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Preface

When asked numerous times over the past year what I was doing my Master’s Thesis on, I can
remember thinking how lucky I was with the title of my topic. “Lifelong Learning for a Kresling
Origami Robot” speaks to the imagination, and turns the person who asked the question–likely
out of politeness–into a genuinely interested listener.

Upon finding this thesis topic amongst the other options, I was surprised that it was still
available: Origami meets machine learning, and you get to use your arts-and-crafts-skills
while designing and building your very own robot–surely the list of available options had not
been updated yet. To my great relief, Professor Kober assured me that it was still free, and
we sat down to discuss the prospects. I had recently finished an internship where I gained
some hands-on experience in implementing machine learning by myself, and I like crafting and
tinkering, so this topic seemed cut-out for me. That said, I would not have considered myself
a “maker”. I never worked with microcontrollers before, nor soldered my own circuit-boards
together; I hardly really understood the basic principle of a breadboard. Thirteen months later,
I can say that I do not regret choosing this topic.

I would therefore like to thank Professor Jens Kober for his encouragement and support
throughout the entire process. Often finding myself at an impasse, Professor Kober would
offer some valuable insight or alternative solution to look into, completely freeing me up to
get moving again. Probably also indebted to Professor Kober for that same reason are my
parents, whom I really need to thank for continually putting up with my repeated statements
that “yes, I really am nearly finished now”. Their worries of me becoming an eternal student
might have been a great deal worse, however, were it not for the kind people at the TU Delft
Science Centre, who allowed me to access their MakerSpace. Without their lasercutter, the–
to my own estimation–200 origami structures that I fabricated throughout the process would
have likely taken months to cut out and construct.

Then there are my friends: I spent nearly the entirety of my thesis working in the Echo
building, and without the assurance that Bram, Oscar, Thomas, Niels, and Kato would be
there as well, all going through the same tough process, it would have been a lot harder to
get up and go there every morning. Our so-called “Echo crew” was always ready to go for a
spontaneous coffee break, to lunch together, or to grab a drink after a long day of work. On that
note, I think I can spare a line of text to extend my gratitude to the volunteers at Architecture’s
faculty bar De BouwPub, who were always willing to provide said drinks. My housemates, both
old and new, Tim, Frederique, Emiel, Tine, Loes, Maxim, Rune, Sien, and Nelson, I would like
to thank for making each day more than just work. May the Bronx Blues Brothers soon have
their musical breakthrough. Finally, I would like to thank Arnaud, who volunteered to proofread
this attempt at a coherent work of scientific research–a thankless task which I hope he does
not regret accepting.

With that said, I hope that you enjoy “Lifelong Learning for a Kresling Origami Robot” as
much as I enjoyed the whole process of turning this concept from a mere title into a physical
robot, and finally, into this document.

E. De Vroey
Delft, October 2024
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Lifelong Learning for a Kresling Origami Robot:
A Plug-and-play Module for Supervised Learning of Target Adaptations

E. De Vroey

Abstract—Soft robots offer a variety of useful applications.
However, the nature of their design makes them challenging to
control using traditional techniques. Many applications therefore
rely on machine learning-based methods, learning opaque control
policies or dynamic models of the robot. This often results in
overly complex and uninterpretable solutions for the problem at
hand.

In this paper, a simplified approach is considered: Using a
common feedforward neural network as a target adapter module,
learned adaptations are added to the desired targets that are
fed to a simple PID controller, essentially “deceiving” it into a
better performance. This adapter is completely separate from
the controller itself, allowing for relatively simple controllers to
control and adapt to complex and evolving systems.

The approach is tested in simulation on a simple mass-spring-
damper control problem, where qualitative results show near-
immediate improvement in controller performance. The approach
is then tested on a demonstrator origami robot, which relies for
its functionality on the dynamics of the Kresling origami spring.
Results show that this simple adaptation approach is robust to
changes in controller tuning and changes in system dynamics.
However, the method is sensitive to the sampling frequency at
which training data is recorded.

I. INTRODUCTION
Lifelong learning, the ability of a system to continuously

adapt to new information throughout its lifetime, is a much
sought-after feature for many applications. Rather than relying
on policies that are “set in stone”, these systems learn and
evolve autonomously, changing and improving their behaviors
as they encounter new tasks or environments. This ability
makes lifelong learning a powerful tool for systems that op-
erate in uncertain or evolving scenarios, where changes are
common or to be expected. Not in the least for robotics.

Robots, like all mechanical systems, wear down over
time—joints become more compliant, motors weaken, and
sensors lose precision. Traditionally, maintaining a robot’s
performance might require manual software updates or
recalibrations every so often (Lao et al., 2023). But as robots
become more complex, especially in fields like soft robotics,
where flexible, compliant materials introduce additional
challenges, the need for autonomous adaptation becomes
clear: By design, the materials used in the construction of
soft robots are less sturdy and thus more prone to much
faster deterioration, making manual updates or recalibrations
impractical.

In addition, the complex system dynamics introduced by
the unconventional robot configurations and use of materials
make modeling their dynamics and control difficult. Deriving
an analytical model for the dynamics of a soft robot can
become so complicated to the point that it is impractical.

desired target

adapted target

expand contract

grip slide slide grip

signal response

Fig. 1: The Kresling origami robot with target adaptation. Top:
The “feet” of the robot grip when dragged backward, but slide
when pushed forward, allowing the robot to move forward, also
known as two-anchor crawling (Calisti et al., 2017). Bottom:
The contraction target is adapted to reduce overshoot and
unstable oscillations.

Soft-robotics applications therefore heavily rely on the use of
machine learning (ML) methods (Bhagat et al., 2019; Kim
et al., 2021). These “black-box” techniques offer the possibility
of modeling the robot’s dynamics and allow for continuous
adaptation but are often very opaque or complex, even though
the task or environment setting of the soft robot could be
something fairly simple.

This paper proposes a method of enhancing a traditional con-
troller with ML abilities. The idea is that a basic controller can
be tuned to a bare minimum sufficient performance, without
worrying about the variations in dynamics introduced by soft
robots. This controller is expanded with a separate module that
takes care of the learning and adapting part of the challenge.
The module then only needs to improve the performance of
the controller, without requiring knowledge on the dynamics
of the system, nor is the controller completely replaced by
an uninterpretable “black-box” policy. The controller works in
cooperation with the ML-module, separating the interpretable
basic control from the opaque learning and adapting.

Techniques like parameter adaptation work much in the
same way. An adapting or tuning module, quite often ML-
based, can be “plugged” into a base controller, tuning its
parameters on the go to achieve an optimal performance (An-
naswamy & Fradkov, 2021; Landau et al., 2011). However,
parameter adaptation requires knowledge on the architecture of
the controller (e.g., how many, and which parameters should
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be tuned) and such a module must thus be designed separately
for each controller.

The proposed method tries to mitigate this downside by
offering a “plug-and-play” module that can improve a con-
troller’s performance by simply adapting the desired target it
receives (Figure 1, bottom). In this way, no previous knowl-
edge on the type or tuning of the controller is required. In other
words, as long as the fundamental assumptions of a controller
are satisfied—i.e., it requires a state and a target as input and
yields a control action—the method can remain completely
agnostic to the specific controller being used.

As Tang and Wei (2022) point out, with soft robots offering
many advantages in miniaturization, the physical space for
controllers with heavy computational power can be limited.
The “plug-and-play” module offers thus offers another advan-
tage: externalizing the heavy computational task from the soft
robot, which allows a (miniaturized) robot to just run a basic
controller with low computational capabilities.

As a demonstration of the technique, this target adaptation
approach is tested on a demonstrator origami robot, con-
structed in part from paper and which relies on the widespread
Kresling pattern (Kresling, 2008) for its design (Figure 1,
top). The Kresling origami spring (KOS) is characterized
by its non-linear stiffness with deflection and bistable behav-
ior (Masana & Daqaq, 2019), making it an interesting building
block for many soft-robotics applications (Masana et al., 2024).
The demonstrator robot is thus a good representation of a
large cross-section in soft robot designs, as well as a useful
playground for testing the adaptability of the method to more
complex dynamics.

II. RELATED WORK

This section will provide a useful background and context
for the Kresling origami robot (Sections II-A and II-C) as
well as a brief overview and comparison of related methods
concerning lifelong learning (Section II-B).

A. Soft Robotics
Soft robotics is a field that has gained much interest over

the past decade. Soft robots are constructed from deformable,
soft materials which offer advantages in fields such as human-
robot interaction, where their inherent compliance makes them
safe to interact with. Other use-cases range from manipulating
fragile objects, to medical treatment delivery inside the human
body, and search-and-rescue (Hawkes et al., 2017; Kim et al.,
2021; Ze et al., 2022).

Origami robots are a subset of soft robots. Inspired by the
Japanese art of paper-folding, these robots rely on creases
in their materials for both structural integrity and actuation
methods. This allows for highly miniaturized designs that can
self-deploy and can be actuated using affordable, lightweight
mechanisms (Tang & Wei, 2022).

Of course, although the materials used often bend rather
than break, they are prone to deteriorate faster than their
rigid counterparts. Hence, combined with the aforementioned
difficulty of modeling the dynamics, the usefulness of lifelong

learning in this field becomes obvious (Kim et al., 2021). Addi-
tionally, the rapid deterioration and widely available materials
make soft robots a fast and economical playground for testing
lifelong learning techniques as well.

B. Lifelong Learning
Many approaches to lifelong learning can be found in litera-

ture, with machine learning being an integral part in nearly all
of them (Lesort et al., 2020). Broadly speaking, the approaches
can be divided into four categories, which are not necessar-
ily mutually exclusive: Methods that result in a “black-box”
control policy, often obtained through reinforcement learning,
where a policy is found by trying to optimize a reward func-
tion (Bhagat et al., 2019). Methods that model the dynamics of
the system, to be used in combination with other controllers or
to optimize an ML-based policy (e.g., Gillespie et al. (2018)
and Thuruthel et al. (2019), respectively). Special architectures,
such as the parameter adaptation or estimation mechanism, and
iterative learning control, where a separate module capable of
learning is combined with a base controller (Landau et al.,
2011; R. J. Li & Han, 2005). Finally, the use of mechanisms
that invoke some kind of memory, either by modifying the
update method to be less destructive (e.g., learning without
forgetting from Z. Li and Hoiem (2018)), or by implementing
some form of library that can be accessed to store and retrieve
information or parameters, as in e.g. Wang et al. (2020).

The techniques most similar to the method discussed in
this paper are parameter adaptation/estimation and iterative
learning control (ILC). In parameter adaptation, ML-based
methods are used to directly tune the internal parameters of a
controller. The various techniques used to achieve this rely on
observing the interactions of the controller with the system or
having access to the feedback signal of the controller (Landau
et al., 2011). Furthermore, the estimation mechanism must
be designed specifically for the parameters of the controller
in question. Iterative learning control on the other hand only
uses the error signal to improve a controller’s performance.
It achieves this by changing either the controller’s reference
signal (i.e., the target) or its control action, based on the ob-
served error during a previous trial (R. J. Li & Han, 2005). By
iteratively applying this approach, the controller’s performance
can be improved. However, ILC is limited to systems that are
highly repetitive, i.e., the same task is repeated many times; a
constraint that the proposed method will try to circumvent.

C. Kresling Origami
The Kresling origami pattern is a folding-pattern used to

create deployable cylindrical structures (also known as bel-
lows) such as the one in Figure 2a. As shown in Figure 2b,
the pattern is based on the creases that naturally occur when
twist-buckling a cylindrical structure (Kresling, 2008).

Due to the strain induced on the folds when twisting or
compressing the structure formed by the pattern, it forms
a torsional and translational spring with nonlinear stiffness.
The pattern can be defined by three parameters (Figure 3,
top-right), depending on which the spring can be designed
to be either mono- or bistable (Masana & Daqaq, 2019):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3

(a) Fully constructed 6-sided
KOS.

(b) Twist-buckling crease pattern.
Obtained from Kresling (2008).

Fig. 2: Kresling origami pattern
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Fig. 3: Design map for a KOS with 6 sides reproduced
from Masana and Daqaq (2019) and the corresponding pa-
rameters from the folding pattern, with mountain creases in
blue and valley creases in dashed red.

Monostable M1, M2 and M3 type springs differ in their
stable deployment height being zero, non-zero and non-zero,
respectively, and their stable potential energy being non-zero,
zero and non-zero, respectively. Bistable types B1 and B2
differ in their contracted stable height being non-zero and zero,
respectively, and their respective potential energy being zero
and non-zero. With the help of only three parameters, the map
of feasible designs shown in Figure 3 can be created. Using
this design map, a pattern can be designed that conforms to
any of these categories. The springs used for the robot in this
paper are of type B1 (Appendix D).

The bistable behavior of the KOS is a feature that has made
the pattern popular in applications varying from mechanical
switches, to aerospace structures and soft robots (Masana et
al., 2024). The demonstrator robotic crawler in this paper is
inspired by similar robots such as from Pagano et al. (2017)
and Ze et al. (2022).

III. METHODOLOGY
The method proposed in this paper aims to provide a

way of improving a given controller’s performance as well
as fortifying it against evolving system dynamics without
having access to the inner workings of the controller itself.
In addition, the aim is not to replace the controller entirely
but to introduce an additional module to the control scheme
that enables lifelong robustness to evolving system dynamics.

}
predicted

adapted target
target

signal

∆

xt

xt+window

(a) The goal: Reach the target within the specified window. By
supplying the model with the controller’s target position and current
state xt, it yields a ∆ that can be added to the current target.

adapter
controller robot

target
state

∆
state*

+ u

(b) The target adaptation control scheme: The adapter is used to offset
the given target before presenting it to the controller, essentially lying
to the controller in order to improve its performance.

Fig. 4: Target adaptation

The advantage of such a method is that it could be applied to
any system as a “plug-and-play” module.

The manner in which this will be achieved is by target
adaptation. An adapter module modifies the target used by
the controller to improve its performance. Consider a scenario
where a controller yields a control action u to reach a certain
desired target state xd within a certain time window. As
the system dynamics evolve, suppose this action u is now
insufficient to reach the target. In response, based on the state
of the system and the desired target, the adapter module “lies”
to the controller about reaching xd and instead provides it
with xd+∆. For this adapted target, the controller now yields
a larger action u∗ that does result in the system reaching
state xd. Figure 4a illustrates the desired outcome of the
target adaptation method, the basic control scheme is presented
in Figure 4b.

At a glance, this method resembles that of iterative learning
control (ILC). However, in ILC, the adaptation to the reference
signal is directly proportional to the error signal, resulting in
effective behavior for a very constricted task setting, where the
same task is repeated over and over. Here, the goal is to have
a more universal improvement in performance, and to detach
the method from the error signal.

To achieve this, the adapter is implemented as a feedforward
neural network with two hidden layers with non-linear activa-
tions. To train this model to learn suitable target adaptations,
interactions of the controller with the system are recorded.
Specifically, a buffer stores the recorded system states with
corresponding targets. The model is then provided with pairs
of system states that are obtained from the buffer and are
spaced by a certain time window xt and xt+window. From these
pairs, the model infers the target it “believes” the controller
aims to reach. However, instead of learning to predict the target
directly, the training labels represent the difference ∆ between
the target xd, t and the latter state in the pair (Figures 5a
and 5b).

The model can be trained in a supervised manner and then
deployed. During deployment, it is presented with the current
state xt but cannot be presented with xt+window (since this
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xt

xt+window

target }

signal

∆

(a) The target adaptation problem: Based on the current position
xt and the position some prediction window later xt+window, the
model learns to predict the target the controller is trying to reach
by representing it as a ∆ to be added to xt+window.

…

…{

subtract

labels: ∆

features: state pairs

buffer: states
targets

(b) The feature and label extraction process: recorded states spaced by
a specified prediction window are paired up and provided as features
to the adapter, which learns to predict a ∆, being the difference
between the target xd, t and state xt+window.

Fig. 5: Target adaptation during the training phase.

state is not known yet). Instead, the second state in the pair
is set to the desired target. To the model, this represents a
situation in which the desired target was reached from the
current state within the specified time window. The idea is
now that the trained model will produce a ∆ that–when added
to the latter state in the pair (i.e., the desired target)–results
in an adapted target for which the controller will produce an
improved control action (Figure 4a). In short, given a current
state xt and a future state xt+window, the model learned to
produce the desired target. Thus, when presented with xt and
xt+window = xd (supposedly reached within the time window) it
provides the (adapted) target that would “push” the controller
toward that result.

This approach is thus completely detached from the error
signal, and allows for non-repetitive settings, as opposed to
ILC. ILC, however, also provides an approach of adapting the
controller’s action u directly. Trying to mimic this approach
similarly to the target adaptation method described, one could
train an adapter to predict a control action, or a series of
actions, based on a state pair. The downside to this approach
is that as the adapter improves, it would essentially replace the
controller (during deployment, it receives the state and target,

and produces an action), which is one of the outcomes to be
avoided, as stated earlier. Therefore, the target adaptation was
considered the more elegant approach.

Finally, the reason for predicting the difference ∆ between
the state xt+window and the desired target, rather than a direct
prediction of the target, should also be clarified now: By
designing the target adapter’s output to be the difference ∆,
the model can be initialized with parameters all close to zero
(essentially leaving the desired target unchanged) and then
steadily improve online as interactions of the controller and
system are recorded, without the need for a pretraining phase.

IV. ILLUSTRATIVE PROBLEM
To explore the proposed method, an illustrative problem

is considered first. The problem consists of a simulation of
a simple 1D mass-spring-damper system (Figure 6) and an
imperfectly tuned PID controller. The mass is suspended in a
hanging position with gravity acting on it continuously.

x+

u+, Fg

Fig. 6: Setup of the mass-spring-damper system in the illus-
trative problem with positive directions indicated.

The system state x consists of the position x and velocity ẋ.
The controller aims to reach targets of the form xd = [xd, 0],
but controls position only. At regular intervals, a random
target position xd is generated for the controller to reach and
maintain. Each timestep, the adapter calculates the required ∆
to be added to the intended target position, and the controller
computes the control action based on the current position
and the adapted target position. The system’s response to this
control input is simulated and the tuple (x0, xd) is added
to the buffer. This buffer stores a limited number of tuples
corresponding to a specified window of the most recent data:
Once capacity is reached, the oldest element is removed at
every timestep. At regular update intervals, the adapter is
trained on the data in the buffer. To ensure meaningful training,
it is important that the tuples in the training data always
contain the intended target position xd, and not the target
that was actually provided to the controller, i.e., xd + ∆.
As the simulation progresses, the parameters of the dynamic
system are gradually altered to simulate system degradation.
The pseudo algorithm for the implementation can be found
in Algorithm 1.

The simulation ran for 60s at 50Hz. The target was changed
every 5s, and the adapter was trained fully online, updating
every 15s. Training features were created for multiple predic-
tion windows, this means the training features consisted of
pairs [xt, xt+window] for windows of 3, 5, 10, 15, and 25. The
buffer’s budget corresponded to the past 30s of data. As a
baseline, a second controller and system were also simulated,
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Fig. 7: The full minute simulation of the system with an aggressive controller. Top: The system response x and target xd +∆
of the adapted controller, alongside the response and target of the unadapted PID controller (∆ = 0). Bottom: The resulting
adapted control inputs from the controller receiving xd + ∆ alongside the unaltered PID control inputs. During the first 15s
(3 targets) the adapter has not received updates yet, and the signal is thus identical to the baseline PID signal.

Algorithm 1: Target adaptation
Data: system state x, target xd, adaption ∆, control

action u
Initialize model: adapter;
Initialize buffer: buffer← [];
for each timestep ti do

if len(buffer) > threshold then
Remove the oldest element in the buffer;

end
if ti mod target_interval = 0 then

xd ← random_target();
end
if ti mod update_interval = 0 then

(features, labels)← prep_data(buffer, window);
adapter.fit(features, labels);

end
∆← adapter.predict([x0, xd]);
u← controller.compute_control(x0, xd + [∆, 0]);
Simulate the system: x← response(x0, u);
Update system parameters;
Append (x0, xd) to buffer;
x0 ← x;

end

identical to the described simulation, but without the addition
of an adapter. To both the baseline and adapted signal, a small
amount of Gaussian noise was added to simulate measurement
noise.

A. An Over-Tuned Controller
For a first simulation, a combination of a system and

controller was chosen where the controller’s gains were tuned
too high. In Figure 7, the result of the simulation can be
observed. At the start, due to the near-zero initialization of
the adapter’s parameters, the signal response of the system
controlled by the adapted controller is indistinguishable from

that of the baseline PID controller. However, as soon as the
adapter has trained on the buffer, the changes to the target
become visible.
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Fig. 8: A close-up of the second to last target in the one-minute
simulation. The effects of the adapter can be more clearly
observed: The overshoot (seen in the baseline PID signal) is
countered by bringing the target closer to the current state.

The effects of the adaptation can be more clearly observed
in Figure 8. Since the baseline PID controller is too aggressive,
the signal overshoots and oscillates significantly before settling.
In contrast, the adapter counters this by bringing the target
closer to the current state. This is the logical result of the
buffer containing data corresponding to the overshoots, where
the adapter would often encounter training features for which
the labeled target position1 xd is somewhere in between xt and
xt+window. Therefore, upon receiving the input feature [xt, xd]
it produces and adapted target position in between xt and xd.
As the state approaches the adapted target, the adapter starts

1Rather, the labeled ∆ = xd − xt+window, but the explanation provided is
equivalent and somewhat clearer.
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Fig. 9: The full minute simulation of the system with an under-responsive controller. Top: The system response and target
of the adapted controller, alongside the response and target of the unadapted baseline PID controller. Bottom: The resulting
adapted control inputs from the controller receiving the altered target alongside the unaltered baseline PID control inputs.

producing targets closer to the reference target, guiding the
system towards this desired state.

B. An Under-Tuned Controller

For a second simulation, the system and controller were
designed such that the controller was more conservative or
under-tuned. Additionally, the signal produced by the baseline
PID controller has a clear steady-state error. The result of the
simulation can be found in Figure 9.

Once more, the adapter is able to improve the controller’s
performance after just a single update. In Figure 10 it can be
seen that the adapted target is adjusted away from the current
state. This is because training features created from the data
in the buffer frequently include state pairs xt, xt+window where
the target position xd is positioned further from xt than it
is from xt+window. As a result, the adapter learns to predict
adaptations that would move xd farther from xt, making the
controller more aggressive. Another effect of the adapter is the
consistent offset applied to the target: In the training features,
the adapter regularly encounters pairs xt, xt+window = xt,
which appear to represent the target state being reached, even
though xt+window ̸= xd. These features are the result of the
steady-state error present in the signal, leading the adapter to
learn to apply an offset to the target to counteract this.

C. Preliminary Conclusions

These qualitative results show that the adapter is able to
improve controller’s behavior in a simple simulated dynamic
system. The adapter is also making target adaptations that are
intuitive and logical, given the specific settings of the system
and controller. The simulations thus provide a good foundation
that the method is at least reasonable. For a real-world test of
the method, a demonstrator robot is required (Section V) and a
good test setup with a comprehensive set of metrics to quantify
the results (Section VI).
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Fig. 10: A close-up of the second to last target in the one-
minute simulation. The target is initially moved further from
the current state to “pull” it towards the desired state in a
shorter period. In addition, the adapted target is offset from
the desired state as to counter the steady-state error seen in
the baseline PID signal.

V. A KRESLING ORIGAMI ROBOT

A. Mechanical Details

As mentioned in Section II-A, origami robots—and by
extension, soft robots—are a suitable use-case for lifelong
learning techniques. To evaluate the method described in Sec-
tion III, a robot was designed that serves as a good analogue
to the simulated problem, whilst also using Kresling origami
as a key part of its functionality. Figure 11 provides important
nomenclature for reference.

The robot is a simple crawler consisting of two Kresling
origami springs (KOS) (Figure 11a, item 1) that are mirror
images of each other, connected in series, with the actua-
tion mechanism in between. The KOSs in question are of
the bistable B1 type (Section II-C) with perforated folds to
facilitate actuation (refer to Appendix D for design details
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5

1) KOS
2) Actuation arm
3) Connecting link

4) Eye screw
5) Arduino

(a) The Kresling origami robot.

9

6 7

8

10

6) Servo motor
7) Servo arm
8) Metal spring

9) Angle sensor
10) Magnet

(b) Actuation mechanism

Fig. 11: Annotated views of the robot and its most important
actuation mechanisms.

and templates). Both springs can expand and contract in
sync, producing a crawling-like motion when combined with
specially designed “feet” (see Figure 1 in Section I). To
demonstrate target adaptation, however, the movement of the
robot as a whole is not very important. Rather, the state of the
KOSs is the state of interest that will be controlled.

A KOS can be actuated both by linear motion (pushing
or pulling on the spring) and by rotational motion (twisting).
Since the two motions are directly related (i.e. twist-buckling,
discussed in Section II-C), a contracting or expanding motion
can be measured as the angle of the KOS’s twist. The twist is
induced by turning a rotating arm (2) which is connected to the
ends of the KOSs by two links (3) that hook into eye-screws
(4). To turn the arm, a micro servo motor (6) is employed. In
the illustrative problem, the controller yields a force to exert
on the system in order to reach the target position. However,
most micro servo’s come with a near perfect position controller
built-in, which cannot be accessed or changed. Therefore, to
bridge the gap between the simulation and the real-world
implementation, the position output of the servo is converted to

Fig. 12: Left: The robot at its fully extended state, corre-
sponding to the “home” position of the servo and actuation
arm. Right: The fully contracted robot, corresponding to the
maximum (capped) servo output, near the mechanical limit of
the actuation arm.

a force output by the use of a small, metal spring (8). The servo
then does not directly act on the actuation arm, but rotates a
servo arm (7) instead, which pulls the spring and thereby exerts
a force on the actuation arm. As previously mentioned, the
state of the KOS can be measured as the angle of twist, since
it is directly related to its contraction. Likewise, assuming
perfectly rigid links with negligible clearance between the
hooks and eye-screws, the angle of twist is directly related to
the angle of the actuation arm. In the full implementation, the
robot’s state xt will thus be measured as the actuation arm’s
angular position and velocity [θ, θ̇]. This angle is measured
using a contactless sensor (9) that can measure the on-axis
rotation of a small magnet (10) attached to the actuation arm.
The sensor relays this information to an Arduino Nano (5)
board, which runs a PID controller that returns the control ac-
tion, i.e., an angular position for the servo. Furthermore, there
are mechanical limits for the rotation of both the actuation arm
and servo arm, imposed by the edge of the container housing
the actuation mechanism and the supports holding the servo
motor, respectively (Figure 12, right). However, the design is
such that the servo’s mechanical limit corresponds to a θ below
the actuation arm’s limit.

B. Software Implementation
The software implementation consists of two main com-

ponents: The nominal control of the robot, and the target
adaptation.

The Arduino board is responsible for the nominal con-
trol, implemented as a simple PID controller. Additionally,
it takes care of calibrating the measurements upon startup,
i.e. (re)setting the actuation and servo arm to their minimum
“home” position (Figure 12, left).

Target adaptation is implemented on an external computer.
Through a serial connection (Figure 13, item 2) with the
Arduino, it both receives the measurements to be stored in the
buffer, and sends the adapted targets to be used by the PID
controller. The main process was summarized in Section IV
by Algorithm 1. However, on the computer, the several steps
are divided amongst separate modules that act in parallel
so that real-time performance is ensured. A more detailed
description of the software implementation can be found in Ap-
pendix A.
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1

2

1) Servo motor power supply
2) Serial connection and Arduino power supply

Fig. 13: The test setup.

VI. EXPERIMENTAL SETUP

For each experiment, a minimum of two sets of KOSs was
required: One set serving as a baseline, with the Arduino
receiving unadapted targets, and the second set used for testing
target adaptation. All experiments used a 60s buffer and 15s
intervals between adapter updates, with the first update at
60s. The adapter trained on prediction windows of 3, 5, 10,
and 15 steps. Both runs of each experiment use the same
preset sequence of random targets. This sequence amounts to
5min of deployment time and is repeated according to the full
experiment duration. The signals corresponding to each 5min
sequence are recorded and saved for evaluation. This way, the
evolution of the performance metrics can be studied, and a fair
comparison between the baseline PID controller and adapted
controller is ensured. Figure 13 shows the general experimental
setup.

A. Sign Conventions and Unit Clarification

Before the experiments and results can be properly under-
stood, it is necessary to clarify certain sign and unit conven-
tions.

For example, the contactless magnetic sensor denotes a
clockwise rotation (as viewed from the top) w.r.t. the datum
as a positive angle, and likewise, a counterclockwise rotation
as a decrement in the angle (Rob Tillaart, 2024). In practice,
this means that a positive control input from the servo (i.e. a
positive angle) results in a decrement in θ. Because the ac-
tuation arm’s calibration point is set when the servo is at its
minimum output, the operational range of the actuation arm is
entirely in the negative domain. Figure 14 illustrates the servo
arm and actuation arm in a configuration representative of a
typical scenario during the experiments, with the signs of the
angles indicated.

In addition, The Servo Arduino library uses the
writeMicroseconds(value) function to write to the
servo. writeMicroseconds(value) maps a servo’s range to
a value between 1000 and 2000µs (depending on the servo’s
manufacturer), relating to the pulse width in microseconds of
the signal that the Arduino sends to the servo motor (Arduino,
2024).

θ−

u+

actuation arm
servo arm

Fig. 14: Nominal signs of the angles for the servo and actuation
arm during operation.

Finally, during the experiments, the Arduino initialized a
count value to include in the tuple sent to the computer.
This counter starts at 0 and simply increments by 1 with
each iteration of the Arduino’s loop. Since the interactions
between the Arduino and computer and the several threads
on the computer are independent of timing (i.e., the modules
do not have to “wait for each other”), the counter’s value is
essential to accurately plot the several signals recorded during
the experiments.

B. Performance Metrics
The performance metrics used to evaluate the 5min se-

quences are the mean rise time (MRT), mean settling time
(MST) of the system response, mean overshoot (MO) of the
system response, mean absolute error (MAE) of the system
response, mean absolute velocity (MAV) of the system re-
sponse, and normalized total variance (NTV) of the control
signal, which are common metrics for evaluating controller
performance (Alfaro & Vilanova, 2016; Marshall, 1978).

The mean rise time is calculated as the mean of all the rise
times corresponding to each target in the 5min sequence. The
rise time is defined as the time it takes the robot to come
within 10% of the target state, as calculated from the initial
position.

Similarly, the settling time is the average of the settling times
for each target. The robot state is considered settled when it
remains within 5% of the target state, as calculated from the
initial position.

The mean overshoot is the average of the maximum over-
shoots observed for each target.

The mean absolute error represents the average difference
between the robot’s angle θ and the true target θd.

The mean absolute velocity refers to the measurements of θ̇.
This metric is meant to provide a measure for the “chaoticness”
of the robot’s signal response.

The normalized total variance is calculated as the sum of the
absolute of all increments and decrements in the control action,
normalized over time2. This aims to quantify the controller’s
effort.

VII. EXPERIMENTS AND RESULTS
The performance of the target adapter is evaluated over three

types of experiments. In the first type, the PID controller’s

2Actually, it is normalized over the count, see Section VI-A.
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Fig. 15: Qualitative comparison between the behavior of the
baseline controller and target adapted controller for the slow-
aggressive PID controller.

TABLE I: Percentual change after applying the target adapter
for the slow-aggressive PID experiment.

MRT MST MO MAE MAV NTV

+67% -30% -33% -60% -73% -70%

tuning is varied, while maintaining consistent KOS characteris-
tics (Section VII-A). For the second group of experiments, the
system dynamics are varied, namely the degree of perforation
in the folds of the KOS, while keeping the PID controller
identical across tests (Section VII-B). Finally, the performance
is tested for a crawling gait to observe the effect of the
method in a highly restricted setting (Section VII-C). For the
comprehensive set of results, refer to Appendix C.

A. Varying the PID Controller
For the first experiment, the method’s robustness to the use

of different PID controllers is tested. The robot is equipped
with the standard set of KOSs, using perforations of 1.5–
0.5mm cut–skip ratio. During this experiment, the values of
the targets in the random sequence are integer values ranging
between -3 and -25 degrees. The robot has 5s to reach and
settle around a target before it is provided with the next target
in the sequence.

1) A controller that is slow but aggressive: The first PID
controller has a disproportionally high integral gain, resulting
in an aggressive but slow to respond controller. This controller
yields particularly interesting results in combination with the
bistable nature of the KOS. Figure 15 shows the comparison
between the signal responses from the baseline controller and
adapted controller, illustrating the behavior of the controller:
The adapted target is brought closer to the system state. The
effect of this can be seen in the control signal, displaying less
oscillatory behavior and (slightly) lower peaks. Contrary to the
baseline controller’s state response, which oscillates wildly, the
adapted controller overshoots once or twice and then settles.

During the full 90min duration of the experiment, each
5min sequence was recorded and evaluated using the met-
rics discussed in Section VI-B. Table I shows the results of
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Fig. 16: Metrics evolution over the duration of the experiment
for the slow-aggressive PID controller. Each point represents
the calculated value of the metric on identical 5min sequences
of targets. Plots for all metrics and numerical values can be
found in Figure C.1 and Table C.I, respectively.

implementing the target adapter as the percentual change in
the average values of the metrics compared to the baseline
controller.

The rise time is the only metric that increases after applying
the adapter, all other metrics are consistently lower from the
start. This is demonstrated in Figure 16, most notably for the
mean absolute error and total variance. The settling time also
improves immediately, but only decreases significantly after
approximately half the duration of the experiment.

Interpretation: The conjecture is that the potential bar-
rier between the two stable states of the KOS slows down
the controller’s response, resulting in a higher control input.
As the barrier is overcome, the KOS now complements the
controller’s action, resulting in the overshoot. Depending on
the vicinity of the target to the KOS’s potential barrier, the con-
troller can enter an unstable state. As the potential barrier to
transition between the two stable states of the KOS decreases
(due to deterioration), the baseline controller has less difficulty
maintaining a stable response. This explains the baseline’s
slight decrease in settling time, and noticeable decrease in
mean absolute error and total variance. The target adaptations
facilitate a smoother transition to the desired state with higher
rise time but reduced overshoot, thereby minimizing the risk
of the controller entering an unstable cycle. From Figure 15
it seems that this mechanism is most effective after the first
overshoot.

2) An under-tuned controller: The second PID controller is
tuned with low gains, resulting in slow and under-responsive
behavior. A visual comparison between the baseline and target
adapter can be found in Figure 17. The targets for the adapter
controller are shifted to more extreme positions, and then
gradually move to the intended target. The resulting response
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Fig. 17: Qualitative comparison between the behavior of the
baseline controller and target adapted controller for the under-
tuned PID controller.

TABLE II: Percentual change after applying the target adapter
for the under-tuned PID experiment.

MRT MST MO MAE MAV NTV

-44% -5% +614% -44% +13% +99%

is closer to the intended target, and is there faster than the
baseline controller’s response.

The resulting changes in metrics after applying the adapter
are presented in Table II. The evolution of the mean rise
time, overshoot, and total variance is shown in Figure 18.
The controller with adapter clearly has lower rise times and
absolute errors than the baseline, but also exhibits an increase
in overshoots. It should be noted that the large relative in-
crease in overshoot stems from the baseline controller having
close to zero or even slightly negative overshoot. The adapted
controller results in consistently higher total variance, rising
further as the experiment progresses. A similar steady increase
can be observed for the rise time and absolute error of the
baseline controller.

Interpretation: The signal in Figure 17 shows a clear
reason for the lower rise times, namely that the target is shifted
to more extreme positions as to yield larger control inputs
from the controller. The adapter makes the controller more
aggressive, as seen in the lower rise times, larger overshoot,
higher mean absolute velocity, and increased controller effort
(total variance). The adapter also seems to introduce unnec-
essary adaptations once the steady state is reached, further
increasing the mean absolute velocity. These small oscillations
are insignificant compared to the overall improvement in the
mean absolute error resulting from the lower rise time. Finally,
the steadily increasing rise time and mean absolute error of
the unadapted controller going hand in hand with a similar
steady increase of adapted controller effort might suggest that
the system dynamics during both experiment runs are evolving
slightly, but with the adapter compensating for it.
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Fig. 18: Metrics evolution over the duration of the experiment
for the under-tuned PID controller. Each point represents the
calculated value of the metric on identical 5min sequences of
targets. Plots for all metrics and numerical values can be found
in Figure C.2 and Table C.II, respectively.

TABLE III: Average percentual change after applying the
target adapter for the 0.25–0.25mm and 0.5–0.5mm dynamics
experiment.

MRT MST MO MAE MAV NTV

-64% -36% +323% -37% +8% +13%

B. Varying the System Dynamics

For the second type of experiment, the PID controller is
tuned to a highly responsive performance on a robot with
KOS perforations of a 1.5–0.5 mm skip-to-cut ratio. The KOS
perforations used are 0.25–0.25 mm, 0.5–0.5 mm, 1.5–0.5 mm,
and 2–0.5 mm, representing various stages of KOS degradation.
Once again, the values of the targets in the random sequence
are integer values ranging between -3 and -25 degrees, and
the robot has 5s to reach and settle around a target.

1) 0.25–0.25 & 0.5–0.5 Perforations: The 0.25–0.25mm
and 0.5–0.5mm perforations represent KOSs in a state of
lower degradation than the standard 1.5–0.5mm perforation.
The results of applying the target adapter to these settings
are averaged for both experiments and are presented in Ta-
ble III. The evolution of the mean rise time, overshoot, and
total variance over the course of the 1h experiment is shown
in Figure 19, showing the average of the results from both
experiments. The metrics display similar trends to those ob-
served for the under-tuned PID controller: On average, the
adapted controller has lower rise times, settling times, and
absolute errors, but higher overshoot, absolute velocity, and
total variance. Another observation is that the difference in the
baseline controller’s performance between the two experiments
drifts further apart over the full duration. However, the adapted
controller’s performance over the two experiments appears less
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Fig. 19: Metrics evolution over the 1h duration of the experi-
ment for KOSs in a lower state of degradation (0.25–0.25mm
and 0.5–0.5mm perforations, see annotations), with their av-
erage overlayed. Each point represents the calculated value of
the metric on identical 5min sequences of targets. Plots for
all metrics and numerical values can be found in Figure C.3
and Table C.III, respectively.

varied.
Interpretation: Since the perforations aim to represent

a less degraded KOS, i.e. a stiffer KOS, the gains of the
PID (tuned to a 1.5–0.5mm perforated KOS) are likely set
too low. The situation is thus analogous to the under-tuned
PID experiment, and this shows in the behavior of the target
adapter: The targets are shifted toward more extreme positions,
resulting in the lower rise time. The observation that the
metrics for the baseline controller drift further apart between
the two experiments is a good sanity check that the dynamics
of the springs are indeed different. The fact that the target
adapter’s metrics are less varied is then a good sign that the
adapter is able to generalize and bring both systems to a stable
performance.

2) 1.5–0.5 & 2–0.5 Perforations: The 2–0.5mm perforation
aims to resemble a KOS that has been more deteriorated. The
PID controller is initially tuned for the 1.5–0.5mm KOS. For
the 1.5–0.5mm KOS experiment, with the runtime set to 2h,
the aim is to assess how the controllers perform as the system
gradually shifts into a more over-tuned condition.

Inspecting Figure 20a, it can be observed that the signal
of the adapter rises toward the intended target faster than the
baseline signal. Overshoots are introduced by the adapter as
well, but what draws the most attention is the apparent noise
present in the signal. By the end of the experiment, the target
adaptations have become seemingly random, resulting in a
chaotic control signal and system response.

Like for the 0.25–0.25mm and 0.5–0.5mm experiment, the
metrics presented are averaged over the two settings and can
be found in Table IV. These results show that the general per-
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(a) A comparison late in the experiment (last 5min sequence).
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(b) A comparison early in the experiment (5min sequence that ends
at minute 30).

Fig. 20: Qualitative comparison of the signal response for the
2–0.5mm perforation. Also showing a comparison between the
signals of the target adapted controller, late vs. early into the
experiment.

TABLE IV: Average percentual change after applying the
target adapter for the 1.5–0.5mm and 2–0.5mm dynamics
experiment.

MRT MST MO MAE MAV NTV

-43% +20% +53% -5% +34% +74%

formance of the target adapter consists of higher settling times,
overshoot, mean absolute velocity and total variance compared
to the baseline, especially as the experiments progress. In fact,
the only metric that has a significantly lower value for the
target adapter than for the baseline, is the rise time. Figure 21
shows that the decrease in mean absolute error is only present
for the 2–0.5mm perforated KOSs. However, also noteworthy
in Figure 21 is that the adapted controller initially demonstrates
better performance concerning settling time, overshoot and
mean absolute error. Indeed, Figure 20b illustrates that, in
the first 30min of the experiment, the target adapter produces
minimal and relatively stable adaptations, leading to improved
rise times and lower absolute error.

Interpretation: In the case of the heavily deteriorated
KOSs, the target adaptation seems to degrade the performance.
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Fig. 21: Metrics evolution over the 2h duration of the exper-
iment for KOSs in a higher state of degradation (1.5–0.5mm
and 2–0.5mm perforations, see annotations), with their average
overlayed. Each point represents the calculated value of the
metric on identical 5min sequences of targets. Plots for all
metrics and numerical values can be found in Figure C.4
and Table C.IV, respectively.

The improved rise times can be attributed to the highly os-
cillatory nature of the signal response, rather than genuine
performance gains. However, the fact that the target adapter
shows improvement over the baseline controller in the early
stages of deterioration is promising. The highly responsive
PID controller is quick to react, reducing the need for extreme
adaptations like those seen in the previous experiments. As the
KOS further degrades, it sometimes enters an unstable cycle:
much alike the oscillations in Figure 15, Section VII-A, but at
a higher frequency. This results in training data that contains
many contradicting features, which results in increased noise
in the adapter’s predictions. Noisy targets in turn produce noisy
control actions and consequently noisy signal responses.

C. Crawling Gait
The final experiment emulates the mode of operation that

the robotic crawler was designed for. The targets in the se-
quences alternate between two angles on opposite sides of the
potential barrier, specifically -8 and -18 degrees, mimicking
the contraction and expansion typical of a crawling motion.
To introduce variability and avoid identical datapoints, a small
normally distributed random offset is added to each alternating
target. The goal of this experiment is to evaluate how a con-
strained operational setting affects the adapter’s compensation
for the overshooting effect caused by the potential barrier. The
experiment uses a KOS with a perforation 1.5–0.5mm and the
highly responsive PID, tuned to this perforation. Given the
rapid degradation of the potential barrier in the early stages, the
experiment only runs for 20min. A baseline controller is com-
pared with two target adapter configurations: one pretrained

0

1

2

M
O

[d
eg

]

pretrained

online

5

6

7

M
AV

[d
eg

/s]

pretrained

online

30252015105

Time [min]

6

7

N
TV

[µ
s]

pretrained

online

w/o adapter
w/ adapter

Fig. 22: Metrics evolution over the 20min duration of the
crawling-gait experiment, with the average of both adapted
controllers overlayed. Each point represents the calculated
value of the metric on identical 5min sequences of targets, in
this case alternating between values near to -18 and -8 degrees,
respectively. Plots for all metrics and numerical values can be
found in Figure C.5 and Table C.V, respectively.

TABLE V: Average percentual change after applying the target
adapter for the crawling gait experiment.

MRT MST MO MAE MAV NTV

-91% -72% +1890% -54% +29% +15%

and then fine-tuned online, and one that is entirely trained
online.

The effect of the target adapter is given by Table V. The re-
sults show consistently lower rise and settling times, and mean
absolute error for both implementations of the target adapter
compared to the baseline controller. These improvements come
at the cost of significantly higher overshoot. The difference
in metrics for the pretrained and online trained implementa-
tions appears negligible, except for the mean overshoot, mean
absolute velocity, and normalized total variance, as shown
by Figure 22.

Signal responses are shown in Figure 23, note that the
adapted signal is only shown for the fully online trained
adapter, but it is very similar to that of the pretrained adapter.
An improvement in rise time is clearly observable, and shows
that the improved settling time directly results from this, rather
than the baseline controller having an unstable signal. In
fact, the signal from the baseline controller resembles that
of an under-tuned controller. Target adaptations appear to be
minimal, being only visual in close-ups of the signal. This
corresponds to the relatively low difference in total variance
between baseline and adapted controllers, observed in the
metric evolution.
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Fig. 23: Qualitative comparison between the behavior of
the baseline controller and target adapted controller for the
crawling gait experiment.

Interpretation: Although the adaptations made to the
targets appear negligible for both the pretrained as the online
trained adapter, the metrics and signal response show a definite
improvement. However, the cause of how these minor adapta-
tions result in the observed improvements is not immediately
clear: the baseline controller shows signs of being under-tuned,
but the adapter does not produce adaptations similar to those
of an under-tuned controller in Section VII-A. On the other
hand, the consistent improvements seen across both adapter
configurations challenge the notion that these improvements
are merely coincidental.

VIII. DISCUSSION
Section VII already provided some short interpretation and

discussion on the various results presented there. This section
will provide insight in the general trends observed and discuss
the limitations of the method that were encountered.

A. Key Insights
A general trend in the effect of the target adapter can be

observed: Whenever a controller-system configuration exhibits
under-responsive characteristics, such as the under-tuned con-
troller in Section VII-A and the 0.25–0.25mm & 0.5–0.5mm
perforations in Section VII-B, the target adapter induces more
aggressive controller behavior. Likewise, when the controller
is too aggressive from the start, target adaptions tend to
moderate or constrain the behavior.

This follows from the interpretation of the evaluation met-
rics in these scenarios. For example, under-responsive systems
exhibit high rise times, and therefore high settling times. These
systems are also characterized by low overshoot, low mean ab-
solute velocity, and low controller effort (total variance). When
the adapter produces more extreme target positions, rise time
and settling time decrease, but the overshoot increases. The
controller is thus “making an extra effort”, which is observed
in the higher total variance: initially setting a more extreme
target position, then gradually bringing it closer to the desired
target, etc. The overall faster response results in the increased
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Fig. 24: A close-up from the 0.5–0.5mm perforation with
target adapter. The signal response generally resembles that
of Figure 10 from the simulated problem.
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Fig. 25: A close-up from the slow-aggressive PID controller
with target adapter. The manner in which the target is adapted
resembles that of Figure 8 from the simulated problem.

mean absolute velocity. As can be observed in Figure 24, this
behavior resembles that of the under-responsive simulation in
the illustrative problem (Section IV-B) very closely.

Similarly, systems with an over-aggressive controller, i.e. the
slow-aggressive controller experiment and the 2–0.5mm &
1.5–0.5mm perforations, exhibit low rise times, but high set-
tling times: the high gains “push” the state toward the desired
target quickly, and then overcompensate for the high overshoot,
resulting in an unstable response near the target. This explains
the high total variance. The adapter moves the target to less
extreme positions, compensating for the overshoot in advance.
This prevents the system from entering an unstable feedback
loop by preventing the control inputs from getting overly
aggressive in the first place. Thus, even though target adaptions
are made, the overall controller effort is decreased. Figure 25
provides a clearer view of the process. Again, a resemblance to
the equivalent scenario in Section IV-A can be observed. The
contradicting results from the 2–0.5 & 1.5–0.5mm perforations,
see Figure 21, will be addressed in Section VIII-B. However,
as mentioned in Section VII-B, the adapted controller does
outperform the baseline in the early stages, and it is during this
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Fig. 26: Minute 1 of the pretrained adapter for the crawling gait
experiment. Adaptations are immediately added to the target,
resulting in worse behavior.

phase that the same trends described earlier can be observed.
These two observed trends in the target adapter’s effect

suggest that the method is inherently self-correcting. By con-
stantly retraining the adapter on features derived from its own
influence on the signal response, an under-responsive adapted
controller will become more aggressive, up to the point that
the adapter needs to moderate its behavior again. This idea is
supported by the observation that the evolution of the metrics
for adapted controllers tends to stagnate (most clearly visible
in Figures 16, 18 and 19). Supposedly, the adapted controller
finds a good compromise between moderate and aggressive
behavior, and is able to maintain a consistent performance
from that point onward.

Another insight is provided by the difference between the
pretrained and online trained adapter in the crawling gait
experiment. In Section VII-C, Figure 22, the metrics of the pre-
trained and online implementation drift apart as the experiment
progresses. However, the qualitative results display very little
difference between both implementations, except at the very
start of the experiment: The pretrained adapter immediately
adapts the target, but in a counter-productive manner, as seen
in Figure 26, whereas the online trained adapter first makes
no adaptions at all.

The pretrained implementation is able to recover within one
or two updates. Nonetheless, this counter-productive behavior,
and the need for pretraining data makes a fully online imple-
mented adapter the more attractive solution.

B. Limitations

As discussed in Section VII-B, the experiment using 1.5–0.5
& 2–0.5mm perforations in combination with a highly re-
sponsive PID controller yielded better results for the baseline
controller than for the adapted controller. The hypothesis
is that the training data obtained from the signal response
gradually contains more conflicting features, as illustrated
by Figure 27. As the controller is highly responsive, the
frequency at which the signal response is stored in the buffer
is too low to capture sufficient detail.
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Fig. 27: A close-up of the 2–0.5mm experiment. The oscilla-
tions in the signal response are recorded at an insufficient
frequency to contain any meaningful relationship between
spaced-out state pairs and the target. As a result, the adapter’s
output becomes more chaotic as well, further polluting the
training data.

However, this high responsiveness alone is not solely re-
sponsible for the adapter’s deteriorating performance, since the
adapter initially manages to slightly improve performance. The
same baseline controller is used in the 0.25–0.25 & 0.5–0.5mm
perforation experiments, as well as in the crawling gait experi-
ments (Sections VII-B and VII-C, respectively). It seems to be
the specific combination of a highly responsive controller–or
conversely, a low sampling rate for the buffer–with a more
deteriorated KOS that leads to the issue. Once the system
enters an unstable feedback loop, the oscillations occur so
frequently that any meaningful relationship between sequential
datapoints is lost, an observation which becomes clear by
comparing Figures 25 and 27. As a result, training features
obtained from near-identical regions in the signal response
can vary drastically. The adapter thus starts producing less
meaningful adaptations, entering a vicious cycle.

This explains why the combination of 1.5–0.5mm perfora-
tions and a slow-aggressive controller poses no problem, nor
does the same perforation combined with the highly respon-
sive controller during the first 30min (also demonstrated by
the crawling gait experiment). Similarly, the 0.25–0.25 and
0.5–0.5mm perforations effectively prevent the controller from
entering an unstable state.

C. Validity of the Results
Several important aspects regarding the validity of the re-

sults should be addressed.
1) Reproducibility of Identical KOS: Since a key part of

understanding the results is the use of a PID controller as
a baseline, it is important to confirm that the comparisons
are representative. Section VI already stressed that identical
target sequences were used for each comparison. The focus
thus shifts to the possible differences in the characteristics of
supposedly identical KOSs.

The KOS templates were all designed with identical param-
eters, exempting the perforations, and were cut out using a
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laser-cutter. They were, however, assembled by hand. Several
steps were taken to mitigate or minimize variability introduced
during the assembly.

First, the required KOSs for a certain experiment setting–
usually four, since two are required for the reference run,
and two for the adapter test–were all made in a single batch,
following a preset routine. Additionally, all KOSs were then
conditioned by exactly one cycle of contracting and expanding
it. This procedure reduces potential differences in the cutting
and assembly process.

Second, the nature of the robot’s design requires two KOSs
per experiment run: as described in Section V-A, the state
of the robot is represented by the angle of the actuation arm.
This arm is restrained on both sides by a KOS, each a mirror
image of the other. In practice, the combined contribution of
both springs averages out, and the influence of any single KOS
is minimized.

Finally, during each run of an experiment setting, a “refer-
ence minute” was recorded with intervals of 30min. During
these reference minutes, and regardless of the specific experi-
ment setting (i.e., with or without the adapter), the robot ran
the relevant reference controller on a 1min target sequence.
This meant pausing the experiment, disabling the adapter, and
evaluating the performance metrics on a preset 1min sequence.
These minutes were evaluated using the same metrics as the
experiments to compare the similarity of the KOSs involved.
Comparisons of these metrics are presented in Appendix B, but
it is sufficient here to note that variations in metric values for
reference minutes are insignificant compared to the difference
introduced by the implementation of the target adapter. These
measures allow for valid interpretation of the results.

2) Uninterpreted Results: For certain experiments, the na-
ture of the adapter’s influence causing the improvement re-
mains unclear. Qualitative results for both adapter configura-
tions of the crawling gait experiment, and the early stage of
the 1.5–0.5 & 2–0.5mm perforation experiment (Figures 20
and 23) do not indicate significant adaptations to the target.
This might lead to disregarding the results as coincidences.
However, the improvement is consistent over all these exper-
iment settings, with notable similarity in the reference signal
responses for all settings, as well as adapter signal responses
(i.e., signals from seemingly slightly under-responsive systems,
and highly responsive systems, respectively).

IX. CONCLUSION
The goal of the target adaptation approach is to provide

a simplified and intuitive alternative to more opaque control
techniques commonly seen in soft-robotics applications. The
idea is that a simple or traditional method can be used to
handle the base control of the robot, and that a separate module
improves the performance of that controller. It achieves this
by providing the controller with adapted targets, but without
altering the controller’s parameters.

In simulation, it was shown that such an approach offers
near instantaneous improvement for the control of a simple
mass-spring damper system.

The tests on a demonstrator robot, with a design relying
on Kresling origami springs, show that the method is robust

to varying controller tuning and varying system dynamics.
The target adapter module tends to make passive controllers
more aggressive, and vice versa, resulting in a consistent
performance. Usage of the method on a constrained operational
domain shows that both pretrained and online trained adapters
manage to improve the performance, with a preference for the
latter.

A limitation is presented in the form of the sampling
frequency at which the signal response is stored for training
the module: The frequency has to be high enough to capture
enough detail. If the sampling frequency is too low and the
recorded data contains some unstable oscillations, the adapter
is unable to find meaningful relationships between the state
pairs and targets it uses for updating itself. Updates on such
meaningless features lead to a negative feedback loop for the
adapter’s performance, which it is unable to escape.

Possible solutions to the problem are methods that allow
the adapter to either recall previous settings or maintain a
more stable performance. An implementation of some kind
of memory or knowledge base, or more envolved updating
techniques like learning without forgetting (Z. Li & Hoiem,
2018), could potentially allow the adapter to escape or avoid
such vicious cycles. Additionally, since the adapter seems
to produce unnecessary adaptations even when the intended
target has been reached, a mechanism that forcefully removes
or limits adaptations once that target is reached could help
reduce the chances of becoming unstable.

A sensitivity analysis on the effect of the various parameters
involved in the method could potentially isolate the issue.
Examples are the (combination of) prediction windows used,
the sampling rate of the buffer, the frequency of training
updates, and the contents of the states in training features.
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APPENDIX A
SOFTWARE IMPLEMENTATION

The supervised learning implementation for target adapta-
tions is divided into two key components: the nominal control
of the robot, programmed in C++ and executed by the Arduino
board, and the target adaptation, implemented in Python and
managed by an external computer. The adapter is implemented
and trained using Keras with the PyTorch backend.

A. Nominal Control on the Arduino
Upon startup, the Arduino initializes a connection with

the external computer and directs the servo to move to its
minimum position. The Arduino allows some time for the
servo to reach this home position and then reads a first mea-
surement from the angle sensor, setting this as the reference
θ = 0. During the control loop, the servo reads θ (relative
to the reference) and θ̇ received from the sensor, and reads
the target θd received from the external computer. Based on
these measurements, the PID controller computes the value to
be written to the servo, but before writing it to the servo, a
ceiling is imposed on it to protect the servo from exceeding
its mechanical limit (Section V-A). The Arduino allows some
time for the servo to act and then reads the measurements from
the angle sensor again. Finally, it sends the tuple containing
the resulting state and target to the external computer.

B. Target Adaptation on the External Computer
The target adaptation and supervised learning are imple-

mented exclusively on the external computer through the estab-
lished connection with the Arduino. The program is divided
into several modules or “threads” that run simultaneously. This
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Fig. A.1: The interaction between the modules (rectangles) and
shared variables (ovals) of the computer (blue) and Arduino
(red).

way, values that need to be sent or read can be updated in the
background upon request, without delaying the operations of
other modules.

Figure A.1 provides an overview of the communication
between computer and Arduino, and their inner interactions
between various modules. For example, the sole task of the
send thread is to read the value of a global variable represent-
ing the target state and send this to the Arduino. The listen
thread reads the tuple sent in return by the Arduino and assigns
its contents to the respective shared variables for the resulting
state and target. It then adds this tuple to the buffer used for
updating the adapter model. The update thread is responsible
for (re)training the adapter. It creates a copy of the adapter,
which can then be trained in the background while the original
adapter remains functional. Once training is completed, the
copied adapter’s weights are assigned to the original adapter.
The change_value thread is responsible for setting the true
target in the control loop. Every iteration, it constructs an input
feature [θ, θ̇, θd, 0] for the adapter. The resulting ∆ is added
to the target, which is read by the send thread and forwarded
to the Arduino. The buffer is maintained by storing the tuples
received from the Arduino. All threads aim to operate at 50Hz.

APPENDIX B
KOS REFERENCE RECORDINGS

Before and during each experiment, with intervals of 30min,
a minute of reference data was recorded. These measurements
serve as a basis for comparing the relevant KOSs involved in
each experiment, since they are supposed to be reasonably
similar to each other (Section VIII-C). The measurements
presented are the numeric values of these evaluations, as well
as visual representations of the distance in the normalized
metric space between the vectors represented by the evaluation
of the first reference minute, i.e. before the experiment has
started.

Values used for normalizing the components of the metric
vector were: 5 (theoretical maximum rise time), 5 (theoretical
maximum settling time), 25 (physical maximum overshoot for
the actuation arm), 25 (physical maximum error for the actu-
ation arm), 480 (maximum servo velocity), 1800 (maximum
control output).
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Fig. B.1: Distance in the metric space between the KOSs at
the start of the experiment.

TABLE B.I: Numerical values of the reference minute metrics
for the slow-aggressive PID experiment.

(a) Baseline controller

Metric 0 30 60 90
MRT [s] 0.12 0.15 0.12 0.14
MST [s] 3.41 3.26 2.02 1.61
MO [deg] 7.33 5.54 5.60 5.07
MAE [deg] 4.14 2.23 1.96 0.98
MAV [deg/s] 49.53 27.23 24.95 12.44
NTV [µs] 26.61 17.70 15.48 7.91

(b) (Disabled) target adapter

Metric 0 30 60 90
MRT [s] 0.15 0.15 0.14 0.16
MST [s] 2.52 3.49 3.44 3.34
MO [deg] 7.95 6.55 5.98 5.04
MAE [deg] 3.73 2.99 2.83 2.01
MAV [deg/s] 40.46 39.57 37.83 29.24
NTV [µs] 23.42 24.42 23.73 17.13

B. Reference Minutes Under-Tuned PID Controller

TABLE B.II: Numerical values of the reference minute metrics
for the under-tuned PID experiment.

(a) Baseline controller

Metric 0 30 60 90 120
MRT [s] 2.05 2.22 2.23 2.24 2.19
MST [s] 2.61 3.26 3.31 3.38 3.49
MO [deg] 0.05 0.19 0.14 0.03 0.25
MAE [deg] 1.29 1.36 1.32 1.32 1.27
MAV [deg/s] 3.77 4.03 3.61 3.82 3.94
NTV [µs] 1.65 1.68 1.63 1.67 1.70

(b) (Disabled) target adapter

Metric 0 30 60 90 120
MRT [s] 1.30 1.45 1.48 1.61 1.69
MST [s] 2.50 2.60 2.60 2.96 3.08
MO [deg] 0.25 0.02 0.10 0.12 0.12
MAE [deg] 0.87 0.84 0.85 0.93 0.96
MAV [deg/s] 4.44 3.88 3.67 3.90 3.95
NTV [µs] 1.54 1.44 1.42 1.47 1.54
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C. Reference Minutes 0.25–0.25 & 0.5–0.5 Perforations
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Fig. B.2: Distance in the metric space between the KOSs
at the start of the 0.25–0.25mm and 0.5–0.5mm perforation
experiment.

TABLE B.III: Numerical values of the reference minute
metrics for the 0.25–0.25mm and 0.5–0.5mm perforation
experiment.

(a) Baseline controller

Metric 0
MRT [s] 0.73
MST [s] 2.04
MO [deg] 0.80
MAE [deg] 0.80
MAV [deg/s] 4.97
NTV [µs] 4.85

(b) (Disabled) target adapter

Metric 0
MRT [s] 1.68
MST [s] 2.96
MO [deg] 0.03
MAE [deg] 1.05
MAV [deg/s] 4.11
NTV [µs] 4.45

D. Reference Minutes 1.5–0.5 & 2–0.5 Perforations
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Fig. B.3: Distance in the metric space between the KOSs at the
start of the 1.5–0.5mm and 2–0.5mm perforation experiment.

TABLE B.IV: Numerical values of the reference minute met-
rics for the 1.5–0.5mm and 2–0.5mm perforation experiment.

(a) Baseline controller

Metric 0 30 60 90 120
MRT [s] 0.24 0.28 0.32 0.55 0.64
MST [s] 0.90 1.00 1.51 1.87 2.17
MO [deg] 2.82 1.50 1.33 0.90 1.09
MAE [deg] 0.44 0.48 0.54 0.69 0.70
MAV [deg/s] 7.75 6.09 5.65 8.30 9.47
NTV [µs] 6.04 5.06 5.24 7.00 7.77

(b) (Disabled) target adapter

Metric 0 30 60 90 120
MRT [s] 0.53 0.55 0.47 0.33 0.52
MST [s] 1.10 1.32 1.62 1.25 1.59
MO [deg] 1.21 1.61 1.16 1.43 1.35
MAE [deg] 0.48 0.56 0.59 0.50 0.52
MAV [deg/s] 6.62 6.45 6.08 6.62 6.49
NTV [µs] 5.15 5.75 5.10 5.62 5.53

E. Reference Minutes Crawling Gait

TABLE B.V: Numerical values of the reference minute metrics
for the crawling gait experiment.

(a) Baseline controller

Metric 0 30
MRT [s] 0.27 1.37
MST [s] 1.27 3.35
MO [deg] 1.42 -0.10
MAE [deg] 0.61 1.11
MAV [deg/s] 6.80 5.00
NTV [µs] 5.83 5.29

(b) (Disabled)
pretrained target
adapter

0 30
0.40 0.30
1.61 0.52
2.99 2.13
0.70 0.46
6.06 6.72
5.69 5.48

(c) (Disabled)
online target
adapter
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Fig. B.4: Distance in the metric space between the KOSs at
the start of the crawling gait experiment.
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APPENDIX C
EXTENDED TEST RESULTS

A. Slow-Aggressive PID Controller
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Fig. C.1: Metrics evolution for the slow-aggressive controller.

TABLE C.I: Numerical values of the metrics for the slow-aggressive controller.
(a) Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.12 0.11 0.15 0.13 0.14 0.14 0.15 0.15 0.15 0.14 0.15 0.15
MST [s] 3.49 3.15 3.41 3.23 3.26 3.29 3.19 3.10 2.91 2.91 3.09 3.08
MO [deg] 5.81 5.40 5.21 4.94 4.59 4.65 4.43 4.16 4.19 4.08 4.01 4.07
MAE [deg] 2.48 2.22 2.26 2.03 1.89 1.94 1.75 1.75 1.71 1.57 1.57 1.62
MAV [deg/s] 32.68 28.51 28.66 27.10 23.71 25.05 23.29 23.47 23.19 20.90 20.55 21.58
NTV [µs] 20.09 18.35 18.62 16.80 15.63 16.00 14.37 14.42 14.19 12.92 12.82 13.33

Metric 65 70 75 80 85 90
MRT [s] 0.14 0.16 0.14 0.16 0.16 0.14
MST [s] 3.06 3.22 2.90 3.15 3.07 3.19
MO [deg] 4.57 4.46 4.24 4.39 4.22 4.22
MAE [deg] 1.62 1.67 1.44 1.52 1.48 1.51
MAV [deg/s] 22.97 23.33 20.14 21.37 19.91 21.09
NTV [µs] 13.36 13.81 11.83 12.66 12.18 12.53

(b) Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.26 0.25 0.32 0.23 0.22 0.24 0.26 0.21 0.22 0.21 0.20 0.24
MST [s] 2.58 2.83 3.10 2.52 2.78 3.35 2.62 2.07 1.92 1.65 1.64 1.78
MO [deg] 3.26 3.11 2.99 2.79 3.00 2.94 3.31 3.23 3.15 3.03 3.01 2.88
MAE [deg] 1.04 0.74 0.82 0.68 0.72 0.83 0.77 0.65 0.67 0.63 0.62 0.62
MAV [deg/s] 10.25 6.11 6.96 6.12 6.60 7.03 6.59 6.09 5.62 6.22 6.18 5.77
NTV [µs] 6.72 3.93 4.16 3.91 4.27 4.35 4.11 4.06 4.31 4.16 4.12 4.10

Metric 65 70 75 80 85 90
MRT [s] 0.23 0.25 0.25 0.25 0.23 0.24
MST [s] 1.74 1.61 1.87 1.87 1.74 2.01
MO [deg] 3.02 2.95 2.89 3.00 3.01 3.06
MAE [deg] 0.64 0.65 0.65 0.65 0.66 0.69
MAV [deg/s] 6.19 6.21 5.36 5.74 6.08 6.43
NTV [µs] 4.22 4.30 4.27 4.43 4.51 4.65
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B. Under-Tuned PID Controller
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Fig. C.2: Metrics evolution for the under-tuned controller.

TABLE C.II: Numerical values of the metrics for the under-tuned controller.
(a) Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 1.29 1.45 1.61 1.67 1.69 1.69 1.83 1.85 1.91 1.91 1.96 1.95
MST [s] 2.69 2.57 2.61 2.67 2.86 2.69 2.88 2.81 2.87 2.94 3.02 2.84
MO [deg] 0.08 0.03 -0.00 -0.03 -0.03 -0.02 -0.05 -0.06 -0.06 -0.06 -0.07 -0.11
MAE [deg] 0.77 0.82 0.86 0.88 0.92 0.91 0.95 0.94 0.95 0.96 0.97 0.96
MAV [deg/s] 3.54 3.80 3.86 3.68 4.15 4.00 3.97 3.89 3.99 3.88 3.78 3.50
NTV [µs] 1.39 1.41 1.43 1.46 1.47 1.44 1.45 1.45 1.45 1.43 1.49 1.44

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 1.92 1.84 1.86 1.90 1.90 1.90 1.80 1.86 1.81 1.87 1.87 1.89
MST [s] 2.98 2.92 2.89 2.83 3.00 2.92 2.91 2.90 2.85 2.80 3.04 2.99
MO [deg] -0.05 -0.06 -0.07 -0.08 -0.08 -0.11 -0.04 -0.05 -0.08 -0.10 -0.07 -0.11
MAE [deg] 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99 0.99 1.00 0.99
MAV [deg/s] 3.89 3.49 3.78 3.59 3.98 3.74 3.98 3.91 3.51 3.77 3.47 3.73
NTV [µs] 1.46 1.46 1.49 1.46 1.47 1.46 1.48 1.44 1.46 1.45 1.46 1.46

(b) Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 1.37 0.93 0.99 1.00 0.98 0.98 1.07 1.15 0.94 0.93 0.94 1.13
MST [s] 2.84 2.49 2.56 2.38 2.79 2.79 2.64 2.78 2.55 2.82 2.59 2.69
MO [deg] 0.35 0.41 0.41 0.40 0.33 0.33 0.26 0.25 0.23 0.19 0.26 0.20
MAE [deg] 0.94 0.72 0.70 0.68 0.75 0.75 0.73 0.71 0.68 0.69 0.69 0.70
MAV [deg/s] 4.01 4.34 4.35 4.03 4.57 4.57 4.42 4.20 4.02 3.92 3.92 4.12
NTV [µs] 2.23 2.67 2.67 2.76 2.77 2.77 2.49 2.61 2.60 2.66 2.66 2.66

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 1.10 0.97 0.97 1.10 0.89 0.94 1.00 0.89 0.89 0.94 0.96 1.04
MST [s] 2.64 2.60 2.89 2.96 2.73 2.63 2.81 2.66 2.73 2.86 2.76 2.82
MO [deg] 0.20 0.24 0.33 0.30 0.25 0.29 0.28 0.25 0.24 0.17 0.23 0.23
MAE [deg] 0.74 0.71 0.72 0.72 0.68 0.67 0.75 0.71 0.72 0.74 0.72 0.74
MAV [deg/s] 4.02 4.50 4.49 4.67 4.17 4.38 4.65 4.68 4.45 3.98 4.19 4.25
NTV [µs] 2.64 3.15 3.32 3.18 3.30 3.17 3.08 3.20 3.25 2.80 3.21 3.47
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C. 0.25–0.25 & 0.5–0.5 Perforations
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Fig. C.3: Metrics evolution for the 25–25 and 50–50mm perforations.

TABLE C.III: Numerical values of the metrics for the 25–25 and 50–50mm perforations.
(a) 0.25–0.25mm Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.60 0.41 0.46 0.45 0.48 0.59 0.56 0.56 0.68 0.52 0.51 0.62
MST [s] 2.25 2.22 2.24 2.15 2.25 2.21 2.23 2.40 2.30 2.15 2.26 2.30
MO [deg] 0.12 0.13 0.19 0.14 0.19 0.13 0.13 0.07 0.12 0.13 0.15 0.11
MAE [deg] 0.77 0.72 0.72 0.72 0.73 0.74 0.74 0.75 0.74 0.75 0.75 0.76
MAV [deg/s] 4.75 4.34 4.58 4.30 4.37 4.43 4.57 4.22 4.58 4.36 4.46 4.44
NTV [µs] 4.46 4.38 4.38 4.31 4.35 4.35 4.35 4.35 4.27 4.33 4.40 4.33

(b) 0.25–0.25mm Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.38 0.31 0.27 0.35 0.23 0.39 0.21 0.22 0.24 0.35 0.19 0.22
MST [s] 1.61 1.57 1.65 1.64 1.50 1.63 1.67 1.70 1.61 1.71 1.60 1.76
MO [deg] 0.68 0.82 0.84 0.97 1.04 1.01 0.99 0.98 0.92 0.92 0.89 0.97
MAE [deg] 0.55 0.54 0.53 0.56 0.54 0.54 0.55 0.55 0.55 0.56 0.57 0.58
MAV [deg/s] 4.83 4.63 4.74 4.87 4.61 4.70 4.85 4.62 4.69 4.67 4.72 4.33
NTV [µs] 4.72 4.67 4.64 4.78 4.80 4.73 4.74 4.76 4.91 5.02 5.00 5.07

(c) 0.5–0.5mm Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 1.01 1.01 1.01 1.22 1.38 1.50 1.62 1.72 1.78 1.79 1.84 2.00
MST [s] 2.34 2.52 2.54 2.77 2.95 3.09 3.07 3.13 3.15 3.06 3.26 3.28
MO [deg] 0.10 0.06 -0.04 -0.11 -0.13 -0.18 -0.21 -0.23 -0.27 -0.29 -0.34 -0.38
MAE [deg] 0.81 0.85 0.91 0.99 1.05 1.09 1.14 1.16 1.22 1.27 1.32 1.35
MAV [deg/s] 4.39 4.45 4.23 4.06 4.19 4.45 4.15 4.34 4.25 3.93 4.21 4.35
NTV [µs] 4.28 4.26 4.13 4.04 4.04 3.98 3.92 3.85 3.88 3.77 3.80 3.75

(d) 0.5–0.5mm Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.22 0.34 0.32 0.36 0.27 0.29 0.17 0.33 0.26 0.29 0.24 0.36
MST [s] 2.04 1.64 1.75 1.67 1.62 1.56 1.44 1.48 1.59 1.47 1.54 1.62
MO [deg] 0.84 0.74 0.69 0.79 0.90 0.87 0.85 0.84 0.94 0.85 0.85 0.77
MAE [deg] 0.62 0.55 0.58 0.56 0.55 0.54 0.53 0.53 0.55 0.54 0.56 0.56
MAV [deg/s] 5.02 4.71 4.64 4.73 4.85 4.75 4.94 4.37 4.58 4.46 4.55 4.42
NTV [µs] 4.80 4.41 4.46 4.58 4.61 4.57 4.54 4.41 4.52 4.57 4.59 4.65
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D. 1.5–0.5 & 2–0.5 Perforations
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Fig. C.4: Metrics evolution for the 150–50 and 200–50mm perforations.

TABLE C.IV: Numerical values of the metrics for the 150–50 and 200–50mm perforations.
(a) 1.5–0.5mm Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.72 0.72 0.63 0.57 0.70 0.63 0.58 0.53 0.56 0.53 0.61 0.67
MST [s] 1.89 2.03 1.95 2.13 1.99 2.03 2.01 1.59 1.75 1.86 2.08 1.81
MO [deg] 1.05 1.52 1.50 1.39 1.33 1.52 1.25 1.20 1.20 1.25 1.06 1.00
MAE [deg] 0.60 0.59 0.57 0.58 0.59 0.57 0.56 0.53 0.54 0.55 0.58 0.58
MAV [deg/s] 5.33 6.11 5.98 5.57 5.60 5.45 5.63 5.36 5.29 5.72 5.02 5.48
NTV [µs] 4.46 4.90 4.96 4.87 4.87 4.84 4.70 4.70 4.64 4.70 4.65 4.64

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 0.52 0.47 0.54 0.49 0.56 0.53 0.54 0.60 0.56 0.59 0.63 0.66
MST [s] 1.65 1.82 1.73 1.83 1.84 1.97 1.70 1.88 1.92 1.97 1.96 1.86
MO [deg] 1.01 1.10 1.04 1.05 1.02 0.95 1.02 1.06 1.13 1.06 1.07 1.05
MAE [deg] 0.54 0.53 0.54 0.55 0.55 0.54 0.59 0.59 0.59 0.61 0.61 0.59
MAV [deg/s] 5.31 5.43 5.32 5.02 5.18 4.81 5.44 5.18 5.23 5.19 5.34 5.52
NTV [µs] 4.54 4.59 4.62 4.63 4.61 4.46 4.67 4.59 4.76 4.65 4.66 4.62

(b) 1.5–0.5mm Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.19 0.20 0.15 0.27 0.20 0.22 0.30 0.26 0.40 0.41 0.44 0.44
MST [s] 1.40 1.44 1.63 1.60 1.93 2.20 1.90 2.07 2.07 1.83 2.47 2.34
MO [deg] 1.62 1.44 1.31 1.24 1.24 1.30 1.32 1.27 1.33 1.42 1.46 1.39
MAE [deg] 0.47 0.45 0.46 0.47 0.47 0.49 0.54 0.51 0.53 0.53 0.59 0.56
MAV [deg/s] 7.20 6.56 6.08 5.38 5.55 5.39 6.18 5.90 5.28 5.68 6.64 5.88
NTV [µs] 6.24 5.55 5.61 5.10 5.73 6.38 6.49 6.02 6.02 6.27 7.55 6.72

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 0.39 0.50 0.53 0.40 0.44 0.52 0.21 0.15 0.17 0.19 0.21 0.24
MST [s] 2.32 2.45 2.89 2.60 2.75 2.86 2.56 2.61 2.72 2.94 3.37 3.49
MO [deg] 1.33 1.39 1.19 1.22 1.27 1.10 1.18 1.12 1.13 1.15 1.20 1.01
MAE [deg] 0.61 0.64 0.64 0.64 0.64 0.68 0.60 0.63 0.65 0.64 0.69 0.73
MAV [deg/s] 6.85 7.07 7.76 8.42 7.98 7.67 8.98 9.52 10.55 10.56 12.36 13.82
NTV [µs] 7.42 8.20 9.25 9.02 9.43 9.73 9.42 9.35 10.61 11.16 13.57 15.08
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TABLE C.IV: Numerical values of the metrics for the 150–50 and 200–50mm perforations, continued.

(c) 2–0.5mm Baseline controller

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.24 0.30 0.21 0.21 0.26 0.18 0.52 0.45 0.43 0.60 0.70 0.61
MST [s] 1.15 1.29 1.45 1.45 1.42 1.57 1.80 1.68 1.96 2.17 2.34 2.06
MO [deg] 1.61 1.35 1.19 1.18 1.17 0.96 1.05 1.05 0.94 0.75 0.84 0.82
MAE [deg] 0.45 0.51 0.52 0.54 0.54 0.55 0.61 0.65 0.70 0.73 0.84 0.73
MAV [deg/s] 5.87 5.74 5.87 5.60 5.34 4.93 4.97 5.41 5.98 5.98 5.51 5.96
NTV [µs] 4.64 4.66 4.84 4.71 4.54 4.46 4.64 4.87 5.45 5.62 5.02 5.45

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 0.82 0.76 0.65 0.64 0.63 0.71 0.99 1.03 1.09 1.11 1.07 1.05
MST [s] 2.35 2.32 2.21 2.22 2.18 2.15 2.49 2.54 2.53 2.61 2.67 2.64
MO [deg] 0.45 0.49 0.59 0.56 0.60 0.59 0.50 0.44 0.40 0.37 0.39 0.27
MAE [deg] 0.78 0.79 0.78 0.79 0.76 0.75 0.89 0.91 0.92 0.92 0.95 0.93
MAV [deg/s] 5.39 5.94 5.59 5.68 5.81 6.20 6.18 6.08 6.02 5.52 5.49 5.39
NTV [µs] 4.79 4.89 5.02 5.10 5.17 5.13 5.23 5.31 5.32 5.17 5.04 5.10

(d) 2–0.5mm Target adapter

Metric 5 10 15 20 25 30 35 40 45 50 55 60
MRT [s] 0.24 0.19 0.15 0.20 0.22 0.18 0.43 0.44 0.55 0.48 0.43 0.59
MST [s] 1.24 1.38 1.29 1.36 1.57 1.55 1.92 1.96 1.97 2.55 2.41 2.57
MO [deg] 1.70 1.42 1.29 1.15 1.15 1.31 1.56 1.60 1.57 1.56 1.51 1.63
MAE [deg] 0.45 0.48 0.49 0.52 0.53 0.54 0.61 0.60 0.63 0.66 0.65 0.66
MAV [deg/s] 6.01 5.26 5.20 5.62 4.95 5.31 6.05 6.08 6.67 6.94 7.16 7.04
NTV [µs] 4.95 4.99 4.93 4.94 4.72 4.90 5.87 5.99 7.02 8.48 8.63 8.78

Metric 65 70 75 80 85 90 95 100 105 110 115 120
MRT [s] 0.39 0.46 0.58 0.43 0.45 0.44 0.34 0.48 0.42 0.43 0.48 0.42
MST [s] 2.62 2.64 2.62 2.73 2.85 3.02 3.24 3.19 2.82 3.14 3.12 3.19
MO [deg] 1.47 1.71 1.61 1.53 1.51 1.56 1.63 1.55 1.70 1.56 1.61 1.64
MAE [deg] 0.66 0.68 0.69 0.72 0.72 0.70 0.74 0.77 0.75 0.77 0.77 0.81
MAV [deg/s] 6.67 7.09 8.02 7.75 8.05 7.46 8.77 8.95 8.80 9.30 9.50 10.36
NTV [µs] 9.09 9.24 10.37 10.21 10.34 10.47 12.21 12.10 12.08 12.18 12.53 14.04
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Fig. C.5: Metrics evolution for the crawling gait experiment.
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TABLE C.V: Numerical values of the metrics for the crawling
gait experiment.

(a) Baseline controller

Metric 5 10 15 20 25 30
MRT [s] 0.33 1.01 1.56 1.84 1.92 1.97
MST [s] 2.02 2.55 2.80 2.90 2.98 3.07
MO [deg] 0.10 -0.11 -0.13 -0.16 -0.15 -0.18
MAE [deg] 0.83 1.06 1.15 1.22 1.26 1.28
MAV [deg/s] 4.89 4.68 4.74 4.60 4.54 4.41
NTV [µs] 5.29 5.24 5.23 5.21 5.14 5.16

(b) Pretrained target adapter

Metric 5 10 15 20 25 30
MRT [s] 0.13 0.11 0.10 0.14 0.11 0.12
MST [s] 0.94 0.36 0.51 0.66 0.72 0.83
MO [deg] 2.43 1.74 1.57 1.39 1.40 1.21
MAE [deg] 0.57 0.42 0.46 0.49 0.50 0.51
MAV [deg/s] 6.13 5.26 5.29 5.40 5.60 5.14
NTV [µs] 5.73 5.39 5.54 5.72 5.93 5.89

(c) Online trained target adapter

Metric 5 10 15 20 25 30
MRT [s] 0.15 0.12 0.14 0.12 0.11 0.12
MST [s] 0.46 0.59 0.83 0.97 1.10 1.04
MO [deg] 2.20 1.95 2.00 2.21 2.20 2.30
MAE [deg] 0.47 0.59 0.60 0.54 0.53 0.53
MAV [deg/s] 6.22 6.26 6.29 6.27 6.73 7.07
NTV [µs] 5.83 5.91 6.11 6.43 6.71 7.01

APPENDIX D
KOS DESIGN AND TEMPLATE

The KOSs used during the experiments are of type B1 and
used the following design parameters, as related to the design
map from Section II-C:

a0 25 mm
a0/b0 1.5

α0 28 degrees

The springs were constructed from 160g/m2 paper. A
template for constructing this KOS can be found at the end of
the document. The template uses the 1.5–0.5mm perforation.

Instructions:

1) Tear out the template along its outer contours.
2) Fold the Kresling pattern: The parallelogram’s diagonals

are valley folds, the sides are mountain folds.
3) Form a cylinder and glue the flaps at the ends to the

insides of the cylinder on the opposite ends of the
template.

4) Insert the extensions at the top and bottom of the cylin-
der through the slits in the two base hexagons.

5) Fold the extensions outward and glue them to the bases.
6) For extra strength, an extra (cardboard) hexagonal base

can be glued to the top and bottom of the KOS.
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TEMPLATE

A

AB

B

Cut 0.25 - 1.75 perforation1.5 - 0.5 perforationValley fold Mountain fold
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