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Topological properties of multiterminal superconducting nanostructures:
Effect of a continuous spectrum

E. V. Repin, Y. Chen, and Y. V. Nazarov
Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

(Received 21 December 2018; revised manuscript received 27 February 2019; published 10 April 2019)

Recently, it has been shown that multiterminal superconducting nanostructures may possess topological
properties that involve Berry curvatures in the parametric space of the superconducting phases of the terminals,
and associated Chern numbers that are manifested in quantized transconductances of the nanostructure. In
this paper, we investigate how the continuous spectrum that is intrinsically present in superconductors, affects
these properties. We model the nanostructure within scattering formalism deriving the action and the response
function that permits a redefinition of Berry curvature for continuous spectrum. We have found that the redefined
Berry curvature may have a nontopological phase-independent contribution that adds a nonquantized part to the
transconductances. This contribution vanishes for a time-reversible scattering matrix. We have found compact
expressions for the redefined Berry curvature for the cases of weak energy dependence of the scattering matrix
and investigated the vicinity of Weyl singularities in the spectrum.

DOI: 10.1103/PhysRevB.99.165414

I. INTRODUCTION

The study of topological materials has been on the front
edge of the modern research in condensed matter physics for
the past decade [1–5]. These materials are appealing from
fundamental point of view and for possible applications (TI-
based photodetector [6,7], spintronics [8], field-effect tran-
sistor [9], catalyst [10], and quantum computing [11,12]).
The basis for applications is the topological protection of
quantum states, which makes the states robust against small
perturbations and leads to many unusual phenomena, e.g.,
topologically protected edge states [13–15]. The topolog-
ical superconductors[16–19] and Chern insulators [20–23]
are the classes of topological materials that are relevant for
the present paper. In the case of the Chern insulator, the
topological characteristic is an integer Chern number [24,25]
computed with the Green’s function of electrons occupying
the bands in a Brillouin zone of a material: Wess-Zumino-
Witten (WZW) form [26–29]. The first Chern number reduces
to the sum of first Chern numbers of the filled bands. For each
band, the first Chern number is defined as an integral of the
Berry curvature over the Brillouin zone [30,31]. The Berry
curvature is commonly defined [32] as B(k)

αβ = −2Im〈∂αk|∂βk〉
with |k〉 being the wave function in this band and α, β being
the parameters: in this case, two components of a wave vector.
If the Chern number of a crystal is not zero, the edge states
necessarily appear at the interface between the crystal and
the vacuum (since the Chern number of the vacuum is zero).
The dimensionality of topological materials in real space
is restricted by three from above, which significantly limits
possible topological phases.

However, there is a way to circumvent this fundamen-
tal limitation. Recently, the multiterminal superconducting
nanostructures with conventional superconductors were pro-
posed to realize the topological solids in higher dimensions
[33]. Such nanostructures host discrete spectrum of so called

Andreev bound states [34–36]. The energies and wave func-
tions of these states depend periodically on the phases of
superconducting terminals. This sets an analogy with a band
structure that depends periodically on the wave vectors. The
dimensionality of this band structure is the number of termi-
nals minus one. Also, as it was noted [33], the multiterminal
superconducting nanostructures cannot be classified as the
high-dimensional topological superconductors from the stan-
dard periodic table of topological phases [37]. The authors
of Ref. [33] have considered in detail four-terminal super-
conducting nanostructures and proved the existence of Weyl
singularities [38,39] in the spectrum. The Weyl singularity
is manifested as level crossing of Andreev bound states at a
certain point in three-dimensional phase space. Each Weyl
singularity can be regarded as a pointlike source of Berry
curvature. Owing to this, a nonzero two-dimensional Chern
number can be realized and is manifested as a quantized
transconductance of the nanostructure. This transconductance
is the response of the current in one of the terminals on the
voltage applied to the other terminal in the limit of small
voltage, this signifies an adiabatic regime.

The peculiarity of the system under consideration is the
presence of a continuous spectrum next to the discrete one.
These states are the extended states in the terminals with ener-
gies above the superconducting gap. Were a spectrum discrete,
the adiabaticity condition would imply the level spacing being
much larger than the driving frequency. The level-spacing
is zero for a continuous spectrum, so this complicates the
adiabaticity conditions. This has been pointed out already
in Ref. [33] but was not investigated in detail. We note the
generality of the situation: a generic gapped system might
have a continuous spectrum above the certain threshold, and
the adiabaticity condition required for the manifestations of
topology needs to be revisited in this situation.

The aim of the present article is to investigate this ques-
tion in detail for a generic model of a superconducting
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nanostructure. We have studied the linear response of currents
on the changes of superconducting phases in the terminals. We
model a multiterminal superconducting nanostructure within
the scattering approach [40]. In this approach the terminals
of the nanostructure are described with semiclassical Green’s
functions and the scatterer coupled to the terminals is de-
scribed by a unitary (in real time) S matrix. As known [40],
a typical scale of energy dependence of the scattering matrix
is set by the inverse propagation time of an electron through
the nanostructure. This does not depend on the number of
transport channels involved. Therefore this estimation is valid
both for metallic and semiconducting structures. A convenient
limit that can be also experimentally relevant is the limit
of a short nanostructure. In this case, one can disregard the
energy dependence of S matrix at the energy ��, provided
the inverse propagation time by far exceed �.

Although it is not crucial, we made use of Matsubara
formalism which conveniently allows us to concentrate on
the ground state of the system and the limit of vanishing
temperature is formally achieved by considering continuous
Matsubara frequencies. In what follows, we concentrate on
this limit as the most important one. The effect of thermal and
nonequilibrium population of the quasiparticle states will not
be considered here and can be shortly summarized as follows
[33,41]. The thermal population might become import if
one measures the Berry curvature locally, in the vicinity of
a certain point in the space of superconducting phases. In
order to measure a local response function, one can perform
an adiabatic sweeping over a small circle around a point of
interest in the space of phases in both directions and measure
the difference of the currents in those two measurements. Due
to the linearity of the adiabatic correction [33] to the current
in φ̇

δIα = −2eφ̇βBαβ, (1)

one obtains the local response function in this way. As
discussed in Ref. [33], in this case, the effect of nonzero
temperature is incorporated in the thermal equilibrium
occupation numbers of the quasiparticle states nk as
Bαβ = ∑

εk>0(nk − 1/2)B(k)
αβ . Those occupation numbers

nk are determined by the temperature. If the occupation of
the kth state nk is one, then the contribution B(k)

αβ from this
state to the total Berry curvature Bαβ changes sign with
respect to the case of zero occupation. So, the topological
properties of the junction are sensitive to the temperature.
For this setup, the thermal effects can be taken into account
setting nk to its thermal equilibrium values. In the limit of low
temperatures and in the presence of the finite gap, they are
suppressed as e− εL

T , where εL is the lowest ABS energy. There
is however a special situation when only a single quasiparticle
is excited in the superconductor, so the annihilation of that
might require very long times. We briefly discuss different
parity ground states in Sec. VI. Another way of measuring
the Chern number of the nanostructure is to measure the low
voltage transconductance between two voltage biased leads.
Applying constant voltages is equivalent to adiabatic sweep
of the phases in the two-dimensional plane subspace of the
whole space of phases [33]. In this situation, the system is
no longer in thermal equilibrium and the current may depend

on the nonequilibrium population of the quasiparticle states.
We do not address this complex population dynamics in the
present paper. It has been considered in Ref. [41] for much
details.

Therefore we perform the calculations in imaginary time
formalism [42]. At the first step, we obtain the general ef-
fective action describing the nanostructure in terms of the S
matrix and time-dependent semiclassical Green’s functions of
the terminals. At the second step, we expand the action to the
second power in time-dependent phases of the terminals. At
the third step, we concentrate on the limit of small voltage and
driving frequency, to obtain the response function relevant for
topological properties.

We can use the properly antisymmetrized response func-
tion as a generalized definition of the Berry curvature that
is suitable for the systems with and without a continuous
spectrum. The main result of the present article is that so-
defined Berry curvature is contributed to by a continuous
spectrum as well as discrete one even in the case of energy-
independent S matrix. We derive an explicit formula for it.
This solves the paradox mentioned in Ref. [33]: the Berry
curvature associated with discrete Andreev bands is discon-
tinuous when the highest Andreev bound state merges with
the continuum, which indicates that the integral of the Berry
curvature defined only for discrete spectrum will not reduce
to an integer. The redefined Berry curvature that we find is
continuous. It gives rise to integer Chern numbers if the S
matrix is time-reversible. If it does not we reveal a specific
additional nontopological contribution that does not depend
on the superconducting phases. We note the importance of
the energy scales much larger than superconducting gap |�|
in this context. This is why we also discuss in detail the
case of an energy-dependent S matrix the energy scale of
variation of which may be in any relation with supercon-
ducting gap. We find that the nontopological contribution
depends on the regularization of the S matrix at large energies.
In particular, it vanishes if the S matrix is regularized as
S±∞ = 1, this corresponds to no conduction between the
terminals.

The paper is organized as follows. In Sec. II, we introduce
the details of a model of a multiterminal superconducting
nanostructure and review the main aspects of a scattering
matrix approach formalism in this case. The derivation and
discussion of the response function are given in Sec. IV.
In Sec. VI, we discuss the specific behavior near the Weyl
singularities, in the absence and presence of a weak spin-orbit
coupling. In Sec. V we apply the general formulas to the case
of a scattering matrix that varies only slightly on the scale
of the superconducting gap |�|. In Sec. VII, we address the
energy-dependent S matrices at arbitrary energy scale for a
specific model of an energy dependence. We conclude the
paper with the discussion of our results (Sec. VIII). The tech-
nical details of the derivations are presented in Appendices.

II. MULTITERMINAL SUPERCONDUCTING
NANOSTRUCTURE

Generally a multiterminal superconducting nanostructure
(Fig. 1) is a small conducting structure that connects n
superconducting leads. The leads are macroscopic and are
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FIG. 1. A multiterminal superconducting nanostructure. Super-
conducting terminals are characterized by the corresponding super-
conducting phases. Electrons and holes coming from a terminal are
scattered at the scattering region and can go to any other terminals.
At least four terminals with three independent phases are required for
a nanostructure to simulate a three-dimensional band structure with
topological properties.

characterized by the phases of the superconducting order
parameter. Each lead labeled by α ∈ {0, 1, . . . , n − 1} has its
own superconducting phase φα and one of the leads’ phase
can be set to zero value φ0 = 0, according to the overall
gauge invariance. The nanostructure design and these phases
determine the superconducting currents Iα in each lead, that
are the most relevant quantities to observe experimentally.

We aim to describe a general situation without specify-
ing the nanostructure design. To this end, we opt to de-
scribe the system within the scattering approach pioneered
by Beenakker [43]. The superconducting leads are treated
as terminals: they are regarded as reservoirs which contain
macroscopic amount of electrons and are in thermal equi-
librium. A common assumption that we also make in this
article is that all terminals are made from the same material
and thus have the same modulus of the superconducting order
parameter |�|. At sufficiently low temperatures and applied
voltages, one can disregard possible inelastic processes in the
nanostructure and concentrate on elastic scattering only. Fol-
lowing the basics of the scattering approach [40], we assume
Nα spin-degenerate transport channels in terminal α. The
conducting structure connecting the terminals is a scattering
region and is completely characterized by a scattering matrix
S which generally depends on energy ε and is a unitary matrix
at any ε. In Matsubara formalism, we use imaginary energy
ε and the matrix S satisfies the condition SεS†

−ε = 1. All the
details of the nanostructure design are incorporated into the
scattering matrix.

The electrons and holes in the superconducting transport
channels involved in the scattering process may be described
as plane waves that scatter in the region of the nanostructure
and then return to the corresponding terminals. Amplitudes
of incoming and outgoing waves are linearly related by the
S matrix. The numbers of transport channels in the terminal
α denoted as Nα determines the dimension of the scattering

matrix: dimS = M × M, where M = 2S
∑

α Nα and 2s counts
for the spin. The electrons and holes experience Andreev
reflection in the superconducting terminals: the electrons are
converted into holes and turn back, the same happens to
holes. The Andreev reflection is complete at the energies
smaller than the superconducting gap �. Therefore electron-
hole waves may be confined in the nanostructure giving rise
to discrete energy levels called Andreev bound states (ABS).
The amplitudes and phases of these confined states are deter-
mined by the scattering matrix and Andreev reflection phases
that involve the superconducting phases of the corresponding
terminals. One can find the energies of the ABS ε through
Beenakker’s determinant equation [36]:

det
(
e2iχ − Sεeiφσy

(
ST

−ε

)−1
σye−iφ

) = 0, χ = arccos
( ε

�

)
,

(2)

where Sε is the S matrix at the real energy ε, σy = (0 −i
i 0 )

is a Pauli matrix acting in the spin space and eiφ is the
diagonal matrix in channel space ascribing the stationary
superconducting phases of the terminals to the corresponding
channels, eiφ → δabeiφα , where a, b label the channels and α

is the terminal corresponding to the channel a. The ABS en-
ergies and the corresponding eigenvectors in the space of the
channels depend parametrically on n − 1 independent phases
φα ∈ [0, 2π ] and thus can be viewed as a band structure
defined in a “Brilluoin zone” of phases. It was noted [33] that
(without spin-orbit interaction) three independent parameters
are needed to tune the (n − 1)-dimensional band structure of
energy levels of ABS to reach the Weyl singularity at zero
energy. It was also noted [33] that only one parameter is
required to satisfy the condition for the highest ABS to touch
the continuum above the gap (ε = |�|). The ABS merges
the continuum in this case and this implies that one cannot
change this level adiabatically even for arbitrarily slow change
of the parameters. When the incommensurate small voltages
are applied to two terminals to sweep the phases [33], the
system passes the points where the highest level merges
with the continuum. This makes it questionable to apply the
adiabaticity reasoning in this case. This makes it necessary to
consider the contribution of the continuous spectrum to the
response function of the currents in the limit of slow change
of the parameters.

III. ACTION

The most general way to describe the nanostructure under
consideration is to use an action method. This method has
been pioneered in the context of a simple Josephson junction
in Ref. [42]. In this method, one deals with an action of
the nanostructure that depends on the time-dependent su-
perconducting phases φα (τ ). The transport properties of the
nanostructure as well as quantum fluctuations of the phases
in case the nanostructure is embedded in the external circuit
[42], can be derived from this action.

One of the advances of this paper is the derivation of such
action for multiterminal nanostructure and arbitrary S matrix
in Matsubara formalism. The details of the derivation are
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given in Appendix A. Here we give the answer:

2L = −Tr ln(�+ + �−Ŝε ), �± = 1 ± g

2
. (3)

Here, �± and Ŝε are matrices in a space that is a direct product
of the space of channels, the imaginary-time space, spin and
Nambu space. The matrix Ŝε is diagonal in the corresponding
energy representation, therefore it depends on the difference
of the imaginary time indices only. Its Nambu structure is
given by

Ŝε =
(

Sε 0
0 ST

−ε

)
, (4)

where Sε is the electron energy-dependent S matrix (see
Appendix A). The matrix g is composed of the matrices
diagonal in energy and diagonal in time in the following way:

g = U †τzU, U † =
(

e
iφ(τ )

2 0
0 e

−iφ(τ )
2

)(
A−ε Aε

Aε A−ε

)
, (5)

where

Aε =
√

E + ε

2E
, E =

√
ε2 + |�|2, (6)

where τz is the third Pauli matrix acting in Nambu space and
the Nambu structure has been made explicit in U †. This form
assumes that |�| is the same in all the terminals. If it is not
so, the matrix Aε also acquires the dependence on the channel
index. It is worth noting that g2 = 1 so that �± are projectors.
The matrix g can be associated with the semiclassical Green’s
function in a terminal [40,44]: eiφ(τ ) is the diagonal matrix
in channel space ascribing the time-dependent superconduct-
ing phases of the terminals to the corresponding channels,
eiφ(τ ) → δabeiφα (τ ), where a, b label the channels and α is the
terminal corresponding to the channel a. We note the gauge
invariance of the action: due to the invariance of the trace
under unitary transformations, the superconducting phases
can be ascribed to the terminal Green’s functions g as well
as to the scattering matrix. Let us assume that the matrix Sε

does not depend on spin. Then the trace over spin is trivial. It is
convenient to apply the unitary transformation U † as in (5) to
all the matrices in (3). This transforms the matrix g to τz. Then
the projectors take a simple form �± → 1±σz

2 and the matrix
in (3) reduces to the lower block-triangular form in Nambu
space. The determinant is then equal to the determinant of
the lower right block of the transformed matrix S̄ε . Then the
action takes the form

−2L = 2STr ln
[
Aεe

−iφ(τ )
2 Sεe

iφ(τ )
2 Aε

+ A−εe
iφ(τ )

2 ST
−εe

−iφ(τ )
2 A−ε

]
, (7)

the S matrix in Matsubara formalism is subject to the unitarity
constraint,

S†
−εSε = 1. (8)

In what follows, we ascribe the stationary phase to the S
matrix. We also concentrate on the zero-temperature limit
kBT � |�|, so the summations over discrete frequencies are
replaced with integrations

∫
dε
2π

.

FIG. 2. Singularities of the matrix Qε in the complex plane of
energy ε. The symmetric cuts [±i|�|, ±∞] manifest the states
of continuous spectrum. The isolated zeros of the determinant of
the matrix are situated at the imaginary axis within the interval
[−i|�|, +i|�|] (red crosses). Their positions correspond to the ABS
energies.

Stationary phases

In the stationary case φ(τ ) = φ + δφ(τ ) with constant φ

and δφ(τ ) ≡ 0, the value of the action gives the stationary
phase-dependent ground-state energy of the nanostructure
Eg = limkBT →0 T L0.

Eg = −2S

2

∫
dε

2π
Tr ln Qε, (9)

Qε = A2
εSε + A2

−εST
−ε, (10)

where trace is now over the channel space and the trace
over spin space is taken explicitly as a factor of 2S unless
specifically addressed. Here we incorporate the stationary
phase to the S matrix as Sε → Sε (φ) = e−i φ

2 Sεei φ

2 . In this way,
the stationary phase dependence is present in Eq. (9). The
operator Qε introduced here has the properties of the inverse
of the Green’s function although it is not related to an operator
average: its determinant as function of complex ε vanishes,
detQε = 0, at imaginary values ε = ±iεk corresponding to
the ABS energies [compare with (2). In addition to these
singularities, the operator Qε has two cuts in the plane of
complex ε corresponding to the presence of a continuous
spectrum in the terminals above the gap |�|. We choose the
cuts as shown in Fig. 2. The expression (9) can be simplified
in the case when the S matrix does not depend on energy

Eg = −2S

2

∫
dε

2π
Tr ln

(
E + ε

2E
+ E − ε

2E
SS∗

)
(11)

+ 2S

2

∫
dε

2π
ln det(ST ). (12)

The second (divergent) contribution here does not depend
on the superconducting phases so we omit it. To compute
the integral it is convenient to choose the basis in which the
unitary matrix � = SS∗ is diagonal. This is a unitary matrix,
so the eigenvalues are unimodular complex numbers. The
phases of the eigenvalues are related to the energies of ABS:
�k = e2iχk , χk = arccos[εk/|�|], χ ∈ [−π/2; π/2]. The

165414-4



TOPOLOGICAL PROPERTIES OF MULTITERMINAL … PHYSICAL REVIEW B 99, 165414 (2019)

eigenvalue �k = 1 is doubly degenerate and corresponds to
the values εk = ±|�|. The eigenvalues come in complex
conjugated pairs �∗

k = �−k , where (−k) corresponds to the
Nambu counterpart of the kth eigenvector. So only the eigen-
values Im�k > 0 correspond to the quasiparticle states with
positive energies. We will label them with positive indices k.
In what follows, we define a “bar” operation that links these
pairs |k̄〉 = S|k�〉 = |−k〉 where |k〉 is some eigenvector of �.
We note, however, that this operation is not a convolution,
since | ¯̄k〉 = �k|k〉.

In this basis, we can rewrite the integral as

Eg = −2S

2

∑
k>0

∫
dε

2π
ln

[
(E + ε)2 + (E − ε)2 + 2 cos 2χk

4(ε2 + |�|2)

]
.

(13)

Evaluation of the integral brings to the known result

Eg = −2S

2

∑
εk>0

εk, (14)

where εk are the stationary phase-dependent ABS energies,
as discussed above. The derivative of the ground-state energy
with respect to a stationary phase in terminal α gives the

stationary current in the corresponding terminal,

Iα = 2e

h̄

∂Eg

∂φ
(0)
α

. (15)

We expect this relation to hold in the adiabatic limit. In the
following section, we will access the time-dependent currents
concentrating on the next order correction in the limit of small
frequencies.

IV. RESPONSE FUNCTION OF THE CURRENTS

To compute the response function of the currents we
assume small nonstationary phase addition to the stationary
phases φ, φ(τ ) = φ + δφ(τ ), δφ(τ ) � 2π and expand the
action to the second order in δφ(τ ) [first order vanishes
automatically since δφ(τ ) is nonstationary

∫ β

0 dτδφ(τ ) = 0].
We give the details in Appendix B. The total contribution to
the action reads

δL =
∑
α,β

∫
dω

2π

δφα
ωδφ

β
−ω

2
Rαβ

ω , (16)

δφω being the Fourier transform of δφ(τ ). The frequency-
dependent response function of the current Rαβ

ω is given by

Rαβ
ω = −2S

∫
dε

2π
Tr

{
Q−1

ε A2
ε

[
Pα

2
(Sε−ω − Sε )

Pβ

2
+ Pβ

2
(Sε+ω − Sε )

Pα

2

]
(17)

+ 1

2
Q−1

ε

∂2Qε

∂α∂β
(18)

− 1

2
Q−1

ε+ω

[
A−(ε+ω)

(
iPα

2
ST

−ε − ST
−(ε+ω)

iPα

2

)
A−ε − Aε+ω

(
iPα

2
Sε − Sε+ω

iPα

2

)
Aω

]

× Q−1
ε

[
A−ε

(
iPβ

2
ST

−(ε+ω) − ST
−ε

iPβ

2

)
A−(ε+ω) − Aε

(
iPβ

2
Sε+ω − Sε

iPβ

2

)
Aε+ω

]}
. (19)

Here the stationary phases are ascribed to the S matrix. We
use a shorthand notation ∂/∂α = ∂/∂φα

and define a set of
matrices that project channel space onto the space of the
channels in the terminal α, (Pα )ab = δab if a is a channel in
terminal α and (Pα )ab = 0 otherwise. The term (17) vanishes
at zero frequency and in the case of the energy-independent S
matrix. The second term (18) does not depend on frequency
ω. In the limit of zero frequency, the second (18) and the third
(19) terms reproduce the stationary response function of the
currents

lim
ω→0

Rαβ
ω = −2S

2

∂2

∂α∂β

∫
dε

2π
Tr ln Qε = ∂2Eg

∂α∂β
. (20)

Let us consider the limit of small ω � |�| and concentrate on
the first-order correction to the adiabatic limit

Rαβ
ω = ∂2Eg

∂α∂β
+ ωBαβ + O(ω2). (21)

We note that the response function is analytic in the vicinity of
ω = 0. This is guaranteed by the gap in the density of states,
which is given by the energy of the lowest ABS. Away from
the zero-energy Weyl singularity it can be estimated as |�|/N

with N being the total number of ABS in the nanostructure.
The vicinity of a Weyl singularity has to be treated more care-
fully as we discuss in Sec. VI. Let us note that for any system
with a discrete spectrum the quantity Bαβ can be related to
the Berry curvature [30–32]. For any state in the discrete
spectrum, the Berry curvature corresponding to this state is
given by B(i)

αβ = −2Im〈∂αi|∂β i〉 with i labeling discrete states
and |i〉 being the wave function of the corresponding state. In
our case we are interested in the total Berry curvature of the
superconducting ground state defined as Bαβ = − 1

2

∑
i B(i)

αβ ,
where i labels the (spin-degenerate) wave functions of the
BdG equation with positive eigenvalues [33]. However, the
adiabaticity condition, which justifies the expansion in (21)
for the case of discrete spectrum, requires the frequency to be
much smaller than the smallest energy spacing between the
levels.

In our system, the continuous spectrum above the su-
perconducting gap is present. In principle, any continuous
spectrum can be approximated with a discrete spectrum with
a vanishing level spacing δ → 0. By doing this we can utilize
the previous expression for the response function Bαβ since it
is valid for the discrete spectrum. However, the adiabaticity,
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which is necessary for this expression to be valid, would
reduce to ω � δ → 0. This condition contains an artificially
introduced δ and is by construction very restrictive in ω.
On the other hand, the expansion in Eq. (21) is valid under
a physically meaningful and less restrictive condition ω �
|�|/N . Taken all that into account, we conclude that the
response function Bαβ defined in Eq. (21) does not have to
reduce to the expression for a total Berry curvature of a
superconducting ground state of a system discussed above.
The topological properties of this quantity also have to be
investigated separately.

One may conjecture that the resulting response function in
Eq. (21) reduces to the sum of the Berry curvatures of the
discrete ABS spectrum, so that it is not contributed to by the
continuous spectrum. This conjecture relies on the analogy
between the expressions for the total Berry curvature and
the superconducting ground-state energy. In the case when
the S matrix is energy-independent, only the discrete states
contribute to the ground-state energy. Thus motivated, in the
following we investigate the response function Bαβ defined by
means of Eq (21) in detail. We find that there is a contribution
from the continuous spectrum to this quantity as well as from
the discrete one. We also find that in general the integral of
Bαβ over the phases φα, φβ that would normally define an
integer Chern number, is not integer. Therefore Bαβ contains
a nontopological contribution. This nontopological part is
contributed by the continuous as well as the discrete part of
the spectrum.

The tensor Bαβ defined in Eq. (21) is antisymmetric (since
Rαβ

ω = Rβα
−ω). The concrete expression for Bαβ reads

Bαβ = −2S

2

∫
dε

2π

(
1

2
Tr

[
Q−1

ε

∂Qε

∂ε
Q−1

ε

∂Qε

∂α
Q−1

ε

∂Qε

∂β

]

+ ∂

∂β
Tr

[
Q−1

ε A2(ε)

{
∂Sε

∂ε
,

iPα

2

}])
− (α ↔ β ).

(22)

The first term here resembles the usual WZW form [29] for a
Chern number. Usually, the form contains the matrix Green’s
functions [29], in our case the form utilizes the matrix Qε

defined by Eq. (10). We note however that in distinction from
common applications of WZW forms here one cannot regard
Qε as a smooth function of parameters φα, φβ, ε defined on
a compact manifold without a boundary. This is because in
general this matrix has different limits at positive and negative
infinite energies S−∞ for ε → −∞ and ST

−∞ for ε → +∞
that also depend on the phases. Due to this reason the integral
of the first term over a compact surface without a boundary in
a space of phases does not have to reduce to an integer ×(2π ).
The second term in Eq. (22) has a form of a total derivative
with respect to a phase of a periodic and smooth function, so
the integral of this one over a compact surface will give zero.

In order to obtain the value of this integral, let us consider
first the variation of this value upon the small smooth variation
of the matrix Qε → Qε + δQε that comes from the small
variation of the S matrix δSε , so δQε = A2

εδSε + A2
−εδST

−ε . The
value of the integral of the second contribution in Eq. (22)
does not contribute to the integral over a compact submanifold
in phase space, so we needn’t consider its variation. It is
known [45] that the variation of the first contribution to Bαβ

reduces to the total derivatives

δ

{∫
dε

2π
Tr

[
Q−1

ε

∂Qε

∂ε
Q−1

ε

∂Qε

∂α
Q−1

ε

∂Qε

∂β
eαβ

]}

=
∫

dε

2π
∂εTr

[
Q−1

ε δQεQ−1
ε

∂Qε

∂α
Q−1

ε

∂Qε

∂β

]
eαβ (23)

+
∫

dε

2π
∂αTr

[
Q−1

ε δQεQ−1
ε

×
(

∂Qε

∂β
Q−1

ε

∂Qε

∂ε

∂Qε

∂ε
Q−1

ε

∂Qε

∂β

)]
eαβ. (24)

The value of the integral of (24) over a compact submanifold
in phase space vanishes if the submanifold does not pass Weyl
singularities corresponding to detQ−1

ε → ∞, because it has a
form of a total derivative of a smooth function. Evaluation of
the integral in (23) yields the following contribution to the
variation of Bαβ

1

2π
δ

{
Tr

[
S−∞

Pα

2
S†

+∞
Pβ

2

]}
eαβ. (25)

We note that this contribution is generally nonzero and does
not depend on phases.

Let us turn to the evaluation of the topological charge
that is proven to be very useful in the field [28]. The value
of the topological charge is defined in a usual way with the
divergence of the topological field �E :

2πq = div �E , Eγ ≡ 1
2 eγαβBαβ. (26)

To compute the topological charge we need to consider
a special variation of the S matrix that just corresponds to
the stationary phase derivative δSε = [Sε,

iPγ

2 ]δφγ . Since the
expression under the trace in (25) does not depend on phases,
the topological charge vanishes at any point where the field
�E is well-defined, or alternatively detQ−1

ε is finite. The Weyl
singularities give rise to the pointlike integer charges being
the sources of the field �E . We consider this in detail in
Sec. VI. This situation is in complete analogy with that of
the standard Berry curvature of a discrete spectrum where
Weyl singularities correspond to band crossings. However,
we have computed the topological charge for the particular
phase-dependence of the S matrix on phases (e− iφ

2 Se− iφ
2 ). We

have not considered the topological charge in the space of two
phases φα and φβ and some other parameter characterizing
the scattering matrix, this charge could be nonzero and have
a continuous distribution. The investigation of the general
parametric dependence of the S matrix is beyond the scope
of the present paper.

We separate the field �E into three parts: a part produced
by the pointlike charges, divergenceless field that is zero in
average, and a constant part �̄E . The value of the integral

2πC12 =
∫ 2π

0

∫ 2π

0
dφ1dφ2

Bαβeαβ

2
=

∫
(d�s, �E ) (27)

is given by the flux of the topological field through the
corresponding surface. This flux reduces to the integer for the
first contribution to �E , vanishes for the second divergenceless
contribution and may result in some value for the constant part
of the field. We stress that the last contribution being present
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is the main distinction from the common case. The value
of this constant field is then given by the integration of the
variation (25):

Ēγ = 1

2π

{
Tr

[
S−∞

Pα

2
S†

+∞
Pβ

2

]}
eγαβ . (28)

This expression may be interpreted in terms of the antisym-
metric part of the normal-metal Landauer conductance [40,46]
G(L)

αβ of the nanostructure, at least in the case of energy-
independent scattering matrix:

G(L)
αβ = 2Se2

2π h̄
Tr(SPβS†Pα − PβPα ). (29)

Due to the general Onsager relations, the time-reversibility
condition has to be broken for the value of the antisymmetric
part of the response function to be nonzero. In our case
the time-reversibility is broken if the superconducting phase
differences between terminals are nonzero. However, we note
that (28) does not depend on stationary phases of terminals
due to the invariance of the trace under unitary transforma-
tions. Hence, the time-reversibility condition for Eq. (28) is
reduced to the bare S matrix at φα = 0 for all α. Clearly, this
requirement of the time-reversal breaking condition for the S
matrix without phases S = ST coincides with the condition for
a nonzero value of the antisymmetric part of Eq. (29).

So, the constant field (28) can contribute to the flux through
any plane in the phase space:

C = n + 2π ( �̄E , �n), (30)

where �n is the normal vector to this plane. As it has been
shown in Ref. [33] the value of C12 is directly related to
the observable transconductance between the leads α = 1 and
β = 2 as

Gαβ = −2e2

π h̄
Cαβ = −2e2

π h̄
n + G(L)

αβ − G(L)
βα

2
. (31)

Therefore, in contrast to the conclusions of Ref. [33], the value
of transconductance does not always quantize in units 2e2/π h̄
but may acquire a phase independent offset precisely equal
to the antisymmetric part of (29). Although, the change of
transconductance with a phase stays quantized.

So, in principle a nonzero nontopological contribution to
(30) can be present. This contribution is nonzero if the S ma-
trix is not regularized at infinite energy such that [S−∞, Pα] =
0. If the S matrix is regularized in this way, then the Qε matrix
is defined on a compact space of parameters (ε, α, β ), so the
first contribution to Eq. (30) would reduce to an integer n (with
proper normalization). If it is not regularized this way, then
this boundary term leads to the presence of a nontopological
contribution to the response function, that comes due to the
presence of a continuous spectrum and, formally, from the
fact that the matrix Qε is not defined on a compact space, as
discussed above.

It is surprising that the answer does depend on the high-
energy properties of the S matrix. Generally, one would not
expect this to happen. One may argue that at large energies
the S matrix is regularized such that it is diagonal in the space
of the channels. That one can argue due to the finite value of
the bandwidth of the energies of the states in the terminals.

Due to this, at the energies that exceed the bandwidth value
there are no states, so the transport is not possible. If we
assume this regularization limit at large energies, the S matrix
is independent of the superconducting phases in this limit.
Hence, at this energy, the S matrix describes the complete
isolation of the terminals. So this looks like a natural regu-
larization which cancels the effect considered. From the other
hand, this qualitative analysis is not rigorous enough. One
may work through the microscopic approach to study this
effect rigorously. This could be the subject of future research.

V. WEAK ENERGY DEPENDENCE OF THE S MATRIX

In the description of the realistic nanostructure, a reason-
able approximation is to consider the S matrix to be constant
on the scale of |�|. It corresponds to the case of a short
nanostructure (smaller than the superconducting coherence
length). So a logical approximation would be to describe the
nanostructure with a constant S matrix at all energies. The
response function Bαβ is given by an integral over energy
in Eq. (22). Would this integral accumulate in the region
ε ∼ |�|, then the approximation of a constant S matrix at
all energies would be accurate. However, there can be a
significant contribution from the energy scales ε � |�| to
the integral yielding Bαβ . In this case, the energy dependence
of the S matrix at the large energies becomes important. To
investigate this, we consider the contributions from the small
scales ε � |�| and from the large scales ε � |�| in Secs. V A
and V B, respectively.

A. Energy-independent S matrix

In this section, we analyze the small-scale (ε ∼ |�|) con-
tribution to (22). For this, we approximate the S matrix to
be constant at all energies and extend the integration limits
to infinity. The second term in (22) vanishes since ∂Sε

∂ε
= 0.

The integral in the first term in (22) converges on the scale
ε � |�|. This statement only necessarily holds if the S matrix
is energy-independent. Otherwise, the contribution from the
larger scales can be present and we investigate it in Sec. V B.
Similarly to (13), the result of integration under consideration
can be expressed in terms of the eigenvalues and eigenvectors
of the unitary matrix � = SS∗. We use the same notations |k〉
and |k̄〉 for the eigenvectors related to the complex conjugated
eigenvalues pair �k and �∗

k correspondingly as described
after Eq. (12). We remind that the phase of the eigenvalue
�k = e2iχk with k > 0 is related to the energy of ABS as χk =
arccos[εk/|�|]. We also remind that �k = 1 is degenerate
and corresponds to the energy of one of the ABS εk = |�|.
Upon crossing this point in phase space, this ABS state
exchanges the wave function with its Nambu counterpart with
the eigenvalue εk′ = −|�|. Due to this we call such points gap
touching singularities.

Evaluating the integral yields

4πBαβ = −2
∑

k

[ln �k − ln(1 + i0sgn(k))]〈∂αk|∂βk〉

−
∑
k, j

(
1 − �k

� j

)
〈 j|∂αk〉〈 j|∂βk〉 − (α ↔ β ),

(32)
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FIG. 3. The choice of the branch cut of the logarithm in Eq. (32)
in the plane of complex �.

where k and j label the eigenvalues of �, and the summation
goes over indices with both signs. If the number of channels
is odd, there is an eigenvector of � corresponding precisely
to the eigenvalue �k = 1. Then the index k = 0 corresponds
to this state. If the number of channels is even, the indices
in Eq. (32) do not take the zero value. In the following, we
consider the number of channels to be even. The logarithm
here has a branch cut along the real axis as [0,+∞] (see
Fig. 3) to avoid the gap touching singularity ambiguity �k =
1. Let us consider the behavior of Bαβ in the vicinity of the gap
touching singularity. Since the wave function corresponding
to �k → 1 + i0 is discontinuous upon crossing this singular-
ity, it is not obvious that Bαβ is continuous. However, one
can observe that the first term is a sum of Berry curvatures
of individual levels multiplied by the eigenvalue-dependent
prefactors ln �k . This prefactors vanish for the discontinuous
wave functions at the gap touching degeneracy and guarantee
the continuity of the first term. Also, one can show that the
second term in Eq. (32) is continuous. Consequently, Bαβ

is continuous at this point (see Fig. 4). The only possibility
for Bαβ to be ill-defined at some points in phase space is
the zero-energy Weyl singularity where det Q−1

ε diverges (see
Sec. VI).

The response function Bαβ is expressed in terms of
eigenvalues and eigenvectors of the matrix �. So is the
ABS contribution to the ground-state Berry curvature, which
was conjectured as a result for Bαβ (see Sec. IV). It
was shown [33] that this ABS contribution is given by
BABS

αβ = − 2S
2

∑
k>0 B(k)

αβ, B(k)
αβ = −2Im〈∂αk|∂βk〉. Since one of

the wave functions contributing to this sum is discontinuous
at the gap touching singularity, we conclude that BABS

αβ is
discontinuous contrary to Bαβ . One can understand the differ-
ence between Bαβ and BABS

αβ by considering the computation
of the integral in the first term in Eq. (22) by means of
complex analysis (in the plane of complex ε). By shifting the
integration contour to the upper half-plane, one can see that
the integral is contributed to by the poles, corresponding to
ABS and the cut above the gap (see Fig. 2). The contribution
from the poles results in BABS, but the contribution from the
cut, Bcut

αβ = Bαβ − BABS
αβ = 0, is equally important (see Figs. 4

and 5).

FIG. 4. Example plots of B12. To produce the plots, we chose
one channel per terminal and took a random nonsymmetric 4 × 4
scattering matrix describing the structure. We fix φ2 = 1.20π, φ3 =
0.48π , and change φ1. (Top) (a) the value of B12 as given (32). It
is clearly a continuous function of φ1. (b) The contribution of the
discrete ABS to B12. The contribution experiences a jump at a point
where the highest ABS merges with the continuum. (a) and (b) is
thus the contribution from the continuous spectrum. (See also Fig. 5.)
(Bottom) The ABS energies vs φ1. The point where the highest level
touches the gap edge by coincides with the point of discontinuity of
the discrete spectrum contribution

For the integrated Bαβ , we obtain in accordance with
Eq. (30)∫ 2π

0

∫ 2π

0
dφ1dφ2

eαβBαβ

2
= 2π

[
n + 1

4
Tr(S†PβSPα )eαβ

]
,

(33)

so the value of transconductance is not necessarily quantized
in the approximation of the energy-independent S matrix (see
Fig. 6 as an example).

B. Contribution from the large scales

In the previous section, we have shown that the nontopo-
logical contribution to the transconductance comes from the
boundary terms at ε = ±∞ [see Eq. (23)]. This means that,
contrary to intuition, there is an essential contribution to Bαβ

coming from the energy scales much larger than the energy
gap. In order to investigate the large energy contribution, we
assume the regularization of the S matrix at large energies.
So, in this section, we consider Bαβ for a particular energy
dependence of the S matrix. It is chosen such that the S
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FIG. 5. Example plots of the continuous spectrum contribution
to B12 [Eq. (22)] vs φ1 and φ2. A random nonsymmetric scattering
matrix that varies slowly at the scale of |�| with S∞ = 1 has been
chosen to produce the plots. (Top) A density plot of the continuous
spectrum contribution to B12 [Eq. (22)] vs φ1 and φ2 at φ3 = 0.48π .
There is a discontinuity at the lines of the gap edge touching.
(Bottom) The lines of the gap touching.

matrix is regularized at infinity such that it varies slowly on
the scale of a superconducting gap |�| and S±∞ = 1. This S
matrix corresponds to a complete isolation of the terminals at
the largest energies. With this regularization, the matrix Qε

is defined on a compact parameter space (α, β, ε) and the
first contribution in (22) must reduce to an integer. Due to
the scale separation, there are two contributions to Bαβ . One
comes from the scales ε ∼ |�| and is given by the same result
(32). Another one comes from the scales ε � |�|.

For negative energies, the large-scale contribution with
asymptotic accuracy equals

− 1

2
eαβ

∫ 0

−∞

dε

2π
Tr

[
∂S†

−ε

∂ε
Sε

∂S†
−ε

∂α

∂Sε

∂β

]

= −1

2
eαβ

∫ 0

−∞

dε

2π
∂εTr

[
S†

−ε

iPα

2
Sε

iPβ

2

]

= − 1

4π
eαβTr

[
S† iPα

2
S

iPβ

2

]

+ 1

4π
eαβTr

[
S†

+∞
iPα

2
S−∞

iPβ

2

]
(34)

with the notation S = Sε=0.

FIG. 6. An example plot of the “Chern number” C12 defined as
the integral of B12 over φ1,2 [see (30)]. To produce the plot, we have
chosen a random 4 × 4 scattering matrix that is not invariant with
respect to time reversal. We have found two Weyl singularities of
opposite charge at φ3 = ±0.07π . We plot C12 vs φ3 to demonstrate
the integer jumps at the positions of Weyl singularities along with a
noninteger, nonuniversal offset.

For positive ones,

− 1

2
eαβ

∫ +∞

0

dε

2π
Tr

[
∂S�

ε

∂ε
ST

−ε

∂S�
ε

∂α

∂ST
−ε

∂β

]

= −1

2
eαβ

∫ +∞

0

dε

2π
∂εTr

[
S�

ε

iPα

2
ST

−ε

iPβ

2

]

= − 1

4π
eαβTr

[
S† iPα

2
S

iPβ

2

]

+ 1

4π
eαβTr

[
S†

+∞
iPα

2
S−∞

iPβ

2

]
. (35)

So, the both contributions give the following addition to the
response function:

1

2π
eαβTr

[
S† Pα

2
S

Pβ

2

]
− 1

2π
eαβTr

[
S†

+∞
Pα

2
S−∞

Pβ

2

]
. (36)

Both terms here do not depend on phases. The first one is
exactly equal to the constant part of the topological field
defined previously with an opposite sign (computed for an
energy-independent S matrix case). So after integration over
two phases, it cancels the nontopological contribution from
small scales in (33). Since we assume a regularization S±∞ =
1, the second term is zero (Tr[S†

+∞
Pα

2 S−∞
Pβ

2 ] = 0), so the
total mean value of the transconductance is quantized in
correspondence with the theory of characteristic classes.

The second contribution to Bαβ in Eq. (22) contains the
energy derivative of the S matrix under the integral. Due to
this the energy scale of its dependence drops out from the
integral. So, one may expect that it contributes to the large
scale contribution to Bαβ . However, with asymptotic accuracy
it vanishes in the limit when the S matrix varies slowly on the
scale |�|. Indeed, in the limit |ε| � |�|,

Q−1
ε � S�

ε , A2
ε � 0, ε > 0, (37)

Q−1
ε � S†

−ε, A2
ε � 1, ε < 0. (38)
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In this limit for ε < 0, the integrand equals

∂

∂β
Tr

[
Q−1

ε A2(ε)

{
∂Sε

∂ε
,

iPα

2

}]

� ∂βTr

[
iPα

2

(
∂Sε

∂ε
S†

−ε − ∂S†
−ε

∂ε
Sε

)]
= 0 (39)

with asymptotic accuracy, since the expression under the trace
does not depend on phases. For ε > 0, the integrand vanishes
since A2

ε → 0 for ε � |�|.

VI. THE VICINITY OF A WEYL POINT

In this section, we investigate the Berry curvature in the
vicinity of a Weyl singularity, that occurs at some point
�φ0 in the three-dimensional phase space. Such Weyl points
have been analyzed in Ref. [33] assuming spin symmetry,
in Ref. [47], the analysis has been extended to cover weak
spin-orbit interaction. Without spin-orbit coupling, the Weyl
points are situated at zero energy and det Q−1

ε=0 diverges near
the point. A conical spectrum of ABS is found in the vicinity
of the point [33]. A weak spin-orbit coupling splits the energy
cones in spin and shifts the Weyl point to a finite energy [47].
Further, we discuss separately the cases of vanishing and weak
spin-orbit coupling.

A. Vanishing spin-orbit coupling

When the spin-orbit (SO) coupling is absent, the Weyl
singularities are located at some points in the phase space
�φ0 and occur at zero energy ε± = 0. To consider the vicinity
of the singularity, we assume a small phase deviation δφ̂ =
φ̂ − φ̂0 � 1 from the singularity point and assign it to each
channel via the diagonal matrix eδφ̂ . In the vicinity, Bαβ

defined by Eq. (22) only has nonzero contributions from the
first term of quasi-WZW term. The second term vanishes
asymptotically when the energy approaches zero, as shown
in Eq. (37). Conform to these approximations, we extend the
domain of the integration over the phases to infinity since Bαβ

is concentrated near the singularity point.
To compute Bαβ , we approximate the Q matrix near the

Weyl point with the expression that keeps the first orders in
ε and of the variation: Q = (ε + 1

2δ�)ST = MST , S being
the scattering matrix in the singularity point at ε = 0. Con-
veniently, we can replace Q with M in Eq. (22). We find the
variation δ� by expanding the S matrix in δ �φ:

S → S + δφS = e−iδφ̂/2Seiδφ̂/2 = S −
[

iδφ̂

2
, S

]
, (40)

� = SS∗ → � + δφ� = � + iSδφ̂S†� − iδφ̂�. (41)

We can contract the dimension of M projecting it to two
eigenvectors of � that achieve singular values at the Weyl
point. Following Ref. [33], we separate the singular part of
M and write in the basis of ABS eigenvectors |+〉 and |−〉
satisfying S|±〉 = ±|∓〉∗, �|±〉 = −|±〉:

M = ε + 1

2
δ� ≡ ε + i

2
�h · �τ , (42)

where �τ are the Pauli matrices in the space of these two
eigenvectors, and the components of �h are proportional to the

components of �φ: hx + ihy = 2〈−|δφ̂|+〉, hz = 〈+|δφ̂|+〉 −
〈−|δφ̂|−〉.

The form of M is similar to the generic form of Green’s
function of a two-level system. We expect that the two poles
of M−1 should be positioned symmetrically on the imaginary
axis ε due to BdG particle-hole symmetry. Indeed, we find

these poles at ε± = ±i |�h|
2 . Using the trace relations of Pauli

matrices, we reduce in the leading order Bαβ to the Berry
curvature of the corresponding levels:

Bαβ = −1

4

∫
dε

2π
Tr

(
M−1

ε

∂Mε

∂ε
M−1

ε

∂Mε

∂α
M−1

ε

∂Mε

∂β

)

= 1

8

∫
dε

2π

∑
a, b, c

= x, y, z

1

(det M )2
(ha∂αhb∂βhcεabc − (α ↔ β ))

=
�h

4|�h|3 · ∂α
�h × ∂β

�h − (α ↔ β ). (43)

We note that in this section all the matrices have the spin in-
dex. For an N-dimensional space of superconducting phases,
the singularities are concentrated in the N − 3 dimensions and
the relevant space is reduced to a three-dimensional subspace
{δφ1, δφ2, δφ3}. For certainty, we set the indices α, β = 1, 2,
and consider the curvature defined in the φ1-φ2 plane at a fixed
phase φ3.

The φ3 dependence of the integral of the curvature with re-
spect to superconducting phases φ1, φ2 witnesses the change
of first Chern number C12 when the integration plane passes
the singularity point. Since we only concentrate on the vicinity
of the Weyl singularity, the integral under the approximations
made can only indicate the change of the Chern number,
rather than its total value that can be determined by integration
over the regions far from the singularity point. To compute
the integrated Bαβ , we notice from Eq. (42) that the energy
spectrum is linear in δφ, and introduce a linear relation hi =∑

α δφαTαi with Tαi = ∂αhi being a real invertible matrix. The
integrated B12 is then obtained as

C12 = 1

2π

∫
B12dφ1dφ2 = 1

2
sgn(δφ3 det T ), (44)

sgn(δφ3) determining the orientation of the δφ3 deviation.
This implies that whenever the integration plane passes the

Weyl point, the first Chern number is changed by �C12 =
1
2 sgn(δφ3 det T ) − 1

2 sgn(−δφ3 det T ) = ±1. This manifest
the integer values of the topological charge. The integrated
Bαβ in Eq. (44) specifies the flux of the Berry field penetrating
the plane which is either above or below the singularity
point. This flux, owing to symmetry, is a half of the total
flux, this explains the half-integer values. Therefore the main
contribution to Eq. (32) in the vicinity the Weyl point is given
by the Berry curvatures of the two levels that are close to zero
energy, and can be presented as

Bαβ = 2Im[〈∂α + |∂β+〉]. (45)

B. Weak spin-orbit coupling

Let us turn on a weak spin-orbit interaction and take it into
account perturbatively giving a small spin-dependent change
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to the scattering matrix that preserves its unitarity, as is done
in Ref. [47]. The first-order variation thus reads

S → e−iδφ/2Sei�σ · �K eiδφ/2 = S + δφS + iS(�σ · �K ), (46)

� = SσyS∗σy → � + δφ� + δK�

= � + δφ� + iS(�σ · �K )S†� + i�(�σ · �K∗), (47)

where the last equality sign implies the commutation relation
σyσ

∗
i σy = −σi. Here, �σ are the Pauli matrices in spin space

and �K being the corresponding Hermitian matrix in the chan-
nel space characterizing the spin-orbit effects. Owing to the
time reversibility, �K (�φ) = −�K (−�φ), yet in the vicinity of the
singularity we may disregard its dependence on superconduct-
ing phases.

As in the previous section, we project the matrix Q onto
singular subspace that has now dimension of 4 to account for
spin, and replace it with the matrix M. Writing the latter in the
basis of eigenvectors |±〉|↑(↓)〉:

M = ε + 1

2
δ� = ε + i

2
(�h · �τ − �σ · �K ′), (48)

�K ′ = 〈+| �K∗|+〉 + 〈−| �K∗|−〉. We can conveniently choose
the spin quantization axis in the direction of �K ′ replacing the
operator �σ · �K ′ with its eigenvalues ±|K0| = ±

√
|�σ · �K ′| for

spin up and down, respectively.
The spin-orbit coupling lifts the spin degeneracy of the

ABS in the vicinity of a Weyl point. The poles at imaginary

energies become ε↑ = i(±|�h|
2 + |K0|

2 ) for spin up and ε↓ =
i(±|�h|

2 − |K0|
2 ) for spin down. Contrary to the spin-degenerate

case, the singularities at |�h| = 0 are no longer at zero energy.
Instead, they are shifted to ±i|K0|, see Fig. 7. The conical
singularity of the spectrum remains and the topology is still
protected, as we will explain below in detail.

The ABS energies cross zero energy when

|K0| = |�h| =
√∑

δφαXαβδφβ (49)

is satisfied. Here, we introduce a positively defined matrix
Xαβ = ∑

i TαiTiβ . Equation (49) defines an ellipsoidal surface
in the 3D superconducting phase space that encloses the
singularity at φ̂0 where |�h| = 0. Outside the ellipsoid, two
positive imaginary poles at ε+↑(↓) = i

2 (|�h| ± |K0|) hold a half
of the residue of the spin degenerate pole ε+ each. Two
negative imaginary poles ε−↑(↓) at ε−↑(↓) = i

2 (−|�h| ± |K0|)
have the opposite residues. Inside the ellipsoid, poles of ε+↑
and ε−↓ exchange their values as well as wave functions, thus
canceling the contributions from the other two poles. Thus
Bαβ is zero inside the ellipsoid and is the same as in the
spin-degenerate case outside the ellipsoid,

Bαβ =
⎧⎨
⎩

�h
4|�h|3 · ∂α

�h × ∂β
�h − [α ↔ β], |K0| < |�h|

0, |K0| > |�h|
.

(50)

FIG. 7. Spin-orbit splitting of Weyl singularity. (a) ABS energies
versus φ1 through the singularity for a choice φ2,3 corresponding
to the singularity. The cone shifted upward (downward) specifies
spin up (down). (b) ABS energy with the same φ2,3 along the line
φ1 that misses the singularity. (c) The ABS cross zero energy at
the surface of the ellipsoid depicted. The ellipsoid encloses the
singularity (central point). The ground state within the ellipsoid is
of odd parity and the Berry curvature is zero. The central dot is the
Weyl singularity φ0 enclosed in the ellipsoid. The ABS energies in
(a) and (b) are plotted along the solid (a) and dashed (b) lines. (d) The
“Chern number” C12 vs φ3. The topological quantization is absent
owing to the discontinuity of the ground state at the surface of the
ellipsoid.

The result of integration of B12 over two superconducting
phases φ1, φ2 at a fixed δφ3 thus reads

C12 = 1

2π

∫
dφ1dφ2B12θ (|�h| � |K0|2). (51)

One can understand this result geometrically by presenting
Eq. (51) as an integral over the corresponding plane in �h space,

C12 = 1

2π

∫
|�h2|>|K0|2

( �h
2|�h|3 · n̂h

12

)
d2h12

= sgn(δφ3 det T )

4π

∫
|�h2|>|K0|2

d2h12

h2
= sgn(δφ3 det T )

2

�12

2π
,

(52)

where n̂h
12 is the vector normal of the corresponding plane and

�12 is eventually the solid angle at which a part of the φ1-φ2

plane outside the ellipsoid is seen from the Weyl singularity
(see Fig. 7). Generally, this angle is expressed through elliptic
integrals.

The integral can be simplified if we choose the coor-
dinate system in 3D space of the phases in such a way
that T13 = T31 = T23 = T32 = 0. With this, the integral can be
evaluated as

C12 = sgn(det T )δφ3

2

∫ ∞

1

(|K0|2 − T 2
33δφ

2
3

)
rdr[(|K0|2 − T 2

33δφ
2
3

)
r2 + T33δφ

2
3

] 3
2

= 1

2
sgn(det T )

δφ3

|K0| . (53)
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FIG. 8. Many-body energy spectrum EMB given by (54) cor-
responding to Fig. 7. The ground singlet state, single quasiparti-
cle states of different spin and the excited singlet are labeled as
|0〉, |↓(↑)〉 and |↑↓〉, respectively. The solid (dashed) lines corre-
spond to the ABS plots Fig. 7(a) [Fig. 7(b)]. As the phase is varied,
the ground-state parity transition between |0〉 state and |↓〉 state takes
place at the point defined by (49).

We see that in the vicinity of a Weyl point the C12 is
not a topologically protected quantity confined to the integer
values: rather, it changes linearly in an interval of δφ3 defined
by the strength of the spin-orbit coupling (Fig. 7).

To explain this, and eventually restore the topological
protection of C12, let us consider many-body states in the
vicinity of the Weyl point. Their energies are given by the
eigenvalues of the many-body Hamiltonian HMB

HMB = E↑
(
n̂↑ − 1

2

) + E↓
(
n̂↓ − 1

2

)
, (54)

where E↑(↓) = 1
2 (|�h| ± |K0|) are the energies of quasiparticle

excitations with spin up(down), n̂↑(↓) are the number operators
of the quasiparticles with the corresponding spin. The energy
spectrum EMB for each of the four possible states is given
in Fig. 8. As we see from the Figure, the ground state of
the superconducting nanostructure corresponds to n↑ = n↓ =
0 at |�h| > |K0| and to n↓ = 1, n↑ = 0 within the ellipsoid
|�h| < |K0|. These states differ in fermion parity, which is
the conserving quantity for the superconducting Hamiltonian.
This is why the parity transition that takes place at |�h| = |K0|
is accompanied by the discontinuity of the wave functions,
which violates the topological quantization of C12. It is evi-
dent from Fig. 8 that the states of the odd fermion parity do not
depend on phases in the vicinity of the Weyl point therefore
corresponding to zero B12.

The topological protection is restored if one considers the
ground state at fixed parity. Then for the even ground state C12

is the same as for the spin-degenerate case and experiences an
integer jump when the integration plane passes the singularity
point. No change of topological charge occurs for the odd
ground state and it remains topologically trivial.

VII. ENERGY-DEPENDENT S MATRIX

In this section, we consider the effect of the energy de-
pendence of the S matrix on B12 given by (22) for arbitrary
relation between the energy scales of the scattering matrix and
the gap |�|.

FIG. 9. An example plot of B12 [Eq. (22)] for a randomly chosen
energy-dependent S vs the energy scale E for several choices of the
energy scale μ at φ1 = 0.22π, φ2 = −0.67π, and φ3 = −π . The
dashed line gives the limiting value of B12 at E � |�| where
the energy dependence of the scattering matrix is weak.

We make use of the following model scattering matrix:

Sε = iε − μ − E (Ĥ + i�̂/2)

iε − μ − E (Ĥ − i�̂/2)
, [Ĥ , �̂] = 0, (55)

where �̂ and Ĥ are Hermitian dimensionless matrices with
eigenvalues of the order of one. This expression can be
regarded as a rather general polar decomposition of an energy-
depended scattering matrix. Since the matrices �̂ and Ĥ can
be diagonalized simultaneously, the expression has poles at
the complex energies E = μ + E (Hn − i�n/2) defined by the
corresponding eigenvalues. The poles can be seen as the
scattering resonances. The eigenvalues Hn set the energies of
those resonances and the corresponding eigenvalues �n give
the inverse lifetimes of these resonances, �n must be positive
to assure the correct causal properties of the scattering. Real
energy scale E then sets the typical spread of the poles in
energy around their average position μ. We note that Sε → 1
as ε → ∞, so the conditions of regularization described in
a previous section are fulfilled and the integral of B12 over
a compact subspace in phase space that does not cross the
Weyl singularities, reduces to an integer. We remind that the
limit Sε → 1 corresponds to isolated terminals. In distinction
from the weak energy dependence case, the ABS energies
defined by Eq. (2) can not be readily obtained and the resulting
spectrum may be complicated with more ABS per transport
channel. It is no more plausible to separate the contributions
to Bαβ coming from discrete and continuous spectrum. This,
however, does not change the qualitative features of these
contributions discussed above.

Let us consider and illustrate the dependence of B12 on
these two energy scales. We choose random matrices Ĥ and �̂

that satisfy the conditions stated, and compute B12 from
Eq. (22) at rather arbitrary settings of three phases. The
integration over the imaginary energy in Eq. (22) permits the
evaluation with no regard for the details of a complicated
ABS spectrum. We plot the result versus the energy scale E at
several settings of μ (Fig. 9).

Let us consider μ = 0 first. In this case, at E → 0 the
transmission between the terminals is limited to a small circle
of the radius �E near μ. This suppresses the Andreev scatter-
ing that requires good transmission at opposite energies, and
all quantities that depend on the phase differences including
Bαβ . In Fig. 9, this is manifested as almost zero B12 at E < μ.
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The further increase of E restores the Andreev scattering
bringing B12 to its typical values of ∼(2π )−2. We note a
nonmonotonous dependence on E and explain it by the fact
that different poles of the scattering matrix contribute to
B12 with typically different signs, and the magnitude of the
contribution depends on the position of the pole with respect
to the energy scale ��. At E � �, the energy dependence of
the scattering matrix is weak at ε � � and B12 saturates at a
value that does not depend on μ and is given by Eqs. (32) and
(36) (dashed line in Fig. 9).

The case of μ = 0 is special at small E since the concen-
tration of transmission in a small circle of energies does not
suppress the Andreev scattering. The ABS in this case are
concentrated in this small energy circle (see Ref. [48]) and
depend on all phases. This is why B12 does not drop to 0 but
rather approaches a finite limit at E → 0. At E � �, B12

still saturates at the value corresponding to the weak energy
dependence case.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we address the topological properties of
multiterminal superconducting nanostructures. This involves
Berry curvatures in the parametric space of the superconduct-
ing phases of the terminals and associated Chern numbers that
manifest themselves in quantized transconductances [33].

The specifics of the superconducting nanostuctures is the
presence of continuous spectrum along with the discrete one.
The Berry curvature is readily defined for a discrete spectrum.
Its generalization for a (partly) continuous spectrum is not
straightforward, and is a problem of general interest. It has
not been solved in Ref. [33].

We perform the calculation in imaginary time, and model
the nanostructure with an energy-dependend scattering ma-
trix. We have derived a general action of superconducting
nanostructure with time-dependent phases, this is a separate
advance. We expand the action near a point in the space of
phases to compute the response function at finite frequency.
We define the tensor quantity Bαβ [Eq. (22) ]as a first term
in the expansion of the response function at small frequency.
This quantity would have been Berry curvature if the spectrum
were entirely discrete.

We analyze the topological properties of the computed
quantity. Like for Berry curvature, the topological charge as-
sociated with divergence of Bαβ is concentrated in the singular
points of 3d phase space where ABS cross zero energy—
Weyl points. Unlike Berry curvature, the quantity Bαβ has a
nontopological contribution that is constant over the space
of phases [Eq. (28)]. This in general adds a nonquantized
part to “Chern” numbers defined as integrals of Bαβ over two
superconducting phases, and to the corresponding transcon-
ductances. This contribution is determined by the scattering
matrix at ε → ∞. It vanishes if the scattering matrix without
superconducting phases is time-reversible and if the scattering
matrix approaches isolation limit Sε = 1 at large energies. For
an energy-independent scattering matrix, the nontopological
term is associated with the antisymmetrized part of the con-
ductance matrix of the structure in the normal state.

We consider in detail the case of weak energy dependence
of the scattering matrix. We separate the contributions of the

FIG. 10. The concrete model for the derivation of the action.
The electrons are moving in 2N spin-degenerate channels connected
to the corresponding superconducting terminals by tunneling (wavy
dashed lines). In the picture, all the terminals in Eq. (1) are combined
into a single superterminal for convenience. Right of the vertical line,
the tunneling between the channels provides the scattering described
by N × N matrix.

discrete and continuous spectrum, find them equally important
and derive a compact relation for Bαβ [Eq. (32)].

We analyze in detail the Berry curvature in the vicinity
of Weyl points. We have found a violation of topological
protection of “Chern” number in case of weak spin-orbit
coupling. This, however, is rather trivially related to the
transition between the ground states of different parity near
the Weyl point and associated discontinuity of the wave func-
tions. The topological protection is restored if one considers
a ground state of a fixed parity. We also investigate the
properties of Bαβ for the scattering matrices that essentially
depend on energy at the energy scale ��.
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APPENDIX A: DERIVATION OF THE ACTION

In this Appendix, we derive the effective action for a
multiterminal superconducting junction within the scattering
approach. We follow the lines of Ref. [49]. In contrast to
Ref. [49], we proceed in Matsubara formalism. Let us start
with the formulation of a concrete microscopic model. Since
the scattering formalism is universal, there is a great degree
of arbitrariness in the choice of the model: all models that
are characterized by the same scattering matrix will result
in the same action. Properties of the scatterer are to be
completely described by an S matrix, the details of the model
that describes the system are not important. So we choose
the model in a way we find it convenient (see Fig. 10). We
consider a system of independent one-dimensional channels
with pairwise opposite velocities and a linear spectrum. They
are defined in the interval −∞ < x < 0. The total number of
channels is 2N , number N includes the spin doubling. Two
channels in a pair with opposite velocities are coupled to
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the same superconducting reservoir: this is required to assure
the time-reversibility of the model at this level. The coupling
is a tunnel one, and the coupling strength is characterized
by the dwell timescale τ : at this timescale, an electron in
a channel would tunnel to a reservoir. The tunneling results
in an addition of self-energy to Green’s functions in the
channels, which is proportional to the tunneling rate 1/τ and
to a matrix Green’s function g characterizing a reservoir (see
its concrete definition below). The channels defined in such
a way model the electron states coming from and going to
the reservoirs that are scattered at the nanoscructure. In the
scattering region with a coordinate y ∈ [0, l], there are N
spin-degenerate channels of the same velocity direction. At
the boundary y = 0, the electron amplitudes in the channels
match those in the channels of positive velocity at x = 0
(incoming states), while at y = l the amplitudes match those
in the channels with the negative velocity(outgoing states). As
we will show, the S matrix relates the amplitudes at y = l and
y = 0.

To find the action for the nanostructure, we will compute
its variation with respect to the variation of g. To this end,
we require the values of the Green’s functions in the channels
x, x′ < 0 in close points x ≈ x′. We find the variation in three
steps. At the first step, we express the Green’s functions at any
x in terms of the Green’s functions at x ≈ 0. At the second
step, we consider the scattering region that provides a bound-
ary condition. With this, we relate these Green’s functions,
and solve for them. This permits to find the variation and the
action at the third step.

In the channels, we choose the basis in the following form:⎛
⎜⎝

u+
v−
u−
v+

⎞
⎟⎠, (A1)

where u± and v± are N vectors in the space of the chan-
nels associated with the electron and hole amplitudes of the
Bogolyubov wave function, and ± refers to the sign of the
velocity in corresponding channels. In this basis, the equation
for Green’s function reads(

iετ3 + ivη3τ3∂x + i

2τ
g

)
GCh(x, x′) = δ(x − x′), (A2)

where v is the velocity that we can set the same for all the
channels, ε is the Matsubara frequency, τi are Pauli matrices
in Nambu space, and η3 = ± distinguishes channels with pos-
itive and negative velocities. The matrix g is block-diagonal in
the channel space. For a given reservoir, it is given by

g = 1√
ε2 + |�|2

{
ετ3 + iσ2

[
τ1

(
� − �∗

2

)

+ iτ2

(
� + ��

2

)]}
, (A3)

g2 = 1, � being the superconducting order parameter in the
corresponding reservoir.

We define a block structure

GCh =
(

G1 G3

G4 G2

)
. (A4)

We are only interested in the diagonal blocks G1;2 since the
off-diagonal blocks will not contribute to the variation of
the action. We integrate the equation assuming ετ � 1 for
G(x, x′) at x < x′ and we obtain

G1(x, x′) =
(

1 − g

2
e

(x−x′ )
2vτ + 1 + g

2
e− (x−x′ )

2vτ

)
G−

1 (x′), (A5)

G2(x, x′) =
(

1 + g

2
e

(x−x′ )
2vτ + 1 − g

2
e− (x−x′ )

2vτ

)
G−

2 (x′), (A6)

where we use special notations for the Green’s functions in
the close points

G−
1 (x′) = G1(x′ − 0, x′), G−

2 (x′) = G2(x′ − 0, x′). (A7)

Since the solution for the Green’s function should not grow
x → −∞, these Green’s functions should satisfy the follow-
ing conditions:

�+G−
1 = 0, �+ = 1 + g

2
, G−

1 = lim
x′→−0

G−
1 (x′), (A8)

�−G−
2 = 0, �− = 1 − g

2
, G−

2 = lim
x′→−0

G−
2 (x′). (A9)

These matrices G−
1;2 can be fixed if we consider the bound-

ary conditions, that can be obtained by solving the equations
for the Green’s functions in the scattering region y ∈ [0; l]. To
derive these condition, let us introduce the amplitude vectors
�(y) = G(y, x), X (y) = G(x, y) that have Nambu structure
(u(y)
v(y)) and satisfy the equations(

iετ3 + ivτ3∂y −
(

U (y) 0
0 U T (y)

))
�(y) = 0, (A10)

(iετ3 − ivτ3∂y′ )X (y′) − X (y′)
(

U (y′) 0
0 U T (y′)

)
= 0,

(A11)

where U (y, ε) is the N × N matrix potential acting on elec-
trons inside the scattering region and mixing different chan-
nels. The solution of the Eq. (A11) gives a linear relation on
the amplitudes

X (y = l ) = X (y = 0)Ŝ†
−ε, (A12)

where we define the S matrix for electrons and holes arranged
in Nabmu structure

Ŝε =
(

Se(ε) 0
0 (Sh(ε))−1

)
, (A13)

(Sh(ε))−1 ≡ ST
−ε . (A14)

The electron scattering matrix is given by

Se(ε) = Sε = e− εl
v × Tye− i

v

∫ l
0 dyU (y,ε), (A15)

where Ty implies the ordering of the U (y) operators in the
exponent according to the values of y in the increasing order.
We do not need to specify the energy dependence of the S
matrix except for the general condition SεS†

−ε = 1.
The relation on the amplitude (A12) gives the relation

between the diagonal and off-diagonal blocks of the Green’s
function (A4) outside the scattering region but close to it
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|xε/v| � 1, |x′ε/v| � 1

G3(x, x) = G1(x, x′)Ŝ†
−ε = G−

1 Ŝ†
−ε (x < x′). (A16)

The solution of Eq. (A10)

�(y = l ) = Ŝε�(y = 0) (A17)

yields another relation between the blocks

G2(x′, x) = G+
2 = ŜεG3(x, x) (x < x′). (A18)

Combining Eq. (A18) and (A16), we obtain the required
boundary condition that relates the diagonal subblocks

ŜεG−
1 Ŝ†

−ε = G+
2 . (A19)

Combining Eqs. (A19), (A8), and (A9), and the condition

G+
Ch − G−

Ch = − i

v
τ3η3 (A20)

that follows directly from (A2) we solve the complete linear
system of the equations to obtain the follwing for the diagonal
blocks of the general Green’s function (A4)

G−
1 = i

v

1

�+ + �−Ŝε

�−Ŝε, G+
1 = −i

v

1

�+ + �−Ŝε

�+,

(A21)

G−
2 = −i

v

1

�− + �+Ŝ†
−ε

�+Ŝ†
−ε,

G+
2 = i

v

1

�− + �+Ŝ†
−ε

�−. (A22)

Next, we employ the formula that expresses the action
variation in terms of Green’s functions. We vary the reservoir
Green’s function g keeping normalization g2 = 1, so that
{g, δg} = 0, then the variation of the action L is

δL =
∫

dxTr[δ�(x)GCh(x, x)], (A23)

where δ� = −i
2τ

δg is the variation of self-energy of electrons in
channels and GCh(x, x) is their Green’s function at coinciding
points. We note here that indeed only the diagonal blocks G1;2

in Eq. (A4) contribute since � is diagonal in this basis. The
contribution from the channels corresponding to G1 gives

2δLin = +
∫ 0

−∞
dxTr[δ�GCh(x, x)]

= −i

2τ

∫ 0

−∞
dxTr[δgGCh(x, x)]

= −1

2
Tr

[
δg

1

�+ + �−Ŝε

�+

]
. (A24)

The further calculations is convenient to do in the basis that
diagonalizes g. In this basis,

δg =
(

0 V
W 0

)
, g =

(
1 0
0 −1

)
, Ŝ =

(
S1 S2

S3 S4

)
,

Y −1(g + δg)Y = g, Y (Ŝ + δŜ)Y −1 = Ŝ, (A25)

we find

Y =
(

1 −V
2

W
2 1

)
, δS4 = −S3

V

2
− W

2
S2,

2δLin = 1

2
TrV S−1

4 S3 (A26)

where all the relations are valid up to the first order in
variations. The contribution from the outgoing channels reads

2δLout = 1

2
Tr

[
δg

1

�− + �+Ŝ†
−ε

�−

]

= 1

2
Tr

[
δgSε

1

�−Sε + �+
�−

]
= 1

2
TrW S2S−1

4 .

(A27)

Summing both contributions, we obtain

2δL = −Tr[δS4S−1
4 ]. (A28)

Hence

2L = −Tr ln S4 = −Tr ln[�+ + �−Ŝε]. (A29)

This so-called block-determinant result for the action is sim-
ilar to the one obtained previously [49] within the Keldysh
formalism.

APPENDIX B: DERIVATION OF THE
RESPONSE FUNCTION

In this Appendix, we present the details of the derivation
of the Eqs. (19) and (22). We start with the action as given by
Eq. (7). In order to derive the response function, we assume
that the time-dependent deviation [δφ(τ )] from the stationary
phase denoted as φ is small (δφ(τ ) � 2π ) so we can expand
the action in Taylor series in δφ(τ ). We also note that in time
representation the total phase operator is diagonal [φττ ′ =
δττ ′φ(τ )], which implies that the energy representation of φ

reads

φnm = φ(ω), ω = εn − εm. (B1)

We consider here the general case of the energy-dependent
scattering matrix. The action from Eq. (7) reads

−2L = Tr ln[B + BT ], B = Aεe
−iφ

2 Sεe
iφ
2 Aε . (B2)

T implies the complete operator transposition that includes
the reversing of the sign of energy. We remind the definition

Aε =
√

E + ε

2E
, E =

√
ε2 + |�|2, (B3)

We ascribe the stationary part of the phases to an S ma-
trix Sε → Sε (φ) and expand in small nonstationary deviation
δφ(τ ).

B � B0 + B1 + B2

= B0 + ∂B

∂φα
ω

δφα
ω + 1

2

∂2B

∂φα
ω∂φ

β
−ω

δφα
ωδφ

β
−ω. (B4)

We introduce

Qε = B0 + BT
0 = A2

εSε + A2
−εST

−ε . (B5)
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With this,

δTr ln[B + BT ] � TrQ−1(B1 + BT
1 + B2 + BT

2

)
− 1

2 TrQ−1
(
B1 + BT

1

)
Q−1

(
B1 + BT

1

)
.

(B6)

We remind the definition of the matrix, that projects on the
channels connected to a given terminal α:

(Pα )ab = δab

{
1, a = α

0, a = α
, (B7)

where a, b indices are in channels. With the help of this matrix
the phase variation can be conveniently expressed as

(δφα )ab = (Pα )abδφα (τ ). (B8)

For simplicity of the notations, we denote the stationary phase
derivatives ∂φα

= ∂α . With all this we consider the expansion
of the S matrix

e
−iδφ(τ )

2 Sεe
iδφ(τ )

2 � Sε +
[

Sε,
iδφ(τ )

2

]
+ δφ(τ )

2
Sε

δφ(τ )

2

− 1

2

{(
δφ(τ )

2

)2

, Sε

}
. (B9)

Let us we also note the identities for the derivatives with
respect to the stationary phases:

∂S

∂α
=

[
S,

iPα

2

]
, (B10)

∂2S

∂α∂β
= Pα

2
S

Pβ

2
+ Pβ

2
S

Pα

2
− δαβ

{
Pα

4
, S

}
. (B11)

The first term in the expansion (B6) vanishes since δφω=0 = 0.
The second term is

TrQ−1
(
B2 + BT

2

) = 2TrQ−1B2 = δφα
ωδφ

β
−ω

∫
dε

2π
TrQ−1

ε A2
ε

[
− δαβ

{
Pα

4
, Sε

}
+ Pα

2
Sε−ω

Pβ

2
+ Pβ

2
Sε+ω

Pα

2

]

= δφα
ωδφα

−ω

2

∫
dε

2π
TrQ−1

ε

[
∂2Qε

∂α∂β

]
+ δφα

ωδφα
−ω

∫
dε

2π
TrQ−1

ε A2
ε

×
[

Pα

2
(Sε−ω − Sε )

Pβ

2
+ Pβ

2
(Sε+ω − Sε )

Pα

2

]
. (B12)

The first term here does not depend on frequency and does not vanish in the limit ω → 0. The second term up to linear order in
ω can be rewritten as

2ωδφα
ωδφα

−ω

∫
dε

2π
Tr

[
Q−1

ε A2
ε

Pβ

2

∂Sε

∂ε

Pα

2

]
= ωδφα

ωδφα
−ω

∫
dε

2π
TrQ−1

ε A2
ε∂β

{
∂Sε

∂ε
,

iPα

2

}
. (B13)

The second term in the expansion (B6) reads

−1

2
TrQ−1(B1 + BT

1

)
Q−1(B1 + BT

1

) = −δφα
ωδφ

β
−ω

2

∫
dε

2π
TrQ−1

1

[
A−1

(
iPα

2
ST

−2 − ST
−1

iPα

2

)
A−2 − A1

(
iPα

2
S2 − S1

iPα

2

)
A2

]

× Q−1
2

[
A−2

(
iPβ

2
ST

−1 − ST
−2

iPβ

2

)
A−1 − A2

(
iPβ

2
S1 − S2

iPβ

2

)
A1

]
, (B14)

where subscripts mean taking the function at the frequency ε1,2 : ε1 = ε2 + ω and we denoted ε2 = ε. Summing it with (B12),
we get the general response function as in Eq. (19).

To perform the adiabatic expansion in the small parameter ω/|�| here we keep ω as an independent parameter. We will use
the identities

iPα

2
S2 − S1

iPα

2
= −∂Scl

∂α
−

{
Sq,

iPα

2

}
(B15)

where we introduced “classical” and “quantum” S matrices as

Scl = S1 + S2

2
, Sq = S1 − S2

2
. (B16)

With this, we rewrite the term

−δφα
ωδφ

β
−ω

2

∫
dε

2π
TrQ−1

1

[
A1A2

(
∂Scl

∂α
+

{
Sq,

iPα

2

})
+ A−1A−2

(
∂ST

cl

∂α
−

{
Sq,

iPα

2

})]

× Q−1
2

[
A1A2

(
∂Scl

∂α
−

{
Sq,

iPα

2

})
+ A−1A−2

(
∂ST

cl

∂α
+

{
Sq,

iPα

2

})]
. (B17)
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Next, we expand the terms that are taken at ε1 = ε2 + ω. They come from three factors here. The expansion of the first factor

Q−1
1 � Q−1

2 + ω
∂Q−1

ε

∂ε
gives rise to

ω

2
δφα

ωδφ
β
−ω

∫
dε

2π
TrQ−1

ε

∂Qε

∂ε
Q−1

ε

∂Qε

∂α
Q−1

ε

∂Qε

∂β
(B18)

The expansion of the product of the classical parts is symmetric with respect to α and β, so it vanishes. The product of quantum
parts vanishes in linear order in ω. So we only need to consider quantum times classical and expand the quantum one

Sq � ω

2

∂Sε

∂ε
, (B19)

it yields

− 2

2
δφα

ωδφ
β
−ω

∫
dε

2π
TrQ−1 ω

2

(
A2

ε

{
iPα

2
,
∂Sε

∂ε

}
− A2

−ε

{
iPα

2
,
∂ST

−ε

∂ε

})
∂Q

∂β
Q−1 = ωδφα

ωδφ
β
−ω

∫
dε

2π
Tr

∂Q−1

∂β
A2

ε

{
∂Sε

∂ε
,

iPα

2

}

(B20)

where the first doubling is due to the same contribution with α ↔ β. Summing it with (B13) we obtain the total response function
as given by (22)

−2S

2
ωδφα

ωδφ
β
−ω

∫
dε

2π

(
1

2
TrQ−1

ε

∂Qε
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Q−1

ε

∂Qε

∂α
Q−1

ε

∂Qε

∂β
+ ∂

∂β
Tr

[
Q−1

ε A2(ε)

{
∂Sε

∂ε
,

iPα

2

}])
. (B21)
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