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Convolutional Cross-View Pose Estimation
Zimin Xia , Olaf Booij , and Julian F. P. Kooij , Member, IEEE

Abstract—We propose a novel end-to-end method for cross-view
pose estimation. Given a ground-level query image and an aerial
image that covers the query’s local neighborhood, the 3 Degrees-
of-Freedom camera pose of the query is estimated by matching its
image descriptor to descriptors of local regions within the aerial
image. The orientation-aware descriptors are obtained by using
a translationally equivariant convolutional ground image encoder
and contrastive learning. The Localization Decoder produces a
dense probability distribution in a coarse-to-fine manner with a
novel Localization Matching Upsampling module. A smaller Orien-
tation Decoder produces a vector field to condition the orientation
estimate on the localization. Our method is validated on the VIGOR
and KITTI datasets, where it surpasses the state-of-the-art baseline
by 72% and 36% in median localization error for comparable
orientation estimation accuracy. The predicted probability distri-
bution can represent localization ambiguity, and enables rejecting
possible erroneous predictions. Without re-training, the model can
infer on ground images with different field of views and utilize
orientation priors if available. On the Oxford RobotCar dataset,
our method can reliably estimate the ego-vehicle’s pose over time,
achieving a median localization error under 1 m and a median
orientation error of around 1◦ at 14 FPS.

Index Terms—Aerial imagery, camera pose estimation, cross-
view matching, localization, orientation estimation.

I. INTRODUCTION

LOCALIZATION is a core task in autonomous driving
and outdoor robotics [1]. In urban canyons [2], Global

Navigation Satellite System (GNSS), such as GPS, often has
positioning errors of up to tens of meters due to the multipath
effect. Thus, other sensors [3], such as camera [4], [5], [6]
and LiDAR [7], [8], [9], are used in combination with de-
tailed HD maps [10], [11] to enhance the localization accuracy
and robustness. In practice, most commercial vehicles are not
equipped with expensive LiDAR sensors. Besides, maintaining
an up-to-date HD map is laborious and expensive, especially
for areas in fast development. Hence, exploring alternative map
sources for camera-based methods is an important and practical
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task. One promising map source is aerial imagery as it provides
rich appearance information with global coverage.

We consider the task of cross-view camera pose estimation,
namely, estimating the camera’s location and orientation from a
given ground-level query image by matching it to geo-referenced
aerial imagery. Previous deep learning-based works [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]
successfully performed coarse city- or even country-scale local-
ization, by formulating the localization as image retrieval, i.e.
to find the aerial image from a reference database that contains
the location of the ground query. More recently, there has been
increasing interest in applying cross-view image retrieval for
autonomous driving by zooming into a smaller geographically
local region [26], [27], especially in the urban canyon where
GNSS is prone to have large positioning errors. A few pioneer
works [22], [28], [29], [30], [31], [32], [33] demonstrated the
feasibility of pinpointing the 2D location, sometimes together
with the orientation, of the ground camera within a known
aerial image. Similar to [28], [29], [32], we are interested in the
3-Degrees-of-Freedom (3-DoF) camera pose, i.e. planar location
and orientation (yaw), instead of the full 6-DoF pose, since
the change in camera height, pitch, and roll are less important
in downstream tasks in autonomous driving, such as motion
prediction and planning.

However, several gaps must be filled before large-scale real-
world deployment of cross-view camera pose estimation meth-
ods is a realistic possibility for self-driving. So far, the local-
ization accuracy of existing methods is not yet good enough
for autonomous driving requirements, e.g. the lateral and lon-
gitudinal error should be below 0.29 m [34]. Besides, many
methods cannot be run at sufficiently low latency, i.e. ∼15
frames per second (FPS), on datasets for self-driving [35],
[36], [37]. For example, [28] relies on iterative optimization
to estimate the ground camera’s pose. In [33], computation-
ally heavy Transformers are used to construct Birds Eye View
(BEV) feature representations, and then the BEV representations
from ground and aerial views are compared densely at each of
the location-orientation combinations (i.e. 3-DoF poses). Both
methods [28], [33] run at a low frame rate, e.g. 2 to 3 FPS.
SliceMatch [32] fulfills the runtime requirement. However, it
requires pre-computed slice masks for each possible pose it
considers, which means that memory overhead limits the number
of possible poses and therefore its accuracy. We also observe that
when the aerial view contains a symmetric scene layout, e.g.
at crossroads, single-mode regression-based methods [22], [31]
might regress to a midpoint between visually similar locations,
and optimization-based methods [28] might get stuck at a wrong
local optimum.
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Fig. 1. In Convolutional Cross-View Pose Estimation (CCVPE), ground and aerial images are encoded into orientation-aware image descriptors. For the aerial
image, we create a grid of descriptors. Efficient joint localization and orientation prediction are enabled by matching rolled aerial descriptors with the ground
descriptor. Sparse location and orientation maps are up-sampled into dense maps using decoders with coarse-to-fine matching. We max-pool descriptor matching
scores over orientation channels to predict the most probable location considering different orientations. We concatenate the matching scores from different
orientations to gather information for accurate orientation prediction. The final orientation prediction is conditioned on localization, i.e. it is selected at the predicted
location in the dense orientation map.

To improve the pose estimation accuracy over prior works and
meanwhile achieve fast runtime, we propose a novel method that
predicts a multi-modal distribution for localization and jointly
considers the orientation of the ground camera. As shown in
Fig. 1, we exploit the translational equivariance property of
convolutional networks to construct orientation-aware image
descriptors that represent visual information in both ground and
aerial views at different locations with a particular viewing direc-
tion. Joint localization and orientation estimation are achieved
by convolving the ground descriptor on the aerial descriptors
with circular padding, i.e. matching the ground descriptor to
different rolled/shifted versions of the aerial descriptor. Then,
our model regresses the fine-grained orientation based on dis-
crete orientation matching scores and follows a coarse-to-fine
formulation to gradually refine a sparse location map into dense
output. The final output orientation is conditioned on the pre-
dicted location.

Our main contributions are: (i) We propose a novel method for
end-to-end cross-view camera pose estimation, Convolutional
Cross-View Pose Estimation (CCVPE).1 It surpasses the pre-
vious state-of-the-art baselines by a large margin in localiza-
tion and achieves comparable orientation estimation accuracy
on VIGOR and KITTI datasets when testing generalization to
new measurements within the same area and across different
areas. (ii) CCVPE constructs a multi-modal distribution for
localization and uniquely associates each location with its most
probable orientation. We avoid a dense search over all 3-DoF
poses (localization+orientation) by discretizing the orientation
sparsely and performing additional regression. This formulation
is efficient for fine-grained pose estimation. We also show the
predicted probability can be used to filter out predictions that
potentially have large localization or orientation errors. (iii) Our
designed architecture exploits the strength of a translational

1Code is available at https://github.com/tudelft-iv/CCVPE

equivariant feature encoder and contrastive learning. Our ground
image encoder maintains the spatial scene layout information
relative to camera’s viewing direction in the ground image
descriptor and the contrastive loss enforces aerial descriptors to
encode global orientation information. These descriptors enable
jointly localization and orientation estimation with negligible
extra computational cost. Without re-training, our model can
infer the camera pose on images with different horizontal Field
of Views (FoVs). In addition, it can utilize a coarse orientation
prior, if available, to improve the localization without re-training.

An earlier version of our method was presented as a confer-
ence paper [29]. This article extends [29] by the following. First,
we extended our method for end-to-end orientation estimation
and jointly consider both location and orientation. Second, we
re-designed our ground and aerial descriptors matching module
and exploit coarse-to-fine matching. Third, we extended our
experiments to include the recent KITTI cross-view localization
dataset [28] and compared our method to additional recent state-
of-the-art cross-view camera pose estimation baselines [28],
[32]. Fourth, we demonstrated that our method can estimate the
ego-vehicle pose at 14 FPS on the Oxford RobotCar dataset with
a median lateral and longitudinal error below 1 m, and a median
orientation error around 1◦.

II. RELATED WORK

In this section, we review the work related to cross-view
camera pose estimation.

Cross-view image retrieval has shown great progress in the
past years. It enjoys the advantage of the widely available geo-
referenced aerial images and aims for rough geo-localization
by retrieving the aerial image patch that covers the location of
the ground-level query image. The first deep networks for this
task date back to 2015 [12], [13], [14]. Since then, the common
practice of using Siamese-like architecture was established. The
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ground and aerial images are encoded into image descriptors
by two network branches. Usually, these branches do not share
weights [15], [16], [38], because two input images are from
different domains. This domain gap is also one of the main
challenges in the cross-view setting. Subsequent works seek to
bridge the domain gap between the learned ground and aerial
representations via various approaches.

An effective way for minimizing the domain gap is to
construct visually similar inputs [15], [17], [21], [39], [40].
SAFA [15] observes that the polar rays in the aerial image cor-
respond to the vertical lines in the ground image, and proposes
to use a polar transformation on the aerial image to build an
image that is visually similar to the ground view. In [40], an
inverse polar transformation is used on ground-level panoramas
to generate synthetic aerial images. In [17], the authors bridge the
domain gap between the ground and aerial images by generating
synthetic aerial images using GANs [41]. In [21], ground-level
images are generated from aerial images using GANs, and the
features for image generation are shared for cross-view image
retrieval.

Besides constructing visually similar inputs, several works try
to optimize the learned image feature for retrieval in different
ways. CVM-Net [16] adopts the powerful image descriptor,
NetVLAD [42], to learn how to gather local image features for
building global image descriptors. In [38], the authors propose
to use the orientation information of both views to guide the
model to find more discriminative features across views. In [26],
a rough localization prior from GNSS is considered during
training to encourage the model to learn geographically locally
discriminative features. CVFT [19] considers Optimal Transport
theory to facilitate the feature alignment between ground and
aerial images. Global-assists-local [25] addresses the case of
retrieving a ground-level query with a limited horizontal FoV
and proposes to embed the aerial feature outside the query’s
FoV into the aerial descriptor to aid the retrieval. In [43], the fea-
ture locality is explicitly enforced when building global image
descriptors by partitioning the encoded features. CVLNet [44]
gathers temporal information into the ground descriptor by mak-
ing use of a ground-level query video. Recently, transformers
are also used. L2LTR [23] introduces self-cross attention to
flow effective information into the descriptors. TransGeo [24]
proposes an attention-guided non-uniform cropping method to
attend to and zoom in the informative local image patches. Apart
from retrieval, several works also estimate the orientation of the
ground camera [20], [45], [46], [47].

However, the major limitation of cross-view image retrieval is
that the ground query is assumed to be located at the center of the
matched aerial image patch, but we may not have aerial image
patches whose center is in fact at the unknown test location.
Densifying reference aerial patches reduces the influence of
this assumption but increases the computation cost. In [39],
the authors propose to zoom into the initial retrieved aerial
image and crop smaller aerial patches at a set of candidate
locations in the initial retrieved image for second-stage retrieval.
A few works [27], [48], [49], [50] fuse the image retrieval
results with temporal filters for more accurate localization. Still,
estimating the accurate location and orientation of a single frame

ground-level query within a reference aerial image patch that
covers it remains an open yet important task.

Cross-view camera pose estimation can be seen as a follow-up
task after image retrieval or other coarse localization techniques.
Given a ground-level query and an aerial image that covers
the local surrounding of the query, the objective is to estimate
the exact location and the orientation of the query within the
given aerial image. In [22], a large-scale dataset for this task is
introduced, and the authors propose a model that first retrieves
an aerial image given the ground query with a known orientation
and then regresses the location offset between them. Later, [31]
also formulates the localization as a regression problem and
includes an additional road extraction training objective. In [51],
the orientation of the ground camera is estimated by assuming
the location of the ground camera in the aerial image is known.
Instead of regression, [28] solves the query ground camera
pose by iterative optimization. It first warps the feature from
the aerial image to a ground view using homography and then
uses a multi-level Levenberg-Marquardt algorithm to estimate
the 3-DoF ground camera pose using the warped aerial feature
and extracted ground-level feature. SliceMatch [32] generates
aerial descriptors at a set of candidate ground camera poses
by pooling aerial features within the geometric extent of the
viewing frustum of each pose. Then the ground descriptor is
compared to all aerial descriptors for pose estimation. Vision
Transformers [52] are used in [33] to map the features of the
ground-level surrounding views to BEV, and the mapped BEV
feature maps are densely compared to feature maps extracted
from the aerial image for pose estimation. In [30], LiDAR
measurements are fused with camera images for cross-view pose
estimation.

However, there are several limitations in the above methods.
Some methods only estimate the location [22], [31] or orien-
tation [51] of the ground camera. Current regression [22], [31]
or optimization [28], [30] formulation for localization restricts
the output to a single mode without uncertainty estimation.
When there are several visually similar locations in the aerial
view, regression-based methods [22], [31] might regress to
the midpoint between those locations, and optimization-based
methods [28] might converge to a wrong local optimum. More
importantly, these methods lack uncertainty estimation to re-
flect the quality of the outputs. Besides, the runtime is also a
bottleneck in many existing methods, e.g. 2 to 3 FPS in [28],
[30], [33]. SliceMatch [32] has fast runtime but it constructs
descriptors only at the deepest level in the network and might
miss fine-grained details for more accurate pose estimation.
Besides, it needs pre-computed slice masks for aggregating
features in different orientations. The memory overhead brought
by the masks limits the number of tested poses and thus accuracy.

Floor map-based localization is a related task to cross-view
camera pose estimation. Instead of aerial images, the goal is
indoor localization of sensor measurements, e.g. camera images,
in a building’s BEV floor map of walls and rooms. LaLaLoc [53]
renders ground-view floor layouts from a BEV floor map,
and learns a shared descriptor space for query images and
rendered layouts for end-to-end retrieval and pose refinement.
LaLaLoc++ [54] removes the need for the rendering step in
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LaLaLoc [53] and uses a UNet-like architecture [55] to build a
descriptor at each candidate location. Localization is achieved
by looking for locations whose local map descriptor is similar to
the descriptor of the query. Laser [56] renders ground descriptors
from a floor plan in an efficient way and formulates localization
as metric learning. The above methods have many properties
in common with cross-view camera pose estimation works. In
particular, our method is similar to Laser [56] in constructing
orientation-aware image descriptors for orientation estimation.
However, Laser [56] cannot directly be used for cross-view cam-
era pose estimation because it relies on explicit map occupancy
boundary information, whereas the cross-view visual relation
between outdoor ground and aerial images is not explicitly
modeled but has to be learned.

III. METHODOLOGY

Given a ground-level color image G of size H ×W × 3
and an aerial color image A of size L× L× 3 that covers
the local surrounding of G, we aim to estimate the 3 Degrees-
of-Freedom (DoF) pose, P̂ ∈ R

2 × SO(2), of the camera that
took G. Specifically, P̂ = [x̂, ô]. x̂ = (û, v̂) denotes the image
coordinates of the location of the camera ofG in the aerial image
A. ô ∈ [0◦, 360◦) denotes the orientation of the camera in the 2D
aerial image plane: 0◦ means heading North, i.e. the up direction
in the aerial image, and the orientation angle increases in the
clockwise direction. Similar to other cross-view camera pose
estimation methods [28], [32], we assume the pitch and roll
angle of the ground camera are small, which is often the case
for a vehicle-mounted camera.

A. Methodological Design Considerations

Existing cross-view camera pose estimation methods [22],
[29], [31] use a Siamese network with two image encoders
without weight-sharing, fuse the encoder’s descriptors at the
bottleneck, and finally, have a decoder provide the output. Our
model follows a similar approach with a few novel modifica-
tions.

1. Multi-modal prediction: Instead of treating localization as a
uni-modal estimation problem [22], [31], we propose to predict
location with a discrete probability distributionD over the pixels
in the L× L aerial image A, and formulate the learning as
multi-class classification. This way, the output can capture the
potential multi-modal localization ambiguity, and assign high
probability to multiple distinct aerial locations that match the
observed ground image G. The probabilistic output could be
provided to a downstream robot localization stack for fusion
with other sensors, or the Maximum A-Posteriori (MAP) location
can be taken as a single localization estimate. Furthermore,
the probability provides a confidence estimate suitable to reject
unreliable predictions, as our experiments will demonstrate.

2. Coarse-to-fine descriptor matching: To obtain a high-
resolution localization distribution, we propose to match a single
ground descriptor to local regions in the aerial feature map,
e.g. using the cosine similarity. The concept of learning a shared

feature space where descriptors from different views are com-
pared is also encountered in cross-view image retrieval [15],
[16], [24], but we apply it for dense localization prediction. Our
approach can therefore benefit from the contrastive learning loss
to learn discriminative feature spaces for matching.

Furthermore, we observe that the discriminative visual in-
formation that distinguishes one aerial region from another
depends on the aerial resolution and scale. We therefore propose
to apply this descriptor matching approach in a coarse-to-fine
manner, starting at the low-resolution bottleneck, doubling the
feature map resolution each time until the full target resolution
is reached. At each subsequent level, our approach will match
the ground and aerial information and use the resulting matching
score to guide the upsampling of the aerial feature to a higher
spatial resolution. We will show that this improves localization
accuracy.

3. Joint location and orientation matching: Location and
orientation should be considered jointly. Estimating one, while
ignoring the other could lead to sub-optimal estimation since
the observed layout of the scene in the ground image G only
relates to the BEV layout when both location and orientation of
the ground camera are correct. Meanwhile, exploring a prior in
one, e.g. orientation, should also benefit the estimation of the
other, e.g. localization. This leads us to two considerations:

First, the image descriptors should not be invariant to different
orientations. Instead, we construct ground descriptors where the
elements correspond to information for specific viewing direc-
tions relative to the camera’s unknown orientation, and aerial
descriptors where dimensions capture information in specific
global viewing directions (see Fig. 1 left). An aerial descriptor
should only match the ground descriptor if the locations are
similar, and if the viewing directions are aligned. By constructing
ground descriptors that are equivariant with the camera’s view-
ing direction (i.e. the horizontal image direction), the correct
global orientation of the ground camera can be found by reorder-
ing its descriptor’s feature dimensions (‘rolling’ the descriptors,
see Fig. 1 middle) to match the local aerial descriptor.

Second, in addition to the Localization Decoder, we add an
Orientation Decoder that predicts orientation as a function of
the predicted location, i.e. it predicts a 2D vector field Y over
the aerial view that maps each aerial location to the ground
camera’s most probable orientation if it would be located there.
For instance, if the ground image shows the camera oriented
towards a crossing, the localization uncertainty in the aerial view
could be spread across the streets approaching the crossing, and
each location would suggest a different global orientation (see
Fig. 1 right). Uncertainty in the localization output thus also
captures uncertainty over the global orientation.

4. Generalize to different horizontal FoVs: We aim for a
model that can be used to match panoramic ground images,
as well as images with a limited horizontal FoV without re-
training, and can be trained with images of different FoVs
for data augmentation. Therefore, other than constructing de-
scriptors with a fixed length, our ground descriptors have a
flexible length that depends on the horizontal FoV of the ground
image G.
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Fig. 2. Overview of our proposed Convolutional Cross-View Pose Estimation method, CCVPE. We overlay the output localization distribution (in red) and
orientation vector field (black arrows) on top of the input aerial image for intuition.

B. Architecture Overview

The design considerations from Section III-A motivate our
proposed Convolutional Cross-View Pose Estimation (CCVPE)
architecture, shown in Fig. 2. One branch of the network, g(·),
encodes the ground image G, and another branch, f(·), encodes
the aerial image A. The descriptors from both encoders are
matched in two specialized decoder branches: the Localization
Decoder predicts the 2D spatial distribution D, the Orientation
Decoder outputs the dense orientation vector field Y .

To match descriptors in a coarse-to-fine manner at K levels,
the ground image G will be encoded into K ground descriptors
Gk, k ∈ {1, . . . ,K}, each of a different lengthCG

k and capturing
the relevant information to distinguish poses at that level’s
spatial resolution. Similarly, K aerial descriptor maps Ak are
constructed to represent the relevant matching information of
each local aerial region at level k. Each aerial descriptor Ai,j

k at
spatial location (i, j) in the descriptor map Ak has a length
of CA

k , which represents all 360◦ viewing directions at that
local region. When the ground descriptor Gk is encoded from
a 360◦ panoramic ground image, it similarly has CG

k = CA
k .

If the ground image instead has a limited horizontal FoV, then
CG

k < CA
k and its descriptors will later be matched to onlyCG

k of
theCA

k aerial descriptor dimensions. The spatial resolution of the
aerial descriptor map at level k is Nk ×Nk = 2Nk−1 × 2Nk−1,
where N1 ×N1 is the lowest resolution at the bottleneck,
and NK ×NK = L/2× L/2 is the last matching level K be-
fore the final output. The first aerial descriptor map, A1, is
shared between the Localization Decoder and the Orientation
Decoder.

In the Localization Decoder, see Fig. 3, the ground and
aerial descriptors are compared at multiple resolution levels in
a coarse-to-fine manner with our novel Localization Matching
Upsampling (LMU) module. In the Orientation Decoder, we
employ a similar Orientation Matching Upsampling (OMU)
module, though only once after the bottleneck (our experiments
will demonstrate this decoder does not benefit from coarse-
to-fine matching). Similar to UNet [55] and other models for
dense prediction tasks [57], [58], [59], we furthermore add skip

Fig. 3. Our proposed Localization Decoder.

connections from the aerial encoder to the two decoders between
feature maps of same spatial resolution.

In the following, we provide details on our proposed descrip-
tor construction, descriptor matching modules, localization and
orientation decoders, and used loss functions.

C. Descriptors Construction

Both ground and aerial encoders g(·) and f(·) first apply
their own feature extractor, ge(·) and fe(·), respectively. For
the ground branch, we then use K ground feature projec-
tors gp,k(·), k ∈ {1, . . . ,K} to extract from the encoder’s fea-
ture map the descriptors for the different coarse-to-fine lev-
els, i.e. Gk = gp,k(ge(G)). For the aerial branch, we split the
aerial feature volume fe(A) into N1 ×N1 sub-volumes and
use a shared aerial feature projector fp(·) on each sub-volume
fe(A)

i,j to generate the N1 ×N1 aerial descriptor map at level
1,Ai,j

1 = fp(fe(A)
i,j). The aerial descriptor mapsAk for k > 1

will be constructed within the Localization Decoder.
Our model will assume that ground images follow a cylindri-

cal projection, namely that each column of pixels in the image
represents the same number of degrees in the horizontal FoV.
While cylindrical projections are commonly used for panoramic
images, regular images with a limited horizontal FoV typically
do not use this projection. We still model all ground images as
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such, since we find this approximation still works well in prac-
tice2. We use a translational equivariant ground encoder g(·),
therefore the length CG

k = CA
k × F

360 of the ground descriptors
Gk reflects the F degrees horizontal FoV of the ground image
G.

Feature extractors: We use a regular convolutional network
backbone as the ground and aerial feature extractors ge(·) and
fe(·) on the input H ×W × 3 ground image G and input L×
L× 3 aerial image A, without sharing weights between these
branches. We denote the shape of the encoded ground feature
maps as H ′ ×W ′ × C ′, and of the aerial feature maps as L′ ×
L′ × C ′.

Ground feature projector: A projector gp,k(·) produces a sin-
gle ground descriptor of lengthCG

k . To reduce the computational
cost of matching at increasingly higher spatial resolutions, the
length of the ground descriptor at the next level is half of that of
the ground descriptor at the current level, i.e. CG

k = 2CG
k+1.

Each projector consists of a 1× 1 convolution to reduce
the C ′ feature channels of the extracted ground feature ge(G)
to C ′

k < C ′. To summarize the information along the vertical
(height) direction in the scene while keeping it equivariant with
the horizontal direction (relative viewing direction), we apply
a fully-connected operation along the columns and squeeze
the column dimension from H ′ to 1, resulting a 1×W ′ × C ′

k

feature map. Finally, the ground descriptor Gk is created by re-
shaping this feature map into a 1D vector of lengthCG

k = W ′C ′
k.

These ground descriptors Gk are explicitly orientation-aware, as
every block of C ′

k elements captures the semantic content in
a specific horizontal viewing direction relative to the camera’s
orientation.

Aerial feature projector: We create spatial granularity for
localization by splitting the L′ × L′ × C ′ aerial feature vol-
ume into N1 ×N1 feature sub-volumes. Then, a shared fully
connected layer is used as our aerial feature projector fp(·) to
map each of the sub-volumes into an aerial descriptor Ai,j

1 . The
orientation awareness of our aerial descriptors is encouraged
by our loss function, which will align the aerial descriptors
with the orientation-aware ground descriptors, see details in
Section III-F.

D. Descriptor Matching Modules

To jointly consider location and orientation, we match ground
descriptors at different locations in the aerial image and consider
R different global orientations. In particular, the matching is
done inside our proposed descriptor matching modules, the
Localization Matching Upsampling (LMU) module, and the
Orientation Matching Upsampling (OMU) module. As seen in
Fig. 4, both modules rely on a Rolling & Matching strategy to
compute descriptor matching scores.

Rolling & Matching: Both LMU and OMU use the ground
descriptor Gk to ‘match’ the aerial descriptors Ak at each candi-
date location (i, j) with a defined global orientation r

R360◦, r ∈
{1, . . . , R}, and output a feature volume with the higher spatial

2See supporting experiments in the Supplementary Material.

Fig. 4. Our proposed Localization Matching Upsampling (LMU) and Orien-
tation Matching Upsampling (OMU) modules. Both generate an aerial feature
map at a higher resolution than its input by matching the input aerial features to
the ground features.

resolution of the next level k + 1. To create R global orien-
tations, [0◦, 1

R360◦, . . . , R−1
R 360◦], we ‘roll’ our orientation-

aware aerial descriptor Ai,j
k at each candidate location (i, j)

R times. Specifically, each ‘rolling’ is achieved by shifting all

elements in Ai,j
k by a step length of CA

k

R to the front, and moving
the C ′

k front-most elements to the back. Note that we select

R such that the rolling step length CA
k

R is a multiple of C ′
k.

The resulting aerial descriptors Ai,j,r
k each represents ‘what

the ground descriptor at level k should contain’ at a particular
location and global orientation combination (i, j, r

R360◦).
Matching each aerial descriptors Ai,j,r

k to the ground descrip-
tor Gk is then done by the cosine similarity. Whereas each Ai,j,r

k

captures the environment’s appearance in all global directions
with a CA

k -dimensional vector, the CG
k -dimensional ground de-

scriptor Gk may represent images with a limited horizontal FoV,
i.e.CG

k < CA
k . Therefore, we crop the middleCG

k elements from

Ai,j,r
k , denoted as Ai,j,r

k , to match the same-sized descriptors of
the same FoV using,

Mi,j,r
k = sim(Gk,Ai,j,r

k ) =
Gk · Ai,j,r

k

‖Gk‖2 × ‖Ai,j,r
k ‖2

. (1)

The Rolling & Matching can be seen as convolving a kernel Gk

over Ai,j
k with a stride of CA

k

R , circular padding, and extra nor-
malization. The resultingNk ×Nk ×Rmatching score volume
Mk expresses how similar the ground descriptor is to the aerial
descriptor at each candidate location and orientation.

LMU: The LMU summarizes the localization cues from Mk

in an invariant manner to the different global orientations. We
therefore take for each location the maximum matching score
over the R orientations. These Nk ×Nk × 1 max scores are
concatenated to the L2-normalized Nk ×Nk aerial descriptors
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to guide the upsampling of the aerial feature through a deconvo-
lution. We show in our ablation study that the L2-normalization
before feature concatenation is crucial for good pose estimation
performance.

Notably, a prior in the ground camera’s orientation is often
available for vehicle localization, e.g. indicated by the driving
direction. Incorporating such an orientation prior is straightfor-
ward in the LMU by removing the non-corresponding orienta-
tion channels in the matching score volume Mk. This does not
require any retraining.

OMU: Instead of extracting features that are orientation-
invariant, OMU explicitly maintains the orientation information
in Mk. It has a similar design as LMU other than that the Mk

is directly concatenated to the L2-normalized aerial descriptors.
Thus the deconvolution layer can make use of information on
how the ground descriptor Gk matches aerial descriptors Ak at
all R orientations. We apply OMU only to matching level 1 in
the Orientation Decoder (we explored other settings, but did not
observe a clear benefit).

E. Decoders

We have two separate decoders for localization and orienta-
tion estimation.

Localization Decoder: Our Localization Decoder contains K
LMU modules to gradually increase the spatial resolution of
ground and aerial descriptor matching and finally generates a
discrete distribution D over the pixels of L× L aerial image A
for localization, see Fig. 3.

At each level k, the output feature from LMU is concatenated
with the skip-connected aerial feature fe(A)k+1 of the same
spatial resolution from the aerial feature extractor fe(·) to access
the scene layout information. Then, 2D convolution is applied
to generate the aerial descriptors Ak+1 for level k + 1. After the
LMU at level K, the output feature volume would have a spatial
resolution L× L, where L = 2NK . Next, 2D convolution with
a softmax activation is applied to convert the feature volume into
a L× L× 1 discrete distribution D, in which the values denote
how probable the ground camera is located at each pixel location
(i, j). The Maximum A-Posteriori (MAP) pixel location (̂i, ĵ) in
D is taken as our final localization estimation, and the image
coordinate of its center is our final prediction, (û, v̂) = (uî, vĵ).

Orientation Decoder: Our Orientation Decoder up-samples
the coarse orientation information into a dense orientation vector
field. It contains an OMU module at the beginning to match the
ground descriptor G1 and aerial descriptors Ai,j

1 at level 1 and
upsamples the resulting matching score volume together with the
L2-normalized aerial descriptors to spatial resolution N2 ×N2.
The remainder of our Orientation Decoder uses a series of
deconvolutions and convolutions to further upsample the feature
volume to the target resolution L× L. Similar to our Localiza-
tion Decoder, there is a skip connection that passes aerial feature
fe(A)k from the aerial encoder to the Orientation Decoder. The
final output of our Orientation Decoder is an L× L× 2 vector
field Y denoting the predicted orientation at each pixel location
(i, j) in the aerial imageA. The feature channel is L2-normalized
and we use the first and second channels to represent the cosine

and sine of the predicted orientation angle. The final orientation
prediction ô is selected in Y at the predicted pixel location (̂i, ĵ),
i.e. ô = Y (̂i,ĵ).

F. Loss Functions

Our loss L consists of three parts: a contrastive learning loss
LM, a classification loss LD for localization, and a regression
loss LY for orientation estimation. The ground truth location
is represented by a discrete distribution Dgt of size L× L. In
practice, we place a 2D Gaussian distribution at the ground
truth pixel coordinates (igt, jgt) to form a smooth ground truth
distribution Dgt.

The contrastive learning loss: LM is an average over
contrastive learning losses LMk, at K levels, i.e. LM =
1
K

∑k=K
k=1 LMk. At each level k, LMk is applied on the match-

ing score volume Mk to encourage the aerial descriptors for
locations and orientations close to the ground truth poses to
match the ground descriptor Gk. Since our ground descriptors
are orientation equivariant, training withLMk enforces the aerial
descriptors at the correct locations to be orientation equivariant
as well.

The location and orientation space of Mk is discretized into
Nk ×Nk ×R, and the ground truth location and orientation
would never exactly be centered at a grid point. We therefore
express the closeness of indices (i, j, r) at level k to the true
pose with weightswi,j,r

k = wi,j
k × wr

k. To obtain spatial weights
wi,j

k , we reduce the spatial dimensions of Dgt from L× L to
Nk ×Nk by max pooling. To compute weights wr

k over the R
orientation channels, we first find the orientation indices r1 and
r2 of the discrete angles closest to the true orientation, 360◦ ×
(r1/R) < ogt < 360◦ × (r2/R). We only assigning non-zero
weight to r1 and r2, where their weight is inversely proportional
to their relative angular distance to ogt, and wr1

k + wr2
k = 1.

We can now finally define LMk as a weighted sum LMk =∑
i,j,r w

i,j,r
k L′Mk(i, j, r) of infoNCE losses [60] on the cosine

similarity of (1),

L′Mk(i, j, r) = − log
exp(sim(Gk,Ai,j,r

k )/τ)∑
i′,j′,r′ exp(sim(Gk,Ai′,j′,r′

k )/τ)
. (2)

The localization loss: We formulate the localization problem
as a multi-class classification. In our main setting, the localiza-
tion loss LD is a cross-entropy loss,

LD = −
L∑

i=1

L∑
j=1

Di,j
gt logDi,j , (3)

where (i, j) are pixel coordinates.
As an alternative, we also consider training the localization

distribution D by minimizing the transported mass from D to
Dgt based on Optimal Transport theory [61]. For this, we use a
Wasserstein distance-based loss [62] as our LD. Unlike cross-
entropy, Wasserstein distance considers the distance between
the mass in the source and target distributions. To compute the
Wasserstein distance lossLD betweenD andDgt efficiently, we
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here defineDgt as a one-hot distribution. This loss then becomes,

LD = −
L∑

i=1

L∑
j=1

d(i, j) ·Di,j . (4)

In (4), d(i, j) denotes the L2-distance in pixels between the
pixel location (i, j) in D to the ground truth pixel location
(igt, jgt), i.e. d(i, j) =

√
(i− igt)2 + (j − jgt)2. We compare

the cross-entropy loss and Wasserstein distance-based loss in
our ablation study, but will use the cross-entropy loss as LD in
our main experiments.

The orientation loss: Instead of treating the orientation pre-
diction as a discrete classification problem, which would result
in a large number of classes for joint localization and orientation
supervision, we formulate this problem as regression. Since
we use a Gaussian smoothed ground truth Dgt, we sum the
contributions from smoothed ground truth locations and define
our orientation loss LY as,

LY =

L∑
i=1

L∑
j=1

Di,j
gt

((
cos (ogt)−Y i,j

1

)2

+
(
sin (ogt)−Y i,j

2

)2
)
.

(5)

In (5), ogt is the ground truth orientation, Y is the L× L× 2
predicted orientation vector field. Y1 and Y2 denote the first
and second channel of Y . Multiplying with Dgt removes the
contribution to the orientation loss LY at wrong locations.

The total loss:L is a weighted combination of the localization
loss LD, orientation loss LY , and contrastive learning loss LM :

L = LD + αLY + βLM , (6)

where the α and β are hyperparameters that weigh the impor-
tance of LY and LM during training.

IV. EXPERIMENTS

In this section, we first introduce the three used datasets,
followed by our evaluation metrics. After this, we provide our
implementation details. Then, our CCVPE method is compared
to previous state-of-the-art baselines w.r.t. generalization to new
measurements within the same areas and across different areas.
Next, we study how our method works with an orientation
prior and on images with different horizontal FoVs. Then, we
use our method to estimate the pose of the ego-vehicle along
test traversals using sequences of ground images. Finally, an
extensive ablation study and an analysis of runtime are provided.

A. Datasets

We test the generalization of all models to new measure-
ments within the same areas and across different areas on the
VIGOR [22] and KITTI [37] datasets. On the Oxford RobotCar
dataset [35], [63], our method is used to estimate the ego-vehicle
pose frame-by-frame using the ground image sequence collected
in test traversals. The original KITTI and Oxford RobotCar
datasets do not contain any aerial images, therefore we make
use of the collected aerial images from [39] for KITTI, and [27],
[29] for Oxford RobotCar.

The VIGOR dataset [22] contains ground-level panoramic
images and aerial patches collected in four cities in the US.
The aerial patches are distributed regularly as a grid, providing
seamless coverage of the 4 target cities. Each aerial patch covers
a∼70m× 70 m ground region. The orientation of the panorama
and aerial patch is aligned such that the center vertical line in the
panorama corresponds to the up direction (North) in the aerial
patch. In our experiments, changing the orientation of the ground
panorama is achieved by shifting the image along the horizontal
axis. Reducing the horizontal FoV is achieved by dropping the
image columns at the left and right borders. Since the ground
truth labels are improved by [32], we use those more accurate
labels. The VIGOR dataset defines the aerial patches as either
positive or semi-positive for each ground image. An aerial patch
is positive if its center 1/4 region contains the ground camera’s
location, otherwise, it is semi-positive. In our experiments, we
use positive aerial images for training and testing all models.
We adopt the Same-Area and Cross-Area split from [22]. On
the Same-Area split, we train models on images from all four
cities and test models on images from the same cities. Training
and test sets do not share any ground images but may share
aerial patches. On the Cross-Area split, models are trained on
image pairs from New York and Seattle and tested on pairs from
Chicago and San Francisco. For validation and hyperparameter
tuning, we randomly select 20% of the data from the training
set.

The KITTI dataset [37] is collected by a vehicle platform
in Karlsruhe, Germany, covering city, rural area, and highway
scenarios. The stereo camera faces the driving direction and has
a horizontal FoV of 90◦. In [28], the authors make use of the
images from the left camera of the stereo camera and collected
aerial images with ground resolution ∼0.20 m/pixel to enable
cross-view pose estimation. Each aerial patch covers a ∼100 m
× 100 m ground area. The data is split into Training, Test 1, and
Test 2 sets. Images in Training and Test 1 sets are from the same
regions. Images in Test 2 set are from different areas than those
in the Training set. In our experiments, we refer to Test 1 and
Test 2 sets as Same-Area and Cross-Area. As assumed in [28],
ground images are located within a 40 m × 40 m area in the
corresponding aerial patches’ center, and there is an orientation
prior with noise between −10◦ and 10◦. In this case, a random
rotation between −10◦ and 10◦ is applied on each aerial image
whose ‘East’ orientation was aligned with the ground image. In
our experiments, we adopt the same setting, and also provide
extra results for unknown orientations where a random rotation
from the 360◦ circular domain is applied on each orientation-
aligned aerial image.

The Oxford RobotCar dataset [35], [63] contains videos with
a limited horizontal FoV collected over multiple traversals at
different times, seasons, and weather conditions, along the same
route in Oxford, U.K. In [26], [27], the authors collected aerial
patches for retrieval, and later [29] stitched those aerial patches
with their collected extra ones into a continuous aerial image that
covers the Oxford area. We follow the same setting as in [27],
[29] that the training, validation, and test data are from different
traversals to test our model’s generalization to different dynamic
objects, weather, and lighting conditions across time. Instead
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of directly using the sparse test images used in [27], [29], we
sample test ground images from the original Oxford RobotCar
dataset [35], [63] at a higher frame rate, ∼1.6 FPS, for our
experiment of ego-vehicle following. In total, there are three
test traversals, enabling testing in Summer and Winter. During
training, aerial patches that cover∼74m× 74 m ground area are
randomly cropped from the continuous map around a location
that is less than ∼26 m away from the vehicle’s location. For
validation and testing, we use the same set of aerial patches as
in [29]. In our experiment, the orientation of the ground camera is
always assumed unknown, so we simply use the ground images
and north-aligned aerial images as input pairs.

B. Baselines Methods

We compare CCVPE to two types of baselines.
First, we include the state-of-the-art (SOTA) cross-view

pose estimation baselines: the cross-view regression method
(CVR) [22], iterative optimization method LM [28], and Slice-
Match [32]. CVR [22] is originally designed for joint image
retrieval and location regression. For a fair comparison, we
train it for localization within a given aerial image (we find
it achieves better localization error than training it for retrieval
+ localization). We also trained a CVR model using the same
EfficientNet-B0 [64] as its feature extractor, denoted as Eff-
CVR. LM [28] uses an iterative method to estimate the location
and orientation of the ground camera on the aerial image. We
use the provided model by its author and the same setting on
its prior [28] on KITTI dataset, namely, the ground images are
located in a 40m× 40m area in the input aerial image center,
and a rough orientation prior with noise between −10◦ and 10◦

is available during training and test time. For completeness, we
also include the model trained and tested without any orientation
prior.

On the KITTI dataset, [39] evaluated several image retrieval or
retrieval with orientation estimation baselines by limiting their
searching area to a region of 40m× 40m. We include the same
fine-grained cross-view image retrieval baselines from [39].

C. Evaluation Metrics

We use mean and median error over all test samples as our
main evaluation metrics for both localization and orientation
prediction. For localization, the error is the distance in meters
between the predicted location and the ground truth location.
For orientation, the error is the angular difference (◦) between
the predicted camera orientation at the predicted location and
ground truth camera orientation. In addition, we report the per-
centage of test samples that has an error below certain thresholds,
namely 1 m, 3 m, and 5 m for localization, and 1◦, 3◦, and 5◦

for orientation. For localization, longitudinal and lateral error
w.r.t. the vehicle’s driving direction are given separately [28].
For image retrieval methods, the localization error is calculated
by measuring the distance between the center of the retrieved
aerial image patch and the ground truth location. To measure
if the true location receives probability mass, and thus would
not be discarded if used in a probabilistic temporal filter, we
also measure the predicted probability at the ground truth pixel.

For the baseline method that regresses [22] to a single location
without uncertainty estimates, we assume their prediction is
the peak of an isotropic Gaussian distribution, and estimate the
standard deviation of this Gaussian distribution on the validation
set. SliceMatch [32] measures descriptors’ similarity scores on
their candidate poses. We use the scores at the candidate location
that is closest to the ground truth location to derive the predicted
probability at the ground truth pixel. Finally, we measure our
model’s runtime on a Tesla V100 GPU.

D. Implementation Details

EfficientNet-B0 [64] is used as our ground and aerial feature
extractors, ge(·) and fe(·). There is no weight-sharing between
them. When the ground image G is panoramic, circular padding
in the horizontal direction is used inside the ground encoder
g(·), and zero padding otherwise. For other model compo-
nents, and the vertical direction padding in g(·), we use zero
padding. During training, the feature extractor is initialized
from ImageNet [65] pre-trained weights, and other components
are initialized randomly. Our model is trained using the Adam
optimizer [66] with a learning rate of 0.0001. We use the de-
fault drop connect [67] rate, 0.2, from EfficientNet [64], and
the default τ = 0.1 in (2), from infoNCE loss [60]. Different
weights α = 1× 10−2, . . . , 1× 102 and β = 10, . . . , 1× 105

were tested for weighing the orientation loss LY and con-
trastive learning loss LM , and α = 10 and β = 1× 104 are
selected since they provide best validation performance. The
model bottleneck size N1 ×N1 is set to 8× 8, and conse-
quently there are K = 6 levels in our coarse-to-fine descriptor
matching.

Note that, even though our method assumes ground images
follow cylindrical projection, for KITTI and Oxford RobotCar
datasets we directly input their perspective images. Our detailed
study in the Supplementary Material shows that both projections
work equally well in practice.

E. Generalization to New Measurements in Same Area

First, we compare our method, CCVPE, to baselines for
generalizing to new measurements (i.e. ground images) in the
same area. This corresponds to use cases that target operation
in a predetermined area, such as driving in one city, so models
can be trained on data from that specific area. For this task, we
report the evaluation results on VIGOR Same-Area test set and
KITTI Same-Area (Test 1) set.

Pose estimation on VIGOR Same-Area: As shown in Table I
Same-Area, when testing with images with known orientation,
our method surpasses all baselines, CVR [22], Eff-CVR, and
SliceMatch [32], w.r.t. mean and median localization errors.
Replacing the VGG [68] backbone with EfficientNet-B0 [64]
for CVR improves localization performance, but Eff-CVR still
has significantly higher localization errors than ours. When the
orientation of test images is unknown, our method beats the
previous SOTA SliceMatch by a large margin in localization, i.e.
56% in the mean error and 72% in the median error. Regarding
orientation estimation, CVR could not infer the orientation of
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TABLE I
EVALUATION ON VIGOR SAME-AREA AND CROSS-AREA TEST SET

TABLE II
EVALUATION ON KITTI DATASET

the ground camera, and thus it is not included in the compari-
son. SliceMatch and our method address orientation prediction
differently. SliceMatch divides the 360◦ orientation space into
64 bins and selects the most probable one based on descriptors
matching, while our method creates R = 20 orientation scores
and regress the true orientation after the grid-based matching.
Quantitatively, our method has a lower mean orientation error
but a slightly higher median orientation error than SliceMatch.
We demonstrate in our Supplementary Video that our method
can smoothly track the change in the orientation of the ground
camera. Grid-based solutions, such as SliceMatch, would need
to densify their grid, resulting in more memory and computation
needs.

Pose estimation on KITTI Same-Area: As shown in Table II
Same-Area, camera pose estimation methods, LM [28], Slice-
Match [32], and ours, outperform image retrieval-based meth-
ods in terms of percentages of test samples with lateral and
longitudinal errors within the given thresholds. When a ±10◦

orientation prior is considered in both training and testing, as

assumed in [28], our method has a lower mean/median error for
both localization (1.22 m / 0.62 m) and orientation estimation
(0.67◦/0.54◦) than LM and SliceMatch.

LM needs an orientation prior to guarantee there is an overlap
in the scene between its projected aerial view and the ground
view for iterative optimization. As a result, LM does not work
when such an orientation prior is absent, see Table II. Under this
more challenging setting, the performance of both SliceMatch
and our method degenerates. Our model still surpasses Slice-
Match in localization performance but our model has higher
errors in orientation estimation.

Qualitative results: Compared to single-mode estimators, e.g.
regression-based CVR [22] and iterative optimization-based
LM [28], our model shows its advantage especially when the
scene contains a symmetric layout. As shown in the first two
samples in Fig. 5, when there are multiple visually similar
locations, e.g. zebra crossings or junctions, CVR regresses to
a location between them. The iterative method LM sometimes
converges to a wrong local optimum, e.g. another road, see
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Fig. 5. Qualitative results on VIGOR. First two samples are from the Same-Area test set, and the last two samples are from the Cross-Area test set. The first
three samples are success cases, the fourth shows a failure case. CVR (blue cross) receives orientation-aligned ground and aerial images and does not estimate
the orientation. CCVPE (ours) selects the orientation (yellow arrow) from the prediction location (yellow star) and dense orientation map Y (black arrows). The
red color shows the localization probability distribution, and the darker the color the higher the probability. The center of the ground image is always the forward
direction (green vertical line), which aligns with the true orientation in the aerial view (green arrow).

Fig. 6. Qualitative results on KITTI. First two samples are from the Same-Area test set, and the last two samples are from the Cross-Area test set. The first three
samples are success cases, the fourth one shows a failure case. We provide an orientation prior with ±10◦ noise to LM model, and our model does not use an
orientation prior.

Fig. 6. Our model expresses its uncertainty with its multi-modal
distribution to capture all probable modes, usually identifying
the correct location in all datasets.

Benefiting from our joint consideration of localization and
orientation, when there are multiple probable locations in our
prediction, our model predicts for each of these locations the
most likely orientation. As shown in the first image pair in
Fig. 5, the orientation of the camera (the green line in the
ground image) roughly points to the end of a zebra crossing.
Our prediction suggests multiple locations, and each location
predicts an orientation pointing to an end of a different zebra
crossing.

At locations with a low localization probability, the ground-
aerial descriptor matching has low similarity scores in all ori-
entation channels. In this case, the orientation prediction is
influenced less by the descriptor matching score but appears
to follow a learned prior from the aerial view. Importantly, we

show in our ablation study that explicitly providing the descrip-
tor matching scores is still key to good orientation prediction.
Besides, we also visualize the learned features of our model
using Grad-CAM [69] in our Supplementary Material.

Probabilistic prediction: Next, we evaluate the probability
estimation of the baselines and our model on the VIGOR dataset.
CVR [22] and Eff-CVR regress to a single location without any
probability estimation. We fit a zero-mean Gaussian distribution
on their predicted errors. The standard deviation of this Gauss
is calculated based on their localization error on the validation
set.

As shown in Table I, our model has considerably higher
mean and median probability at the ground truth location than
CVR [22], Eff-CVR, and SliceMatch [32]. During training,
SliceMatch is optimized for discriminative descriptors, while
our model is directly optimized for high probability at the ground
truth location by our cross-entropy loss. In general, our model
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Fig. 7. Ranking CCVPE’s predictions based on their estimated probabilities (tested with unknown orientation). The more confident the prediction, the lower the
localization and orientation error.

is less likely to miss the ground truth location, which is an
important aspect when the outputs are temporal filtered or fused
with other sensor measurements.

Importantly, our probabilistic output can be used to identify
predictions that potentially have large localization and orienta-
tion errors. Because we construct orientation-aware descriptors,
the better an aerial descriptor matches the ground descriptor,
the more likely both the location and orientation of that aerial
descriptor are correct. Therefore, the localization probability can
be used to filter the orientation error as well. As shown in Fig. 7,
when we rank the predictions based on their predicted proba-
bilities, the more confident predictions have in general lower
localization and orientation errors. This property is important in
safety-crucial applications such as autonomous driving.

F. Generalization to New Measurements Across Areas

Here we consider use cases that target operation in areas that
were not covered specifically by the training data, such as driving
in different cities or suburban areas.

Overall, we see a similar trend in model comparison in the
Cross-Area setting as in the Same-Area setting. On VIGOR
Cross-Area test set, see Table I, our model surpasses the previous
SOTA SliceMatch [32] in localization by a large margin. When
orientation is unknown, our median error is 66% lower than that
of SliceMatch. However, our orientation error is higher than that
of SliceMatch. On KITTI Cross-Area test set, see Table II, when
an orientation prior with±10◦ noise presents during training and
testing, our model surpasses both LM [28] and SliceMatch [32]
in both localization and orientation. Without this prior, our model
has lower mean and median localization error than SliceMatch,
but our orientation error is higher.

Unsurprisingly, compared to the performance on the Same-
Area test set, there is a performance degradation for all models.
Our model could learn priors from the scene layout in the aerial
image to guide its predictions. It becomes more challenging
when the test aerial images are unseen. Since our predicted
orientation is selected at the predicted location, the orientation
error is also likely to be large when localization is wrong, see
Fig. 6 last sample. We also observe there are more samples
that have predicted orientation in the opposite direction on the
Cross-Area test set than the Same-Area test set on both VIGOR
and KITTI datasets. See the last sample of Fig. 5 for an example.
In practice, when there is a prior in orientation, e.g. identified

Fig. 8. Localization with different orientation priors on VIGOR Same-Area
and Cross-Area test set.

by the driving direction, our model can make use of the prior to
improve its prediction without retraining. We will demonstrate
this in the next sub-section.

G. Effects on Orientation Prior and Image’s FoV

Next, we study our model’s behavior on both VIGOR Same-
Area and Cross-Area test sets for inference with an orientation
prior and ground images with different horizontal FoV.

Inference with an orientation prior: As described in Sec-
tion III-D, our model can make use of an orientation prior
without retraining. Fig. 8 shows that when a more accurate ori-
entation prior is present, the localization performance increases
accordingly. When there are multiple locations in the aerial
image that match the ground image with different orientations,
for example, at a crossroad, providing such an orientation prior
effectively reduces the wrong matchings in our LMU and OMU
modules, see examples in Fig. 9.

Inference on images with different FoVs: Moreover, our model
can infer on test ground images with other horizontal FoVs
than in the training data. In Fig. 10, we show the results of our
models trained with ground images with various horizontal FoVs
being tested on ground images with different horizontal FoVs.
In general, when the FoV of the ground image increases, the
information contained in the image also increases. As a result,
we see a monotonic decrease in localization error when the test
FoV increases for all models in Fig. 10.

An example of the predictions from our model trained with
panoramic images is shown in Fig. 11. When the FoV of the test
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Fig. 9. Orientation prior improves our localization performance on VIGOR, Same-Area (first two image pairs) and Cross-Area (last two image pairs). The first
and third image: inference without an orientation prior. The second and fourth image: inference with an orientation prior containing noise between −36◦ and 36◦.
With the prior, locations that expect a different orientation become improbable.

Fig. 10. Localization on images with varying horizontal FoVs on VIGOR
same-area and cross-area test sets. Green/blue/yellow curves represent our model
trained with horizontal FoV of 108◦/360◦/between 108◦ and 360◦.

ground image is 108◦ or 180◦, our model cannot distinguish dif-
ferent roads based on the limited content captured by the ground
image, and thus predicts a multi-modal distribution to capture
the probable locations. However, the peak of the distribution is
in the wrong mode and consequently, the selected orientation
is also wrong. When the test FoV increases to 252◦, the peak
of the output distribution is close to the ground truth location.
Further increasing the FoV reduces the localization uncertainty
and improves the localization. Notably, our model can always
access the full scene layout information from the aerial view no

matter what the FoV of the ground view is. This example shows
that the learned prior from the BEV layout solely is not enough
for pose estimation, and our ground-aerial descriptor matching
is crucial.

Because of the domain shift, the model trained with panora-
mas performs worse on images with small FoVs, compared to
the model trained with images with a small FoV, see Fig. 10.
Besides, we also see a steeper decrease in localization perfor-
mance when the test FoV reduces for the model trained with
panoramas than the model trained with images of a horizontal
FoV of 108◦. Training with images with a large FoV allows the
model to use features that span widely in the ground image.
When those features are absent, e.g. testing with a small FoV,
the performance degenerates. On the other hand, if the training
images only have a small FoV, the model would not learn to
use features that span wider than the FoV of the training im-
ages. Consequently, increasing the test FoV brings less benefit.
To tackle this trade-off, one can train the model with images
whose FoVs are randomly sampled by cropping the panorama,
e.g. sampled from 108◦, . . . , 360◦. Consequently, the resulting
model performs well for all tested FoVs. Interestingly, this model
also has slightly better localization performance than the model
trained with images with FoV of 108◦ when inference on images
with FoV of 108◦. Note that this model is not used in our earlier
comparison to other baselines for fairness since the baselines
cannot include a similar data augmentation.

H. Ego-Vehicle Pose Estimation Across Time

On the Oxford RobotCar dataset, we deploy our model to
follow the ego-vehicle over a sequence of ground-level images
taken by the vehicle-mounted camera. To process a pair of input
ground and aerial images on Oxford RobotCar, CCVPE takes
0.07 seconds, i.e. 14 FPS. We assume there is a rough GNSS
prior that identifies which aerial patch contains the location of
the ground-level image. As shown in Fig. 12, on all three test
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Fig. 11. Our model trained with panoramic image and inference on ground images with different FoVs (from left to right: 108◦, 180◦, 252◦, 360◦) from VIGOR
samearea test set. Our dense orientation prediction is shown by black arrows. The final predicted orientation of the ground image (green vertical line) is shown by
the yellow arrow.

Fig. 12. Median lateral and longitudinal localization error and median orien-
tation error on Oxford RobotCar Test 1, 2, and 3 traversals.

traversals, our model achieves median lateral and longitudinal
localization error below 1 m and median orientation error around
1◦. Notably, even though the ground images in the Oxford
RobotCar dataset have a small horizontal FoV compared to the
panoramas in the VIGOR dataset, our model generalizes better
to new ground images along the same route across time on the
former dataset than to new panoramas on the latter dataset. On
the Oxford RobotCar dataset, the aerial view can provide a strong
prior as the vehicle always drives along the same route and the
test area is seen during training. In contrast, the panoramas in
the VIGOR dataset are not always captured on the road, plus its
scenes are more diverse because of its broad coverage.

On the Oxford RobotCar sequences, we can observe how the
predicted orientation map adapts to ground images at different
nearby locations within the same aerial view, as seen in Fig. 13.
While the model learned a prior from the aerial view on the
driving direction of the roads, the orientation predictions do
respond to the ground image content at the high-probability
locations. E.g. when the vehicle is in area A, the local orientation
field points towards the junction seen in the ground view. The
orientations in area A reflect a different orientation (a prior) once
the vehicle moved on to area B. We provide a Supplementary
Video of ego-vehicle pose estimation across time on this dataset.

Fig. 13. Localization and orientation estimation on two frames in a sequence
on Oxford RobotCar Test 1 traversal. Right frame: ∼13 seconds after the left
frame. Because the two ground-level images capture a different scene, the output
orientation field in the same region A (or B) in the identical aerial images is
different.

I. Ablation Study

Next, we present an ablation study on the VIGOR Same-Area
validation set.

Number of LMU modules: As mentioned in Section IV-D, our
model has K = 6 LMU modules for coarse-to-fine descriptor
matching for localization. Here, we study the effect of LMU
modules on localization performance by removing them at low
or high levels. When removing an LMU module, we modify the
corresponding convolutional layer in the Localization Decoder
such that it directly processes the aerial feature without any
matching scores.
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TABLE III
EFFECT OF LMU MODULES ON MEAN LOCALIZATION ERROR ON VIGOR SAME-AREA VALIDATION SET

Fig. 14. Visualization of the max matching score map in LMU at levels 1 to 6.

As shown in Table III, the model with LMU modules at
all 6 levels outperforms other variants in terms of the median
localization error. When excluding the LMU modules at low
or high levels, we see a consistent decrease in localization
performance. Importantly, using LMU modules only at high
levels, e.g. K = 6, does not provide equally good localization
performance as the models that also have LMU modules at lower
levels. Directly contrasting aerial descriptors at a fine resolution
is a difficult learning task. Using LMU modules at lower levels
can provide a better starting point for descriptor matching at
higher levels, leading to better localization performance.

Qualitatively, we see in Fig. 14 that the max matching score
map inside the LMU module becomes sharper when the level k
increases, but does not improve noticeably anymore after level 4,
i.e. resolution 64× 64, on the selected example. Quantitatively,
the increase in localization performance is also less when k
increases. For our main experiments, we include LMU mod-
ules at all levels, i.e. K = 6. This setting also aligns with the
commonly used coarse-to-fine formulation in other computer
vision tasks [57], [58].

Other architectural variations: We first compare our model
to our conference work [29]. Then, we study the effect of the
backbone, the OMU module, the number of orientation channels
R, and the L2-normalization before feature concatenation in the
LMU and OMU modules. Finally, we test replacing the Rolling
& Matching with a simple concatenation of ground and aerial
features, as well as removing the contrastive learning loss LM.

In our conference work [29], VGG [68] and SAFA mod-
ules [15] are used as feature extractors and feature projectors,
and the ground-to-aerial matching is only conducted at the
bottleneck. Thus, for a fair comparison, we include a CCVPE
model with VGG [68] backbone and use the LMU module only
at the bottleneck, i.e. ‘K = 1, VGG’. In [29], pose estimation
is achieved by comparing the model’s probability estimations
on differently rotated samples, while we construct orientation-
aware descriptors and estimate the pose in a single forward
pass. Validation results of models with different settings are
summarized in Table IV. Our model with VGG [68] backbone
and K = 1 beats the approach in [29] in both localization and
orientation accuracy.

The comparison between the row ‘K = 1, VGG’ and the row
‘K = 1’ in Table IV, shows that using EfficientNet-B0 [64] as
the default backbone improves both localization and orientation
estimation. Interestingly, we find that if we do not normalize the
aerial descriptor before the feature concatenation in the LMU
and OMU modules, both localization and orientation estimation
performance decrease significantly. In particular, the orientation
estimation becomes no better than a random guess. The mag-
nitude of cosine similarity matching score Mk is between −1
and 1. Normalizing the aerial descriptors makes the magnitude
of their elements stay in a similar range as Mk. If we do not
normalize the concatenated aerial descriptors, the model might
not effectively use the information in matching score Mk and
treat Mk as noise.
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TABLE IV
CCVPE ARCHITECTURE COMPARISONS ON VIGOR SAME-AREA VALIDATION

SET

Similar to concatenating aerial descriptors without normaliza-
tion, excluding the OMU module and only processing the aerial
descriptors also makes the orientation prediction fail. Since we
randomly change the ground images’ orientation during training,
there is no useful prior on the orientation when only considering
the aerial image. Next, we study the effect of different numbers
of orientation channels R. When increasing the granularity in
the orientation space, i.e. using a larger R when rolling aerial
descriptors in the LMU and OMU modules, both localization
and orientation estimation performance increases. Constructing
aerial descriptors for more global orientation intervals not only
provides more fine-grained orientation matching scores but also
improves the orientation-aware features for localization. Limited
by the widthW ′ of encoded ground feature ge(G), the maximum
R we can use is 20 on the VIGOR dataset. We observe a small
increase in mean orientation error when increasing R from 10
to 20. Overall, R = 20 provides the best localization result, and
therefore we used it in our main experiments (we used R = 16
on KITTI because the input image has a different resolution).
Similar to the Localization Decoder, we tested including 6 OMU
modules for all 6 levels in the Orientation Decoder. Although
this setting reduces the median orientation error, we observe
an increase in the localization error and mean orientation error.
LMU at higher levels has finer spatial resolutions, while the
granularity in orientation space is fixed, e.g.R = 20, in all OMU
modules. Thus, we do not expect the same benefit here as in the
Localization Decoder, and we use the OMU module only at the
first level.

When replacing the proposed Rolling & Matching by straight-
forward ground-aerial feature concatenation, there is a large drop
in both localization and orientation estimation performance,
see the comparison between ‘K = 1’ and ‘Concat@1’ and
the comparison between ‘K = 6, R = 20’ and ‘Concat@6’ in
Table IV. When directly concatenating the ground feature with
the aerial feature, the model has the additional challenge of
learning that different rotated versions of the same panoramic

TABLE V
EVALUATION OF CCVPE WITH DIFFERENT LOCALIZATION LOSSES ON VIGOR

SAME-AREA VALIDATION SET

image should be located at the same place. In contrast, our
Rolling & Matching design injects inductive biases into the
model by using the translational equivariant ground encoder,
and by forcing corresponding ground and aerial descriptors to
be similar. Specifically, we ensure this rotational equivariance
is kept by the OMU for orientation estimation. Therefore, when
inputting different rotated versions of the same panorama, the
same matching score pattern would re-occur in different ori-
entation channels. Our Orientation Decoder still needs to learn
how different permutations of matching scores translate to the
orientation vector field, but this matching volume has a relatively
low number of channels compared to concatenated ground and
aerial features. The LMU’s inductive bias is to be invariant
to different ground camera’s orientations, which is achieved
by taking the maximum over orientation channels. None of
these orientation and localization-specific inductive biases are
present in the concatenation approach, which explains the large
difference in performance.

Importantly, our Rolling & Matching is empowered by the
orientation-aware ground and aerial descriptors. If we do not
enforce the orientation awareness for the aerial descriptor by
removing the infoNCE losses, both localization and orientation
prediction performance of the model decreases significantly, see
rows with ‘No infoNCE’ in Table IV.

Loss on localization heat map: Using our best model ar-
chitecture, we compare the cross-entropy loss and Wasserstein
distance-based loss for localization and uncertainty estimation.
In Table V, we show the mean and median localization error
and the predicted probability at the ground truth pixel of models
trained with different losses.

The model trained with cross-entropy loss has a lower mean
localization error than the model trained with Wasserstein
distance-based loss. Notably, the model trained with Wasserstein
distance-based loss outputs localization distributions that are
very sharp. Biased by a few accurate predictions, the mean prob-
ability at the ground truth pixel of this model is higher than that
of the model trained with cross-entropy. However, the median
probability at the ground truth pixel is near zero, indicating many
of the ground truth locations receive little probability mass. In
temporal filtering or multi-sensor fusion, fusing such predictions
might make the system miss the ground truth location. Besides,
we also observe that training with Wasserstein distance-based
loss makes the output distribution less indicative of localization
and orientation errors. This reduces its practicality in safety
crucial applications where the outliers in prediction should
be filtered out. Thus, we used the cross-entropy loss as our
localization loss LD.
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J. Runtime Analysis

First, we study how the proposed Rolling & Matching influ-
ences the runtime of our method. On the VIGOR dataset, when
increasing the number of orientation bins (R = 2, 4, 5, 10, 20)
for Rolling & Matching in all LMU and OMU modules, the
inference speed of our method decreases slightly (18, 17, 17,
17, 15 FPS). Since the Rolling & Matching is a convolution
process between ground and aerial descriptors, it can be done
efficiently.

Next, we compare the runtime of our method to that of
previous state-of-the-art methods. To include more baselines, the
comparison is done on the KITTI dataset. On the same device
(a single V100 GPU), our method takes 0.042 s to process a
pair of input images (24 FPS) on the KITTI dataset, which is
slower than SliceMatch’s 156 FPS [32] but faster than LM’s
0.59 FPS [28]. Importantly, even though SliceMatch runs faster,
CCVPE is considerably more accurate in localization. Note that
the authors of [33] evaluated the runtime of their method on the
KITTI-360 dataset with a more advanced GPU (RTX6000), and
their method runs at approximately 2–3 Hz [33], which is slower
than CCVPE.

V. CONCLUSION

In this paper, the novel Convolutional Cross-View Pose Es-
timation method (CCVPE) was proposed. CCVPE exploits the
strength of a translational equivariant feature encoder and of
contrastive learning to learn orientation-aware descriptors for
joint localization and orientation estimation. Instead of esti-
mating a single location, its Localization Decoder outputs a
multi-modal distribution to capture the underlying localization
uncertainty. The Localization Matching Upsampling (LMU)
and Orientation Matching Upsampling (OMU) modules were
devised to summarize orientation invariant localization cues and
orientation-dependent information from the descriptor matching
result when upsampling the aerial feature maps inside two
separate decoders. The Orientation Decoder outputs a dense
orientation vector field that is conditioned on the localization
distribution. Thus, CCVPE’s orientation prediction becomes
multi-modal when there are multiple modes in the localization
distribution.

CCVPE achieves 72% and 36% lower median localization
errors (1.42 m and 3.47 m) than the previous SOTA (5.07 m
and 5.41 m) on the VIGOR and KITTI datasets, and it has com-
parable orientation estimation accuracy. Importantly, CCVPE
can work with ground images with different horizontal FoVs
and incorporate an orientation prior to improve the localization
without re-training. Its probabilistic output can be used to fil-
ter out predictions that potentially have large localization and
orientation errors, yielding better practicality than the baselines
that do not have a probability estimate. We demonstrated on
traversals collected at different times in the Oxford RobotCar
dataset that CCVPE can estimate the pose of ego-vehicle at 14
FPS with a median lateral and longitudinal error below 1 m and
a median orientation error around 1◦, bringing cross-view pose
estimation methods closer to the requirement of autonomous

driving of < 0.3 m lateral and longitudinal localization accu-
racy. Future work will address applying temporal filtering on
the single frame estimates and multi-sensor fusion to further
increase the pose estimation accuracy. Besides, more efficient
descriptor construction and matching strategies will be studied.
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