

Delft University of Technology

Evolution of automated weakness detection in Ethereum bytecode
a comprehensive study
di Angelo, Monika; Durieux, Thomas; Ferreira, João F.; Salzer, Gernot

DOI
10.1007/s10664-023-10414-8
Publication date
2024
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
di Angelo, M., Durieux, T., Ferreira, J. F., & Salzer, G. (2024). Evolution of automated weakness detection
in Ethereum bytecode: a comprehensive study. Empirical Software Engineering, 29(2), Article 41.
https://doi.org/10.1007/s10664-023-10414-8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-023-10414-8
https://doi.org/10.1007/s10664-023-10414-8

Empirical Software Engineering
https://doi.org/10.1007/s10664-023-10414-8

Evolution of automated weakness detection in Ethereum
bytecode: a comprehensive study

Monika di Angelo1 · Thomas Durieux2 · João F. Ferreira3 · Gernot Salzer1

Accepted: 18 October 2023
© The Author(s) 2024

Abstract
Blockchain programs (also known as smart contracts) manage valuable assets like cryptocur-
rencies and tokens, and implement protocols in domains like decentralized finance (DeFi)
and supply-chain management. These types of applications require a high level of secu-
rity that is hard to achieve due to the transparency of public blockchains. Numerous tools
support developers and auditors in the task of detecting weaknesses. As a young technol-
ogy, blockchains and utilities evolve fast, making it challenging for tools and developers to
keep up with the pace. In this work, we study the robustness of code analysis tools and the
evolution of weakness detection on a dataset representing six years of blockchain activity.
We focus on Ethereum as the crypto ecosystem with the largest number of developers and
deployed programs. We investigate the behavior of single tools as well as the agreement of
several tools addressing similar weaknesses. Our study is the first that is based on the entire
body of deployed bytecode on Ethereum’s main chain. We achieve this coverage by consid-
ering bytecodes as equivalent if they share the same skeleton. The skeleton of a bytecode
is obtained by omitting functionally irrelevant parts. This reduces the 48 million contracts
deployed on Ethereum up to January 2022 to 248328 contracts with distinct skeletons. For
bulk execution, we utilize the open-source framework SmartBugs that facilitates the anal-
ysis of Solidity smart contracts, and enhance it to accept also bytecode as the only input.
Moreover, we integrate six further tools for bytecode analysis. The execution of the 12 tools
included in our study on the dataset took 30 CPU years. While the tools report a total of
1307486 potential weaknesses, we observe a decrease in reported weaknesses over time, as
well as a degradation of tools to varying degrees.

Keywords Bytecode · Blockchain · Debugging · Detection tools · Ethereum · EVM ·
Program analysis · Reproducible Bugs · Smart contracts · Vulnerability

Communicated by: Eric Bodden

B Monika di Angelo
monika.di.angelo@tuwien.ac.at

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10414-8&domain=pdf
http://orcid.org/0000-0002-4217-4530
http://orcid.org/0000-0002-1996-6134
http://orcid.org/0000-0002-6612-9013
http://orcid.org/0000-0002-8950-1551

Empirical Software Engineering

1 Introduction

Smart contracts are event-driven programs running on the nodes of decentralized networks
known as blockchains. Specific transactions, once included in the blockchain, trigger the
execution of these blockchain programs. Every node executes the code locally within a
virtual machine and updates its state of the blockchain. The computations are deterministic,
ensuring that all nodes arrive at the same state. The flexibility of smart contracts and the
unique properties of blockchains, most notably decentralization and immutability, gave rise
to innovative applications in areas like decentralized finance and supply chain management.
Their potential has led to ecosystems with large numbers of start-ups and market caps of
hundreds of billions of USD.

Against this background, errors in smart contracts can lead, and have led, to costly disrup-
tions and losses. Early on, academia and industry focused onmethods and tools for developing
secure smart contracts. In a survey on automated vulnerability detection conducted in mid-
2021, Rameder et al. (2022) identified 140 tools for Ethereum, the major smart contract
platform. The sheer number makes it hard to decide which tools may be suited for the task
at hand, and calls for regular tool evaluations and comparisons.

In this paper, we present a comprehensive evaluation of 12 tools for vulnerability detection
on the Ethereum main chain. The goal of this study is to analyze how typical tools behave
within the Ethereum ecosystem.We focus on the evolution of tools and their findings to iden-
tify common patterns and trends. The results of our study can be utilized to inform developers
about the state of the art in automated vulnerability detection and to guide researchers in the
development of new tools. Additionally, it provides an overview of the reliability of the
selected tools and whether they should be included in future studies.

Our work differs from previous studies in several aspects. First, we analyze the temporal
evolution of weakness detection, focusing on the robustness of tools over time (rather than
assessing their detection capabilities against a set of contracts).

Second, we aim at a complete coverage of the Ethereummain chain, which is a formidable
endeavor in light of 48 million deployments of smart contracts (up to Jan 2022). This enables
us to investigate the evolution of weakness detection over a period of more than six years.
We select one contract per skeleton of bytecode (cf. Section 3), which reduces the number
of objects to analyze to 248328.

Third, we concentrate on the runtime bytecode as input to the tools. Surveys usually
evaluate tools on benchmarks of Solidity source code (cf. Section 12), and hence omit tools
analyzing bytecode only. Moreover, for many contracts on the blockchain, the source code is
not available. By choosing runtime bytecode as the least denominator, we can include tools
rarely considered, and we are able to analyze all smart contracts deployed so far.

Finally, to perform our study, we extend SmartBugs (Ferreira et al., 2020), a framework
for executing analysis tools in a unified manner. Integrating new tools into the framework
makes them available for future evaluations by others.

With 12 tools, 15 weakness classes, 248328 runtime bytecodes of smart contracts and
an execution time of 30 years, our evaluation is more comprehensive than previous studies.
The large number of samples as well as the method of selection allows us to add a unique
temporal perspective. In summary, the contributions of this paper are:

– A method for selecting a feasible number of smart contracts that are representative of
48M blockchain programs deployed on Ethereum in the course of six years.

123

Empirical Software Engineering

– A public dataset of 248328 smart contracts that may serve as the basis of further evalu-
ations. 1

– An extension of the framework SmartBugs to include 12 tools for vulnerability detection
with bytecode-only input. 2

– Methods for analyzing and visualizing the temporal evolution of tool results and the
overlap between tools.

– A portrait of the evolution of tool behavior and weakness detection on six years of
blockchain activity.

2 Study design

Our study aims to provide a comprehensive perspective on the evolution of weaknesses
in smart contracts, as detected by automated analysis tools. We focus on the Ethereum
blockchain, which is the major platform for smart contracts in terms of the number of appli-
cations, market cap, attacks, and countermeasures. To address the research questions outlined
below, we proceed as follows.

Collecting the Contract Data. The study period covers the 14 million blocks from
Ethereum’s start on 30 July 2015 up to 13 Jan 2022. During this period, there were 48
million contract deployments. Analyzing the contracts in their entirety is not only infeasible,
but wastes resources and introduces biases, as the deployments range from one-of-a-kind
contracts to code deployed hundreds of thousands of times. In Section 3, we introduce the
skeleton of contracts. By grouping contracts with identical skeletons and selecting only one
contract per group, we capture the diversity of the Ethereum ecosystem by analyzing just
248328 contracts. We assess various properties of the data needed later on.

Selecting the Analysis Tools. Performing a large-scale analysis on smart contracts that, in
general, are only available as bytecode, restricts the number of applicable tools. In Section 4,
we specify the selection criteria and apply them to the 140 tools identified by Rameder et al.
(2022).We describe the 12 tools that remain regarding engineering aspects and their approach
to contract analysis.

Analyzing the contracts. To execute 12 tools with diverse requirements and I/O formats on
248328 contracts, we select the execution framework SmartBugs. Initially, it contained only
half of the needed tools and required Solidity source code as input. We extended SmartBugs
to accept bytecode as well and added the other six tools. After a cumulative execution time
of 30 years, we obtain three million records, each specifying the result of running a single
tool on a specific bytecode. We refer to Section 5 for the details regarding the execution
framework.

Mapping theWeaknesses to a Common Taxonomy.The execution data allows us to analyze
the detection results per tool. To facilitate the comparison and aggregation of results from
multiple tools, wemap the tool findings to a common taxonomy that is described in Section 6.

Based on the results of running the analyzers on the bytecodes, we address the following
research questions.

RQ1 Abstraction. How well are skeletons suited as an abstraction of functionally similar
bytecode in the context of weakness analysis? In Section 7, we investigate whether and how
the weakness analysis of bytecodes with the same skeleton differs.

1 Available at https://github.com/gsalzer/skelcodes
2 Available at https://github.com/smartbugs/smartbugs

123

https://github.com/gsalzer/skelcodes
https://github.com/smartbugs/smartbugs

Empirical Software Engineering

RQ2 Weakness Detection.Which trends in the weakness reports of analysis tools can be
identified for the contracts on Ethereum’s main chain? In Section 8, we are interested in the
evolution of types and numbers of weaknesses reported for the deployments up to early 2022.

RQ3 Tool Quality. How do analysis tools change their behavior in a weakness analysis
with bytecode input? In Section 9, we investigate the evolution of tool quality with respect
to maintenance aspects, execution time, errors, and failures.

We do not assess the individual performance of the tools, like the rates of true/false posi-
tives/negatives, as there is no ground truth that is sufficiently large, consistent and balanced
for a conclusive evaluation (di Angelo and Salzer, 2023).

RQ4 Overlap Analysis. To which extent do the tools agree when addressing similar weak-
nesses? In Section 10, we determine the overlap of tools for weaknesses that can be mapped
to the same class of the SWC registry.

Discussion. In Section 11, we combine the results of our research questions. For two
specific SWC classes, we investigate how the agreement of the tools evolve over time, and
provide an explanation. Moreover, we consider the limitations of our study.

Related work. Section 12 gives an overview of studies similar to ours and highlights the
differences. Moreover, it compares two execution frameworks and justifies our decision for
using SmartBugs.

3 Contract data

This section describes the collection and preparation of the contract data that we are going to
analyze. Moreover, we assess some characteristics of the data that will be needed to interpret
the results of the analysis tools. We start by clarifying some concepts specific to Ethereum.

3.1 Creation of contracts

Deployment vs. runtime code. To deploy a contract on an Ethereum chain, an external user
submits a create transaction, or the Ethereum Virtual Machine (EVM) executes a create
operation. The transaction/operation includes the deployment code. The code consists of an
active part, D, which typically initializes the environment for the new contract. At its end,
D returns the pointer to a memory area with the actual runtime code, which the EVM then
stores at the address of the new contract. The deployment code is free to assemble the runtime
code arbitrarily, but typically just copies code following D in the deployment code.

Source code vs. bytecode. The majority of Ethereum contracts are written in Solidity, a
programming language inspired by C++. The so-called constructor and any global initial-
izations compile to the active part of the deployment code, D, whereas all other parts of the
source file compile to the runtime code proper, R, which is appended to D. After R, the
compiler appends meta-data, M , which contains a hash identifying the original source code
and version information. Changing any character in the Solidity file, including comments and
the newline encoding, alters M and leads to superficially different deployment and runtime
codes.

To illustrate the role of the different forms of code, consider the program in Listing 1. It
shows the Solidity code of a contract C1 that deploys a contract of type C2 as part of its
own deployment. At runtime, each call to function f deploys a contract of type C3. From
this source code, the compiler generates a bytecode of the form D1R1D3R3M3M1D2R2M2.
During deployment, D1 creates the contract C2 by executing D2R2M2, with the runtime

123

Empirical Software Engineering

Table 1 Deployments up to
Block 14M (Jan 2022)

Metric # Contracts

Deployments 48262411

Distinct deployment codes 2206793

Distinct runtime codes 514893

… without meta-data 364599

… without PUSH arguments 249076

Skeletons 248328

code R2M2 getting stored at the address of C2. Then D1 returns R1D3R3M3M1 as runtime
code, which is stored at the address of C1. Later, when the function f of contract C1 is
called, D3R3M3 gets executed and creates a new contract with runtime code R3M3. Note
the multiple occurrences of meta-data and their proliferation during deployment and runtime.

Skeletons. The skeleton of a contract is obtained by removing meta-data, the arguments of
PUSH operations, constructor arguments, and trailing zeros. The rationale is to remove parts
that contribute little to the functionality of the contract, with the aim to equate contracts with
the same skeleton.

Code family. A family of codes is a collection of runtime codes with the same skeleton.

3.2 Data Collection

Westrive for a complete coverage ofEthereum’smain chain. Therefore,we collect the runtime
codes of all contracts (including the self-destructed ones) that were successfully deployed
up to block 14M (13 Jan 2022).3 Table 1 gives an overview of the deployment activities. The
48.3M contract creations involved 2.2M different deployment codes, generating a total of
0.5M distinct runtime codes. The removal of meta-data reduces the number of distinct codes
by 29%, and the removal of PUSH constants by another 22%.

For each family of codes, i.e., for each collection of codes sharing the same skeleton, we
pick a single representative and omit the others. For practical purposes,we prefer deployments
where Etherscan lists the corresponding source code. The longest-lived family consists of
two codes implementing an ERC20 token, deployed 17333 times over a range of almost
12 million blocks, whereas the most prolific family consists of 20 codes deployed over 12
million times. 4 The size of the families seems to follow a Pareto principle: 84% of the
families are singletons (the skeleton is uniquely associated with a single runtime code), 15%

3 We used an OpenEthereum client, https://github.com/openethereum/openethereum.
4 The codes of this family, 21 bytes in length, belong to gas token systems. When called from the address
mentioned in the code, the contracts self-destruct, leading in earlier versions of Ethereum to a gas refund.

123

https://github.com/openethereum/openethereum.

Empirical Software Engineering

Table 2 Forks on Ethereum’s main chain introducing new operations

Name of fork Activated at New operations

Homestead 1.150M DELEGATECALL

Byzantium 4.370M RETURNDATASIZE, RETURNDATACOPY, REVERT, STATICCALL

Constantinople 7.280M CREATE2, EXTCODEHASH, SAR, SHL, SHR

Istanbul 9.200M CHAINID, SELFBALANCE

London 12.965M BASEFEE

of the families consist of 2 to 10 codes, whereas at the other end of the spectrum we find a
skeleton shared by 16372 codes. 5

We obtain a dataset of 248328 runtime codes with distinct skeletons that represent all
deployments up to January 13, 2022. 99.0% of these codes originate from the Solidity
compiler (as determined by characteristic byte sequences), with the source code for 46.5%
actually available on Etherscan. For our temporal analyses, we associate each code with the
block number where the first member of the family was deployed.

Not all bytecodes are proper contracts. In particular in the early days of the main chain,
during an attack, a number of large ‘contracts’ were deployed that served as data repositories
for other contracts. For some tools, this leads to a noticeable spike in the error rate around
block 2.3M.

3.3 Forks Introducing NewOperations

Over time, Ethereum has seen several updates, so-called forks. Some of them add new
operations to the EVM; Table 2 gives an overview of those relevant to our study. When
interpreting the results of an analysis tool, we have to relate the age of the tool to these forks
in order to understand the effect of new operations.

The actual use of new operations varies. It depends on the integration of the operations
into the Solidity compiler, the adoption of new compiler versions by the contract developers,
and on the relevance of the operation. Figure 1 shows the use of compiler versions as well as
the share of contracts using a particular operation. In the remainder of the section, we first
explain the origin of the data and then discuss the details of the figure.

For bytecodes with a source code on Etherscan.io (46.5%), we take the compiler version
from there. For the others, we try to extract it from the embedded meta-data, succeeding for
another 22.8% of the bytecodes. Given that 99% of the bytecodes have been generated by
the Solidity compiler, we extend the compiler distribution in each bin of 100k blocks from
the codes with a known version to the remaining ones. For the stackplot in the background of
Fig. 1, this amounts to considering the share of 69.3% bytecodes with version information
as 100% of the data.

We group the 100+ compiler versions into 10 ranges, such that from each range to the
next, at least one additional operation from Table 2 is supported, either by Solidity offering
a new language element related to the operation, or by the compiler using the new operation
internally to generate better bytecode.

5 These codes are proxy contracts of 45 bytes that forward any incoming call to a fixed address. The 16372
codes only differ with respect to this hard-coded address, occurring as the argument of a PUSH operation.

123

Empirical Software Engineering

Fig. 1 The use of new EVM operations as well as the adoption of new compiler versions over time. In the fore-
ground, each line shows the percentage of bytecodes containing a particular operation, per bin of 100k blocks.
The background shows the distribution of compiler versions for each bin. DELEGATECALL appears from
compiler version 0.4.9 onwards, REVERT from 0.4.10, RETURNDATACOPY and RETURNDATASIZE from
0.4.22, STATICCALL from 0.5.0, SAR, SHL and SHR from 0.5.5, SELFBALANCE from 0.5.14, CREATE2
from 0.6.2, CHAINID from 0.8.0, and BASEFEE from 0.8.7 onwards. EXTCODEHASH is only available via
assembly code

It is inherently difficult to determine the parts of a bytecode that are reachable and may
get executed. To obtain a list of the operations in a bytecode, we identify the first code block
and extract its operations linearly. This yields an overapproximation, as data embedded in
the code may be mistaken as operations.

In Fig. 1, the effect of this overapproximation is visible up to block 3M. Except for
DELEGATECALL, none of the new operations has been added to the EVM yet, but the plots
show their occurrence at a rate of up to 8% nonetheless. The spike at block 2.3M, with all
operations seemingly occurring simultaneously at a rate of 28%, is an artefact caused by
a large number of ‘contracts’ consisting entirely of data (the by-product of an attack). The
first real phenomenon to observe is the REVERT operation (medium blue line), introduced
by compiler version 0.4.10 (gray area). The compiler starts to use REVERT for exception
handling shortly after 3M, even though the operation is added to the EVM only at fork
4.37M. Before the fork, REVERT causes an EVM exception just like the invalid opcode used
for this purpose until then, but performs a more refined error handling after the fork.

The other operations of fork 4.37M are adopted by the Solidity compiler with some delay.
From version 0.4.22 onwards, the pair of RETURNDATA operations (lines in two shades of
violet, with the plots almost coinciding) is used for most calls and eventually occurs at a rate
beyond 80%. STATICCALL (light blue line) gets in use even later, rising to a rate of 60%
towards the end of the timeline.

The shift operations SHL (yellow line) and SHR (orange line) are of particular importance.
At the end of the study period, they occur in almost every contract. As the function dispatcher
at the start of a contract now uses SHR, this operation gets executed with virtually every
invocation of a contract. Of the other operations, only SELFBALANCE and EXTCODEHASH
are used to some extent, while DELEGETECALL,CREATE2,SAR,CHAINID and BASEFEE
play a lesser role. 6

6 The low number of contracts containing DELEGATECALLmay seem surprising, given that this operation is
essential for hundreds of thousands of proxy contracts. But as these contracts show little variety (few skeletons),
they are represented by only a small number of contracts in our dataset.

123

Empirical Software Engineering

Table 3 Tools Selected for the Study

Tool Reference URL Version

Conkas github.com/nveloso/conkas 6aee09

Ethainter Brent et al. (2020) zenodo.org/record/3760403 2b26bf

eThor Schneidewind et al. (2020) secpriv.wien/ethor/ 6405e0

MadMax Grech et al. (2018) github.com/nevillegrech/MadMax 6e9a6e9

Maian Nikolić et al. (2018) github.com/ivicanikolicsg/MAIAN 4bab09

Mythril Mueller (2018) github.com/ConsenSys/mythril 0.22.32

Osiris Ferreira Torres et al. (2018) github.com/christoftorres/Osiris ff3828

Oyente Luu et al. (2016) github.com/enzymefinance/oyente 480e725

Pakala github.com/palkeo/pakala 1.1.10

Securify Tsankov et al. (2018) github.com/eth-sri/securify d367b1

teEther Krupp and Rossow (2018) github.com/nescio007/teether 04adf5

Vandal Brent et al. (2018) github.com/usyd-blockchain/vandal d2b004

The tools kept in boldface are the ones newly added to the execution framework

4 Analysis Tools

In this section, we specify the selection of tools and describe those that we use in our analysis.

4.1 Selection of Tools

The setting of our study imposes several restrictions on the tools that we can use. Starting
from the 140 tools identified by Rameder et al. (2022), we apply the following selection
criteria. The numbers in parentheses indicate how many tools in the initial collection fulfill
the criterion.

1. Availability: The tool needs to be publicly available with its source open (83).
2. Input: The tool is able to analyze contracts based on their runtime bytecode alone (73).

This excludes tools that need access to the application binary interface7, to the source
code, or to a particular state of the blockchain.

3. Findings: The tool offers an automated mode (41) to report weaknesses (79). Some
systems are tool boxes for the manual analysis of single contracts. Moreover, not all
tools target weaknesses, but contracts like honeypots or Ponzi schemes.

4. Interface: The tool can be controlled via a command-line interface.
5. Documentation: There is sufficient documentation to operate the tool.

Criteria without a number were only checked after the ones with a number had been applied.
The selection processes yielded the 12 tools in Table 3.

4.2 Synopsis of Tools

Conkas uses the third-party component Rattle to construct a control flow graph and to lift
the bytecode to static single assignments. Then it executes this intermediate representation
symbolically and checks the execution traces for patterns that indicate weaknesses.

7 https://docs.soliditylang.org/en/latest/abi-spec.html

123

https://github.com/nveloso/conkas
https://github.com/nveloso/conkas/commit/6aee0981663dd80310658723c6f48af6ec90cdb6
https://zenodo.org/record/3760403
https://hub.docker.com/layers/smartbugs/ethainter/latest/images/sha256-2b26bfb83263c9c4ecf7f62e7dba95709bdfe44f3adaeca55f154c717b2ecaa1?context=explore
https://secpriv.wien/ethor/
https://hub.docker.com/layers/smartbugs/ethor/rmvi20q/images/sha256-6405e0edbf7090a2ce3bca470414766e41b6c3324f1e979f10f0f81622840066?context=explore
https://github.com/nevillegrech/MadMax
https://github.com/nevillegrech/MadMax/commit/6e9a6e99c660f0e372e61cf9c7b30be481e047ec
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN/commit/4bab09ae03f7e27117d653ef8398ec0b2a95f726
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril/tree/v0.22.32
https://github.com/christoftorres/Osiris
https://github.com/christoftorres/Osiris/commit/ff382832e5cdc3d6ca95c5e35197da4e358a8ed4
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente/commit/480e725aa02f7ee92af9227216e57d2193e0f999
https://github.com/palkeo/pakala
https://pypi.org/project/pakala/1.1.10/
https://github.com/eth-sri/securify
https://hub.docker.com/layers/smartbugs/security/usolc/images/sha256-d367b17b6f1ad898a16cf5d663bc95eaf2cefa5de8779590d31575493f9de799?context=explore
https://github.com/nescio007/teether
https://github.com/nescio007/teether/commit/04adf568b5dcaf9dba0c655e3f234d19764cb603
https://github.com/usyd-blockchain/vandal
https://github.com/usyd-blockchain/vandal/commit/d2b004326fee33920c313e64d0970410b1933990
https://docs.soliditylang.org/en/latest/abi-spec.html

Empirical Software Engineering

Ethainter uses taint analysis to detect whether attacker-injected data reaches critical oper-
ations. It relies on the component Gigahorse that abstracts the bytecode to Datalog rules. The
Datalog program, augmented by rules for the addressed weaknesses, is translated to a C++
program (using the tool Soufflé), which is compiled to machine code that performs the actual
analysis.

eThor attempts to either prove that the contract is not reentrant and thus is not susceptible
to a reentrancy attack, or to find a tracewith a reentrant call that indicates that the contractmay
be vulnerable. eThor lifts the bytecode to constrained Horn clauses that constitute a sound
abstraction of the EVM semantics. The Horn clauses are then translated into the constraint
language of the SMT solver Z3 that does the final analysis. Various optimizations like the
unfolding of Horn clauses are crucial to make the analysis feasible.

MadMax concentrates on gas-related vulnerabilities.8 Like Ethainter, it uses Gigahorse
and Soufflé to lift the bytecode to Datalog.

Maian executes the EVM bytecode symbolically, relying on the SMT solver Z3 to check
the satisfiability of path conditions.When analyzing source or deployment code, Maian addi-
tionally validates the detected weaknesses by deploying the contract on a private blockchain
and attacking it with the transactions computed by the SMT solver. For runtime code this
validation step has to be omitted, as there is not enough information for deployment.

Mythril uses symbolic execution, SMT solving (Z3) and taint analysis to detect a variety
of security vulnerabilities. To increase code coverage, it applies concolic execution that
alternates between symbolic execution and runs with concrete values. It is the only tool in
the selection that is actively maintained.

Oyente constructs a control-flow graph and then executes the contract symbolically. The
execution traces are checked for patterns characteristic of certain weaknesses. In a final
validation step, certain false positives are eliminated before reporting the findings. Symbolic
path constraints and the SMT solver Z3 are used to prune the search space.

Osiris extends Oyente by adding modules for further weaknesses.
Pakala executes the bytecode symbolically, without constructing a control flow graph first.

It proceeds in two phases. First, it collects transactions that lead to state changes or Ether
transfers. Then, the transactions are combined in varying sequences to find one that extracts
more Ether than was invested with the transaction.

Securify constructs a control flow graph and lifts the bytecode to single static assign-
ments. It uses Soufflé to derive semantic facts from inference rules specified in Datalog that
describe the data and control flow dependencies. These facts are then checked against a set
of compliance and violation patterns written in a logic-based domain-specific language.

teEther constructs a control flow graph and searches for paths that lead to critical instruc-
tions, with arguments controllable by an attacker. Symbolic execution translates these paths
into constraints for the SMT solver Z3. The solutions computed by Z3 can then be turned
into exploits, i.e., into transactions that trigger the suspected vulnerabilities.

Vandal constructs a control flow graph and lifts the bytecode to single static assignments.
This intermediate representation is translated to logic relations that represent the semantics of
the initial bytecode.Weaknesses are specified asDatalog rules. Soufflé synthesizes executable
programs that read the logic relations and perform the security analysis.

8 EVM instructions consume gas proportional to the time and storage they need. Each transaction is endowed
with a limit on the total gas it may use, ensuring that each contract terminates.

123

Empirical Software Engineering

Ta
bl
e
4

M
ai
nt
en
an
ce

A
sp
ec
ts
of

To
ol
s
(c
he
ck
ed

in
Fe
br
ua
ry

20
23
)

123

Empirical Software Engineering

4.3 Maintenance Aspects

Table 4 lists statistics related to the effort put into keeping the tools up to date. Some tools
show a small number of commits and closed issues only, and thus seem unmaintained. But
even tools with several hundred commits became unmaintained at some point. Judged by
the last code commits, Mythril is the only tool actively maintained: it has 74 contributors,
4785 commits, and 709 issues resolved. For our study, maintenance mainly boils down to
the question which EVM operations the tools are actually able to handle.

4.4 Supported EVMOperations

We say that a tool supports an EVM operation if it models at least the effect of the operation
on the stack, by removing and adding an appropriate number of elements. This way the
analysis of the current execution path can proceed, even if little may be known about the
state after the operation. EVM operations may be unsupported either because of having been
omitted deliberately or because of having been introduced by a fork after the tool was released
(see Section 3.3). Tools handle unsupported operations by either stopping the analysis of the
current path with an error message, by reverting the computation like the EVMwould do for
an unused opcode, or by aborting with an exception.

The effect of unsupported operations depends on the type of property checked for. Most
properties are existential: A bytecode satisfies the property if some execution path satisfies
a characteristic condition. In such cases an unhandled operation will reduce the number of
paths that can be checked. The tool remains sound, but its detection rate diminishes with
the number of paths it cannot check. A few properties are universal in nature: The property
holds for a bytcode if a condition is met by all execution paths. Here, any path that cannot be
checked is a threat to the validity of the result, making the method unsound. Ether lock is an
example for both property types: Theweakness is present if there is at least one execution path
that increases the balance of the contract (the contract accepts Ether), whereas all execution
paths have the property that they do not decrease the balance (the contract offers no withdraw
functionality).

To interpret the analysis results later on, we determine the operations supported by each
tool. The data inTable 5was obtained by inspecting the source code aswell as by executing the
tools on a collection of crafted contracts where each consists of one of the listed operations,
with some PUSH operations preparing the stack. A checkmark in the table indicates that the
tool supports the operation, while a question mark means that the tool supports the operation
according to its source code, but fails on the corresponding crafted contract.

The tools usually support the operations up to the most recent fork before their last
update.Most tools analyze single contracts only, therefore they handle interactions with other
contracts by not supporting the operations DELEGATECALL, STATICCALL, CREATE2 and
EXTCODEHASH at all, or if they do, by invalidating those parts of the state that might have
been affected by the operation. Conkas and eThor stick out as handling several operations in
their source code that lead to exceptions during execution. Maian is older than it looks: The
tool was published some time after the fork at block 4.37M, yet it does not support the two
RETURNDATA operations.

123

Empirical Software Engineering

Table 5 EVM operations supported by the tools

A question mark indicates that the operation seems to be handled by the code, but causes an exception

5 Execution Framework

For the large-scale execution of our study, we had the choice between two frameworks:
SmartBugs (Ferreira et al., 2020) and USCV (Ji et al., 2021), both operating on Solidity
level. We decided on the former, as SmartBugs is better maintained (c.f. the last paragraph
of Section 12) and contained more of the tools we were interested in.

First, we adapted SmartBugs to accept bytecode as input, and updated the Docker images
of the tools accordingly. Second, we integrated six further tools (kept in boldface in Table 3).
The most laborious part was the output parsers. For each tool, a dedicated parser scans the
output of the tool to identify the result of the analysis, to detect anomalies, and to discard
irrelevant messages. For each run of a tool on a bytecode, the parser reports a list of findings
(tags identifying the detected properties), a list of errors (conditions checked for and reported
by the tool), a list of fails (low-level exceptions not adequately handled by the tool), and a
list of messages (any other noteworthy information issued by the tool).

Choice of Parameters.Ren et al. (2021) show that the choice of parameters strongly affects
the results, especially when the timeout is below 30minutes per contract. We set the maximal
runtime to 1800s wall time, with 1.5 CPUs assigned to each run. If a tool offers a timeout
parameter, we communicate the runtime minus a grace period to allow the tool to terminate
properly. Conkas, eThor, Maian, Securify, teEther and Vandal offer no such parameter and
are stopped by the external timer.

As there is a tradeoff between the memory limit per process and the number of processes
run in parallel, we aimed at providing sufficient but not excessive memory. Based on an
initial test with 500 randomly selected contracts, we set the memory limit to 20GB for

123

Empirical Software Engineering

Table 6 Resource Consumption and Out-of-memory (OOM) conditions

eThor, Pakala, Securify and teEther, and to 4GB for all other tools. We reran tasks with a
limit of 32GB if they had failed with a segmentation fault or a memory problem.

Machine.We used a server with an AMD EPYC7742 64-Core CPU and 512GB of RAM.
Table 6 gives an overview of the computation time, memory usage, and memory fails before
and after the rerun with 32GB.

6 Weaknesses

In this section, we describe the weaknesses considered in our study as well as the taxonomy
used and the mapping of the tool findings to the taxonomy.

6.1 Vulnerability Detection vs.WeaknessWarning

According to the Common Weakness Enumeration, cwe.mitre.org, weaknesses are flaws,
faults, bugs, or other errors in software or hardware implementation, code, design, or
architecture that if left unaddressed could result in systems, networks, or hardware being
vulnerable to attack.

The tools in our study report findings with varying degrees of certainty, from warnings
about potential weaknesses to exploits demonstrating the existence of a vulnerability or, more
rarely, proofs guaranteeing their absence. As proving the absence or presence of software
properties is difficult, most tools employ heuristics, usually favoring a higher number of false
positives over the possibility to overlook an actual vulnerability. Such tools issue warnings
and leave the final assessment to the user.

6.2 Synopsis ofWeaknesses

Integer Overflow and Underflow (SWC 101) Integer over- and underflow weaknesses arise in
situations, where the result of an arithmetic operation exceeds the admissible range and the

123

https://cwe.mitre.org/about/index.html

Empirical Software Engineering

system performs a silent wrap-around instead of throwing an exception. The wrong result
may lead to an unexpected behavior or a security breach.

Unchecked Call Return Value (SWC 104) This weakness arises when smart contracts
do not properly validate the return value of an external contract call, such that an unusual
behavior of the call goes unnoticed.

Unprotected Ether Withdrawal (SWC 105) Unprotected Ether withdrawal weaknesses
occur when smart contracts allow unauthorized parties to withdraw Ether without proper
access controls, risking financial loss.

Unprotected SELFDESTRUCT Instruction (SWC 106) This weakness arises when a
SELFDESTRUCT instruction is not properly guarded such that an attacker can trigger the
destruction of the contract, potentially resulting in the loss of funds or a disruption of services.

Reentrancy (SWC 107) A reentrancy weakness occurs when a contract calls another one
without updating its internal state beforehand. If the callee calls the caller back, the latter
may be in an inconsistent state.

Assert Violation (SWC 110) Assertions are sanity checks that are meant to hold for every
run. An assert violation means that such a check can be made to fail for certain inputs, which
can lead to unexpected termination and loss of funds.

Delegatecall toUntrustedCallee (SWC112)Code invoked by a DELEGATECALL instruc-
tion operates on the caller’s storage and funds. This weakness means that an attacker is able
to manipulate the caller’s state by controlling the code that is invoked.

DoS with Failed Call (SWC 113) A failing call to an external contract may prevent sub-
sequent actions from taking place. A buggy or malicious callee may cause a DoS with the
caller.

Transaction Order Dependence (SWC 114)This weakness arises when a contract’s behav-
ior depends on the order in which transactions are mined, leading to inconsistencies and
potential security issues.

Authorization through tx.origin (SWC 115) This weakness means that a contract relies on
tx.origin for authorization, which can be exploited by a man-in-the-middle attack to bypass
access controls.

Block Values as a Proxy for Time (SWC 116) This weakness results from using block-
related values as a substitute for precise timing, as these values can be manipulated by
attackers.

Weak Sources of Randomness from Chain Attributes (SWC 120) Seeding random number
generatorswith chain attributes leads toweak randomness, as these attributes can be predicted
or even manipulated by attackers.

Write to Arbitrary Storage Location (SWC 124) This weakness occurs when an attacker
is able to write to an unintended storage location, e.g. by overflowing one data structure into
the next in storage.

Arbitrary Jump with Function Type Variable (SWC 127) Solidity supports function types.
By low level manipulations of variables that hold a function, control can be handed over to
code other than the function, leading to unintended execution paths.

DoSWith BlockGas Limit (SWC 128)The resource consumption of every call to a contract
is limited by the gas supplied. But this gas limit is capped itself by the block gas limit. Once
the call to a contract requires more gas than that, e.g. because of looping over a data structure
that has been grown too big by an attacker, the contract may become inoperable.

Ether Lock This weakness means that a contract accepts Ether without offering the func-
tionality to withdraw it, thus locking any funds sent to it.

Callstack Depth Bug Originally, the number of nested calls was limited to 1024. Calling
a contract at this limit would make any further nested calls fail unexpectedly, leading to a

123

Empirical Software Engineering

Table 7 Weakness Classes and Reports

potentially harmful situation for the called contract. As early as block 2.463M, this limit was
replaced by a better mechanism that made the weakness related to the callstack depth limit
obsolete.

6.3 Mapping of Tool Findings

Taxonomy. To compare the tools regarding their ability to detect weaknesses, we need a
taxonomywith an adequate granularity. Since there is no established taxonomyofweaknesses
for smart contracts, previous studies (Chen et al., 2020; Tang et al., 2021; Wang et al., 2021;
Kushwaha et al., 2022; Rameder et al., 2022; Tolmach et al., 2022; Zhou et al., 2022) not only
summarize potential issues, but also structure them with respect to their own taxonomies,
none of which is compelling or widely used.

Among the community projects, there are two popular taxonomies: the DASP (Decen-
tralized Application Security Project) TOP 10 9 from 2018, which features 10 categories,
and the SWC registry (Smart Contract Weakness Classification and Test Cases) 10 with 37
classes, last updated 2020. As for DASP, two categories, Access Control (2) and Other (10),
are quite broad, while Short Address (9) is checked by hardly any tool. Moreover, DOS (5)
and Bad Randomness (6) are effects that may be the result of various causes, and most tools
detect causes rather than consequences.

The SWC registry is more granular as it offers several classes for the broad categories
Access Control and DOS. Moreover, most of its categories match relevant findings of the
tools. Therefore, we select this taxonomy as the basis of our comparison.

Findings mapped. The tools report 82 different findings, of which we canmap 56 to one of
the 37 classes of the SWC taxonomy (see Table 15 in the appendix). In total, the tools cover
15 SWC classes. Table 7 lists the weakness classes, the accumulated number of findings that

9 https://dasp.co
10 https://swcregistry.io

123

Empirical Software Engineering

Table 8 SWC Classes Detected by Tools

the tools report, and the number of tools that address the weakness. Table 8 gives an overview
of the coverage of the SWC classes by tool.

When a tool reports a finding, we assume that it is not invalidated by an accompanying
error condition, a low coverage of the bytecode, or a timeout. However, we note errors,
timeouts, and unhandled conditions (fails).

Findings omitted. In order not to count the same weakness twice, we exclude redundant
and intermediate findings. Moreover, some findings state the absence of a weakness and thus
should not be counted as a weakness. Altogether, we exclude seven findings: For eThor the
positive finding secure (from reentrancy); for Maian the intermediate finding accepts_Ether
and the positive findings no_Ether_leak, no_Ether_lock, not_destructible; for Osiris the
redundant finding arithmetic_bug (as it is doubled by a more specific one); and for Van-
dal the preliminary finding checked_call_state_update.

7 RQ1 Abstraction

To validate our hypothesis that bytecodes with the same skeleton (i.e., members of the same
code family) behave similarly regarding bytecode analysis, we randomly select 1000 byte-
codes from all runtime bytecodes not in our data set. By construction, these codes belong to
families with at least two members. The selected bytecodes happen to belong to 620 fam-
ilies. We add the corresponding 620 representatives from our data set, obtaining a dataset
with 1620 bytecodes and 620 families with 2 to 64 members per family.

When running analysis tools on different members of the same family, we expect nearly
identical results with small variations due to differences in runtimes (e.g. one run timing out
while the other one finishes just in time with some finding) or due to the effect of different
constants when solving constraints. In particular, we do not expect the meta-data injected
by the Solidity compiler to affect the result, as it is interpreted neither as code nor as data
during execution. To confirm this, we also consider a copy of our 1620 bytecodes, where we
replace all meta-data sections with zeros.

Table 9 shows the result of running all tools on the bytecodes with and without meta-
data. Columns two and four give the percentage of the 620 families for which the findings

123

Empirical Software Engineering

differ within the family, whereas columns three and five consider all data collected by the
output parsers, including errors, fails, and messages. If we assume that the various effects
influencing the output give rise to a normal distribution, then for a confidence level of 95%,
the sample size of 620 yields a margin of error of 1.5% for the smaller values in the table and
of 3.2% for the larger ones.

The seven tools on top behave essentially as predicted. For Conkas, the rate of 1.5%
corresponds to 9 families with divergent findings. These differences are related to warnings
about integer under- and overflows, and may indeed be the result of different constants in the
codes of a family. Observe that for these seven tools, there is hardly any difference between
the two datasets, with and without meta-data.

Osiris and Oyente seem remarkable, as we find 20% discrepancies in the output. Oyente
starts its analysis by disassembling the entire bytecode. It issues thewarning ‘incomplete push
instruction’ when stumbling upon a supposed PUSH instruction near the end of the meta-
data that is followed by too few operand bytes. These spurious messages disappear when
removing the meta-data, but otherwise do not affect the analysis. Osiris reuses Oyente’s code
and inherits this anomaly.

eThor also scans the entire bytecode.When encountering an unknown instruction, it issues
awarning and ignores the remaining code. LikewithOyente, thesemessagesmostly disappear
when removing the meta-data. However, unlike Oyente, the meta-data influences the result
of the analysis, as can be observed by 2.9% vs. 1.0% differences in the findings for code
with vs. no meta-data. In each of these cases, the analysis times out for some member(s) of

Table 9 Code Families with Diverging Results [%]

123

Empirical Software Engineering

the family but terminates with identical results for the others. We did not research the cause
for these discrepancies but suspect that it may be comparable to the situation of Vandal.

Vandal constructs a control flow graph for the entire bytecode and decompiles it to an
intermediate representation. Sometimes, the tool gets lost during this initial phase and times
out. The situation improves when removing irrelevant parts like the meta-data. However, as
Vandal interprets the addresses of all code sections relative to the beginning of the bytecode,
even if they belong to a different contract (see the discussion on the structure of bytecode in
Section 3.1), we still see differences regarding errors and fails.

Maian starts by scanning the entire bytecode for certain instructions, like SELFDESTRUCT.
Not detecting the opcode anywhere lets Maian immediately conclude certain properties,
whereas finding the opcode triggers a reachability analysis that may remain inconclusive.
This sensitivity to single bytes yields divergent results for 70 families. For example, Maian
may detect non-destructibility for one code and fail to do so for another one in the same
family. Removing the meta-data gets rid of these divergences almost entirely.

Observation 1. Treating bytecodes with the same skeleton as equivalent works for 9 out
of 12 tools without reservations. Three tools unexpectedly analyze the meta-data, leading
to minor output variations. Therefore, skeletons can be regarded as a suitable abstraction
for large-scale analyses aimed at the big picture. Removing themeta-data prior to analysis
may improve the performance of some tools (while not harming others).

8 RQ2Weakness Detection over Time

In this section, we portray the evolution of weaknesses on a timeline of blocks.We look at the
percentage of contracts flagged by a particular tool as possessing any weakness (Fig. 2) as
well as at the percentage of contracts flagged by any tool as possessing a particular weakness
(Fig. 4).

8.1 Tool reports

Figure 2 depicts the reporting rate of each tool over the range of 14M blocks. Each data point
represents the percentage of bytecodes in a bin of 100k blocks that were marked with at least
one non-omitted finding by the respective tool. The vertical lines in gray indicate forks that
added EVM opcodes and thus may affect weakness detection. To improve readability, the
diagram is split into three plots with four tools each.

Upper plot. Pakala (green) and teEther (red) both flag a few bytecodes only. This can
be attributed to the fact that Pakala scans for two rather infrequent weaknesses (SWC105,
112), and teEther just for one (SWC105). eThor (orange) also scans for a single weakness
(SWC107), albeit for a far more prevalent one. Conkas (blue) scans for five weaknesses
(SWC101, 104, 107, 114, 116), among them the most frequent ones (SWC101 and 107).

Middle plot. MadMax (blue) and Ethainter (orange) specialize in rather specific weak-
nesses that they detect for a small number of contracts only. MadMax is geared towards
three gas issues, loosely related to SWC101, 113, and 128, while Ethainter scans for five
weaknesses (SWC105, 106, 112, 124, and unchecked tainted static call). Securify (red) also
scans for five weaknesses (SWC104, 105, 107, 114, and missing input validation), including
the popular reentrancy bug.

123

Empirical Software Engineering

Fig. 2 Accumulated findings per tool over time. Each data point shows the percentage of bytecodes for which
the tool reports a weakness, in bins of 100k blocks

Mythril (green) tests for the largest number of weaknesses (SWC101, 104–107, 110, 112,
113, 115, 116, 120, 124, 127), including the most prevalent ones. While we see a peak with
more than 90% of contracts flagged in the early days, the rate of contracts with reported
weaknesses continuously drops to below 40% towards the end of the timeline.

Lower plot. The tools in this plot differ from the others, as the rate of flagged contracts
stays high or even increases towards the end of the timeline. Maian (blue) scans for three
weaknesses (SWC105, 106, and locked Ether), Osiris (orange) for nine (SWC101, 107, 114,
116, integer issues beyond SWC101, and the callstack depth bug), Oyente (green) for four
(SWC107, 114, 166, and the callstack depth bug), and Vandal (red) for five (SWC104–107
and 115).

In terms of EVM operations supported (see Section 4.4), Maian, Oyente and Osiris are
the oldest tools in our collection. They do not handle the operation SHR, which is central to
newer contracts (Fig. 1). Hence, we expect the rate of findings to drop over time rather than
to rise. It turns out that Oyente checks for Callstack Depth Bugs by searching for a specific
code pattern (instead of using symbolic execution as for the other weaknesses), and Osiris
inherits this functionality from Oyente. Even though the bug has become obsolete with the
fork at block 2.463M (see Section 6.2), the pattern is detected at an increasing rate and causes

123

Empirical Software Engineering

Fig. 3 Accumulated findings for Maian, Osiris, Oyente and Vandal. Compared to the third plot in Fig. 2, some
spurious findings have been omitted (see the text for details)

spurious findings. Regarding Maian, it checks, among other weaknesses, for Ether lock. This
property requires to check all execution paths for the absence of operations that are able to
transfer Ether. As the inability to handle SHR cuts short more and more of the paths, the
number of falsely reported Ether locks increases.

Vandal reports 96.6%of the contractswith a CALL instruction as containing anUnchecked
Call and 88.4% as containing a Reentrant Call. Given that the majority of calls are method
calls, for which the Solidity compiler adds checks automatically, and given that reentrancy
is known to be a common but not a universal problem, we suspect that Vandal applies weak
criteria and thus reports numerous false positives.

In Fig. 3, we omit the problematic findingsCallstack Depth Bug for Oyente and Osiris, the
finding Ether lock for Maian, and the weaknesses unchecked call (SWC104) and reentrant
call (SWC107) for Vandal. With these omissions, the number of flagged contracts either is
constantly low or drops low.

General Observation. Overall, the share of flagged contracts diminishes over time. For
unmaintained tools, this may be related to the fact that they are no longer able to analyze
recent contracts containing e.g. new instructions. Moreover, code patterns tailored to specific
compiler versions may fail to detect a weakness in bytecode obtained by later versions. For
actively maintained or new tools, the decreasing number of flagged contracts may indeed
indicate that newer contracts are less vulnerable than older ones.

8.2 SWC classes detected

For weaknesses mapped to a suitable SWC class, Table 7 gives an overview of their preva-
lence. The column frequency counts the number of unique skeleton bytecodes, where at least
one tool reports the respective weakness11. As the tools tackle differing subsets of the SWC
classes, the number of tools addressing a specific weakness varies from one to seven. Due
to our cumulative counting, the frequency of a weakness increases with the number of tools
claiming to detect it, especially with overreporting tools.

Figure 4 depicts the 15 SWC classes on the timeline of 14M blocks. For every SWC
class, a data point represents the percentage of skeleton bytecodes in a bin of 100k blocks

11 Most tools do not verify their assessment by providing an exploit (like teEther does) or by proving the
absence of the vulnerability (like eThor does). Hence, the table counts warnings rather than vulnerabilities.

123

Empirical Software Engineering

Fig. 4 SWC classes over time. Each data point shows the percentage of bytecodes flagged with a specific
weakness, in bins of 100k blocks

that were marked with the respective weakness by at least one tool. The top plot shows
the classes detected by four or more tools (SWC101, 105, 107, 114, 116), the middle one
those handled by two or three tools (SWC104, 106, 112, 113, 124), and the third one those
addressed by just one (SWC110, 115, 120, 127, 128). In accordance with our discussion of
Vandal above, we omit its findings from the plots, as its excessive reporting for SWC104
and 107 would distort the picture.

We see five weaknesses decrease over time from a high (≥ 50%) or medium (20%) level
to a medium or low (≤ 10%) level: The findings of classes 101, 104, 107, 110, and 114 start
to fall from about block 4M onwards. The other 10 weaknesses stay on a steady, but low
level after block 4M, except for 113 (middle plot), which fluctuates around 10% and 116
(top plot), which fluctuates around 20%.

The decline of potential integer overflows (101) seems plausible: Since version 0.8.0, the
Solidity compiler adds appropriate checks automatically, and already some time before, the
use of math libraries with the same effect had become quasi-standard. Reentrancy (107) is
probably the most (in)famous vulnerability. The decrease in detection can be attributed at
least partially to developers taking adequate precautions.

123

Empirical Software Engineering

Table 10 Average Runtimes of Tools

Observation 2. Of the 37 SWC classes, 15 are covered by at least one tool, and 7 by
at least three tools. For all weaknesses, the number of flagged contracts decreases over
time or stagnates on a low level. The decreasing detection rates can be attributed to
unmaintained tools that do not adequately cope with newer EVM instructions as well
as to compilers and programmers taking counter-measures. At the end of the timeline,
integer bugs (SWC101), reentrancy (SWC107) and block values as a proxy for time
(SWC116) are the most frequently detected weaknesses with a share of about 20% each.

9 RQ3 Tool Quality over Time

To assess the quality of the tools, we consider execution times as well as their errors and
failures.

Execution time. Table 10 gives the average runtimes in seconds for each tool. The column
Overall averages over all 248328 runs, whereas Success picks only those completing without
errors and failures. The column Error shows the average time for runs where the tool reports
an error, while OOM collects the runs terminated by an out-of-memory exception. The last
column, Prg.issues, averages over runs with programming issues, like exceptions caused by
type errors. The average time for runs timing out is not listed explicitly, as it is close to 1800s
(30m), for obvious reasons.

Overall, the fastest tools areMadMax, Oyente, Maian, Vandal, Ethainter. The slowest one,
by far, is Pakala, with the next ones, Mythril, eThor, and teEther, being twice as fast. When
considering only runs without errors and failures, eThor and teEther are substantially faster
than on average, while Pakala and Mythril are still slow. Mythril, Oyente, and Vandal do not
report any errors, hence no times are listed in the respective column. The average times on
error are small for Pakala, Securify, Maian, eThor and Conkas, which indicates that most

123

Empirical Software Engineering

reported errors are show-stoppers. For Madmax and Ethainter, the few errors are related to a
timeout, hence the average is high.

Errors and Failures.We consider a run failed if it is terminated by an external timeout, an
out-of-memory exception, or a tool-specific unhandled condition. A run terminates properly
if it stops under control of the tool, either successfully or with an error condition detected
by the tool. Figure 5 depicts the failures over time in bins of 100k blocks as percentage
of bytecodes where a tool fails. Conkas, eThor, Pakala, and teEther fail most often and are
shown at the top, while the other tools show few or no failures.

Figure 6 depicts the error over time in bins of 100k blocks as percentage of bytecodes
where a tool reports an error. Maian and Osiris show an increasing error rate, while the other
tools show few or no errors. Table 11 gives an overview of the accumulated errors and failures
by category. The left part lists the number of bytecodes with and without finding, as well as
the share accompanied by an error or failure. In its right part, the table gives the number of
bytecodes, where the analysis resulted in an error message and/or a failure due to a timeout,
an out-of-memory condition or a program issue.

While most reported findings are not accompanied by any errors or failures, there are three
notable exceptions. Maian detects numerous occurrences of Ether lock in spite of encoun-
tering unknown instructions. The same accounts for Osiris when it reports the Callstack

Fig. 5 Tool failures over time. Each data point shows the percentage of failures encountered by the tools, in
bins of 100k blocks. Ethainter and MadMax had no failures

123

Empirical Software Engineering

bug. This is due to the fact that the tools apply local pattern matching instead of symbolic
execution. Pakala reports a timeout for almost half of its analyses with findings.

eThor, Pakala and teEther show a large number of timeouts (marked red in Table 11),
which results in high average runtimes (marked red in Table 10). While Mythril shows a
similarly high average runtime, it only has a low number of timeouts. In contrast to the other
three tools, it offers a parameter for getting notified about the external timeout and so is able
to finish in time.

Regarding out-of-memory exceptions, only teEther sticks out. Even with 32GB of mem-
ory, it still fails for 16% of the inputs.

The last column in Table 11, program issues, indicates to some extent the maturity of the
tools’ code. Conkas fails for 63111 runs, with the most common causes being maximum
recursion depth exceeded (55626 / 88.1%); assertion failures (2499 / 4.0%); and type errors
(2038 / 3.2%). The 17407 fails of eThor result from the instruction EXTCODEHASH not
being processed properly (11366 / 65.3%), arithmetic exceptions (5930 / 34.1%), and run-
time exceptions (111 / 0.6%). Securify fails for 9586 runs, mainly because of null pointer
exceptions (9496 / 99.1%). Mythril, as the only tool actively maintained according to the
activity on Github, fails for only 1022 bytecodes, the most frequent cause being type errors
(952 / 93.2%), predominantly due to undefined terms in integer expressions. At the lower
end, we find Ethainter and MadMax with no program issues at all, and Maian, Osiris and
Oyente with just a few.
Observation 3. Regarding resource consumption, a few tools require less than 60s per
contract with just a few GB of memory, whereas others regularly approach the limits of
30min and 32GB. The rate of tool-reported errors varies between 0% and 60%, with
the high rates resulting from tools operating outside of their specification. Questionably,
there are tools with similar limitations but without any error at all. Regarding robustness,
eight tools throw an exception for less than 1% of the contracts, as opposed to one tool
with 25% fails. Program issues like type exceptions may be a consequence of using the
dynamically typed language Python.

Table 11 Findings, Errors and Failures of Tools

123

Empirical Software Engineering

10 RQ4 Overlap Analysis

In this section, we investigate to which extent the tools agree in their judgments. We use the
SWC registry as a common frame of reference and map all findings to an appropriate SWC
class, if any.

This excludes findings that do not fit any SWC class. More specifically, the following
nine findings are omitted for that reason: one finding of Ethainter (unchecked_tainted_static
call), one of Securify (missing_input_validation), one of Maian (Ether_lock), five of Osiris
(Callstack_bug,Division_bugs,Modulo_bugs, Signedness_bugs, Truncation_bugs), and one
of Oyente (Callstack_Depth_Attack_Vulnerability).

To determine the degree of overlap, we use the following measure. For a tool t , let Swc(t)
be the set of SWC classes that t is able to detect, and let Flagged(t, s) be the set of contracts
that t flags for having a weakness of class s. We define the overlap between two tools t1 and
t2 as

Overlap(t1, t2) =
∑

s∈Swc(t1)∩Swc(t2)|Flagged(t1, s) ∩ Flagged(t2, s)|
∑

s∈Swc(t1)∩Swc(t2)|Flagged(t1, s)|

The numerator counts, per weakness, the contracts flagged by both tools, while the denom-
inator gives the number of all contracts flagged by thefirst tool. Thismeasure is not symmetric.
Overlap(t1, t2) = 100% means that for the SWC classes in common, t1 flags a subset of the
contracts flagged by t2. If additionally Overlap(t2, t1) = 100% holds, then the two tools are
in perfect agreement, something to be expected for t1 = t2 only.

Table 12 shows the overlap between any two tools, with t1 listed vertically and t2 hori-
zontally. Since eThor detects reentrancy only, its row and column in the table give an idea of
how differently a weakness may be assessed by the tools. For Vandal, we find high values in
its column and low ones in its row, which indicates that most weaknesses it reports are not
backed by other tools. As discussed in Section 8.1, a large number of Vandal’s findings are
likely to be false positives, and the numbers in Table 12 reflect that.

Another observation concerns Osiris and Oyente. We expect a high overlap as Osiris
extends Oyente. In fact, 90.2% of Oyente’s findings are backed by Osiris, while Oyente
covers 58.5% of Osiris’ findings. Apparently, Osiris not only detects additional weaknesses
(not considered in the comparison), but also flags additional contracts with weaknesses the
tools have in common.

Figure 7 shows the overlap inmore detail.We excludeVandal (due to its overreporting) and
Oyente (as Osiris extends it), to avoid an inflation of overlaps. Each row gives a breakdown
of the contracts flagged by a specific tool, for each SWC class covered by at least two tools.
Blue identifies the share of contracts flagged exclusively by the tool, whereas red, green, and
purple indicate the share also flagged by one, two, or more other tools. A good agreement
shows as purple where four or more tools check for the SWC class (101, 105, 107), green
where three tools detect it (104, 106, 112, 114, 116), and red for two tools (113, 124).

SWC 101 – Integer Overflow and Underflow: We find hardly any agreement of all four
tools. MadMax, by construction, checks for a subcase of 101 that is not covered by the other
tools, but even green (overlap of three) is rare. In Section 11.1, we analyze the evolution of
overlaps for this weakness in more detail.

SWC 104 – Unchecked Call Return Value: The three tools show some agreement, as red
and green dominate blue.

123

Empirical Software Engineering

Table 12 Overlap of Tool Findings [%]

SWC 105 – Unprotected Ether Withdrawal: Detected by six tools, we see the highest
amount of purple among all classes.

SWC 106 – Unprotected SELFDESTRUCT Instruction: Virtually all of Maian’s findings
coincide with at least one other tool, while Ethainter and Mythril show a fair amount of blue.

Fig. 6 Tool errors over time. Each data point shows the percentage of errors reported by the tools, in bins of
100k blocks. Mythril, Oyente and Vandal had no errors

123

Empirical Software Engineering

0

20

40

60

80

100

C
o
n
k
a
s

0

20

40

60

80

100

E
th
a
in
te
r

0

20

40

60

80

100

e
T
h
o
r

0

20

40

60

80

100

M
a
d
M
a
x

0

20

40

60

80

100

M
a
ia
n

0

20

40

60

80

100

M
y
th
ri
l

0

20

40

60

80

100

O
s
ir
is

0

20

40

60

80

100

P
a
k
a
la

0

20

40

60

80

100

S
e
c
u
ri
fy

1
0
1

1
0
4

1
0
5

1
0
6

1
0
7

1
1
2

1
1
3

1
1
4

1
1
6

1
2
4

0

20

40

60

80

100

te
E
th
e
r

Fig. 7 Agreement of the tools’ judgment on the SWC classes. Each bar shows the proportion of weaknesses
identified by one , two , three , and four or more tools

123

Empirical Software Engineering

The top plot of Fig. 6 provides an explanation: In the second half of the timeline, the error
rate of Maian increases, as the tool fails to handle more recent contracts with new types of
instructions, so Maian stops reporting weaknesses.

SWC 107 – Reentrancy: Even though reentrancy is one of the best-researched weaknesses
and is detected by five tools, agreement of more than three tools is rare. In Section 11.1, we
analyze the evolution of overlaps for this weakness in more detail.

SWC 112 – Delegatecall to Untrusted Callee: This weakness is detected by three tools,
hence the large amount of green actually indicates the best agreement in the chart. Ethainter
seems to implement a more liberal definition of the vulnerability, as it flags many additional
contracts (blue).

SWC113 –DoSwith FailedCall:MadMax has been designed to detect specific gas-related
issues, which partly map to this class. There is some overlap with Mythril, but since the latter
flags many more contracts under this label, the red share is not visible in Mythril’s bar.

SWC 114 – Transaction Order Dependence: The bars are mainly blue and red, indicating
little agreement between all three tools.

SWC 116 – Block Values as a Proxy for Time: Virtually all contracts flagged by Osiris are
also flagged by one of the other tools, in most cases by both. The other tools, however, flag
manymore contracts, as the comparatively small size of the green part – representing the same
group of contracts in all three bars – shows. Like in the case of Maian and SWC 106 above,
the error rate of Osiris increases in the second half of the study period, as new instructions
prevent it from reporting weaknesses (Fig. 6).

SWC 124 – Write to Arbitrary Storage Location: The contracts flagged by Mythril are
essentially a subset of those flagged byEthainter, but a small one, as the blue part of Ethainter’s
bar dominates.

Observation 4. There is little agreement between the tools regarding the findings, even
for well-researched and frequently analyzed weaknesses such as reentrancy. Contributing
factors are the lack of commonly accepted, precise definitions for the weaknesses as well
as diverging approaches to detect them. A mutually low agreement suggests that the tools
are rather complementary.

11 Discussion

In this section, we combine the results of our research questions and discuss them in a wider
context.

11.1 Relation between Findings, Errors, Failures, and Overlap

In the last section, we looked at the overlap of tools, accumulated over time as well as over
common SWC classes. Here, we pick two exemplary SWC classes, take a closer look at
the evolution of findings over time, and correlate the overlap of tools with their errors and
failures.

SWC101 – Integer Over- andUnderflow. In Fig. 8, the topmost plot depicts the percentage
of bytecodes flaggedwith an integer over- or underflow, per tool. Starting fromdifferent levels
around 70% and 40%, Conkas andMythril converge at 10% at the end of the timeline. Osiris
shows a weakness level comparable to these tools for most of the timeline, but falls to 0%
towards the end. MadMax reports hardly any cases throughout the whole timeline.

123

Empirical Software Engineering

Fig. 8 SWC-101 Integer Overflow and Underflow on a timeline of blocks, in bins of 100k blocks. Top:
Percentage of bytecodes flagged, per tool. Upper middle: Percentage of overlaps. Lower middle: Error rate of
tools. Bottom: Failure rate of tools

123

Empirical Software Engineering

The second plot in Fig. 8 visualizes the agreement of tools over time. The lines in the
foreground show the number of contracts flagged by any tool, once in relative terms (blue
line with the scale to the left, with 100% corresponding to all contracts), and once in absolute
terms (black linewith the scale to the right, numbers per bin of 100k blocks). The background
divides the flagged contracts into shares that are flagged by a single tool, by two, three, or
four tools, respectively.

Up to block 6M (bin 60), the brown and green areas with purple specks at the top show
that 60% of the flagged contracts are flagged by at least two tools. The other 40% are split
between Osiris and Conkas, who are the sole tools flagging the respective contracts. The gray
area of contracts flagged solely by Mythril is small, even though the tool finds the weakness
in 20–40% of all contracts (top plot). Apparently, at least one other tool agrees with Mythril
most of the time.

The picture changes in the second half of the plot. Towards the end of the timeline, there
is hardly any agreement anymore. Less than 10% of the contracts are flagged by at least two
tools, while most are flagged solely by Conkas or Mythril.

The situation can be partly explained by the fact that MadMax specializes in gas issues,
with one of its findings constituting a specific type of overflow that occurs in a few contracts
only (see top plot). For Osiris, we see a rise in errors (third plot of Fig. 8) that mirrors the
increased usage of the SHR operation (Fig. 1), which is not supported by Osiris (Table 5).
Therefore, the detection rate of Osiris drops to zero (top plot), leaving us essentially with
two tools at the end of the timeline. In spite of Conkas’ failure rate rising to 70% (fourth plot
of Fig. 8), its detection rate remains comparable to Mythril.

From version 0.8.0 onwards, the Solidity compiler inserts checks for over- and underflows
into the bytecode. In view of the compiler’s adoption rate (Fig. 1), it seems that the vulnera-
bility has actually become extinct at the end of the timeline and that the respective findings
of Mythril and Conkas are false positives.

SWC107 – Reentrancy. At a first glance, Fig. 9 shows a situation similar to Fig. 8, just
for another weakness and the six tools detecting it. The detection rate of three tools (Osiris,
Oyente, Securify) is low and drops to zero towards the end. For Osiris and Oyente, the reason
is again their inability to handle new operations, in particular SHR, even though Oyente
quits silently, while Osiris issues errors (third plot). For Securify, the collected data does not
provide an explanation for the diminishing detection rate.

Conkas and eThor exhibit significant failure rates (bottom plot in Fig. 9), but this does
not prevent them from reporting up to 40% of contracts as potentially vulnerable to a reen-
trancy attack. On the surface, these two tools show a similar behavior, reporting similar rates
of reentrant contracts from block 3.5M (top plot, bin 35) onwards. However, the Jaquard
similarity for the flagged contracts (number of contracts flagged by both tools divided by the
number of contracts flagged by at least one tool) is only 45% at block 3.5M, and drops to
28% for the last part where the blue and orange lines seem to coincide.

This is also reflected in the second plot of Fig. 9, where the agreement of two or more tools
(red, green and purple area) decreases steadily from block 4.5M (bin 45) onwards, while
the shares of contracts flagged exclusively by Conkas (pink), eThor (blue) or Mythril (gray)
increase, such that at the end of the timeline, the four groups are roughly of the same size.

Our explanation for the disagreement between the tools for this weakness as well as for
most others, is the lack of commonly agreed, unambiguous definitions, which is backed by
our work on a unified ground truth (di Angelo and Salzer, 2023). On the surface, the tools
aim for the same weakness, motivated by similar examples, but the respective interpretations
and implementations may differ considerably.

123

Empirical Software Engineering

Fig. 9 SWC-107 Reentrancy on a timeline of blocks, in bins of 100k blocks. Top: Percentage of bytecodes
flagged, per tool. Upper middle: Percentage of overlaps. Lower middle: Error rate of tools. Bottom: Failure
rate of tools

123

Empirical Software Engineering

11.2 Assessment of Tools

Based on the results of our evaluation, we summarize the observed properties of the tools.
Conkas. With an average runtime of 119s and 4GB of memory, Conkas belongs to the

light-weight tools. The number of contracts timing out or running out of memory is small.
It seems that Conkas underwent a not entirely successful update for the operations of recent
forks, as the source code seems to support them, but the tool fails on contracts using them,
resulting in a high number of program exceptions. This may be caused by a divergence
between Rattle, the module generating the intermediate representation, and the analysis
module on top. Despite these problems, Conkas reports many findings.

Ethainter and MadMax. These two tools are among the most efficient and robust tools.
With average runtimes of 71s and 21s, respectively, and 4GB of memory, they are fast and
never exceed the allotted memory. The few errors reported are timeouts under control of the
tools. The number of failures is zero, indicating a high engineering quality. This may be due
to the robust base component Soufflé and the use of Datalog as a high-level specification
language.

eThor. With an average runtime of 574s, a large number of timeouts, and 369 bytecodes
running out of memory even with 32GB, this tool is one of the elephants in our study. The
high resource consumption may be caused by the complex workflow – eThor is the only
tool trying to show the absence of a weakness. The use of the strongly-typed programming
language Java explains the absence of type errors (as we see with Python programs). eThor
seems to support themost frequent operations introduced by forks, but throws errors for some
of them. This makes the decreasing rate of reported reentrancy issues (and the increasing rate
of contracts found secure) an unreliable indicator for the assumption that the frequency of
reentrancy weaknesses indeed drops.

Maian. With an average runtime of 48s and 4GB memory sufficing for almost all byte-
codes, Maian is a lightweight. As it is the oldest tool and unmaintained, it supports hardly
any of the newer operations. This results in the second highest number of errors (reporting
unknown opcodes) and virtually no weakness detections for newer contracts.

Mythril. With an average runtime of 670s, Mythril belongs to the slow tools, but almost
never needs more than 4GB of memory. It is the only actively maintained tool in our col-
lection: Every issue we reported was fixed within a few days. Mythril supports all EVM
operations and checks for a large number of weaknesses. This, and the tendency to report
also issues of low severity, result in the third largest number of flagged contracts.

Oyente and Osiris. With an average runtime of 35s and 165s, respectively, the two tools
are among the faster tools. Osiris extends Oyente and checks for further properties, which
explains the additional time it takes. 4GB of memory suffice for most contracts. However,
Oyente runs out of 32GB of memory for about 2000 bytecodes, whereas Osiris seems to
require less memory and hardly ever exceeds the quota. Both tools fail for operations beyond
fork 4.37M, with Osiris issuing a message and Oyente failing silently. Consequently, both
tools report no weaknesses for recent contracts.

Pakala. With an average runtime of 1115s, this tool is by far the slowest, which seems
to be a consequence of Pakala performing symbolic execution without optimizations. The
tool author aimed at a small and simple program and deliberately omitted techniques like the
construction of control flow graphs. 12 In spite of being able to handle all relevant operations,
Pakala flags only 4232 contracts as vulnerable, which may have different causes. First, the
analysis of 80000 contracts timed out, so a prolonged analysis might have revealed further

12 https://www.palkeo.com/en/projets/ethereum/pakala.html

123

https://www.palkeo.com/en/projets/ethereum/pakala.html

Empirical Software Engineering

weaknesses. Second, Pakala might actually spend the extra time for a more refined analysis,
leading to a lower number of false positives. Third, the simplicity of the program might have
resulted in a lower detection rate. To determine the actual cause, we would need to check the
quality of the results, which is beyond the scope of our study.

Securify. The average runtime of 160s makes Securify one of the faster tools, even though
it times out for 1651 bytecodes. None of the runs exceeds the memory quota. The implemen-
tation language Java prevents type errors, but we see almost 10000 null pointer exceptions.
Even though Securify has been superseded by a successor (that supports source code only
and thus does not fall into the scope of our study) and is unmaintained now, it supports most
essential EVM operations. Nevertheless, its detection rate starts to drop early on and falls to
virtually zero towards the end.

teEther. The average runtime of 572s is comparable to Mythril, but teEther times out in
52250 cases (compared to 2620 for Mythril). The tool is exceptional regarding its appetite
for memory: even with 32GB provided, 40306 analyses exceed the memory quota. teEther
addresses a single vulnerability that it detects in 3230 bytecodes. The tool supports the
essential EVM operations, but is unmaintained now. With 6608 Python exceptions, teEther
seems to be an experimental tool focusing on the elaborate analysis of a single issue.

Vandal.With an average runtime of 63s and 4GB of memory, Vandal is one of the fast and
light tools, but still runs into a timeout for 2662 bytecodes and exceeds 32GB of memory
for another 1142. The number of 1047 programming issues is moderate for a tool written in
Python. With 75% of the contracts flagged, Vandal surpasses the detection rate of the other
tools. The high rate triggered some plausibility checks in Section 8.1, showing that most
bytecodes containing a CALL operation are flagged as containing an unchecked or reentrant
call. Vandal seems to implement rather unspecific criteria that lead to a large number of
false positives. This interpretation is supported by Vandal’s repository, where the patterns for
weakness detection are listed just as use cases for a framework that decompiles bytecode to
single static assignments. The accompanying paper, on the other hand, presents Vandal as a
tool for vulnerability detection.

11.3 Combining or Comparing Tools Results

When comparing or combining tool results, we face two challenges: (i) different aims of
tools that are reflected in the way their findings are reported and (ii) differing definitions of
weaknesses (that are associated with the findings), which makes it hard to map a finding to
a class (within a common frame of reference) for comparison or combination.

The tools can be divided into four groupswith respect to their aim (for a specificweakness):
(i) proving the absence of a property that is regarded as a weakness or vulnerability, (ii) over-
reporting as to not overlook a potential weakness (aka issuingwarnings), (iii) under-reporting
since only those weaknesses are reported where a verification could be found (avoiding false
alarms), (iv) reporting properties that are hardly aweakness (e.g. honeypots) or not necessarily
(e.g. gas issues).

This distinction is important when comparing tools. It strongly affects the number of
agreements. As we have seen in Sections 10 and 11.1, the overall agreement is low, which is
partly due to the fact that tools address different versions, subsets or supersets of a weakness
class. Considering the different aims of the tools, the low general agreement is not surprising.
However, it is even low for tools with similar aims.

The aims of the tools also impact voting schemes that combine the results of several tools
to ‘determine’ whether a contract is actually vulnerable. For over-reporting tools, it may

123

Empirical Software Engineering

make sense to have a majority vote. However, under-reporting tools should rather be joined
than intersected.

11.4 Comparison to Source Code as Input

We selected the tools in our study for their ability to process runtime code, as our goal was
to analyze contracts deployed on the mainchain, for which Solidity source code is often
unavailable. Moreover, this allowed us to include Ethainter, eThor, MadMax, Pakala, teEther
and Vandal, which require runtime code. The other selected tools accept both, bytecode and
Solidity source code. In this section, we discuss the effect of using source code as the input.

Conkas, Osiris, Oyente and Securify compile the Solidity source to runtime code and then
perform the same analysis as if the latter had been the input. There are two differences, though.
First, the tools are able to report the location of weaknesses within the source, as they use
a mapping provided by the compiler to translate bytecode addresses back to line numbers.
Second, for Solidity sources with more than one contract, the tools compile and analyze
each one separately. As complex contracts are structured into several layers of intermediate
contracts using inheritance, this leads to redundant work. While compilation and address
mapping incur a negligible overhead, the additional contracts may lead to fewer or more
findings within a fixed time budget, depending on whether there is less time for the main
contract or whether other contracts contribute additional findings.13

Maian and Mythril compile the Solidity source as well but proceed with the deployment
code, which includes contract initialization as well. Maian deploys the contract on a local
chain and checks some properties live, like whether the contract accepts Ether. Moreover, the
findings are filtered for false positives by trying to exploit the contract on the chain. Mythril,
on the other hand, uses the deployment code to analyze also the constructor. For both tools,
resource requirements and results will vary with the chosen form of input.

11.5 Threats to Validity

Internal validity is threatened by integrating the new tools into SmartBugs. We mitigated
this threat by carefully following the SmartBugs instructions for tool integration and by
consulting the documentation and the source code of the respective tools. Multiple authors
manually analyzed all execution errors to ensure that we had configured the tools adequately.
Moreover, we make the implementation and the results accessible for public inspection.

External validity is threatened by the use of single bytecodes as proxies for code fam-
ilies identified by the same skeleton. These representatives may not accurately reflect the
code properties of all family members that are relevant to weakness detection. We mitigated
this threat by the first research question. However, the random sample of 1000 bytecodes
(620 code families) may have been chosen too small such that our answer to RQ1 may not
generalize to all bytecodes.

The focus on runtime bytecode as the sole object of analysis restricts the number of tools
usable for our study, as well as the methods applicable. Some trends and observations may
thus not generalize to smart contract analysis in general.

Construct validity is threatened by our mapping of the detected weaknesses to the classes
of the SWC registry. The mapping reflects our understanding of the weaknesses and what the

13 An easy remedy would be to extend the tools by a parameter with the name of the contract to analyze.

123

Empirical Software Engineering

tools actually detect, which may be incorrect. We mitigated this risk by involving all authors
during the mapping phase and by discussing disagreements until we reached a consensus.

Another potential threat are the resources, 30 minutes and up to 32GB per tool and
bytecode. This configuration is in line with related work or surpasses it.

12 RelatedWork

12.1 Recent Systematic Reviews on Analysis Tools

Twostudies fromearly 2022 show that the automated analysis ofEthereumsmart contracts has
still room for improvement. Rameder et al. (2022) describe the functionalities andmethods of
140 tools (83 open source) for automated vulnerability analysis of Ethereum smart contracts.
Their literature review identifies 54 vulnerabilities, with some not addressed by any of the
tools. Moreover, the authors find many tools to be unmaintained. Kushwaha et al. (2022)
provide a systematic review of 86 analysis tools with a focus on 13 common vulnerabilities.
For quality assessment, they select 16 tools, which they test on five vulnerabilities using a
ground truth of 30 contracts.

12.2 Tool Evaluations without Test Sets

In 2019, two surveys evaluate tools for vulnerability detection by installing them andworking
through the documentation: di Angelo and Salzer (2019) investigated 27 tools with respect
to availability, maturity, methods employed, and security issues detected. López Vivar et al.
(2020) evaluated 18 tools regarding the ease of installation, usefulness, and updates. Both
studies do not assess the detection capabilities of the examined tools.

12.3 Benchmarked Evaluations

Most closely related to our work are evaluations of tools that actually test them against a set
of contracts (benchmark set). When tool authors compare their own artifact to a few similar
and/or popular ones, we consider those works to be intrinsically biased and therefore do not
include them.

Among the independent evaluations, we find 11 related works (Dika, 2017; Parizi et al.,
2018; Gupta, 2019; Durieux et al., 2020; Ghaleb and Pattabiraman, 2020; Leid et al., 2020;
Zhang et al., 2020; Dias et al., 2021; Ji et al., 2021; Ren et al., 2021; Kushwaha et al., 2022)
of which we give an overview in Table 13. In the first two rows, we indicate the respective
reference and the year when the evaluation was carried out. Rows three to five list the size
of the benchmark set, separated into vulnerable and non-vulnerable contracts, or unknown
number of vulnerable contracts. All references use Solidity files as benchmarks. Row six
indicates the number of different vulnerabilities tested. We highlight low numbers in red and
commendable high numbers in green. We also list for each tool which evaluation it was part
of. We highlight the five tools most often used in light blue. In the last row, there is the total
number of tools used in each study. We highlight the five references using the most tools in
mid-blue.

123

Empirical Software Engineering

Table 13 Overview of Evaluations with Benchmarks

The earliest evaluation was (Dika, 2017), which covers four tools tested on five vulnera-
bilities with a benchmark set of 23 vulnerable and 21 non-vulnerable contracts. Regarding
the benchmark sets, the number of contracts contained shows a large variety from only 10 to
almost 50000. The number of vulnerable contracts in the benchmark set also varies largely
from 10 to 9369 14. The number of different vulnerabilities varies from 4 to 57. Several

14 It should be noted that for the wild benchmark sets, i.e. from the contracts actually deployed on the
mainchain, the true number of vulnerable contracts and the vulnerabilities they contain is yet unknown.

123

Empirical Software Engineering

Table 14 Contributions and Focus of Evaluations with Benchmarks

evaluations use their own taxonomy of vulnerabilities. This may be due to the lack of an
established taxonomy (Rameder et al., 2022).

We find a total of 20 tools mentioned in the evaluations, while each work selects a subset
thereof for its tests. The number of tools tested varies from three to a maximum of 16.
The tools most often included in a comparison are Mythril, Oyente, Securify, Slither, and
SmartCheck.

In Table 14, we give an overview of the main contributions and the focus of the bench-
marked evaluations. The contributions include a systematic literature review (Kushwaha
et al., 2022), their own classification scheme for vulnerabilities or weaknesses (Dika, 2017;
Gupta et al., 2020; Zhang et al., 2020; Dias et al., 2021), a new or newly assessed benchmark
set of contracts (Gupta et al., 2020; Durieux et al., 2020; Ghaleb and Pattabiraman, 2020;
Zhang et al., 2020), a framework for tool execution or test case generation (Durieux et al.,
2020; Ghaleb and Pattabiraman, 2020; Ji et al., 2021), a quantitative tool evaluation (all
benchmarked evaluations), or new principles and methods for tool evaluations. Regarding
principles and methods, Ghaleb and Pattabiraman (2020) demonstrate the automated gen-
eration of vulnerable contracts by injecting buggy coding patterns, while Ren et al. (2021)
evaluate settings for tool executions.

As for the focus, most studies address the effectiveness of tools in detecting weaknesses in
smart contracts, two studies strive for a general review (Dika, 2017; Kushwaha et al., 2022),
while Ren et al. (2021) aim for insights into the influence of parameter settings onto tool
results.

12.4 Differences to the Benchmarked Studies

Compared to the benchmarked studiesmentioned above, our study stands out in the following
aspects.

Focus. Our study is the only one to focus on the temporal evolution of weaknesses and
tool behavior as well as on reducing the number of necessary test cases while maintaining

123

Empirical Software Engineering

full coverage of the Ethereum mainchain. Regarding tool effectiveness, we deliberately do
not address it per se – due to the lack of suitable benchmark sets as the available ones are
either small, biased, outdated, or inconsistent (di Angelo and Salzer, 2023). Rather, we are
striving for a relative comparison of tools with regard to two aspects: tool behavior over time
and against tools that address sufficiently similar weaknesses (via mapping to a common
frame of reference).

Input.We use runtime bytecode as input, while the other studies use Solidity source code.
Tools. We include further tools like Conkas, Ethainter, eThor, MadMax, Pakala, teEther,

and Vandal. As they accept bytecode only as input, neither of them was used in any of the
other studies.

Size. With a benchmark set of 248328 unique contracts from the main chain, we use the
largest number of contracts.

Contribution.Our study features a novel method for selecting a benchmark set that allows
for analyzing an entire ecosystem, the extension of an execution framework to work with
bytecode as input, and the inclusion of time as a further dimension to look at weaknesses
and reasons for tool behavior.

12.5 Open Source Frameworks

For a large-scale evaluation, we need an analysis framework that (i) facilitates the control of
multiple tools via a uniform interface, (ii) allows for bulk operation, and (iii) is open source
and usable. SmartBugs (Ferreira et al., 2020) is such an execution framework released in 2019.
It is still being maintained with 13 contributors and over 70 resolved issues. The framework
USCV (Ji et al., 2021) implemented similar ideas in mid-2020. It comprises an overlapping
set of tools and an extension of the ground truth set. With a total of 10 commits (the latest
in mid-2021) and no issues filed, it seems to be neither widely used nor maintained. Both
frameworks target Solidity source code, and thus need to be expanded to work with bytecode.

13 Conclusion

In this work, we investigated the evolution of smart contract weaknesses as reported by
analysis tools. Wemanaged to cover all 48 million smart contracts deployed on the Ethereum
main chain up to block 14000000, by selecting tools that are able to process runtimebytecode,
and by choosing only one representative for each group of contracts with the same skeleton.
In total, we ran 12 tools on 248328 contracts with a cumulative execution time of 30 years.
We summarize our contributions and observations.

Skeletons are an effective technique to identify similar contracts. Clustering contracts by
their skeleton reduces the computing effort aswell as the bias that is introducedwhen sampling
contracts from a population that contains some contracts once and others thousandfold. We
show that the validity of studies like ours is not affected by picking only one contract per
cluster.

The rate of reported weaknesses decreases over time. The tools report a total of 1307484
weaknesses, the most common ones being Reentrancy (14%), Unchecked Call Return Value
(14.0%) and Integer Overflow and Underflow (9.4%). The weaknesses are not equally

123

Empirical Software Engineering

distributed over the study period, though. By and large, we observe for all tools and all
weaknesses a decrease in flagged contracts over time. We offer three explanations.

Some tools are no longer maintained and cannot handle operations added to the EVM later
on. As such operations get more widely used, the tools increasingly fail in their analyses.

Even tools interpreting all operations correctly, may detect weaknesses by code patterns
that are tied to specific compiler versions. As the code generator changes with newer com-
pilers, the code patterns become less effective in indicating the weakness.

But the decrease in flagged contracts can also be observed for maintained and recent tools,
which indicates that the weaknesses become indeed less prevalent over time. This may be
attributed to factors like the adoption of good programming practices, public repositories
with tested code, enhancements to the programming language Solidity, and checks added by
the Solidity compiler.

The analysis tools differ considerably regarding resource consumption and engineering
aspects. We see large differences in average runtimes, in the number of analyses timing out
or running out of memory, and in the number of errors and failures. These aspects are of
relevance in practice, e.g. when integrating analysis tools in CI/CD workflows.

The tools agree only partially in their judgment of contracts,with the disagreement increas-
ing over time. Our overlap analysis shows that tools targeting the same weakness flag rather
different sets of contracts. The intersection of these sets decreases over time. We attribute
this phenomenon to diverging interpretations of the weaknesses, as precise and commonly
accepted definitions are lacking. Regarding the change over time, our data provides no expla-
nation.

Service to the community. In the course of our study, we found several bugs in tools, which
we reported either by filing issues or by exchanging emails and engaging in discussions. The
extension of SmartBugs to process bytecode has already been taken up by the framework
Centaur15.

Recommendations to smart contract developers, tool authors, and the community at large.
From the experience gathered in this study, we derive the following recommendations and
wishes.

– When hardening or auditing smart contracts, use a range of analysis tools, as their
approaches and abilities are complementary. Grant the tools sufficient resources,
memory- and timewise.

– Maintain academic tools for some years after publishing the accompanying article, and
keep them public, as a service to the community. This allows researchers to evaluate new
methods against the state of the art, on recent data.

– Strive for an abstract definition of theweakness addressed, using e.g. some formal seman-
tics, execution traces, and path conditions. Give a precise definition of the code patterns
used to detect the weakness. This makes it easier to analyze the scope of tools and to
interpret their results.

– Work towards a comprehensive, balanced ground truth. Ultimately, many interesting
questions regarding the quality of tools and theirmethods can only be answered by having
access to an ‘oracle’ saying true or false. This goal is interlinked with the previous one,
as the latter determines the meaning of the former.

15 https://github.com/mchara01/centaur

123

https://github.com/mchara01/centaur

Empirical Software Engineering

Appendix

Table 15 Mapping of Tool Findings to SWC Classes

Tool Finding SWC Class

Conkas Integer_Overflow 101

Conkas Integer_Underflow 101

Conkas Reentrancy 107

Conkas Time_Manipulation 116

Conkas Transaction_Ordering_Dependence 114

Conkas Unchecked_Low_Level_Call 104

Ethainter AccessibleSelfdestruct 106

Ethainter TaintedDelegatecall 112

Ethainter TaintedOwnerVariable 124

Ethainter TaintedSelfdestruct 105

Ethainter TaintedStoreIndex 124

Ethainter TaintedValueSend 105

eThor insecure 107

MadMax OverflowLoopIterator 101

MadMax UnboundedMassOp 128

MadMax WalletGriefing 113

Maian Destructible 106

Maian Ether_leak 105

Mythril Delegatecall_to_user_supplied_address_SWC_112 112

Mythril Dependence_on_predictable_environment_variable_SWC_116 116

Mythril Dependence_on_predictable_environment_variable_SWC_120 120

Mythril Dependence_on_tx_origin_SWC_115 115

Mythril Exception_State_SWC_110 110

Mythril External_Call_To_User_Supplied_Address_SWC_107 107

Mythril Integer_Arithmetic_Bugs_SWC_101 101

Mythril Jump_to_an_arbitrary_instruction_SWC_127 127

Mythril Multiple_Calls_in_a_Single_Transaction_SWC_113 113

Mythril State_access_after_external_call_SWC_107 107

Mythril Unchecked_return_value_from_external_call_SWC_104 104

Mythril Unprotected_Ether_Withdrawal_SWC_105 105

Mythril Unprotected_Selfdestruct_SWC_106 106

Mythril Write_to_an_arbitrary_storage_location_SWC_124 124

Osiris Concurrency_bug 114

Osiris Overflow_bugs 101

Osiris Reentrancy_bug 107

Osiris Timedependency_bug 116

Osiris Underflow_bugs 101

Oyente Re_Entrancy_Vulnerability 107

Oyente Timestamp_Dependency 116

123

Empirical Software Engineering

Table 15 continued

Tool Finding SWC Class

Oyente Transaction_Ordering_Dependence_TOD 114

Pakala call_bug 105

Pakala delegatecall_bug 112

Pakala selfdestruct_bug 105

Securify DAO 107

Securify DAOConstantGas 107

Securify TODAmount 114

Securify TODReceiver 114

Securify TODTransfer 114

Securify UnhandledException 104

Securify UnrestrictedEtherFlow 105

teEther Ether_leak 105

Vandal Destroyable 106

Vandal OriginUsed 115

Vandal ReentrantCall 107

Vandal UncheckedCall 104

Vandal UnsecuredValueSend 105

Acknowledgements This project was partially supported by national funds through Fundação para a Ciência e
a Tecnologia (FCT) under project UIDB/50021/2020. The project was also partially supported by theCASTOR
Software Research Centre. The authors acknowledge TU Wien Bibliothek for financial support through its
Open Access Funding Program.

Funding Open access funding provided by TU Wien (TUW).

Data and Code Availability The data and the scripts of our study are available from https://figshare.com/s/
5efef6335fa98ddc3ae2.The dataset of 248328 contractswith distinct skeletons has additionally beenpublished
at https://github.com/gsalzer/skelcodes. SmartBugs is developed as a GitHub project at https://github.com/
smartbugs/smartbugs. Some utilities for the manipulation of bytecode, like the computation of skeletons, are
maintained at https://github.com/gsalzer/ethutils.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://figshare.com/s/5efef6335fa98ddc3ae2
https://figshare.com/s/5efef6335fa98ddc3ae2
https://github.com/gsalzer/skelcodes
https://github.com/smartbugs/smartbugs
https://github.com/smartbugs/smartbugs
https://github.com/gsalzer/ethutils
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering

References

di Angelo M, Salzer G (2019) A Survey of Tools for Analyzing Ethereum Smart Contracts, IEEE international
conference on decentralized applications and infrastructures (DAPPCON), pp 69–78. Piscataway, NJ,
USA. https://doi.org/10.1109/DAPPCON.2019.00018

di Angelo M, Salzer G (2024) Consolidation of ground truth sets for weakness detection in smart contracts.
In: Essex A, Matsuo S, Kulyk O, Gudgeon L, Klages-Mundt A, Perez D, Werner S, Bracciali A, Goodell
G (eds) Financial Cryptography and Data Security. FC 2023 International Workshops, Springer, LNCS,
pp 439–455, https://doi.org/10.1007/978-3-031-48806-1_28

Brent L, Jurisevic A, Kong M, Liu E, Gauthier F, Gramoli V, Holz R, Scholz B (2018) Vandal: A Scalable
Security Analysis Framework for Smart Contracts. arXiv https://doi.org/10.48550/arXiv.1809.03981

Brent L, Grech N, Lagouvardos S, Scholz B, Smaragdakis Y (2020) Ethainter: a smart contract security
analyzer for composite vulnerabilities, Association for Computing Machinery. In: Proceedings of the
41st ACM SIGPLAN conference on programming language design and implementation, London UK,
PLDI 2020 16:454–469, New York, NY, USA. https://doi.org/10.1145/3385412.3385990

Chen H, Pendleton M, Njilla L, Xu S (2020) A Survey on Ethereum Systems Security. ACM Comput Surv
53(3):1–43. https://doi.org/10.1145/3391195

Dias B, Ivaki N, Laranjeiro N (2021) An Empirical Evaluation of the Effectiveness of Smart Contract Veri-
fication Tools, IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), p
17–26. IEEE. https://doi.org/10.1109/PRDC53464.2021.00013

Dika A (2017) Ethereum Smart Contracts: Security Vulnerabilities and Security Tools. NTNU,
Durieux T, Ferreira JF, Abreu R, Cruz P (2020) Empirical review of automated analysis tools on 47,587

Ethereum smart contracts. Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, New York, NY, USA. p 530–541. ACM https://doi.org/10.1145/3377811.3380364,

Ferreira JF, Cruz P, Durieux T, Abreu R (2020) Smartbugs: A framework to analyze solidity smart contracts.
In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering,
p 1349–1352, ACM, New York, NY, USA, https://doi.org/10.1145/3324884.3415298,

Ferreira Torres C, Schütte J, State R (2018) Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts.
Proceedings of the 34th Annual Computer Security Applications Conference, pp 664–676, New York,
NY, USA https://doi.org/10.1145/3274694.3274737,

Ghaleb A, Pattabiraman K (2020) How effective are smart contract analysis tools? Evaluating smart contract
static analysis tools using bug injection. In: Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ACM New York, NY, USA, pp 415–427. https://doi.org/10.
1145/3395363.3397385

Grech N, Kong M, Jurisevic A, Brent L, Scholz B, Smaragdakis Y (2018) MadMax: Surviving out-of-gas
conditions in Ethereum smart contracts. Proceedings of the ACM on Programming Languages, ACM
New York, NY, USA, 2(OOPSLA):1–27. https://doi.org/10.1145/3276486,

Gupta BC (2019) Analysis of Ethereum Smart Contracts - A Security Perspective. Indian Institute of Tech-
nology Kanpur

Gupta BC,KumarN, HandaA, Shukla SK (2020) An Insecurity Study of EthereumSmart Contracts. In: Batina
L Picek S Mondal M (eds) Security Privacy, Cryptography Applied . Springer International Publishing,
Cham, Engineering, pp 188–207

Ji S, Kim D, Im H (2021) Evaluating Countermeasures for Verifying the Integrity of Ethereum Smart Contract
Applications. IEEE Access, 9:90029–90042, IEEE https://doi.org/10.1109/ACCESS.2021.3091317,

Krupp J, Rossow C, (2018) teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In:
27th USENIX conference on security symposium (USENIX Security 18), Baltimore, MD USENIX
Association, (18):1317–1333. https://www.usenix.org/conference/usenixsecurity18/presentation/krupp

Kushwaha SS, Joshi S, Singh D, Kaur M, Lee H-N (2022) Ethereum Smart Contract Analysis Tools: A
Systematic Review. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3169902

Kushwaha SS, Joshi S, Singh D, Kaur M, Lee H-N (2022) Systematic Review of Security Vulnerabilities in
Ethereum Blockchain Smart Contract. IEEE Access 10:6605–6621. https://doi.org/10.1109/ACCESS.
2021.3140091

Leid A, van der Merwe B, Visser W (2020) Testing Ethereum Smart Contracts: A Comparison of Symbolic
Analysis and Fuzz Testing Tools. In: Conference of the South African Institute of Computer Scientists
and Information Technologists 2020. ACM New York, NY, USA, pp 35–43. https://doi.org/10.1145/
3410886.3410907,

López Vivar A, Castedo AT, Sandoval Orozco AL, García Villalba LJ (2020) An analysis of smart contracts
security threats alongside existing solutions. Entropy 22(2):203. https://doi.org/10.3390/e22020203

123

https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1007/978-3-031-48806-1_28
https://doi.org/10.48550/arXiv.1809.03981
https://doi.org/10.1145/3385412.3385990
https://doi.org/10.1145/3391195
https://doi.org/10.1109/PRDC53464.2021.00013
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3324884.3415298
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3395363.3397385
https://doi.org/10.1145/3276486
https://doi.org/10.1109/ACCESS.2021.3091317
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1109/ACCESS.2022.3169902
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.1109/ACCESS.2021.3140091
https://doi.org/10.1145/3410886.3410907
https://doi.org/10.1145/3410886.3410907
https://doi.org/10.3390/e22020203

Empirical Software Engineering

Luu L, Chu D-H, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: Proceedings of
the 2016 ACM SIGSAC conference on computer and communications security, ACM New York, NY,
USA, pp 254–269 https://doi.org/10.1145/2976749.2978309,

Mueller B (2018) Smashing ethereum smart contracts for fun and real profit. 9th Annual HITB Security Con-
ference (HITBSecConf). Amsterdam, Netherlands HITB, https://raw.githubusercontent.com/b-mueller/
smashing-smart-contracts/master/smashing-smart-contracts-1of1.pdf,

Nikolić I, Kolluri A, Sergey I, Saxena P, Hobor A (2018) Finding the greedy, prodigal, and suicidal contracts
at scale. In: Proceedings of the 34th annual computer security applications conference. New York, NY,
USA ACM. pp 653–663. https://doi.org/10.1145/3274694.3274743,

Parizi RM, Dehghantanha A, Choo Kim-Kwang R, Singh A (2018) Empirical vulnerability analysis of auto-
mated smart contracts security testing on blockchains. In: Proceedings of the 28th annual international
conference on computer science and software engineering. vol 18 pp 103–113, IBM Corp. http://dl.acm.
org/citation.cfm?id=3291291.3291303,

Rameder H, di Angelo M, Salzer G (2022) Review of automated vulnerability analysis of smart contracts on
ethereum. Front Blockchain 5. https://doi.org/10.3389/fbloc.2022.814977

Ren M, Yin Z, Ma F, Xu Z, Jiang Y, Sun C, Li H, Cai Y (2021) Empirical evaluation of smart contract testing:
what is the best choice? In: Proceedings of the 30thACMSIGSOFT international symposium on software
testing and analysis. pp 566–579. ACMNew York, NY, USA. https://doi.org/10.1145/3460319.3464837

Schneidewind C, Grishchenko I, Scherer M, Maffei M (2020) EThor: practical and provably sound static
analysis of ethereum smart contracts. Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security. Association for ComputingMachinery, New York, NY, USA. pp 621–640.
https://doi.org/10.1145/3372297.3417250

Tang X, Zhou K, Cheng J, Li H, Yuan Y (2021) The vulnerabilities in smart contracts: a survey. In: Sun X,
Zhang X, Xia Z, Bertino E (eds) International conference on artificial intelligence and security (ICAIS).
Communications in computer and information science, vol CCIS 1424, Springer, Cham, pp 177–190.
https://doi.org/10.1007/978-3-030-78621-2_14

Tolmach P, Li Y, Lin S-W, Liu Y, Li Z (2022) A survey of smart contract formal specification and verification.
ACM Comput Surv 54(7):1–38. https://doi.org/10.1145/3464421

Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Bünzli F, Vechev M (2018) Securify: practical secu-
rity analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. pp 67–82. ACM New York, NY, USA. https://doi.org/10.1145/3243734.
3243780

Wang Z, Jin H, DaiW, ChooK-KR, ZouD (2021) Ethereum smart contract security research: survey and future
research opportunities. Front Comput Sci 15(2):152802. https://doi.org/10.1007/s11704-020-9284-9

Zhang P, Xiao F, Luo X (2020) A framework and dataset for bugs in ethereum smart contracts. In: 2020 IEEE
international conference on software maintenance and evolution (ICSME), pp 139–150. https://doi.org/
10.1109/ICSME46990.2020.00023

Zhou H, Milani Fard A, Makanju A (2022) The State of Ethereum Smart Contracts Security: Vulnerabilities,
Countermeasures, and Tool Support. J Cybersec Priv, 2(2):358–378.Multidisciplinary Digital Publishing
Institute, https://doi.org/10.3390/jcp2020019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1145/2976749.2978309
https://raw.githubusercontent.com/b-mueller/smashing-smart-contracts/master/smashing-smart-contracts-1of1.pdf
https://raw.githubusercontent.com/b-mueller/smashing-smart-contracts/master/smashing-smart-contracts-1of1.pdf
https://doi.org/10.1145/3274694.3274743
http://dl.acm.org/citation.cfm?id=3291291.3291303
http://dl.acm.org/citation.cfm?id=3291291.3291303
https://doi.org/10.3389/fbloc.2022.814977
https://doi.org/10.1145/3460319.3464837
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.1007/978-3-030-78621-2_14
https://doi.org/10.1145/3464421
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1007/s11704-020-9284-9
https://doi.org/10.1109/ICSME46990.2020.00023
https://doi.org/10.1109/ICSME46990.2020.00023
https://doi.org/10.3390/jcp2020019

Empirical Software Engineering

Authors and Affiliations

Monika di Angelo1 · Thomas Durieux2 · João F. Ferreira3 · Gernot Salzer1

Thomas Durieux
thomas@durieux.me

João F. Ferreira
joao@joaoff.com

Gernot Salzer
gernot.salzer@tuwien.ac.at

1 TU Wien and INESC-ID Lisbon, Vienna, Austria
2 TU Delft, Delft, Netherlands
3 INESC-ID and Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

123

http://orcid.org/0000-0002-4217-4530
http://orcid.org/0000-0002-1996-6134
http://orcid.org/0000-0002-6612-9013
http://orcid.org/0000-0002-8950-1551

	Evolution of automated weakness detection in Ethereum bytecode: a comprehensive study
	Abstract
	1 Introduction
	2 Study design
	3 Contract data
	3.1 Creation of contracts
	3.2 Data Collection
	3.3 Forks Introducing New Operations

	4 Analysis Tools
	4.1 Selection of Tools
	4.2 Synopsis of Tools
	4.3 Maintenance Aspects
	4.4 Supported EVM Operations

	5 Execution Framework
	6 Weaknesses
	6.1 Vulnerability Detection vs. Weakness Warning
	6.2 Synopsis of Weaknesses
	6.3 Mapping of Tool Findings

	7 RQ1 Abstraction
	8 RQ2 Weakness Detection over Time
	8.1 Tool reports
	8.2 SWC classes detected

	9 RQ3 Tool Quality over Time
	10 RQ4 Overlap Analysis
	11 Discussion
	11.1 Relation between Findings, Errors, Failures, and Overlap
	11.2 Assessment of Tools
	11.3 Combining or Comparing Tools Results
	11.4 Comparison to Source Code as Input
	11.5 Threats to Validity

	12 Related Work
	12.1 Recent Systematic Reviews on Analysis Tools
	12.2 Tool Evaluations without Test Sets
	12.3 Benchmarked Evaluations
	12.4 Differences to the Benchmarked Studies
	12.5 Open Source Frameworks

	13 Conclusion
	Appendix
	Acknowledgements
	References

