conflicts using surrogate
safety indicators. Even though the above mentioned indicators are used on their own to
capture the severity of an interaction (for instance by applying a threshold value in case of
TTC), these are not sufficient to describe the severity of the consequences. As Laureshyn
et al. (2010) stated there is a need for the time-based indicators to be complemented with
some speed-related indicator. The Swedish Traffic Conflict Technique is an exception since
the conflicting speed can be taken as a measure related to the severity of crashes, where the
serious conflict threshold is between severity level 25 and 26 (Figure 2.5). However, many
studies on severity of crashes showed that the consequence of a crash is dependent not only
on the speed but also the mass of involved road users and the angle of a collision (Zheng
et al., 2014b).
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Figure 2.5: Classification of conflict severity in the Swedish TCT (Hydén, 1987)

To measure the severity outcome of a crash, the indicator Delta-V is often used. This
indicator describes the change in the velocity vector experienced by a road user during a
crash; the more rapid the change between pre- and post-crash is the more severe the outcome
is expected to be. Delta-V values in an inelastic collision can be calculated for each of the
colliding road users using Equation 2.4; the highest value of these two can be used to describe
severity.

Δ𝑣 = 𝑚
𝑚 +𝑚 ×√𝑣 + 𝑣 − 2𝑣 𝑣 𝑐𝑜𝑠𝛼, 𝑎𝑛𝑑 Δ𝑣 = 𝑚

𝑚 +𝑚 ×√𝑣 + 𝑣 − 2𝑣 𝑣 𝑐𝑜𝑠𝛼 (2.4)

where 𝑚 and 𝑚 are vehicle masses, 𝑣 and 𝑣 are speeds and 𝛼 is the approach angle.

According to Laureshyn et al. (2017a) and Ceunynck (2017) the Extended Delta-V can
be calculated when assumptions are made about the road users’ future movements (both
vehicles will crash with the same speed as they have at a certain moment in the course of an
interaction). Since Extended Delta-V becomes a continuous indicator (it can be measured
in every time instant), the one associated with the lowest nearness-to-collision indicator has
to be used. Extended Delta-V however assumes unchanged speeds, even though the ve-
hicles might have time available to take an evasive action and brake before arriving at the
collision point. Laureshyn et al. (2017a) therefore suggested making assumptions about the
deceleration; in their paper they used 4 𝑚/𝑠 for normal and 8 𝑚/𝑠 for emergency braking.

They also proposed combining two indicators using nearness-to-collision together with
the potential outcome severity. In their paper they combined 𝑇 with Extended Delta-V and
illustrated severity lines saying the lower 𝑇 and the higher the Extended Delta-V are the
more severe the outcome of the accident will be. One of the challenges of this method is that
it is not clear how the threshold value in case of Extended Delta-V should be defined, and
once defined, how it should be interpreted (Laureshyn et al., 2017a).
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2.2. Extreme Value Theory and its application
This section gives a brief introduction to Extreme Value Theory as well as provides an overview
of its use in traffic safety modeling.

2.2.1. Two approaches of EVT
Extreme value analysis has the objective to quantify the stochastic behavior of a process
at unusually large or small levels. Basically the aim is to assess the probability of extreme
events that have not been observed before. There are two distinctive methods to perform
that: (1) the Generalized Extreme Value distribution used in the Block Maxima approach,
and (2) the Generalized Pareto Distribution used in the Peak-over-Threshold approach. The
next two subsections discuss these modeling approaches relying on Coles (2001). How to
interpret model outputs and to check the goodness of the models are not discussed here,
these will be explained in later chapters as models are fitted to actual data.

2.2.1.1. Block Maxima approach
EVT models focus on the behavior of

𝑀 = max {𝑋 ,… , 𝑋 } (2.5)

where 𝑋 ,…,𝑋 is a sequence of independent random variables having a common distribu-
tion function 𝐹, 𝑀 represents the maximum of the process over 𝑛 time units of observation.
The distribution of 𝑀 can be derived as 𝑃𝑟{𝑀 ⩽ 𝑧} = {𝐹(𝑧)} . The function of 𝐹 is unknown
and to look for 𝐹 a similar approach to the central limit theorem can be used, by allowing a
linear renormalization of the variable 𝑀 (Equation 2.6):

𝑀∗ = 𝑀 − 𝑏
𝑎 , (2.6)

where {𝑎 >0} and {𝑏 } are constants for which the appropriate values have to be found.

According to the extremal types theorem

𝑃𝑟{𝑀 − 𝑏
𝑎 ⩽ 𝑧} → 𝐺(𝑧) as 𝑛 → ∞, (2.7)

where 𝐺 belongs to one of the following three families (Equations 2.8, 2.9, and 2.10):

𝐺(𝑧) = exp { − exp [ − (𝑧 − 𝑏𝑎 )]}, −∞ < 𝑧 < ∞ (2.8)

𝐺(𝑧) = {
0, 𝑧 ⩽ 𝑏,

exp { − ( ) }, 𝑧 > 𝑏 (2.9)

𝐺(𝑧) = {exp { − [ − ( ) ]}, 𝑧 < 𝑏

1, 𝑧 ⩾ 𝑏,
(2.10)

for parameters 𝑎 > 0, 𝑏 and, in case of Equations 2.9 and 2.10, 𝛼 > 0.

The rescaled sample maxima 𝑀∗ converge to a variable having a distribution within one
of the above three families, which are the Gumbel (Equation 2.8), Fréchet (Equation 2.9) and
Weibull (Equation 2.10) families, respectively. All the three types have both a location (𝑏) and
a scale (𝑎) parameter. The Fréchet and Weibull distributions also have a shape (𝛼) parameter.



2.2. Extreme Value Theory and its application 13

The above three equations can be generalized into a single distribution function (Equation
2.11).

𝐺(𝑧) = exp { − [1 + 𝜉(𝑧 − 𝜇𝜎 )] }, (2.11)

defined on the set {𝑧 : 1 + 𝜉(𝑧-𝜇)/𝜎 > 0}, where −∞ < 𝜇 < ∞, 𝜎 > 0 and −∞ < 𝜉 < ∞. The
three parameters that have been already mentioned before are the location parameter (𝜇), the
scale parameter (𝜎), and the shape parameter (𝜉). The distribution function itself determines
the value of the shape parameter and vice versa. The three possible cases are:

• if 𝜉 > 0, the model corresponds to a Fréchet distribution, the distribution has a heavy
right tail and the right endpoint is infinite;

• if 𝜉 < 0, the model corresponds to a Weibull distribution, which has a finite endpoint
(𝜇-𝜎/𝜉);

• if 𝜉=0, the model corresponds to a Gumbel distribution, and has a light right tail in
which case the model simplifies to Equation 2.12.

𝐺(𝑧) = exp { − exp [ − (𝑧 − 𝜇𝜎 )]}, −∞ < 𝑧 < ∞. (2.12)

The above mentioned density functions and a zoom of these functions in comparison with
the standard normal density function are plotted in Figure 2.6.

Figure 2.6: Density functions for the Gumbel, Weibull and Fréchet (left) and a zoom of these functions in comparison with the
standard normal density function (right) (Penalva et al., 2013)

The GEV provides a model for the distribution of block maxima. According to the Block
Maxima approach the data observed over time are split into blocks of equal intervals. The
choice of the block size is not straightforward, as there is a trade-off between bias and vari-
ance. If blocks are too small, then the model approximation can be expected to be poor
leading to bias in estimation and extrapolation; if blocks are too large, only a few block max-
ima will be generated resulting in large estimation variance. Another important aspect con-
cerning the block size is that when time-dependent variation (e.g. within a year) is present,
non-stationarity has to be accounted for.

When using likelihood methods for estimating model parameters for the GEV, certain reg-
ularity conditions are required for the maximum likelihood estimator to be valid. GEV distri-
bution functions can have end-points 𝜇-𝜎/𝜉, which is an upper end point if 𝜉 < 0 (Weibull),
and a lower end-point if 𝜉 > 0 (Fréchet). This violation of the regularity conditions means
that the applicability of results has to be checked. Smith (1985) (cited in Coles (2001) p.55)
arrived at the following conclusions:
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• when 𝜉 > -0.5, maximum likelihood estimators are regular, having the usual asymptotic
properties;

• when -1 < 𝜉 < -0.5, maximum likelihood estimators are generally obtainable, but do not
have the standard asymptotic properties;

• when 𝜉 <-1, maximum likelihood estimators are unlikely to be obtainable.

GEV parameters can be estimated usingmaximum likelihood estimation, the log-likelihood
for the parameters when 𝜉≠0 is

ℓ(𝜇, 𝜎, 𝜉) = −𝑛𝑙𝑜𝑔𝜎 − (1 + 1𝜉 )∑𝑙𝑜𝑔[1 + 𝜉(𝑧 − 𝜇𝜎 )] −∑[1 + 𝜉(𝑧 − 𝜇𝜎 )] , (2.13)

provided that 1+𝜉((𝑧 -𝜇)/𝜎) > 0, for i=1,…, n.

2.2.1.2. Peak-over-Threshold
An alternative - and according to many authors a better - approach to modeling the block

maxima is the Peak-over-Threshold method. Block Maxima is criticized to be a wasteful
approach as only the maximum value is used from each block, thus not considering other,
but possibly still extreme values. Possible solutions to solve this issue is using the so-called
r largest order statistic model (e.g. using the largest 5 observations) or by modeling threshold
excesses. The latter one is the Peak-over-Threshold approach (POT), in which observations
over a certain threshold are selected and treated as extremes.

Using the GEV distribution (Equation 2.11) for large enough threshold 𝑢, the distribution
function of (𝑋 − 𝑢), conditional on 𝑋 > 𝑢, is approximately

𝐻(𝑥) = 1 − [1 + 𝜉(𝑥 − 𝑢𝜎 )]
/

(2.14)

where 𝑢 is a high threshold, 𝑥 > 𝑢, scale parameter 𝜎 > 0 (depending on threshold 𝑢), and
shape parameter −∞ < 𝜉 < ∞.

The distribution family given in Equation 2.14 is called the Generalized Pareto family, in
other words, threshold excesses have a Generalized Pareto Distribution with two parameters,
the shape 𝜉 and the scale 𝜎 parameters (using the same notation as in GEV). Just like with
GEV, the shape parameter 𝜉 determines the behavior of the GPD. If 𝜉 < 0 the distribution
has an upper bound of 𝑢-𝜎/𝜉; if 𝜉 >0 there is no upper limit. If 𝜉 = 0, then Equation 2.14
simplifies to an exponential distribution function

𝐻(𝑥) = 1 − 𝑒 ( )/ (2.15)

Selecting the appropriate threshold 𝑢 with the POT approach is identically difficult as
finding proper block sizes with the BM approach. There is an analogy between the two,
namely that if the threshold value is too low, the asymptotic basis of the model is likely to
be violated leading to bias, and if it is too high, just a few observations will be used leading
to high variance. Two methods can be used to find an appropriate threshold level: 1) mean
residual plot showing the mean of the excesses depending on the value of 𝑢, and 2) model
estimation at a range of threshold values and finding stable model parameters, also called a
threshold stability plot. How to use these techniques will be further elaborated when fitting
models to actual data (in Chapter 5).
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2.2.2. Bivariate models
A new issue in bivariate compared to univariate modeling is that as there is more than one
variable one has to examine dependence. In the univariate case, one of the aims is to ex-
trapolate outside the range of the data, however with more than one variable we have to take
into account the possibility of extremes in several coordinates to occur jointly (Beirlant et al.,
2004).

Bivariate (or in general multivariate) modeling has two components: the marginal dis-
tributions and the dependence structure. First, the margins are dealt with using standard
univariate techniques, and second, after a transformation standardizing the margins to a
common scale, the dependence (Beirlant et al., 2004).

2.2.2.1. Componentwise Maxima
Similar to the univariate case, the behaviour of multivariate extremes is based on the lim-

iting behaviour of block maxima (Coles, 2001). Equation 2.16 is the vector of componentwise
maxima.

𝑀 , = max
,…,

{𝑋 } 𝑎𝑛𝑑 𝑀 , = max
,…,

{𝑌 },

𝑀 = (𝑀 , , 𝑀 , )
(2.16)

where {𝑋 } and {𝑌 } are sequences of independent univariate random variables, thus stan-
dard univariate value results apply to both components. To obtain standard univariate re-
sults for each margin, the rescaled vector of𝑀 should be considered (that is each component
in Equation 2.16 divided by 𝑛). The rescaled vector 𝑀∗ is equal to (𝑀∗ , , 𝑀∗ , ), then if

𝑃𝑟{𝑀∗, ⩽ 𝑥,𝑀∗, ⩽ 𝑦} −→ 𝐺(𝑥, 𝑦), (2.17)

where G is a non-degenerate distribution function, G has the form

𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝{ − 𝑉(𝑥, 𝑦)}, 𝑥 > 0, 𝑦 > 0 (2.18)

where

𝑉(𝑥, 𝑦) = 2∫ 𝑚𝑎𝑥(𝑤𝑥 ,
1 − 𝑤
𝑦 )𝑑𝐻(𝑤), (2.19)

and 𝐻 is a distribution function on [0,1] satisfying the mean constraint

∫ 𝑤𝑑𝐻(𝑤) = 1/2 (2.20)

The family of distributions that arise as limits in Equation 2.18 is termed the class of bi-
variate extreme value distributions (Coles, 2001). When 𝐻 is a measure that places mass 0.5
on 𝑤=0 and 𝑤=1, the bivariate extreme value distribution corresponds to independent vari-
ables, if 𝐻 places unit mass on 𝑤=0.5, the bivariate extreme value distribution corresponds
to perfectly dependent variables.

The marginal distributions can be generalized into Equations 2.21:

�̃� = [1 + 𝜉 (𝑥 − 𝜇𝜎 )] , 𝑎𝑛𝑑 �̃� = [1 + 𝜉 (
𝑦 − 𝜇
𝜎 )] , (2.21)

resulting in the distribution function

𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝{ − 𝑉(�̃�, �̃�)}, (2.22)

provided [1 + 𝜉 (𝑥-𝜇 )/𝜎 ] > 0 and [1 + 𝜉 (𝑦-𝜇 )/𝜎 ] > 0



2.2. Extreme Value Theory and its application 16

Any distribution function 𝐻 (also called as spectral measure) on [0,1] in Equation 2.19,
satisfying the mean constraint in Equation 2.20 will result in a valid limit in Equation 2.17. It
is easier to build models using parametric families for 𝐻, one standard solution is the logistic
family:

𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝{ − (𝑥 / + 𝑦 / ) }, 𝑥 > 0, 𝑦 > 0 (2.23)

for a parameter 𝛼 ∈ (0,1). There are other parametric families available in the literature
(Zheng et al., 2018), for instance asymmetric logistic, negative logistic, bilogistic, asymmetric
negative bilogistic, negative bilogistic, Husler-Reiss; these will not be elaborated further. 𝐻
has the density function (Equation 2.24)

ℎ(𝑤) = 1
2(𝛼 − 1){𝑤(1 − 𝑤)} / {𝑤 / + (1 − 𝑤) / } (2.24)

on 0 < 𝑤 < 1. The main reason for the logistic family lies in its flexibility. As 𝛼 →1 it corre-
sponds to independent variables, as 𝛼 →0 it corresponds to perfectly dependent variables.

To investigate the dependence structure between two random variables copulas can be
also used. With copulas one can separate the marginal distributions from the dependence
structure and model them separately. They are joint cumulative distribution functions with
margins uniform on the interval (0, 1). Sklar’s Theorem (1959) describes the relationship
between the joint distribution of a random vector, its marginal distributions, and a copula.
The theorem in the bivariate case states that for any random variables 𝑋 and 𝑌 with joint
distribution 𝐻 and marginal distributions 𝐹 and 𝐺, there exists a copula, 𝐶, and for all 𝑥, 𝑦 ∈ 𝑅
𝐻(𝑥, 𝑦) = 𝐶{𝐹(𝑥), 𝐺(𝑦)}. 𝐶 is unique if the marginal distributions are continuous.

2.2.2.2. Bivariate threshold excess model
The bivariate threshold excess model approximates the joint distribution 𝐹(𝑥, 𝑦) on regions

of the form 𝑥 > 𝑢 , 𝑦 > 𝑢 , for large enough 𝑢 and 𝑢 . For suitable thresholds the marginal
distributions of 𝐹 each has an approximation in the form of a univariate generalized Pareto
distribution (Equation 2.25), with parameter sets (𝜁 , 𝜎 , 𝜉 ) and (𝜁 , 𝜎 , 𝜉 ) where 𝜁 = 𝑃𝑟(𝑥 >
𝑢 ) and 𝜁 = 𝑃𝑟(𝑦 > 𝑢 ) (Coles, 2001).

𝐺(𝑥) = 1 − 𝜁{1 + 𝜉 (𝑥 − 𝑢)𝜎 } , 𝑥 > 𝑢, (2.25)

The transformations

�̃� = −(𝑙𝑜𝑔{1 − 𝜁 [1 + 𝜁 (𝑋 − 𝑢 )𝜎 ]
/
}) (2.26)

and

�̃� = −(𝑙𝑜𝑔{1 − 𝜁 [1 +
𝜁 (𝑌 − 𝑢 )

𝜎 ]
/
}) (2.27)

induce a variable (�̃�, �̃�) whose marginal distributions are approximately standard Fréchet for
𝑋 > 𝑢 , and 𝑌 > 𝑢 . The joint distribution 𝐹(𝑥, 𝑦) can be expressed as in Equation 2.28.

𝐹(𝑥, 𝑦) ≈ 𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝{ − 𝑉(�̃�, �̃�)}, 𝑥 > 𝑢 , 𝑦 > 𝑢 , (2.28)

where 𝑉(�̃�, �̃�) takes the form as in Equation 2.19 and 𝐻 as in Equation 2.20.

Inference of the bivariate excess models is not straightforward. The bivariate pair of indi-
cators may both exceed their thresholds, however the specified thresholds may be exceeded
by only one or neither of them. This creates four regions:
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• 𝑅 , = (−∞, 𝑢 ) × (−∞, 𝑢 )

• 𝑅 , = (−∞, 𝑢 ) × [𝑢 ,∞)

• 𝑅 , = [𝑢 ,∞) × (−∞, 𝑢 )

• 𝑅 , = [𝑢 ,∞) × [𝑢 ,∞)

The model in Equation 2.28 applies to region 𝑅 , , in the other regions it is not applicable,
therefore the likelihood component is censored (more details can be found in Coles (2001)).

In case of a bivariate threshold excess model a pair of optimal thresholds should be se-
lected. The marginal distributions of excess over thresholds are modeled by a Generalized
Pareto distribution and the dependence structure between the two margins by a bivariate
extreme value distribution. These two can generate different thresholds, Zheng et al. (2018)
proposed using both the spectral measure as well as the threshold stability plots to assist
threshold selection. The practical use and application of these plots on the actual data will
be illustrated in Chapters 5 and 6. In the following paragraph a brief theoretical background
of the spectral measure plot is given.

After transforming the data into standard Fréchet (𝑥∗ = −1/𝑙𝑜𝑔𝑥 , 𝑦∗ = −1/𝑙𝑜𝑔𝑦 ) and using
pseudo-polar coordinates (𝑟 = 𝑥∗+𝑦∗, 𝑤 = 𝑥∗/𝑟 and 𝑤 = 𝑦∗/𝑟 ) where 𝑟 are the radial coor-
dinates in ascending order, the spectral measure plot (Beirlant et al., 2004) produces a graph
in which the integers 𝑘 = 1, ..., 𝑛−1 are plotted against (𝑘/𝑛)𝑟( ). Since �̃� = [0, 1]) = (𝑘/𝑛)𝑟( )
is an estimator of 𝐻([0, 1]) = 2, the largest 𝑘 value denoted as 𝑘 for which (𝑘/𝑛)𝑟( ) is close
to 2 determines the pair of threshold values to be used.

2.2.3. Extreme Value Theory in safety modeling
In the literature many researchers emphasized the advantages of Surrogate Measures of
Safety over reactive methods and have attempted to evaluate them. As Songchitruksa and
Tarko (2006) phrased it, probably the most critical issue is the validity of traffic conflicts as
an alternative measure of safety. Researchers testing the validity of traffic conflicts have tried
to link historical crash data with conflict frequencies. These analyses lead to inconclusive
results, as some studies could confirm a relationship, some could not.

Tarek and Sany (1999) for instance arrived at the conclusion that there is statistically
significant relationship between crashes and conflicts. They identified a determination co-
efficient (𝑅 ) in the range of 0.70-0.77 at signalized intersections. Notwithstanding, this
approach is still hampered by the fact that accident data are inaccurate, thus finding a good
correlation has a limited power. Zheng et al. (2014a) also emphasized that the application of
regression models is limited due to three reasons:

• the incorporation of crash counts suffers from the same quality issues as traditional
road safety analysis;

• the stability of crash-to-surrogate ratio is difficult to ensure especially when mixing
surrogates of varied severity levels;

• the statistical relationship between counts of crashes and surrogates hardly reflects the
physical nature of crash occurrence.

An alternative approach to the traditional regression analysis without using observed
crash counts was first proposed by Songchitruksa and Tarko (2006) based on the Extreme
Value Theory (EVT). An important feature of the EVT is that it enables the researcher to model
the stochastic behavior of unusually large or small processes. This extreme behavior is typ-
ically very rare and unobservable within a reasonable data collection time period. It often
involves estimating the probability of extreme events over an extended period of time given
very short and limited historical data (Songchitruksa and Tarko, 2006). The key assumption
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of EVT is that the underlying stochastic behavior of the process being modeled is sufficiently
smooth to enable extrapolations to unobserved levels (Coles, 2001).

EVT has been widely used inmany fields, for instance in extreme weather prediction inme-
teorology, financial crisis prediction, wave height prediction in ocean engineering. However
its use in transportation engineering is relatively limited (Songchitruksa and Tarko, 2006),
(Zheng et al., 2014a); one of the earliest work is by Hyde and Wright (1986) who used it for
estimating road traffic capacity. Its first application in the field of safety can be attributed to
Songchitruksa and Tarko (2006); later on Tarko (2012) published a more generic application
of EVT in traffic safety.

According to Tarko et al. (2009) the Extreme Value Method offers three important advan-
tages over the traffic conflict technique:

• 1. The method abandons the assumption of a fixed coefficient converting the surrogate
event frequency into the crash frequency.

• 2. The risk of crash given the surrogate event is estimated for any conditions based on
the observed variability of crash proximity without using crash data.

• 3. The crash proximity measure precisely defines the surrogate event.

Songchitruksa and Tarko (2006) studied right-angle crossing events at 18 signalized in-
tersections and measured Post-Encroachment Time. They applied the non-stationary BM
method and evaluated it using historical crash data. They found a relationship between
model estimates and crash data, however they drew attention to the large variance in the
model estimates which they attributed to the short observation period. Farah and Azevedo
(2015) used EVT for passing maneuvers and tested both the Generalized Extreme Value
(Block Maxima approach - BM) and the Generalized Pareto Distribution-based (Peak-over-
Threshold approach - POT) estimation (these two approaches will be further explained in
Chapter 5). They concluded that the GEV approach achieved satisfactory fitting results, POT
underestimated the expected number of head-on collisions. Their finding is contradicting
with that of Zheng et al. (2014a), who studied the safety implication of lane change maneu-
vers in freeways. They demonstrated that the overall performance of the POT approach is
better than that of the BM approach when data size is limited. They also added that the
POT approach is more in line with the logic of traffic conflict techniques as both of them
use thresholds to separate conflicts from more observable events. However, selecting the
threshold for the POT approach as well as determining the block interval for the BM ap-
proach (if applicable) are of an arbitrary nature. In their paper they also drew attention to
the dependency and non-stationary issues that might come with applying EVT.

Jonasson and Rootzén (2014) applied both univariate and bivariate models on data coming
from naturalistic driving studies. They arrived at the conclusion that the estimate obtained
from the fitted GEV distribution is much smaller than actual relative frequency of crashes
(175 times difference). They also tried fitting bivariate models using TTC and nine other
variables, but it was possible only for two out of nine variables (maximum speed and length
overlapping glance). Cavadas et al. (2017) also tried fitting bivariate models using TTC for
head-on collisions and Time headway for rear-end collisions in case of passing maneuvers.
According to their results the bivariate model is suitable to estimate the joint probability of
colliding with the opposite vehicle or with the passed vehicle.

Åsljung et al. (2016) applied the Peak-over-Threshold approach using TTC as a closeness
to a collision indicator as well as Break Threat Number (BTN) as a closeness to an Inevitable
Collision State (ICS). As previously described, TTC has the problem of being biased by speed,
whereas BTN does not, which tells how much of the brake capacity that is needed in order to
stop just in front of an approaching vehicle. The authors aimed for investigating the difference
between the two types of measures when estimating collision frequency using EVT. Basically
they compared a measure which is based on the closeness to a collision against a measure
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that tells the closeness to ICS. They showed that there are significant differences between
these two indicators, determining a suitable threshold was more clear for BTN than for TTC.
As for TTC it was not possible to extrapolate data for estimating a collision frequency.

Wang et al. (2018) in their paper proposed a combined usage of microscopic traffic sim-
ulation and EVT to evaluate intersection safety by looking at Post-Encroachment Time for
crossing, rear-end and lane change conflicts, and applied three calibration strategies (base,
semi-calibration, full calibration). They applied both the BM and POT approaches, however
discarded the former one due to limited data. The full-calibration strategy performed the best
in terms of identifying relative safety and correlating with actual crash frequency. They also
concluded that the combined usage of microscopic traffic simulation and EVT is a promising
tool for safety evaluation.

Zheng et al. (2018) stressed the advantage of bivariate modeling arguing that extremal
events can be characterized by several features, thus a pre-crash event can be described
using different surrogate measures of safety (e.g. temporal proximity, spatial proximity, like-
lihood of evasive actions, and consequence of a potential collision). They applied bivari-
ate extreme value models to estimate crashes on freeway entrance merging areas using two
measures, Post-Encroachment Time and length proportion of merging. After testing several
parametric distribution functions they chose models with the logistic distribution function.
Through testing correlation coefficients between observed crashes and estimated crashes
their results suggested that bivariate extreme value modeling increase the accuracy of safety
estimates. Furthermore they also emphasized that the bivariate model can predict the num-
ber of crashes but ”an important severity dimension is missing which characterizes how
serious an accident would be given that road users were close to colliding”.

A summary of the above discussed research results on the application of EVT on surrogate
measures of safety is presented in chronological order in Table 2.2.

Table 2.2: Studies applying Extreme Value Theory using surrogate indicators

Paper Study area Method(s) used Surrogate indica-
tor(s) used Conclusions

Songchitruksa
and Tarko
(2006)

Right-angle colli-
sions at signalized
intersections using
field measure-
ments

Non-stationary BM
Post-
Encroachment
Time

Method is a potential
tool for safety predic-
tion. Method would
require 30-50 days of
observation with good
precision. Promis-
ing relationship with
crashes.

Zheng et al.
(2014a)

Freeway lane-
changing maneu-
vers using field
measurements.

Both BM and POT
Post-
Encroachment
Time

POT model performed
better than BM under
the condition of short
time observations.
Model results are com-
parable with crash
data.

Jonasson
and Rootzén
(2014)

Rear-end crashes
from naturalistic
driving studies

Univariate BM and
multivariate mod-
els using TTC and
maximum speed

Time-to-Collision

Model gave underesti-
mation (in comparison
with relative frequency
of crashes)

Farah and
Azevedo
(2015);
Farah and
Azevedo
(2017)

Passing maneuvers
using laboratory
experiments for
head-on collisions

Stationary BM and
non-stationary BM
(including several
covariates), as well
as POT

Time-to-Collison

BM approach yielded
better results than
POT. Non-stationary
BM performed better
than stationary BM

Continued on next page
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Table 2.2 – Continued from previous page

Paper Scope of study Method(s) used Surrogate indica-
tor(s) used Conclusions

Åsljung et al.
(2016)

Focused on au-
tonomous vehicles,
field test of a col-
lision avoidance
system, rear-end
collisions

POT
Time-to-Collision
and Break Threat
Number

Significant differences
between the two indi-
cators, finding a sta-
ble threshold interval
for the TTC value is not
clear.

Cavadas
et al. (2017)

Passing maneuvers
using laboratory
experiments for
head-on and rear-
end collisions

Stationary and
non-stationary
BM using univari-
ate models and
joint model using
bivariate distribu-
tion with copula
method

Time-to-Collision
(for head-on colli-
sions) and Time-
headway (for rear-
end collisions)

Bivariate model can be
used to link two dif-
ferent surrogate mea-
sures.

Wang et al.
(2018)

Field measure-
ments at urban
intersections and
VISSIM simulation,
three conflict types:
crossing, rear-end,
and lane change.

Both BM and POT
Post-
Encroachment
Time

BM was discarded due
to limited data, POT
performed well.

Zheng et al.
(2018)

Severity of merging
events on freeway
entrance merging
areas using field
data

Univariate and
bivariate threshold
excess model.

Post-
Encroachment
Time and length
proportion merg-
ing.

Bivariate crash esti-
mates are closer to
observed crashes than
univariate ones.



3
Research framework

3.1. Research gap
In the past few decades many different Traffic Conflict Techniques have been developed.
However, since the validity of them has not always been the primary focus, they might give
different results. The number of cross-validation studies comparing different techniques is
rare. In their paper for instance Laureshyn et al. (2017b) compared three approaches, the
Swedish traffic conflict technique, the Dutch conflict technique (DOCTOR) and the proba-
bilistic surrogate measures of safety (PSMS) technique and arrived at the conclusion that the
results are comparable, however ”the existing disagreements in some cases raises the issue
of the validity”.

The same argument can be made for individual surrogate safety indicators (no consensus
on what measures should be used), even though conceptually there might be significant
differences in between them. One of these differences is whether only a collision course is
considered or an extension to crossing courses is considered as we saw in Laureshyn et al.
(2010). As Zheng et al. (2014b) phrased it: ”Despite decades of conceptual development and
widespread application, there are still some disputes on what traffic conflict is. This finding
may raise a question as to whether a traffic conflict should in fact be defined and separated
from other non-conflict events.”

Previous research has proven that road users that are strictly speaking not on a colli-
sion course actually might behave and take evasive actions as if they were, thus indicating
that such near-miss situations might also be relevant for safety analysis. A new indicator
accounting for this abbreviated as 𝑇 was proposed by Laureshyn et al. (2010) allowing a
smooth transfer between collision and no-collision course interactions. Thus, 𝑇 seems to be
more suitable for detecting potentially dangerous situations, but it has not been explicitly
tested and compared to other nearness-to-collision indicators so far.

Another issue with using surrogate indicators on their own is that they are limited to
estimating crash risk with no further account of the possible consequences of a potential
crash (Zheng et al., 2014b). There has been attempts to apply two-dimensional approaches
(e.g. TTC and speed or 𝑇 and Extended Delta-V), however differentiating the severity levels
from each other is still an issue to be solved.

Extreme Value Theory is a promising tool to evaluate safety using surrogate safety mea-
sures. Most of the research that has been done so far focused on testing the method and
validating various surrogate safety indicators by comparing model estimates to actual crash
frequencies. There also has been attempts to apply bivariate models using two surrogate
safety indicators. However, less or no attention was paid to two issues, namely:
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• comparison of various conflict indicators and their performance using EVT, especially
the comparison of collision course indicators with indicators including crossing course
interactions as well, and

• modeling the nearness-to-collision and severity simultaneously using EVT, especially for
collision course indicators as well as indicators including crossing course interactions
together with indicators describing the expected consequences of interactions.

Based on the literature survey it can also be concluded that there are contradicting results
in terms of which approach (BM or POT) performs better. Some researchers claimed that the
BM method comes with extensive waste of data if many of the extreme events occur in the
same block and POT seems to be a better choice when having access to more continuous
observations. Other researchers, however, arrived at different conclusions saying that the
BM method proved to give better estimates. As there is no consensus on this question, it is
also worth further investigation.

3.2. Research questions
Based on the research gaps identified in the previous section two main research questions
and four subquestions are formulated as follows:

1. What can we learn from applying EVT using indicators describing collision course and
crossing course interactions at signalized intersections for vehicle-vehicle interactions?

(a) What difference is there between the two indicators 𝑇𝑇𝐶 and 𝑇 when analysing
safety using EVT and are these indicators transferable?

(b) Which EVT approach (BM or POT) under what circumstances performs better for
𝑇𝑇𝐶 and 𝑇 (e.g. sensitivity to sample size)?

2. How can we predict nearness to collision and severity at signalized intersections for
vehicle-vehicle interactions using the Extreme Value Theory?

(a) What can we learn from applying bivariate models using EVT for various combina-
tions of indicators?

(b) How can we use bivariate EVT in combination with severity levels?

Chapter 5 addresses the first main question and Chapter 6 the second main question
along with their subquestions.



4
Data collection

4.1. Site description and data
The dataset was provided by Lund University and has already been used in other publications
such as (Laureshyn et al., 2017a). A regular signalized intersection with two-phases in Minsk
(Belarus) was analyzed (53°54’39.1”N; 27°35’44.4”E). The intersection was recorded for two
days (from 6 AM till 9 PM). The video footages of two cameras set on rooftops were then
analyzed in the software T-Analyst (T-Analyst, 2016) allowing the manual tracking of vehicles
as well as the calculation of various surrogate measures of safety (see a screenshot in Figure
4.1).

Figure 4.1: Screenshot of the T-Analyst software (T-Analyst, 2016)

Accident data were gathered for 10 years (1999-2009) before the video recordings were
made. Altogether 32 accidents were recorded, out of which 5 crashes were due to the col-
lision of left turning and straight going vehicles. The severity of all the recorded accidents
were property damage only. As this type of crash severity is the most heavily prone to un-
derreporting, unfortunately this historical accident dataset cannot be used for validation. In
the course of video recordings no accidents were observed.
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4.2. Descriptive statistics
Altogether 2749 interactions were detected. A subset of interactions between straight going
and left turning vehicles was created (n=792), when the left turn was done in front of the
straight moving vehicle. Whenever an indicator cannot be calculated the software indicates
-1 as entry. These entries were not considered when compiling the descriptive statistics. All
the statistical analyses including the content of later chapters are done in R (R Core Team,
2013).

4.2.1. Temporal indicators
This subsection gives an overview of the two temporal indicators 𝑇𝑇𝐶 and 𝑇 used in
the analysis. Table 5.1 shows the descriptive statistics for the two indicators.

Table 4.1: Descriptive statistics

Indicator
Sample size 194 792
Min 0.79 0.06
Max 182.50 35.12
Mean 6.45 3.61
Stdev 14.25 2.22
Skewness 10.83 5.49
Kurtosis 123.76 61.25

Cumulative distribution functions of unfiltered 𝑇 and 𝑇𝑇𝐶 are shown in Figure 4.2.
Figure 4.3 shows a zoomed in version of Figure 4.2 for values smaller than 20s. This fig-
ure reveals that the cumulative distribution function for 𝑇𝑇𝐶 is less steep than that of
𝑇 showing that the observed 𝑇𝑇𝐶 values are more spread out and that the share of
observations in the lower range (between 0 and 5s) is smaller than for 𝑇 .

Figure 4.2: Cumulative distribution functions of and (unfiltered data)
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Figure 4.3: Cumulative distribution functions of and (<20s)

The underrepresentation of 𝑇𝑇𝐶 compared to 𝑇 is due to the nature of these indica-
tors, as 𝑇𝑇𝐶 can be measured only for collision course interactions, whereas 𝑇 can be
measured for both collision as well as crossing course interactions. Figure 4.4 illustrates this
difference for a given interaction showing its distinctive moments. In the course of the inter-
action the straight going (green) and the left turning (red) vehicles are on a collision course,
so both 𝑇 and 𝑇𝑇𝐶 can be measured. The straight going vehicle then changes its path
as well as speed due to which 𝑇𝑇𝐶 cannot be measured anymore as the two vehicles are no
longer on a collision course. However, the two vehicles are still on a crossing course and the
time required for the second vehicle to arrive at the potential conflict point can be expressed
and 𝑇 can be measured. 𝑇 can be measured until the first vehicle leaves the conflict
point.

4.2.2. Speed related indicators
This subsection gives an overview of the indicators to be used in the bivariate models to
account for crash severity. Both of them are speed related indicators:

• relative speed using the speeds of interacting vehicles, and

• Extended Delta-V0.

These indicators are associated with the minimum values of temporal indicators 𝑇𝑇𝐶
and 𝑇 . Table 4.2 shows the descriptive statistics and Figure 4.5 the cumulative distri-
bution functions of left turning and straight moving vehicles’ speed as well as their relative
speed. As 𝑇𝑇𝐶 comes with a smaller sample size its CDFs are naturally less smooth. Mean
speeds of interacting vehicles at 𝑇𝑇𝐶 are slightly smaller than those of 𝑇 which is due
to the collision course nature of TTC. Left-turning vehicles have much smaller speeds in
general, as they have to give priority for straight moving vehicles.
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(a) Collision course: TTC is measured (and
equal to ), shows its lowest value

(b) Vehicles are no longer on collision course:
TTC ceases to exist, is measured

(c) Crossing course: as the lowest value
of is shown

(d) First vehicle leaves the conflict point, PET
is measured

Figure 4.4: and in an interaction

Table 4.2: Descriptive statistics of speeds associated with and

Indicator Statistics
Speed of left

turning vehicle
(m/s)

Speed of straight
moving vehicle

(m/s)

Relative speed
(m/s)

𝑇𝑇𝐶
(n=193)

min 0.01 0.11 0.17
max 14.47 19.47 22.37
mean 2.93 10.46 12.41
st. dev. 2.82 4.66 3.61

𝑇
(n=789)

min 0.48 0.81 3.31
max 16.30 22.08 31.41
mean 5.72 11.91 16.14
st. dev. 2.35 4.08 4.16
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Figure 4.5: Cumulative distribution functions of speeds at and

As for Delta-V the descriptive statistics of the base value (no braking) indicated as Delta-V0
are given in Table 4.3 and the frequency of vehicle types per traffic stream and per temporal
indicator is given in Table 4.4. In the calculation of Delta-V values four different vehicle
masses (car, minivan, bus, truck) were considered. Each road user has its own Extended
Delta-V value, to describe severity the highest has to be considered (Laureshyn et al., 2017a);
the CDFs of that are shown for both temporal indicators in Figure 4.6. Due to lower speeds at
𝑇𝑇𝐶 compared to 𝑇 , Delta-V0 values are also smaller for the former temporal indicator.

Sample sizes havemarginal differences compared to the dataset introduced in the previous
section and used for the univariate case in Chapter 5. Through analyzing the relative speeds
three observations were found with unrealistically small values. These interactions were
between left-turning and right turning vehicles and coded incorrectly as a left-turning vs.
straight moving interaction, thus were removed from the sample (one observation in case of
𝑇𝑇𝐶 and three observations in case of 𝑇 ). These were not extreme observations as far
as the temporal indicators are concerned, so the univarite analysis were not redone as no
significant changes were expected to the results.

Table 4.3: Descriptive statistics of Delta-V0 associated with and

Indicator Statistics Left turning
vehicle (m/s)

Straight moving
vehicle (m/s)

Highest Delta-V0
(m/s)

𝑇𝑇𝐶
(n=193)

min 0.13 0.03 0.13
max 12.21 13.96 13.96
mean 6.56 5.84 7.23
st. dev. 2.36 2.60 2.22

𝑇
(n=789)

min 0.55 0.54 1.65
max 19.62 18.38 19.62
mean 8.43 7.70 9.27
st. dev. 2.95 3.17 2.73
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Figure 4.6: Cumulative distribution functions of Delta-V0 at and

Table 4.4: Vehicle types associated with the and samples

Indicator Vehicle
type

Left turning
vehicle

Straight
moving
vehicle

𝑇𝑇𝐶
(n=193)

bus 0 3
car 160 136
van 18 21
truck 15 33

𝑇
(n=789)

bus 4 32
car 665 608
van 56 52
truck 64 97



5
Univariate models

In this chapter univariate models are used with an intention to investigate the differences in
using 𝑇 versus 𝑇𝑇𝐶. For this analysis the initial sample of 1616 interactions was narrowed
down into two subsets where 𝑇 and 𝑇𝑇𝐶 values were available. For both indicators the
minimum values are used (𝑇 and 𝑇𝑇𝐶 ) representing the moment in time when the two
vehicles are closest to each other.

Both the Block Maxima as well as the Peak-over-Threshold approaches are used as model-
ing techniques. In this analysis observations with low values close to zero can be considered
extremes, thus in both cases the negated values of observations were used. This is the
standard technique used in all the traffic safety literature mentioned in the review section
(Chapter 2.2.3). In the current research an alternative approach was tested using 1/𝑇𝑇𝐶
and 1/𝑇 instead of the negated values. Modeling results can be found in Appendix A
along with a brief analysis proving that this approach did not yield sensible results and was
not further elaborated.

5.1. Block Maxima approach
Each interaction can be considered as a block in which the minimum value of 𝑇 and 𝑇𝑇𝐶
are used. Since the minimum values are determined per interaction for both indicators, they
can also be high and therefore irrelevant occurrences (e.g. a 𝑇𝑇𝐶 value of 10 seconds can
not be considered as a near crash, hence an extreme value). Therefore a selection of near-
crash events is needed, which can be considered as ”sub sampling of maxima” (Jonasson
and Rootzén, 2014).

Mahmud et al. (2017) gave an overview of minimum and desirable TTC threshold values
from a selection of studies for different conditions. As far as signalized intersections are
concerned Mahmud et al. (2017) did not indicate any minimum values, however he cited two
references (Huang et al. (2013) and Sayed et al. (2013)) where desired values of 1.6s and 3s
were given. Figure 5.1 depicts the cumulative distribution functions for values of 𝑇𝑇𝐶 and
𝑇 smaller than 5s showing that for the former there are very few observations in the range
of 0∼2s.

Taking 3s as a threshold value for near-crashes would only result in 15 observations.
Based on what the literature suggests and considering the range of observed values near-
crashes were selected using a threshold value of 3.5 seconds for the first run. The above
problem does not hold for 𝑇 thanks to its bigger sample size, but for the sake of compara-
bility the same threshold value was applied for the first run. The results of these two model
runs were evaluated in detail and followed by several other runs using different threshold
values for near-crash situations.
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Descriptive statistics for the filtered data are given in Table 5.1. As for 𝑇𝑇𝐶 a positive
Kurtosis indicates possibly a heavy tail and in the case of 𝑇 a negative Kurtosis slightly
below zero suggests a light tail. Scatter plots are given in Figure 5.2, where values are plotted
against their corresponding observation number (index).

Figure 5.1: Cumulative distribution functions of and (<5s)

Table 5.1: Descriptive statistics of near-crash values <3.5s

Indicator
Sample size 31 443
Min 0.79 0.06
Max 3.49 3.50
Mean 2.88 2.38
Stdev 0.65 0.69
Skewness -1.19 -0.38
Kurtosis 1.12 -0.54

Figure 5.2: Scatter plots of negated and smaller than 3.5s
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5.1.1. Analysis of model results for TTC
Table 5.2 gives a summary of the model results of a fitted GEV using a near-crash threshold
of 3.5s.

Table 5.2: Model results of GEV for (near-crash threshold 3.5s)

Indicator Location Scale Shape
Estimated parameter -3.336 0.230 1.099
Standard error 0.064 0.078 0.462
Lower bound of confidence interval -3.461 0.078 0.193
Upper bound of confidence interval -3.210 0.382 2.004
AIC 47.292
BIC 51.594
Deviance 41.292
Log-likelihood 20.646

The confidence intervals (95% as well as 99%) of the shape parameter does not include
zero, thus we can accept the Frechet distribution as the shape parameter is greater than zero.
(In case of a confidence interval including zero the Gumbel distribution can be fitted and
the two model fits compared using the log-likelihood ratio test.) Notwithstanding, a greater
accuracy for the confidence intervals is usually attained by the profile likelihood (Figure 5.3),
which yields similar results.

Figure 5.3: Profile log likelihood plots of model parameters for

Substituting the model estimates into the GEV function (Equation 5.1) using a given value
for 𝑧 one can calculate its probability. We are interested in the probability of crash occur-
rence, that is, when 𝑇𝑇𝐶 < 0 (𝑧 =0 in Equation 5.1). This calculation yields a probability
of 0.0733 (1-G(𝑧 )).

Using a given return level 𝑧 one can also obtain the return period, which is 1/p. Equa-
tion 5.2 shows how the return level and return period are associated with each other. This
means that the level 𝑧 is expected to be exceeded on average once every 1/p. If each block
corresponds to one year, then the return period can be interpreted in years. In this particular
case each block is an individual near-crash interaction.
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𝐺(𝑧 ) = exp { − [1 + 𝜉(𝑧 − 𝜇𝜎 )] }, (5.1)

𝑧 = {𝜇 − [1 − { − log(1 − 𝑝)} ], 𝑓𝑜𝑟 𝜉 ≠ 0
𝜇 − 𝜎 log { − log (1 − 𝑝)}, 𝑓𝑜𝑟 𝜉 = 0

(5.2)

Using Equation 5.2 and the previously calculated probability of crash occurrence (0.0733)
one can calculate the return period, which is 1/0.0733=13.65. In other words it means that
one out of every 14 near crash interactions (with a 𝑇𝑇𝐶 smaller than 3.5s) will result in a
crash. A profile log-likelihood plot for the return level of 0s is given in Figure 5.4; with this
plot one can also gain confidence intervals. From Figure 5.4 it is clear that there is a wide
confidence interval associated with the given return level of 0s.

To further check the goodness of fit of the model probability, quantile, return level and
density plots can be used (Figure 5.5). The probability plot is a comparison of the empirical
and fitted distribution functions, in the quantile plot their quantiles against each other are
plotted. Both can can be visually checked, if in both cases the points are sufficiently close
to linearity, the model can be accepted. In order to further investigate the probability plot
and to compare the fitted and the empirical distributions, a Kolmogorov-Smirnov test was
used, of which the null hypothesis is that the sample is drawn from the fitted distribution.
As the p-value is 0.8235 we cannot reject the null hypothesis that our sample deviates from
the GEV distribution.

Nevertheless, as Coles (2001) points out the weakness of the probability plot is that it
provides the least information in the region of large values (in this case small values). Thus it
is important to look at the quantile plot. In this case the probability plot does not reveal any
model deficiencies, however the quantile plot indicates model failure. The return level plot
shows the return period against return level together with confidence bands (in blue colour).
As 𝜉 is greater than zero, the return level plot is a concave curve and has no finite bound.
This plot also reveals that the model does not provide a good extrapolation in the region of
extreme values (below the lowest observed 𝑇𝑇𝐶 value of 0.79). The density plot shows the
probability density function of the fitted model together with the histogram of observed data;
this plot is less informative for checking the goodness of fit of the model.

Figure 5.4: Profile log-likelihood plot for the return period of 13.65 associated with the return level of =0s



5.1. Block Maxima approach 33

Figure 5.5: Diagnostic plots for GEV fit to (near crash threshold < 3.5s)

The above analysis reveals that 3.5s as a threshold value for near-crash situations lead
to unsatisfactory model results and irrationally high crash probability. This is due to the
combined effect of practical as well as statistical reasons. The initially small sample size
of 𝑇𝑇𝐶 is due to the fact that we are looking at left turning and straight moving vehicle
interactions, where in many cases 𝑇𝑇𝐶 cannot be interpreted due to stopped left-turning
vehicles waiting for straight moving ones to pass. From a statistical point of view the small
sample size results in unreliable extrapolation and large variance.

For the above reasons several models were tested using different threshold values for the
pre-selection of near-crash situations. The threshold was gradually increased with a 0.5s
increment. Results are presented in Table 5.3.

Diagnostic plots reveal that by increasing the near-crash threshold the model fit improves
gradually, Figure 5.6 shows the results using 5s as a threshold for near crash situations.

Table 5.3: Results of GEV for with different thresholds for near-crash situations

Indicator <3.5s <4s <4.5s <5s
Sample size 31 48 76 100
Location parameter -3.336 -3.552 -3.977 -4.277
Scale parameter 0.230 0.378 0.466 0.605
Shape parameter 1.099 0.327 0.244 0.087
Shape p. lower bound of conf. int. 0.193 0.010 -0.024 -0.109
Shape p. upper bound of conf. int. 2.004 0.644 0.513 0.284
Probability of crash <0 0.073 0.014 0.010 0.004
Return period for <0 13.65 73.92 101.04 246.57
Kolmogorov-Smirnov test p-value 0.824 1 0.974 0.994
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Figure 5.6: Diagnostic plots for GEV fit to (near crash threshold < 5s)

From Table 5.3 it can be seen that as the near-crash threshold increases (resulting in
bigger sample size) the shape parameter converges to zero. With 4.5s threshold the 95%
confidence intervals include zero. Setting the shape parameter to zero the Gumbel distribu-
tion can be fitted and an analysis of deviance between the two models can reveal whether it
is more appropriate (Penalva et al., 2013). The results of these analyses are given in Table
5.4. The results obtained for 3.5, 4, and 4.5 seconds show significant differences between
the two models, however, for 5s there is no significant difference so the Gumbel model with
two parameters is a good choice for modeling these data.

Table 5.4: Deviance analysis

Model M.Df Deviance df Chisq Pr(>Chisq)
M1 <3.5s 3 41.292
M2 <3.5s ( =0) 2 50.147 1 8.855 0.003**
M1 <4s 3 75.840
M2 <4s ( =0) 2 81.178 1 5.338 0.021*
M1 <4.5s 3 144.99
M2 <4.5s ( =0) 2 149.20 1 4.208 0.040*
M1 <5s 3 225.77
M2 <5s ( =0) 2 226.63 1 0.864 0.353
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

There is a specialty in fitting the GEV distribution to the observed negated values, since
the GEV distribution is conditional on the values being smaller than zero (𝐺 (𝑧)=G(z)/G(0))
(already noted by Jonasson and Rootzén (2014)). Therefore parameter estimation given in
Equation 2.13 has to be slightly modified as an additional term is added (Equation 5.3).
Jonasson and Rootzén (2014) also noted that omitting this term leads to only slight changes
in the estimated parameters of the GEV distribution.
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ℓ(𝜇, 𝜎, 𝜉) = −𝑛𝑙𝑜𝑔𝜎−(1+ 1𝜉 )∑𝑙𝑜𝑔[1+𝜉(𝑧 − 𝜇𝜎 )]−∑[1+𝜉(𝑧 − 𝜇𝜎 )] +∑(1− 𝜉 − 𝜎𝜇 ) (5.3)

In order to see whether adding this extra term would modify the model parameters, the
in-built 𝑔𝑒𝑣.𝑓𝑖𝑡 function in R was modified and the above models in Table 5.3 were rerun.
Model parameters and crash probabilities are compared in Table 5.5. In general the location
as well as the scale parameters do not change, slight changes in the shape parameter can be
seen, which tend to disappear by increasing the near-crash threshold and thus the sample
size. Also the calculated crash probabilities and return periods are comparable.

Table 5.5: Comparison of GEV model results for with the condition G(z)/G(0)

Indicator <3.5s <4s <4.5s <5s
Location parameter -3.336 -3.552 -3.977 -4.277
Scale parameter 0.230 0.378 0.466 0.605
Shape parameter 1.099 0.327 0.244 0.087
Probability of crash <0 0.073 0.014 0.010 0.004
Return period for <0 13.65 73.92 101.04 246.57
Modified location parameter -3.307 3.547 -3.969 -4.271
Modified scale parameter 0.241 0.374 0.467 0.606
Modified shape parameter 0.681 0.260 0.181 0.055
Modified prob. of crash <0 0.032 0.008 0.006 0.003
Modified return period for <0 31.50 119.73 172.56 386.76

5.1.2. Analysis of model results for T2
Table 5.6 gives a summary of the model results of a fitted GEV using the initial near-crash
threshold of 3.5s. Neither the 95% nor the 99% confidence intervals include zero, thus we
can accept the Weibull distribution as the shape parameter 𝜉 is below zero. Figure 5.7 also
confirms this.

Table 5.6: Model results of GEV for (near-crash threshold 3.5s)

Indicator Location Scale Shape
Estimated parameter -2.674 0.615 -0.129
Standard error 0.034 0.025 0.042
Lower bound of confidence interval -2.740 0.566 -0.211
Upper bound of confidence interval -2.608 0.664 -0.047
AIC 914.401
BIC 926.682
Deviance 908.401
Log-likelihood 454.200

The probability of a crash occurrence (𝑇 =0) is 0.0016, and the return period (1/p) is
therefore 596.03 meaning that one out of 596 near-crash interactions (with a 𝑇 smaller than
3.5s) will result in a crash. The profile log-likelihood plot for this particular return level
(Figure 5.8) shows a much narrower confidence interval than for 𝑇𝑇𝐶 (Figure 5.4).

The probability and quantile plots (Figure 5.9) both show a linear pattern so the model
can be considered as a good fit. The return level plot shows a convex curve, which is due to
𝜉 being smaller than zero. In this case the return level plot has a finite bound (i.e. due to its
convex nature it has a plateau), which can be calculated using the equation 𝜇-𝜎/𝜉 yielding
2.079. This value however cannot be interpreted from a traffic safety point of view.
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Figure 5.7: Profile log likelihood plots of model parameters for

Figure 5.8: Profile log-likelihood plot for the return period of 596.03 associated with the return level of =0s
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Figure 5.9: Diagnostic plots for GEV fit to (near-crash threshold < 3.5s)

As for 𝑇 further steps in model checking are just the opposite as compared to those of
𝑇𝑇𝐶 in terms of changing the near-crash threshold. As previously noted, for a critical value
of near-crash situations the literature actually suggests a lower threshold than 3.5s, as low
as 1.5s. Thus, it is interesting to check how the model fit and output values change as we
gradually decrease the near-crash threshold level. In Table 5.7 themost important results are
summarized for four different near-crash thresholds. The shape of the distribution changes
from a Weibull type (𝜉<0) to a Fréchet (𝜉>0) as the near-crash threshold levels as well as
the sample sizes decrease. Crash probability is gradually increasing by decreasing near-
crash thresholds. At a near-crash threshold of 2s a crash probability of 0.0098 is calculated
associated with a return level of 101.96 meaning that one crash would happen out of 102
near-crash interactions. Almost the same result is given in case of 𝑇𝑇𝐶 using a near-crash
threshold of 4.5s (Table 5.4). The model fit associated with the 2s near-crash threshold still
gives acceptable results (Figure 5.10) as both the probability as well as quantile plots show
a linear pattern, however the return level plot gives wider confidence bands compared to
Figure 5.9. The Kolmogorov-Smirnov test shows in all four cases that we cannot reject the
null hypothesis that our sample deviates from the GEV distribution.

Table 5.7: Results of GEV for with different thresholds for near-crash situations

Indicator <3.5s <3s <2.5s <2s
Sample size 443 341 232 130
Location parameter -2.674 -2.382 -2.050 -1.712
Scale parameter 0.615 0.473 0.352 0.246
Shape parameter -0.130 -0.045 0.026 0.166
Shape p. lower bound of conf. int. -0.211 -0.150 -0.098 -0.031
Shape p. upper bound of conf. int. -0.047 0.059 0.150 0.364
Probability of crash <0 0.002 0.003 0.004 0.010
Return period <0 596.02 302.40 226.10 101.96
Kolmogorov-Smirnov test p-value 0.589 0.537 0.982 0.992
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Again it is reasonable to check whether the Gumbel distribution is a good choice for models
where 𝜉 falls within a confidence interval including zero. The output results for the deviance
analysis can be found in Table 5.8 showing that with 3 and 2.5s as near-crash threshold levels
the Gumbel model is actually not significantly different and thus a linear approximation of
the return levels is appropriate.

Figure 5.10: Diagnostic plots for GEV fit to (near-crash threshold < 2s)

Table 5.8: Deviance analysis

Model M.Df Deviance df Chisq Pr(>Chisq)
M1 <3.5s 3 908.40
M2 <3.5s ( =0) 2 915.96 1 7.556 0.006**
M1 <3s 3 552.97
M2 <3s ( =0) 2 553.64 1 0.672 0.413
M1 <2.5s 3 257.01
M2 <2.5s ( =0) 2 257.19 1 0.178 0.6733
M1 <2s 3 71.232
M2 <2s ( =0) 2 74.625 1 3.393 0.066
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In order to check again whether conditioning on G(z)/G(0) modifies the model parame-
ters, the above models in Table 5.7 were rerun. Model parameters and crash probabilities
are compared in Table 5.9. Similar results as for 𝑇𝑇𝐶 are received, showing that the lo-
cation and scale parameters do not change, there are only minor differences in the shape
parameters. Also the calculated crash probabilities and return periods are comparable.
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Table 5.9: Comparison of GEV model results for with the condition G(z)/G(0)

Indicator <3.5s <3s <2.5s <2s
Location parameter -2.674 -2.382 -2.050 -1.712
Scale parameter 0.615 0.473 0.352 0.246
Shape parameter -0.130 -0.045 0.026 0.166
Probability of crash <0 0.002 0.003 0.004 0.010
Return period <0 596.02 302.40 226.10 101.96
Modified location parameter -2.669 -2.376 -2.046 -1.708
Modified scale parameter 0.618 0.476 0.353 0.247
Modified shape parameter -0.148 -0.075 -0.007 0.105
Modified prob. of crash <0 0.001 0.002 0.003 0.006
Modified return period for <0 991.63 525.86 370.29 179.93

5.2. Peak-over-Threshold Approach
The POT approach offers a different solution to modeling extreme events. It is necessary to
choose a threshold over which extreme events are considered. ”It is important to choose a
sufficiently high threshold in order that the theoretical justification applies thereby reducing
bias. However, the higher the threshold, the fewer available data remain. Thus, it is impor-
tant to choose the threshold low enough in order to reduce the variance of the estimates.”
(Gilleland and Katz, 2016).

Selecting the appropriate threshold using POT is as important as selecting the block size
using BM. There are basically two methods available for that:

• Mean residual plot: this plot shows the mean of the excesses depending on the value of
the chosen threshold level 𝑢. Above a certain value the GPD provides a valid approxima-
tion to the excess distribution (Coles, 2001). Here a threshold has to be selected where
the graph is linear within uncertainty bounds. This is, however, not always straightfor-
ward, and based on a subjective choice.

• Model estimation: The model is estimated at a range of threshold values with the inten-
tion to find stable model parameters. Again, above a certain level of 𝑢 the GPD is valid, if
estimates of the shape parameter 𝜉 are constant, while estimates of the scale parameter
𝜎 is linear in u. This point can be read from the plot by checking linearity, in other words
estimates will not change much within uncertainty bounds, as the threshold increases.

5.2.1. Analysis of model results for TTC
The lowest threshold where the mean residual plot (Figure 5.11) becomes linear within un-
certainty bounds is a value around -4s. There is a lot of fluctuation at the right hand side of
the plot due to fewer observations. The parameter estimates against thresholds (Figure 5.12)
also show relatively stable results for the selected value. The GPD model results are given in
Table 5.10. The shape parameter is below zero resulting in a convex return level plot with a
finite upper bound.

The probability of crash occurrence, namely when 𝑇𝑇𝐶 equals zero, can be calculated
using Equation 5.4 substituting the model parameters 𝜉 and 𝜎, the threshold 𝑢=-4 and 𝑥=0.
This calculation yields a crash probability of 0.00017 (see Equation 5.4). If we account for
the ratio of near-crashes by multiplying this value with 𝜁 (48/194) (see Equation 5.5), the
estimated probability is 0.000042.

𝑃𝑟{𝑋 > 𝑥|𝑋 > 𝑢} = [1 + 𝜉(𝑥 − 𝑢𝜎 )] , (5.4)

From Equation 5.4 it follows that

𝑃𝑟{𝑋 > 𝑥} = 𝜁 [1 + 𝜉(𝑥 − 𝑢
𝜎 )] , (5.5)
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where 𝜁 =𝑘/𝑛 (𝜁 =𝑃𝑟{𝑋 > 𝑢}), with 𝑘 being the number of excesses over 𝑢, 𝑛 being the number
of observations, in other words, the sample proportion of points exceeding 𝑢, and 𝑥 being
the return level (that is exceeded on average once every 𝑚 observations). Using Equation 5.5,
which is equal to 1/𝑚, the 𝑚-observation return period can also be calculated.

Figure 5.11: Mean residual plot for

Figure 5.12: Parameter estimates against threshold for
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Table 5.10: Model results of GPD for (threshold 4s)

Indicator Scale Shape
Sample size 48
Estimated parameter 0.970 -0.200
Standard error 0.180 0.120
Lower bound of confidence interval 0.617 -0.436
Upper bound of confidence interval 1.323 0.036
AIC 77.906
BIC 81.649
Log-likelihood 36.953
Kolmogorov-Smirnov test p-value 0.997

The GPD diagnostic plots suggest a reasonable model fit, also the Kolmogorov-Smirnov
test is not significant and thus we cannot reject that the sample deviates from the GPD
distribution. However the return level plot shows that as the return period increases the
return level confidence bends tend to be wider meaning that the prediction of unobserved
extreme values comes with uncertainty. The return period associated with 𝑇𝑇𝐶 < 0 is
5,884.8 (1/0.00017) (using Equation 5.4), meaning that one out of 5885 near-crash inter-
actions results in a crash. Accounting for the ratio of near-crashes in the full dataset the
return period is 23,784.4 (1/0.000042) (using Equation 5.5), which means that one out of
every 24 thousand interactions results in a crash. (The return level plot in Figure 5.13 is set
to years assuming that one observation corresponds to one day. Therefore in the return level
plot zero return level is associated with a value of 65.16 (23,784.4/365). Confidence interval
bounds of the parameters as well as the previously calculated return level can be seen in
Figure 5.14.

Figure 5.13: Diagnostic plots for GPD fit to (threshold 4s)
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Figure 5.14: Profile Log-likelihood plots for GPD fit to (threshold 4s)

Having tested one threshold value it is worth investigating what results other threshold
values would yield. To that end a zoomed-in version of the threshold stability plot without
confidence limits is shown in Figure 5.15. This plot actually proves that the previously chosen
threshold of 4s is justifiable. We can also try testing further threshold values thus we need
to search for other stable regions in the plot. The region between 4.0 and 4.2s seems to be
stable, thus further models are also fitted using threshold values of 4.1, and 4.2s. Results are
presented in Table 5.11. Based on the diagnostic plots, and especially the density plot (these
are not presented here) it can be concluded that the original model with the 4s threshold
gives the best result, therefore this model was kept.

Table 5.11: Results of GPD for with different thresholds

Indicator u=4s u=4.1s u=4.2s
Sample size 48 54 59
Scale parameter 0.970 0.960 0.997
Shape parameter -0.200 -0.183 -0.192
AIC 77.906 87.826 98.930
BIC 81.648 91.804 103.086
Log-likelihood 36.953 41.913 47.465
Probability of crash <0 0.00017 0.00024 0.00018
Return period for <0 5884.8 4160.2 5618.1
Kolmogorov-Smirnov test p-value 0.997 0.999 0.999
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Figure 5.15: Parameter estimates against threshold for

5.2.2. Analysis of model results for T2
As for 𝑇 a different threshold was chosen, both the mean residual plot (Figure 5.16) and
the plots of parameter estimates against thresholds (Figure 5.17) suggest a threshold of -2s
to be used. Model results are presented in Table 5.12. The crash probability associated with
this model is 0.00055. If we account for the ratio of near-crashes by multiplying this value
with 𝜁 (130/792) (see Equation 5.5), the estimated probability is 0.000091.

Figure 5.16: Mean residual plots for (left: > -10s, right: > -6s)
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Figure 5.17: Parameter estimates against threshold for

The GPD diagnostic plots (Figure 5.18) suggest a good model fit with favorable confi-
dence bends in the return level plot. The return period associated with 𝑇 < 0 is 1,807.3
(1/0.00055) (using Equation 5.4), meaning that one out of 1800 near-crash interactions
results in a crash. Accounting for the ratio of near-crashes in the full dataset the return
period is 11,010.4 (1/0.000091) (using Equation 5.5), which means that one out of every 11
thousand interactions results in a crash (this value is associated with 30.16 in the return
level plot). Confidence interval bounds of the parameters as well as the previously calculated
return level can be seen in Figure 5.19.

Table 5.12: Model results of GPD for (threshold 2s)

Indicator Scale Shape
Sample size 130
Estimated parameter 0.585 -0.246
Standard error 0.060 0.058
Lower bound of confidence interval 0.467 -0.360
Upper bound of confidence interval 0.703 -0.132
AIC 60.489
BIC 66.224
Log-likelihood 28.24
Kolmogorov-Smirnov test p-value 0.992
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Figure 5.18: Diagnostic plots for GPD fit to (threshold 2s)

Figure 5.19: Profile Log-likelihood plots for GPD fit to (threshold 2s)

To further investigate whether other thresholds would yield similar results a zoomed-in
version of the threshold stability plot without confidence limits is shown in Figure 5.20. This
plot indicates that the range of values between 2.2 and 1.9s seems to be stable. Three further
models using threshold values of 2.2, 2.1 and 1.9s are fitted; results are given in Table 5.13.
Diagnostic plots for the extra models showed slight differences in the density plots. Models
with threshold values of 2 and 2.2s proved to provide a good fit, thus the original models with
a 2s threshold was kept.
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Figure 5.20: Parameter estimates against threshold for

Table 5.13: Results of GPD for with different thresholds

Indicator u=2.2s u=2.1s u=2s u=1.9s
Sample size 176 159 130 113
Scale parameter 0.662 0.586 0.585 0.530
Shape parameter -0.266 -0.229 -0.246 -0.221
AIC 117.044 79.177 60.489 36.794
BIC 123.385 85.315 66.224 42.248
Log-likelihood 56.522 37.589 28.244 16.397
Probability of crash <0 0.0003 0.0005 0.0005 0.0008
Return period for <0 3384.6 1808.6 1807.2 1193.2
Kolmogorov-Smirnov test p-value 0.939 0.999 0.914 0.997

5.3. Discussion
When applying the Block Maxima approach the selection of near-crash situations as a sub-
sampling step proved to be a critical issue. As for 𝑇𝑇𝐶 the question was to which level the
near-crash threshold should be increased to have a reasonable model fit, whereas for 𝑇
to which - from a traffic a safety point of view - more reasonable level can we decrease the
near-crash threshold in such a way that we still have a good model fit.

In the former case with 𝑇𝑇𝐶 increasing the near-crash threshold resulted in better
model fits, however from a traffic safety point of view these high thresholds can not actually
be considered as near-crash events. In the latter case with 𝑇 the threshold value could
be further decreased with the disadvantage of slightly less well performing models. Overall,
obviously there is a trade-off between a good model fit and reasonable threshold values.

Applying the POT approach seems to give more reasonable results in terms of crash prob-
abilities and return periods (Table 5.14), which were in the hundreds with BM but in the
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thousands with POT. If we accept a few assumptions we can attempt to validate these prob-
abilities. These assumptions are as follows:

• the number of interactions used in the analysis (194 for 𝑇𝑇𝐶 and 792 for 𝑇 ) was all
the interactions observed in the 2-day period between 6AM and 9PM, and no interactions
were left out;

• the observation period (6AM-9PM) is a good representation of the entire day and acci-
dents did not happen outside this time period;

• accident data provided are accurate, namely 5 crashes due to the collision of left turning
and straight going vehicles in a 11-year period, which is approximately 800 days/accident
occurrence (one accident happened in 800 days on average).

Accepting the above assumptions and comparing the model results we can actually state
that indeed the POT results are much closer to the actual crash frequency. The POT model
for 𝑇𝑇𝐶 (245.20 days/accident) gives the best prediction, especially if we accept the as-
sumption that property damage accidents are in general underreported.

It can also be concluded that models for 𝑇 provide more reliable results as the return
level plots come with narrower confidence bands, thus the prediction of probabilities of ex-
treme events is more accurate. On the other hand, validation results show that 𝑇 tends
to overestimate crash frequencies, e.g. for POT 𝑇 estimated one crash in every 28 days,
which value was more realistic (245) for 𝑇𝑇𝐶 .

Table 5.14: Summary of results for both BM and POT with different thresholds

Method Indicator
(threshold) Probability Probability

of crash
Return
period

Sample
(2 days)

Days /
accident

BM

TTC (<3.5s) Pr{TTC<0|TTC<3.5} 0.0733 13.65 31 0.88
TTC (<4s) Pr{TTC<0|TTC<4} 0.0135 73.92 48 3.08
TTC (<4.5s) Pr{TTC<0|TTC<4.5} 0.0098 101.04 76 2.66
TTC (<5s) Pr{TTC<0|TTC<5} 0.0040 246.57 100 4.93
T2 (<2s) Pr{T2<0|T2<2} 0.0098 101.96 130 1.57
T2 (<2.5s) Pr{T2<0|T2<2.5} 0.0044 226.10 232 1.95
T2 (<3s) Pr{T2<0|T2<3} 0.0033 302.40 341 1.77
T2 (<3.5s) Pr{T2<0|T2<3.5} 0.0016 596.02 443 2.69

POT TTC (<4s) Pr{TTC<0|TTC<4} 0.00017 5,884.80 48 245.20
T2 (<2s) Pr{T2<0|T2<2} 0.00055 1,807.26 130 27.80

The above results illustrate that the near-crash threshold value affecting sample size is
a critical issue, especially with the BM approach. Figure 5.21 illustrates this by further
refining near-crash threshold values. Here the block-maxima approach was used and sub-
samples were created using near-crash threshold values by using a 0.05 increment. As for
𝑇 75 models were fitted for near-crash values ranging from 1.3s to 5s and for 𝑇𝑇𝐶
31 models were fitted for near-crash values ranging from 3.5s to 5s. Crash probabilities
were calculated for all the models. As the sub-sampling near-crash threshold is increased,
sample sizes become bigger resulting in better model fits, even though with less pragmatic
near-crash thresholds; so the previously mentioned trade-off is clearly illustrated.



5.3. Discussion 48

Figure 5.21: Results of Block Maxima approach for a sequence of threshold values

Figure 5.21 also illustrates that for different near-crash thresholds different crash prob-
abilities are predicted for the two indicators. As we are analysing two indicators of different
nature (a collision course (𝑇𝑇𝐶 ) and a crossing course (𝑇 ) indicator), it is worth inves-
tigating for what near-crash threshold values would they predict similar crash probabilities,
in other words whether there is transferability in between them. This would provide further
insight into the applicability of collision and crossing course indicators. Based on the results
shown in Figure 5.21 threshold values were selected for which both indicators yielded the
most similar crash probability (i.e. the difference between the predicted crash probabilities
was marginal). This plot (Figure 5.22) actually describes the relationship between these two
indicators, saying under what near-crash thresholds we receive almost the same crash prob-
ability. There is some fluctuation in the graph, but the pattern clearly shows that for 𝑇
lower near-crash thresholds would yield the same crash probability (e.g. 3.5s for 𝑇𝑇𝐶 and
1.25s for 𝑇 ). A Pearson correlation test was used to determine how strong the relationship
is. This test was highly significant (p-value = 8.96e-14) and indicated a strong correlation
(0.93).

Figure 5.22: Temporal indicators with similar crash probabilities
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Judging which indicator is better could be done by validation using a proper accident
dataset which is unfortunately not available for this study. Notwithstanding, it has to be
noted that this is not an exceptional case, and even with available historical data its appli-
cability can be questioned in general (for reasons associated with the drawbacks of accident
records already outlined previously). A judgment can only be made by considering the ratio-
nalism of crash probabilities and return periods as well as the goodness of the models.

Having compared the estimated crash probabilities for different near-crash thresholds
and by checking the correlation between them we can conclude that collision and crossing
course indicators are transferable. Crash probabilities calculated using EVT showed that
one has to be ”stricter” against crossing course interactions, as compared to collision course
interactions, lower near-crash values would yield similar probabilities. It also has to be noted,
that in this study exclusively straight moving and left-turning vehicle-vehicle interactions
were analyzed and thus results cannot be generalized to other interaction types. However,
this analysis revealed that for this type of interaction, in comparison with a crossing course
indicator 𝑇 , a collision course indicator 𝑇𝑇𝐶 is of limited use because of its smaller
sample size that can be gathered in a given time period.

A possible step to refine the models is using motion prediction. As the above investigated
indicators both assume constant speeds and unchanged paths, which is not realistic, it is
worthwhile considering a probabilistic approach to predict trajectories and speeds of inter-
acting vehicles. This approach would result in different values with different probabilities for
a single interaction, thus providing an increased sample size for both indicators. St-Aubin
et al. (2015) developed an approach called Probabilistic Surrogate Measures of Safety (PSMS)
considering all possible paths that may lead to two road users to collide. At the time of writing
there are also initiatives at Lund University to apply a probabilistic framework.

Using the model results one can also calculate the probability of non-crash events, in
other words when a temporal indicator is higher than zero. The closeness of a temporal
indicator to zero can also explain the severity of the interaction. For this purpose the POT
model parameters were used as they yielded more rational results. Figure 5.23 and Figure
5.24 show the predicted probabilities associated with the range of values between zero and
𝑢, which was 4s and 2s for 𝑇𝑇𝐶 and 𝑇 , respectively. The predicted probabilities plotted
are conditional on the temporal indicator equal to the threshold 𝑢 used in the model. As
it was mentioned in the literature review section one of the approaches to determine the
severity of conflicts is simply setting thresholds separating serious and light conflicts. This
approach certainly has limitations, as the choice of this threshold value is arbitrary and
using a temporal indicator on its own does not account for the possible consequences. The
bivariate approach in Chapter 6 addresses this issue.
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Figure 5.23: Probability of events and return periods for values (POT approach)

Figure 5.24: Probability of events and return periods for values (POT approach)



6
Bivariate models

In the previous chapter univariate models were used with the objective to estimate crash
probabilities. As it was outlined in the literature review a few researchers (for instance Zheng
et al. (2014b), Laureshyn et al. (2017a), Zheng et al. (2018)) already stressed the relevance
of the joint modeling of nearness-to-collision and a severity indicator of some sort. The pri-
mary goal of this chapter is to provide a solution for that using bivariate models. As for the
temporal indicators 𝑇𝑇𝐶 and 𝑇 will be used with the secondary intention of analyzing
and comparing a collision and a crossing course indicator. As for severity two speed related
indicators are used:

• Relative speed, which is the speed of a moving vehicle relative to another moving vehicle.
If for instance the vehicles are moving in the opposite direction, their relative speed is
the sum of their individual speeds.

• Delta-V0, which shows the change of the velocity vector by a road user during a crash.
It extends the severity measured by relative speed by taking into account the masses of
vehicles colliding and the angle of collision (see Equation 2.4). Of the individual Delta-
V0 values of the two vehicles the highest can be used to describe severity. Further
assumptions can be made about the deceleration of the vehicles, however this leads to
a gradual decrease in the sample of interactions. For this reason in this analysis the
base value will be used assuming no braking.

As it was already mentioned at the end of Chapter 4 the dataset used in this chapter is
slightly different from the one used for the univariate case. Three observations due to their
different type of interaction were removed.

In this chapter altogether four cases are investigated using bivariate models:

• negated 𝑇𝑇𝐶 vs. relative speed;

• negated 𝑇 vs. relative speed;

• negated 𝑇𝑇𝐶 vs. DeltaV0;

• negated 𝑇 vs. DeltaV0.

As POT gave more realistic and reliable results for univariate models, it is preferred over
the Block Maxima approach and will be used for the bivariate case. Depending on whether
temporal based and/or speed related indicators exceed their thresholds (𝑢 and 𝑢 , respec-
tively), the plane can be divided into four quadrants. These quadrants are indicated in Figure
6.1 (note that in the course of bivariate modeling for 𝑇𝑇𝐶 the negated values are used, thus
the relation signs are actually the opposite):

51
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• 𝑅 , = (𝑇𝑇𝐶 > 𝑢 , 𝑅𝑆 < 𝑢 ): both indicators are below their thresholds;

• 𝑅 , = (𝑇𝑇𝐶 > 𝑢 , 𝑅𝑆 > 𝑢 ): speed related indicator exceeds the threshold, temporal
based stays below;

• 𝑅 , = (𝑇𝑇𝐶 < 𝑢 , 𝑅𝑆 < 𝑢 ): temporal based indicator exceeds the threshold, speed related
indicator stays below;

• 𝑅 , = (𝑇𝑇𝐶 < 𝑢 , 𝑅𝑆 > 𝑢 ): both indicators exceed their thresholds.

If temporal based indicators are equal to 0, a traffic conflict results in a crash. Speed related
indicators explain the consequence (severity) of a crash. A speed related indicator being high
does not necessarily mean a crash, however it increases the probability of a more severe
outcome.

As it was earlier suggested by Laureshyn et al. (2017a) the combination of temporal and
speed related indicators into one plane creates so-called severity levels. These lines show
events of equal severity. Quite intuitively severity increases as the value of the temporal
indicator goes down and the value of the speed related indicator goes up. Even though these
lines represent encounters of equal severity the probability of points along these lines can
be different. Another way to interpret this plane is that we look for points (events) located
along such lines that have the same or very similar probability. The shape of these probability
based risk levels has to be investigated as it is not necessarily the same as that of the severity
levels. By means of bivariate threshold excess models this chapter also aims for investigating
these probability based risk levels.

Figure 6.1: Severity levels and the four regions of the bivariate extreme value model

6.1. Modeling procedure
The steps of the modeling procedure are outlined and explained as follows:

1. Correlation analysis (Pearson, Spearman, Kendall)

Traditional tests are run to see the correlation between the above mentioned temporal
and speed related variables. For all the three correlation tests their coefficients and
p-values are given. In cases when the p-value is smaller than the significance level 𝛼,
we can reject the null hypothesis and conclude that the correlation between the two
indicators is significant.
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2. Independence Test for Bivariate Copula Data

This test returns the p-value of a bivariate asymptotic independence test based on
Kendall’s 𝜏. The test is performed using pseudo observations [0,1], which are normal-
ized ranked data. A test yielding a significant result shows dependence between the two
variables.

3. Coefficient of extremal dependence

Bivariate extreme value distributions assume that the margins are either asymptoti-
cally dependent or perfectly independent. They cannot account for situations where the
dependence between variables disappears at extreme levels (Stephenson, 2018).

One measure to investigate tail dependence is the coefficient of extremal dependence; 𝜒
∈ [0;1] is the tendency for one variable to be large given that the other is large. If 𝜒=0 the
two variables are asymptotically independent. Suppose that 𝐹 and 𝐹 are the marginal
distribution functions of 𝑋 and 𝑌 respectively (Coles, 2001), and define

𝜒 = lim
→
𝑃𝑟{𝐹 (𝑌) > 𝑢|𝐹 (𝑋) > 𝑢}, (6.1)

For 0 <𝑢<1,
𝜒(𝑢) = 2 − log𝑃𝑟{𝐹 (𝑋) < 𝑢, 𝐹 (𝑌) < 𝑢}log 𝑃𝑟{𝐹 (𝑋) < 𝑢}

= 2 − log𝑃𝑟{𝐹 (𝑋) < 𝑢, 𝐹 (𝑌) < 𝑢}log 𝑢

(6.2)

and
𝜒 = lim

→
𝜒(𝑢) (6.3)

𝜒 provides a measure of extremal dependence within the class of asymptotically de-
pendent distributions, where 𝜒 increases with strength of dependence at extreme levels
(Coles, 2001). For asymptotically independent variables, 𝜒(𝑢) = 0 for all 𝑢 in (0,1). For
perfectly dependent variables, 𝜒(𝑢) = 1 for all 𝑢 in (0,1).

𝜒 fails to provide a measure for asymptotically independent distributions (Coles, 2001)
and thus a second measure �̄� is needed. For 0 <𝑢<1,

�̄�(𝑢) = 2 log 𝑃𝑟{𝐹 (𝑋) > 𝑢}
log 𝑃𝑟{𝐹 (𝑋) > 𝑢, 𝐹 (𝑌) > 𝑢} − 1

= 2 log(1 − 𝑢)
log 𝑃𝑟{𝐹 (𝑋) > 𝑢, 𝐹 (𝑌) > 𝑢} − 1

(6.4)

and
�̄� = lim

→
�̄�(𝑢) (6.5)

�̄� provides a measure of extremal dependence within the class of asymptotically inde-
pendent distributions, where �̄� increases with strength of dependence at extreme levels
(Coles, 2001). For asymptotically dependent variables �̄� = 1, and for independent vari-
ables �̄� = 0.
These two measures together provide a summary of extremal dependence as summer-
ized in Table 6.1.
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Table 6.1: Characteristics of extremal dependence

Measure Class =0 (0,1) =1

𝜒
asymptotically

dependent
variables

variables are
asymptotically
independent

behaviour of
𝜒 and �̄� to be
investigated as
𝑢 → 1

variables are
perfectly

dependent

�̄�
asymptotically
independent

variables

variables are
independent

variables are
asymptotically

dependent

Using observed proportions the empirical estimates of 𝜒 and �̄� can be plotted and used
for several purposes. As for the bivariate threshold model they can be used for distin-
guishing between asymptotic dependence and asymptotic independence, for determin-
ing suitable thresholds and for validating the choice of a particular model for 𝑉 (see
Equation 2.19) (Coles, 2001).

4. Threshold selection

Threshold selection is done by using the threshold stability plot and mean excess plot
along with the spectral measure plot (or bivariate threshold choice plot). These plots
were already explained previously, in Chapter 5.2 and 2.2.2, respectively. These diag-
nostic plots used for threshold selection might point to a different range of thresholds.
The principle (Zheng et al., 2018) is to select a pair of thresholds whose order is not
greater than 𝑘 , the largest 𝑘 value where 𝐻([0, 1]) = 2 (in other words the largest 𝑛-𝑘
observations are taken as exceedances) and meanwhile they should be within the stable
range of each marginal distribution.

5. Fitting POT models

After determining appropriate thresholds for both variables two univarite models are fit-
ted, followed by bivariate threshold excess modeling. As for the bivariate models several
parametric families are available to model the dependence structure in between vari-
ables. A widely used parametric model is the logistic (see Equation 2.23), there are many
other parametric families available in the literature such as asymmetric logistic, nega-
tive logistic, bilogistic, asymmetric negative bilogistic, negative bilogistic, Husler-Reiss.
In a recent study Zheng et al. (2018) tested several bivariate extreme value distributions
and concluded that the logistic distribution function performed the best since in most
of the cases it yielded the lowest AIC values. Therefore a bivariate POT model using
logistic distribution is fitted, but other distribution functions are also tested. Another
advantage of the logistic distribution is its compact form, it has one (Equation 2.24)
parameter 𝛼, if 𝛼 → 1 it corresponds to independent variables, if 𝛼 → 0 it corresponds
to perfectly dependent variables.

6. Calculating probabilities

The joint probability of a certain range of temporal and speed related indicators is cal-
culated. We are primarily interested in the region 𝑅 , where both indicators are above
their pre-selected thresholds. A matrix of combinations for the two indicators is con-
structed and the joint probabilities of these events are calculated and probability based
risk levels yielding the same probability are constructed.

7. Testing Copula

An alternative to bivariate threshold excess modelling is using a copula capturing the
joint behaviour, for which the appropriate family has to be selected. This can be done
using the in-built 𝐵𝑖𝐶𝑜𝑝𝑆𝑒𝑙𝑒𝑐𝑡 function in R, for which pseudo observationts are used.
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The suggested Copula family with its known parameters then can be fitted to actual
data. The estimated and fitted parameters of the copula as well as Kendall’s 𝜏 can be
compared. A goodness of fit test for fitted copula can be run using the 𝑔𝑜𝑓𝐶𝑜𝑝𝑢𝑙𝑎 func-
tion in R. Sample data from the fitted joint distribution and actual data can be plotted
together and compared.

6.2. Results
Results are presented separately for all the four cases (variable pairs) outlined at the begin-
ning of this chapter.

6.2.1. TTC vs. relative speed
The scatter plot in Figure 6.2 shows the relationship between negated 𝑇𝑇𝐶 and relative
speed. After removing the two extreme outliers (two observation points on the left in Figure
6.2), correlation tests were run to determine how strong the relationship is. These tests were
all significant and indicated a moderate correlation (Table 6.2).

Figure 6.2: Negated vs. relative speed: a) all observations; b) filtered data <15s

Table 6.2: Correlation analysis between and relative speed

Test Statistic p-value
Pearson -0.490 5.7e-13
Spearman’s rho -0.453 6.5e-11
Kendall’s tau -0.328 1.5e-11

The asymptotic independence test for bivariate copula using pseudo observations (Figure
6.3) gives a significant result showing dependence (statistic 6.74, p-value 1.517431e-11).

Threshold stability plot for 𝑇𝑇𝐶 can be found in Chapter 5 (Figures 5.12 and 5.15), the
one for relative speed at 𝑇𝑇𝐶 is in Figure 6.4. Mean excess plot for 𝑇𝑇𝐶 can be found in
Chapter 5 (Figure 5.11), the one for relative speed at 𝑇𝑇𝐶 is Figure 6.5. Spectral measure
plot is given in Figure 6.6 also indicating the value of 𝑘 .

Threshold selection for 𝑇𝑇𝐶 and relative speed:

• 𝑇𝑇𝐶 : a range of -3.5s to -4s seems to be rational based on the mean excess plot and
the threshold stability plot (in Chapter 5 a value of -4 s was used as a threshold value).

• Relative speed at 𝑇𝑇𝐶 : both the mean excess plot and the threshold stability plot
suggest a range of 15 m/s and 15.5 m/s.
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• The threshold values associated with 𝑘 =47 are -3.97 s for 𝑇𝑇𝐶 and 15.01 m/s for its
relative speed, which are in line with the above indicated values.

Figure 6.3: vs. relative speed data transformed to uniform distribution

Figure 6.4: Threshold stability plot for relative speed at
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Figure 6.5: Mean excess plots for relative speed at

Figure 6.6: Spectral measure plot for negated vs. relative speed ( =47)

Based on the above threshold values -4s for negated 𝑇𝑇𝐶 and 15m/s for relative speed
are used to fit the univariate POT models first (marginal number above the threshold is 47
for both indicators). These models yielded 𝜎 = 0.989 and 𝜉 = −0.208 for negated 𝑇𝑇𝐶 and
𝜎 = 1.879 and 𝜉 = −0.058 for relative speed.

As for the bivariate models margins are modelled using a GPD for points above the thresh-
old and an empirical model for those below. In the censored likelihood method the number
of points lying below both thresholds are used, but the locations of those points are not (with
the 𝑓𝑏𝑣𝑝𝑜𝑡 command from the 𝑒𝑣𝑑 package (R Core Team, 2013)).

The fitted bivariate threshold excess model (joint number above the threshold is 23) with
logistic parametric distribution function using the censored maximum likelihood estimation
method yielded 𝜎 = 0.941 and 𝜉 = −0.128 for negated 𝑇𝑇𝐶 and 𝜎 = 1.866 and 𝜉 = 0.008
for relative speed, with an 𝛼 value of 0.746 indicating a weak dependence between the two
variables. Figure 6.7 shows the resulting diagnostic plots. The spectral density appears
to be flat with peaks at zero and one. These two sides of the plot correspond to cases in
which only one component is extreme, whereas the middle of the plot at 0.5 corresponds
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to data for which both indicators are extreme. This weak dependence is also suggested
by the dependence function, which takes the value of 1 at complete independence and 0.5
at complete dependence. In this plot both the parametric and non-parametric functions
are plotted, which are actually quite close proving a good fit. Suppose there was a strong
dependence in between the two variables, then the spectral density would show a peaked
curve and the convex dependence function would get closer to the bottom of the triangular
region, at complete dependence 𝐴(1/2) = 0.5.

Lines in the density and quantile curves plots at extreme levels group the combinations
of the two indicators having the same risk level. The density plot is associated with the prob-
ability density function, whereas the quantile curves plot is associated with the cumulative
distribution function. Both plots show the contour lines of either the bivariate PDF or CDF,
respectively.

Figure 6.7: Diagnostic plots for bivariate GPD for negated vs. relative speed

Bivariate threshold excess models using other parametric distributions were fitted and
compared by their Akaike Information Criterion (AIC), where the lower this value the bet-
ter the model is. Results in Table 6.3 in an increasing order show that there are marginal
differences in between the various parametric distribution functions.

Table 6.3: Comparison of parametric bivariate extreme value distributions for vs. relative speed

Name AIC
Husler-Reiss 632.0
Negative logistic 632.9
Negative bilogistic 633.2
Bilogistic 633.5
Logistic 634.6
Asymmetric negative logistic 638.2
Asymmetric logistic 639.1
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Using the results of the bivariate threshold excess model with logistic distribution the joint
probabilities of events for a range of values (for 𝑇𝑇𝐶 between 0 and 4s with an increment of
0.1s, for relative speed between 15 and 25 m/s with an increment of 0.5 m/s) are calculated
using Equation 2.23. The resulting matrix is plotted in Figure 6.8. These joint probabilities
actually show the probability of exceeding a given pair of values conditional on exceeding the
threshold values 4s and 15m/s (TTC<x|TTC<4s and RS>y|RS>15m/s). As we take higher
values closer to 4s for 𝑇𝑇𝐶 and smaller values closer to 15m/s for relative speed, the joint
probability approaches to 1. Taking the same risk levels the probability based risk levels can
be plotted in a two-dimensional plane (Figure 6.9).

Figure 6.8: Cumulative distribution function of the fitted bivariate GPD for negated vs. relative speed

Figure 6.9: Probability based risk levels of the fitted bivariate GPD for negated vs. relative speed

To further investigate the dependence between the two variables 𝜒 and �̄� plots are used
(Figure 6.10). In the figure dotted lines correspond to 95% confidence intervals. Neither of
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the plots reveals strong dependence and based on these plots it is hard to explicitly state that
the two variables show asymptotic dependence at extreme levels as u→1. A closer look at
the region 𝑢 > 0.8 (Figure 6.11) leads to the same conclusion.

Figure 6.10: Empirical estimates of ( ) and ̄ ( ) for - relative speed data

Figure 6.11: Empirical estimates of ( ) and ̄ ( ) . for - relative speed data

Previously dependence and marginal distributions were modeled simultaneously with bi-
variate threshold excess models using parametric distribution functions. Another way is to
model the dependence and marginal distributions separately, where a fitted parametric cop-
ula describes the dependence and univariate POT models the marginal distributions. These
two then are incorporated into one bivariate model.Thus the next step is to build the bivariate
distribution using a parametric copula as well as the previously fitted univariate POT models
as marginal distributions.
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The appropriate family of copula was chosen using the in-built 𝐵𝑖𝐶𝑜𝑝𝑆𝑒𝑙𝑒𝑐𝑡 function in R.
For given bivariate copula data this command selects an appropriate bivariate copula family
from 40 copulas. In this particular case the selected copula was the Rotated Tawn type 2
180 degrees (Family: 214) with parameters 2.65 and 0.39. This copula was then fitted to
actual data resulting in parameters 2.648 and 0.386, which are exactly the same as the ones
estimated before. The Kendall’s tau for this particular copula using the above parameters is
0.30, which is in line with the value indicated in Table 6.2. As a goodness of fit the empirical
copula with a parametric estimate of the copula can be compared. Approximate p-values are
obtained using parametric bootstrap. The test resulted in p-values higher than 0.05, thus
we cannot reject the null hypothesis (the resulting sample is from the copula), that is, the
fitting process was successful.

Random sample observations can be generated from this bivariate distribution which then
can be compared to observed data (Figure 6.12). This plot offers a possibility to visually check
whether simulated data are in line with observed data. This is not quite straightforward here
as we analyze the extreme region and have only a few observations. In this particular case,
however, simulated data seem to describe observed values well.

Furthermore, probability density (Figure 6.13) as well as cumulative distribution functions
(Figure 6.14) along with their contour lines can be plotted. The PDF flattens rapidly as both
indicators approach their extreme values (i.e. 𝑇𝑇𝐶 converges to zero and relative speed to
20 m/s). The CDF also proves that the dependence in between the two variables is weak;
keeping one indicator constant (e.g. relative speed at 15.5 m/s) and by changing the value of
𝑇𝑇𝐶 does not really affect the probability (contour line at approximately 0.1). The contour
lines in Figure 6.14 can actually be interpreted the same way as in Figure 6.9, where the
probability based risk levels were constructed using the bivariate threshold excess model
results. In Figure 6.14 however the negated TTC values are shown and the probabilities refer
to the area below the contour lines (not the area above as in Figure 6.9).

Figure 6.12: Testing the copula with a sample of 100 against actual data for vs. relative speed
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Figure 6.13: Probability density function (left) and its contour plot (right) of the fitted copula for vs. relative speed

Figure 6.14: Cumulative distribution function (left) and its contour plot (right) of the fitted copula for vs. relative speed

6.2.2. T2 vs. relative speed
The scatter plot in Figure 6.15 shows the relationship between negated 𝑇 and relative
speed. After removing the three extreme outliers (observation points on the left in Figure
6.15), correlation tests (Table 6.4) were all significant and indicated a very weak correlation.

Figure 6.15: Negated vs. relative speed: a) all observations; b) filtered data <15s
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Table 6.4: Correlation analysis between and relative speed

Test Statistic p-value
Pearson -0.183 2.0e-07
Spearman’s rho -0.099 0.005
Kendall’s tau -0.065 0.006

The asymptotic independence test for bivariate copula using pseudo observations (Figure
6.16) gives a significant result showing dependence (statistic 2.73, p-value 0.00616).

Figure 6.16: vs. relative speed data transformed to uniform distribution

Threshold stability plot for 𝑇 can be found in Chapter 5 (Figures 5.17 and 5.20), the
one for relative speed at 𝑇 is in Figure 6.17. Mean excess plot for 𝑇 can be found in
Chapter 5 (Figure 5.16), the one for relative speed at 𝑇 is in Figure 6.18. Spectral measure
plot is given in Figure 6.19 indicating the value of 𝑘 .

Threshold selection for 𝑇 and relative speed:

• 𝑇 : a range of -1.9s to -2.2s seems to be rational based on the mean excess plot and
the threshold stability plot (in Chapter 5 a value of -2 s was used as a threshold value).

• Relative speed at 𝑇 : the threshold stability plot suggests a stable range in between
18 and 20 m/s, which is line with the mean excess plot.

• The threshold values associated with 𝑘 =441 are -3.5 s for 𝑇 and 15.8 m/s for its
relative speed, both values are lower than what the previous plots suggest (resulting in
more excesses).

This is one of the cases when marginal and dependence considerations suggest different
thresholds. As it was suggested by Zheng et al. (2018) the intersection of these can be chosen
taking threshold values smaller than 𝑘 in the appropriate range suggested by the mean
excess plot and threshold stability plot. Considering these limitations a threshold value of
2s for 𝑇 and 18 m/s for relative speed are used (marginal number above threshold is 129
and 259, respectively, joint number above is 38).

The simple univariate models yielded 𝜎 = 0.580 and 𝜉 = −0.242 for negated 𝑇 and
𝜎 = 2.916 and 𝜉 = −0.122 for relative speed. The fitted bivariate threshold excess model with
logistic parametric distribution function yielded 𝜎 = 0.572 and 𝜉 = −0.231 for negated 𝑇
and 𝜎 = 2.788 and 𝜉 = −0.143 for relative speed, with an 𝛼 value of 0.999 indicating perfect
independence between the two variables. Diagnostic plots are presented in Figure 6.20, the
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above mentioned independence can also be captured in the spectral density and dependence
functions. Bivariate threshold excess models using other parametric distributions were also
fitted, results in Table 6.5 show that again there are marginal differences in between them
and the logistic model performs rather well.

Figure 6.17: Threshold stability plot for relative speed at

Figure 6.18: Mean excess plots for relative speed at
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Figure 6.19: Spectral measure plot for negated vs. relative speed ( =441)

Figure 6.20: Diagnostic plots for bivariate GPD for negated vs. relative speed

Table 6.5: Comparison of parametric bivariate extreme value distributions for vs. relative speed

Name AIC
Husler-Reiss 2772.2
Negative bilogistic 2774.1
Logistic 2774.3
Bilogistic 2775.8
Negative logistic 2777.2
Asymmetric negative logistic 2779.1
Asymmetric logistic 2783.7
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Using the results of the bivariate threshold excess model with logistic distribution the joint
probabilities of events for a range of values (for 𝑇 between 0 and 2s with an increment of
0.1s, for relative speed between 18 and 35 m/s with an increment of 0.5 m/s) are calculated.
The resulting matrix is plotted in Figure 6.21. This plot shows the probability of exceeding a
given pair of values conditional on exceeding the threshold values 2s and 18m/s (T2<x|T2<2s
and RS>y|RS>18m/s). Probability based risk levels are plotted in a two-dimensional plane
in Figure 6.22.

Figure 6.21: Cumulative distribution function of the fitted bivariate GPD for negated vs. relative speed

Figure 6.22: Probability based risk levels of the fitted bivariate GPD for negated vs. relative speed

Neither of the 𝜒 and �̄� plots suggests asymptotic dependence at extreme levels as u→1
and it is more reasonable to say that they are perfectly independent (Figure 6.23 and Figure
6.24).
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Figure 6.23: Empirical estimates of ( ) and ̄ ( ) for - relative speed data

Figure 6.24: Empirical estimates of ( ) and ̄ ( ) . for - relative speed data

The appropriate family of copula selected was the Rotated Tawn type 2 180 degrees (Fam-
ily: 214) with parameters 1.65 and 0.15. This copula was then fitted to actual data resulting
in parameters 1.650 and 0.145, which are exactly the same as the ones estimated before.
The Kendall’s tau for this particular copula using the above parameters is 0.10, which is
just slightly different from the value of 0.07 indicated in Table 6.4. The goodness of fit test
(comparison of the empirical copula with a parametric estimate of the copula) yielded p-
values smaller than 0.05, thus we reject the null hypothesis (the resulting sample is from
the copula), that is, the fitting process was not successful. Random sample observations
are generated from this bivariate distribution and compared to observed data (Figure 6.25).
Since the two indicators seem to be perfectly independent, there are no observations in the
extreme value region, however simulated data show it otherwise.
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Figure 6.25: Testing the copula with a sample of 100 against actual data for vs. relative speed

This copula fitting actually suggests that the two variables are indeed perfectly indepen-
dent at extreme levels.

6.2.3. TTC vs. Delta-V0
The scatter plot in Figure 6.26 shows the relationship between negated 𝑇𝑇𝐶 and Delta-
V0. The two extreme outliers (two observation points on the left in Figure 6.26) were again
removed and correlation tests were run which were all significant and indicated a weak cor-
relation (Table 6.6).

Figure 6.26: Negated vs. Delta-V0: a) all observations; b) filtered data <15s

Table 6.6: Correlation analysis between and Delta-V0

Test Statistic p-value
Pearson -0.286 6.0e-05
Spearman’s rho -0.255 0.0003
Kendall’s tau -0.183 0.0001

The independence test for bivariate copula using pseudo observations (Figure 6.27) gives
a significant result showing dependence (statistic 3.77, p-value 0.0001).
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Figure 6.27: vs. Delta-V0 data transformed to uniform distribution

Threshold stability plot for 𝑇𝑇𝐶 can be found in Chapter 5 (Figures 5.12 and 5.15),
the one for Delta-V0 at 𝑇𝑇𝐶 is Figure 6.28. Mean excess plot for 𝑇𝑇𝐶 can be found in
Chapter 5 (Figure 5.11), the one for Delta-V0 at 𝑇𝑇𝐶 is Figure 6.29. Spectral measure plot
is given in Figure 6.30 also indicating the value of 𝑘 .

Threshold selection for 𝑇𝑇𝐶 and Delta-V0:

• 𝑇𝑇𝐶 : as previously already noted a range of -3.5s to -4s seems to be rational, earlier
a value of -4 s was used as a threshold.

• Delta-V0 at 𝑇𝑇𝐶 : both the mean excess plot and the threshold stability plot suggest
a range of 8 m/s and 10 m/s.

• The threshold values associated with 𝑘 =57 are -4.18 s for 𝑇𝑇𝐶 and 8.26 m/s for its
Delta-V0, which are in line with the above indicated values.

Figure 6.28: Threshold stability plot for Delta-V0 at
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Figure 6.29: Mean excess plots for Delta-V0 at

Figure 6.30: Spectral measure plot for negated vs. relative speed ( =57)

Based on the above threshold values -4s for negated 𝑇𝑇𝐶 and 9m/s for Delta-V0 are
used to fit the univariate POT models first (marginal number above threshold is 47 and 44,
respectively, joint number above is 16). These models yielded 𝜎 = 0.989 and 𝜉 = −0.208 for
negated 𝑇𝑇𝐶 and 𝜎 = 1.339 and 𝜉 = −0.146 for Delta-V0.

The fitted bivariate threshold excess model with logistic parametric distribution function
using the censored maximum likelihood estimation method yielded 𝜎 = 0.996 and 𝜉 = −0.191
for negated 𝑇𝑇𝐶 and 𝜎 = 1.313 and 𝜉 = −0.108 for Delta-V0, with an 𝛼 value of 0.897
indicating a weak dependence between the two variables. Figure 6.31 shows the resulting
diagnostic plots. Both the spectral density as well as the dependence functions suggest weak
dependence.
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Figure 6.31: Diagnostic plots for bivariate GPD for negated vs. Delta-V0

Results of bivariate threshold excess models using other parametric distributions are
given in Table 6.7 show that the logistic distribution resulted in a good model and again
there are only marginal differences in between the various parametric distribution functions.

Table 6.7: Comparison of parametric bivariate extreme value distributions for vs. Delta-V0

Name AIC
Negative bilogistic 599.8
Husler-Reiss 600.2
Bilogistic 600.2
Logistic 600.3
Negative logistic 600.3
Asymmetric negative logistic 602.0
Asymmetric logistic 602.7

Using the results of the bivariate threshold excess model with logistic distribution the joint
probabilities of events for a range of values (for 𝑇𝑇𝐶 between 0 and 4s with an increment
of 0.1s, for Delta-V0 between 9 and 15 m/s with an increment of 0.5 m/s) are calculated
using Equation 2.23. The resulting matrix is plotted in Figure 6.32. These joint probabil-
ities show the probability of exceeding a given pair of values conditional on exceeding the
threshold values 4s and 9m/s (TTC<x|TTC<4s and Delta-V0>y|Delta-V0>9m/s). As we take
higher values closer to 4s for 𝑇𝑇𝐶 and smaller values closer to 9m/s for Delta-V0, the joint
probability approaches to 1. Taking the same risk levels the probability based risk levels can
be plotted in a two-dimensional plane (Figure 6.33).
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Figure 6.32: Cumulative distribution function of the fitted bivariate GPD for negated vs. Delta-V0

Figure 6.33: Probability based risk levels of the fitted bivariate GPD for negated vs. Delta-V0

As far as the dependence between the two variables is concerned the 𝜒 and �̄� plots (Figure
6.34 and Figure 6.35) show independence at extreme levels as u→1.
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Figure 6.34: Empirical estimates of ( ) and ̄ ( ) for - Delta-V0 data

Figure 6.35: Empirical estimates of ( ) and ̄ ( ) . for - Delta-V0 data

The copula selected was the Survival Gumbel (Family: 14) with one parameter 1.24. After
fitting this copula to actual data the resulting parameter was 1.236, exactly the same as the
estimated value. The Kendall’s tau (0.193) is also in line with the value indicated in Table
6.6 (0.183). Approximate p-values were higher than 0.05, thus we can conclude that the
resulting sample is from the copula and the fitting process was successful.

Following the same procedure as before the bivariate distribution using the copula was
built and a random sample was generated and compared to observed data (Figure 6.36).
Probability density (Figure 6.37) as well as cumulative distribution functions (Figure 6.38)
along with their contour lines are plotted.
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Figure 6.36: Testing the copula with a sample of 100 against actual data for vs. Delta-V0

Figure 6.37: Probability density function (left) and its contour plot (right) of the fitted copula for vs. Delta-V0

Figure 6.38: Cumulative distribution function (left) and its contour plot (right) of the fitted copula for vs. Delta-V0
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6.2.4. T2 vs. Delta-V0
The scatter plot in Figure 6.39 shows the relationship between negated 𝑇 and Delta-V0.
Three extreme outliers were again removed and three correlation tests were run, two of which
were not significant and all indicated a weak correlation (Table 6.8).

Figure 6.39: Negated vs. Delta-V0: a) all observations; b) filtered data <15s

Table 6.8: Correlation analysis between and Delta-V0

Test Statistic p-value
Pearson -0.117 0.0009
Spearman’s rho -0.051 0.145
Kendall’s tau -0.033 0.165

The independence test for bivariate copula using pseudo observations (Figure 6.40) did
not give a significant result (statistic 1.39, p-value 0.165).

Figure 6.40: vs. Delta-V0 data transformed to uniform distribution

Threshold stability plot for 𝑇 can be found in Chapter 5 (Figures 5.17 and 5.20), the
one for Delta-V0 at 𝑇 is in Figure 6.41. Mean excess plot for 𝑇 can be found in Chapter
5 (Figure 5.16), the one for Delta-V0 at 𝑇 is in Figure 6.42. Spectral measure plot is given
in Figure 6.43 indicating the value of 𝑘 .
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Threshold selection for 𝑇 and Delta-V0:

• 𝑇 : a range of -1.9s to -2.2s seems to be rational based on the mean excess plot and
the threshold stability plot (previously a value of -2 s was used).

• Delta-V0 at 𝑇 : the threshold stability and mean excess plots suggest a stable range
in between 10 and 11 m/s.

• The threshold values associated with 𝑘 =439 are -3.50 s for 𝑇 and 8.85 m/s for its
Delta-V0, both values lower than the ones mentioned above.

Figure 6.41: Threshold stability plot for Delta-V0 at

Figure 6.42: Mean excess plots for Delta-V0 at
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Figure 6.43: Spectral measure plot for negated vs. relative speed ( =439)

Based on the above threshold values -2 s for negated 𝑇 and 10.5 m/s for Delta-V0
are used to fit the univariate POT models first (marginal number above threshold is 129 and
232, respectively, joint number above is 30). These models yielded 𝜎 = 0.580 and 𝜉 = −0.242
for negated 𝑇 and 𝜎 = 2.345 and 𝜉 = −0.154 for Delta-V0.

The fitted bivariate threshold excess model with logistic parametric distribution function
resulted in parameters 𝜎 = 0.580 and 𝜉 = −0.242 for negated 𝑇𝑇𝐶 and 𝜎 = 2.345 and
𝜉 = −0.154 for Delta-V0, with an 𝛼 value of 0.999 indicating perfect independence between the
two variables, this is also supported by the diagnostic plots in Figure 6.44.

Figure 6.44: Diagnostic plots for bivariate GPD for negated vs. Delta-V0
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Results of bivariate threshold excess models using other parametric distributions given
in Table 6.9 show that the logistic distribution resulted in almost the best model.

Table 6.9: Comparison of parametric bivariate extreme value distributions for negated vs. Delta-V0

Name AIC
Negative logistic 2508.5
Logistic 2508.6
Husler-Reiss 2509.4
Negative bilogistic 2510.5
Asymmetric negative logistic 2512.5
Bilogistic 2521.9
Asymmetric logistic 2525.5

Using the results of the bivariate threshold excess model with logistic distribution the joint
probabilities of events for a range of values (for 𝑇 between 0 and 2s with an increment of
0.1s, for Delta-V0 between 10.5 and 20 m/s with an increment of 0.5 m/s) are calculated.
The resulting matrix is plotted in Figure 6.45. These joint probabilities show the probability
of exceeding a given pair of values conditional on exceeding the threshold values 4s and 9m/s
(T2<x|T2<2s and Delta-V0>y|Delta-V0>10.5m/s). As we take higher values closer to 2s for
𝑇 and smaller values closer to 10.5m/s for Delta-V0, the joint probability approaches to 1.
Taking the same risk levels the probability based risk levels are plotted in a two-dimensional
plane (Figure 6.46).

Figure 6.45: Cumulative distribution function of the fitted bivariate GPD for negated vs. Delta-V0
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Figure 6.46: Probability based risk levels of the fitted bivariate GPD for negated vs. Delta-V0

As far as the dependence between the two variables is concerned the 𝜒 and �̄� plots (Figure
6.47 and Figure 6.48) show independence at extreme levels as u→1.

Figure 6.47: Empirical estimates of ( ) and ̄ ( ) for - Delta-V0 data
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Figure 6.48: Empirical estimates of ( ) and ̄ ( ) . for - Delta-V0 data

The appropriate family of copula selected was the Survival Joe (Family: 16) with a param-
eter 1.15. This copula was then fitted to actual data resulting in the parameter value exactly
the same as the estimated one. The Kendall’s tau for this particular copula using the above
parameters is 0.08, which is just slightly different from the value of 0.03 indicated in Table
6.8. The goodness of fit test (comparison of the empirical copula with a parametric estimate
of the copula) yielded p-values smaller than 0.05, thus we reject the null hypothesis (the
resulting sample is from the copula), that is, the fitting process was not successful. Random
sample observations generated are compared to observed data (Figure 6.49), simulated data
do not seem to give a good estimation.

Figure 6.49: Testing the copula with a sample of 100 against actual data for vs. Delta-V0
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6.3. Discussion
Bivariate extreme value models consist of two marginal distributions and a dependence
function. The bivariate threshold excess models using a logistic distribution estimates the
marginal distributions and the dependence structure in between the two variables simultane-
ously. The dependence parameters are between 0.746 and 0.999 showing weak dependence
or perfect independence (Table 6.10). 𝑇𝑇𝐶 and relative speed was the only pair of vari-
ables that showed the signs of asymptotic dependence. In the other three cases temporal
and speed related indicators showed perfect independence at extreme levels, which means
that road users getting closer to each other in time do not necessarily show high relative
speed or Delta-V0. If the dependence parameter was close to 0 showing strong dependence,
it would mean that the two variables are actually dependent at extreme levels. In other words
if the temporal indicator in between two vehicles is very small (close to a collision) it would
likely be accompanied with high relative speed or Delta-V0.

Table 6.10: Comparison of bivariate extreme value modeling

Aspect 𝑇𝑇𝐶 vs.
Relative speed

𝑇2 vs.
Relative speed

𝑇𝑇𝐶 vs.
Delta-V0

𝑇 vs.
Delta-V0

Threshold
selection (based
on spectral
measure plot and
univariate POT)

Plots indicate
the same
threshold

values

Plots suggest
different
threshold

values

Plots indicate
the same
threshold

values

Plots suggest
different
threshold

values

Selected
thresholds -4s and 15m/s -2s and 18m/s -4s and 9m/s -2s and 10.5m/s

Excess values
selected

Equal number
of observations

(47)

Unequal
number of

observations
(129, 259)

Almost equal
number of

observations
(47, 44)

Unequal
number of

observations
(129, 232)

Dependence
parameter of the
logistic bivariate
threshold excess
model

Weak
dependence
(𝛼 = 0.746)

Perfect
independence

(𝛼 = 0.999)

Weak
dependence
(𝛼 = 0.897)

Perfect
independence

(𝛼 = 0.999)

Extremal
dependence based
on 𝜒 and �̄� plots

Asymptotic
dependence
cannot be

unequivocally
proven

Perfect
independence

Perfect
independence

Perfect
independence

Copula fitting

Appropriate fit
using the

Rotated Tawn
type 2 180

degrees copula

Fitted copula
does not

describe the
sample well

Appropriate fit
using the
Survival

Gumbel copula

Fitted copula
does not

describe the
sample well

The above reasoning has implications on how we look at the relationship between speed
and safety. Studies in the past few decades have all shown a close correlation between speed,
crash frequency and severity (Vadeby and Forsman, 2018). Higher speeds lead to a higher
risk of a crash and a more severe outcome (Nilsson, 2004). The relationship between speed
and severity of conflicts is more complex. Many studies used one single surrogate indicator
to express the severity of an encounter by measuring the proximity to a crash in space or time
(Zheng et al., 2014b). Setting a threshold value for 𝑇𝑇𝐶 to differentiate between serious
and light conflicts is a perfect example of that. This approach has a limitation, namely that
even if the two vehicles are very close to each other in time, the severity of a possible collision
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can be still mild if for instance their speeds are very low. Laureshyn et al. (2017a) pointed
out that the severity of a near-miss between two vehicles also depends on the differences in
their masses. Overall, the severity of a conflict is higher if either the proximity to a crash gets
lower, or vehicle speeds or the difference in vehicle masses get higher. Research results of
the bivariate models presented in this thesis actually proved that temporal and speed related
indicators are independent (one being small does not lead to the other being high), thus they
should be combined in order to properly predict severity; a temporal indicator on its own is
indeed not enough to make inferences about the severity of encounters.

The probability based risk levels (i.e. the contours of the fitted bivariate CDFs) show
similar patterns for all the four variable pairs. As for the two temporal indicators 𝑇𝑇𝐶 and
𝑇 the difference lies in the selected thresholds. In case of 𝑇 the calculated conditional
probabilities are based on smaller thresholds for the temporal and higher thresholds for the
speed related indicator. This is due to the nature of 𝑇 being a crossing course indicator,
namely that compared to 𝑇𝑇𝐶 low temporal values are more frequent and higher relative
speeds are observed (as already mentioned in Chapter 4). Extended Delta-V0 and relative
speed do not seem to affect the shape of the probability based risk levels differently (i.e. for
instance if we compare 𝑇𝑇𝐶 vs. relative speed or Extended Delta-V0).

In the course of threshold selection the spectral measure plot and the plots used for uni-
variate models (threshold stability andmean excess plots) led to the same threshold values for
𝑇𝑇𝐶 , however suggested different thresholds in case of 𝑇 making the selection slightly
arbitrary. Modeling results also showed that the various parametric distributions yielded
quite similar AIC values and the logistic distribution was a well-performing one.

Jonasson and Rootzén (2014) (one of the first authors to investigate bivariate models)
highlighted in their paper that a future possibility in bivariate models is crash severity es-
timation. They actually suggested using the minimum of a crash proximity measure and
speed at the time when this minimum is attained, however they did not really clarify what
they meant by speed (e.g. the maximum of the two speeds or relative speed). In the current
chapter this research direction was well investigated and by doing so, such bivariate models
actually indicated an additional problem in terms of validation. In the bivariate setting using
a temporal indicator along with a speed related one it is possible to estimate crash proba-
bilities along the speed dimension on condition that the temporal indicator equals zero, in
other words crash severity distribution can be constructed. In order to validate these models
using historical crash data one would also need to know the speeds of vehicles at the time
of collision, which type of information is usually not registered in accident records and was
unfortunately not available for the current study, either.

It is known from the literature (Hydén, 1987, Laureshyn et al., 2017a) that by combining
temporal and speed related indicators one can construct severity levels. The Swedish TCT
provides the exact location of these severity levels in the Time-to-Accident and conflicting
speed plane (as shown in Figure 2.5). For other possible variable pairs the actual position of
these severity levels is not known, however the conceptual illustration in Figure 6.50(a) fol-
lows the same logic (severity increases with lower values for temporal indicators and higher
values for speed related indicators). Furthermore, we can assume that this severity level
plane will be different for relative speed and Extended Delta-V. Once these severity levels are
known they can be combined with the probability based risk levels (Figure 6.50(b)). By over-
laying these two planes not only the severity of a given combination of surrogate indicators
but also its probability could be known (to be more exact the probability of exceeding both
values).
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(a) Conceptual illustration of severity levels
(Laureshyn et al., 2017a) (b) Probability based risk levels

Figure 6.50: Severity levels and probability based risk levels

To investigate the dependence structure between variable pairs separately from their
marginal distributions copulas were fitted where possible. The built-in function in R se-
lects an appropriate bivariate copula family which can then be tested against empirical data.
The parametric copula fitting procedure was only possible in two cases, both for 𝑇𝑇𝐶 ,
where the two components showed at least a weak dependence. As for 𝑇 , where the bi-
variate extreme value models indicated perfect independence, the fitted copula was not able
to describe the sample well.

A methodological aspect is to what range of data the copula is fitted. Previously Cavadas
et al. (2017) used copula for their componentwise maxima bivariate model, in which a sample
with both indicators above given thresholds was used, that is the length of the two variables
was the same. Copulas require the two components to have an equal length, that is the
marginal number of observations above thresholds should be identical. As for the bivariate
GPD models this can be satisfied when thresholds are set based on the bivariate threshold
choice plot resulting in an equal number of observations above thresholds for both compo-
nents. However, if the threshold selection plots used for univariate POT (mean excess and
threshold stability plots) indicate other thresholds to be used, the equal length of components
can not be guaranteed. This is relevant, because bivariate models using copulas incorporate
marginal distributions, which in this case are the two univariate POT models using all the
observations above individual thresholds (marginal number above). In the current research
all the observations were used in the course of parametric copula fitting and therefore the
resulting copula describes the joint distribution in the entire range of values, whereas the
marginal distributions (GPD) using the parameters of the univariate models were limited to
the values above thresholds. Another possibility to further investigate the role of copulas
could be to limit the analysis only to those observations which are extreme for both com-
ponents (joint number above). However, a drawback of this approach is that we lose data
points, which is actually the main criticism against the componentwise maxima approach
(Rakonczai and Tajvidi, 2010).

All the analyses so far focused on the extreme region (𝑅 , ). In this quarter of the plane
either the bivariate threshold excess models or - if there is some sort of dependence at extreme
levels - parametric copula can be tested. As for the other three regions different methods can
be used.

For the two regions 𝑅 , and 𝑅 , where one indicator exceeds the threshold and the other
stays below, a modified version of the bivariate GPD is proposed by Rakonczai and Tajvidi
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(2010), Rakonczai and Zempléni (2011). The usual way to fit a bivariate GPD is to use only
those observations which exceed the threshold in all components, this method is called as
Type I by Rakonczai and Tajvidi (2010). They proposed an alternative (called as bivariate GPD
Type II), the main advantage of which is that it includes all observations that are extreme
in at least one component. Practically speaking, in their approach the probability measure
is positive in the upper three quarters and zero in the bottom left one. This is illustrated in
Figure 6.51.

Figure 6.51: Prediction regions for simulated data from a logistic model. Bivariate GPD Type I (left), Type II (right) (Rakonczai
and Zempléni, 2011)

In case of region 𝑅 , , where both indicators are below their thresholds, the most plausible
way is to use the empirical bivariate copula. Since the empirical copula is not an appropriate
tool for extrapolation in the extreme region, it is not possible to use it when either of the
indicators exceeds its threshold. Below the empirical bivariate cumulative distributions are
plotted (Figures 6.52 - 6.59). A 3D surface over these data points can be smoothed through
bivariate interpolation using the 𝑎𝑘𝑖𝑚𝑎 package in R. The contour lines of this smoothed
surface show the risk levels (joint probability) for the entire range of observations. These
plots can actually draw attention to further characteristics of the relationship between the
indicators. Two very distinctive differences can be found in between 𝑇𝑇𝐶 and 𝑇 :

1. The cumulative distribution functions of 𝑇 are steeper than the ones of 𝑇𝑇𝐶 re-
sulting in a higher density of risk levels closer to the extreme region. A slight change in
the crossing course indicator 𝑇 closer to the extreme region results in a swift change
in the joint probability.

2. On the other hand joint probabilities in the plane between 𝑇 and speed related in-
dicators are less sensitive about changes in speeds in the extreme region. The range of
values in relative speeds for 𝑇 is much wider, the maximum value is slightly over 30
m/s, whereas for 𝑇𝑇𝐶 it is approximately 22 m/s. As for 𝑇 there is a clear pattern
that the probability lines are more or less vertical above the relative speed of 20m/s
meaning that in the extreme region of speeds a change in the speed would not really
affect the joint probability. A similar pattern can be seen in case of Delta-V0, where
above 14 m/s all the probability lines are vertical.
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Figure 6.52: Empirical copula for and relative speed

Figure 6.53: Contour plot of empirical copula for and relative speed
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Figure 6.54: Empirical copula for and relative speed

Figure 6.55: Contour plot of empirical copula for and relative speed
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Figure 6.56: Empirical copula for and Delta-V0

Figure 6.57: Contour plot of empirical copula for and Delta-V0
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Figure 6.58: Empirical copula for and Delta-V0

Figure 6.59: Contour plot of empirical copula for and Delta-V0



7
Final discussion and conclusions

7.1. Conclusions
The most important conclusions of the thesis research are summarized and structured ac-
cording to the research questions below.

1. What can we learn from applying EVT using indicators describing collision course and
crossing course interactions at signalized intersections for vehicle-vehicle interactions?

(a) What difference is there between the two indicators 𝑇𝑇𝐶 and 𝑇 when analysing
safety using EVT and are these indicators transferable?

The analysis showed that for straight moving vs. left turning vehicle interactions
collision course indicator 𝑇𝑇𝐶 results in a smaller sample size gathered in a
given time period in comparison to the crossing course indicator 𝑇 . Thus, for
both EVT approaches higher near-crash values (BM approach) and thresholds (POT
approach) had to be used for 𝑇𝑇𝐶 to have a sufficient sample, on the other hand
for 𝑇 even lower limiting values resulted in appropriate models. Models for
𝑇 provided more reliable results since the prediction of probabilities of extreme
events came with narrower confidence intervals. The validation on the other hand
showed that 𝑇 tends to overestimate crash frequencies and crash estimates
based on 𝑇𝑇𝐶 were closer to reality. The transferability of these indicators was
also investigated (for the BM approach) and it was concluded that in order to have
similar crash probabilities (conditional on the selected thresholds) for collision and
crossing course indicators one has to set lower near-crash thresholds for the latter
(i.e. 𝑇 ).

(b) Which EVT approach under what circumstances performs better for 𝑇𝑇𝐶 and
𝑇 (e.g. sensitivity to sample size)?

As for the two EVT approaches it can be concluded that overall applying the POT ap-
proach gave more reliable and pragmatic results in terms of both crash probabilities
and return periods. By accepting a few assumptions regarding historical accident
data the POT results were much closer to the actual crash frequency. The appli-
cation of the BM approach came with a critical issue, namely the pre-selection of
near-crash situations as a sub-sampling step showed a classical trade-off between
variance and bias.

89
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2. How can we predict nearness to collision and severity at signalized intersections for
vehicle-vehicle interactions using the Extreme Value Theory?

(a) What can we learn from applying bivariate models using EVT for various combina-
tions of indicators?

The bivariate threshold excess models using logistic distribution yielded depen-
dence parameters between 0.746 and 0.999 showing weak dependence or perfect
independence in between the two temporal and speed related indicators. 𝑇𝑇𝐶
and relative speed was the only variable pair that showed the signs of asymptotic
dependence. Overall, however, this weak or no dependence at extreme levels means
that road users getting closer to each other in time do not necessarily show high
relative speed or Delta-V0. The bivariate models showed an additional problem in
terms of validation. Since with these models one can estimate the crash severity
distribution, for validation it would be necessary to know the speeds of vehicles
at the time of collision. Without this information these types of bivariate models
combining temporal and speed indicators cannot be validated. The independence
structure between the variable pairs was also investigated by means of copula. Fit-
ting parametric copula was only successful for 𝑇𝑇𝐶 which indicator showed at
least some sort of - even though weak - dependence on speed indicators.

(b) How can we use bivariate EVT in combination with severity levels?

The resulting risk levels (based on calculated joint probabilities) of the EVT models
can be combined with the severity levels between temporal and speed related indi-
cators. The latter plane shows the actual severity of the interactions, whereas the
former plane gives further information on the probability of each combination of in-
dicators. In order to overlay these two planes (severity levels with probability based
risk levels) the actual severity levels would need to be known first. This information
is only available in the conflict diagram of the Swedish Traffic Conflict Technique
so far for surrogate indicators (Time-to-Accident and conflicting speed) other than
what were used in this research. An important future research direction is thus
to either do bivariate modeling for the Swedisch TCT indicators or to construct the
severity levels for the indicators used in the current research.

7.2. Limitations
As every research, this one also comes with certain limitations, the most important of those
are explained in this section.

The basis of the analysis was a dataset collected in Minsk, Belarus. All the data came
from one location, thus cross comparison in between different locations was not possible.
Using several locations can actually give an added value, Zheng et al. (2018) for instance
used 16 merging areas and could also provide a comparison of models across these locations.
Nevertheless, the observation periods at these locations were quite short (56-88 minutes) and
the authors also admitted that this short time frame can hardly claimed to be representative
for a five-year period for which accident data was gathered and compared with the estimated
number of crashes. In the current research one location with data for two days was used
(6AM - 9PM), which in that sense is more representative, even though estimated results were
compared with accident data gathered for a ten-year period.

Besides being representative in terms of the length of time period analysed it can also be
questioned whether the results based on observations in Minsk can be generalized or they
are location specific. In order to answer this question one would need to know certain local
characteristics such as road user behaviour (e.g. priority giving or surrendering attitude),
gap acceptance etc. Unfortunately this type of information was not at hand.
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The type of interaction analysed was exclusively left-turning vs. straight moving vehicle to
vehicle interactions. The results gained in this research are therefore restricted and applica-
ble to this interaction type only. Nevertheless, even this type of interaction could be further
examined by looking into other possible conflicts such as the possibility of rear-end crashes
in the straight going stream.

Probably the most important limitation was the uncertainty or lack of validation. As for
the univarite models validation was possible along with certain assumptions. Even if accident
data are available one has to be cautious about its accuracy, especially if mostly low severity
or property damage accidents are present (underreporting). As for the bivariate models the
second dimension describing the potential consequences in case of a crash has to be some
sort of speed related indicator. This causes two further issues: 1) speeds of interacting
vehicles in accidents are usually not known thus breaking down accidents according to speed
for validation is not possible; and 2) the different severity thresholds for various speed-related
indicators should be pre-defined.

7.3. Further research directions
This section gives a response to the limitations detailed previously as well as defines other
research directions. One possible way to extend the use of EVT models is to provide a com-
prehensive analysis to assess the safety level of a given intersection. This would include
all possible interactions in between vehicles as well as other road users (e.g. pedestrians,
bicycles) and as a result all (or most) intersection accidents could be used for validation.
This is however very labour intensive since all the vehicle movements (trajectories) should
be constructed and all possible conflicts be analyzed. Since the relation between surrogate
measures and crashes is different for different types of maneuvers, they should be analyzed
separately (Laureshyn et al., 2017c). A fully automated software could greatly help to reduce
the time and effort needed for that.

In order to improve validation using proper accident data two sets of video footage could be
used. One set using a much longer observation time period would merely focus on providing
an accurate number of accidents. Another set, similar to what was used for this study, could
then be used for calculating surrogate measures and for model estimation.

To combine severity lines with probability based risk levels one would need to construct
actual severity lines first. So far these severity lines are only available in the conflict diagram
of the Swedish Traffic Conflict Technique using time-to-accident and conflicting speed (Lau-
reshyn and Varhelyi, 2018). A plausible way to combine these two planes would have been to
start with the indicators used in the Swedish TCT and combine it with probability based risk
levels, as also noted by Jonasson and Rootzén (2014). These indicators were however not
provided by the T-Analyst software. After constructing a plane similar to that of the Swedish
TCT using other pairs of indicators such as TTC vs. relative speed or Delta-V0 the prob-
abilities along these severity lines could be calculated using the modeling results. For the
bivariate case it would be also very important to first set the threshold values in speed related
indicators for the various layers of severity. By knowing the estimates of these severity out-
comes one could compare them with the severity of observed accidents. Besides comparing
the estimated number of accidents with the observed counts this could be a further step in
the validation process.

7.4. Application in practice
Even though this thesis research is highly theoretical it offers a few possibilities for appli-
cation in practice. EVT in general could be used at locations which are newly built or re-
constructed facilities recently given over to traffic. Since these locations at the stage of early
operation usually do not have accidents, EVT together with surrogate measures could be a
complimentary tool to on-site road safety audits (or inspections).
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For road authorities with limited funds it is a common task to allocate money over the
road network for road safety purposes. To that end it is usual to evaluate the safety level
of sites (or sites with promise) and rank them. This ranking is heavily based on accident
data and could be supplemented with crash estimates coming from EVT models. This would
be more relevant in an urban setting for two reasons: 1) accidents usually tend to be less
severe and thus suffer more from underreporting; and 2) accidents usually happen due to
the interaction between various road users (for which surrogate measures can be calculated),
single vehicle accidents are less likely.

Another possibility for road authorities would be the use of EVT models for before-after
studies. The safety effects of road safety measures could then be analyzed through video
footages recorded before and after the intervention is put in place. A significant improvement
in time-to-collision values can for instance indicate that accidents are less likely to occur, and
following the same line of reasoning a decrease in speed can indicate that even if accidents
happen they will tend to be less severe.

7.5. Dissemination
In the table below (Table 7.1) all the past and future publications based on the thesis and
their current status are summarized.

Table 7.1: List of publications

Title Type Venue / Journal Status
Comparison of two nearness-to-
collision surrogate indicators at a
signalized intersection in Minsk
using Extreme Value Theory

Oral presentation
31st ICTCT Conference,
Porto, Portugal, October
25–26 2018

Presented

Surrogate safety indicators com-
bined with extreme value theory
for road safety analysis

Oral presentation /
Full paper

Conference on Transport
Sciences, Győr, Hungary,
March 21-22, 2019

Presented /
published

Probability based severity of
conflicts using bivariate Extreme
Value models

Oral presentation
32nd ICTCT Conference,
Warsaw, Poland, October
24–25 2019

Presented

Are collision and crossing
course surrogate safety indica-
tors transferable? A probability
based approach using Extreme
Value Theory

Poster
presentation / Full
paper

Transportation Research
Board Annual Meeting,
January 12-16, 2020, in
Washington, D.C.

Accepted

Are collision and crossing
course surrogate safety indica-
tors transferable? A probability
based approach using Extreme
Value Theory

Full paper Accident Analysis and
Prevention

Submitted,
under
review

Application of Bivariate Extreme
Value models to describe the
joint behaviour of temporal and
speed related surrogate mea-
sures of safety

Full paper Accident Analysis and
Prevention In writing
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A
Appendix - Alternative approach to

univariate models
In this subsection an alternative method to using negated values is tested. The motivation
for this analysis was to better zoom in the region of low temporal indicator values. To that
end instead of negated values 1/𝑇𝑇𝐶 and 1/𝑇 are used (Figure A.1). As model results
did not provide convincing results, they are very briefly summarized.

Figure A.1: Scatter plots of 1/ and 1/ smaller than 3.5s

A.1. Block Maxima
As for 1/𝑇𝑇𝐶 with a threshold value of 3.5s convergence is not reached, thus 3.6s is used
(Table A.1).

Table A.1: Model results of GEV for 1/ (near-crash threshold 3.6s)

Indicator Location Scale Shape
Estimated parameter 0.300 0.024 1.232
Standard error 0.007 0.009 0.376
Lower bound of confidence interval 0.287 0.007 0.479
Upper bound of confidence interval 0.311 0.039 1.991
AIC -88.958
BIC -84.561
Deviance -94.919
Log-likelihood -47.479

1



A.1. Block Maxima 2

Figure A.2: Diagnostic plots for GEV fit to 1/ (near crash threshold < 3.6s)

Crash probability is calculated using 1/100 (0.01 second) for the indicators. Models give
more reasonable prediction in terms of crash probabilities as compared to using negated
values, however, the return level plots indicate that for return levels 100 (i.e. when TTC
equals to 1/100s) the model is not reliable due to wide confidence intervals (Figure A.2).
Model results with other near-crash threshold values can be found in Table A.2, diagnostic
plots for a near-crash threshold of 5s is shown in Figure A.3.

Table A.2: Results of GEV for / with different thresholds for near-crash situations

Indicator <3.6s <4s <4.5s <5s
Sample size 32 48 76 100
Location parameter 0.300 0.280 0.250 0.232
Scale parameter 0.0244 0.031 0.030 0.033
Shape parameter 1.232 0.702 0.672 0.536
Shape p. lower bound of conf. int. 0.479 0.355 0.372 0.290
Shape p. upper bound of conf. int. 1.991 1.053 0.974 0.781
Probability of crash <1/100 0.0009 1.6728e-05 1.0213e-05 1.0308e-06
Return period for <1/100 1011.86 59778.86 97910.06 970041.50



A.1. Block Maxima 3

Figure A.3: Diagnostic plots for GEV fit to 1/ (near crash threshold < 5s)

As for 1/𝑇 the same near-crash threshold values are used and model results are pre-
sented in Table A.3 and A.4, diagnostic plots are given in Figures A.4 and A.5. Here similar
conclusions can be drawn as previously for 𝑇𝑇𝐶 .

Table A.3: Model results of GEV for 1/ (near-crash threshold 3.5s)

Indicator Location Scale Shape
Estimated parameter 0.367 0.083 0.535
Standard error 0.005 0.005 0.061
Lower bound of confidence interval 0.357 0.074 0.416
Upper bound of confidence interval 0.376 0.092 0.654
AIC -539.543
BIC -527.262
Deviance -545.543
Log-likelihood -272.772

Table A.4: Results of GEV for / with different thresholds for near-crash situations

Indicator <3.5s <3s <2.5s <2s
Sample size 443 341 232 130
Location parameter 0.367 0.413 0.482 0.577
Scale parameter 0.083 0.081 0.084 0.084
Shape parameter 0.535 0.574 0.570 0.711
Shape p. lower bound of conf. int. 0.416 0.439 0.415 0.483
Shape p. upper bound of conf. int. 0.654 0.709 0.725 0.939
Probability of crash <1/100 5.5784e-06 1.0808e-05 1.0716e-05 7.6419e-05
Return period for <1/100 179262.20 92523.52 93311.37 13085.60



A.1. Block Maxima 4

Figure A.4: Diagnostic plots for GEV fit to 1/ (near crash threshold < 3.5s)

Figure A.5: Diagnostic plots for GEV fit to 1/ (near crash threshold < 2s)



A.2. Peak over Threshold 5

A.2. Peak over Threshold
Threshold selection based on both the threshold stability plots (Figure A.6 for 𝑇𝑇𝐶 and
Figure A.7 for 𝑇 ) as well as the mean excess plot (Figure A.8) seems to be a difficult task
as no stable region can be identified for either indicators, thus here no models are fitted.

Figure A.6: Parameter estimates against threshold for 1/



A.2. Peak over Threshold 6

Figure A.7: Parameter estimates against threshold for 1/

Figure A.8: Mean residual plots for 1/ (left) and 1/ (right)
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