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Abstract. The Dutch heating transition involves changing the heating systems of eight million buildings to a 

sustainable alternative by 2050. Many heating system technologies are available, but deciding which systems are 

cheapest for all these buildings is a difficult question to answer. Local policymakers are increasingly making use of 

heating transition models that estimate the feasibility and costs of systems in municipal neighbourhoods. The 

applicability of these models is limited by the degree of uncertainty about the future as well as the complexity in 

communicating the model results to policymakers. Sensitivity Analysis (SA) is a tool with which the most influential 

model uncertainties can be identified, quantified and communicated. So far, limited energy transition model studies 

have extensively used this method. A case study of SA on the CEGOIA heating transition model was performed to 

fill this gap and evaluate SA’s value. CEGOIA calculates the costs of a variety of heating systems and optimizes 

the allocation of scarce energy carriers such as green gas and hydrogen to find the lowest societal costs. 

Sensitivities of eight heating system options were analysed in different archetypical neighbourhood contexts using 

Fractional Factorial analysis, the Method of Morris and the Sobol’ Method. Out of an initial set of 953 parameters, 

a selection of 5 to 10 highly influential variables – consistent between neighbourhoods of different physical 

characteristics – was identified for each heating system option. High sensitivities indicate that changing the value 

of a parameter leads to a large change in total costs. These sets therefore describe exactly what uncertainties are 

crucial to evaluating what heating system is the cheapest possible solution. Variables in these sets include, but are 

not limited to, the price and infrastructure costs of electricity and gas, heating installation costs and insulation costs. 

Besides results and insights from the CEGOIA SA, further applications for SA in heating transition modelling is 

postulated to be able to improve the modelling process as well as better understand complex model dynamics. 

One recommendation is therefore to include SA as part of the toolkit for the large heating transition models currently 

being used in the Netherlands. The main barrier for doing so with CEGOIA is the computational time of the model, 

which limited the amount of parameters that could be evaluated as well as the SA techniques that could be used. 

Still, more systematic analysis of sensitivities in heating transition models will provide insights that ultimately aid 

Dutch policymakers in making robust decisions. 

 

Keywords: Sensitivity Analysis, Model Uncertainty, Heating Transition Modelling, Method of Morris, Sobol‘ Method

Written for Environmental Modelling & Software 

 

1. Introduction 

 

The 2019 Dutch Climate Accord proposes a set of 

agreements and goals with all carbon-emitting sectors that 

aim to realize a 95% emission reduction by 2050 (Ministerie 

van Economische Zaken en Klimaat, 2019). One of five 

sectors recognized in these plans is the Built Environment, 

in which seven million residences and one million utility 

buildings require a sustainable heating alternative to natural 

gas. The Ministry of Environmental Affairs and Climate 

propose a decentralized approach in which municipalities 

direct local heating transitions focussed on a 

neighbourhood scale. In recent years this approach has led 

to the frustration of local policymakers and citizens, who 

perceive issues related to a lack of clarity about vision and 

responsibilities as well as costs (Jansma, Gosselt, & de 

Jong, 2020). 

Models that simulate, optimize and evaluate the 

energy system have increasingly been used to support 

policymakers in their decision-making (DeCarolis et al., 

2017). For instance, the Dutch government supports 

municipalities with Vesta MAIS modelling studies of the 

costs and impacts of sustainable alternatives in their 

neighbourhoods (Brouwer, 2019). These models can 

provide decisionmakers with perspective for action as well 

as financial insight, transparency and legitimacy, however 

are difficult to use (Henrich, Hoppe, Diran, & Lukszo, 2021).  

It was found that municipalities rely on third party 

modelling expertise since the models are often found to be 

too complex to use. This complexity has multiple causes: 

the energy system of buildings is relatively complicated and 

many assumptions need to be made to arrive at useful 

scenarios with which to evaluate policy. The quality of such 

models is not purely technical, the ability to communicate 

uncertainty transparently to policymakers is crucial so that 

robust policy can be made (MacGillivray & Richards, 2015; 

Walker, Lempert, & Kwakkel, 2013). The degree to which 

uncertainty in heating transition models is explored is 

therefore of interest.  

Sensitivity Analysis (SA) is the process of 

investigating how uncertainty in the output of a model can 

be apportioned to different sources of uncertainty in model 

inputs (Saltelli, Tarantola, Campolongo, & Ratto, 2004). 

This analysis is part of good modelling practice, but is often 



found to be done inadequately: the majority of studies 

evaluate the effects of changing individual parameter 

values one at a time which is inadequate for models with 

non-linear behaviour (Ferretti, Saltelli, & Tarantola, 2016).  

The use of adequate SA methods to investigate 

the robustness of energy transition modelling based policy 

is increasing, but still less common than methods such as 

Life Cycle Assessments and Cost-Benefit Analysis 

(Bottero, Dell’anna, & Morgese, 2021). What’s more is that 

SA studies that focus on heating typically limit scopes to 

individual building energy models, from which few policy 

implications can be derived (Mastrucci, Pérez-López, 

Benetto, Leopold, & Blanc, 2017; Menberg, Heo, & 

Choudhary, 2016). In an integrated study of uncertainty in 

UK energy transition pathways, Pye, Sabio, & Strachan 

(2015) demonstrated the value that SA can have for 

identifying important developments that leads to robust 

policymaking. To add to this discussion this study presents 

a SA case study of CEGOIA, a privately developed heating 

transition model. 

 

2. CEGOIA 

 

The CEGOIA model performs an economic and 

energetic evaluation of various sustainable heating 

systems applied to real-world neighbourhoods and 

subsequently optimizes the allocation of energy carriers 

within a region to arrive at the lowest cost assignation of 

heating systems. The model is privately developed and 

used by CE Delft to advise Dutch policymakers about the 

heating transition (Meyer & van de Poll, 2021). It uses a 

diverse set of data, including information about real-world 

buildings, infrastructure and heat sources (Fig 1).  Roughly 

1000 parameters are additionally used to model the 

dimensioning of energy demand and various heating 

systems. 

 
Fig 1: Simplified overview of CEGOIA model functions and inputs. 

 

The model is based around the concept of options, 

which represent specific heating systems coupled with 

additional interventions necessary to implement the 

systems in a neighbourhood (Fig 2). 

 
Fig 2: CEGOIA heating system option attributes 

 

CEGOIA is in continuous development so that 

functionality required to answer specific questions can be 

added on the fly. As such, there are several modules and 

niche heating system options included in the model which 

were not included in this analysis.  

 

3. Methodology 

 

The purpose of the CEGOIA SA is to identify a set 

of key uncertainties and quantify their sensitivities to be 

generalizable to different contexts and heating system 

options. Typical ingredients for SA include a set of input 

parameters with probabilistic uncertainty distributions, an 

experimental design with which to vary parameter values 

and an output value for which to construct sensitivity 

measures (Morio, 2011). Since CEGOIA calculates costs 

for different systems using different sets of parameters, 

eight heating systems were evaluated, for each of which 

separate analysis was performed: 1) Air-based heat pump, 

2) Ground-based heat pump, 3) Condensing boiler, 4) 

Hybrid heat pump, 5) Pellet boiler, 6) HT heat net, 7) MT 

heat net and 8) LT heat net. The output value used to base 

sensitivity is the annualized total costs of the heating 

system option. The model was set to evaluate the costs of 

options in 2050 and the analysis region was restricted to 

only one neighbourhood. Because of CEGOIA model logic 

(Fig 1), this resulted in not evaluating the effects of limited 

availability of energy in the study. 

 

3.1. SA techniques 

 

Sensitivity Analysis techniques are generally 

divided into two classes: Local and Global. Local 

techniques focus on the effects of individual parameters on 

model outcomes, whereas Global SA (GSA) varies the 

entire input space by which interaction effects are 

considered (Saltelli & Annoni, 2010). The analysis assumed 

no previous knowledge about model uncertainty and (non)-

linearity behaviour. As such, an initial Uncertainty Analysis 

(UA) was done using a two-way Fractional Factorial 

experiment design (Saltelli et al., 2008). This is a Local 

method that is computationally cheap.  



The second technique used is the Method of 

Morris (MM), by which Elementary Effects (EE) of 

parameters are calculated (Ziehn & Tomlin, 2017). MM is 

computationally inexpensive and captures indirect model 

effects, because of which it is often used as a screening 

method for models with large input spaces (Campolongo, 

Cariboni, & Saltelli, 2007).  

The third and final method used is the Sobol’ 

method, by which sensitivity indices of first and total-order 

effects are estimated  (Sobol’ & Kucherenko, 2009). Sobol’ 

index estimation requires a large number of model runs, 

because of which these indices could only be estimated for 

eight model parameters. The experiment designs and 

sensitivity measure calculation of all three methods were 

generated using the contributions of Herman & Usher 

(2018). 

 

3.2. Archetypal neighbourhoods 

 

Real-world neighbourhoods have diverse physical 

characteristics, many of which influence the viability of 

heating system options. Particular characteristics of note for 

the heating transition were found to include the socio-

economic characteristics of inhabitants, dimensioning and 

age of infrastructure as well as the number, age, function 

and type of buildings (Mutani & Todeschi, 2020). Collective 

heat sources from which heat nets can source energy are 

also highly location-specific. 

To deal with the heterogeneity of real 

neighbourhoods an archetypal approach was used. This 

approach is typical when evaluating effects in diverse 

systems and allows for conclusions about model 

sensitivities in different contexts (Marchau, Walker, 

Bloemen, & Popper, 2019). Mastrucci et al. (2017) 

demonstrated the viability of this approach in a GSA of a 

simplified building model that surrogate models based on 

specific construction periods and building types. They 

concluded such typification capture significant contextual 

differences with a high degree of conformity to the original 

model.  

A novel archetypal classification approach was 

used for CEGOIA based on the density of neighbourhoods 

and the dominant construction period of buildings within it. 

CEGOIA neighbourhoods characteristics were assigned 

using the classification (based on the scheme in Fig) and 

subsequent aggregation of Dutch neighbourhoods using a 

public dataset (Centraal Bureau voor de Statistiek, 2020). 

Due to time constraints, five archetypes were evaluated (). 

Even considering only those parameters directly 

related to individual heating systems, CEGOIA and heating 

transition models, in general, have a larger than 

conventional number of input parameters on which to use 

SA (Sheikholeslami, Razavi, Gupta, Becker, & 

Haghnegahdar, 2019). Three types of parameters can be 

distinguished: spatial parameters which describe the 

region’s physical characteristics, scenario parameters 

which describe the changes to the current energy system 

context to the future one and modelling parameters, with 

which economic and energetic impacts are modelled. 

Spatial characteristics have been accounted for in the 

archetypical approach. Scenario and modelling 

parameters, therefore, remain for varying under SA. 

Archetype Description 

 2 High urbanity ‘first ring’, predominantly built 

between 1900 and 1945 

3 High urbanity ‘post-war’, built between 1945 and 

1965 

6 High urbanity suburban ‘Bloemkoolwijk’ or ‘cul-

de-sac’ built between 1965 and 1990 

11 High and moderate urbanity recent construction, 

built after 1990 

 14 Non-urban (rural) areas, with diverse 

construction periods 

 

3.3. Parameter grouping and probability distributions 

 

By reducing the number of input variables to vary 

more powerful SA techniques can be used (Saltelli et al., 

2008). The screening was therefore done in conjunction 

with factor grouping (Anderson, You, Wood, Wood-Sichra, 

& Wu, 2015). SA methods assume input variables are not 

interdependent, but in practice, this is not always the case. 

By grouping sets of input parameters together, 

independency can be assured and the number of variables 

to vary decreased. By doing so, however, the assumption 

is introduced that variable values correlate perfectly. This is 

not a valid assumption in most cases, and so it must be 

recognized that the explanatory power of SA using factor 

grouping is decreased. Still, the method was used for 

CEGOIA to arrive at a set of parameters with which SA 

could be performed in a realistic timeframe. 

Because of the high number of input variables, 

probability distributions for the uncertainty of parameter  

  

Table 1: Selected neighbourhoods for SA 

 

Certainty symmetrical lower symmetrical upper positive skew lower positive skew upper negative skew lower negative skew upper

certain -15% 15% -5% 15% -15% 5%

uncertain -25% 25% -10% 25% -25% 10%

very uncertain -50% 50% -15% 50% -50% 15%

Fig 4: NUSAP uncertainty distributions 

Fig 3: Classification of archetypal neighbourhoods  
 

before 1900 1900-1945 1945-1965 1965-1990 1990-now

1 (high)

2

3 4 8

4 5 9

5 (low)

1 2 3 6
11

13

12
14

Urbanity

Construction year



values were gathered using expert elicitation with 

the help of the NUSAP (Number Unit Spread Assessment 

Pedigree) framework (Funtowicz & Ravetz, 1990).  

Three CEGOIA model developers were involved in 

the definition of the distributions in Figure 4 which were 

subsequentially assigned to model parameters. One 

symmetrical and two skewed uncertainty distribution were 

deemed suitable, and uncertainty about a parameter’s 

value was labelled with certain, uncertain or very uncertain. 

This method was previously employed by Pye et al. (2018) 

to generate distributions on input variable uncertainty for 

SA.  

 

4. Results 

 

Three SA techniques were used for the screening 

and sensitivity evaluation of CEGOIA parameters. Analyses 

were done for five different neighbourhoods. The model 

took two to three days for evaluating each of the fifteen SA 

experiments. 

 

4.1. Screening  

 

Fractional Factorial analysis of 265 (grouped) model 

variables representing 695 CEGOIA parameters was done 

as a first screening test. Alikeness between options (Figure 

5) was evaluated using the Main Effects to get an indication 

of how alike options are. Correlation is dictated by the 

similarity in heating techniques and temperature at which 

heat is delivered, indicating that sensitivities of correlating 

options will be similar. 

 
Fig 5: Correlation of heating system options based on the 
estimated parameter Main Effects  

 

The individual parameter effects found using this 

method indicated in Figure 6 suggest that there is a small 

set of parameters that has a significant impact on all heating 

system options. These are the costs related to electricity 

and depreciation periods of building modifications 

(insulation) and installations (heat production and 

distribution systems). Lighter colours in Figure 6 indicate a 

higher effect on total system cost observed when that single 

parameter is increased; note that no interaction effects are 

included. Effects coloured dark green can be considered 

insignificant due to the relatively low confidence associated 

with FF analysis. Further parameters that have high direct 

effects are specific to heating systems: heat pumps are 

sensitive to the investment costs of the heat pumps, costs 

of radiators and insulation. Boilers are sensitive to costs 

related to gas, heat nets are sensitive to the connection 

costs and simultaneity factor with which the nets are 

dimensioned. 

Based on results from FF analysis a reduction of 

parameters to 119 (grouped) model variables representing 

491 CEGOIA parameters was done. These parameters 

were used for the application of the Method of Morris. 

Figure 7 contains results indicating indirect effects for an 

hybrid heat pump, whilst Figures 8, 9 and 10 contain direct 

effect results for respectively a, air heat pump, hybrid heat 

pump and MT heat net. In Figure 7, the absolute 

Elementary Effects are plotted on the x-axis and the 

standard deviation of the option is plotted on the y-axis. The 

standard deviation that is estimated by the Method of Morris 

is a stand-in for the indirect effect of the parameter (Morio, 

2011). In relative terms, the covariance of insulation costs 

and heating demand was found to be high (0,5+), whereas 

many of the other parameters have ratios that are at the 

lower end. In general it can thus be said there are few 

interaction effects in the model. This implies that the use of 

Fig 7: Elementary Effects of hybrid heat pump and related 
direct (x-axis) and indirect (y-axis) effects  



Local SA techniques can be a decent estimator for what 

actual sensitivities are in heating transition models such as 

CEGOIA.  

 Figures 8 reports that for a typical Dutch house in 

a typical Dutch neighbourhood the costs of insulation and 

the costs for the heat pump itself are the main sources of 

sensitivity; changes in these values influence how cheap or 

expensive the total system will be the most. Other 

parameters of note are the electricity price, radiator and 

ventilation costs. Although often a topic when discussing 

electrification, grid reinforcement costs have a relatively 

small effect. Because the cul-de-sac neighbourhood uses 

averaged data from real neighbourhoods, this implies that 

reinforcement costs are not often going to be a deciding 

factor in choosing an alternative. The OPEX costs for 

electricity infrastructure is a parameter that is very 

influential in each of the heating system options. Yet, in the 

big picture, they may not be very important to decision 

making in the heating transition. This is because these 

costs are about the same for any of the heating system 

options evaluated by CEGOIA. After all, all buildings are 

required to be connected to – and pay for – the electricity 

grid.  

Figures 9 concerns hybrid heat pumps results. 

Their costs are found to mostly be influenced by the price 

of gas and the investment costs for the pump itself. The 

fraction of electricity/gas is also important. If hybrid heat 

pump installers can realize low investment costs as well as 

a high fraction of electricity use without spending much 

money on insulation this option will often be the cheapest in 

comparisons.  

 Figures 10 shows the effects of MT heat net 

parameters. The connection costs of heat nets, insulation 

costs, collective heat pump investment costs and the 

discount rate used for MT heat net infrastructure are the 

most influential parameters. Developments that decrease 

the connection costs will have the biggest effect on the 

choice of MT heat nets. The discount rate – which is set to 

6% in CEGOIA – is of particular interest. These rates are 

set by heat net investors to reflect the profitability of an 

investment. Lower discount rates result in a cheaper total 

system, and could be realized by collectivizing heat net 

investment by public institutions. Other parameters that are 

also of notable consequence are the electricity price, costs 

of the collective heat source and further heat net specific 

parameters such as the simultaneity factor, overcapacity 

factor and pipe sizing. Somewhat surprisingly the costs of 

the heat from a collective heat source is not as influential 

as the collective heat pump – which is required to meet 

peak demand. 

After using MM a further selection of parameters 

was done for which to determine model sensitivity using 

Sobol’ indices. Because the Sobol method is very 

computationally expensive, only seven parameters could 

reasonably be included in this analysis. These were chosen 

from the parameters that were consistently found to be 

influential amongst options and unsurprisingly comprise 

mostly scenario parameters rather than modelling ones. 

Several of the selected parameters were constructed from 

further grouping: 

 

• Insulation costs: Includes all costs associated with 

insulation upgrades: every energetic performance level, 

Fig 9: Elementary Effects for hybrid heat pump 

Fig 10: Elementary Effects for MT heat net 

Fig 8: Elementary Effects for air heat pump 



building type and building period for both residential and 

utility applications. 

• Heating system costs: Covers investment costs and 

maintenance costs of production (like heat pumps and 

pellet boilers), and distribution systems (radiators).  

• Gas infrastructure costs: Covers the CAPEX, OPEX 

as well as the removal costs for gas infrastructure, and 

represents the trend of adding or removing new gas 

infrastructure. 

• Heat net infrastructure costs: Encapsulates a wide 

range of costs, specially selected based on their 

appearance on the heat maps. Includes connection 

costs, peak factors and provisions. 

• Gas price: The cost of (green) gas in 2050 based on 

the learning curve factor. 

• Electricity price: The cost of electricity in 2050 based 

on the learning curve factor. 

4.2. Sensitivities 

 

The sensitivities of eight heating system options 

were attributed to seven parameters. Aggregated results 

displayed in Table 2 show that the costs of each system 

can generally be explained by a handful of trends. Heat 

pumps are equally sensitive to the costs of the heat pump 

and insulation costs. Condensing boilers and hybrid heat 

pumps are sensitive to the price of gas, insulation and 

heating systems. Pellet boilers are found to be principally 

sensitive to heating system costs, but it must be noted that 

biomass costs were not included in this analysis. Heat nets 

vary significantly in their sensitivity. LT heat nets are notably 

much less sensitive to heat net infrastructure costs, but 

more sensitive to the costs of insulation and heating 

installation. 

 Between neighbourhoods, it was found that older 

neighbourhoods have a much higher sensitivity to insulation 

costs than recent ones, and more rural neighbourhoods had 

higher sensitivities to infrastructure costs. Other than these 

differences, sensitivity results for the heating options are 

generally similar and so results in Table 2 provide a way to 

rank the importance of uncertainties related to the included 

parameters.  

 

5. Discussion and limitations 

 

 Three analyses were performed on CEGOIA. 

Fractional Factorial analysis results proved useful for 

identifying influential parameters as well as to quantify the 

likeliness of the different heating system options. Perhaps 

unsurprisingly, significant correlations were found between 

heating system options that use similar technologies, such 

as heat net and heat pump options. Although such results 

are not shocking to those that are familiar with the model, 

quantifying such relationships is useful to someone without 

tacit knowledge about the model’s dynamics.  

The distribution of parameter effects for each 

heating system option was found to conform to a Pareto-

like distribution, in practice resulting in one to three 

variables having a very large effect, a handful having a 

medium effect, about a dozen variables having a weak 

effect and the others having little to no effect on the costs 

of an option. The types of variable that came up was fairly 

consistent throughout all options, such as heating system 

investment costs and energy price. This suggests that it is 

possible to reduce the total number of parameters whilst 

keeping the analysis meaningful.  

Using MM it was found that insulation costs and 

heating demand do have significant effects on the model 

outcome, most of which is expressed through interactive 

effects with other variables. In contrast, certain 

infrastructure variables were found to have no indirect effect 

on the model outcome at all. The other factors were all 

found to have some indirect effects, although their ratio of 

indirect over direct effects can be considered to be 

generally low. For CEGOIA, these results imply that the 

direct effect observed by changing a single input variable is 

somewhat representative of the sensitivity of the model to 

that variable, as long as that variable is not insulation or 

energy demand related.  

The Sobol method was used to determine general 

sensitivities of CEGOIA heating options to seven impactful 

partially grouped variables. Within this selection of 

variables, it was again found that the effect of higher-order 

interactions was on the low side overall. Sensitivities of 

heating system options were generally similar in different 

neighbourhoods, although insulation is more important in 

Table 2: Sensitivities of CEGOIA to seven trend parameters, averaged over five neighbourhoods. 



older neighbourhoods and infrastructure in less dense 

neighbourhoods. The sensitivities of CEGOIA heating 

options were found to be a useful way of highlighting the 

major trends that are important in determining the total 

system costs.  

 The inclusion of more parameters in this analysis 

could have provided many more specific insights. However, 

the computation time required for this SA is not insignificant 

and hindered the use of more elaborate analysis, especially 

using the Sobol method. The NUSAP approach used for 

defining parameter ranges was found to be useful, but 

further research should be supplemented by desk research 

for parameters with high uncertainty. The grouping of 

parameters and archetype approach was found to be a 

useful assumption with which to reduce the complexity of 

analysis, although care must be taken in applying results to 

real neighbourhoods that local circumstances matter.  

 

6. Conclusions 

 

Sensitivities found for CEGOIA were evaluated for 

eight different heating system options and five 

neighbourhoods with diverse physical characteristics. For 

each option, a set of ten to twenty parameters were found 

to have any significant influence on the total costs of the 

sustainable heating system. Generally speaking, the costs 

are very sensitive to a set of only one to five parameters. 

These parameters are often the price of the energy 

carrier(s) used by the system, the investment costs and 

efficiency of the heat production system and the costs for 

infrastructure. For heat nets, in particular, several 

parameters affecting heat net dimensioning were found to 

be of influence. The most important of these is the 

connection costs of buildings to the net.  

Other parameters that contribute significantly to 

the model outcome are the maintenance of the heat 

production system and investment costs into the heat 

distribution system. The costs of insulation become more 

significant as the age of buildings in the neighbourhood gets 

older. The (heat) energy demand of buildings was found to 

not have much direct influence on the system costs. 

Indirectly, however, both insulation and energy demand 

were found to contribute significantly to the costs of the 

overall system. 

With these results statements can be made about 

the confidence in CEGOIA predictions. A general 

observation is that as a whole, the margin of uncertainty in 

results is quite high. As a consequence, the decision of 

whether a certain option is going to be cheaper than 

another is often very uncertain. For this reason it is 

important to further investigate whether an option is more 

or less uncertain than another, and which developments are 

the primary drivers of the uncertainty. To reduce uncertainty 

in the heating transition policymaking should furthermore be 

based on controlling these developments. 

Heating transition models often have a lot of input 

variables that could be considered for evaluation with SA. 

Spatial data should be systematically varied to be able to 

interpret the effect of the context in which the model is used. 

A way to do this is by creating typical contexts, such as the 

archetypical neighbourhoods that were constructed for 

CEGOIA. SA techniques are practical so long as the 

number of parameters and the time to calculate the model 

results is limited. Several ways to reduce the number of 

parameters exist and apply to heating transition models. 

These include the grouping of factors that are natural to 

move together and the screening of parameters with basic 

SA techniques. 

The calculation time for CEGOIA was found to be 

a limiting factor to SA. More details about – and a higher 

level of confidence in sensitivity results, are attainable with 

more model runs. A further research recommendations for 

the CEGOIA model specifically is therefore to invest in 

optimizing the model for SA and investigating more 

parameter sensitivities using the Sobol’ method, possibly 

considering one heating system at a time.  
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