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Abstract

Adaptive Mesh Refinement (AMR) is potentially an effective way to automatically generate computational meshes for
igh-fidelity simulations such as Large Eddy Simulation (LES). When combined with adjoint methods, which are able to
ocalize error contributions, AMR can generate meshes that are optimal for computing a physical quantity of interest (e.g.
ift or drag). In order to apply adjoint-based AMR techniques to LES, primal flow solutions are needed to solve the adjoint
roblem backward in time. However, the resources required to store primal flow solutions can be huge, even prohibitive, in
ractical problems because of the typically very fine meshes and long averaging times for computing the statistical quantities
f interest. Here, a Reduced-Order Representation (ROR) based upon proper orthogonal decomposition is introduced to address
his issue. We develop an Enhanced Online Algorithm (EOA) based on incremental singular value decomposition to build this
OR online, which makes adjoint-based AMR feasible for practical applications. An adjoint-based error estimation procedure is
rst introduced, and verified using a manufactured solution. Then a ROR-driven AMR strategy is studied using a 1D unsteady
urgers problem with a multi-frequency forcing term. This is also used to evaluate the EOA for ROR-driven AMR. Numerical

esults demonstrate that the enhanced online algorithm generates RORs that are sufficiently accurate for AMR, avoiding the
torage of almost all of the primal solution data.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Large Eddy Simulation; Adaptive Mesh Refinement; Adjoint method; A posteriori error estimation; Order reduction; Incremental
ingular value decomposition

1. Introduction

Large Eddy Simulation (LES), in which one resolves large-scale turbulent structures while modeling the impact
rom smaller turbulent scales, has the potential to deliver reliable flow predictions for many applications, such
s those involving flow separations from a smooth surface or the analysis of acoustic sources [1]. LES has been
hown to be highly successful in situations where the computational mesh is fine enough to resolve an appropriate
ange of large scales [2]. Nonetheless, defining computational meshes that provide accurate solutions with tractable
omputing costs is a challenging task, particularly for practical applications with complex geometries and unknown
hysical features.
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In practice, the construction of meshes for LES usually involves trial and error, even for engineering experts.
his is because it is difficult to anticipate the effects of complex flow features, such as laminar turbulent transition,
oundary layer separation or vortex interactions, on a desired Quantity of Interest (QoI). It is thus natural to
onsider Adaptive Mesh Refinement (AMR) techniques [3] for automatically constructing the computational mesh.
raditionally, feature-based adaptation has been used to reduce discretization errors [4,5]. For instance, Roy [6]
xamined the use of four features: solution gradients, solution curvature, discretization error and truncation error,
nd found that truncation-error based adaptation provides superior results for the 1D steady Burgers equation.
ther physical-based criteria or heuristic indicators have been used to drive mesh adaptation, such as wall distance,
orticity, shock sensors, and small-scale kinetic energy [7]. However, feature-based adaptive schemes can fail to
elf-terminate or can produce erroneous values for the predicted functional [8]. More importantly, the final grids
re usually sub-optimal with respect to the computational cost because these a priori methods treat all local flow
eatures equally, yet not all local features are necessarily related to the QoI. For instance, Park [9] reported that
eature-based AMR might not trigger trailing edge adaptation for the ONERA M6 at Ma = 0.84 with AOA = 3
egrees, where the grid has a significant influence on the drag computation. Consequently, adjoint methods have
een developed to determine local contributions to the error in a chosen QoI, so that the adapted mesh can provide
he highest accuracy per degree of freedom.

Adjoint-based mesh adaptation has been successfully used for steady problems (e.g. RANS) under different
rameworks, including Finite-Element Methods (FEM) [10–12], Finite-Volume Methods (FVM) [8,9,13] and
iscontinuous Galerkin methods [14,15]. Several review papers presented applications of adjoint-based AMR to both
teady linear and non-linear flows [11,16] as well as laminar and turbulent aerodynamic problems [17]. Nemec et al.
18] applied adjoint-based AMR with cut-cell FVM on Cartesian grids to 3D inviscid compressible flows in sonic
oom applications and launch vehicle configurations. Dwight [13] related the dissipation added in FVM to the QoI’s
ccuracy via adjoint methods. Shi and Wang [19] verified the effectiveness of an adjoint-based h-adaptation approach
n a high-order method. Adjoint-based AMR approaches were also extended to anisotropic mesh adaptation in flow
roblems [20,21], relying on anisotropic ratios and quotients from the optimal goal-oriented metric. Adjoint-based
MR has been explored with the variational multiscale method in steady test cases, such as linear advection–
iffusion problems [22,23] and aerodynamic RANS cases [24], and was shown to provide reliable local indicators
or various QoIs. In summary, the accuracy and efficiency of adjoint-based AMR have been demonstrated in a wide
ange of cases.

However, the application of adjoint-based AMR to LES poses several challenges. The most significant of these
re related to the stability of the adjoint problem, and the high computing costs for its solutions. The stability of
he adjoint problem has received considerable attention. Using Direct Numerical Simulation (DNS), Wang and Gao
25] observed divergence when computing drag-based adjoint solutions for the turbulent flow around a cylinder
t low Reynolds. Numerous remedies have been proposed, including least-squares shadowing [26], ensemble
ensitivity [27], space-split sensitivity [28], and additional artificial viscosity [29]. Conversely, Hoffman et al. [12,30]
ave observed stable adjoint solutions at high Reynolds numbers computed with wall-modeled boundary conditions.
hus for practical applications the stability of the adjoint remains a vital topic, and is likely to be dependent on the
roblem QoI and discretization used.

The current work is focused on the second challenge mentioned above, the high computing costs of adjoint
olutions. In unsteady simulations, the primal flow problem is advanced forward in time while the adjoint problem
s solved backward in time. Due to the non-linearity of Navier–Stokes equations, flow states from the primal LES are
equired for solving the adjoint problem. For short simulations, one can store complete primal solutions in memory
nd then use this data to solve the adjoint problem. In practice, however, the QoIs from LES normally are computed
ver long averaging times, leading to prohibitive memory requirements. In order to handle this difficulty, some
esearchers choose to store the primal solution on hard disks [31–34]. However, disk space is normally limited and
he speed of data communication between hard disk and solver is much slower than access to main memory. Others
hoose to store flow solution snapshots at a prescribed frequency and interpolate intermediate values in time [30,35].
his has also been employed for high-Re number problems [36]. A disadvantage of this method, however, is the loss
f physical features when the frequency is too low. Another solution is to apply the checkpointing technique [37],
here primal flow solutions are stored at optimal selected states and then used to re-solve the primal problem

ocally. Such techniques have been employed to solve unsteady adjoint problems in sensitivity analyses of cylinder

ows [25] and tonal noise [38]. However, this requires significant computational effort.
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Chaudhry et al. [39] used reduced-order models obtained with Proper Orthogonal Decomposition (POD) to lower
he cost of repeated adjoint-based error estimations for steady nonlinear convection–diffusion–reaction problems.
n the current work, we propose the use of Reduced-Order Representations (RORs) to efficiently represent the
rimal solution when computing unsteady adjoint problems. We evaluate the performance of this approach using
he 1D Burgers equation, which is often used in the development of numerical schemes for turbulent flows due
o its convective nonlinearity and forward energy cascade. We place the problem in the context of AMR for
ES by considering a time-averaged QoI and by employing coarse meshes, with which the influence of the
ubgrid-scale model is significant. Furthermore, to address the difficulty of constructing a POD-like ROR from
igh-dimensional datasets, we propose an enhanced online algorithm (EOA) for the incremental Singular Value
ecomposition (SVD) [40] to improve its efficiency when determining RORs.
This paper is organized as follows. A paradigm for mesh adaptation in LES is described in Section 2, in which an

ES model and discretization scheme, adjoint method, a posteriori error estimation, and mesh adaptation strategy
re formulated. Section 3 describes the use of a standard ROR and an EOA ROR for adjoint-based AMR. In
ection 4, after the validation of error estimation on a Burgers problem with a manufactured solution, we present
umerical experiments with the proposed AMR approach on an unsteady non-linear Burgers problem with a multi-
requency forcing term. Results obtained using full-order solutions, a standard ROR and an EOA ROR are compared.
oncluding remarks appear in Section 5.

. A paradigm for adjoint-based mesh adaption

.1. Problem formulation and discretization

We consider the one-dimensional (1D) Burgers equation over a space–time domain Ω : [0, 1] × I : [0, T]. The
urgers equation is often used as a mathematical model for applications that involve shock wave propagation in
iscous flows or idealized turbulence [41]. The Burgers equation is expressed as

N (u) =
∂u
∂t

+ u
∂u
∂x

− ν
∂2u
∂x2 = f , (1)

here N (·) is a non-linear operator and u is the solution with boundary conditions u(0, t) = u(1, t) = 0 and an
nitial condition u(x, 0) = u0. ν is the viscosity coefficient and f ∈ R is a known forcing term. Note that we use

a 1D problem here to explore the methodology; however, the approaches considered can be directly extended to
multi-dimensional problems.

2.1.1. Variational multiscale method
We employ the finite-element method to solve the primal problem with Dirichlet boundary conditions using the

weak form

R(u, ω) = (ut , ω) − (uu/2, ωx ) + (νux , ωx ) − ( f, ω) = 0 , ∀ω ∈ V , (2)

where ω ∈ V are weighting functions and V = V(Ω ) denotes both the solution space and weighting space. R(·, ·)
denotes the weak form of the residual operator and (·, ·) is the L2 inner product. The inner product used in this
paper is defined by the spatial domain Ω by default.

The Variational Multiscale Method (VMM) [42,43] is then used to derive a form suitable for LES. In VMM,
the flow solution is split into two components, the resolved scales ū and the unresolved scales u′. The unresolved-
scale equations are driven by the strong residual, i.e. R(ū) = N (ū) − f . The simplest algebraic model for u′

uses the quasi-static subscales assumption and a volume-averaged Green’s function to write u′
≈ −τ R(ū). For

the current problem, we use this approximation along with an expression for τ from Wang and Oberai [44], viz.
τ = [ 4

h2 u2
+ 3πν2( 4

h2 )2]−1/2. Substituting u = ū + u′ into Eq. (2), the weak form is then:

A(ū, ω) = (ūt , ω) − (
1
2

ūū, ωx ) + (νūx , ωx ) − ( f, ω) − (ūu′, ωx ) − (
1
2

u′2, ωx ) − (νu′, ωxx ) = 0 , (3)

here it has been assumed u′
= 0 on the boundary. By virtue of u′

= −τ R(ū), ū is exclusively determined from
Eq. (3). In analogy with LES, the last three terms of Eq. (3) correspond to a model for effects of the subgrid scales.
3
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2.1.2. Discretization
When numerically solving the flow problem, we replace ū by ūh , leading to a discrete system

Ah(ūh, ωh) = 0, ∀ωh ∈ Vh , (4)

where the subscript h denotes element size within a computational mesh with Nv degrees of freedom. ūh ∈ Vh is
abbreviated to uh in the subsequent text where there is no conflict. The semi-discrete technique is used to discretize
this unsteady model problem. Specifically, we use piecewise linear basis functions for spatial discretization and a
four-stage Runge–Kutta scheme to advance the primal problem in time from t = 0 to t = T. Note that the (νu′, ωxx )
term in Eq. (3) is zero in this case due to the use of piecewise linear functions.

2.2. Adjoint method

The adjoint method is used to provide estimates of local contributions to the error in a chosen QoI, allowing
for the construction of goal-oriented adapted meshes. In unsteady simulations, a QoI is often a statistical function
of the primal solution. In this paper, we consider a volume-integrated statistical function J̄ (u) =

1
T

∫
I J (u) dt =

1
T

∫
I(g, u)Ω dt , where g is a real function from R → R and J̄ (u) ∈ R. Note that although only results for linear

QoIs will be discussed in later sections, the adjoint equation and error expressions given below are also valid for
non-linear QoIs.

By virtue of a Lagrange function, the adjoint equation derived for the current problem is

L∗

uv = −
∂v

∂t
− u

∂v

∂x
− ν

∂2v

∂x2 = gu , (5)

here v is the Lagrange multiplier or adjoint variable with homogeneous boundary conditions v(0, t) = v(1, t) = 0
nd an initial condition v(x, T) = 0. L∗

u(·) is a linearized adjoint operator which relies on the primal solution u. gu

is a Fréchet derivative of J (u), defined as

(gu, ũ) := lim
ϵ→0

J (u + ϵũ) − J (u)
ϵ

, ∀u, ũ ∈ V . (6)

he adjoint residual operator is expressed as R∗

[u](·) = L∗
u(·) − gu with respect to a given u. We solve the adjoint

problem using the same VMM employed for the primal problem.

2.3. A posteriori error estimation framework

Before developing an a posteriori error estimation, we consider two fundamental properties, the adjoint identity
and the averaging Fréchet operator. The adjoint identity, which can be easily verified by partial integration, is

(L∗

uv, ũ)Ω×I = (v,Lu ũ)Ω×I + (v, ũ)Ω |t=t0 , (7)

or ∀v, u, ũ ∈ V . The last term originates from the contribution of non-zero values at statistical-starting time t0. Lu

s the Fréchet derivative of N (u),

Lu ũ := lim
ϵ→0

N (u + ϵũ) − N (u)
ϵ

, ∀u, ũ ∈ V . (8)

We can formulate the averaging Fréchet operator, L̄∗

(u1,u2)(·), by integrating Equation (5) of u from u1 to u2,
which enables us to estimate the error for non-linear problems. By defining u = u1 + θ (u2 − u1), the adjoint
equation is integrated as

L̄∗

(u1,u2)v ≡

∫ 1

0
L∗

u=u1+θ (u2−u1)v dθ
Eq. (5)
=

∫ 1

0
gu=u1+θ (u2−u1)dθ ≡ ḡ(u1,u2) , (9)

here the subscripts, u1 and u2, denote the integration domain and ḡ(u1,u2) represents an averaged value of gu on
his domain. Considering the definition in Eq. (6), we can use this ḡ(u1,u2) to express the difference of a QoI as

J (u ) − J (u ) = (ḡ , u − u ) .
1 2 (u1,u2) 1 2 (10)

4
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Fig. 1. A general procedure of mesh adaptation based on adjoint method for unsteady simulations.

For the unsteady Burgers problem, we have L̄∗

(u1,u2)v = L∗
u1+u2

2
v. Likewise, the average linearized operator in

Eq. (9) maintains the adjoint identity as follows

(L̄∗

(u1,u2)v, u)Ω×I = (v, L̄(u1,u2)u)Ω×I + (v, u)Ω |t=t0 , (11)

here v, u, u1, u2 ∈ V . L̄(u1,u2)(·) is the averaging operator of Lu(·) by integrating u from u1 to u2, which satisfies

L̄(u,uh )(uh − u) = N (uh) − N (u) = R(uh) . (12)

Substituting u1 = u and u2 = uh into Eqs. (9) to (11), we introduce an expression for estimating the error ϵ of
he QoI

ϵ = J̄ (u) − J̄ (uh)

= −
1
T

(vh, R(uh))Ω×I −
1
T

(vh, uh − u)Ω |t=t0  
Adjoint correction

+
1
T

(R∗

[ u+uh
2 ]

(vh), uh − u)Ω×I  
Remaining error

=

N∑
e=1

ϵe , (13)

here N denotes the number of elements at current AMR level. The error estimation is divided into an adjoint
orrection and remaining error. There is a temporal contribution to the adjoint correction due to the non-zero value
f u at the starting time of the statistical time period, which does not appear in steady simulations. In practice,

R∗

[ u+uh
2 ]

(vh) is replaced by R∗

[uh ](vh), where uh is the discrete primal solution. Here, the VMM is used to approximate

the exact solution u as uh + u′

h . The resulting error estimation can be constrained to each element as shown in the
last equal sign of Eq. (13), and expressed in terms of elemental error estimators ϵe.

2.4. Mesh adaptation strategy

In this paper, we start from a very coarse uniform mesh and only use refinement. A local error indicator, ηe,
is determined from the elemental error estimator as ηe = |ϵe| to facilitate mesh adaptation. Different adaptation
strategies [17] can be developed based on ηe. We employ a prescribed percentage (10%) of mesh cells with
the largest errors as the criterion for mesh refinement [19,30]. The resulting procedure of adjoint-based AMR is
presented in Fig. 1. In each mesh refinement loop, the error estimation and adaptation strategy are executed to
generate a new computational mesh for the next AMR level.

Without additional treatment, the smoothness of the mesh will deteriorate during AMR. Thus, a balancing step is
introduced to improve mesh smoothness, as shown in Algorithm 1. The basic principle is that a cell will be flagged
for refinement if the ratio between the size of this cell and the size of its neighbors would become larger than 2.
This balancing step is recursively executed until there are no more elements that need to be refined.

3. POD-based reduced-order representation for AMR

In order to make adjoint-based AMR affordable for LES, we represent the primal flow problem in a low-

order space that can be accessed efficiently. For unsteady flow problems, Reduced-Order Models (ROM) based

5
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Algorithm 1 Balancing procedure for AMR

refined = 1
while refined > 0 do ▷ Loop if refinement is needed

refined = 0, temp = cellFlag
for i ≤ N do ▷ Loop all cells indexed from 1 to N

if cellFlag(i) = 1 then ▷ A marked cell
if i ̸= 1 and cellFlag(i − 1)=0 then

if Length(ei )
Length(ei−1) < 1 then
temp(i − 1) =1, refined += 1 ▷ Flag the adjacent cell

if i ̸= N and cellFlag(i + 1)=0 then
if Length(ei )

Length(ei+1) < 1 then
temp(i + 1) =1, refined += 1 ▷ Flag the adjacent cell

cellFlag = temp

Fig. 2. POD analysis of a Burgers problem solved on a stationary mesh with 5 primal flow variables.

n projection have been widely used. In this case one projects representative modes (typically a truncated set of
OD modes) onto the governing equations to obtain a low-order system. For the current application, however, there

s no need to predict the primal solution beyond the original dataset. Thus representative modes and their coefficients
an be used directly as a Reduced-Order Representation (ROR) of the primal solution in the adjoint problem. In
he following, we initially construct the ROR by applying the standard SVD implemented in LAPACK [45] to
tored primal solution data, which results in exact POD modes. We refer to this method as the offline SVD. The
rocedure then used for ROR-driven AMR is described in Section 3.1. For realistic applications, however, very large
atasets would need to be considered, making the cost of an offline SVD prohibitive. Therefore, we also introduce
n enhanced online algorithm to build the ROR based on an incremental SVD [40,46], described in Section 3.2.
his produces approximations for the POD modes and their amplitudes.

.1. Offline ROR

The standard approach constructs a ROR offline by gathering complete snapshots into a solution matrix and
hen applying the SVD analysis, which gives the POD modes (φ) and coefficients (α) at once. Fig. 2 shows the

distribution of POD modes, eigenvalues and cumulative energy from the solution of a typical Burgers problem, which
is also the starting situation for AMR. In this case, the first mode represents a significant part of the instantaneous
solution as it accounts for 66.5% of the total energy.
6
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w

Fig. 3. A general procedure of mesh adaptation based on adjoint method and ROR for unsteady simulations.

The ROR solution is then expressed as

u(x, ti ) = ⟨u(x)⟩ +

M∑
j=1

α j (ti ) φ( j)(x) , (14)

here φ( j), j = 1, 2, . . . , M , denote a low number of selected POD modes, and ⟨u⟩ represents the mean value. As
shown in Fig. 3, the AMR procedure is modified by replacing the primal solution in the adjoint problem by a ROR
determined using the standard SVD. We refer to this as AMR using an offline ROR. Note that the adjoint problem
is still solved in a full-order space. The offline ROR is utilized as a benchmark for the online RORs introduced in
the next section.

3.2. Enhanced online algorithm for RORs

The modal decomposition of large flow datasets can lead to intractable storage requirements [46]. To overcome
this, we introduce an enhanced algorithm based on the incremental SVD [40,46]. We first consider the core updating
step of the incremental SVD in Proposition 1 before explaining the enhanced online algorithm.

Proposition 1. Suppose we have a dense matrix U with a known SVD expressed as U = VΣW⊺, where
Σ ∈ Rk×k, V ∈ Rn×k and W ∈ Rk×k are a singular value matrix, left and right singular vector matrix, respectively.
When a new column c ∈ Rn×1 is added to formulate a new updated Uu = [U c], a bordered-diagonal sparse matrix
Q is formulated as

Q =

[
Σ d
0 p

]
, (15)

where d = V⊺c, h = c − Vd, p =
√

h⊺h. After applying SVD on Q as Q = VQΣQW⊺
Q , we can have a SVD of the

new updated matrix Uu as

Uu = Vu ΣQ W⊺
u , (16)

where ΣQ , Vu and Wu are the new singular value matrix, left and right singular vector matrix, respectively, given
as

Vu = [V j] VQ , Wu =

[
W 0
0 1

]
WQ , (17)

where j = h/p.

Proof. Considering a new column c, we can project it onto a space spanned by V as d = V⊺c. Then the orthogonal
component of c is given as h = c − Vd = pj , where p =

√
h⊺h and j = h/p. c can be re-expressed as a sum of
7
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Fig. 4. The bordered-diagonal matrix Q.

the orthogonal and projected components as c = pj + Vd . This leads to

Uu = [U c] = [VΣW⊺ pj + Vd] = [V j]
[
Σ d
0 p

] [
W 0
0 1

]⊺

= [V j] Q
[

W 0
0 1

]⊺

. (18)

pparently, Q is a bordered-diagonal sparse matrix with only the last column fully filled as shown in Fig. 4.
e can easily obtain Q’s SVD as Q = VQΣQW⊺

Q , resulting in

Uu = [V j] VQ ΣQ

( [
W 0
0 1

]
WQ

)⊺

= V′

u ΣQ W′

u
⊺
, (19)

here V′
u = [V j] VQ , W′

u =

[
W 0
0 1

]
WQ . Here, a decomposition of Uu has been formulated with a diagonal

atrix, ΣQ . This decomposition will be a SVD only if V′
u and W′

u are orthogonal matrices. For V′
u , we have

V′

u
⊺V′

u = V⊺
Q

[
V⊺

j⊺

]
[V j] VQ = V⊺

Q

[
V⊺V V⊺ j
j⊺V j⊺ j

]
VQ . (20)

ince V⊺V = I, the V⊺ j is computed as

V⊺ j = V⊺ c − Vd
p

=
1
p

(V⊺c − V⊺Vd) =
1
p

(d − d) =
→

0 . (21)

hus, we have j⊺V = (V⊺ j)⊺ =
→

0
⊺

. The j⊺ j is determined as

j⊺ j =

(
h
p

)⊺ h
p

=
h⊺h
p2 = 1 . (22)

ince V⊺
QVQ = I, we have V′

u
⊺V′

u = I, i.e. Vu = V′
u is an orthogonal matrix. Similarly, due to W⊺W = I and

⊺
QWQ = I, we can prove W′

u is also an orthogonal matrix as

W′

u
⊺W′

u = W⊺
Q

[
W⊺ 0
0 1

] [
W 0
0 1

]
WQ = W⊺

Q

[
W⊺W 0

0 1

]
WQ = I . (23)

onsequently, Proposition 1 is confirmed. □

Algorithm 2 describes an enhanced incremental algorithm (EIA) for building a ROR online. This EIA differs
rom the standard incremental algorithm (SIA) by the additional process shown in lines 14–16. The SIA is as
ollows: After the projection of c onto V, the matrix Q is formulated, where small projections less than a threshold
f tol [46] are neglected to prevent the impact of round-off errors. A standard SVD then is applied to Q before the

updating process. It is then decided if the added column will increase the rank of the updated matrix (lines 8–13).
Here the subscript denotes the index of row and column with starting from 1 (VQ(1:k,1:k) is a sub-matrix of VQ with
first kth rows and columns, for instance). The truncation of small singular values less than a prescribed threshold
tolsv is used to improve the efficiency without affecting the accuracy of the updated modes. Finally, the updated
modes will be re-orthogonalized if non-orthogonality occurs among them, which improves the robustness of the

algorithm.

8
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In practice, the number of POD modes necessary for building an accurate ROM is usually far fewer than the
umber of variables (Nv) and time steps (Nt). Thus we incorporate the truncation of a selected number of POD
odes (M) into the incremental algorithm as shown in Algorithm 2 between line 14 and line 16, leading to the
IA. By virtue of using the EIA for all snapshots, we obtain an enhanced online algorithm (EOA) for building a
OR.

Algorithm 2 Enhanced incremental SVD for building a ROR
Input: V ∈ Rn×k,Σ ∈ Rk×k, W ∈ Rk×k, c ∈ Rn×1, tol, tolsv

1: k = nColumns(V )
2: d = V ⊺c, p = (|(c − V d)⊺(c − V d)|)1/2

3: if p < tol then ▷ Neglect small projections

4: Q =

[
Σ d
0 0

]
5: else
6: Q =

[
Σ d
0 p

]
7: VQ,ΣQ, WQ = SVD(Q)
8: if (p < tol) OR (k ≥ n) then ▷ Include matrices with more columns

9: V = V VQ(1:k,1:k) , Σ = ΣQ(1:k,1:k) , W =

[
W 0
0 1

]
WQ(1:k+1,1:k)

10: else
11: j = (c − V d)/p

12: V = [V j]VQ, Σ = ΣQ, W =

[
W 0
0 1

]
WQ

13: k = k + 1
▷ Consider M selected modes

14: if (k > M) then
15: Σ = Σ(1:M,1:M), V = V(:,1:M), W = W(:,1:M)
16: k = M

▷ Neglect small singular values
17: if (Σ(k−1,k−1) > tolsv) AND (Σ(k,k) < tolsv) then
18: k = k − 1
19: Σ = Σ(1:k,1:k), V = V(:,1,k), W = W(:,1:k)

▷ Orthogonalize POD modes
20: if |V ⊺

(:,k)V(:,1)| > min(tol, tol × n) then
21: V = ModifiedWeightedGramSchmit(V )

4. Numerical results

In this section, we present the validation of the proposed mesh adaptation strategy and describe the performance
f AMR computations using POD-based RORs. We consider Eq. (1) with ν = 0.01 and a QoI defined as

J̄ (u) =
1
T (sin(πx), u)Ω×I . To avoid the influence of temporal discretization errors, a small time step, ∆t = 10−3,

is used for solving both primal and adjoint problems. This value gives negligible time discretization errors for the
complete range of AMR meshes considered in the numerical results. Adjoint-based error estimations are obtained
using Eq. (13) with cubic spline reconstructions for the primal and adjoint solutions. We first verify the error
estimation using a manufactured solution in Section 4.1. Then, the effectiveness of the proposed AMR strategy is
validated on a Burgers problem with a multi-frequency forcing term in Section 4.2. The use of offline and online
RORs is studied in Section 4.3 and Section 4.4, respectively.

4.1. Verification using a manufactured solution

First of all, the error estimation procedure is verified using a force f corresponding to the manufactured solution
u(x, t) = sin2(π t) sin(πx), from t = 0 to t = 20. This exact solution is used to compute the actual value of the QoI.
9
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Fig. 5. Instantaneous solutions for a manufactured Burgers problem and associated error analysis of a volume-integrated output on uniformly
efined meshes. Solid lines denote the values computed from analytical solutions while dashed lines are the approximation from numerical
olutions and the adjoint-based error estimation with VMM.

iscrete solutions of the primal and adjoint problems are shown in Fig. 5(a). The adjoint solution is propagated in
direction opposite to the primal velocity. The most sensitive regions are not those with the largest primal solution
r weighting function values, making it difficult to use feature-based AMR for this case. Fig. 5(b) depicts the QoI’s
pproximation and corresponding error as the mesh is refined uniformly. The computed QoI converges to the exact
alue and the error estimation displays a good agreement with the actual value.

.2. Validation of the proposed adaptive strategy

We now introduce a forcing term f to produce a solution with large fluctuations and a boundary layer near the
right boundary

f (x, t) = 1 + q(x) ∗

N f∑
i=1

gi (t) sin(ki x) , (24)

where N f = 3 and the gi (t) are chosen so |gi (t)| ≤ 1, specifically,

g1(t) = sin(π t), k1 = π, g2(t) = sin(2π t), k2 = 2π, g3(t) = sin(3π t), k3 = 3π . (25)

(x) = 5/30 is a coefficient used to tune the amplitude of the forcing term at various wave numbers so that the
uctuations can be controlled independently. The primal problem is advanced from t = 0 to t = 20 while the
djoint problem is solved backward from t = 20 to t = 10. The temporal interval (t ∈ [0, 10]) is sufficiently long
o allow the primal flow problem to arrive to a statistically steady state. Instantaneous solutions are shown in Fig. 6.
he primal solution changes periodically and a reverse propagation of the adjoint solution can be observed as well.

The mesh adaptation strategy of Section 2.4 is compared with uniform mesh refinement for this case. Here, the
eference value of the QoI is calculated on a fine mesh with 256 elements, as there is no analytical solution. Fig. 7
resents the QoI and associated errors with increasing levels of mesh refinement determined by the proposed AMR
rocedure. The AMR technique is clearly more accurate than uniform enrichment for a given number of degrees
f freedom. The corresponding error also converges faster but in a less regular manner.

.2.1. Discussions of error estimation
The convergence of the error estimate is shown in Fig. 8(a), where we mark three different regions. In region

, the error estimation is reasonably accurate compared to the actual error although the adjoint correction changes
ignificantly. The adjoint correction is not enough to capture the dominant variation of error estimation in this
10
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Fig. 6. The distribution of primal and adjoint solutions for the Burgers problem with a forcing term.

Fig. 7. AMR analyses compared with uniform refinement, (a) QoI and (b) associated approximating error.

egion, which is also affected by the remaining error term. In region 2, a good error estimate is primarily obtained
rom the adjoint correction, although the remaining error still contributes favorably. In region 3, the error estimate
s less reliable, while the adjoint correction has a trend similar to that of the total error estimation.

The computational mesh has few elements in region 1 and thus the accuracy of resolved solutions is limited.
he VMM unresolved-scale model is thus vital for some cases in this region, leading to a significant influence of

he remaining error. When combined with the adjoint correction, a good prediction is obtained. As the mesh is
efined towards region 2, more of the solution is resolved and the adjoint correction begins to be dominant. This
s actually the scenario we usually meet in literature or practical problems, i.e. we start AMR with a mesh that
an capture important features based on experience and the adjoint correction is used to improve the computation
f a QoI. In region 3, we reach a range of fine meshes with high spatial resolutions, where the computed QoI
anifests a oscillatory convergence to the exact value. In this region, the remaining error is as important as the

djoint correction. Since the remaining error relies on the exact primal solution, u, the accuracy of the VMM

unresolved-scale model can have a significant impact on its evaluation. Non-uniform meshes from AMR can affect

11
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Fig. 8. Convergence of actual error, error estimation and adjoint correction during (a) AMR based on full-order primal solutions and (b)
rror analyses with u from a fine mesh (384 cells).

he reliability of the unresolved-scale model due to its reliance on the mesh size. When comparing the remaining
rror computed by VMM and an accurate reference u from a fine mesh (384 cells) as shown in Fig. 8(b), we can
ee that VMM overestimates the value, leading to a less reliable error estimation in region 3. In spite of this, the
pproximation of the QoI in region 3 is still improved as the actual error keeps reducing. This may be because the
elative size of local error contributions can be recognized by the error estimation.

.3. ROR-driven mesh refinement

We consider the same problem used in Section 4.2 to investigate how the ROR influences the performance of
djoint-based AMR. Since the error estimation in Section 4.2 is computed from full-order primal solutions, we refer
o it as the baseline AMR. As an alternative, two RORs are considered, one with four POD modes and the other
ith one POD mode. Naturally, a ROR will produce a good representation of the primal solution if all significant
OD modes are included. In this case, four POD modes are sufficient to capture 99.9% of the total energy (shown

n Fig. 2). In contrast, the one-mode ROR is an extreme case, with a less accurate reconstruction of the primal
olution but high computing efficiency. The mesh adaptation starts with a coarse mesh of 6 cells and terminates
fter 10 AMR levels with the aforementioned strategy.

.3.1. ROR with four POD modes
The computation of the QoI from ROR-driven AMR is compared to that of the baseline AMR in Fig. 9(a). Both

onverge to the actual value in a quantitatively similar way, as do their approximation errors shown in Fig. 9(b).
ig. 10 demonstrates that the mesh refinement patterns computed based on the four-mode ROR agree well with

hose from the baseline AMR. Fig. 11(a) depicts the development of cumulative energy within various AMR levels.
our POD modes can still capture more than 99.9% of the total energy even for the fine meshes obtained during

ater AMR levels. Thus, the four-mode ROR-driven AMR does not behave differently from the baseline AMR.

.3.2. ROR with one POD mode
We now study an extreme situation with only one mode used to construct the ROR. As before, Fig. 9 compares

alues of the QoI and their corresponding errors. The QoI’s approximations from a one-mode ROR are similar to
hose from the baseline AMR, although there are differences at some AMR levels. But this AMR method is still

uch better than uniform refinement. From the mesh refinement pattern shown in Fig. 10, we can observe that the

eshes obtained from the one-mode ROR AMR are not completely the same as those from the baseline AMR.

12
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Fig. 9. Grid convergence of (a) the QoI and (b) the associated error from AMR based on full-order solutions ( ), a four-mode
ROR ( ) and a one-mode ROR ( ).

Fig. 10. Mesh refinement pattern for AMR based on full-order primal solutions ( ), a four-mode ROR ( ) and a one-mode ROR ( ).
Different colors denote different AMR levels.

The one-mode ROR changes the AMR sequence in coarse mesh regions at the 3rd AMR level, for example, but
reaches the same computational mesh at 4th AMR level. On the other hand, the actual error is affected by using only
one mode as the mesh becomes fine in later AMR levels (see Fig. 10). The cumulative energy for this one-mode
ROR is shown in Fig. 11(b). Since first POD mode accounts for 65%–75% of total energy during AMR, it can
describe main features of the primal solution over all AMR levels. Thus, the calculation from the one-mode ROR
still considerably outperforms uniform refinement.

4.3.3. Impact of ROR truncation on adjoint solutions and error indicators
Fig. 12 presents discrete adjoint solutions on two different computational meshes encountered during AMR, a

coarse mesh in Fig. 12(a) and a fine mesh in Fig. 12(b). The adjoint solutions are calculated based on full-order
primal solutions, a four-mode ROR and a one-mode ROR, respectively. On a coarse mesh, the one-mode ROR
is able to produce adjoint solutions with both features and magnitudes similar to those obtained using full-order
solutions. This implies good error estimates. As the AMR proceeds to finer meshes, the one-mode ROR is unable to
present high-wavenumber information and thus produces relatively smooth adjoint solutions, as shown in Fig. 12(b)
for instance. Thus the error estimation with the one-mode ROR is affected. Conversely, the four-mode ROR includes
both low- and high-wavenumber information and thus provides good estimates over both meshes.
13
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Fig. 11. Cumulative energy on different AMR levels computed with (a) a four-mode ROR and (b) a one-mode ROR.

Fig. 12. Discrete adjoint solutions on (a) a coarse mesh at starting AMR level and (b) a fine mesh at the 7th AMR level, computed based
on full-order primal solutions, a four-mode ROR and a one-mode ROR.

The primal solutions reconstructed from the RORs are also compared to the full-order one on the 7th AMR
iteration in Fig. 13(a). We can observe that the one-mode ROR is able to give a good prediction for oscillations
with large magnitudes but filters medium- and small-amplitude oscillations. The associated adjoint solution reflects
this characteristic and becomes smoother as well. In that sense, their elemental error indicators ηe exhibit different
distributions, as shown in Fig. 13(b). Based on full-order solutions, the algorithm marks cell 2 and cell 6 for
refinement. However, the ones obtained using a one-mode ROR are cell 2 and cell 1. Consequently, a slightly
different mesh is obtained in the one-mode ROR-driven AMR. This is because the high-wavenumber components
of the primal solution play an important role in the error estimation on fine meshes, and those are not captured when
using only one POD mode. It seems that using a very low-order ROR can be effective when the QoI’s calculation is
not dependent on smaller scales of the primal solution. As shown in Fig. 13(b), a four-mode ROR, which includes
higher-wavenumber features, is capable of reliably reconstructing the primal solution and the corresponding error
indicators.
14
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Fig. 13. Comparison of (a) the spatial distribution of full-order primal solutions and reconstructed primal solutions by a four-mode ROR
and a one-mode ROR, and (b) their error indicators at the 7th AMR level.

Fig. 14. Actual and estimated errors computed by ROR-driven AMR based on (a) one mode and (b) four modes.

.3.4. Impact of ROR truncation on error estimation
Fig. 14 shows the change of error estimation and adjoint correction during AMR obtained using one-mode and

our-mode RORs. The four-mode ROR-driven AMR has good error predictions in region 1 and 2, but overestimates
rrors in region 3, as does the baseline AMR. The error estimation from the one-mode ROR is accurate in region 1
ut overestimates errors in region 2 and 3. Still, the first POD mode is capable of capturing the dominant solution
eature crucial in region 2, and thus gives a sufficiently accurate estimate for AMR. But this advantage vanishes
n region 3 where the high-frequency spatial information becomes important as well. The adjoint correction is the
ominant error estimation term in last two regions, and is affected by the filtering of higher wavenumbers.

.3.5. Impact of ROR truncation on memory efficiency
We define an efficiency metric, η, to quantify the memory reduction when utilizing a ROR. The memory required
o store full-order primal solutions is proportional to Nfull = Nv Nt while a ROR needs NROR = M Nv + Nv + M Nt.
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Fig. 15. Comparisons of the efficiency metric in one- and four-mode RORs during AMR (Nt = 10 001).

he efficiency metric is then defined as

η = 1 −
NROR

Nfull
= 1 −

Nv + Nt

Nv Nt
M −

1
Nt

. (26)

ROR requires less memory while η > 0, and vice versa. Furthermore, larger η indicates higher ROR efficiency,
ith the asymptote of ηasy = 1−

1
Nt

. Fig. 15 shows the variation of this metric for one- and four-mode RORs during
AMR. It is observed that the efficiency increases monotonically for both RORs as the mesh is refined, leading to a
significant memory reduction. The one-mode ROR, as expected, is more memory efficient than the four-mode ROR
while their difference is reduced as the mesh is refined.

4.4. Online ROR for AMR

In this section, we investigate the use of the EOA ROR and apply it on the same Burgers problem considered
in Section 4.3. The online ROR without the enhanced process is referred to as the standard online ROR herein.

4.4.1. Impact of the EOA ROR
Fig. 16 compares of first eigenvalues from the offline, standard online and EOA RORs, as well as the shapes of

their associated POD modes. The standard online ROR can produce results identical to those from an offline ROR
using both one and four POD modes, validating the standard incremental algorithm.

The eigenvalues and POD modes from a one-mode EOA ROR agree well with the standard online ROR except
for last two AMR levels. This reflects the characteristics mentioned at region 3, where high-wavenumber features
become important on fine meshes. The truncation of higher-order POD modes during the single-mode EOA removes
many of these features. Additionally, this truncation also has a notable impact on the distribution of POD modes at
the final AMR level as shown in Fig. 16(a). In contrast, using the four-mode EOA ROR has no detrimental effect
on both the eigenvalues and POD modes, as shown in Fig. 16(b). Therefore, one way to improve the representation
of model interactions is to increase the number of POD modes used for the identification of EOA ROR.

The approximations of the QoI and its error from EOA ROR are presented in Fig. 17. We can observe that the
EOA ROR does not alter the convergence history of the computation, preserving the same accuracy of calculations
from the offline ROR-driven AMR technique, even for the one-mode case.

Although the POD mode obtained from the one-mode EOA ROR differs from that obtained with the offline
ROR, the resulting QoI is still reasonably accurate, as shown in Fig. 17(a). In fact, the mesh refinement patterns
are the same as those obtained with the offline SVD. In order to analyze the mechanism for this phenomenon, we
choose three spatial positions with small (P1), medium (P2) and large (P3) mean values, as shown in Fig. 18. The

QoI’s good agreement is partially because the reconstructions of primal solutions from the offline ROR and EOA
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Fig. 16. Mesh convergence of the first eigenvalue and first POD mode for enhanced online (red), standard online (blue), and offline (green)
ROR with (a) one and (b) four modes.

Fig. 17. Comparisons of QoI and actual error during AMR using enhanced online and offline ROR with (a) one and (b) four modes.

ROR have similar trends over time. This is true even at the 10th AMR level, as presented in Fig. 18(b), although
there are differences in terms of their amplitudes at P2 and P1. The discrepancies result from only using one POD
mode, which by design attempts to approximate instantaneous primal solutions with large dominant amplitudes and
thus needs to sacrifice some accuracy of medium- and small-amplitude oscillations. Note that since the QoI is a
statistical value over time, its calculation can benefit from the cancellation of temporal fluctuations. In addition, the
EOA ROR provides the same accuracy as the standard online ROR until the 8th AMR level, as shown in Fig. 18(a).

4.4.2. Comparison of computing time
Fig. 19 compares the computing time to build a ROR by the offline, standard online and enhanced online

algorithms during AMR. Fig. 19(a) shows this computing time for a one-mode ROR. The standard online ROR
requires more computing time than the offline ROR. In contrast, the EOA ROR is much faster, and the advantage
becomes more and more apparent as the mesh is refined. This property is also observed for the four-mode ROR,
as shown in Fig. 19(b), although it is less efficient at the starting AMR levels. Generally, the computing time of
17
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a

Fig. 18. Reconstructed primal solutions from standard online (red), enhanced online (blue), and offline (green) ROR with one POD mode
t the 8th and 10th AMR level. P1, P2 and P3 denote three different spatial positions, i.e. P1 (x = 1/6), P2 (x = 1/2), P3 (x = 5/6).

Fig. 19. Computing time of constructing offline (green), standard online (red) and enhanced online (blue) ROR with (a) one and (b) four
POD modes during AMR.

the offline and standard online ROR increases as the mesh is refined. However, the computing time of the EOA
ROR grows much more slowly. The results demonstrate that the EOA ROR could be promising for realistic LES
applications.

4.4.3. Applicability of the enhanced online ROR to three-dimensional cases
As it is a purely data-based technique, the enhanced online ROR can be expected to deliver similar or greater

reductions in the memory required for the adjoint-based mesh adaptation in three-dimensional problems.
For instance, Kitsios et al. [47] studied the turbulent flow at Re = 30 000 over a NACA 0015 airfoil by LES,

and applied POD analysis on 512 snapshots sampled every 250 time steps. They showed that only 200 POD modes
are required to capture 90% of total energy. This translates into a storage requirement of only 0.16% of the memory

required for full-order flow fields (a roughly three-order of magnitude reduction).
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Pasquariello et al. [48] studied the low-frequency dynamics of shock-wave/turbulent boundary-layer interaction
t Reδ0 = 203 000. In this case, the full-order solution consisted of 4.2 million time steps and dynamic mode

decomposition (DMD) was used to construct a low-order representation. Although DMD differs from POD, the
incremental SVD technique can be applied for its determination [49]. Using one thousand of these modes, we can
reconstruct the instantaneous primal solution with an L2-norm residual lower than 10−2, cf. figure 17 in [48], while

nly requiring 0.24% of the memory resources of the complete flow solution. This level of accuracy in the primal
olution is likely to be excessive when constructing error estimates for QoIs averaged over long time periods. In
ummary, one can anticipate dramatic memory savings when applying the proposed methodology to 3D problems.
or many cases, such savings may in fact be essential for making adjoint-based AMR tractable.

. Conclusions

We have developed an adjoint-based mesh adaptation strategy for unsteady problems augmented by an enhanced
nline algorithm for building a ROR. The effectiveness of combining adjoint-based error estimation with VMM has
een verified using an unsteady Burgers problem with a manufactured solution. A POD-based ROR is introduced
o represent the primal solution from the non-linear unsteady simulation so as to remove the storage bottleneck that
ould otherwise occur when we solve the adjoint problem backward in time. The procedure is evaluated using a
urgers problem with a multi-frequency forcing term. From numerical experiments, adjoint-based AMR is shown

o be more efficient than traditional uniform refinement.
The results show that during AMR from very coarse meshes, the QoI estimate converges reliably, and reaches

high level of accuracy at moderate levels of refinement. For the cases considered here, using the ROR for primal
olutions does not significantly affect the performance of AMR. Specifically, the adaptive results from a four-mode
OR, which can capture 99.9% of total energy, have good agreement with the results from a full-order solution-
riven AMR. Using a single-mode ROR leads to suboptimal meshes, since the first POD mode accounts for only
5%–75% of total energy, but the AMR procedure still considerably outperforms uniform refinement.

The effectiveness of the one-mode ROR can be due to a relative insensitivity of the chosen QoI to high-frequency
olution components, which tend to have smaller magnitudes in the current problem. However, this is not necessarily
onstrictive for LES applications, where large scales contain the majority of energy, and we are typically interested
n relatively smooth time-averaged quantities, such as mean profiles. The enhanced online algorithm is shown to
ignificantly improve the computing efficiency of the ROR-driven AMR procedure. Since the method is purely data
ased, and independent of the complexity of the governing equations, it is likely to also have a major impact on
omputational efficiency for more challenging problems, such as LES of complex flows.
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