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ABSTRACT

Functional Ultrasound (fUS) is a relatively new modality to
measure brain activity with a high spatio-temporal resolution.
In order to collect full-brain information with this 2D imaging
technique, fUS data is typically collected for a fixed position
of the ultrasound probe for the duration of the experiment, be-
fore the probe is moved to the next position. As a result, a 3D
functional volume consists of subsequent, time-disjunct 2D
datasets. The gold-standard way to analyze fUS datasets is
using correlation images or a general linear model. However,
these analyses are performed slice by slice; thus, common in-
formation across slices is not exploited. We propose the use
of two data-driven models, Independent Component Analysis
(ICA) and its multiset extension Independent Vector Analysis
(IVA), in order to map the mouse visual information process-
ing pathway in 3D. We demonstrate the successful applica-
tion of ICA and then of IVA, which leverages the dependence
across slices in a unique fashion. Furthermore, we provide
guidance as to when which approach might be desirable.

Index Terms— functional ultrasound, multi-slice, blind
source separation, data-driven, independent component anal-
ysis, independent vector analysis

1. INTRODUCTION

Functional Ultrasound (fUS) is a relatively new invasive
modality for measuring the cerebral blood volume in the
brain, first introduced in 2011 [1]. Because of neurovascular
coupling, an increase in blood flow and/or volume can be
linked to increased neural activity [1]. Thus, fUS can be used
to infer brain activity. Compared to the gold-standard method
for measuring brain activity, functional Magnetic Resonance
Imaging (fMRI), fUS has a higher spatio-temporal resolu-
tion: the spatial resolution of fUS is 50−350 µm compared to
1−3 mm in fMRI, and the temporal resolution is 4−10 Hz for
fUS and 0.3 − 1 Hz for fMRI, respectively [2, 3]. Typically,
fUS data is collected in a 2D imaging plane, i.e., several 2D
images are collected over time for a fixed position of the ul-
trasound probe before the probe is moved. The gold standard
to analyze multi-slice fUS data is using correlation images
or a General Linear Model (GLM) approach [3]. However,
besides the fact that this slice-by-slice analysis is not mak-

ing use of the dependence across datasets, it was shown in
previous work [4] that the brain response strength varies a
lot across consecutive stimuli, so a correlation/GLM may be
too rigid and cannot capture this variability. Furthermore,
these methods can only be applied if the data is collected
during a task experiment and the expected stimuli responses
for the task are known. Therefore, they are not feasible for
analyzing resting state data, which is of great importance to
obtain information about the functional organization of the
brain [5, 6].

In this paper, we investigate the use of Independent Com-
ponent Analysis (ICA), a well-known matrix decomposition
technique, and Independent Vector Analysis (IVA), the mul-
tiset extension of ICA, for analyzing multi-slice fUS data in
a fully data-driven way, i.e., without the need of prior infor-
mation. The use of data-driven analysis using Singular Value
Decomposition (SVD) or ICA for retrieving functional net-
works [7] or Regions Of Interest (ROIs) [4, 8] within a single
slice has become more popular in recent years. Very recently,
ICA has also been used to map whole-brain mouse functional
connectivity from novel 3D recordings [9] and for slice-by-
slice evaluation of consecutive 2D recordings [10]. However,
in the latter case, ICA does not exploit the information that is
common across the slices. Therefore, in this paper, we pro-
pose the use of IVA for mapping the mouse visual informa-
tion processing pathway in 3D, i.e., tracking the estimated
ROIs over multiple 2D slices. The pre- and postprocessing
of the data before applying these methods is very important
but not straight-forward and will be explained in this work.
By evaluating ICA and IVA on a multi-slice fUS dataset col-
lected during an experiment with visual stimuli at different
locations, we show that these methods can estimate similar
ROIs as found by correlation images, without prior knowl-
edge about the experiment design.

2. METHODS

2.1. Correlation images

The gold standard for identifying functional (active) brain re-
gions in task data is to use correlation images [5]. For each
slice, a correlation image for each stimulus pattern can be cal-
culated. The value of each pixel in a correlation image is the
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X = A ...
S

Fig. 1: Illustration of the ICA model. Different colors in the
source matrix S correspond to the independent source com-
ponents.

correlation of the time course of that pixel with the expected
stimulus response e(t), where the expected stimulus response
is the time course of the stimulus c(t) convolved with the
Hemodynamic Response Function (HRF) h(t):

e(t) = c(t) ∗ h(t). (1)

In our case, we model the HRF by a shifted Dirac impulse
function:

h(t) = δ(t− t0), (2)

where t0 denotes the shift in time. The pixels with high corre-
lation values correspond to the brain regions that are activated
by the corresponding stimulus.

2.2. Independent Component Analysis

ICA [11] is a matrix decomposition-based model to estimate
latent sources from observed data. The generative model of
ICA is shown in Figure 1 and is denoted as

X = AS, (3)

where X ∈ RR×N is the observed data matrix, S ∈ RR×N

is the unknown source matrix, A ∈ RR×R is an unknown
invertible mixing matrix, R is the dimension of the data, and
N is the number of samples. ICA assumes the source com-
ponents sr: ∈ R1×N , i.e., the rows of S, to be independent
of each other, which is visualized by the different colors in
Figure 1.

The goal of ICA is now to estimate the sources

Ŝ = WX, (4)

where W ∈ RR×R is the estimated demixing matrix. Differ-
ent methods exist for estimating the sources in ICA. In this
work, we choose the commonly used FastICA algorithm [11]
that is based on maximization of negentropy, implemented in
scikit-learn [12]. We run ICA 20 times with random
initializations and choose the most consistent run [13].

2.3. Independent Vector Analysis

IVA [14] is an extension of ICA to multiple datasets. The
generative model of IVA, shown in Figure 2, is

X[k] = A[k]S[k], k = 1, . . . ,K, (5)

where X[k] ∈ RR×N is the observed data in the kth dataset,
S[k] ∈ RR×N is the source matrix in the kth dataset, and

X[K]

X[2]
X[1]

= A[K]

A[2]
A[1]

...
S[K]

......
S[1]

...
SR......

S1

SCVs

de
pe
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t

. . .

. . .

independent

Fig. 2: Illustration of the IVA model. Different colors in the
sources matrices S[k] correspond to independent source com-
ponents, while different opacities of the same color indicate
dependent source components. The rth SCV is formed by
stacking the rth row of all K source matrices together.

A[k] ∈ RR×R is the mixing matrix of the kth dataset. IVA
now aims to jointly estimate the sources

Ŝ[k] = W[k]X[k], k = 1, . . . ,K, (6)

where W[k] ∈ RR×R is the demixing matrix for the kth

dataset.
As ICA, also IVA assumes the source components within

a source to be independent, but additionally aims to make use
of the dependence of sources across datasets whenever such
dependence exists [15]. This is achieved by introducing so-
called Source Component Vectors (SCVs). Let the rth SCV
Sr ∈ RK×N be defined by stacking the rrh source component
of all datasets [15]:

Sr =

[(
s
[1]
r:

)T
. . .
(
s
[K]
r:

)T]T
, (7)

where s
[k]
r: ∈ R1×N is the rth row of the kth dataset. In Fig-

ure 2, dependence of source components is indicated by dif-
ferent opacities of the same color. As we see, the (potentially)
dependent source components are stacked into an SCV, and
the source components among SCVs are independent of each
other.

In order to maximize independence among the estimated
SCVs, IVA now minimizes their Mutual Information (MI),
which is defined as [14, 15]

I
(
W[k]

)
=

(
R∑

r=1

H(Ŝr)−
K∑

k=1

log
∣∣∣det(W[k]

)∣∣∣− C

)
,

where H(Ŝr) is the (differential) entropy of the rth estimated
SCV, and C is a constant.

In this work, we use IVA-G [16], which assumes a multi-
variate Gaussian distribution as a model for the probability
density function of the SCVs. Therefore, IVA-G takes only
second-order statistics into account, and the source compo-
nents within an SCV are made maximally correlated and
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across SCVs maximally uncorrelated.1 We choose the most
consistent of 20 runs [13].

3. EXPERIMENTS

3.1. Dataset

fUS imaging data is collected from a head-fixed mouse on
a wheel, which is looking at two screens. During the exper-
iment, black-and-white flickerings occurred on 9 different
locations on the screens. The flickering at each location is
called a stimulus; thus, there are 9 different stimuli in this
experiment. The stimuli occur in a pseudo-random order,
where each stimulus is presented five times. The stimu-
lus duration is 2.92 seconds, and the duration of the breaks
between stimuli is between 7.52 and 10.88 seconds. After
collecting the Power Doppler Images (PDIs) over T time
points (with a sampling frequency fs = 4.65 Hz) for a
fixed probe position, the probe is moved to a different po-
sition, and the experiment is repeated. The order of the
stimulus occurrences is the same for each probe position.
We use data collected from the following probe positions
(distance from Bregma): -3.16 mm, -3.36 mm, -4.26 mm,
-4.56 mm, -4.76 mm, -4.96 mm. Thus, for each probe posi-
tion, one slice of the brain is captured, and in total we have
K = 6 datasets. We denote the data of the kth slice as a tensor
X[k] ∈ RNz×Nx×T , where Nz = 150 and Nx = 256 are the
numbers of pixels in the z and x direction, respectively, and
T = 2530 is the number of time points over which data is
collected.

This experiment, by virtue of its simplicity, enables us to
easily demonstrate and evaluate the performance of ICA and
IVA, by comparing their results with the correlation images
and interpreting the identified ROIs.

3.2. Preprocessing

The following preprocessing is applied to the PDIs of each
slice k = 1, . . . ,K separately. In the following explanation,
we drop the slice index k for better readability.

1. (a) For correlation images: image standardization:
The image for each time point t, X(:, :, t) ∈
RNz×Nx , is made zero-mean and unit-variance.

(b) For ICA/IVA: temporal standardization: Each
pixel’s time course, X(i, j, :) ∈ RT , is made
zero-mean and unit-variance.

2. Spatial smoothing: A 2-dimensional Gaussian filter
with σ = 1 is applied to the image collected for each
time point t, X(:, :, t) ∈ RNz×Nx .

3. Temporal smoothing: A fifth-order Butterworth low-
pass filter with a cut-off frequency of 0.2 Hz is applied
on each pixel’s time course X(i, j, :).

1The Python implementation of IVA-G is available at https://
github.com/SSTGroup/independent_vector_analysis [17].

The following two steps are only applied for ICA/IVA.

4. Reshaping: The tensor X ∈ RNz×Nx×T is unfolded in
a matrix X̃ ∈ RT×N , where N = NzNx. We treat N
as the number of samples and T as the dimension of the
data.

5. Dimensionality reduction and whitening: Principal
Component Analysis (PCA) is applied to X̃ to get the
matrix X = PTX̃, where P ∈ RT×R, R ≪ T , is
the PCA transformation matrix. ICA and IVA are then
applied to X ∈ RR×N .

3.3. Estimation of ROIs

3.3.1. Correlation images

Correlation images are calculated from the image-standardized,
spatially and temporally smoothed tensor X ∈ RNz×Nx×T .
We choose t0 = 7 samples as time shift in the HRF in
(2), which corresponds to approximately 1.75 seconds. The
highly correlated pixels in a correlation image form a ROI.
We denote the correlation image for the rth stimulus in the kth

slice as C[k]
r ∈ RNz×Nx .

3.3.2. ICA

We assume that the measured data is a mixture of the ac-
tivity fluctuations of multiple spatially independent functio-
anatomical regions. As such, we decompose each dimension-
reduced dataset X[k] ∈ RR×N separately using ICA to get
the estimated demixing matrix W[k] and the estimated source
matrices Ŝ[k] ∈ RR×N , with R = 20, N = 38400. The rth

source component of the kth dataset, s[k]r: , is reshaped into an
image I

[k]
r ∈ RNz×Nx . The significant pixels (p < 0.01) in

each image form a ROI, and the R ROIs for the kth slice are in-
dependent of each other. The mixing matrices Ã[k] ∈ RT×R

can be reconstructed by multiplying the PCA transformation
matrix P with the inverse of the estimated demixing matrix
of ICA (W[k])−1:

Ã[k] = P(W[k])−1 ∈ RT×R, (8)

and the rth column ã
[k]
r is the time course corresponding to

the rth ROI in the kth dataset.
The source components in ICA can be estimated up to

a permutation, scale and sign ambiguity. We overcome the
scale ambiguity by normalizing each row s

[k]
r: to unit-variance

and multiplying the weight in the corresponding column of
the mixing matrix ã

[k]
r . To overcome the sign ambiguity, we

make sure that the majority of the pixels in each ROI is posi-
tive or made positive by multiplying the corresponding row of
S[k] and column of A[k] by -1. To overcome the permutation
ambiguity, we manually aligned the 20 components across the
6 slices, which is prone to subjective biases/errors. In the final
step, we removed the noise components, and 8 components
remained.
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Fig. 3: For probe position -3.36 mm, the location of the stimuli can be tracked in the correlation images: From stimulus 1 to 9
(location most left to most right), we see a movement of the ROIs from right to left.

3.3.3. IVA

IVA is jointly applied on the K dimension-reduced datasets
X[k] ∈ RR×N . Reconstruction of mixing matrices and solv-
ing the scale and sign ambiguity as well as reshaping the
source components into images I[k]r is performed in the same
way as for ICA. As IVA jointly estimates the sources, the per-
mutation ambiguity is automatically resolved by this method.
We match the estimated IVA components to the selected ICA
components to be able to compare the results of the methods.

3.3.4. Visualization

For visualization purposes, we calculate the (scalar) mean
µ
[k]
r and standard deviation σ

[k]
r of each image C

[k]
r or I[k]r ,

and calculate the z-score of each pixel by subtracting the
mean and dividing by the standard deviation. From the re-
sulting z-scored image Z

[k]
r ∈ RNz×Nx , we plot only the sig-

nificant pixels, i.e., the pixels (i, j) where |Z[k]
r (i, j)| > 2.58,

which corresponds to a significance level of p < 0.01 for a
two-sided t-test.

We overlay the significant pixels over the logarithmic
mean image X[k]

logmean, which is calculated from the raw PDIs
(without any preprocessing) for each slice as:

X
[k]
logmean = log

 X
[k]
mean

max
(
X

[k]
mean

)
 , (9)

where X
[k]
mean =

∑T
t=1 X

[k](:, :, t). Then, we overlay the
Allen brain atlas [18] for the corresponding slice so that we
can interpret the ROIs in terms of anatomical regions.

3.4. Results

3.4.1. Correlation images

Figure 3 shows the correlation images of probe position
-3.36 mm for the 9 stimuli. In the following, we link the
ROIs to the anatomical regions defined in the Allen brain
atlas [18]. We see positive correlations mainly in V1 on the
right side of the brain with stimuli 1–4 and on the left side
with stimuli 8–9, which make sense as V1 is part of the visual
pathway with contra-lateral activation. For stimuli 5–7, we
see the movement of the V1 and RSG ROIs from right to
left. Thus, the location of the stimulus can be visually tracked
in the correlated brain regions for probe positions -3.36 mm
(and also for -4.26 mm and -4.56 mm, which are not shown).

3.4.2. ICA results

Figure 4(a) shows the ROIs estimated by ICA for the 6 probe
positions. All ROIs for one slice are plotted in the same im-
age. To distinguish between them, each ROI is plotted in
a different color. Furthermore, a component that occurs in
multiple slices (as identified manually) is plotted in the same
color for each slice. Figure 4(b) shows the correlation of the
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(a) ROIs estimated by ICA for the 6 probe positions. Each ROI is plotted in a different color within a slice, and corresponding
ROIs are plotted in the same color across slices.

(b) Correlation of ICA time courses and expected stimuli responses.

Fig. 4: ICA results. The ROIs of C1/C2 and C7 belong to the left and right V1, respectively. The time course of C1/C2 is higher
correlated with the stimuli on the right side, and the time course of C7 is higher correlated with the stimuli on the left side.

ICA time courses (corresponding to the ROIs in Figure 4(a))
with the 9 expected stimuli responses. If a component is not
present in a slice, the corresponding row is empty.

The estimated ROIs correspond to meaningful anatomi-
cal brain regions. Component 1 (C1) (dark blue) belongs
mainly to the left V1 for probe positions -3.36 mm, -4.26 mm,
-4.56 mm, -4.76 mm and -4.96 mm. The corresponding time
courses of C1 are higher correlated with the stimuli located on
the right side of the screen (stimuli 6–9), which makes sense
as the ROI is also present in the correlation images for those
stimuli. C2 (orange) corresponds to left V2ML, V2MM, and
RSA/RSG at -3.16 mm, and then evolves to mainly activa-
tions of V1 (shared with C1) at -3.36 mm to -4.56 mm. Also
for the time courses corresponding to this component, we see
higher correlations with the stimuli on the right. C5 (purple)
belongs to left S (-3.36 mm), left and right PrS (-4.26 mm)
and left PrS (-4.56 mm). C7 (olive) shows activations of right
V2ML and right V1 (at -3.16 mm) and then mainly right V1

at -3.52 mm to -4.56 mm. The corresponding time course is
higher correlated with the stimuli on the left.

3.4.3. IVA results

In Figure 5(a), we see the estimated ROIs of IVA for each
slice, and in Figure 5(b), we see the correlation of the IVA
time courses with the expected stimuli responses. We can
directly see that C1 and C2 in ICA at -3.36 mm to -4.56
mm are merged in C1 in IVA, which makes more sense as
they belong to the same anatomical region (left V1) and
again reflect the contra-lateral activation of the visual path-
way. However, C3 and C5 are completely missing in IVA.
C7 and C8 are very similar for ICA and IVA, and also the
ROIs of C1 and C6 for probe positions -4.76 mm and -
4.96 mm look almost identical for both methods. The time
courses of C1 (left side of brain) are again higher corre-
lated with the right stimuli, and the time courses of C7
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(a) ROIs estimated by IVA for the 6 probe positions. Each ROI is plotted in a different color within a slice, and corresponding
ROIs are plotted in the same color across slices.

(b) Correlation of IVA time courses and expected stimuli responses.

Fig. 5: IVA results. The ROIs of C1 and C7 belong to the left and right V1, respectively. The time course of C1 is higher
correlated with the stimuli on the right side, and the time course of C7 is higher correlated with the stimuli on the left side. The
time courses of C4, where the ROIs belong to RSA/RSG, are anti-correlated with all stimuli.

(right side of brain) higher with the left stimuli. We see a
strong negative correlation of the time course of C4 with all
stimuli, which is not present in ICA. The activations of C4
in the RSA/RSG regions for probe positions -3.16 mm and
-3.36 mm, which are associated with the mouse default mode,
do not correspond to C4 but to C2 in ICA. Thus, IVA seems
to extract the default mode network, which ICA seems to
merge with another component.

4. DISCUSSION

We have proposed the use of ICA and IVA to track the 3D
visual information processing pathway in multi-slice 2D fUS
imaging data. We demonstrated the suitability of these two
methods by showing that the identified functio-anatomical re-
gions match the activations in the correlation images for our
specific task dataset. Furthermore, we have shown that the

ICA/IVA time courses of the estimated ROIs are correlated
with the expected stimuli responses of those stimuli for which
the corresponding ROI is present in the correlation images.

In terms of comparison of the methods ICA and IVA, IVA
has the clear advantage of automatically aligning the iden-
tified ROIs for the different slices by making use of their de-
pendence when estimating them. However, because IVA aims
to make the components dependent across all slices, it tends
to miss components that are present only in a few slices. On
the other hand, ICA might split or merge ROIs. Choosing the
proper analysis method involves a trade-off between obtain-
ing a detailed understanding and minimizing the amount of
time spent. We suggest the use of IVA if one is interested in
tracking the ROIs over slices and finds it acceptable if ROIs
may be missed, and the use of ICA if one is interested to iden-
tify as many ROIs as possible while taking the risk that one
ROI might be split in two components.
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As we have demonstrated the successful application of
ICA and IVA for multi-slice fUS task data, the next step can
be to analyze resting state data using one of these two meth-
ods, where the gold standard of correlation images cannot be
used as there is no expected stimulus response. Furthermore,
instead of IVA-G, IVA-L-SOS [19] can be used to estimate
the sources, as it takes also higher-order statistics into account
and thus does not only look at correlations like IVA-G does.
Lastly, the quality of the estimated components can be auto-
matically determined by, e.g., analyzing which percentage of
pixels in a brain region according to the atlas is significant.
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