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A B S T R A C T   

Anticipating the forthcoming integration of shared autonomous vehicles (SAVs) into urban net-
works, the imperative of devising an efficient real-time scheduling and routing strategy for these 
vehicles becomes evident if one is to maximize their potential in enhancing travel efficiency. In 
this study, we address the problem of jointly scheduling and routing SAVs across an urban 
network with the possibility of platooning the vehicles at intersections to reduce their travel time. 
We argue that this is especially useful in large urban areas. We introduce a novel vehicle 
scheduling and routing method that allows a specific number of SAVs to converge at the in-
tersections of urban corridors within designated time intervals, facilitating the formation of SAV 
platoons. Dedicated lanes and signal priority control are activated to ensure that these platoons go 
through the corridors efficiently. Based on the above concept, we propose a linear integer pro-
gramming model to minimize the total travel time of SAVs and the delays experienced by the 
conventional vehicles due to SAV priority, thereby optimizing the overall performance of the road 
network. For large instances, we develop a two-stage heuristic algorithm to solve it faster. In the 
first stage, leveraging an evaluation index that manifests the compatibility of each vehicle-to- 
request combination, we allocate passenger requests to a fleet of SAVs. In the second stage, a 
customized genetic algorithm is designed to coordinate the paths of various SAVs, thus achieving 
the desired vehicle platooning effect. The optimization method is tested on a real-world road 
network in Shanghai, China. The results display a remarkable reduction of 15.76 % in the total 
travel time of the SAVs that formed platoons. The overall performance of the road network could 
be improved with the total travel time increase of conventional vehicles significantly smaller than 
the reduction observed in SAVs’ total travel time.   

1. Introduction 

The increase in the adoption of private cars has exacerbated traffic congestion in numerous metropolitan areas. Public transport is 
regarded as one of the solutions to mitigate the traffic congestion problem. Shared autonomous vehicle (SAV) services, a future 
transportation mode combining the benefits of public transportation and the convenience of private cars, offer new options for 
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travelers. With the development of autonomous vehicle (AV) technology, and the enhancement of shared mobility platforms, SAVs are 
expected to become an important part of the urban mobility system in the future. 

Previous studies have shown that autonomous vehicles (AVs) can increase the road throughput by driving with a much smaller 
headway compared to human-driven vehicles (Ye et al., 2018; Mohajerpoor et al., 2019). In order to promote the adoption of AVs, 
various priority strategies have been proposed and tested in previous studies. Chen et al. (2016) proposed dedicated lanes on major 
roads for AVs, which proved to be an effective way to promote the adoption of AVs. However, the deployment of AV-dedicated lanes 
requires a relatively high AV penetration rate, otherwise the reduction in the number of lanes will greatly affect the normal operation 
of the other conventional vehicles, which is likely to cause a series of negative issues, such as vehicle queuing, traffic congestion, and 
even accidents (Liu et al., 2019). 

In this paper, we propose an innovative approach for the allocation of time and space resources at intersections and road segments 
among SAVs and private conventional vehicles in a mixed-traffic urban network. With carpooling granting SAVs the qualities of public 
transportation with regards to seat occupancy, SAV platoons, capable of carrying multiple passengers, should in our view be entitled to 
priority treatment, much like traditional buses. Viegas et al. (2004) considered an Intermittent Bus Lane (IBL) system used for bus 
priority, where a lane’s status changes based on the presence of a bus within its spatial domain: turning into a “BUS lane” when a bus 
approaches and reverting to a regular lane open to general traffic once the bus departs. Inspired by this concept, we specify that the 
dedicated SAV lanes and signal priority control on a main road, which are collectively referred to as “priority services” in our study, are 
activated solely when necessary. These priority services remain dormant until the conditions for SAV platooning are satisfied, 
necessitating a sufficient number of SAVs concentrated at the upstream intersection within designated time intervals. 

We envision a dedicated SAV lane that is reserved on the right-hand side of the road, complete with a harbor-style parking area 
designed to facilitate the assembly of SAV platoons. The SAVs that arrive earlier can wait at the parking area until the other vehicles 
arrive, as shown in Fig. 1. In this way, these vehicles will cause no nuisance while waiting. Simultaneously, platooning the vehicles will 
concentrate the priority given to SAVs only to a specific period of time thus reducing the negative effects on the conventional vehicles 
which are temporarily not allowed to enter the lane. 

Since platooning is not a spontaneous behavior of the vehicles, a systematic and efficient scheduling and routing method is needed 
to both coordinate the assignment of passengers to the vehicles and the platoons. The SAVs engage in space–time coordination with 
each other to attain the platooning effect and minimize their total travel time through priority services while adhering to the specified 
time window constraints for the passengers. The added priority feature including the platoons reflects a significant advancement when 
compared to the state-of-the-art SAV scheduling problems that typically consider only carpooling and vehicle dispatching. 

The paper is organized as follows. Firstly, we review the literature regarding AV priority services and SAV scheduling problem in 
Section 2. Then we formulate a linear integer programming model for SAV scheduling and routing in Section 3. Next, a two-stage 
heuristic algorithm is proposed to accelerate the solving of the problem in Section 4. Then in Section 5 we report on the tests that 
we have run on the performance of the proposed model as well as the solution algorithm for the case study of Shanghai, China. 
Conclusions and future research directions are finally presented in Section 6. 

2. Literature review 

2.1. AV priority strategies 

So-called AV priority strategies are employed to enhance the efficiency of traffic management systems in granting priority to AVs 
over other vehicles on the road. This performance enhancement primarily focuses on factors such as travel time, reduced delays, and 
improved safety, all of which are vital for ensuring the seamless and effective operation of AVs. 

The deployment of AV-dedicated lanes has been proposed as an effective priority strategy that not only ensures uninterrupted 
movement for AV operations but also promotes private AV ownership (Chen et al., 2016; Liu et al., 2019; Pourgholamali et al., 2023; 
Razmi Rad et al., 2020). Chen et al. (2016) studied the impact of AV market penetration on a dedicated lane reservation scheme. Their 
findings indicated that it is advisable to implement AV-dedicated lanes progressively rather than aggressively before the market 
penetration reaches a relatively high level, approximately around 20 %. Ghiasi et al. (2017) introduced a capacity analysis model that 

Fig. 1. Process of SAV platooning.  
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centers on a non-uniform and stochastic headway space distribution modeled as a Markov chain. The researchers devised a lane 
management model for highways, which identifies the ideal number of dedicated connected automated vehicle (CAV) lanes across 
different demand levels, CAV market penetration rates, and CAV fleet size, with the goal of optimizing the capacity of mixed traffic 
flows with both CAV and human-driven vehicles (HVs). Seilabi et al. (2023) introduced a robust optimization model for the 
deployment of CAV-dedicated lanes in a highway network, which aimed to address the inherent uncertainty associated with the 
forecast of the potential CAV market size. Liu et al. (2019) investigated the impact of exclusive lanes within the context of mixed traffic 
flow involving both AVs and HVs in a road network. It was found that deploying dedicated AV lanes across the entire network can be 
impractical, particularly when the AV penetration rate is low, as these lanes might even diminish overall traffic efficiency. As an 
alternative solution, they introduced a novel concept known as autonomous vehicle/toll (AVT) lanes. These lanes are not exclusive to 
AVs alone but also permit HVs to access them by paying a toll. The results of the study demonstrated that the settings of AVT lanes can 
significantly improve the overall performance of the transportation system. Building upon this research, Wang et al. (2021) further 
explored the optimal toll rates for AVT lanes. 

We can observe that several studies have explored the deployment of AV-dedicated lanes to minimize the total travel time for AVs, 
thereby alleviating traffic congestion in urban road networks. Further, compared to AVs, the significant increase in travel times for HVs 
raises concerns about social equity, highlighting the need for a more balanced spatiotemporal distribution of resources on a road 
network for both AVs and HVs. The feasibility of implementing fixed AV dedicated lanes is challenged by relatively low AV market 
penetration rates. To address this challenge, a promising approach could involve the temporary activation of dedicated lanes, similar to 
the intermittent dedicated lanes used for bus priority management (Viegas et al., 2004). However, few studies have yet explored the 
use of such intermittent dedicated lanes for AV platoons. 

Transit signal priority (TSP), as another critical priority strategy, is designed to facilitate the movement of specific types of vehicles 
at signalized intersections by adjusting traffic signal timings (Truong et al., 2018). TSP strategy has been widely explored in the 
management of conventional buses (Anderson et al., 2020; Zeng et al., 2020; Liang et al., 2023; Xu et al., 2023; Truong et al., 2019). 
However, instead of focusing solely on TSP strategy, more research effort has been directed in the past years towards signal-free 
intersection management for AVs, such as the autonomous intersection manager (AIM) protocol, which has been proposed as an 
alternative to traffic signals for AVs (Dresner and Stone, 2004; Wu et al., 2019; Antonio and Maria-Dolores, 2022; Li et al., 2023). A few 
studies have also examined configurations where AVs and HVs share traffic intersections. Levin and Boyles (2016) found that a high AV 
market penetration rate (around 80 %) was necessary for employing AIM as an alternative to signal control. Rey et al. (2019) 
investigated a novel traffic control policy that accommodates both HVs and AVs sharing the road infrastructure. Assuming the 
availability of dedicated AV lanes at intersections, they established a dedicated phase during which only AVs were permitted to 
traverse the intersection, thus coordinating the operation of AVs and HVs. 

Therefore, in mixed flow scenarios, where both AVs and HVs are present, AVs can be regulated using the AIM protocol, while 
signals remain reserved for HVs. Specifically, when AV penetration rates are relatively low, both AVs and HVs should be managed 
through signal control. In such cases, employing a TSP strategy could serve as an effective solution for alleviating delays for AVs at 
signaled intersections. In this study, we consider periodically activating TSP management in conjunction with the deployment of 
intermittent dedicated lanes to provide priority for AV platoons. 

2.2. SAV scheduling problem 

The emergence of SAVs offers new solutions for urban mobility, presenting a cost-effective and highly flexible mode of trans-
portation for short-haul travelers. However, the inherent spatiotemporal disparities in travel demand require effective vehicle 
scheduling decisions. To enhance vehicle accessibility and promote carpooling for using capacity in the most efficient way, the 
optimization of SAV scheduling assumes a vital role, and this area of study has undergone substantial exploration over the past decade 
(Gurumurthy and Kockelman, 2018; Simonetto et al., 2019; Alazzawi et al., 2018; Cokyasar and Larson, 2020; Seo and Asakura, 2022). 

Levin et al. (2019) conducted research on the operational aspects of SAVs, with the impact of traffic congestion taken into 
consideration. They proposed a linear programming model to address the SAV routing problem, based on the link transmission model. 
Furthermore, they explored the utilization of SAVs as a first-mile and last-mile solution, which demonstrated SAVs’ performance as 
part of the public transport system. Scheltes et al. (2017) studied a system called Automated Last-Mile Transport (ALMT), which 
involves a fleet of small, fully automated electric vehicles designed to enhance the last-mile performance of a trip typically taken by 
train passengers. They developed an agent-based simulation model for ALMT, which included a dispatching algorithm responsible for 
allocating travel requests among the fleet of available vehicles. The case study results suggested that the performance of ALMT system 
was comparable to walking, but further enhancements were required to make it competitive with cycling. Lokhandwala et al. (2018) 
analyzed the merits and drawbacks of shared autonomous taxis, using taxi data from New York City. Their findings demonstrated a 
substantial 59 % reduction in vehicle fleet size when transitioning from traditional taxis to shared autonomous taxis while maintaining 
the same service level. Additionally, carpooling with SAVs led to a remarkable increase in occupancy rates from 1.2 to 3, resulting in a 
significant 55 % reduction in total travel distance. Nevertheless, a side effect was observed, with the reduced fleet size taxis were 
concentrated in areas of high demand, potentially diminishing service levels in suburban areas. Hasan et al. (2021) investigated the 
benefits of AVs and carpooling platforms in community-based trip sharing. They developed a column generation program to construct 
optimized mini routes for serving both inbound and outbound trips. The optimization results showed that their proposed approach 
reduced daily vehicle usage by approximately 92 % with AVs, concurrently reducing daily vehicle miles driven by 30 %. 

In general algorithms designed to address the SAV scheduling problem can be categorized into two types: exact solution algorithms 
(Liang et al., 2020) and heuristic algorithms (Ropke and Pisinger, 2006; Sun et al., 2018; Tafreshian and Masoud, 2020). Exact solution 
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algorithms rely on rigorous mathematical formulations and methodically seek the best-feasible solution, often with awareness of an 
optimality gap. However, these exact algorithms have inherent limitations in real-world applications, as their computational 
complexity grows exponentially with the problem’s scale, resulting in extremely long computation time. In recent years, researchers 
have increasingly turned to heuristic algorithms to solve practical vehicle routing problems. For instance, Cherkesly et al. (2015) 
introduced a population-based heuristic algorithm that combines a genetic algorithm with a local search approach to tackle passenger 
pickup and delivery problems. The results of their case studies demonstrated the algorithm’s ability to handle 200 requests within one 
hour and 300 requests within three hours, with average deviations from known optimal solution values ranging from 0.17 % to 2.84 %. 
Farhan et al. (2018) addressed the carpooling problem involving SAVs, employing a “cluster first, path second” strategy. They 
decomposed the original problem into two steps: initially assigning requests to vehicles using a shortest-path algorithm and subse-
quently constructing each vehicle’s path via a tabu search algorithm. Sun et al. (2020) studied the pickup and delivery problems 
considering time window constraints and time-dependent profit. They improved the Adaptive Large Neighborhood Search (ALNS) 
algorithm by incorporating an approximation of the objective function with taboo lists and a hybrid stopping criterion. Several 
removal operators and insertion operators were also designed to adapt to the characteristics of the proposed problem. 

Despite abundant literature on SAV scheduling problems and their corresponding solution algorithms, most existing studies have 
rarely taken into account the influence of SAV platoons on scheduling strategies. SAV platooning necessitate the synchronization of 
diverse SAVs in carpooling and routing process, resulting in an SAV scheduling problem with extraordinary complexity. Consequently, 
there arises a pressing need for a comprehensive, unified mathematical model that jointly optimizes both SAV scheduling and 
platooning. 

For bridging that gap, we present in this paper a linear integer programming model aimed at optimizing the scheduling, routing, 
and platooning strategies for SAVs. This model enables SAVs to collaborate with one another to leverage platooning benefits and 
reduce their collective travel time through priority services. The solution method, grounded in heuristic algorithms, is tailored to yield 
high-quality solutions within a relatively short calculation time, rendering it suitable for prospective real-time SAV scheduling systems. 

3. Model formulation 

In this section, we introduce the problem and explain the basic assumptions and notations to support its formulation. Then we 
present all constrains and the objective function and explain how each one works in the model. 

3.1. Problem description 

We consider an SAV travel system designed to facilitate passenger travelling through SAV scheduling and routing as well as pla-
tooning in intermittent segregated lanes along urban corridors. Passengers submit their travel requests in the form of reservations. The 
SAV operator gathers information on both vehicle supply and passenger demand, which serves as a critical input for optimizing vehicle 
scheduling. SAVs follow the scheduled routes to pick up and drop off passengers and may form platoons on specific link segments if this 
improves traffic conditions. Signal priority at intersections and lane segregation on these specific link segments are activated 
appropriately to enhance the travel efficiency of SAV platoons. 

The system operates on a traffic network that can be represented by graph G = (N,A) in which N is the set of nodes and A is the set 
of links. The study horizon ξΓ is partitioned into ξ scheduling periods. Each scheduling period is furtherly divided into Γ = {t}
timesteps, with the platooning of SAVs taking place within the duration of a single time step. In each scheduling period, passenger 

Fig. 2. Route schedule for SAV platooning.  
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requests k ∈ K are submitted to the system with their pick-up time window [dtmin
k , dtmax

k ] and arrival time window [atmin
k ,atmax

k ]. Both the 
pick-up and drop-off locations are positioned at the nodes of the network. There are H = {h} vehicles in the network. Vehicles could be 
idling at the nodes or driving on the links with or without passengers. At the beginning of the study horizon, the vehicles are positioned 
on the depot node of the network which is pre-defined. At the start of each scheduling period, we schedule the SAVs to fulfill the users’ 
travel demand that have been reserved within the previous period. This allocation is based on the available vehicle information 
including the current node in which vehicles are located, current vehicle status (i.e., free or with passengers), and how long for the 
vehicle to finish the current trip and be free to accept new passengers. An SAV must complete its service task and become free status 
before it qualifies for dispatch in the subsequent period. 

Carpooling services are managed by the SAV operator. Our operational model assumes that SAVs initially pick up passengers who 
will be sharing the ride and subsequently drop them off one by one. This entire process constitutes a single trip for the SAV. The SAV 
becomes available for a new trip only after delivering all passengers to their respective destinations. In other words, within a single 
SAV trip, drop-offs must occur after all passengers have been picked up. We do not consider dynamic ride-sharing scenarios where a 
vehicle can pick up new passengers while already en route. Therefore, an SAV trip is divided into two segments: the pick-up itinerary 
with η = 1 and the drop-off itinerary with η = 2. For example, an SAV starting from its original node o, fulfills three requests whose OD 
nodes are (r1, s1), (r2, s2), (r3, s3) with a route that goes through o→r1→r3→r2→s3→s2→s1. The route of o→r1→r3→r2 is the pick-up 
itinerary with index η = 1, whereas r2→s3→s2→s1 is the drop-off itinerary with index η = 2. The route such as o→r1→r2→s2→r3→s3→ 
s1 is not allowed in our model since the pick-up of request r3 happens after the drop-off of request s2. 

Additionally, we try to coordinate a sufficient number of SAVs to benefit from priority services in the form of platoons. As illus-
trated in Fig. 2, three SAVs originating from distinct points o1, o2, o3 are scheduled to form a platoon at intersection A. Subsequently, a 
temporarily dedicated SAV lane connecting A to B, together with the signal priority control at both A and B, is activated to minimize 
the delays of the SAV platoon at link segments and intersections. The SAV traveling along the green route disassembles from the 
platoon at intersection B, whereas the SAVs following the blue and orange routes diverge from one another at intersection C. After-
ward, These SAVs proceed to their respective destination points, namely d1,d2, d3. 

The following is the set of assumptions underlying the formulation of the SAV scheduling and routing problem. 

Assumption 1. The SAVs are homogeneous in terms of their capacity and operation speed. 

Assumption 2. Requests should be served by the SAVs in their preferred time window. Additional waiting is not allowed. Otherwise, 
the passenger is considered as non-served. 

3.2. Notations 

Notations used throughout the paper are summarized in Table 1. 

Table 1 
Notation table.  

Sets and inputs 
G = (N,A) Road network, where N is the node set and A is the link set 
Γ = {t} Time step index within a scheduling period, t marks the instant where the time step begins 
H = {h} Vehicle index 
K = {k} Request index 
η Itinerary index, η = 1 for the pick-up itinerary, η = 2 for the drop-off itinerary 
oh Position of vehicle h ∈ H at the start of the current scheduling period 
Ch Capacity of vehicle h ∈ H 
Ih State of vehicle h ∈ H at the start of the current scheduling period: equals 1, if vehicle h is free; 0, otherwise 
rk Pick-up node of request k ∈ K 
sk Drop-off node of request k ∈ K 
[dtmin

k ,

dtmax
k ]

Pick-up time window of request k ∈ K 

[atmin
k ,

atmax
k ]

Drop-off time window of request k ∈ K 

TTij SAV travel time on link (i, j)
lmin
ij Minimum number of SAVs required to form a platoon on link (i, j) ∈ A 
lmax
ij Maximum number of SAVs allowed to join in a platoon on link (i, j) ∈ A 
Decision Variables 
fh Equals 1, if vehicle h serves any request; 0, otherwise 
zk

h Equals 1, if vehicle h serves request k; 0, otherwise 
χk Equals 1, if request k is rejected; 0, otherwise 
xh,η

ijt 
Equals 1, if vehicle h enters link (i, j) at the beginning of timestep t in trip itinerary η; 0 otherwise. 

yk,η
h 

Equals 1, if vehicle h picks up or delivers request k at the end of itinerary η; 0, otherwise. In other words, for the pick-up itinerary with η = 1 having 
yk,1

h = 1 indicates that request k is the last request that vehicle h picks up in the current trip. For the drop-off itinerary (η = 2) yk,2
h = 1 indicates that 

request k is the last request that vehicle h drops off in the current trip.  
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3.3. Constraints 

3.3.1. Vehicle-to-request matching constraints 
Constraint (1) imposes that at the start of the scheduling period, only the free SAVs are available to be dispatched. 

fh ≤ Ih ∀h ∈ H (1) 

Constraints (2) and (3) use the decision variable zk
h to determine the matching between vehicle h and request k. Constraint (2) 

enforces that each request should be served by an available SAV, otherwise it has to be rejected in the current scheduling period (i.e., 
χk = 1). Constraint (3) imposes that each SAV utilized in the current period can be matched with multiple requests, within the limits 
of its maximum capacity. 

∑

h∈H
zk

h = 1 − χk ∀k ∈ K (2)  

fh ≤
∑

k∈K
zk

h ≤ Chfh ∀h ∈ H (3)  

3.3.2. Vehicle routing constraints 
Each SAV has two itineraries—one for picking up passengers and the other for dropping them off. The terminal of the pick-up 

itinerary is the pick-up node of the last passenger who boards the SAV, while the terminal of the drop-off itinerary is the drop-off 
node of the last passenger who disembarks from the SAV. Nevertheless, the precise locations of these terminals on the network 
remain uncertain until the vehicle-to-request matching and vehicle routing results are determined. In order to model the terminals in 
the mathematical program, we add virtual nodes to the network, which act as substitute for the uncertain terminal of each itinerary. We 
connect the virtual nodes to every node on the network via virtual links. The travel time on each of these virtual links is equal to 0. 

In Fig. 3, we use a hypothetical SAV route as an example to illustrate the concept of virtual nodes and virtual links. The virtual last 
pick-up node is denoted by d1 whereas the virtual last drop-off node is denoted by d2. The SAV first picks up passengers 1, 2, and 3 in 
sequence and then delivers passengers 2, 3 and 1, one by one. As such, r3 is the actual terminal of the pick-up itinerary and s1 is the 
actual terminal of the drop-off itinerary. For modelling convenience, d1 and d2 are added and connected to r3 and s1 respectively. The 
virtual SAV route is oh→r1→r2→r3→d1→r3→s2→s3→s1→d2. Please note that d1 should be connected to the nodes with an undirected 
link to make sure that the vehicle route is not interrupted. There are three virtual links r3→d1, d1→r3, and s1→d2, which are repre-
sented by dashed lines. The actual road links are represented by solid lines. 

As previously mentioned, the SAV route consists of two types of itineraries. The links belonging to the pick-up itinerary include oh→ 
r1→r2→r3→d1 (represented by gray lines) and the links belonging to the drop-off itinerary include d1→r3→s2→s3→s1→d2 (represented 
by blue lines). The virtual node d1 serves as both the end of the pick-up itinerary and the start of the drop-off itinerary, which is a bridge 
of the two itineraries. The comprehensive diagram of the expanded network, incorporating virtual nodes and links, is presented in 
Fig. 4. These virtual nodes and virtual links are also included into set N and set A respectively. 

In order to ensure the path feasibility considering the virtual links, Constraints (4) to (5) are introduced to restrict the opportunity 
for each SAV to visit the virtual nodes. Constraint (4) requires that a dispatched SAV that serves at least one request, should arrive at 
d1 at the end of its pick-up itinerary, then it should depart from d1 at the beginning of its drop-off itinerary, and finally arriving at d2 at 
the end of its drop-off itinerary. Constraint (5) specifies that the SAV is prohibited from departing from d1 or visiting d2 during its pick- 
up itinerary. Constraint (6) mandates that the SAV is not allowed to return to d1 or depart from d2 during its drop-off itinerary. 

∑

(j,d1)∈A

∑

t∈Γ
xh,1

jd1 t =
∑

(d1 ,j)∈A

∑

t∈Γ
xh,2

d1 jt =
∑

(j,d2)∈A

∑

t∈Γ
xh,2

jd2 t = fh ∀h ∈ H (4)  

∑

(d1 ,j)∈A

∑

t∈Γ
xh,1

d1 jt =
∑

(j,d2)∈A

∑

t∈Γ
xh,1

jd2 t =
∑

(d2 ,j)∈A

∑

t∈Γ
xh,1

d2 jt = 0 ∀h ∈ H (5)  

∑

(j,d1)∈A

∑

t∈Γ
xh,2

jd1 t =
∑

(d2 ,j)∈A

∑

t∈Γ
xh,2

d2 jt = 0 ∀h ∈ H (6) 

To ensure the feasibility of SAV routes and that all passengers’ pick-up and drop-off nodes are visited as scheduled, a few constraints 
are given as follows. 

Constraint (7) ensures that vehicle h should depart from its initial position oh, if it has been dispatched to serve at least one request. 

Fig. 3. Diagram for a possible SAV route choice.  
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∑

(oh ,j)∈A

∑

t∈Γ
xh,1

ohjt = fh ∀h ∈ H (7) 

Constraints (8) to (10) determine the real endpoint (i.e., the last pick-up node) of the pick-up itinerary. Constraint (8) imposes 
that vehicle h can pick up request k as the last passenger during its pick-up itinerary only if vehicle h matches request k. Constraint (9) 
ensures that one and only one request can be the last request that an SAV picks up in the pick-up itinerary. Constraint (10) ensures that 
if request k is the last pick-up request for vehicle h, i.e., yk,1

h = 1, the vehicle must proceed from pick-up node rk of request k to enter the 
virtual node d1. 

yk,1
h ≤ zk

h ∀h ∈ H,∀k ∈ K (8)  

∑

k∈K
yk,1

h = fh ∀h ∈ H (9)  

∑

t∈Γ
xh,1

rkd1 t ≥ yk,1
h ∀h ∈ H,∀k ∈ K (10) 

Constraint (11) is the flow conservation constraint at the virtual node d1. The SAV must return to the same pick-up node rk after 
visiting the virtual node d1. Since the travel time on virtual links (rk, d1) and (d1, rk) is zero, the SAV departs and arrives at rk at exactly 
the same time t. This is also a connection constraint between the pick-up and drop-off itineraries, where xh,1

rkd1 t with η = 1 specifies the 

last link in the pick-up itinerary and xh,2
d1rkt with η = 2 specifies the first link in the drop-off itinerary. 

xh,1
rkd1 t = xh,2

d1rk t ∀h ∈ H, ∀k ∈ K, ∀t ∈ Γ (11) 

Similar to Constraints (8) to (10), Constraints (12) to (14) determine the real endpoint (i.e., the last drop-off node) of the drop- 
off itinerary. Constraint (12) imposes that vehicle h can drop off request k as the last passenger during its drop-off itinerary only if 
vehicle h matches request k. Constraint (13) ensures that one and only one request is the last request that an SAV drops off in the drop- 
off itinerary. Constraint (14) ensures that if request k is the last drop-off request for vehicle h, i.e., yk,2

h = 1, the vehicle must proceed 
from drop-off node sk of request k to enter the virtual node d2. 

yk,2
h ≤ zk

h ∀h ∈ H,∀k ∈ K (12)  

∑

k∈K
yk,2

h = fh ∀h ∈ H (13)  

∑

t∈Γ
xh,2

skd2 t ≥ yk,2
h ∀h ∈ H,∀k ∈ K (14) 

Constraints (15) and (16) ensure that each SAV should arrive and leave the intermediate nodes j ∈ N\{oh,d1,d2}on either itinerary 
the same number of times. 

∑

(i,j)∈A

∑

t∈Γ
xh,1

ijt =
∑

(j,i)∈A

∑

t∈Γ
xh,1

jit ∀h ∈ H,∀j ∈ N\{oh, d1, d2} (15)  

∑

(i,j)∈A

∑

t∈Γ
xh,2

ijt =
∑

(j,i)∈A

∑

t∈Γ
xh,2

jit ∀h ∈ H,∀j ∈ N\{oh, d1, d2} (16) 

Constraints (17) and (18) specify that if vehicle h enters link (i, j) at timestep t, it should arrive at node j by timestep t + TTij, 
where TTij denotes the total travel time on link (i, j). 

∑

(j,l)∈A
xh,1

jl(t+TTij)
≥ xh,1

ijt ∀h ∈ H,∀t ∈ Γ, ∀j ∈ N\{oh, d1, d2}, (i, j) ∈ A (17)  

Fig. 4. Diagram for the concept of virtual nodes and virtual links.  
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∑

(j,l)∈A
xh,2

jl(t+TTij)
≥ xh,2

ijt ∀h ∈ H,∀t ∈ Γ, ∀j ∈ N\{oh, d1, d2}, (i, j) ∈ A (18) 

Constraint (19) imposes that the SAV must arrive at the pick-up nodes within the corresponding pick-up time window constraints 
of the passengers (dtmin

k , dtmax
k ). Similarly, Constraint (20) imposes that the SAV must arrive at the drop-off nodes within the corre-

sponding arrival time window constraints of the passengers (atmin
k , atmax

k ) 
∑

(j,rk)∈A

∑

t∈[dtmin
k ,dtmax

k ]
xh,1

jrk t ≥ zk
h ∀h ∈ H,∀k ∈ K (19)  

∑

(j,sk)∈A

∑

t∈[atmin
k ,atmax

k ]
xh,2

jsk t ≥ zk
h ∀h ∈ H, ∀k ∈ K (20)  

3.3.3. Vehicle platooning constraints 
Vehicles have the potential to form platoons when they converge at the entrance of a link (i, j), provided their arrival times at node i 

coincide closely in time, specifically falling within the same time step t in this study. To assess whether a platoon can be established, it 
becomes essential to calculate the number of vehicles entering link (i, j) during time step t. If this number is greater than or equal to lmin

ij , 
meaning the minimum number of SAVs required to form a platoon, the SAVs arriving within that particular time step are eligible to 
receive priority services in the form of platooning. 

The SAVs’ platooning process entails double constraints involving both time and space, significantly increasing the complexity of 
the problem. Once again, we employ the convenience of virtual nodes and virtual links to simplify the problem. Consider (p1, p2) as a 
link that is capable of offering priority for SAVs. As shown in Fig. 5, we construct virtual nodes p(1)1 , ...p(t)1 ..., p(m)

1 for the original node p1, 
corresponding to time steps 1, 2, 3…t, …m, where m represents the maximum number of time steps in the current scheduling period. 

This set of virtual nodes is denoted as N̂. Virtual links 
(

p1, p(1)1

)
, ...,

(
p1, p(m)

1

)
are established to connect the upstream node p1 to these 

virtual nodes. These virtual links constitute a new subset within the link set A, denoted as Ǎ. Simultaneously, virtual links 
(

p(1)1 , p2

)
,

...,
(

p(m)

1 , p2

)
are constructed to connect the virtual nodes to the downstream node p2, forming set Â. In this way, the flow of SAVs 

traversing through 
(

p1, p(t)1

)
, 
(

p(t)1 , p2

)
represents the number of SAVs visiting link (p1, p2) during time step t in the form of a platoon. It 

is essential to note that since not all road segments are allowed to offer SAV platoon priority we only construct virtual time–space nodes 
and links for road segments with this function. The travel time along the virtual links in set Ǎ is 0, while the virtual links in set Â have a 
reduced travel time compared to the original link (p1, p2). 

The vehicle platooning problem can be reformulated as a vehicle routing problem that takes into account the time window con-
straints and the constraints on the number of SAVs for each virtual link. Constraint (21) ensures that the SAVs arriving at the virtual 

node i(t) ∈ N̂ at the other timestep t′ ∕= t (i.e., t′∈ Γ\{t}), cannot enter the virtual link 
(

i(t), j
)

. 

xh,η
i(t) jt’ = 0 ∀h ∈ H, ∀η ∈ {1, 2}, ∀t ∈ Γ, ∀

(
i(t), j

)
∈ Â, ∀t’ ∈ Γ\{t} (21) 

Constraints (22) and (23) restrict the number of platooning vehicles on each virtual link. Constraint (22) specifies that if an SAV 
traverses virtual link 

(
i(t), j

)
(i.e., xh,η

i(t) jt = 1), the total number of SAVs on virtual link 
(
i(t), j

)
should be no less than lmin

i(t) j , the minimum 
number of SAVs required to form a platoon. The constraint always holds with the right side of the inequality operator equal to 0 (i.e., 
xh,η

i(t) jt = 0). Constraint (23) ensures that the number of SAVs on virtual link 
(
i(t), j

)
cannot exceed lmax

i(t) j , the upper bound of the number of 

Fig. 5. Conversion of vehicle platooning problem.  
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SAVs in a single platoon. 
∑

η∈{1,2}

∑

h∈H
xh,η

i(t) jt ≥ lmin
i(t) j • xh,η

i(t) jt ∀h ∈ H, ∀η ∈ {1, 2},∀t ∈ Γ,∀
(
i(t), j

)
∈ Â (22)  

∑

η∈{1,2}

∑

h∈H
xh,η

i(t) jt ≤ lmax
i(t) j ∀t ∈ Γ, ∀

(
i(t), j

)
∈ Â (23)  

3.3.4. Domain of the variables 
Constraints (24) to (27) specify variables fh, zk

h, x
h,η
ijt and yk,η

h to be binary variables. 

fh ∈ {0, 1} ∀h ∈ H (24)  

zk
h ∈ {0, 1} ∀h ∈ H,∀k ∈ K (25)  

xh,η
ijt ∈ {0, 1} ∀h ∈ H,∀(i, j) ∈ A,∀t ∈ Γ, ∀η ∈ {1, 2} (26)  

yk,η
h ∈ {0, 1} ∀h ∈ H,∀k ∈ K, ∀η ∈ {1, 2} (27)  

3.4. Travel time computing method 

The SAV travel time on link (i, j)∈ A\Ǎ consists of two parts: one is the travel time on the link segment (i.e., τij), and the other is the 
dwelling time (or total delays) at the downstream intersection j (i.e., D0

ij), which is generated when SAVs arrive during red time. 

Besides, the link (i, j) ∈ Ǎ is merely used to connect virtual node i ∈ N̂ to the actual node on the network, thereby having an SAV travel 
time equal to 0. Therefore, the total travel time (i.e., TTij) is calculated by Equation (28): 

TTij =

⎧
⎨

⎩

τij + D0
ij ∀(i, j)∈ A\Ǎ

0 ∀(i, j) ∈ Ǎ
(28) 

The travel time of each SAV on a particular link depends on whether or not it has received priority services. We assume that the 
penetration rate of SAVs is much lower than conventional vehicles, and thus the number of SAVs is unlikely to be sufficient to 
significantly impact the travel time of a specific link segment. The travel time is primarily determined by the traffic flow of con-
ventional vehicles, which can be predicted or observed in advance. If an SAV does not receive priority services while traversing link 
(i, j) (i.e., link (i, j) does not belong to set Â or set Ǎ), its travel time on the link segment can be calculated by Equation (29) which is the 
BPR function: 

τij = t0
ij

[
1 + αij

(
vij/cij

)βij
]

∀(i, j) ∈ A\Ǎ\Â (29)  

where t0ij is the free flow travel time on link (i, j), cij is the capacity of a single lane of link (i, j), vij is the traffic flow of conventional 
vehicles on link (i, j), αij, βij are positive parameters. 

We denote Cj as the signal period and gj as the duration of the green phase in the priority signal cycle at intersection j. When SAVs 
arrive during the green phase, their delays are 0. However, for those arriving before or after the green phase, their delays are computed 
by contrasting their arrival time with the commencement of the subsequent green phase. Consequently, the expected total delays, 
represented as D0

ij, can be derived by Equation (30) (see Appendix A for the proof): 

D0
ij =

(
Cj − gj

)2

2Cj
∀(i, j) ∈ A\Ǎ\Â (30) 

If SAVs form a platoon and travel on the virtual link (i, j) ∈ Â, they have exclusive right of way thus having a link travel time equal 
to the free flow travel time t0

ij , as is shown in Equation (31): 

τij = t0
ij ∀(i, j) ∈ Â (31) 

Fig. 6. SAV priority control.  
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The dwelling time at intersections is also reduced, with two signal priority strategies: green advance (i.e., advance the green time of 
priority phase) or green extension (i.e., prolong the green time of priority phase), taken to prioritize SAVs. We set amax

g to restrict the 
maximum time of green advance and emax

g to restrict the maximum time of green extension. The constitution of the SAV priority phase is 
shown in Fig. 6. 

If an SAV receives priority while traversing link (i, j), its expected total delays can be calculated by Equation (32) (see Appendix B 
for the proof): 

D0
ij =

(
Cj − gj − amax

gj
− emax

gj

)2

2Cj
∀(i, j) ∈ Â (32) 

Therefore, the travel time TTij on any link (i, j) ∈ A is a parameter with constant value in our model, and it remains unchanged 
regardless of how the SAV traffic flow is allocated on the road network. 

3.5. Objective function 

The primary goal of the scheduling method proposed in our study is to reduce the total travel time of SAVs. However, in the context 
of a relatively low SAV market penetration, it becomes imperative to account for the overall performance of the road network and 
minimize the negative impacts on traditional vehicles. As a result, the objective function employed in this model comprises three 
components: the total travel time of SAVs, the additional delays incurred by conventional vehicles due to SAV priority, and the penalty 
associated with the rejection of requests. 

The additional delays stemming from SAV priority can be categorized into two distinct components. One source of the delay arises 

from the link section 
(

i(t), j
)

where dedicated lanes are activated to offer priority to SAVs. In these instances, the reduction in the 

number of lanes available to conventional vehicles leads to an increase in travel time on the link section. We denote the traffic flow of 
conventional vehicles on link (i, j) ∈ A at timestep t as vi(t) j. The number of conventional vehicles affected within this time step is vi(t) jΔt. 

Then, the delays of conventional vehicles arising from virtual link sections 
(

i(t), j
)
∈ Â are calculated by Equation (33): 

D1
i(t) j = Bi(t) jvi(t) jΔtt0

ijαij

⎡

⎣

(
vi(t) j

cij
(
δij − 1

)

)βij

−

(
vi(t) j

cijδij

)βij

⎤

⎦ ∀t ∈ Γ, ∀
(
i(t), j

)
∈ Â (33)  

where δij is the number of lanes on link (i, j), Bi(t) j is a binary variable that determines whether virtual link 
(

i(t), j
)

is visited where 

Bi(t) j = 1, if virtual link 
(

i(t), j
)

is visited by SAVs and Bi(t) j = 0, otherwise. The value of Bi(t) j is determined by imposing Constraints 

(34) to (36): 

Bi(t) j ≤
∑

h∈H

∑

η∈{1,2}
xh,η

i(t) jt ∀t ∈ Γ, ∀
(
i(t), j

)
∈ Â (34)  

Bi(t) j ≥ xhη
i(t) jt ∀h ∈ H,∀η ∈ {1, 2}, ∀t ∈ Γ, ∀

(
i(t), j

)
∈ Â (35)  

Bi(t) j ∈ {0, 1} ∀t ∈ Γ, ∀
(
i(t), j

)
∈ Â (36) 

Another source of delays arises from the downstream intersection of the link 
(
i(t), j

)
. As the phase providing priority for SAVs 

extends, the time allocated to other phases at the intersection correspondingly diminishes, leading to increased delays for conventional 
vehicles. We employ v1

i(t) j and v2
i(t) j to represent the traffic flow of conventional vehicles, which drive through the downstream inter-

section of link 
(
i(t), j

)
with increased delays, respectively caused by green advance and green extension. The increased delays for 

conventional vehicles, denoted as D2
i(t) j, are then determined by Equation (37) (see Appendix C for the proof): 

D2
i(t) j = Bi(t) j •

v1
i(t) j

[
amax

gj
3 + 3

(
2Cj + gj

)
amax

gj
2
]
+ v2

i(t) j

[
3
(
5Cj + gj

)
emax

gj
2 − emax

gj
3
]

18Cj
∀t ∈ Γ, ∀

(
i(t), j

)
∈ Â (37) 

Green advance strategy leads to relatively long delays for a conventional vehicle that arrives precisely within the advanced time 
segment, which may yield a very unfair system for some individual conventional vehicles. Therefore, we formulate the following 
proposition to evaluate this impact. 

Proposition 1. Suppose an event that a conventional vehicle is affected by the green advance strategy during a signal period at the 

upstream intersection of link 
(

i(t), j
)
∈ Â. Ia

i(t) ,j is a binary variable, which equals 1 if this event occurs, and equals 0, otherwise. Ja
i(t) ,j is a 

continuous variable, which represents the resulting delays from this event. Then: 
The probability of this event to occur is: 
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P
(

Ia
i(t) ,j = 1

)
=

∫ Ts
gj

Ts
gj − amax

gj

1
Cj

•
Ts

gj
− x

Cj
dx =

amax
gj

2

2Cj
2 

The expected delay that results from the event is: 

E
(

Ja
i(t) ,j|I

a
i(t) ,j = 1

)
=

∫ Ts
gj

Ts
gj − amax

gj

1
amax

gj

[
1
3
(
2Cj + gj

)
+

1
6

(
Ts

gj
− x
)]

dx =
1
3
(
2Cj + gj

)
+

1
12

amax
gj  

The maximum delay that results from the event is: 

max
{

Ja
i(t) ,j|I

a
i(t) ,j = 1

}
=

1
3
∑

p

(
Cj + amax

gj
− ga,p

j

)
= amax

gj
+

2Cj + Ts
gj

3  

The event and the three indices proposed in Proposition 1 should be taken into account while determining the scheme of the signal 
priority control for SAV platoons. In summary, the total delays that SAV priority services cause to other conventional vehicles are 
calculated by Equation (38): 

Dtotal =
∑

t∈Γ

∑

(i(t) ,j)∈Â

(
D1

i(t) j + D2
i(t) j

)
(38) 

A positive parameter γ is introduced to represent the weight of the total delays caused by SAV priority services to conventional 
vehicles in the objective function, and β is set as a penalty for the rejection of each request. Finally, the model formulated in our study is 
given as follows where equation (39) is the objective function: 

min
∑

h∈H

∑

η∈{1,2}

∑

t∈Γ

∑

(i,j)∈A
TTijxh,η

ijt + γ
∑

t∈Γ

∑

(i(t) ,j)∈Â

(
D1

i(t) j + D2
i(t) j

)
+ β
∑

k∈K
χk (39) 

s.t Constraints (1) − (27) and (33) − (38). 

4. Solution method 

The real-time SAV scheduling and routing problem is a challenging NP-hard problem characterized by a multitude of variables and 
constraints incorporated into the model. Commercial solvers often struggle to effectively manage these large-scale problems, leading to 
difficulties in obtaining high-quality solutions within practical computational time. We propose a two-stage heuristic algorithm to 
solve the problem efficiently. The core idea of the two-stage algorithm is that we first allocate requests to vehicles and decide the pick- 
up and drop-off sequence while considering the potential of platooning effects, then endeavor to insert links with priority services into 
the original paths based on platooning constraints. 

4.1. First stage: Vehicle-to-request matching method considering platooning effect 

In the first stage, in order to determine the vehicle-to-request matching scheme as well as the pick-up and drop-off sequence, we 
utilize a reactive anytime optimal method for assigning passenger requests to a fleet of vehicles of varying capacity (Alonso-Mora 
et al.,2017). The algorithm mainly consists of the following steps: 

0) Path feasibility check method 
For vehicle h, the optimal travel path σh that minimizes the objective function subject to the pick-up and drop-off time constraints is 

given by the following function: 

travel(h,Rh)

which returns “invalid” if no feasible path exists. 
1) Pairwise request-vehicle (RV) graph 
In the first step, we try to compute which requests can be pairwise combined and which vehicles can serve which requests 

individually. 
For any two requests k1 and k2, let an SAV start from the origin of request k1 or k2, and then 4 paths could be generated, with varied 

sequence selected to pick up and drop off the two requests. If one of those paths could fulfill both requests while satisfying the path 
feasibility check, they are potentially combined and e(k1, k2) is added to the RV-graph. 

Likewise, for a vehicle h and a request k, if there is a feasible path that starts at the origin of the vehicle and satisfies the request, the 
match e(h, k) is added to the RV-graph. 

2) Request-trip-vehicle (RTV) graph 
The second step is to construct trips (groups of requests) that can be served by a vehicle. For trip T and vehicle h, if the vehicle could 

pick up and drop off all the requests of the trip in a certain order, while satisfying the path feasibility check, we take that they are 
potentially matched and add e(T, h) to the RTV-graph. As the trip size increases, it becomes necessary to check trip T only if there is a 
vehicle h for which every one of its sub-trips T′ has an edge e(T′, h) in the RTV-graph. 
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3) Optimal assignment 
Based on the RTV-graph, each match of trip and vehicle is comprised of a pick-up itinerary and a drop-off itinerary, which can be 

further divided into several point-to-point sub-itineraries by pick-up points or drop-off points. When considering the nth sub-itinerary 
of vehicle h, we first evaluate the minimum travel time from On (i.e., the origin of the nth sub-itinerary) to Dn (i.e., the destination of the 

nth sub-itinerary), denoted as τt

(
sOn
h , sDn

h

)
. 

Then, we insert a “link combination” into this sub-itinerary, which can consist of a single link or a succession of connected links 
with SAV priority services. We suppose that the upstream and downstream nodes of the link combination are pup and pdown, respec-
tively. As shown in Fig. 7, vehicle h departs from On, then visits pup and pdown, and finally arrives at Dn. The minimum travel time of the 

whole process is recorded as τt

(
sOn
h , sup

p

)
+ τt

(
sup
p , sdown

p

)
+ τt

(
sdown
p , sDn

h

)
, 

where τt

(
sup
p , sdown

p

)
represents the total travel time from pup to pdown on link combination p, considering priority effect, τt

(
sOn
h , sup

p

)
, 

and τt

(
sdown
p , sDn

h

)
denotes the minimum travel time from On to pup and from pdown to Dn, respectively. 

By comparing the values of the above two terms, we can determine whether vehicle h reduces its travel time during the nth sub- 
itinerary through priority services on the link combination p. If there is a reduction in travel time, it suggests that this link combination 
exhibits a close spatial correlation with the sub-itinerary. The greater the reduction in travel time, the higher the likelihood that vehicle 
h can participate in a platoon on the link combination p during the nth sub-itinerary. Conversely, if the travel time is not reduced, this 
link combination is considered to have a distant spatial correlation with the sub-itinerary, indicating little potential for platooning. 
Based on this theory, the individual cost of each trip-vehicle match presented in the RTV-graph is established as follows: 

ci
hT =

∑

n∈{1,⋯,NhT }

[

τt

(
sOn

h,i , s
Dn
h,i

)
− λ
(

max
{

max
p∈P

{
τt

(
sOn

h,i , sup
p

)
+ τt

(
sup

p , sdown
p

)
+ τt

(
sdown

p , sDn
h,i

)
− τt

(
sOn

h,i , s
Dn
h,i

)}
, 0
})]

(40)  

chT = min
i∈R

{
ci

hT

}
(41)  

where NhT denotes the total number of sub-itineraries of vehicle h in trip T, R is a set of pick-up and drop-off sequences of vehicle h in 
trip T, which should be confirmed feasible by the path feasibility check. In Equation (40), for each feasible pick-up and drop-off 
sequence i, in which vehicle h executes trip T, we calculate an evaluation index ci

hT. The index comprises two components: first, 
the minimum travel time from the origin to the destination without the activation of any priority services, and second, the theoretically 
maximum reduction in travel time gained from priority services during the whole trip. We use parameter λ to represent the discount of 
the benefits potentially obtained from priority services. In Equation (41), we determine the minimum cost for vehicle h executing trip 
T among various pick-up and drop-off sequences. 

Based on the proposed individual cost function, we try to find out the optimal assignment of trips to vehicles. First, a greedy so-
lution is computed by assigning trips to vehicles iteratively starting from the matches with the lowest costs and largest number of 
requests in the trip. It serves as the initial point for the trip-vehicle assignment optimization. 

Then, we execute a trip-vehicle assignment optimization as shown in Function (42) and Constraints (43) to (44): 

min
∑

h,T∈RTV
chT∊hT + β

∑

k∈K
χk (42) 

s.t 
∑

T∈ζh
∊hT ≤ 1 ∀h ∈ H (43)  

∑

T∈ζk

∑

h∈ζT
∊hT = 1 − χk ∀k ∈ K (44)  

where ∊hT is a binary variable that decides whether vehicle h is assigned to trip T, ζh denotes the set of trips T for which an edge e(T, h)
exists in the RTV-graph, ζk denotes the set of trips with request k included, and ζT denotes the set of vehicles h for which an edge e(T, h)
exists in the RTV-graph. Constraint (43) restricts each vehicle to be assigned to at most a single trip, and Constraint (44) specifies that 
each request should be assigned to a vehicle, otherwise it has to be rejected. 

Fig. 7. Insertion of link combination into sub-itinerary.  
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4.2. Second stage: Vehicle routing and platooning method 

In the second stage, we construct the spatiotemporal correlation for SAV platooning with a customized genetic algorithm. Firstly, 
we establish initial routes for the dispatched SAVs based on the sequence of pick-up and drop-off nodes from multiple matched re-
quests, and the links with priority services are inserted into the pick-up or drop-off itineraries according to the spatial correlations 
assessed in Step 1. Then we execute a crossover operation involving one of the links found in the original routes and the virtual links 
derived based on platooning time. This operation generates numerous new routes that enable platooning within varied time intervals. 
Mutation occurs ahead of the crossover operation with a goal to promote the opportunity of platooning by randomly adding link 
segments with priority services to the route from which they have been excluded. A checkout process is conducted to ensure that the 
newly generated routes comply with arrival time and vehicle number constraints, which is essential for meeting the spatiotemporal 
requirement of platooning. Subsequently, we collect all the feasible routes to form the offspring population. The top three routes in 
terms of fitness are selected to join the parent population in the subsequent iteration. This sequence of procedures is repeated for 
multiple iterations until the top three fitness values have remained unchanged for several iterations or the iteration count reaches a 
preset maximum. 

The chromosome structure is illustrated in Fig. 8. Chromosome 0 outlines the spatial feasibility of SAVs to participate in platoons at 
each link with priority services, while the remaining chromosomes are constructed to describe the platooning features of SAVs within 
varied time steps. Each chromosome is further subdivided into distinct segments represented by different colors, where each segment 
corresponds to a specific link intended for platooning. For example, the red segment signifies that vehicle 1 to N could potentially form 
a platoon at link 1, while the yellow segment indicates the possibility of platooning at link 2, etc. The configuration of segments on 
these chromosomes, combined with the temporal dimension, represents a unique link at a specific time step, essentially embodying the 
concept of a virtual link. 

In each segment, every SAV is assigned two genes to modify its pick-up and drop-off itineraries. Each itinerary can be further 
subdivided into several sub-itineraries based on pick-up and drop-off points (e.g., 2+ and 2- denote the pick-up and drop-off points for 
Request 2). These sub-itineraries are organized in a predetermined sequence established in Step 1. Since an SAV cannot participate in 
platoons on a given link segment more than once within a single itinerary, we coded each gene with either “0″ or a positive number “n”, 
where “0” signifies that the virtual link is not visited during any sub-itineraries, while “n” indicates that the SAV visits the virtual link 
during the nth sub-itinerary. 

The specific steps of the vehicle routing and platooning method are introduced as follows: 
0) Construction of initial solution 
The construction of the initial solution involves determining the initial value of each gene on chromosome 0. This is accomplished 

by assessing the spatial correlation in Step 1, wherein we identify whether each vehicle can decrease the total travel time by visiting 
each link during its pick-up and drop-off itinerary respectively. 

1) Mutation 
There are instances where we observe that the number of SAVs on a particular link is slightly below the lower threshold required to 

form a platoon. In such cases, we can reintroduce the vehicles that were initially excluded during the initial solution construction 
process to create a new platoon, which may further reduce the total travel time of the SAVs. Therefore, we implement mutation by 
changing the code of the specific genes on chromosome 0 from “0″ to ”1″, as shown in Fig. 9. 

Fig. 8. Diagram for the constitution of initial chromosomes.  
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The mutation probability of the genes varies among segments. It starts at zero in a segment that has not been selected for crossover. 
Once a segment is initially selected for crossover, the mutation probability of the genes within the segment is updated at the beginning 

of the subsequent iteration according to the function Pw
i = min

{
1, Pw− 1

i (1 − ξ)+ξ Ni
(βi+1)Nmin

}
, where i represents the segment number, w 

denotes the number of iteration, Pw
i indicates the mutation probability of segment i in iteration w, Ni represents the number of genes 

which are coded as “1″ in segment i of chromosome 0, Nmin indicates the minimum number of SAVs required for platooning, βi indicates 
the number of iterations in which segment i has been selected for crossover, ξ is a positive parameter, ranging from 0 to 1. 

2) Crossover 
We conduct crossover by swapping a segment of chromosome 0 with the allele segment of another chromosome. In this way, some 

of the SAVs are thrown into a certain time step, making it convenient to check whether they can reach the upstream nodes of the target 
link and form a platoon. The crossover operation is shown in Fig. 10. 

To enhance the search efficiency, preference should be given to the segments where a significant number of genes are coded as “1″ 
on chromosome 0, because a substantial number of SAVs are likely to traverse the links represented by such segments during their 
trips, exhibiting higher possibility of forming platoons. Based on this idea, we introduce a parameter referred to as crossover prob-
ability, which quantifies the likelihood of each segment being selected for crossover. This crossover probability is updated at the 

beginning of each iteration according to the function Pi = e
Ni

βi+1

∑
j
e

Nj
βj+1

, where i denotes the segment number, Pi indicates the probability that 

segment i is selected for crossover, Ni represents the number of genes which are coded as “1″ in segment i of chromosome 0, βi indicates 
the number of iterations in which segment i has been selected for crossover. 

3) Time-dependent feasibility check 
After the crossover operation, we perform a time-dependent feasibility check to determine whether it is viable to put an SAV within 

a virtual link for platooning. The departure time for each SAV is constrained within a range [tmin
o , tmax

o ], which is updated at the 
beginning of each iteration. Initially, the feasible departure time for each SAV spans the entire scheduling period: [(num − 1) • T, 
num • T]. As the iterations progress, certain vehicles are designated for platooning on specific virtual links. This requires adjusting the 
feasible range of departure times to comply with the time window constraints of the corresponding virtual link segments: 
[tmin

p − τt
(
sO
h , s

up
p
)
, tmax

p − τt
(
sO
h , s

up
p
)
], where tmin

p and tmax
p represent the lower and upper bounds of the time window constraint of virtual 

link p, respectively. 
Each vehicle that has been thrown into a new virtual link for platooning during the crossover operation must undergo a departure 

time derivation. This entails considering all potential sub-itineraries for insertion and calculating their respective departure times. If 
the calculated departure time for all values fall outside the feasible range of time windows, signifying infeasibility regarding the time 
window constraint, we label the corresponding genes as infeasible (i.e., labeled gray in Fig. 12) and exclude them from the platooning 
process in subsequent steps. For vehicles with feasible departure times, a further check on their arrival time at the pick-up and drop-off 
nodes should be conducted as well. 

The sub-itinerary for insertion is determined by selecting the earliest departure time that has been confirmed feasible, with the 
index of the sub-itinerary utilized to replace the initial “1″ code on the corresponding gene. The operation after the time-dependent 
feasibility check is illustrated in Fig. 11. 

4) Vehicle-number-based feasibility check 
After excluding the genes due to time infeasibility, we count the number of genes that are coded as positive numbers within every 

segment. If the number is less than the minimum number of vehicles required to form a platoon, all the genes coded as positive 
numbers within the segment will be labeled as infeasible. Conversely, if the number of nodes exceeds the maximum number of vehicles 

Fig. 9. Diagram for mutation operation.  

Fig. 10. Diagram for crossover operation.  
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allowed in a single platoon, some of them must be excluded. We calculate the increase in travel time when each vehicle is excluded 
from the platoon. The vehicles which lead to the least amount of travel time increase are excluded until the platoon size constraint is 
fulfilled. 

With the vehicle-number-based feasibility checked, another crossover operation is conducted on several pairs of segments, as 
shown in Fig. 12. 

For the genes that have been labeled infeasible, we revert their code back to “1″ and swap them with their allele genes on chro-
mosome 0. As for the nodes that are coded as positive numbers without being labeled as infeasible, we update their allele genes on 
chromosome 0 from ”0″ to “-1″. No further crossover operations are conducted on the nodes coded as ”-1″ in the subsequent iterations. 

5) Fitness evaluation and selection 
In this step, for each feasible offspring obtained through mutation, crossover, and checkout operations, we compute the fitness 

score based on the objective function. From the offspring population, the individuals with the highest three fitness scores are picked to 
be part of the parent population in the next iteration. 

6) Iteration stopping criteria 
The goal of the algorithm is to find the offspring individual with the highest fitness score. Following each iteration, it is vital to 

update the best fitness and best offspring individual based on the evaluation results of the newly generated offspring. Subsequently, a 
decision is made on whether to initiate a new iteration in pursuit of an improved solution. The iteration-stopping criteria entail the 
condition that the top three fitness values have remained unchanged for φ consecutive iterations or the iteration count reaches an 

Fig. 11. Diagram for the operation after time-dependent feasibility check.  

Fig. 12. Diagram for the operation after vehicle-number-based feasibility check.  

Fig. 13. Synthetic network setting.  
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upper bound Ω. The optimal solution for SAV scheduling and platooning model is ultimately determined based on the best offspring 
individual. 

5. Evaluations 

5.1. Synthetic road network case study 

In this section, we preliminarily validate the SAV scheduling, routing, and platooning method using a synthetic network (Wan and 
Lo., 2009), as displayed in Fig. 13. In this network, we identify three corridors, highlighted in various colors in the figure, which could 
offer priority services for SAV platoons. The travel times for each link are also indicated in the figure. Specifically, the travel times for 
SAV platoons and the increased total travel time for conventional vehicles, associated with priority services along the links of these 
corridors, are denoted within brackets. For example, on link 9–10, the label 3(2, 5.3) indicates that under normal circumstances, an 
SAV requires 3 min to traverse the link. However, with priority services provided for an SAV platoon, this time is reduced to 2 min, at 
the expense of introducing increased total travel time of 5.3 min for conventional vehicles. Notably, within the proposed model, the 
travel times for SAV platoons and the increased total travel time for conventional vehicles are derived from a multitude of parameters 
tied to real-world link characteristics (such as the number of lanes, signal periods, flow of conventional vehicles, etc.). Thus, for the 
sake of simplicity in testing on the synthetic network, we contemplate employing constant values. 

We choose 20 min as the scheduling period and further divide the scheduling period into 20 timesteps, each of which with one 
minute duration (i.e., Γ = 30, Δt = 1). The minimum number of SAVs required to form a platoon is set to 3 (i.e., lmin

ij = 3 ∀(i, j) ∈ Â). 
The weight of the delays of conventional vehicles in the objective function is γ = 0.5. We designate an SAV depot at node 4 equipped 
with 20 SAVs, along with 10 randomly generated requests distributed across the network. Each vehicle can take a maximum of two 
passengers. Table 2 lists the details of the requests used in the case study. 

We designed three cases, each involving different platooning corridors, in order to compare the results of the SAV scheduling, 
routing, and platooning on the network. Six performance metrics were used: the objective value, number of platoons, average number 
of SAVs per platoon, reduced total travel time of SAVs, increased total travel time of conventional vehicles, and computational time. 
We addressed these problems using three methods: Gurobi-only approach, a hybrid approach combining heuristic algorithm with 
Gurobi (utilizing Gurobi for solving the linear integer programming model based on the vehicle-to-request matching scheme obtained 
from Stage 1 of the heuristic), and the proposed two-stage heuristic algorithm. The methods were programmed in Windows using 
Python 3.8, and the processor used is an Intel Core i5-5500 CPU operating at 2.1 GHz, with 16 GB of RAM. The results are presented in 
Table 3. 

The proposed two-stage heuristic algorithm exhibited superior performance in terms of computational efficiency. For Case 1, all 
three algorithms obtained the optimal solution. However, as the number of platooning corridors increased, Gurobi failed to produce a 
feasible solution for Cases 2 and 3 within 3 h. The computational times for the proposed two-stage heuristic algorithm were 3.6 s and 
5.0 s for Cases 2 and 3, respectively, while those for the hybrid method combining heuristic and Gurobi were 32.1 s and 57.0 s, 
respectively. Notably, there was a significant increase in computational time observed in the hybrid method, ranging from 17.4 s to 
57.0 s, corresponding to the increased number of platooning corridors. 

Regarding solution quality, in Cases 1 and 3, both heuristic methods achieved the same globally optimal solution as the exact solver 
Gurobi. However, in Case 2, the objective function value obtained by the proposed two-stage heuristic method was slightly higher than 
that obtained by the hybrid method combining heuristic and Gurobi. 

We conducted an analysis of the best solutions obtained in the three cases. In Case 1, the number of SAV platoons was minimal, at 1, 
whereas this number increased to 2 for Cases 2 and 3. The reduction on SAVs’ total travel time ranged from 5 to 12 min, and the 
increased total travel time of conventional vehicles ranged from 3.4 to 8.0 min. 

5.2. Real-world case description 

The model is further applied to a real-world road network in Yangpu District, center of the city of Shanghai, in China. The district 
has a total area of 60.61 km2 and a population of about 131,000. Fig. 14 shows the simplified road network of Yangpu District based on 

Table 2 
Request information.  

Request index Pickup node Dropoff node Pickup time window Dropoff time window 

1 4 8 [7,17] [ − ∞,32]
2 1 10 [7,17] [ − ∞,29]
3 5 2 [9,19] [ − ∞,28]
4 4 9 [9,19] [ − ∞,32]
5 6 8 [7,17] [ − ∞,30]
6 1 9 [6,16] [ − ∞,28]
7 3 8 [9,19] [ − ∞,30]
8 5 7 [6,16] [ − ∞,30]
9 4 6 [7,17] [ − ∞,25]
10 5 3 [8,18] [ − ∞,31]
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OpenStreetMap. 
The road network has 214 links and 67 nodes. Within this network, three major roads, Siping Road (18–26-35–36), Zhoujiazui Road 

(44–45-46–48), and Quyang Road (12–17-25–34), which are highlighted in red in the figure, may offer priority for SAVs. Siping Road 
and Zhoujiazui Road have two-way eight lanes, while Quyang Road has two-way six lanes. The number of lanes is sufficient to reserve a 
temporarily dedicated SAV lane and provide signal priority control for SAV platoons at the intersections. The capacity of each link is 
1200veh per hour per direction per lane. The traffic flow of conventional vehicles on each link is 900veh per hour per direction per 
lane. 

We choose 30 min as the scheduling period and further divide the scheduling period into 30 timesteps, each of which with one 
minute duration (i.e., Γ = 30,Δt = 1). The minimum number of SAVs required to form a platoon is set to 3 (i.e., lmin

ij = 3∀(i, j) ∈ Â). We 

also constrain the upper bound of SAV number in a single platoon to be 10 (i.e., lmax
ij = 10∀(i, j) ∈ Â). The parameters of the BPR 

function are α = 1,β = 2. The weight of conventional vehicle delays in the objective function is γ = 0.5. At every intersection con-
nected to the three major roads that are capable of offering priority for SAVs, the signal period is 60 s and the ratio of green time to 
cycle is 0.4. Both the maximum time of green advance (i.e.,amax

g ) and green extension (i.e., emax
g ) are 6 s. Both the traffic flow of 

conventional vehicles affected by green advance and green extension at these intersections are 600veh per hour. Based on Proposition 

1, we assess the impact of green advance strategy on individual conventional vehicle by calculating the proposed three indices: P
(

Ia
i(t) ,j 

= 1
)
= 0.005, E

(
Ja

i(t) ,j|I
a
i(t) ,j = 1

)
= 48.5, max

{
Ja

i(t) ,j|I
a
i(t) ,j = 1

}
= 50. Therefore, a conventional vehicle bears a minimal probability of 

0.5 % of being impacted by green advance at an intersection with SAV platoon, with delays not exceeding 50 s. 
The initial positions of the SAVs are nodes: 18, 24, 36, and 39, with each node initially accommodating 50 vehicles. We suppose 

that each vehicle can satisfy a maximum of two requests per trip. We use the Shanghai Taxi data on 30 April 2021 consisting of order 
ID, order start and end times, and longitudes and latitudes of the trip origins and destinations. There are 25,431 requests in the study 
area that do a trip of over 3 km. These are taken as the passenger requests in the following experiments. The major OD pairs, spe-
cifically those with over 100 requests, are depicted in Fig. 15. Notably, we observe several instances of overlap between the OD pairs 
and the links that provide priority services. 

5.3. Experiments results 

Leveraging the road network, model parameters outlined in Section 5.1, we conduct several experiments to optimize the SAV 
scheduling and platooning strategy by employing the two-stage heuristic algorithm proposed in our study. 

5.3.1. Demand variation 
The number of requests is a key factor that affects the calculation speed. Therefore, in order to test the performance of the heuristic 

algorithm, we respectively record the calculation time spent on the two stages as the number of requests increases from 30 to 200 per 
half hour. The requests are randomly generated, drawing upon the distribution of the Shanghai Taxi data. We conducted 50 tests for 
each experiment with varied number of requests, and took the average values as the results of the experiment. 

The results of the experiments, as illustrated in Fig. 16, reveal a gradual increase in the calculation time for both Step 1 and Step 2 as 
the number of requests grows from 30 to 200. Notably, the stopping criteria applied in our experiments require that the top three 
fitness values should remain constant for 5 consecutive iterations or until the iteration count reaches a maximum of 30 (i.e., φ=5, Ω =

Table 3 
Performance comparison of different solution algorithms on three SAV platooning corridors cases.  

Case Case 1 Case 2 Case 3 

Index of platooning corridors 1 1, 2 1, 2, 3 
Objective function value Gurobi 68.7 — — 

Stage1 + Gurobi 68.7 68.0 63.9 
Stage1 + Stage2 68.7 68.7 63.9 

Number of platoons Gurobi 1 — — 
Stage1 + Gurobi 1 2 2 
Stage1 + Stage2 1 1 2 

Avg number of SAVs per platoon Gurobi 3 — — 
Stage1 + Gurobi 3 3 3 
Stage1 + Stage2 3 3 3 

Reduced total travel time of SAVs (min) Gurobi 5 — — 
Stage1 + Gurobi 5 8 12 
Stage1 + Stage2 5 5 12 

Increased total travel time of conventional vehicles (min) Gurobi 3.4 — — 
Stage1 + Gurobi 3.4 8.0 7.7 
Stage1 + Stage2 3.4 3.4 7.7 

Computational Time (s) Gurobi 7190.7 — — 
Stage1 + Gurobi 17.4 32.1 57.0 
Stage1 + Stage2 1.9 3.6 5.0 

Notice: The cases where a feasible solution could not be obtained within 3 h is marked as ‘—’. 
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30), since we observed that the optimal solution showed only slight improvement beyond 30 iterations. The total calculation time 
ranges from 10 s to 141 s. The total calculation time is relatively low, taking only 55 s when the number of requests stands at 150. 
However, both Step 1 and Step 2 experience a doubling of their durations when the number of requests increases from 150 to 200. The 
solutions along iterations in one of the experiments involving 200 requests are shown in Fig. 17, where the optimal solution is obtained 
through 23 iterations. 

The numerical results of our experiments are presented in Table 4. As the number of requests increases, both the number of SAV 
platoons and the average number of SAVs per platoon show a gradual increment. In the case of 30 requests, there are only 1.80 
platoons, with an average of 3 SAVs per platoon, which barely meets the minimum requirement for platooning. However, as the 
number of requests increases to 200, the number of platoons rises significantly to 10.20, and the average number of SAVs per platoon 
reaches 4.33. 

We calculate the number of SAVs engaged in platooning on each link and determine their total count. Subsequently, we define the 
platooning percentage as the ratio of this cumulative count of platooning SAVs to the total number of dispatched SAVs. In this 
experiment, a noticeable rise in the percentage of platooning is observed with the number of requests, increasing from 33.19 % to 
43.78 %. 

Both the number of platoons and the average number of SAVs per platoon are closely related to the performance of the road 
network, while the former shows a more evident impact. The total travel time of SAVs exhibits a notable decline as the number of 
platoons grows, with the percentage of reduced travel time for the SAVs that formed platoons ranging from 11.74 % to 15.76 %. The 
total delays of conventional vehicles increase with the number of platoons as well, because each newly generated platoon contributes 
to an extra delay to the conventional vehicles. However, the total travel time increase of conventional vehicles is much smaller than the 
reduction observed in SAVs’ total travel time, which shows that the overall performance of the road network could be improved by 

Fig. 14. Road network used in the case study.  
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Fig. 15. Major OD pairs in the research area.  

Fig. 16. Calculation time of SAV scheduling experiments.  
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using the scheduling and platooning method proposed in our study, if sufficient numbers of SAVs are available to form the platoons. 

5.3.2. Sensitivity analysis on vehicle capacity 
We use the case of 150 requests as a benchmark and tested the system performance under various vehicle capacities, i.e., the 

number of passengers shared in a vehicle ride. The numerical results are presented in Table 5. The influence of vehicle capacity on both 
the usage of SAV fleet and the total travel time of SAVs is illustrated in Fig. 18. 

When the capacity of each SAV is constrained to be one passenger (i.e., ridesharing is not allowed), the average number of platoons 
reaches 18.7 and the platooning percentage exceeds 60 %. However, with the vehicle capacity increased to two passengers, both the 
number of platoons and the platooning percentage decrease significantly. The reduction is even more pronounced when each SAV can 
carry up to three passengers. This result manifests the impact of carpooling on diminishing the platooning opportunities. This happens 
because the requests with similar routes are more likely to be allocated to one vehicle through carpooling rather than first matched to 
multiple vehicles and then platooned together. 

The total travel time of the SAVs, as well as the time saved through priority service, diminishes as the number of shared riders 
increases. This indicates the predominant role of carpooling in SAV scheduling, which can optimize the total travel time by reducing 
vehicle usage. Meanwhile, the priority service for SAV platoons serves as an effective supplement to further enhance SAV operational 
efficiency. The effect of SAV platooning is particularly noticeable in scenarios with low-degree carpooling, or in the case in which 
passenger requests are more concentrated instead of sparsely distributed. 

5.3.3. Sensitivity analysis on the weight of delays 
The case with 150 requests and a capacity of 2 passengers per SAV is used as the base line case. We vary the weight of conventional 

vehicle delays in the objective function to balance the significance of SAVs’ total travel time and the delays of conventional vehicles. 
The results are shown in Fig. 19. 

Upon analysis of the optimal solution, it becomes evident that the reduced total travel time of SAVs as well as the increased delays 
of conventional vehicles remains relatively stable as the weight of delays increases from 0.3 to 0.5. However, when the weight of delays 
is raised from 0.5 to 1.0, the percentage of platooning drops from 40.70 % to 30.88 %, which leads to a substantial increase in total 
travel time of SAVs and a corresponding decrease in total delays of conventional vehicles. As the weight of delays increases from 1.0 to 
2.0, both the reduction in total travel time of SAVs and the delays of conventional vehicles diminish. Particularly, when the weight of 
delays reaches 2.0, the reduced total travel time of SAVs and the increased delays of conventional vehicles become marginal, indicating 

Fig. 17. Solution optimization along iterations.  

Table 4 
Optimization result of SAV scheduling experiments.  

Number of 
requests 

Number of 
platoons 

Avg number of 
SAVs per platoon 

Percentage of 
platooning 

Percentage of reduced 
travel time of platooning 
SAVs 

Reduced total travel 
time of SAVs (min) 

Increased total travel time of 
conventional vehicles (min) 

30  1.80  3.07  33.19 %  11.74 %  17.72  5.60 
50  3.10  3.13  36.50 %  11.92 %  27.63  9.72 
100  5.40  3.62  38.72 %  12.68 %  55.12  17.66 
150  7.40  4.17  40.70 %  13.84 %  88.46  23.99 
200  10.20  4.33  43.78 %  15.76 %  109.80  33.99  
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limited platooning effect. Therefore, the weight of delays is useful to modify the allocation of road resources on certain link segments, 
thus improving the optimization effect of the SAV scheduling and routing method proposed in our study. 

5.3.4. Sensitivity analysis on the minimum number of SAVs required for platooning 
We vary the minimum number of SAVs to form a platoon from 2 to 6 based on the baseline case. We find the number of platoons, the 

average number of SAVs per platoon, and the percentage of platooning are sensitive to the minimum number of SAVs required for 
platooning, as shown in Fig. 20. 

As the minimum number of SAVs required for platooning increases from 2 to 3, the percentage of platooning as well as the reduced 
total travel time of SAVs did not change much, which indicates that the number of SAVs that receive priority services through 

Table 5 
Sensitivity test on vehicle capacity.  

Vehicle 
capacity 

Number of 
platoons 

Avg number of 
SAVs per platoon 

Percentage of 
platooning 

Percentage of reduced 
travel time of platooning 
SAVs 

Reduced total travel 
time of SAVs (min) 

Increased total travel time of 
conventional vehicles (min) 

1  18.70  4.86  60.71 %  16.06 %  242.50  56.59 
2  7.40  4.17  40.70 %  13.84 %  88.46  23.99 
3  4.30  3.28  27.66 %  12.86 %  40.35  13.50  

Fig. 18. Usage of SAV fleet and total travel time of SAVs.  

Fig. 19. Sensitivity test on weight of delays.  
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platooning is almost kept at the same level. However, with more SAVs required in a platoon, some SAVs are obliged to join another 
platoon, making the average number of SAVs per platoon grow to a value that narrowly exceeds the updated standard, and giving rise 
to a significant decline in the number of platoons. The delays of conventional vehicles are reduced while ensuring the efficiency of 
SAVs. Therefore, we suggest setting the number at 3. 

As the minimum number increases from 3 to 6, there is a significant decrease in both the number of platoons and the percentage of 
platooning. Besides, we also observe a notable increase in the travel time of SAVs and a reduction in the delays of conventional vehicles 
with higher vehicle number standard. Therefore, it is concluded that adjusting the minimum number of SAVs required for platooning 
can mitigate the negative impact on conventional vehicles. However, an excessively high standard may considerably prevent the 
formation of SAV platoons, resulting in limited improvements in SAV operational efficiency. 

6. Conclusion 

With the expansion of metropolitan areas, as well as the increasing sophistication of intelligent transportation systems, SAVs are 
poised to become a crucial element of urban public transit in the future. In this study, we introduce a vehicle scheduling and routing 
method that allows SAVs to operate with priority on designated trunk roads in the form of platooning. An SAV scheduling, routing, and 
platooning model is developed to minimize the total travel time of SAVs and the delays experienced by conventional vehicles due to 
SAV priority, thereby optimizing the overall performance of the road network. The problem is formulated as a linear integer pro-
gramming model which is very hard to solve due to the number of variables and constraints. In order to address the model complexity, 
we propose a two-stage heuristic algorithm. In the first stage, we allocate passenger requests to a fleet of SAVs, leveraging an eval-
uation index that manifests the compatibility of each vehicle-to-request combination based on spatial correlations, while considering 
the potential reduction in travel time gained from priority services. In the second stage, we establish the optimal vehicle routing 
solution, using a customized genetic algorithm that coordinates the paths of various SAVs in both time and space, thereby achieving the 
desired vehicle platooning effect. 

A case study was presented to illustrate the effectiveness of the algorithm, the benefits of platooning for SAVs, and its impact on the 
overall performance of the road network. Our results demonstrate that the solution algorithm can compute the optimization result 
within one minute for scenarios involving 150 requests on a road network with 214 links and 67 nodes, indicating potential 

Fig. 20. Sensitivity test on the minimum number of SAVs required for platooning.  
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applicability to real-time scheduling systems. In our experiments, the SAVs that formed platoons saw their total travel time reduced by 
up to 15.76 %, while keeping the total travel time increase of conventional vehicles significantly smaller than the improvements in SAV 
travel time. Upon examining the impact of vehicle capacity, we have determined that the priority service offered to SAV platoons can 
serve as a valuable complement to the carpooling approach. Furthermore, the weight of delays in the objective function and the 
minimum number of SAVs required for platooning emerge as effective control parameters for ensuring the overall performance of the 
road network while maintaining SAV operational efficiency. 

The presented scheduling and routing approach for SAV platooning can be extended to other transportation modes, such as freight 
trucks and modular autonomous vehicles (MAVs). MAVs represent an innovative concept enabling dynamic docking and undocking of 
modules with vehicles of varying sizes during the journey (Chen et al., 2021; Pei et al., 2021; Tian et al., 2022). The scheduling, 
routing, and platooning method can be employed in the MAV transit system, where the operation of multiple modular units shares 
similarities with the SAV platooning process considered in this study. Additionally, the strategy of intermittent dedicated lanes can be 
further applied in traffic management, facilitating the operation of specific vehicle types while maintaining overall transportation 
system equity. However, the extensive management costs for intermittent activation of SAV dedicated lanes and signal priority control 
may impede widespread adoption of the proposed method. The utilization of such high-cost services may not always be profitable for 
SAV companies. Future research could address the SAV platooning problem on a larger scale. Additionally, the increased delays of 
conventional vehicles due to SAV priority services could be checked through a simulation-based method. 
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Appendix A 

Among the SAVs that do not receive priority services, those arriving within green phase almost have no delays at the intersection, 
while the delays of those arriving before or after green phase are calculated by comparing their arrival time to the start time of the 
following green phase. Therefore, the expected total delays D0

ij given in Equation (30) can be derived as follows: 
The probability density function of each SAV’s arrival time within one signal period is: 

f (x) =

⎧
⎪⎨

⎪⎩

1
Cj

0 ≤ x ≤ Cj

0 else 

The relationship between the dwelling time and the arrival time of each SAV is: 

D(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ts
gj
− x 0 ≤ x < Ts

gj

0 Ts
gj
≤ x ≤ Te

gj

Cj + Ts
gj
− x Te

gj
< x ≤ Cj 

The expected total delays D0
ij are calculated as follows: 

D0
ij =

∫ Cj

0
f (x)D(x)dx =

∫ Ts
gj

0

1
Cj

(
Ts

gj
− x
)

dx+
∫ Cj

Te
gj

1
Cj

(
Cj + Ts

gj
− x
)

dx =

(
Cj − gj

)2

2Cj  

Appendix B 

The maximized green phase, which adopts the maximum time of green advance and green extension, is considered for calculating 
the delays of SAVs with priority control. For an SAV platoon that arrives before the original green phase, we need to locate the lead car 
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of the platoon and associate it with the maximized green phase. If the lead car of the SAV platoon arrives within the maximized green 
phase, the delays of each SAV are equal to 0. Otherwise, the delays vary according to the position of the platoon. For an SAV platoon 
that arrives after the original green phase, we only need to analyze each SAV of the platoon respectively. The delays are equal to 0, if its 
arrival time is within the maximized green phase. Otherwise, it needs to disassemble from the platoon and stay at the intersection until 
the next green phase. Therefore, the expected total delays D0

i(t)j given in Equation (32) can be derived as follows: 
The probability density function of each SAV’s arrival time within one signal period is: 

f (x) =

⎧
⎪⎨

⎪⎩

1
Cj

0 ≤ x ≤ Cj

0 else 

The relationship between the dwelling time and the arrival time of the SAV platoon is: 

D(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ts
gj
− amax

gj
− x 0 ≤ x < Ts

gj
− amax
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0 Ts
gj
− amax

gj
≤ x ≤ Te

gj
+ emax

gj

Cj + Ts
gj
− x Te

gj
+ emax

gj
< x ≤ Cj 

The expected total delays D0
ij are calculated as follows: 

D0
ij =

∫ Cj

0
f (x)D(x)dx =

∫ Ts
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− amax

gj

0

1
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(
Ts
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− amax

gj
− x
)

dx+
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1
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Appendix C 

The increased delays at intersections for conventional vehicles, denoted as D2
i(t) j in Equation (37), can be derived as follows: 

The delays of the conventional vehicles affected by green advance in phase p is: 

Da,p
i(t) j =

∫ Ts
gj

Ts
gj −

agj
3

(
Cj +Ts

gj
− ga,p

j − x
)

v1
i(t) jdx = v1

i(t) j

(
Cj − ga,p

j
) agj

3
+

1
2

v1
i(t) j

(agj

3

)2 

The total delays of the conventional vehicles affected by green advance is: 

Da
i(t) j =

∑

p
Da,p

i(t) j =
1
3

v1
i(t) j

(
2Cj + gj

)
agj +

1
6
v1

i(t) jagj
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The delays of the conventional vehicles affected by green extension in phase p is: 

De,p
i(t) j =

∫ Te
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3
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The total delays of the conventional vehicles affected by green extension is: 

De
i(t) j =

∑

p
De,p

i(t) j =
1
3

v2
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(
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)
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1
6
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The total delays of conventional vehicles at intersection are the sum of the above two terms: 

Di(t) j

(
agj , egj

)
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i(t) j +De
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1
3
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)
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1
6

v2
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The probability density function of the arrival time of the head car of the SAV platoon within one signal period is: 

f (x) =

⎧
⎪⎨

⎪⎩

1
Cj

0 ≤ x ≤ Cj

0 else 

The time of green advance agj and green extension egj vary according to the arrival time of the SAV platoon. Therefore, the increase in delays 
of conventional vehicles at intersection is calculated as the expected value across all of these scenarios: 

Z. Wang et al.                                                                                                                                                                                                          



Transportation Research Part E 186 (2024) 103546

25

D2
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