
 

 

 

 

  

2017 

Functional Liver Partition of 

DCE-MRI 

      

Zhiyi Wu 



I 

 

Functional Liver Partition  

of DCE-MRI 

 

By 

 

Zhiyi Wu 

 

in partial fulfilment of the requirements for the degree of 

 

 

Master of Engineering 

in Biomedical Engineering 

 

at the Delft University of Technology, 

to be defended publicly on Thursday August 3, 2017 at 10:00 AM. 

 

 

 

 

Supervisor:       dr. F. M. Vos 

Thesis committee:    dr. F. M. Vos,      TU Delft 

Prof. dr. P. J. French,  TU Delft 

MSc. T Zhang,  TU Delft 

 

  



II 

 

Acknowledgements 

I would like to express my sincere gratitude to my supervisors, Prof. Frans Vos and 

Ph.D. Tian Zhang, for their guidance on my thesis project. They have given my many 

wise suggestions and motivated me. Tian has shared his valuable experiences in 

developing image segmentation and registration algorithms and gave a great favour to 

me at the beginning of this project. Prof. Frans has inspired me to think out of box and 

analyse problems from multiple aspects. I am also grateful to receive help from all 

Imaging Physics members. They have helped me to know about Netherlands better. 

Thanks to everyone who has supported me during this thesis project. 

 
  



III 

 

Content 
Acknowledgements ................................................................................................................... II 

1  Introduction .......................................................................................................................... 1 

1.1  Motivation ..................................................................................................................... 1 

1.2  Thesis Objectives .......................................................................................................... 3 

1.3  Outlines ......................................................................................................................... 4 

2 Background Theory and Related Work .................................................................................. 5 

2.1  Overview ....................................................................................................................... 5 

2.2  Anatomy of the functional liver partition ...................................................................... 6 

2.3  Image registration .......................................................................................................... 7 

2.3.1  Image registration basics ........................................................................................ 7 

2.3.2  Modality-independent neighborhood descriptor (MIND) ...................................... 9 

2.4  Image segmentation ..................................................................................................... 11 

2.4.1  Image segmentation basics ................................................................................... 11 

2.4.2  New hybrid level set method ................................................................................ 13 

2.5  Vessel segmentation and functional liver partition ..................................................... 14 

3 DCE-MRI Data Preprocessing ............................................................................................. 16 

3.1  Overview ..................................................................................................................... 16 

3.2  MRI protocol ............................................................................................................... 17 

3.3  DCE-MRI denoising using discrete wavelet transform ............................................... 17 

3.3.1  Discrete wavelet transformation basics ................................................................ 17 

3.3.2  The application of discrete wavelet transformation in time-intensity data 

processing ........................................................................................................................ 19 

3.4  DCE-MRI denoising using model fitting .................................................................... 20 

3.4.1  Dual-inlet tow compartment liver perfusion model ............................................. 20 

3.4.2  Measurement of tissue concentration from DCE-MRI ........................................ 22 

3.4.3  Global arterial input function (AIF) and venous input function (VIF) 

measurement .................................................................................................................... 23 

3.4.4  TICs obtained from Sourbron’s model ................................................................. 25 

3.5  Comparison between DWT and model fitting methods .............................................. 26 

4 Vessel Segmentation Using Time-intensity Information ..................................................... 28 

4.1  Overview ..................................................................................................................... 28 

4.2  Spearman rank correlation .......................................................................................... 29 

4.3  Mixing estimation map ................................................................................................ 31 

4.4  Vessel segmentation using new hybrid level set method ............................................ 33 

4.5  Vessel segmentation method verification and comparison ......................................... 35 

5 Functional Liver Partition ..................................................................................................... 38 



IV 

 

5.1  Overview ..................................................................................................................... 38 

5.2  Resection plane interpolation ...................................................................................... 39 

5.3  Functional liver partition ............................................................................................. 41 

6 Discussion and Conclusion ................................................................................................... 44 

6.1  Overview ..................................................................................................................... 44 

6.2  Limitations of hepatic vessel segmentation ................................................................. 45 

6.3  Limitations of functional liver segmentation .............................................................. 46 

6.4  Future Improvements .................................................................................................. 47 

6.5  Conclusions ................................................................................................................. 48 

References .................................................................................................................................. I 

  

 

  



V 

 

List of Figures 

Fig.1. The functional anatomy of the liver ............................................................. 6 

Fig.2. The schematic of the liver anatomy. The white strip in figure a is the 

falciform ligament. The green region in both figures a and b is the gallbladder 

fossa. The Cantlie’s line crosses the middle hepatic vein used for left and right 

liver partition. ................................................................................................. 7 

Fig.3. Local self-similarity: A=a, B=b, C=c, D=d, E=e, F=f. .............................. 10 

Fig.4. Deformable model curve representation using a distance transform: the 

evolvement of the 1D closed curve (a) in the image can be implicitly 

described by the 2D distance functions of (b). ............................................ 12 

Fig.5. Level-set conventions. ............................................................................... 13 

Fig.6. The schematic of vessel sub-branches used in the distance clustering method.

 ...................................................................................................................... 15 

Fig.7. The workflow of level-3 DWT process. .................................................... 19 

Fig.8. The time-intensity profiles of a pixel in the liver. ..................................... 20 

Fig.9. The schematic of the CA uptake process in liver. ...................................... 21 

Fig.10. The diagram of Sourbron’s liver perfusion model. AIF: arterial input 

function, VIF: venous input function, TA and TV : time delay of AIF and VIF, 

FA and FV: arterial and venous plasma flow, VE: extracellular volume, Ki: 

intracellular uptake rate. ............................................................................... 22 

Fig.11. The schematic of AIF model. ................................................................... 24 

Fig.12. AIF and VIF obtained from modified Orton’s model. ............................. 25 

Fig.13. Time-intensity curves obtained from Sourbron’s liver perfusion model. 26 

Fig.14. TICs after DWT filtering. The red and blue curves are TICs of a hepatic 

vein voxel and a liver voxel. ........................................................................ 27 

Fig.15. The division of the whole enhancement period. (IVC: inferior vena cava)

 ...................................................................................................................... 30 

Fig.16. The correlation coefficient maps with portal vein, hepatic vein and liver 

TICs .............................................................................................................. 31 

Fig.17. The schematic of the linear mix assumption. The y axes are the tissue 

intensity while the x axes are the time. ........................................................ 32 

file:///C:/Users/wzyqi/Documents/Functional%20liver%20partition.docx%23_Toc488917519
file:///C:/Users/wzyqi/Documents/Functional%20liver%20partition.docx%23_Toc488917524


VI 

 

Fig.18. The mixing estimation maps. The maps (a), (b), (c), and (d) represent the 

fraction of the corresponding vessels in the linear combination. In IVC 

(inferior vena cava) fraction map (c), the boundary has high fractions. The 

liver mask was dilated twice to ensure that all vessel voxels are included. 

Therefore, those boundary voxels which are removed before the vessel 

segmentation, are not from liver leading to high values in IVC map. ......... 33 

Fig.19. The figures of mixing estimation maps, correlation maps and summation 

maps of the selected slices. (IVC: inferior vena cava) ................................. 34 

Fig.20. The obtained 3D vessel structure. (IVC: inferior vena cava) .................. 34 

Fig.21. The mean TIC of each vessel mask. (IVC: inferior vena cava) ............... 35 

Fig.22. The comparison between the manual and proposed segmentations. Figures 

A and B are results of the proposed segmentation while figures C and D are 

results of the manual segmentation. ............................................................. 36 

Fig.23. Determination of three landmarks on hepatic veins and one on IVC. The 

left figure shows the X-Y plane projection of the vessel mask. The red points 

in the right figure indicate the selected landmarks for resection planes 

construction. ................................................................................................. 39 

Fig.24. Determination of three landmarks for the first segment. The left figure 

shows the X-Y plane projection of the vessel mask. The red points in the right 

figure indicate the selected landmarks for resection plane construction. Point 

3 on the portal vein bifurcation edge while the other two 1 and 2 points on 

the IVC edge were selected. ......................................................................... 40 

Fig.25. Determination of horizontal resection planes. The projection image 

consists of the right, middle and left portal vein, the corresponding yellow, 

pink and blue regions. The two red lines slice 1 and slice 2 indicate the slice 

locations of the right and left portal vein bifurcations respectively. ............ 40 

Fig.26. Workflow of the proposed functional liver partition. .............................. 42 

Fig.27. Liver functional segments. ...................................................................... 42 

Fig.28. Image (a) is the minus product of the last DCE image frame and the first 

DCE image frame. Image (b) is the portal vein correlation map. ................ 45 

Fig.29. Bifurcation of left hepatic vein. (IVC: inferior vena cava) ..................... 47 

 



1 

 

1  

Introduction 

 

 

1.1  Motivation 

Magnetic resonance imaging (MRI) is a versatile and radiation free radiological 

imaging modality that has been proven to be a useful tool in the diagnosis and 

evaluation of a variety of disorders. Compared with other imaging modalities such 

as CT and PET, MRI is more sensitive to subtle changes within soft tissues. Because 

the contrast depicted in MRI is typically generated by the density and the relaxation 

times (T1 and T2) variations of tissue hydrogen nuclei [1].  

There are several different types of MR techniques and one is the dynamic 

contrast-enhanced (DCE) MRI which has been proposed to be an effective tool in 

analyzing the function of organs such as the liver, kidney and breast [1]. The contrast 

agent (CA) is injected intravenously into the patient and a series acquisitions of MR 

images are required before and after the injection, thereby recording MR signal 

intensity of each image voxel over time. The CA enters a tissue through the blood 

supply network and accumulates in the tissue until the local CA concentration reaches 

equilibrium [9]. The CA-induced MR signal intensity variation enables the 

quantification of physiological parameters related to blood flow, vessel permeability 

and tissue volume fractions using appropriate mathematical models [1].   

In liver surgeries, resection of lesions could inevitably reduce the liver volume 

hence sacrificing the healthy liver cells. Therefore, in surgical planning, the volume of 
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the remnant region as well as the pathological region are required to be estimated 

precisely. Couinaud [17] proposed that the liver can be divided into eight segments as 

each of them has an independent circulatory system. Manual segmentation of each 

segment as well as the vessels are tedious and time-consuming tasks. Therefore, an 

increasing number of automatic or semi-automatic segmentation methods are proposed 

especially for CT images due to the high image resolution and the absence of intensity 

inhomogeneities [2], [3], [4], [8]. The two mature and widely used segmentation 

methods are: histogram based thresholding segmentation and vessel enhancement 

filtering.  

Since the signal intensities in the liver parenchyma, vessels and nodules are 

relatively homogeneous, the histogram of the total liver region can be interpreted as a 

mixed model of three Gaussians functions. From the trimodal histogram, two thresholds 

can be estimated to segment each type of tissues. Although the thresholding method is 

straightforward and easy to implement, it is not robust since the tissue intensities vary 

markedly for different patients. Especially in MRI, intensity inhomogeneities often lead 

to overlap between the adjacent Gaussian distributions of different tissues. As a result, 

the thresholds are difficult to be determined due to the unobvious trimodal profile. 

Besides, prevalent MR signal inhomogeneities are also a reason that most region-based 

methods could not give an accurate segmentation [35]. 

Then a bias field has been introduced to the image model to deal with the presence 

of intensity inhomogeneities [42], [46], [47]. The model assumes that the image 

intensity consists of a bias field, the true image and the Gaussian noise. The bias field 

mimics the source of the intensity inhomogeneities while the true image represents the 

intrinsic physical property of the tissues. Considering the tissue specified true image 

and the locally constant bias field, a global clustering criterion can be defined and 

converted into level set energy function for segmentation.  

Meanwhile, the vessel enhancement filtering proposed by Frangi [6] and diffusion 

enhancing method based on Frangi proposed by Manniesing [7] have been proved to 

be an effective processing technique in vessel segmentation [5], [8], [10]. The 

vesselness structure is first detected by analyzing the Hessian matrix of the image. The 

anisotropic diffusion in the vessels leads to an ellipsoid eigenvalues distribution which 

makes the vessel different from other structures. With the obtained eigenvalues and 

vesselness function, the diffusion tensor is defined to preserve the vessels. After 
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filtering the image lased on this tensor, the vessels are enhanced allowing the region 

grow method to segment the vessels from the image [10].   

All these aforementioned methods intend to achieve the segmentation using high 

contrast 3D images. But in the DCE-MRI, both the vessel and liver are enhanced 

simultaneously, thus leading to the insufficient intensity contrast. One of the most 

widely used segmentation methods in DCE-MRI is time-intensity curve (TIC) shape 

analysis [54], [55] which differentiates voxels by quantifying TIC characteristics. This 

method fulfills the voxel characterization in a direct and easy way, however requiring 

many thresholds. 

 Besides, the hepatic tumors are also the challenge for vessel segmentation, 

because they contain abundant vessels. Thus, this thesis suggested an automatic and 

robust vessel segmentation method based on 4D DCE-MR images, which is used for 

further functional liver partition. 

 

1.2  Thesis Objectives 

This project is dedicated to segmentations of both hepatic vessels and functional liver 

segments and their application to liver surgery planning. The development of clinically 

applicable hepatic vessels delineation and liver segments partition algorithms for DCE-

MRI is the major objective of the thesis. Besides, the preprocessing of DCE-MR images 

is computed using two different methods. 

The thesis project mainly contains the following steps: 

1. The preprocessing of DCE-MR images for noise filtering. 

2. The segmentation of the hepatic vessels (portal vein, hepatic veins and inferior 

vena cava) from 4D abdominal DCE-MR images. 

3. The definition and interpolation of the resection planes using the location of 

corresponding blood vessels. 

4. The partition of the functional liver segments. 
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1.3  Outlines 

In the first chapter, the objective of this project and some available hepatic vessel 

segmentation methods are introduced. The second chapter illustrates the background 

information on liver anatomy and the related image segmentation and registration 

methods of this project. In Chapter 3, two preprocessing methods for DCE-MRI are 

introduced and the comparison between them is given at the end of this chapter. The 

image processing algorithms developed in this thesis are introduced in the following 

two chapters. Chapter 4 shows the hepatic vessel segmentation algorithm while Chapter 

5 illustrates the functional liver partition algorithm. In the last chapter, the limitations 

and possible improvements of all aforementioned algorithms are discussed and the 

conclusions are also given at the end of this chapter. 
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2 

Background Theory and Related Work 

 

 

2.1  Overview 

In Section 2.2, the anatomical background of the functional liver partition is introduced.  

Subsequently, in Section 2.3, general principles of image registration and a review of 

the modality independent-neighborhood descriptor (MIND) deformable registration 

method are demonstrated. Finally, in Section 2.4, image segmentation basics and a 

review of the hybrid level-set method are reviewed. 
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2.2  Anatomy of the functional liver partition 

Liver anatomy considers the morphological and functional aspects of the liver [18]. The 

morphological anatomy divides the liver into four lobes based on external appearance: 

right, left, quadrate and caudate [18]. The functional liver anatomy takes into account 

the internal features of hepatic vessels and biliary ducts branching. On the basis of the 

liver functional anatomy, the French surgeon Claude Couinaud firstly proposed that the 

liver can be divided into eight functionally independent segments, as shown in Fig.1 

[17]. Each segment of the liver is supplied by a unique circulatory system consisting of 

two vascular inflows, an outflow and a biliary drainage. The distribution of the vessels 

dominates the partitioning in segments . 

 

 

Fig.1. The functional anatomy of the liver [53]. 

 

Clinically, radiologists manually segment the liver on cross-sectional images by 

extrapolating three lines [17] [18]. The first line along the falciform ligament (see Fig.2) 

superiorly to the inferior vena cava (IVC) divides the left lobe. The second line from 

the gallbladder fossa (see Fig.2) superiorly along the middle hepatic vein to IVC 

segments the liver into right and left lobes. The third line along the right hepatic vein 

from IVC to the lateral liver margin separates the right lobe. Due to the large image 

volumes and limited image resolution, the manual partition of the whole liver is a time-

consuming and subjective task. Therefore, an automatic method is in demand for more 
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accurate and fast partition. 

 

Fig.2. The schematic of the liver anatomy. The white strip in figure a is the falciform ligament. 

The green region in both figures a and b is the gallbladder fossa. The Cantlie’s line crosses the 

middle hepatic vein used for left and right liver partition [17]. 

 

Functional liver partition is also an effective tool for surgery planning [18]. It 

intends to help surgeons to gain a comprehensive understanding of the potential risks, 

thereby making more reliable plans. In the resections which aim to remove a lesion or 

split the liver for the transplantation, the liver volume and related functions will be 

inevitably sacrificed. The remnant liver volume estimation is vital for those patients 

who have a low liver regeneration power. Besides, the resection itself also could lead 

to regional dysfunctions if the vessels are truncated during the surgery. As a result, all 

these risks require precise prediction.  

 

2.3  Image registration 

2.3.1  Image registration basics 

Medical images have been widely used for the diagnosis, treatment planning and 

guidance and diseases progression monitoring in the healthcare field. Due to the 

breathing and motion of the patient during the scan, organs can appear deformed in the 

images [19]. In order to solve this problem, image registration has been proposed to 

align different images by accurately relating the corresponding information between 

them.  

(a) (b) 
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Registration is defined as the spatial transformation between a reference image 

and a target image [19], [20]. Most registration methods contains the following four 

components according to Brown [20]: 

1. Feature space.  

2. Transformation model. 

3. Similarity metric. 

4. Search strategy. 

The implementation of each component requires a comprehensive consideration. 

The feature space contains image information that is used to define the similarity metric. 

The search for the optimal transformation in the transformation model is determined by 

the search strategy. The whole registration process ends until the similarity measure of 

the selected transformation model stops decreasing.   

According to the information used in the similarity metric definition, registration 

methods can be mainly divided into two classes: the intensity- and feature-based 

methods [20]. Intensity-based similarity measures intensity differences, intensity cross-

correlation and information theory. The sum of squared differences (SSD) [21], [22], 

Pearson’s correlation [23], [24] and mutual information (MI) [25], [26] are three of the 

most commonly used information theories. The assumption behind the intensity-based 

approaches is that the corresponding structures in different images should have 

correlated intensities. However, in DCE-MRI, the liver voxel intensities increase over 

the scan due to the injected contrast agent. Additionally, the breathing and motion of 

patients could induce the intensity variations. Therefore, most intensity-based methods 

did not yield an accurate registration for DCE-MRI. 

In feature-based methods, the registration is performed by finding the 

correspondence of a limited set of landmarks or segmented structures extracted from 

images [20], [27], [28]. Relating the corresponding features between two images, a 

transformation is determined to map a target image to a reference image. However, the 

identification of landmarks or organs of interest could be a difficult task and the 

inaccuracies in feature extraction have serious impacts on the registration. Besides, 

those features have to be invariant to possible image deformations, thereby demanding 

for the high robustness of the feature extraction algorithm. Therefore, instead of 

extracting the features directly, many image descriptors have been proposed to represent 

image features based on second-order statistics, parametric models and coefficients 
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obtained from an image transform [31]. Then the registration is conducted by finding 

the correspondences between image descriptors. 

In the medical image processing field, image descriptors are mainly used to 

describe local features instead of global features. The global features such as image 

color and texture cannot differentiate foreground from background of an image. Image 

patches are applied to further define local features. The image descriptors are assumed 

to be invariant to image scaling, rotation, translation as well as noise within each patch 

[28], [29], [31]. In this study, the modality-independent neighborhood descriptor 

(MIND) [30] which characterizes each image voxel using the local self-similarity, is 

selected in this study. 

 

2.3.2  Modality-independent neighborhood descriptor (MIND)  

The MIND method is a deformable multimodal registration technique based on the 

concept of local self-similarity (see Fig.3) proposed by Buades [32]. The image 

descriptor enables the representation of the local image structure regardless of the 

intensity distribution across two images. Besides, the patch-based similarity 

measurement allows easy capture of image features such as edges, corners and textures 

which are often useful features in a correspondence measure. 

MIND describes a local neighborhood as expressed below: 

  
 

 

, ,1
, , exp

,

pD I x x r
MIND I x r r R

n V I x

 
    

 
  (1) 

where I is an image, r is an offset within the size R×R search region around position x 

and n is a normalization constant limiting the maximum to be 1. The distance 

measurement pD   between the voxels 1x   and 2x   is the sum of squared differences 

(SSD) of all voxels within the two patches P  centered at 1x  and 2x : 

       
2

1 2 1 2, ,p

p P

D I x x I x p I x p


      (2) 

and V(I, x) is the mean of the patch distances within the neighborhood N, ( )num N  is 

the number of voxels inside N: 

  
 

 
1

, , , ,p

p P

V I x D I x x n n N
num N 

     (3) 



10 

 

In order to reduce the computational complexity and the influence coming from 

non-rigid deformations, the six neighborhood search region is selected.  

 

Then the similarity metric of this registration method is obtained by the similarity 

term S(x) defined as: 

      
1

, , , ,
r R

S x MIND I x r MIND J x r
R 

    (4) 

in which I and J are two images. 

The search strategy of MIND registration is to minimize the cost function with 

respect to the deformation field  , ,
T

u u v w , as shown in Eq.(5): 

          
22

1 2arg min ,
T

u x

S I x I x u tr u x u x       (5) 

In addition to the nonlinear similarity S, a diffusion regularization term is also 

included in this equation to ensure the smoothness of the deformation field. The balance 

between the similarity term and the regularization term is controlled by the parameter 

 . 

In all, MIND considers the whole image as the sum of many individual image 

patches and assumes a transformation must exist between two similar patches. This 

MIND method exceeds the prementioned intensity-based methods because the intensity 

uncertainties induced by artifacts as well as intensity inhomogeneities in DCE-MRI 

hinder the similarity measurement using intensity information.  

 

Fig.3. Local self-similarity: A=a, B=b, C=c, D=d, E=e, F=f. 
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2.4  Image segmentation 

2.4.1  Image segmentation basics  

Image segmentation is a critical step in image processing, facilitating the delineation, 

characterization and visualization of ROI in medical images. Implementing 

segmentation manually by radiologists is time-consuming and subjective. Therefore, 

many automatic segmentation approaches have been proposed to delineate and extract 

an anatomical structure fast and accurately. Three of the most common liver 

segmentation approaches were atlas-based, intensity-based and model-based [35].  

The atlas-based methods involve the probabilistic atlas (PA) [36], [37] relying on 

a pre-constructed library of well-build shape models of the liver. The PA is built with 

massive training datasets and used as the standard liver. The segmentation of individual 

liver is performed by finding correspondences between the standard and individual 

livers. This approach is fully automatic and works well in normal liver. However, the 

available PV library is limited to a finite number of example shapes and not easy to be 

constructed. Besides, this shape fitting is only applicable to the healthy liver. 

Common intensity-based approaches include region growing and gradient vector 

flow (GVF) [38]. The region growing method compares all the neighbor voxels around 

the initial seed points and then, includes the voxels having similar intensities to the 

seeds [39]. The object boundary is characterized by a drastic intensity change, thereby 

requiring high image contrast between the object and the background. Meanwhile, the 

GVF starts with a user defined curve [40]. The curve expands driven by intensities 

within the initial curved region and converges as the image gradient peaks. These semi-

automatic methods require user’s interaction for the algorithm initialization. They work 

well when object boundaries are sharp and clear. Unfortunately, the liver boundaries are 

usually obscure, which could force the contour to overshoot at such boundaries. 

In model-based methods known as level set, curves or surfaces deform under the 

influence of internal and external forces to delineate the object [43], [44]. The internal 

forces coming from image intensities intend to preserve the smoothness of the model. 

The external forces originating from image gradients drive the model toward the target 

position.  

The level set geometric model uses a distance transformation to bring the model 



12 

 

shape into a higher dimension, as shown in Fig.4: the 1D closed line (a) is transformed 

into the 2D surface (b) via the scalar distance function. The interface defines two 

regions, namely the region CR  above the red surface and the background BR  below. 

The model shape is represented implicitly as following [44]:  

  

0,

0,

0,

C C

B

x C

x x R

x R




   
 

  (6) 

                              

 

Fig.4. Deformable model curve representation using a distance transform: the evolvement of the 

1D closed curve (a) in the image can be implicitly described by the 2D distance functions of (b). 

 

Unlike the two dimensional region growing and active contour approaches, the 

three dimensional surface in level set could follow topology changes such as breaking 

and merging of the object [36],[35]. The contour evolution process witnesses the 

minimization of an energy cost function of the external and internal forces. The external 

force is inversely proportional to the image gradient. This inverse relation facilitates the 

model to attach to the strong edges or surfaces with local maximal image gradient. 

Therefore, this method can be applied to DCE-MR images due to their sufficient 

gradient between the object and the background. The internal force preserves the 

smoothness of the segmented liver boundaries. In GVF, the curve includes the 

surrounding voxels which have similar intensity to the curved region average intensity. 

However, due to the prevalent intensity inhomogeneities in MRI, this intensity-based 

similarity measure cannot yield an accurate segmentation. Contrarily, the single 

intensity threshold   (see Eq.(7)) used in level set reduces the dependence on voxel 

intensities and the threshold can be adjusted for different cases. In our study, a new 

hybrid level set method was applied for liver segmentation. 

(a) (b) 
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2.4.2  New hybrid level set method 

The new hybrid level set method is one of the image segmentation methods in the level 

set framework. In the traditional edge-based level set methods, only boundary 

information is used to drive the front propagation of the contour and thus the contour 

might leakage at those weak edges. The proposed new hybrid level set method 

combines the boundary information with the region information to achieve object 

delineation and prevents boundary leakage simultaneously [45]. Fig.5 illustrates the 

level set conventions applied in this method [45]. A Heaviside function  H    is 

defined with respect to the distance transform to define in and outside points of the 

segmentation. 

 

Fig.5. Level-set conventions. [45] 

 

The cost function of this method is defined as the following equation: 

        I H d g H d      
 

         (7) 

where I is the image to be segmented,   is the intensity threshold,   is the object 

domain,  g g I   is the boundary feature function related to image gradient while 

   and    are weights controlling the contour propagation and smoothness 

respectively. The first term in Eq.(7) is the region term which separates the image into 

object and background regions and also prevents leakage. The minimization of this 

single term forces the contour to reach the object surface. The second edge term 

encourages the contour to attach to the boundaries with maximum image gradient and 

adjust the smoothness of the contour. If the evolution starts with the initial contour being 

inside the object region, the region term dominates and drives the contour to expand. 

Once moving into the background region, the edge term becomes dominant and forces 

the contour to contract. As a result, a dynamical equilibrium is obtained at the object 
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boundary. 

The minimization of the cost function above is performed by solving the 

corresponding partial differential equation (PDE) constructed as: 

  t I div g


    


  
         

  (8) 

Subsequently, the scalar function    is iteratively updated using 

 k k

t I         with a predefined time step t   and solving the PDE via the 

additive operator splitting (AOS) approach [45]. The whole process can be expressed 

as: 
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1
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 
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where lA  is the AOS operator. 

 

2.5  Vessel segmentation and functional liver partition 

Vessel segmentation intends to identify vessel voxels from the image using mainly three 

types of information: voxel intensities, diffusion characteristics and time-intensity 

information [2]. Due to the presence of intensity inhomogeneities in MRI, the intensity-

based methods such as histogram-based thresholding [4], cannot give an accurate 

segmentation. Besides, the thresholds cannot be easily determined from the histogram 

owing to the intensity overlaps. 

Anisotropic diffusion in vessels is widely used in the vessel segmentation to reduce 

noise [6], [7]. An ellipsoid eigenvalues distribution as generated to steer the anisotropic 

diffusion. Subsequently, vessels can be detected by analysing the Hessian matrix which 

measures the second order intensity derivations of each image voxel [5]. In such a 

vessel enhanced image, approaches such as region growing carry the segmentation. 

TIC shape analysis is one of the most widely used approaches in DCE-MRI 

processing [55]. It quantifies time-intensity curve characteristics. Knowing the 

quantified characteristics such as time to peak, enhancement maximum and 

enhancement onset time, a decision tree can be constructed and used for segmentation. 

TIC shape analysis intends to segment the vessels from 4D data. Nevertheless, its 
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segmentation requires many thresholds. The image data variations between different 

cases could reduce its reproducibility. This approach works well when the differences 

between TICs are significant. In our study, the partial volume effect occurring in small 

vessels and vessel boundaries leads to similar TICs. Accordingly, voxels are difficult to 

be differentiated using TIC shape analysis. Intensity-based and diffusion-based 

methods achieve the segmentation based on 3D high contrast images. As both the liver 

and vessels are enhanced in DCE-MRI simultaneously, the contrast between them is 

insufficient especially for the small vessels owing to the partial volume effect. This low 

image contrast could make the vessel eigenvalues distribution less distinguishable from 

other structures and thereby hinder the vessel detection especially at conjunction 

regions. As a result, the vessels might interrupt requiring the voxels interpolation. 

Except the insufficient contrast, the low resolution of each 3D image frame 

(128×128×44 voxels) in our study than CT images (512×512×180 voxels) in Luu’s 

study [8] also requires an adapted vessel segmentation method.  

After vessel segmentation, the functional liver partition intends to sort liver voxels 

into eight independent segments based on the locations of the vessels. Two of the 

available approaches are distance clustering and resection plane interpolation [61], [63]. 

In the distance clustering algorithm, the locations of the vessel sub-branches are used 

to sort the voxels by finding the nearest distance from the voxel to a certain sub-branch 

(see Fig.6). The limited image resolution in our study makes the full segmentation of 

vessel sub-branches to be a challenge. In the resection plane interpolation method, the 

resection planes are constructed based on vessels and interpolated into the liver for 

partition. Therefore, locations of the vessel main branches are required.  

 

Fig.6. The schematic of vessel sub-branches used in the distance clustering method. 
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3 

DCE-MRI Data Preprocessing 

 

 

3.1  Overview 

In Section 3.2, the basic MR technical settings applied in our study are given. 

Subsequently, in Section 3.3, the discrete wavelet transform (DWT) is introduced for 

filtering the DCE-MRI. In Section 3.4, we demonstrate on how the DCE-MRI data are 

fitted to the liver perfusion model proposed by Sourbron to filter the noise and other 

required processing steps for model fitting are also introduced. Finally, in Section 3.5, 

the results obtained using both DWT and model fitting methods are analyzed and 

compared. 
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3.2  MRI protocol  

Liver specific contrast agent (Gd-EOB-DTPA, PrimovistTM, Bayer pharmaceutical) is 

adopted in our study. It is a paramagnetic compound of which half of the dose is taken 

up by the normal functioning hepatocytes while the other half is excreted by the kidney. 

This contrast agent shortens the T1 relaxation times of protons resulting in higher signal 

intensity on T1-weighted images. 

The DCE-MRI dynamic protocol (3D T1-weighted spoiled gradient echo) was 

performed on a 3T Philips scanner to acquire DCE-MRI data from 11 patients. MRI 

protocol parameters were as follows: TE/TR = 2.3/3.75ms, FA = 15°, FOV = 

128×128×44, voxel size = 3×3×5mm3, acquisition time = 2.141s per volume; the 

sampling interval was 2.141s for volumes 1-81, 30s for volumes 82-98 and 60s for 

volumes 99-108. The total scan period was about 20 minutes. Patients held their 

breathing during the acquisition of volumes 13-22, 33-42, 61-70 and 79-108. 

The registration and segmentation of DCE-MR images were performed using a 

method based on MIND proposed by Tian Zhang [48] and new hybrid level set 

approach [45] respectively. The liver segments partition method introduced below was 

performed within the obtained liver mask.  

 

3.3  DCE-MRI denoising using discrete wavelet 

transform 

3.3.1  Discrete wavelet transformation basics  

The presence of noise in medical images could suppress and blur vital features and 

details. Various approaches have been proposed to denoise the images known as spatial 

filtering techniques, frequency domain filtering techniques and the discrete wavelet 

transform [49], [50], [51]. Conventional spatial filtering techniques remove the high-

frequency noise through a convolution process which requires high computational cost. 

Frequency domain methods could balance the image denoise between the 

computational cost but they results in an overly smoothed images. Large signal intensity 
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gradients occurring in image edges or tissue boundaries could become smooth due to 

the trigonometric fitting in Fourier transform. Hence, the discrete wavelet transform 

approach capable of effectively removing noise without too much loss of image 

sharpness is proposed and selected in this study [49].  

In discrete wavelet transform, the discrete input signal is represented by a series 

of shifted and scaled versions of the mother wavelet in the wavelet domain. After the 

transform, the signal is decomposed into two vectors of approximated and detailed 

coefficients respectively. With the approximated coefficients, a smooth and denoised 

signal can be reconstructed. The decomposition is defined as Eq.(10) where  x t  is 

the input signal, b   is the shift factor, a   is the scale factor and    is the mother 

wavelet [50].  

    
00

1
,

mm

t nb
X b a x t dt
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



 
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   (10) 

In this project, Daubechies 4 mother wavelet was selected as its iterations overlap 

accurately pick up the small signal variations [51]. It provides four scaling function 

coefficients ( 0 1 2 3

1 3 3 3 3 3 1 3
, , ,

4 2 4 2 4 2 4 2
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     ) and four wavelet function 

coefficients ( 0 3 1 2 2 1 3 0, , ,g h g h g h g h       ) for defining the scale factors a   and the 

shifting factors b  respectively as shown in the matrix operation below:  
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where 1-108S  are the discrete signals. 
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3.3.2  The application of discrete wavelet transformation in time-

intensity data processing 

In discrete wavelet transform, the signal decomposition process is often be formulated 

as the combination of two related finite impulse response (FIR) filters, a high-pass filter 

hhigh and a low-pass filter hlow [52]. The FIR filters are used for signal down-sampling 

ensuring that the transformed signal subspace resolution stays consistent with the 

original signal. The convolution of hlow and the signal gives the approximation 

coefficients which are used to reconstruct the denoised signal. The convolution of hhigh 

and the signal outputs the wavelet function coefficients which represent the high-

frequency noise. 

Workflow of the three-level DWT used in this project is given in Fig.7. The output 

detail coefficients represent high-frequency noise while the approximation coefficients 

show low-frequency information. In each DWT step, the input intensity series are 

down-sampled and the length of the output signal would be 
-1

+
2

N
L  (N is the length of 

the input signal and L is the length of filters namely 4 in our study). Thus, for each 

voxel, the length of the time-intensity series would be 19 after the three-level DWT. 

The obtained intensity curves after each DWT can be seen in Fig.8 where the first 

figure is the original TIC and other three are the reconstructed curves using the 

approximation coefficients. The curves become smooth and noise-free gradually.  

 

 

Fig.7. The workflow of level-3 DWT process. 
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3.4  DCE-MRI denoising using model fitting  

3.4.1  Dual-inlet tow compartment liver perfusion model 

Model fitting is another effective method for DCE-MRI filtering. Mathematic liver 

model mimics the CA diffusion process and estimates the CA concentration in 

hepatocytes. The CA uptake process mainly consists of two stages (see Fig.9). The first 

stage witnesses CA diffusing from blood vessels (hepatic artery and portal vein) to the 

extracellular space (the interstitial space between the blood vessel and hepatocytes) 

driven by the concentration gradient. In the second stage, the specific protein carries 

CA from extracellular space to hepatocytes causing the second growth in liver TICs. 

The liver perfusion model proposed by Sourbron [56] was utilized in this study to derive 

the analytical tissue CA concentration. Based on this concentration, the derivation of 

signal intensities at each scan time points could be conducted using the transform 

between them.  

Fig.8. The time-intensity profiles of a pixel in the liver. 
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Fig.9. The schematic of the CA uptake process in liver. 

 

As shown in the schematic of liver model Fig.10 [56], the liver is modeled as a 

sum of two independent spaces namely the interstitial region and hepatocytes. CA 

inflow starts at both portal vein and hepatic artery. After diffusing into the extracellular 

space, a part of CA leaves the liver through hepatic veins while the rest is delivered to 

hepatocytes by the carrier protein. CA excretion relies on the common bile duct. 

Expressing CA mass conservation in each compartment generates the following 

equations [56]: 

          e
e a a a v v a a v i e

dC
V t F C t T F C t T F F K C t

dt
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



               (14) 

where eV  and eC   are extracellular volume and concentration respectively, iV  and iC  

are intracellular volume and concentration, aF  and vF  are arterial and venous plasma 

flows respectively, iK   is intracellular uptake rate, e e i iC C V C V    is total tissue 

concentration, / [ ]e e a v iT V F F K     is the extracellular mean transit time, 

/ [ ]a a a v if F F F K    is the hepatic uptake fraction and   is the convolution operation. 

The arterial input function (AIF) and venous input function (VIF) have to be 

predetermined using the image data. Other five parameters ( , , , , ,A V A V E iF F T T V K  ) are 

estimated by means of a nonlinear least squares regression algorithm implemented in 

Matlab (version R2015a; Mathworks, Natick, USA). 
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Fig.10. The diagram of Sourbron’s liver perfusion model. AIF: arterial input function, VIF: venous 

input function, TA and TV : time delay of AIF and VIF, FA and FV: arterial and venous plasma flow, 

VE: extracellular volume, Ki: intracellular uptake rate. 

 

3.4.2  Measurement of tissue concentration from DCE-MRI 

In order to derive the vascular input functions using DCE-MRI data, a transform 

between signal intensities and tissue CA concentrations is needed. In Sourbron’s model, 

the tissue concentration was calculated as the relative DCE-MR signal enhancement 

  0/ 1S t S    [56], where  S t  is the post-contrast signal intensity and 0S  is the pre-

contrast signal intensity. However, the signal is not linearly dependent on the CA 

concentration in MRI. The applied MR scan sequence mainly determines the 

relationship between the CA concentration and the signal intensities. As it is customary 

to use gradient echo sequences for DCE-MRI, under steady-state conditions and perfect 

spoiling of the transverse signal, the following equation holds [55]: 

  
 

 
 1

2

1

1 exp
sin exp

1 cos exp

TR T
S N H TE T

TR T





 

    
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  (15) 

in which TR  and TE  are repetition and echo times of the scan sequence respectively, 

  is the flip angle,  N H  is the product of the proton density and an arbitrary factor 

(the scaling factor used by the scanner) and 1T  is the longitudinal relaxation time.  

Due to the assumption that 2TE T , the last exponential term in Eq.(15) can be 

neglected. 
1T  is assumed to be dependent on the longitudinal relaxation time before 

contrast namely 10T  , tissue relaxivity 1  and tissue CA concentrations tC  shown as 
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Eq.(16): 
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Then the concentration can be expressed as follows: 
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  (17) 

With Eq.(17), MR signal intensities were converted into tissue CA concentrations. 

The signal intensities at the scan time points also can be derived from the concentrations 

by the same equation. 
 

3.4.3  Global arterial input function (AIF) and venous input function 

(VIF) measurement 

AIF and VIF are expressed as aC   and vC   in Eq.(14) respectively indicating CA 

concentrations in the plasma. In Sourbron’s model, these two functions are obtained by 

averaging the time intensity curves measured voxel-wise in the aorta (cranially from 

the hepatic artery) and the portal vein. However, this straightforward method cannot 

give a precise estimation due to the flow of the plasma. Therefore, the obtained 

numerical results require high computational cost in the convolution operation as well 

as the parameter estimation. Therefore, the modified AIF model based on Orton’s model 

[57], [58] was used in this project to calculate the analytical solutions of these two 

vascular input functions.  

This model parametrizes the CA flow as a combination of two functions. One 

describes the CA bolus passage within the plasms expressed as  BC t  in Eq.(18). The 

other shows wash-out of CA in the tail of the vascular input function denoted as  G t  

in Eq.(19).  

      2 expB B B BC t a t t u t     (18) 

      expG GG t a t u t    (19) 

where  u t  is the unit step function indicating the transportation delay, Ba  
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determines the area under the curve of  BC t  , Ga  determines the starting level of 

the decay function and B , G  govern the decay rate of the corresponding functions 

respectively.  
In all, the modified AIF model describes the CA diffusion process from blood 

vessels to extracellular space and decomposes the input function into a bolus shape 

function and a body transfer function (BTF), shown in Fig.11. 

 

Fig.11. The schematic of AIF model. 

 

The CA concentration in blood plasma is expressed as the superposition of the 

bolus shape and body transfer functions as following: 

        0 0B BC t C t t C t t G t       (20) 

where 0t  is the time delay inducing by the bolus transportation. 

After substituting  BC t  and  G t  in Eq.(20) with Eq.(18) and Eq.(19), the 

resulting input function is: 
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  (21) 

The parameters 0, , , ,B B G Ga a t    were estimated by means of a nonlinear least 

squares regression algorithm implemented in Matlab (version R2015a; Mathworks, 

Natick, USA).  

The fitting goodness of each input function was calculated using Eq.(22) below: 
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where 2R  is the root mean square residual, y  is the measured data and y  is the mean 

of the measured data. The fitting goodness of AIF and VIF are 0.9641 (>0.95) and 

0.9803 (>0.95) showing good matches with the image data. As shown in Fig.12, both 

AIF and VIF consist of a rapid uptake and a relatively slow decay. The decrease of the 

decay slope rate is because the active CA transportation is slower than the diffusion 

process. The enhancement onset time of VIF (about 44s) is around 10  seconds later 

than AIF’s (about 36s) due to the different delivery delays. Meantime, the peak CA 

concentration in aorta exceeds venous concentration as the portal vein is the 

downstream side of the aorta.  

 

Fig.12. AIF (arterial input function) and VIF (venous input function) obtained from modified 

Orton’s model. 

 

3.4.4  TICs obtained from Sourbron’s model 

After substituting aC  and vC  in Eq.(14) with AIF and VIF, the analytical tissue CA 

concentration can be obtained and thereby the signal intensities at each scan time point 

using Eq.(17). The obtained TICs are shown in Fig.13. All TICs become smooth 

significantly and the curve characteristics remain unchanged. Being different from 

blood vessel’s TICs, the liver’s keeps increasing over the whole scan period with 

varying slope rate.  
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The TICs of relatively large blood vessels such as portal vein and inferior vena 

cava (IVC) contains a rapid uptake followed by a mild decay. For small vessels like 

hepatic veins, the signal intensities increase again before the end of image acquisition 

due to the partial volume effect. At the final stage of the scan, due to the continuous 

enhancement, the liver intensity exceeds the hepatic vein intensity significantly. 

Therefore, in those tissues mixed voxels, TICs would rise before scan ending.  

 

Fig.13. Time-intensity curves obtained from Sourbron’s liver perfusion model. 

The red curves are the fitted TICs while the blue curves are the raw TICs. (IVC: inferior vena 

cava) 

 

3.5  Comparison between DWT and model fitting 

methods 

Both DWT and model fitting methods were applied to denoise the DCE-MRI data. 

DWT method filters the raw data mainly by extracting the low-frequency signal while 

filtering the high-frequency noise. After applying this method, some intensity 

information is inevitably sacrificed (the number of image frames is reduced from 108 
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to 19) due to the down-sampling filters. Because the differences between TICs 

accumulate over the enhancement period, the reduced image frames make them less 

significant (see Fig.14). The hepatic vein’s TIC peaks at 16th time point which is close 

to the liver’s. From the intensity ranks of both hepatic vein and liver TICs, the largest 

intensity ranks difference is 7 which can be found in the 8th and last time points. Nine 

time points have less or equal to one intensity ranks difference. The small disparity of 

the intensity ranks could hinder the correlation measurement. 

 

 

Fig.14. TICs after DWT filtering. The red and blue curves are TICs of a hepatic vein voxel and a 

liver voxel. 

 

Unlike DWT method, the model fitting method keeps the time series length 

unchanged. The raw image data were fitted to Sourbron’s model to obtain the analytical 

tissue CA concentration. Then the signal intensities at the corresponding scan time 

points can be derived based on the CA concentrations, thereby obtaining the denoised 

TICs. The tissue CA concentration is the convolution product of two input functions 

(AIF and VIF) and the transfer function between two liver compartments. All these 

exponential form functions guarantee the continuity of the tissue CA concentration, 

thereby the smoothness of the derived TICs. TICs acquired from the model fitting were 

utilized for the vessel segmentation instead of the raw image data. However, the 

regression analysis in model fitting leads to a high computation cost while in DWT, the 

computation time for the 4D DCE-MRI is less than 10 minutes.  
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4 

Vessel Segmentation Using 

Time-intensity Information 

 

 

4.1  Overview 

In Section 4.2, the weighted Spearman rank correlation is introduced and used to 

calculate the nonparametric correlation between the selected blood vessel’s TICs and 

the TICs of the other part in the liver for the vessel identification. Subsequently, in 

Section 4.3, the mixed TIC of each voxel is decomposed by calculating the linear 

relationship between contributing components. Finally, in section 4.4, the new hybrid 

level set method introduced in Chapter 2 is applied to the component maps for vessel 

segmentation. 
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4.2  Spearman rank correlation 

Intensity inhomogeneities in MRI as known to lead to intensity variations [42]. As such, 

tissues cannot be precisely identified using intensity values. In addition, artifacts 

induced by patient’s breathing and motion could further increase signal variation. 

Accordingly, instead of using parametric correlation methods, the nonparametric 

Spearman rank correlation which measures TIC shape similarity, was selected in this 

project. 

All the data points in the TIC of each voxel are ranked first. Then the correlation 

coefficients are calculated with respect to the differences between intensity ranks using 

Eq.(24) [53]: 
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where ix  and iy  are ranks of the corresponding intensity data and n  is the number 

of time points which is 108 in our study.  

The profile of TICs is expected to represent the intrinsic physical property of 

different tissues. This rank correlation intends to cluster voxels in terms of the TIC’s 

shape similarity. Three voxels were selected from ROIs inside the portal vein, hepatic 

veins and liver respectively as the reference TICs. The research region of the correlation 

calculation was set to be the whole liver mask. To further increase the sensitivity of this 

correlation method, a weighted Spearman correlation was proposed expressed as 

Eq.(25): 
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where 1 2n    are predetermined to divide the whole enhancement period into three 

subsets ( 1 240, 81n n  ). 

The curve slope rate changes between each subset (see Fig.15). In the first two 

subsets, the two CA diffusion stages (blood vessels uptake and diffusion from the blood 

plasms to the extracellular space) dominate. 
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Fig.15. The division of the whole enhancement period. (IVC: inferior vena cava) 

 

For blood vessels, the weights 1 3w    were set to be 1.7, 1.5 and 1 respectively, 

while for liver, they were set to be 1, 1 and 2. The first and second subsets of vessel 

TICs were given higher weights because the intensity variations within these two 

subsets can differentiate vessel voxels from the liver. Meanwhile, the liver TIC peaks 

at the end of the last subset, therefore higher weight was given to the last one. Fig.16 

shows the obtained correlation maps. The high contrast between vessels and the liver 

can be seen in them. In the portal vein correlation map (a), the portal vein region has 

the highest correlation coefficients (around 1) while the lowest coefficients are in the 

liver region (< −0.5). In the hepatic vein correlation map (b), the contrast between 

hepatic veins (around 0.5) and liver (< = 0) is less obvious due to the partial volume 

effect. Meanwhile, in liver correlation maps (c) and (d), the liver region has higher 

values than the vessel regions. 

 

Time point 

Tissue 

intensity 
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Fig.16. The correlation coefficient maps with portal vein, hepatic vein and liver TICs 

as the references.  

 

4.3  Mixing estimation map 

The high contrast between the interior vessel and liver regions was obtained using the 

weighted Spearman rank correlation. To further define the vessel boundaries, the 

mixing estimation method proposed by Gutierrez DR [59] was applied. This method is 

based on the assumption that the TIC of a certain voxel ( totalI ) is the linear combination 

of all contributing TICs. In our study, we assumed that TICs of the voxels at edges of 

vessels are a linear combination of both the vessel’s TIC ( 1I ) and the liver’s TIC ( 2I ), 

as illustrated in Fig.17. The pure vessel TICs were selected from ROIs in the vessel 

center. 

 

(c) 

(b) 

(d) 

(a) 



32 

 

 

Fig.17. The schematic of the linear mix assumption. The y axes are the tissue intensity while the x 

axes are the time. 

 

The mixed TIC in a voxel is expressed as 1 1 2 2 3 3 4 4+ +totalI I I I I      where 1-3  

are fractions of portal vein, hepatic vein and IVC respectively, 4  is liver’s fraction, 

1-3I  are TICs of the vessels and 4I  is liver tissue’s TIC . In mixing estimation maps 

shown in Fig.18, the vessel regions have higher values than liver regions and a gradient 

can be found from the vessel center to the boundary. The higher value of a certain voxel 

in vessel’s estimation maps indicates that the vessel’s TIC takes a larger fraction than 

the liver tissue’s TIC in the linear combination. With these mixing estimation maps, the 

contrast between the vessel exterior boundaries and the liver could be attained.  

 



33 

 

 

Fig.18. The mixing estimation maps. Maps (a), (b) and (c) represent the fraction of the 

corresponding vessel’s TICs in the linear combination. Map (d) is the fraction of liver tissue’s 

TIC. In IVC (inferior vena cava) fraction map (c), the boundary has high fractions. The liver mask 

was dilated twice to ensure that all vessel voxels are included. Therefore, those boundary voxels 

are not from liver leading to high values in IVC map.  

 

4.4  Vessel segmentation using new hybrid level set 

method 

The new hybrid level set method introduced in Chapter 2 enables a robust and accurate 

segmentation [45]. The summation of the correlation maps and the mixing estimation 

maps was used as the input of the new hybrid level set method to improve the 

segmentation in boundary voxels, which is illustrated in Fig.19. In the summation maps, 

all vessel regions have positive values while the liver regions stay negative. Therefore, 

the threshold for level set segmentation could be easily selected. The maximum image 

gradient only exists between the vessel and the liver giving a specific indication about 

object’s boundary location for the level set contour.  

Hepatic vein Portal vein 

Liver IVC 

(a) (b) 

(c) (d) 
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Fig.19. The figures of mixing estimation maps, correlation maps and summation maps of the 

selected slices. (IVC: inferior vena cava) 

 

       

 

Fig.20. The obtained 3D vessel structure. (IVC: inferior vena cava) 
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Fig.21. The mean TIC of each vessel mask. (IVC: inferior vena cava) 

 

The segmentation result is presented in Fig.20. The main branches of the portal 

vein, hepatic veins and IVC were segmented. The mean TIC of the three vessel masks 

were calculated individually shown in Fig.21. The mean TIC of IVC is consistent with 

the vessel diffusion characteristic that a quick uptake is followed by a relatively slow 

decay. In both portal vein and hepatic vein mask, the partial volume effect alters the 

intensity variation direction in the final enhancement period. But still, a significant 

decay which enables the differentiation between vessels and liver can be found in the 

curve after the first enhancement. The obtained vessel masks were applied to the 

functional liver segmentation in the below chapter. 

  

4.5  Vessel segmentation method verification and 

comparison 

The DCE-MR images of eleven patients were obtained in our study. The proposed 

vessel segmentation method has been applied to seven clinical cases while the other 

three cases were excluded in this study because the tumors occupy more than half of 

the liver in those patients. Among all these seven cases, excluding one normal case (case 

1), the other six all have visible lesions inside the liver.  

In order to verify the proposed method, an evaluation was performed by 

Time 

Tissue 

intensity 
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calculating the average symmetric surface distance (ASSD) and modified Hausdorff 

distance (MHD) between the manual and proposed segmentations [5], [64], [65]. The 

manual segmentation was conducted using the last frame of the DCE-MRI in MITK 

(2016.11). The vessel boundaries were excluded in the manual segmentation due to the 

insufficient contrast in the image however included in the proposed segmentation owing 

to the mixing estimation map (see Fig.22). Accordingly, the exterior boundary voxels 

in the proposed segmentation would be regarded as the background voxels in the 

manual segmentation yielding a low specificity.  

 

 

Fig.22. The comparison between the manual and proposed segmentations. Figures A and B are 

results of the proposed segmentation while figures C and D are results of the manual 

segmentation. 

 

The ASSD and MHD were calculated according to the following equations [5], 

[64]: 

 
 

min min

2
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a A b M
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 
 
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a A b MA M
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 

 
   

 
    (26) 

where A and M denote the surfaces of the automatically and manually segmented 

objects, a and b are points on A and B respectively. a b  is the distance between a 

and b. AN  and MN  are the numbers of points on A and M. 
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Tab.1 gives ASSD and MHD of both proposed approach and diffusion enhancing 

filter (DEF) based segmentation method adopted in Luu’s study [8]. The obvious ASSD 

variations between cases can be found in the DEF method. In the cases which have 

relatively large tumors such as case 2, the ASSD and MHD of the DEF approach 

increase significantly. The anisotropic diffusion inside the tumor increases the 

uncertainty of the DEF method, as this method is based on the assumption that the 

anisotropic diffusion only takes place in vessels [7], [60]. As both the tumor and vessels 

are enhanced after the filtering, the region growing method fails to separate them. 

The MHD values of the proposed method are in the range of about 3.0 mm to 5.2 

mm while for DEF method, the values vary from around 5.0 mm to 27.8 mm. From 

ASSD, values for the proposed method are all below 4.8 mm whereas values for DEF 

method have a significant variation with an overall mean 7.3776 mm. The smaller 

ASSD and MHD in the proposed method indicate the smaller level of error. The 

segmentations of the proposed method are more stable regardless of whether the patient 

has a tumor or not.  

 

 Level set DEF 

 ASSD 

 (mm) 

MHD  

(mm) 

ASSD 

(mm) 

MHD  

(mm) 

Case 1 3.2685 3.4071 3.8721 5.0523 

Case 2 2.7444 3.0189 16.5477 27.7962 

Case 3 3.2448 3.4392 5.5107 8.9901 

Case 4 2.7198 2.7798 6.5010 8.4453 

Case 5 3.0579 3.1491 7.0278 8.9145 

Case 6 3.1968 3.2565 4.8333 7.8696 

Case 7 4.7625 5.2431 7.3512 11.4810 

Overall 

mean 
3.2850 3.4704 7.3776 11.2212 

Tab.1. Comparison of ASSD and MHD for all seven clinical cases segmented with the proposed 

level set method and diffusion enhancement filtering method. 
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5 

Functional Liver Partition  

 

 

5.1  Overview 

In Section 5.2, the resection planes are defined and interpolated to the liver mask for 

partition. Subsequently, in Section 5.3, the functional liver partition method is applied 

to five clinical cases and the volume of each segment is calculated. 
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5.2  Resection plane interpolation 

The functional liver partitioning is carried out according to Couinaud’s classification 

using the resection planes [62], [63]. For the vertical partition, three resection planes 

crossing the three hepatic veins were defined respectively using the matrix operation 

below: 

 
1 1

2 2

1

1

x y A

x y B

    
    

    
  (27) 

Before constructing the resection planes, the coordinates of the three landmarks 

on the hepatic veins and one on the IVC were picked from the vessel mask projection 

image (see Fig.23). The three vertical planes were constructed using each two of these 

four points respectively. Referring to Fig.27, the left plane divides 7, 6 and 8, 5 

segments. The middle plane separates 8, 5 and 4a, 4b segments. 2, 3 and 4a, 4b segments 

are divided by the right plane.  

 

 

Fig.23. Determination of three landmarks on hepatic veins and one on IVC. The left figure shows 

the X-Y plane projection of the vessel mask. The red points in the right figure indicate the selected 

landmarks for resection planes construction. 

 

In Couinaud’s classification, the first segment is defined as the region between the 

portal vein bifurcation and IVC. According to this, two vertical planes from the portal 

vein bifurcation to the IVC’s right and left edges were interpolated and, accompanying 

by IVC, a closed and triangle alike area was constructed to approximate the first 

segment (see Fig.24). Points 1 and 2 on the IVC edge were selected based on the 

maximal distance between them. The line from point 3 to IVC center is perpendicular 

to the line between 1 and 2 points and thereby it was selected. 

Left 

Middle 

Right 

Hepatic 

veins 

IVC 
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Fig.24. Determination of three landmarks for the first segment. The left figure shows the X-Y 

plane projection of the vessel mask. The red points in the right figure indicate the selected 

landmarks for resection plane construction. Point 3 on the portal vein bifurcation edge while the 

other two 1 and 2 points on the IVC edge were selected. 

 

The portal vein bifurcates into right and left branches when it goes into the liver. 

After this main bifurcation, the two separated branches continue to part into two sub-

branches respectively. The horizontal planes interpolated for superior and inferior liver 

lobes partition were determined by these secondary bifurcations. The projection in X-

Z plane of portal vein mask (see Fig.25) was used for resection plane positioning. The 

slices where the left and right secondary bifurcations located at were selected to 

segment the left and right liver lobes. 

 

 

Fig.25. Determination of horizontal resection planes. The projection image consists of the right, 

middle and left portal vein, the corresponding yellow, pink and blue regions. The two red lines 

slice 1 and slice 2 indicate the slice locations of the right and left portal vein bifurcations 

respectively. 
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3 
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5.3  Functional liver partition 

With the well-defined resection planes in Section 5.2, the eight independent segments 

could be determined using the plane equation 1Ax By  . The detailed workflow for 

the partition process is shown in Fig.26. Tab.2 lists the conditions to define the eight 

liver segments. Each segment consists of voxel points  , ,x y z  which meet the 

corresponding conditions. The first segment was calculated and excluded before other 

segments were determined. This proposed functional partition method has been applied 

to the cases (case 1, 4, 5, 6, and 7) which have the full vessel structure (three hepatic 

veins, the portal vein and IVC) in the previous vessel segmentation. The different views 

of the partition result are shown in Fig.27 and each segment is marked by one specific 

color.  

The volume of each segment is calculated using the voxels number multiplied by 

the voxel size (3×3×5mm3) as presented in Tab.3. Since the lesions have already been 

excluded during the liver segmentation, the volume of those unhealthy cases could be 

smaller. For instance, in case 5, a tumor located at the third segment yields a 

significantly smaller volume. 

In all, the volume of each segment varies between patients. The comparison 

between manual and proposed partitions is in demand for verification. 
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Fig.26. Workflow of the proposed functional liver partition. 

  

 

 

 

 

Fig.27. Liver functional segments. 
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Segment Defining conditions 

Ⅰ 1L LxA yB  , 1R RxA yB   

Ⅱ 1LHV LHVxA yB  , PVBz z  

Ⅲ 1LHV LHVxA yB  , PVBz z  

Ⅳa 1LHV LHVxA yB  , 1MHV MHVxA yB  , PVBz z  

Ⅳb 1LHV LHVxA yB  , 1MHV MHVxA yB  , PVBz z  

Ⅴ 1RHV RHVxA yB  , 1MHV MHVxA yB  , PVBz z  

Ⅵ 1RHV RHVxA yB  , PVBz z  

Ⅶ 1RHV RHVxA yB  , PVBz z  

Ⅷ 1RHV RHVxA yB  , 1MHV MHVxA yB  , PVBz z  

Tab.2. Conditions defining each liver segment. A and B are the constant parameters for each 

plane definition. (L: left, R: right, LHV: left hepatic vein, MHV: middle hepatic vein, RHV: right 

hepatic vein, PVB: portal vein bifurcation) 

 

 

Segment 
Ⅰ 

(cm3) 

Ⅱ 

(cm3) 

Ⅲ 

(cm3) 

Ⅳa 

(cm3) 

Ⅳb 

(cm3) 

Ⅴ 

(cm3) 

Ⅵ 

(cm3) 

Ⅶ 

(cm3) 

Ⅷ 

(cm3) 

Case1 18.31 231.21 269.23 142.87 109.75 155.79 23.35 42.52 192.96 

Case4 24.34 283.72 76.86 267.48 144.36 333.54 29.20 274.68 424.84 

Case5 20.83 181.75 1.57 182.70 49.90 299.02 181.93 225.18 320.35 

Case6 30.87 135.63 102.37 115.69 222.16 465.93 170.37 247.00 268.06 

Case7 6.12 340.96 171.04 234.13 242.82 277.51 117.94 256.18 157.81 

Tab.3. The volume of each segment. 
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6 

Discussion and Conclusion 

 

 

6.1  Overview 

In Section 6.2, the limitations of the proposed vessel segmentation method are discussed. 

Subsequently, in Section 6.3, the limitations of the proposed functional liver partition 

method are given. In Section 6.4, the possible improvements for both vessel 

segmentation and functional liver partition are illustrated. Finally, in Section 6.5, the 

conclusions of this thesis project are interpreted. 
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6.2  Limitations of hepatic vessel segmentation 

The vessel segmentation approach proposed in this thesis fulfills the automatic 

segmentation based on 4D DCE-MRI. The voxels clustering procedure was conducted 

by the correlation measurement with the reference TICs. The rapid uptake followed by 

a slow decay intensity variation in vessel TICs dominates the differentiation. Therefore, 

the artifacts such as the partial volume effect and the patient’s breathing and motion 

which might alter the TIC shape, could affect the accuracy of this method. Although the 

weighted Spearman correlation was applied to enhance the sensitivity of this approach, 

some vessel boundary voxels still have negative correlation. For example, as shown in 

Fig.28, the red circled region in the left DCE-MR image could easily be identified as 

portal vein region according to the lower intensity, however in the right correlation map, 

it has a negative correlation with the reference portal vein TIC.  

Additionally, referring to Tab.1, the segmentation in case 7 gives higher ASSD and 

MHD than other cases. Part of portal vein as well as hepatic veins are enclosed by the 

tumor in this case. Those inside tumor vessel voxels have negative correlation due to 

the partial volume effect. Meanwhile, the tumor TIC is not included in the mixing 

estimation map calculation. As a result, those voxels are ruled out in the segmentation 

leading to the inaccurate result.  

Besides, the correlation map accuracy was largely depended on the input TICs, 

thereby requiring user supervision.   

 

 
Fig.28. Image (a) is the minus product of the last DCE image frame and the first DCE image 

frame. Image (b) is the portal vein correlation map. 

 

(a) (b) 
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In despite of all the limitations mentioned above, the continuousness of the vessel 

junctions was preserved with this proposed segmentation and thus, the computation for 

connected component analysis could be saved. In addition, the threshold-based 

segmentation was replaced by the level set method. The mixing estimation map allows 

the vessel exterior boundaries to be included in the segmentation. 

 

6.3  Limitations of functional liver segmentation 

The resection planes for functional liver partition were defined as the vertical and 

horizontal planes crossing the corresponding vessels. In Couinaud’s classification, 

however, both the planes and the locations of the gallbladder and falciform ligament 

are used in the partition [17]. For the left lobe partition, radiologists use the location of 

falciform ligament to define the resection plane rather than the left hepatic vein [17]. In 

most cases, the left hepatic vein is not a straight line and it heads for the left liver from 

the middle. But in this project, the left resection plane was constructed by considering 

the straight part of the left hepatic vein, and thus yields inaccuracies. Besides, the right 

hepatic vein might bifurcate after the IVC trifurcation (see Fig.29). The vertical 

resection plane should be interpolated along the blue dashed line.    

In addition, the first segment should be a region enclosed by the portal vein 

bifurcation boundary and IVC theoretically [17]. In this project, the triangle region was 

used to approximate it, which may lead to a smaller segment volume. 

Meanwhile, manual inputs for vessel landmarks determination were required. 

Although the distance clustering algorithm has been approved to meet the automaticity 

requirement, it demands the vessel sub-branches to be included in the segmentation 

[61]. Due to the limited image resolution in this study, full segmentation of the vessel 

sub-branches can be a challenge. Hence, the automatic functional partition method 

requires further researches.  
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Fig.29. Bifurcation of left hepatic vein. (IVC: inferior vena cava) 

 

6.4  Future Improvements 

This TIC shape based vessel segmentation method requires that the TICs are consistent 

with the tissue intrinsic properties. Therefore, the artifacts such as the patients’ 

breathing and partial volume effect which might change the TIC shape, should be 

compensated during the image preprocessing stage. 

The vessel segmentation method has been applied to seven cases and the complete 

segmentation has only been achieved in five of them due to the tumors. For those 

patients who have relatively large tumors in their livers, the tumor could enclose or 

distort the vessels leading to incomplete segmentation. Therefore, the segmentation of 

the tumor enfolded vessels calls for further research.  

For the functional liver partition, the curve fitting method for resection plane 

construction might be able to delineate each segment more precisely due to the curved 

vessel shapes but also may consume greater computation. The first segment definition 

could be improved by using the portal vein bifurcation boundary curve rather than 

planes.  

The same principle developed in this thesis project could be extended to the organ 

segmentation. The liver correlation map could be used to verify the liver segmentation 

result.  
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6.5  Conclusions 

The vessel segmentation and functional liver partition methods developed in this thesis 

intend to provide better visualization for 4D DCE-MRI. In image preprocessing stage, 

all DCE-MRI data were fitted to Sourbron’s model for noise filtering. The analytical 

solutions of both AIF and VIF were obtained using the modified AIF model in order to 

have more accurate estimations for the vascular input functions. Then the signal 

intensities at the corresponding scan time points could be derived from the analytical 

tissue CA concentrations. 

The weighted Spearman correlation algorithm measured the similarity between 

tissue TICs. The added weights intended to improve the sensitivity of the algorithm in 

capturing the intensity variations. The mixing estimation approach conducted the 

parametric analysis of DCE-MRI data to further define those low correlation voxels. 

The sufficient contrast between the vessel and liver regions in the summation maps 

gave a specific indication about the object boundary location. The new hybrid level set 

method was used for auto-segmentation and only 2 to 3 iterations were required for the 

precise segmentation owing to the high image contrast. Both interior and exterior vessel 

boundaries were included in the segmentation. 

All resection planes were defined through the simple matrix operation. The 

landmarks for plane interpolation were selected from the vessel mask projection images. 

Therefore, the determination of the liver segments was largely depended on how 

accurate the vessels were segmented in the previous step.  

In all, this thesis project proposed a time-intensity information based vessel 

segmentation method and a functional liver partition method for the DCE-MRI. The 

partition provides a better visualization for the liver surgery planning and the treatment 

follow-up. 
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