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Abstract

Cyber attacks have become increasingly more prominent and the associated cost to soci-
ety is by several estimates reaching trillions of US dollars. A typical cyber attack goes
through the several consecutive phases of the cyber kill chain. As a precursor for any at-
tack, the malicious actor performs network reconnaissance in order to identify potential
entry points through exploitable services connected to the internet. Therefore, early detec-
tion of reconnaissance by scanners can mitigate or entirely prevent future attacks. Modern
intrusion detection systems are capable of blocking some scan attempts. However, more
sophisticated and resourceful attackers are suspected to distribute their efforts over a large
number of sources. This allows them to lower the individual scanrate while achieving the
same throughput. Slow scanners are harder to detect, because they differentiate little from
baseline noise levels. Additionally, a threat is severely underestimated if a large number
collaborating scanners is not treated as a single entity. Therefore, the aim of this thesis is to
infer such a coordinated relationship between scanners controlled by a single initiator.

We analyse the data from a network telescope with an observation of one year, much longer
than previous work. Initial analysis led to the discovery of similar long-term activity pat-
terns present in distributed scanners. These patterns can be used to uniquely identify a
group which formed the basis for the correlation algorithm. We were successfully able to
detect a large number of clusters employing various strategies in terms of size, scanrate and
targeted services. Due to the absence of ground truth additional effort has been spent to
validate potential clusters through other characteristics. We also demonstrate the utility of
transforming the raw telescope data for cluster analysis through a case study of very slow
scanners.
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1 Introduction

In an increasingly information technology reliant society there is a need for defenders to
obtain high situational awareness of malicious activity conducted in cyberspace. The reason
being that a devastating cyber attack is often preceded by some form of reconnaissance.
The purpose of gathering information about the target is to find the path of least resistance
in order to achieve its goal like stealing sensitive data or full system compromise. More
specifically in the context of the public internet, it is common to see a series of connection
attemps known as scans originating from a small number of sources that enumerate all in-
ternet addresses in search for vulnerable devices or services. These vulnerabilities could be
the result of bad security practises, misconfigurations, absence of security patches among
other reasons. This enumeration of internet addresses is illustrated in Fig 1.1. The attacker
is scanning a subset of all possible Internet Protocol (IP) addresses for open ports of inter-
est. An analogy is calling every number combination using a phone. If a conversation is
established then one can infer that someone owns that number, such information can then
be used for phishing attacks.

Out of convenience even regular households tend to incorporate many ”smart” solutions,
but consumers generally care more about functionality and are rather oblivious to the secu-
rity hazards. As a result, insecure devices connected to the internet have become ubiquitous.
Malicious actors are eager to find these using automated scanning tools for their own bene-
fit. Typically, once any device is connected to the internet it will start receiving unsolicited
scans from all around the world. Therefore, without proper device hardening attackers can
completely take over to steal sensitive information, gain unauthorized access and even in-
clude the victim to a large pool of compromised hosts known as botnets.

Scanning as a means for conducting reconnaissance is the first phase in the so-called cyber
kill chain depicted in Fig 1.2 which is a framework that describes the various phases of an

Figure 1.1: Internet wide port scanning
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1 Introduction

Figure 1.2: Phases of the Cyber Kill Chain

attack. Controls and defences can be installed at each phase to disrupt such attacks. The
attacker is only successful if it can go through all the phases uninterrupted. This thesis fo-
cusses on the very first phase, namely reconnaissance. Hardening defences that inhibit the
attackers from discovering potential entry points will contribute to a more secure network.
The less intelligence an unauthorised entity can gain about the network the better. That
is not to say that security can be achieved solely by obscurity, but it is one of the many
measures that can be implemented throughout the kill chain to mitigate potential attacks.
It is generally a good security practise to not only rely on a strong outer perimeter, but to
provide defence in depth. Subsequent stages in the cyber kill chain identify how the attacker
will compromise its target, gain control and finally reach its objective. This framework is ap-
plicable to a large variety of modern cyber attacks. The abstract stages might take different
forms depending on the scenario, but still the framework remains useful in the identifica-
tion, prevention and discussion regarding cyber intrusions activity.

Though not as prevalent as today, the practise of scanning has existed as long as the early
days of the internet more than two decades ago. Since then, more resourceful and intelligent
attackers have adopted sophisticated obfuscation strategies to remain undetected. One such
approach is to divide the scans over multiple sources to achieve a lower scan rate for each
individual scanner, see Fig 1.3. This method is effective at circumventing detection, because
the scanner’s generated traffic volume blends in with regular internet noise levels and thus
avoids suspicion. Whereas a single source scanning at high speed will definitely stand out,
multiple slow scanners will go unnoticed as current detection mechanisms are unable to
correlate these to a single group. As a result, the larger and more advanced threats con-
tinue to escape the security communities’ attention. Seemingly unrelated scanning sources
may actually be part of a large campaign under the control of one entity. Without further
research into the detection, correlation and employed strategies of massively distributed
scanners we severely underestimate the capabilities of today’s cybercriminals. Furthermore,
the estimated risk in the current threat landscape would be inaccurate due to the inability
to perceive distributed scanners. A better understanding of scanning behavior is beneficial
to the design of new defence mechanisms, can provide early warning signals of incoming
attacks and better cyber risk estimation. Preventing the attacker at the reconnaissance phase
will mitigate the impact later on in the cyber kill chain or prevent an attack entirely.

Organizations of all sizes and even consumers have to deal with these scans in one way or
another as literally every host connected to the internet is a potential target. The govern-
mental department of defence has expanded its cyberspace presence to provide early threat
intelligence of incoming attacks that may hurt the nation’s safety or economy and are in

2



Figure 1.3: Attacker controlling multiple scanners

direct contact with many large organizations. Security researchers develop novel methods
and analyse data to create a better understanding of scanners. Finally, there are companies
providing security solutions to protect both organisations and consumers.

One way of observing internet-wide scanning activity is through a network telescope or
also referred to as darknet which monitors the packets received from a range of unused IP
addresses. Packets received at these addresses can all be considered suspicious, because
they are unsolicited. The majority of these are scan traffic, but may also be the consequence
of server misconfigurations and backscatter of ongoing attacks elsewhere with spoofed IP
addresses. As such, a network telescope can provide the data to obtain valuable insights to
trends occurring at internet scale by monitoring a only small subset of the entire IPv4 space.

The challenge is to infer knowledge about the attacker’s methods from a large volume of
data recorded at the telescope. While studies do mention the existence of distributed scans
they often limit their work to single source scanners. The reason mostly likely being that
it is hard to establish sufficient confidence that a group of scanners is indeed cooperating.
Only the attacker knows for sure and it is not possible to prove collaboration among scan-
ners from just the network telescope data. Furthermore, the sheer volume can make analysis
computationally infeasible unless pre-filtering methods are used to reduce of the data size.
For these reasons there is not much literature on the topic of distributed scan detection.
Despite these challenges we are attempt to infer coordination among scanners at an accept-
able level of certainty. We observe scanners from the same group to be highly similar in
certain aspects of their scan behaviour. This observation provides the foundation for a new
detection method that is able to correlate seemingly unrelated distributed scanners.
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2 Research Questions

Main research question
How can distributed scanners be detected with sufficient confidence from prolonged obser-
vation?

These can be broken up into three sub-questions:

1. How can large-scale data captures be substantially compressed for scan traffic analysis?

2. How can we infer coordination among scanners that are part of the same group ?

3. To what extent can we confidently determine collaboration among scanners ?

5





3 Background

The purpose of this section is to provide fundamental background information that will help
the reader understand the remainder of the thesis. General networking concepts are briefly
touched followed by an another definitio nof scanning practises.

3.1 TCP/IP reference model

Nowadays we rely on communication over the internet as an necessity for a variety of tasks.
Whether it be for work, some stress relieving moments of entertainment or to have a con-
versation with family, it should just work seamlessly and effortlessly. This is being made
possible by standardizing a set of communication protocols to establish a common language
among all network devices. The TCP/IP model is a set of such communication protocols
and the core of modern internet. There is a subdivision of four layers, three less than the
classical Open Source Interconnection(OSI)-model. The latter was designed to describe the
functions of the communications system into smaller and simpler components, but remains
merely a conceptual model. Figure 3.1 illustrates the different layers in both the OSI and
TCP/IP reference model.

Each layer adds another level of abstraction and is responsible for its own part in the process
of getting data from sender to receiver. Software applications used by the end-user wrap
their data in the application layer. These include services like email, web browsing and file
transfer provided by an external party, the relationship of both parties can typically be de-
scribed by a client-server model. It is in this layer that actually contains the productive data
of interest that must be sent. All subsequent layers encapsulate the data, adding meta-data
which is necessary for the data to be delivered to the intended destination. The transport
layer is responsible for host to host communication with direct interface to the application.
Depending on the requirements and type of application, either Transmission Control Proto-
col(TCP) or User Datagram Protocol(UDP) is commonly selected. TCP provides functional-
ity for reliable transmissions, but adds overhead and latency due to the stateful nature of the
protocol. Both ends of TCP communication will need to formally establish two-way com-
munication and track the reception of outstanding data packets as they are sent. In certain
applications simpler communication with low latency is preferred at the risk of losing some
packets in transit, in this scenario UDP is the better option. The interface to the transport
layer is by communicating through ports that are opened by the operating system. All major
operating systems support TCP and UDP. The internet layer enables sending a packet from
one host to another. Host can reside in the local network or the public internet. Typically,
this is done by forwarding packets through the shortest path along the internet routers dis-
tributed across the world. Each router along that path will know where to forward packets
based on the 32-bit destination IP address, it will hop from one router to the next until the
destination has been reached. Arriving at the link layer, which processes packets for direct
communication between two adjacent networking devices. So there is a direct link between

7



3 Background

Figure 3.1: OSI and TCP reference model

two points with no other devices in between, using a transfer medium like a cable or elec-
tromagnetic waves. The link layer determines how much information can fit in one logical
transmission unit also referred to as Maximum Transmission Unit(MTU). In effect, the data
in upper layers have to be fragmented into sizeable chunks below the MTU. In the discus-
sion on scanners both the internet and the transport layer are of particular interest, because
attackers will modify the header values in the corresponding protocols to scan their targets.
A target host that has a port open on a common port number is enough for the attacker to
infer that a service of interest is accepting remote connection request. An additional step by
more sophisticated scanners can be taken to verify what service is running by sending appli-
cation specific queries or commands to the application layer. This can also reveal additional
information like the version number if the attacker is looking to exploit those hosts running
an older version known to contain vulnerabilities. However, this thesis analyses TCP scans
received by a network telescope consisting of a range of unused IP addresses and thus an ac-
tive TCP connection will never be established. From this perspective scanners are observed
through one-way communication and no interaction will take place. Furthermore, there as
many protocols in the application layer as there are actual applications so it would take great
effort to correctly interpret this. Creating an understanding of how scanners search through
a local network or subset of internet addresses for host running open ports can be done by
analyzing network traffic at the internet and transport layer. For this reason, the IPv4 and
TCP protocol are discussed next in more detail.

IPv4 The Internet Protocol version 4 (IPv4) is used at the internet layer. It originated
as a protocol designed by the United States Department of Defence implemented at the
Advanced Research Projects Agency Network (ARPANET) in 1983. Its primary task is to
provide logical addressing with 32 bits and route packets to their correct destination through
a sequence of hops. With each hop, from one router to another, the packets gets closer to its
destination. The protocol provides best effort to deliver packets, but does not guarantee and
some packets will inevitably get damaged or lost. If guaranteed delivery is crucial to the
correct operation of the intended application then this should be checked in the higher layer
protocols such as TCP which will ask for re-transmissions of packets. While the successor
IPv6 is gradually but slowly being deployed, IPv4 still remains the protocol of choice due to

8



3.1 TCP/IP reference model

Figure 3.2: IPv4 Header

its wide adoption. Besides destination address there are other pieces of information present
in the IPv4 header. The header is a fixed format collection of values that adheres to the
protocol standard. It contains meta-data, information regarding the data itself and how it
should be processed. The fields from the IPv4 header in Fig 3.2 will be briefly summarized.

From table 3.3 it can be seen that certain fields can be exploited by the attacker to achieve
reconnaissance goals. Generally all possible destination addresses are scanned in order to
maximize the chances of finding vulnerable hosts on the internet. The source address can
even be spoofed to impersonate other computers if no packet filtering is in place. However,
with scanning the attacker is particularly interested in replies from potential victims. The
source address will likely to be of the scanner itself or the reporting server which has been
designated to collect all replies. A single IP packet is sufficient to probe a target given that
it does not get lost or corrupted. This leaves room to utilize the identification field for other
purposes as long as it will not get rejected by the recipient. Some scanning tools like ZMAP
Durumeric et al. [2017] assign a static value that allow network operators to easily identify
scan attempts. The creators of ZMAP and other open source tools have no malicious intent.
On the other hand, it is not in the cyber criminal’s interest to announce its presence. This
group is more likely to use the freed 16 bits for their own book keeping of outgoing packets
when scanning at high speeds.

TCP protocol TCP is the transport layer protocol that provides communication as a re-
liable, ordered and error-checked data stream. It serves to exchange data in a traditional
client-server model. The server offering a particular service listens on an open port for
incoming connection request. A client that wishes to establish a connection will initiate a
so-called three-way-handshake. The handshake comprises of three packets, two from the
client and one from the server as is illustrated in Fig 3.4. For the first packet the client
presents itself to the server by setting the SYN flag in the TCP packet which indicates a new
connection request. Assuming the server has enough capacity it will respond by returning a
packet with the both the SYN and ACK flags set. All that remains is the final acknowledge-
ment through an ACK packet from the client to establish a connection where from hereon

9



3 Background

Figure 3.3: IPv4 Header fields

Figure 3.4: TCP Three-Way-Handshake

data can be exchanged in both directions. The contrast bewteen TCP and UDP is evident by
the presence and absent of such a handshake. The latter does not manage states of active
connection and misses important features that ensure reliable transmission.

As is the case in the Internet Layer and the corresponding IP protocol, TCP packets also
contain header fields that are necessary for the correct operation of the protocol. The size of
the header varies between 20 and 40 bytes depending on the presence of options, followed
by the actual data to be transmitted. Fig 3.5 contains all fields of the header and their
corresponding length in bits. 3.6 provides a brief description on all fields and we will later
emphasizes those that are relevant in the discussion on reconnaissance.

10



3.1 TCP/IP reference model

Figure 3.5: TCP Header

3.1.1 Scan types

Having provided the full TCP header specification, we proceed to discuss how attackers can
manipulate certain fields to perform reconnaissance. Several scan types have been described
in literature that can be characterised by the combination of set flags in the header and which
connection states are visited.

TCP Connect One way to infer that a service is running at a particular port is by complet-
ing the full three-way-handshake. This is implies that some service is able to process that
request and is ready to accept incoming connections. An attacker proceeds to discover any
open ports of interest by enumeration, the three-way-hand shake is attempted on each of the
ports where the successful attempts are reported back. This methods is effective, because
TCP listener processes always follow the protocol by acknowledging incoming packets with
the SYN flag set. However, there are two drawbacks to this approach. One is that three pack-
ets are required to infer an open port, much less efficient than the TCP half-open method
discussed in the next paragraph. Second, completed handshakes leave traces at the server in
the form of logs which will reveal the presence of scan attempts. Generally as an attacker it
is beneficial to operate as stealthily as possible to avoid suspicion from the target. Defenders
who become aware of incoming attacks might deploy additional security measures that will
decrease the adversary’s chances of success. The presence of logs also provide insight into
the attacker’s methods through post-attack analysis. A benefit of this scan type is its sim-
plicity, no modification of TCP/IP stack is necessary as opposed to the half-open connection
discussed next.
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Figure 3.6: TCP Header fields
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TCP half-open / SYN Scan From an attacker’s perspective where the goal is to find as
many active hosts or services it is more efficient to just send many SYN packets to a large
number of targets. Completing the full handshake is not necessary as the first acknowl-
edgement from the server already announces its presence to the attacker. Therefore in the
case of TCP scanning, a single probe means a packet with the SYN-flag set. This type of
scanning is called half-open, because the server is left at an intermediate state where it is
waiting for the final acknowledgement from the client. Resources at the server side have
already been reserved, but the connection is never fully established. This is not considered
normal behaviour since the client has unexpectedly closed the connection without notifying
the server. High speed scanners are built by modifying the TCP/IP stack such that the final
ACK from the client is never sent. A half-open connection often indicates malicious intent
in the form of port scan reconnaissance or Denial of Service (DoS). Reserved resources are
only freed after exceeding a time-out period. Sending a high enough burst of SYN packets
will occupy all of the server’s resources and eventually become unresponsive.

NULL, FIN and Xmas scan Other types of TCP scanning do exist, but are rarely encoun-
tered in the wild due to their unreliability in determining the presence of running services.
The NULL, FIN and Xmas scan types exploit loopholes in the TCP protocol described in RFC
793. A closed port that receives packets without any of the SYN, RST or ACK set will result
in a RST being sent back and no response if that port is open. These three scan types have
in common that none of the SYN, RST and ACK flags are set, but differ by the presence of
remaining flags. RFC 793 does not differentiate between these scan types meaning that they
elicit the same response if the server is fully compliant with the TCP protocol. However, fire-
walls depending on the implementation may process them differently. In shielded network
environments that allow only outbound connections, incoming SYN packets are dropped by
the majority of firewalls. For this reason, one way of slipping through firewalls is to omit the
SYN flag while still being able to perform limited reconnaissance. NULL scans have no flags
set, a FIN scan sets just the FIN flag and lastly the Xmas scan sets the FIN, PSH and URG
flags. In practise, not all operating systems follow RFC 793 to the letter. Microsoft Windows
for example always responds with a RST regardless of the port being open or closed. The
scan does work against most Unix-based systems. So if a host respond with RST it can either
mean that the port is closed or that it deviates from the RFC 793 specification. If the running
operating system is not known than one must infer this information through OS fingerprint-
ing. However, that removes the benefit of the attacker to remain hidden since fingerprinting
is performed by sending a series of packets and analyzing the returned responses for OS
specific peculiarities. The absence of a server response when probing a port can also have
an ambiguous meaning, firewalls or Intrusion Detection Systems(IDS) properly configured
will simply drop the packet before it reaches its target. An attacker will have difficulty in
determining whether a port is actually open, filtered or the packet may even be lost during
transmission.

3.2 Network scanning

Network scanning is an information gathering process used to discover network elements
such as active hosts, network services and users. It is commonly used by network adminis-
trators to monitor the current state of the network. Besides hosts there is also the network
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topology, firewall policies and routing tables which can be difficult to maintain without
proper documentation. To the network administrator, scanners are invaluable software tools
that help assess the network and validate its proper behavior. This is done by sending a
series of data packets to a specified IP address range and check whether the response or
absence of response match the intended behaviour according to design. Comparing sent
packets against the responses is one way to detect misconfigurations or gauge the state of
the network. The same information is also of much interest to hackers which use scanners
as a prelude for their attacks. The chances of a successful intrusion attempt depend on the
hacker’s ability to find an entry point. Therefore, the network’s IP address space is enumer-
ated to look for running services that contain known vulnerabilities. Upon successful breach
the hacker will perform lateral movement for which it will once again rely on knowledge
on the target network. Similar to a real threat is a security professional that is given the task
to assess an organisation’s defences by mimicking a hacker. Both the hacker and security
professional’s primary concern is to conceal their reconnaissance activities in order not to
trigger Intrusion Detection Systems(IDS). Limiting the rate in which consecutive probes are
sent is typically the way to avoid detection. A network administrator does not face this
limitation as it is scanning its own network with the organisation’s awareness, but hackers
do have to resort to less obtrusive scan tactics. The chosen scan strategy by hackers is a
trade-off between speed, accuracy, complexity and detection avoidance.

3.3 Port scanning

Port scanning is a more specific type of network reconnaissance, because it implies which
protocols are used to conduct the scan. During a scan, packets are being sent to a target
network in order deduce from the response whether there are any active services of inter-
est. The notion of a port is associated with two transport layer protocols, TCP and UDP
which have been discussed in the previous sections. Port scanning has become ubiquitous
in today’s cyber threat landscape and an important tool in the arsenal of adversaries as a
preliminary phase before launching an actual attack. That is because the foundational proto-
cols of the internet protocol suite are TCP and IP. Majority of applications such as browsing
websites, sending E-mail, sharing files are made available through hosts with open ports that
are accessible to the public internet. In a traditional client-server model, the server offering
a particular service awaits incoming connection request from clients. The server responds
to the client and establishes a connection via a three-way-handshake. A remotely accessible
service is not inherently insecure, but human-error or deliberate placement of backdoors can
potentially lead to vulnerabilities. The associated security risks can range from near harm-
less to a full system compromise. Upon discovery, a vulnerability is assigned a Common
Vulnerability Scoring System (CVSS) by the Common Vulnerabilities and Exposures(CVE)
to evaluate the threat level. Organisations that are affected should take proper measures e.g.
by updating the software to mitigate the issue. There is a security risk between the time
of disclosure, the moment when the vulnerability becomes public knowledge, and actually
fixing the issue. Within this period there will be a significant increase of scan traffic directed
towards the well-know port associated with the service. Attackers see new opportunities of
capitalizing on the new vulnerability disclosure. One way to observe such large scale events
is through network telescopes, a set of unused IP addresses, by monitoring suspicious traffic.
The amount of traffic a certain port receives is mostly dependent on the vulnerability threat
level and the adoption rate. Both of these factors contribute to increased benefits, mostly
financial of nature, to the entity that exploits it. Every open port is a potential security risk
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and the corresponding services need proper security hardening e.g. by keeping software up
to date. The financial cost of performing internet-wide scans is negligible and relatively sim-
ple to setup. Port scan related traffic is increasing every year. Nowadays it will take less than
a few minutes before a newly connected device to the internet receives its first SYN packet.
Little knowledge is required by the introduction of open-source tools that can scan the entire
IPv4 space in less than an hour on moderate hardware (quote). Complexity increases when
a pool of distributed scanners require sophisticated control in order for them all contribute
to a common reconnaissance goal in a stealthily manner. Therefore, a distinction is made
between scanners that operate from a single host and those that are distributed among many
hosts.

3.4 Single Source Scanners

The prerequisites for performing a scan are simple, just an active internet connection and a
host running the software to perform the scan. A single attempt to query whether a port is
open is also called a probe. In the case of TCP half-open scans, a probe is one packet with the
SYN flag set from a source to target. The target comprises of a destination IP address and
the protocol port number. An IP addresses is used to identify both the sender and recipient
of the packet. However, due to the scarcity of IPv4 addresses several networking techniques
such as DHCP Churn, Network Address Translation(NAT) and Carrier Grade NAT(CGNAT)
have been deployed to prolong the slow transition to IPv6. This makes attribution of the scan
origin less straightforward than if each host on the internet can be identified by a fixed IP
address. For simplicity the ideal scenario of fixed addresses is assumed, but the possibility
of multiple hosts sharing one IP address will be taken into account during the discussion on
detection and attribution. Having now defined a target, port scan reconnaissance typically
spans multiple targets. After all, a larger search space contains more active hosts and there-
fore increases the likelihood of discovering targets of interest. The set of targets that one is
interested in characterizing is defined as the footprint. For internet wide scans this means
that all IPv4 addresses are potential targets where a select number of ports are of interest.
Being a two-dimensional space, IP addresses on one axis and destination port on the other,
scanning a large set of ports is only feasible within a reasonable time for fewer IP addresses.
For each probe the scanner will select a target from the footprint using a target selection
algorithm, but it is not necessarily the case that all target will be visited at least once for full
coverage. For example, a target selection algorithm that draws from the set at random can
have overlapping targets and leave certain targets untouched. Overlap occurs when targets
are visited more than once. On the hand, sequentially scanning the targets using the same
number of packets will achieve full coverage and no overlap as can be seen in Fig 3.7.

In any case, a consecutive series of probes sent to targets within the footprint is called
a scan. The number of probes within a certain time window determines the scan rate.
High performance scanners are optimized to enumerate the search space in the smallest
time window so no software restrictions are placed on the scan rate, probes are sent out
in quick succession as fast as the hardware and network bandwidth limitations allow them
to. However, the scanner must also be able to process replies from active targets. Some
form of state management is necessary confirm that a reply is the result from an outgoing
probe. Misconfigured hosts on the internet or backscatter can lead to unsolicited replies to
the scanner. Therefore, scanners can not blindly assume that a reply implies the discovery
of an active target. State can be kept internally within the scanner or encoded into packet
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Figure 3.7: Target Selection Patterns

header fields without braking the correct operation of TCP/IP. The latter method is typically
the choice of high performance scanners, because otherwise the scan rate will be limited by
the amount of available memory. Each outstanding probe, meaning an outgoing probe
awaiting response, will take up some memory until it can be release when either a reply
is received or after some predefined time out value. A faster scan rate will lead to more
outstanding probes which will quickly exhaust the available memory. A smart optimization
is to encode all the necessary information into packet header fields. The scanner should be
able to identify what was scanned from the reply. This technique exploits certain fields in
both IP and TCP headers that remain mostly unchanged in the response, effectively using
those bits to store data.

3.4.1 Goal

The main task of every scanner is to infer whether a given target is reachable through the
internet, but the high-level goal of the campaign is the reason why the scanner is turned
on in the first place. Owners of scanners can have various reasons for actively sending out
probes. For instance, cyber criminals are motivated by financial incentives and thus benefit
from finding hosts that they are able to compromise. A newly disclosed vulnerability for a
particular service can lead to a temporary surge of scan activity on that port. This happened
upon discovery of a severe vulnerability in MikroTik routers [?]. The routers were at risk of
device hijacking and remote DNS cache poisoning through port 8291. From that moment
an increasing number of campaigns were launched with the goal of finding the maximum
number of hosts reachable through port 8291. Some scanners can be considered benign
when the results are used for security research. ?? measures the adoption of HTTPS based
on internet wide scans. Since the goal of a scan campaign is to obtain specific knowledge it
also largely determines the footprint of potential targets. It is therefore also to some extent
possible to infer the adversary’s goal by analysing the packet destinations. Popular web
based services if present on the host are expected to run at their default ports. So both the
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range of port numbers and IPv4 destination addresses are able to reveal which services are
targeted and what the scope of the scan campaign is. However, the footprint and the goal are
not interchangeable terms. The goal includes the necessary motivation or objective to start
scanning while the footprint is the desired knowledge than one wishes to obtain. Anybody
else than the one responsible for the scan campaign can only make an educated guess on
what that knowledge is used for in subsequent actions. Cross correlating the timing of scan
campaigns and other internet wide events might provide some additional hints.

3.4.2 Footprint traversal patterns

The destination of any probe is identified by a pair of IP address and TCP port number.
Therefore, the entire space in which targets can be selected is two dimensional. The target
space is formed by the cartesian product of the 2ˆ32 IP addresses and 2ˆ16 port numbers.
When performing network reconnaissance, the adversary typically is only interested in a
small subset depending on the goal. That means reducing the range of IP addresses, se-
lecting just several port numbers or a combination of the two. Traversing only as much of
the target space as is necessary leads to more efficient scanner usage, saving both time and
computational power. It would make little sense to target port numbers for which a par-
ticular interested service is not the default port. This is especially true when resources are
scarce as is the case with a single scanner. In other words, the footprint is a subset of the
entire scannable space that the adversary wants to characterise. Similar to confining land
exploration in search of rare animals to a particular area known as their habitat. However,
the footprint does not define how the individual targets should be traversed, that is the task
of the scan algorithm. Knowing just what 23 information is interesting to the seeker reveals
nothing yet about the scan strategy. Decisions have to be made regarding which target is
scanned first and which one will be the next. In addition, scanners that do not operate at
full speed have to wait for a certain period of time which is also part of the scan algorithm.
From the literature there are common geometries that can be identified. These are are called
horizontal, vertical and block scan which will be discussed in the next subsections in more
detail.

horizontal Scan Horizontal scans are characterised by scanning just one port number to
multiple hosts. This type of scan is very common when the goal is to find a large set of
hosts that run a specific service. That service, if present will most likely run on a default
port which is the only port number worth scanning by the adversary. Restricting to one port
makes it feasible to complete an internet-wide scan, visiting each address in the IP space.
Horizontal scans are very common once a new critical vulnerability has been discovered for
specific internet-facing software that can provide financial gain when exploited.

Vertical scan As opposed to horizontal scans, vertical scan aim to discover any entry point
to a particular host. This type of scan effectively sends multiple packets to one host, each
time with a different port number. The end result is a map that reveals which internet-
facing services are running. Subsequent steps can then be taken to determine the path of
least resistance to execute a successful attack. Vertical scan are very focused, the adversary
is showing exceptional interest to a specific host. Either the host itself or the responsible
organisation has high value. This type of scan is also typically used by penetration testers,
because their job is to take on the role of a cybercriminal to prematurely spot weaknesses in
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employed defences. Every open port is a potential security hazard and the corresponding
service will be checked for vulnerabilities that can be exploited. A full scan that enumerates
all ports numbers would be the most thorough approach, but it is also very time consuming
while providing diminishing returns. In addition, the scanner has a higher chance of being
noticed due to the large number of consecutive probes. Therefore, limiting to the most
frequently used port numbers for popular services can yield good results with less effort
and noise. An analogy of a vertical scan would be a burglar trying to break into the house
of a high-profile target. Going through the front door isn’t likely going to be the easiest
approach, because it typically receives more attention in terms of security than other areas.
So in order to find the easiest way in, it is worthwhile to first properly explore the perimeters
of the house to identify other entry points. After carefully observing each square meter
he discovers that the lock of a basement window is outdated and trivial to pick with a
recently released specialised tool. He then goes to purchase the tool from the black market
which will serve as the entrance ticket. The key similarity here with a vertical scan is that
every possibility to gain unauthorised access is considered. Investigate all potential entry
points and opt for the path of least resistance. Other targets or not currently of interest, just
this specific one. In contrast, horizontal scans are performed when the method of attack
is already fixed. Equipped with this method, typically a recent vulnerability exploit, the
network is scanned for any target for which this exploit is applicable. Suppose criminals
developed an exploit for a smart lock which is easily recognised by its manufacturer logo,
then driving through the neighbourhood can identify targets to break into.

Block scan Block scan or otherwise known as strobe scan is a pattern that targets multiple
ports of multiple IP addresses. In this case, the adversary is interested in all host within a
set of IP addresses. This might be the subnet of a particular organisation or extending up
to the entire IPv4 space. The variety in destination port numbers can range from a handful
to all of them. Therefore, a block scan is neither a horizontal nor a vertical scan. With the
right prior knowledge, block scanning can yield the same results with less effort. Entire
subnets belonging to security organisations or other unattractive parts of the IPv4 space
are blacklisted by the scanners if there is nothing to gain from scanning them. Similarly,
enumerating only those port numbers for which one has an exploit for the corresponding
services leads to better utilisation of resources.

3.5 Distributed Scanners

Distributed scanners are a group of scanners under the control of a single actor. They can
be viewed as a collection of single source scanners, but more than likely sharing specific
characteristics due to similarity in the scanning tool and chosen strategy. The footprint of
each individual scanner is a subset of the group footprint. The owner of such an infras-
tructure composed of multiple scanning sources is free to decide which targets from the
search space are scanned by the sources. Besides selecting the targets, other characteristics
including the scan rate, overlap, coverage, duration on both individual and group level are
part of the scan strategy which will be discussed in greater detail in later sections. What sets
distributed scanners apart from unrelated single source scanners is that they exhibit some
degree of collaboration and synchronization performing reconnaissance. A controlling en-
tity oversees the sources, delegating the process and collecting status reports. Example of
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such form of collaboration is when all scanners are active during the same period. Advan-
tages for launching scans from distributed hosts are numerous. For starters, multiple scans
can be performed in parallel of which their combined scan rate can greatly exceed that of
any individual scanner. A problem with high performance single sources scanners is the
relative ease of detection. From the defender’s perspective, any source that sends an exor-
bitant number of probes to the network compared to baseline noise levels will quickly be
blocked from further attempts. Distributed scanners are able to evade threshold based de-
tection methods by deploying numerous slow scanners while still achieving high combined
scan rate. With enough sources one can set the scan rate low enough to hide the malicious
purposes of the scan and prevent them from being blocked by the firewall. Another prop-
erty to consider is the proximity in terms of geographical location and source IP address.
Scanning from various network origins makes it harder for defenders to correlate partici-
pating scanners to the same group. On the other hand, sources from the same /24 subnet
provide high confidence of a collaborated effort since such a small block of addresses often
belongs to one organization. Individual scanners require a communication channel with
the controller for receiving instructions. The topology of such a scan infrastructure can be
centralized, peer-to-peer or of hybrid nature. Each type is a trade-off between complexity,
resiliency and scalability. Scanners also contact a reporting server for sharing the results of
completed scans. Finally, this work makes a distinction between self-propagating worms
that upon infection are pre-programmed to look for new potential victims through internet-
wide scans. While these are also scanners and show high similarity in their behaviour, they
typically do not meet the requirement of being controlled by a single instigator. This work’s
definition includes a sense of deliberate intent for performing the scan.

3.6 Detection

Defenders monitor a network under their administration and bear the responsibility of han-
dling incoming threats. Malicious scanners that repeatedly probe the network are an ex-
ample of such a threat and must be dealt with accordingly. However, the identification of
scanners is not straightforward when obfuscation methods are applied. Current state-of-the-
art detection systems are based on thresholds where scan traffic from one source exceeding
baseline levels are deemed malicious. As a consequence, slow scanners that remain below
the threshold can go unnoticed. This approach does not achieve 100% accuracy in detection,
but forcing adversaries to limit their scan rates is actually a positive result. After all, setting
an upper bound for scan rates inhibits anyone to discover network characteristics in rela-
tively short time. While it does not withhold any scanner from scanning slowly, port scan
detection is effective as part of a larger defense-in-depth approach at mitigating the impact
of intrusion attempts. Additional giveaways of scanners are patterns in the header fields of
the TCP and IP protocol. For instance, scans performed with the popular tool ZMAP have
a fixed IPID value of 54321. Within this never-ending game of cat and mouse between at-
tackers and defenders, more sophisticated scanners have been developed that originate from
multiple sources. To correctly gauge the scope of a distributed scan, all activity from indi-
vidual scanners from that group must be attributed to a single controlling entity. However,
the absence of a ground truth paired with the limited visibility makes this a very challenging
task. Only the one responsible for the scan knows exactly how many sources are involved
and the choice of strategy. A monitored network such as a network telescope can only shed
light on whats happening in a small portion of the entire internet. That being said, the
correlation of individual scanners is possible at a best effort basis by establishing reasonable
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confidence. It is presumed that scanners within the same group share characteristic. That
is because the reconnaissance goals and selected scan strategy is determined by the con-
trolling entity and shared among all sources. To some extent, the intention of the scan will
manifest itself as patterns that can be perceived by monitoring the network. Examples of
such patterns are values within a probe and also patterns in packet arrival times. Further-
more, managing a large number of scan sources calls for an approach that capitalizes on the
economies of scale. Therefore, it is likely that the distributed scanners are equipped with
the same scan tool and configuration parameters. This relates to detection by reducing the
problem of finding all scanners that belong to single group to the correlation of individual
scanners that show high similarity in their scan characteristics. Chapter X will provide a
more detailed discussion on which characteristics can be observed by a network telescope
and the degree in which they contribute to increased confidence of scanner collaboration.

Single port scan detection algorithms are mainly designed for fast detection and prompt
response in order to block further attempts at reconnaissance which are only consuming
resources of the target network. The task is to classify traffic as either legitimate or scan
traffic with low false-positive rate. Distributed port scan detection takes it a step further by
estimating the scope or scale of a campaign. The size and employed tactics of a distributed
group provides an indication of the attacker’s sophistication level and/or its interest in the
target network.

3.7 Obfuscation

A simple scanner can be configured to scan at full speed, as fast as the internet-uplink will
allow. That would yield the fastest results, but this is not always desirable. Modern in-
trusion detection systems typically block scanners from further connection attempts. These
defences are deployed to distinguish malicious traffic from benign. Sources that are deemed
malicious are placed on a blacklist and subsequent packets will get dropped immediately
upon reception instead of being processed. High- volume scan traffic is a nuisance from the
perspective of the defender, because it consumes valuable network resources without pro-
viding any utility. Furthermore, it should be clear by now that scans can even pose a security
hazard if there are any vulnerable services facing the internet. A blocked scanner will thwart
any future connection attempts. Even if there actually is an active service listening at the tar-
get, SYN-packet will never reach its destination and elicit the SYN-ACK response according
to the three-way-handshake. The scanner might even falsely interpret the absence of a reply
as the target being inactive. Thus for the highest scan accuracy, it is in the interest of the
adversary to blend into normal traffic. Fast scanners are particularly noisy and thus stand
out from baseline traffic which lead to easier detection. Therefore, one typical approach for
evading detection is to limit the scan rate. Any effort to make purposeful scanning resemble
more like internet noise from accidental scans can be considered a form of obfuscation. The
scan behavior is adapted to be more stealthy. This means that certain parameters of the scan
tool are adjusted to meet this requirement. Obfuscation techniques are applied to avoid at-
tention from a particular observant in mind. So far it has been discussed how scanners can
avoid detection from an IDS. Besides evading detection an adversary can also put significant
effort into hiding the goal of the scanner. It may not be desirable if network defenders are
able to see what information is sought after. So instead of only scanning for the service of
interest, occasionally also targetting other port numbers can serve as a decoy. This makes
the scan look less threatining due its wider scope. In addition, defenders have a harder time
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preparing for an incoming attack when their attention and resources are divided to cover
multiple angles. For these reasons, prematurely alarming defenders about a potential entry
point into the network is not a good idea. It’s best to take advantage of the element of sur-
prise to move unnoticed through all phases of the cyber kill chain. Also after a breach has
took place, standard procedure includes post-attack analysis on how to improve defences to
mitigate future attacks. Obfuscation of the attack makes it harder to reconstruct the modus
operandi of the adversary which potentially leaves the network at a vulnerable state.
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Single source port scan detection techniques have been developed as a first line of defense
against external attacks. This category of port scan detection has received the most atten-
tion, because the presence of scanners indicate a potential threat and scans were typically
launched from a single host. However, work on single sources scanners is not necessarily
related to this thesis. The research question at hand is not how to distinguish benign from
malicious probing attempts, because due to the nature of a network telescope it is already
clear that the majority of incoming traffic serve no legitimate purpose. Therefore, no effort
has to be spend on obtaining a labelled data set of scan traffic. Instead, the focus lies on
determining which of the malicious scanners are potentially part of the same distributed
group. A topic that has received very limited attention as of yet. A brief overview of single
source port scan detection is provided where the authors can provide key insights into be-
havioral characteristics of scanners followed by the current state-of-the-art distributed port
scan detection. Finally, research gaps are identified that will highlights potential areas of
improvement to derive better detection methodologies.

4.1 Single Source Port Scan detection

In Dabbagh et al. [2011] they look at the imbalance between incoming SYN packets and
outgoing replies from the network. Legitimate users are expected to know which host are
available to contact which results in an acknowledgement for the majority of connection re-
quests. On the other hand, the behavior of unsuccessfully probing many addresses is typical
for a scanner. A positive sum of incoming probes subtracted by outgoing acknowledgements
indicates within a reasonable time frame indicates an ongoing scan. It builds upon Jung
et al. [2004] which is the current state-of-the-art algorithm named Threshold Random Walk
(TRW). Its implementation has found way in many modern Network Intrusion Detection
Systems(NIDS).

4.2 Distributed Port scan detection

While scanning has been an old technique to perform reconnaissance, only limited research
has been dedicated to distributed scanners. An early work from Gates [2006] presented an
adversary model based on the information it is trying to obtain from the targeted network,
also called the scan footprint. A framework is provided in which different adversaries can
be described and compared with by their scan footprint. It is assumed that the adversary’s
intention is to cover the target space efficiently with the least number of probes which means
that no destination address and port number combination will receive a probe more than
once. The author then reduces the problem of finding distributed hosts to a set covering
problem, but this NP-complete problem is only feasible for small scale evaluations due its
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computational complexity and the technique requires that the group hit at least 95% of all
addresses of the monitored subnet.
In Robertson et al. [2003] the authors define distributed port scans as a group of scanners
with source addresses that lie in close proximity to each other. They assume that an at-
tacker is more likely to use scanners originating from the same subnet rather than scattered
across the IPv4 address space. Certainly this is a reasonable assumption to make since IP
addresses are assigned in blocks to an organization. Therefore, it is likely that scanners
from the same subnet are controlled by a single instigator owning that block of ip addresses.
A higher prefix of the observed scanner subnet increases the confidence that the scanners
are collaborating. The algorithm is easy to implement and can yield good result with few
false positives. However, the used definition is very narrow due to its strong assumption
of source address proximity which only represent a subset of the large variety in strategies
employed by distributed scanners.
Another definition is given in Yegneswaran et al. [2003]: Coordinated scans are scans from
at least 5 different sources that target a particular port in the same /24 subnet within a one
hour window. They found evidence of coordinated scanners by observing similar on-off
behaviour. A group of scanners were active during the same days in a one month period.
No systematic method is provided to effectively detect collaboration among scanners. With
just three examples the authors conclude that such attacks are very common and that col-
laborative clusters can be effectively isolated.
In Feng [2013] All TCP and UDP packets are continuously monitored in a /24 network tele-
scope. If the number of scanners that target a port within one ten minutes exceeds a certain
threshold, then they are considered one group. This needs clean training data to determine
the threshold, but can be updated during operation. For popular ports the method is likely
to yield many false positives, because only a small observation period of 10 minutes is used
to characterize a scanner. With the large volume of generated scan traffic, there is a non-
negligible probability that unrelated scanners will hit the network telescope within the same
time window.
Griffioen and Doerr [2020a] were able to identify and detect distributed scanners based
on commonalities in packet header fields. The proposed detection method leverages the
fact that high-performance scanners embed information in the packet header. Due to the
economies of scale, scanners within a group are likely to use the same scan tool. Probes
generated by a scan tool typically have information embedded in the same header fields in a
similar pattern. The scan rate does not influence detection which even allows groups of very
slow scanners to be revealed. Not only have common port scanning tools been identified,
but it has also lead to the discovery of several new custom made tools that were previously
unknown in the literature.
The approach in Haas et al. [2020] is based on the key insight that scan activity from the
same attacker exposes similar properties, even when accomplished by a coordinated scan
using multiple nodes. Therefore, they have identified ten key features to characterize scan-
ners. Pairwise distances are calculated between each pair of scanners and then fed into a
hierarchical clustering algorithm. However the temporal scope of their data set, only 15 min-
utes, is rather limited and this already excludes slow scanners. Furthermore, they evaluated
their method using a minimum threshold of 100 packets for each scanner. In combination
with the relatively short time window, this will retain only the noisiest scanners in the data
set. The authors do not provide any evaluation for their results nor do they take into account
any false positives. Similar to the proposed method in this thesis, Yao et al. [2013] and Lv
et al. [2014] derived features from scanner time series characteristics after which they can
be clustered using the minimum spanning tree algorithm. The experiment is rather small
scale and the distributed scanner traffic are captured from a controlled environment mixed
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with background noise. Public scanning tools are used to control 16 coordinating scanners
of which the traffic is used for evaluating the method. In Jing Yang, Liming Wang, Zhen
Xu, Jigang Wang [2019] they observed there is significant spatial and temporal similarity
between scanners from the same campaign. Knowing this, they developed a hierarchical
correlation algorithm that starts by comparing individual semantic behavior followed by
temporal-spatial correlation. The data set was collected from a web hosting service provider
spanning one week. In the absence of ground they had to manually verify which malicious
traces belonging to distributed scanners. Bhuyan et al. [2012] proposes an outlier based de-
tection method. Profiles of normal behavior first need to be established which can then be
utilised to identify anomalous data points. Anomalies that are clustered in the same region
are considered being part of one distributed campaign. An extensive list of packet features
are listed, incorporating them all would be too computationally expensive. Therefore, a
subset of features are selected by means of principal component analysis which can then be
fed to the fuzzy C-means algorithm. They took special care during labelling, because the
data set was used for both training and testing. It consists of real-life data mixed with data
obtained from their university test bed. As is the case with most other work, coordinated
scans were captured in a controlled environment and labelled accordingly.

4.3 Research gaps

This literature overview indicates that the detection of distributed groups is a challenging
task. Despite that the phenomena of distributed scanners have been known for decades,
there is relatively little work dedicated to its detection. Correlating which out of the possi-
ble 4 billion scanners are collaborating quickly gets unfeasible unless some assumptions are
made that reduce the search space. However, these assumptions limit the type of scanners
that can be found. As a consequence, it will paint an incomplete picture of the threat that
distributed scanners pose in the wild. The mentioned works have not extensively explored
the relationships and commonalities between distributed scanners. There are potentially
many shared behavioral characteristics that are useful in effectively correlating them into
groups. In the absence of ground truth, the identification of more features that characterize
a distributed scan can provide additional evidence to confirm a cooperative relationship be-
tween scanners. Furthermore, earlier work tend to stick to small scale evaluations (e.g. one
week or less) due to lack of data or computational feasibility. The algorithms employed typi-
cally belong to the class of unsupervised learning techniques which may explain the smaller
observation period. The challenge of not having a labelled data set containing distributed
scanners forces research to take the approach of generating such traffic in a controlled en-
vironment. Thus introducing severe bias when evaluating a detection method against such
data. Furthermore, there was no intention to study the characteristics of distributed scan-
ners in the wild. The discussed work do not go beyond devising a method for detection.
Therefore, there was never any intention to investigate scan strategies that come in varying
levels of coordination and their prevalence in the current threat landscape.
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The initial approach starts with recognising characteristics about the problem that need to
be taken into consideration when devising an effective approach. Such identification is best
performed early on to narrow down viable solutions to, as yet, the abstract problem of cor-
relating distributed scanners. There is no perfect solution due to the absence of ground truth
and single methodology is able to capture all types of distributed scanners employing vari-
ous strategies. However, we aim to make the correlation method applicable to the majority
of groups. This work will follow a similarity-based approach where high-entropy features
take a central role in detecting as many groups of distributed scanners while reducing the
number of false-positives.

5.1 Considerations inherent to the detection problem

5.1.1 Absence of ground truth

The available dataset consists of incoming packets received at the university network tele-
scope. With the right analysis new insights can be gained. However, as the dataset is
unlabeled it becomes a challenge to evaluate the results. In supervised machine learning,
performance can be expressed in common statistical metrics due to the presence of ground
truth. Data samples have been first manually verified by field experts to provide correspond-
ing labels. Currently there are no public datasets where scanners are labeled for a particular
group. Manual verification is also a very labor intensive process which is only feasible for
very small scale data. To make things more complex, there are no fixed number of groups so
the number of possible labels potentially equals the number of available IP addresses where
each group is of size 1. The correlation of distributed scanners shows more resemblance
to a clustering problem which falls under the unsupervised learning category. Therefore,
there is no guarantee that a group of scanners is indeed cooperating even if several pieces
of evidence might suggest so. Through passive observation of network traffic one can never
provide certainty. In this work a a best effort attempt is made to establish sufficient confi-
dence through several indicators as an acceptable confirmation of collaboration. Special care
will be taken in the evaluation section where more validation methods will be provided to
properly address the challenge of missing ground truth.

5.1.2 Assumptions

With a large dataset containing millions of scanners, it becomes a daunting task to find a
(small) subset that is taking part in a distributed group. An analogy would be finding a
needle in a haystack. In addition to the large search space there is no standard way of
identifying coordination between scanners. That is because a scanner can be implemented in
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different ways and adopt various strategies depending on the strategy chosen by the initiator.
To the eyes of a passive observer of the resulting scans, the individual probe packets from
different sources typically do not contain an identifier that is unique to a particular group.
Some open-source implementations do embed certain pieces of information in header fields
which can be used to identify the usage of a specific toolchain Griffioen and Doerr [2020a].
However, an adversary who makes a deliberate attempt to obfuscate a coordinated effort
will be able to make individual scanners appear as if they were completely unrelated while
in fact they are actually part of the same campaign. In order to infer relationships between
scanners some assumptions regarding scanner behavior are necessary. Assumptions help
simplify the problem which can lead to an acceptable solution. This simplification does
come with the risk of not accurately representing all samples in the dataset. For instance, in
Robertson et al. [2003] the authors assume that IP addresses in the same / 24 subnet are used
for coordinated scans. An algorithm to retrieve such groups would be simple to implement
with short run-time. Few would argue that scanners originating from the same /24 subnet
are controlled by a single entity, but this can be considered a very hard assumption to
make which does not account for the majority of distributed scanners. Since this work
attempts to perform a more comprehensive study on distributed scanners its assumptions
must exclude as little of the entire set of distributed scanners as possible while retaining
the accuracy and computational feasibility of detection to answer the research question.
The most general assumption to make is that coordinating scanners exhibit some degree
of similarity. Developing, deploying and controlling a large number of scanners is more
complex than its solo counterpart. For this reason, we expect adversaries to leverage the
economies of scale during a large scan campaign. Multiple scanners adopting the same
strategy or having a similar behavioural pattern opens up possibilities to infer a coordinated
effort. However, a characteristic that is shared within one group might not be applicable
for another. Therefore, correlation based on different similar characteristics will each yield
different subsets of the entire set of distributed scanners.

5.2 Desired Result

The data analysis performed in this research should make an effort to satisfy certain require-
ments of the results. Firstly, the aim is to achieve a high true positive rate. In other words,
as many of the distributed scanners present in the dataset should be detected. However,
an even larger emphasis is placed on reducing false negatives. In order to perform post-
analysis on distributed scanners it is paramount that scanners are not incorrectly assigned
to a group. This work attempts to create the first labelled dataset containing distributed
scanners. A dirty dataset would impede drawing any conclusions when used as the basis
for studying this topic. For this reason, the preferred methodology is one that minimizes the
false positive rate at the possible expense of missing out some groups. Various strategies can
be employed by scanner, but a particular interest is taken towards those that operate at very
slow speeds. Slow scanners have received relative little attention from the research com-
munity partly because it is a tactic to achieve obfuscation by arguably more sophisticated
adversaries. Studying real-world scanners adopting this tactic within a distributed setting
has never been done before.
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Figure 5.1: Process of clustering scanners with increasing intra-similarity thresholds

5.3 Exploring similarities

5.3.1 Similarity

To reiterate, the aim is to achieve a very low false-positive rate on the final result of identified
groups. Recall that there is also the limitation of missing ground truth. The implication is
that any potential correlation method can not be verified against real-world data. One way
to mitigate this issue is find supporting evidence that the scanners are cooperating beyond
reasonable doubt. By assuming that distributed scanners exhibit some form of similarity, the
problem can be reformulated as finding observable features or characteristics that are highly
similar between scanners belonging to the same group and have relative low similarity with
scanners not part of the group. This bears high resemblance to a general clustering problem
as shown in fig 5.1 which will be adapted for grouping scanners.

Initially the scanners are represented just as data points, the value of each data point has
a distance to any other data point calculated using a particular distance metric. Clustering
is the process of grouping together data points with high intra-cluster similarity and low
intra-cluster similarity. Data points from the same class should have low pair-wise distance
while being relatively far away from unrelated data points. Not every scanner is part of a
group. In fact, the expectation is that the majority of scanner operate solo due to the lower
level of complexity and resource requirements for its operation. In clustering there are la-
belled as outliers or noise in the end result. Clustering involves parameter configuration of
the corresponding algorithm that will hopefully lead to more accurate clusters. For example,
increasing the threshold for intra-cluster similarity means that certain data points that previ-
ously were part of a cluster will now be labelled as noise due to its relatively large distance
to the nearest cluster. As a consequence, the end result will contain fewer false-positives
as only the most dense clusters remain but some scanners will be incorrectly considered
as solo scanners. Such parameter configuration is all about making trade-offs in order to
find a sweet spot in the balance of performance metrics. Having said this, the first step to
successful clustering is to transform scanners into their data point representation, also called
a model. The performance of any algorithm highly depends on the separability of the to be
identified clusters that meet the earlier discussed criteria of high intra-cluster similarity and
low inter-cluster similarity. A bad example would be to cluster based solely on the number
of packets received by source IP within a give time frame. While this approach might be
able to distinguish slow from very fast scanners, the concentration of data points within a
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small range of values with respect to the vast number of scanners in the dataset will make
it impossible to identify groups of independently operating scanners. using a model where
the features have low discriminative power will make every scanner appear as if it were the
same. On the other hand, a high-dimensional model that is too complex will suffer from
the curse of dimensionality where the distances between data points become too large to
detect any structure or pattern. In such a case, the distances even for true clusters become so
great that all data points seem unrelated. Therefore, choosing features for building a model
should involve evaluating their usefulness in contributing to cluster separability.

5.3.2 Entropy

A good feature provides information about the corresponding event or object of study that is
hard to predict. Entropy as defined by Shannon expresses the average amount of information
present in a variable when considering all possible values. In otherwords, entropy quantifies
the degree of spread over the variable’s values. High entropy implies uncertainty due to
the data being spread out while low entropy has many of the data points concentrated
around a relatively small number of outcomes. Thus low entropy provides less information,
because the outcome is more predictable even if there are potentially many possibilities.
For instance, a six-sided die has 6 possible outcomes of equal probability. Assuming a
uniform distribution this maximises the entropy, because the outcome is completely random.
In comparison, a die with eight sides has higher entropy if thought about it in terms of
uncertainty and predictability. The chances of guessing the correct outcome is lower in
the case of the eight-sided die. However, if this die were modified such that it always
would land on the value 7 then it would be considered very deterministic and predictable.
The outcome would be little surprising and as a consequence have low entropy providing
little information. The minimal and maximal entropy examples are opposite extremes to
elaborate the concept. In this work, entropy will be the prime criteria for judging whether
potential features are suited to identify distributed scanners. Scanners that belong to the
same group are expected to be similar. A high entropy feature provides a large search
space which will make it easier to identify groups from the noise of solo scanners. Scanners
belonging to the same group will form clusters around the same value that have a relative
large distance to other data points. Thus making it easier to spot order within the chaos of
many possibilities. The probability that data points happen to be near eachother in close
proximity by coincidence decreases as the entropy increases. Thus a high-entropy feature is
able to detected distributed scanners while also achieving a low false-positive rate. However,
the feature should capture a distinct behavior of the corresponding group. Entropy in the
context of correlating similar scanners is only useful if the event can be used to fingerprint a
common group behaviour. We will continue to discuss a powerful feature that captures long-
term scanner behaviour after describing the dataset obtained from a network telescope.
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A network telescope is a system for studying internet-wide phenomena. In literature, it
is also sometimes referred to as a darknet. The main purpose is to store and procecss
incoming packets that arrive at any of the telescope’s IP addresses. A telescope’s resolution
is defined by the number of designated IP addresses and ultimately determines what portion
of the internet can be perceived. The resolution or size is typically expressed as a prefix
length like a /16 or /24 subnet. Thus, a larger telescope has more ’sensing’ capabilities,
because more of the entire IPv4 space is being monitored. Telescope addresses are unused,
meaning these addresses are not assigned to regular active hosts that run services neither do
they respond to any communication from external entities on the internet. Therefore, any
incoming data packets directed towards the telescope’s addresses are unsolicited and can
be considered suspicious. There are several causes for receiving unsolicited packets. One of
them include DDoS backscatter in which attackers flood a victim with traffic using spoofed
addresses as the sender. Typically the spoofed source address is selected at random which
may coincidentally be one of the telescope’s addresses. The victim’s resources is quickly
being exhausted when it attempts to send a reply back to an enormous amount of spoofed
connection request packets. So the telescope may be witness to ongoing DDoS backscatter
attacks against a particular victim of which it is receiving unsolicited reply packets from.
Another observable event are random scanners that aim to find any hosts on the internet
listening to a particular port. Selecting targets at random may appear like an inefficient
approach to enumerate all possible addresses, but sending a large number of packets is
low-cost and fast. Internet-wide scanners aim to traverse the entire internet which allows
even the smallest network telescopes to observe this type of event. A telescope with a larger
resolution has a higher probability to witness small scale events that operate more locally.
With this in mind, the data from a telescope is invaluable for the study of scanners. This
thesis research utilises such a telescope that monitors relative large subnets associated with
the TU Delft. Exactly What type of data is captured and the complete setup will be presented
in more detail in subsequent sections. This is followed by a demonstration about what
insights and knowledge related to scanners can be extracted from the raw capture data. We
hypothesize that a longer observation period may reveal new insights regarding the tactics
and behavioral characteristics of scanners that were not previously visible in smaller scale
experiments. No other work has previously analysed long-term data at such scale which
this thesis is set to explore. However, some pre-processing steps of the data are necessary to
reduce computational requirements. For this reason we retain only what is relevant for the
purpose of correlating distributed scanners.
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6.1 TU Delft Setup

6.1.1 Telescope Resolution

The TU Delft operates a relatively large network telescope with a resolution of two /16
subnets. A /16 subnet contains 2 to the power of 16 addresses, the total number of addresses
amounts to 131072. However, that is the theoretical maximum number of addresses allocated
to TU Delft and all its sub-departments, not just the Cyber Security group. So a significant
portion is designated for other purposes related to daily operation of the university. In order
to have a more accurate view of the telescope’s size, we record all distinct IP addresses that
were able to receive a minimum number of packets over a prolonged observation period.
We used a sample of 1.6 million scanners that have sent 927 million packets over the course
of one year. If addresses are chosen at random then one would expect that each destination
would receive roughly 7000 packets. However, that is only if the telescope’s resolution
actually consists of two full /16 subnets. The number of packets per address is likely to be
much higher if there are less addresses to account for the same number of packets. Thus, a
threshold of at least 1000 packets is set to determine whether the address is being monitored
by the telescope. 41609 addresses meet this criteria in the 131.072.0.0/16 subnet and 10469
in the 131.180.0.0/16 subnet. This is less than half of the initially assumed size, slightly
less than a full /16 subnet. Determining the telescope’s true address count is essential for
accurate extrapolation of any findings from telescope data to the entire IPv4 space. In fig 6.1
and fig 6.2 illustrate where there are gaps in the two /16 subnets from the perspective of the
telescope.

6.1.2 Observation period

The network telescope has been in operation for several years. For long-term analysis a pe-
riod of approximately one year is chosen which is significantly longer than previous studies.
More specifically, the first day of this dataset is march 2nd 2018 and ends at march 18th
2019. Within this period, the telescope did not have 100% uptime due to maintenance or
outages. Still, there are 360 full days worth of data which is more than sufficient for any
type of analysis.

6.1.3 Data and storage

Operating a telescope for an extended period of time can quickly occupy a vast amount of
storage space. The telescope does not apply any sampling technique, but instead stores every
incoming packet in its raw format. Metadata from both the transport layer and the network
layer are present which have been described in section reffig:ipv4-header. Additionally, the
packet payload (if present) is also included which allows for application specific analysis.
The data is stored continously in PCAP files of 200MB each. As the rate of incoming traffic
may vary from moment to moment, each file may approximately contain between 5 and 20
minutes of telescope data.
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Figure 6.1: Heatmap of 130.161.0.0/16 incoming packets
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Figure 6.2: Heatmap of 131.180.0.0/16 incoming packets
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6.2 Observable characteristics at different data resolutions

Having access to unfiltered data makes it becomes possible to study any specific scanner
that has been active within the observation period. However more data can be a blessing
and a curse. Parsing terabytes of traffic data requires heavy computation which is only
performed after careful consideration. Therefore, it is paramount to first identify the type of
knowledge that one wishes to extract from such an analysis. The correlation of distributed
scanners is like the equivalent of finding a needle in a haystack. A very tedious task at
which computers excel in, but even the fastest computer has its limitations. This section
briefly covers which scanner characteristics were observed during initial exploration. When
considering raw packets in isolation, the meta-data present in both IP and TCP headers
provide basic information regarding protocol, source and target. However, when multiple
packets from the same origin are viewed in conjunction then a more comprehensive image
of the scanner’s tactics reveals itself. This is especially true when extending analysis from
a single packet up to an entire year in order to observe long-term behaviour. The task of
correlating distributed scanners in the absence of ground truth is only possible when we
are able to distinguish scanners belonging to one group from all the other scanners in the
dataset. Thus, these distributed scanners must possess certain characteristics which others
do not to enable such identification. In machine learning terminology, such characteristics
are also called features. Short-term analysis performed in related work provides a narrow
perspective of scanners due to the lack of data on a temporal scale. Having access to more
data as in the current case of the TU Delft telescope provides a unique opportunity to explore
both short-term but in particular long-term data. This exploration starts with a discussion
about what type of characteristics are expected to be found that are unique to their respective
observation periods and how they can be utilised to detect distributed scanners.

6.2.1 Short-term analysis

Analysis in the short-term is considered here as a time window smaller than one hour. The
total number of incoming probes resulting from a scan will vary depending on the rate of the
scanner and its traversal pattern across the entire IPv4 space. To reiterate, a telescope only
sees a small portion of the internet and thus only a fraction of the probes will arrive when
assuming that destinations are selected at random. Typically one hour starting from the
first arriving packet can provide a lot of details regarding a moderately paced scanner. That
should reveal which services and their corresponding ports are of interest to the initiator.
However, multiple scanners targeting similar ports do not provide sufficient evidence for
cooperation, because the most popular destination ports account for the vast majority of
scan traffic. Unless the distributed scanners collectively target a very unconventional port
there will be many unrelated scanners that share the feature of specific target ports. Another
useful indicator is the scan rate which can be determined by counting the maximum number
of packets arriving within a predefined time window. Some extrapolation is required to
estimate the true scan rate since the telescope only partially covers the entire IPv4 space.
Furthermore, if the addresses are selected at random then there will be some variance in
the perceived scan rate by the telescope. This becomes particularly problematic with lower
scan rates which results in fewer data points to obtain a good estimate. One idea is to form
clusters of similar scanners in terms of their scan rate. However, apart from the difficulty of
extrapolating the true scan rate there is likely not enough variability to make this a reliable
feature. However, some have attempted to detect distributed scanners by including the
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scan rate as feature with acceptable results. Here an argument is made that while such
a feature has some discriminative power, the scan rate is too ambiguous due to the sheer
number of scanners that contact the telescope. Extending the observation period to a full
hour will allow for even more data points to estimate the aforementioned characteristics. In
addition, there is a higher probability that multiple bursts occur. Such bursts are separated
by moments of inactivity and if these breaks are of consistent duration then that could be a
useful feature.

6.2.2 Medium to long-term analysis

Going beyond one hour to one day for instance some other intricacies of the scanner’s algo-
rithm become apparent. A scanner might be configured in a way such that it only operates
at specific hours of the day. With short-term analysis this degree of scheduling would go
unnoticed. During experimentation with the data several instances were encountered that
even implemented scheduling on a daily basis. A schedule can be considered as being part
of the scanner’s configuration. Consequently, it follows an automated activity pattern as
the result of an algorithm. In our current example, this implies that not this week, but at
some other point in time in the past the scanner was manually started. Every scan campaign
starts with an individual or organisation who wishes to (partially) map the internet. The
actual implementation and configuration of the scanner incorporates the goals and tactics
of its initiator. While obvious, it is worth noting that scans resulting from scheduling arise
without manual intervention. Therefore, they belong to the same scan campaign that was
initiated with a clear knowledge goal. Both temporal and spatial (destination IP and port)
patterns do not change within this informal definition of a scan campaign. A deliberate
action or manual intervention from the initiator marks the start of a new campaign. We
can only infer the intention and tactics of the initiator from the incoming data, but never be
certain in the absence of ground truth. An extended period of inactivity that lasts several
magnitudes longer than what is expected on average is very likely the result of manually
powering down the scanner. Such phenomena can typically be observed at very long-term
analysis e.g. one year. Scanners are often intended to work autonomously until a certain
condition is met and a longer observation period has a high probability to record the end
of a sequence of consecutive active days or a full campaign. Temporal activity patterns of
a scanner become more unique at increasing scale, because the corresponding entropy of
all possibility activity patterns increases exponentially. Scanners active on exactly the same
days in a month provides can be used as a fingerprint. Extending that observation period to
a full year would provide even more confidence when a group of similarly active scanners is
found. Especially when the pattern is able to capture multiple scan campaigns. To conclude,
incorporating more telescope data up to the point where multiple scan campaigns can be
observed can provide more powerful features than present in short-term data for detecting
distributed scanners.

6.3 Data pre-processing for scalability

We previously discussed discussed that more data in the temporal axis is beneficial for un-
derstanding scanner long-term behavior. However, this comes at great costs in terms of both
computational and spacial complexity. This problem can be mitigated by transforming the
raw telescope data to another format that is more space efficient and also faster to query
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repeatedly. A year of telescope data was selected to be analysed. The total disk storage
required for this data is 11TB, which is approximately the amount of unsolicited traffic the
network telescope receives each year. Due to the scale of the data it was necessary to in-
vestigate which programming language and its corresponding libraries would provide short
run time for reading all files. For this research’s specific purpose of correlating distributed
scanners, the telescope data can be greatly reduced in size by removing all packets unre-
lated to scan activity. Scans can be recognised as TCP-SYN packets. In addition, a trimming
step will be performed which removes other unnecessary TCP and IP header values. All
extracted data deemed relevant was made more compact by means of aggregation and more
efficient type of data structures were created. Each of them containing different properties
that are more suited to particular queries e.g. membership testing, retrieve scanners active
in a specific period, total packets received and more. The goal is to parse the raw telescope
data only once and continue data analysis on the newly created data structures which are
more smaller in size and faster to query.

6.3.1 Parse data

Preliminary analysis was performed in the Python programming language, because the
code could be written relatively quick and easy for experimenting with the data. While
this approach was feasible for short observation periods, scalability would become an issue
for increasing data size. Python’s bad performance can be attributed to the code being
interpreted whereas the C programming language compiles the code to machine language
in advance which can be executed by the CPU directly. Also memory management has to be
done manually, allowing better control for optimising efficiency . Therefore, the most heavy
duty processing of parsing all telescope data will be done in the C language. In total, 360
days of telescope data would have to be parsed within acceptable run time. Since this is such
an expensive operation in terms of CPU cycles, ideally only one pass should be performed.
The objective is to create new representations of the data in a more compact format for
future analysis. Subsequent data analysis will be written in Python for it’s flexibility and
high-level programming features at the cost of performance loss.

6.3.2 Trim dataset

The network telescope records all incoming traffic without any modifications to the data.
Consequently, not all recorded packets are actually useful within the context of studying
scanners. Other unsolicited packets include internet backscatter and packets due to host
misconfigurations. Therefore, it makes sense to only retain information from packets that
are considered deliberate scan attempts. Previously in 3.1 the different scan types were dis-
cussed. The most common scan technique is the TCP half-open or also referred to as a SYN
scan. Such a scan is easily identified upon inspection of a packet’s TCP header. TCP SYN
packets typically do not contain a packet payload, because an actual two-way communica-
tion has yet to be established. This is in contrast to internet backscatter where a victim is
flooded with requests from spoofed addresses. Depending on the type of service running
at the victim, replies may contain a payload which make them several orders of magnitude
larger than a scan. Thus removing packets unrelated to scans will contribute to achieving
storage space reduction. Upon closer look at the IP and TCP headers, only a handful of val-
ues provide useful information regarding the scanner’s behavior. The majority of the header
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values serve to ensure correct operation of the TCP protocol which involves state manage-
ment, integrity checks and other options. From both headers only the IP source address
and the destination port is retained together with the timestamp of the arriving packet. This
is the bare minimum to allow both spatial and temporal analysis with the source IP as the
scanner’s identifier. There were some other values that could potentially be useful, but were
not included due to space considerations. For example, the IP destination address provides
information regarding the target traversal pattern. However, that would lead to storing an
additional 32 bits per packet. Typically, scanners randomly select a destination IP address.
Such a strategy can be considered naive but effective in traversing the IPv4 space. Assuming
most scanners even within the same distributed group generate random targets, the desti-
nation IP address is not very useful as a common fingerprint in determining collaboration
between scanners. Some toolchains and very fast scanners encrypt information in header
fields like the IP Identification, TCP source port and TCP Sequence number. Work has been
done to identify specific toolchains based on fingerprinting Griffioen and Doerr [2020a].
Typically, these values are also randomised by implementations of the protocol unless mod-
ified intentionally. Therefore, it does not justify the increased storage space from recording
these type of information to accommodate niche strategies. Furthermore, deployment using
the same toolchain does not necessarily imply cooperation between scanners. In particular
open source scanner software are readily available for anyone to use.

6.3.3 Data aggregation

In essence, what is being retained from individual scan packets are just the IP source address
and the TCP destination port. Leaving everything else out will greatly reduce the required
storage space. Data aggregation will take the reduction one step further. The idea is based
on the repetitive behavior of scanners. Typically, scanners performing internet-wide scans
are targeting just one or a handful of TCP destination ports in quick succession. Different
IP destination addresses are (randomly) selected to achieve good coverage of the IPv4 space
for a limited set of TCP ports. In other words, scanners are searching for any host running
the services of interest. In the case of fast scanners the network telescope will typically see
many incoming packets within a short time window. If it is expected that the same ports are
targeted, then storing the IP source address and the TCP destination port on a per packet
basis would not provide much additional information. The data size would be linear to the
number of incoming packets. For very slow scanners this might not pose a storage problem,
but high-speed scanners can potentially contact the telescope at megabits speed or faster.
Therefore the approach is taken to create summaries of a scanner’s activity that describe its
target ports and the corresponding number of attempts.

Data was aggregated for every PCAP file recorded by the telescope. Recall that these files
are of varying length between 5 and 20 minutes depending on the volume of unsolicited
traffic at the moment of capture. Time windows of such lengths are a good choice, because
campaigns are expected to run longer than that without any change in strategy. Counting
the number of received packets provides a rough estimate on the scan rate. Selecting Wider
time windows would lead to coarser summaries which are less detailed. A scanner could
take breaks between bursts or only be active a fraction of the chosen time window. Another
beneficial property of summarising the existing PCAP files is to easily locate the original
packet information if there ever is a need to analyse a scanner in more detail down to the
raw packet level. The naming conventions of the summaries will contain a recording times-
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Figure 6.3: Transformation of raw telescope data in pcap format to summaries describing
the scanners present and their target ports

tamp of the first incoming packet which matches the original PCAP file. Fig 6.3 illustrates
the resulting summary after both trimming and aggregation of the original data.

The summary starts with stating the timestamp of the first and last packet of the original
file in order to determine the exact time window of the capture. This is followed by a count
of unique scanners identified by their source IP address. Every summary will contain at
least these three pieces of meta-data regardless of the number actual packets received. What
follows is a per scanner based summary. A scanner is described by its source IP address
and a record of how many unique TCP ports it has contacted during the capture period.
For each port, both the port number and the corresponding number of attempts to that port
will be recorded. In order to achieve optimal space efficiency, the smallest data type that
can accommodate any piece of information has been chosen. For example, port numbers
range from 0 to 65535 which would precisely fit in an unsigned short data type. Special care
was taken to also store the packet count into an unsigned short even though, while uncom-
mon, the counter can potentially overflow if the scanner operates at high enough speeds. A
count overflow to a specific port would indeed imply a very fast scanner which is sufficient
information for the purpose of this study. Selecting a data type that is larger e.g. 32-bits
integer would greatly increase the required storage requirements for all scanners in order to
accurately represent these outliers. Generally very fast scanners pose a smaller threat in the
sense that they are already easily detected by existing methods. In particular the slow scan-
ners that show a high degree of sophistication are of more interest. To indicate an overflow,
the counter will be assigned a special 0 value. The value 0 is unused, because there is only
a record of a TCP port and its counter if it at least one probe was received.
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6 Network telescope dataset

To support long-term analysis, summaries of coarser time windows where also created.
These will provide a lower resolution perspective of the telescope data, effectively zoom-
ing out of the data. A lower resolution perspective is especially suitable for observing a
scanner’s long-term behavior, because it enables temporal analysis on longer observation
periods with less processing time. For this reason, daily summaries were created that can
be used in conjunction with the higher-resolution summaries. The former follows the same
data format for a longer time window, resulting in stronger data compression. Continuing
the previous example in fig 6.3, a day of unmodified telescope data is stored using 37.5GB.
The corresponding high-resolution summaries for that day combined are only 72MB in size.
After the second low-resolution aggregation step, a single daily summary is 2.1MB, a near
18000 times size reduction compared to the original data. Having views of varying reso-
lutions will allow hierarchical search algorithms to reduce the run-time exponentially. The
presence of certain scanners within a year’s time can be quickly determined on a coarser
level. If the need arises to investigate scanners of interest in more detail then increasingly
detailed views can be consulted down to the raw packet level.
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7 long-term activity feature

7.1 Observed scanner activity

In the previous section we described how the raw telescope data was transformed into effi-
cient summaries which enables fast membership testing in daily resolution and pcap reso-
lution. This opens up the possibility to easily visualise a scanner’s activity during the entire
observation period of 1 year. In manual exploration of the data we encountered several ex-
amples of potentially collaborating clusters where such a tool proved to be insightful. Initial
experimentation included trying out several features such as packet count, scan rate, interar-
rival times and evualating their efficacy in detecting distributed scanners. Detected clusters
belonging to the same /24 subnet provided quick confirmation. Additionally, plotting the
long-term activity of every scanner in such clusters often revealed that distributed scanners
operate simultaneously. In other words, scanners all appear to be active and scanning or en-
tirely absent for any given day within the observation period. Figure 7.1 illustrates a detected
cluster with exactly the same activity pattern. A blue dot in the chart represents recorded
activity of at least one packet on a specific day from the corresponding scanner. This exam-
ple depicts a cluster which operates on a weekly schedule most of the time from March 2018
till August 2018. Lacking any labels in this research phase, we can treat the source address
being in the same /24 subnet as the best available alternative to having ground truth. We
continue to observe a high correlation with matching activity patterns and scanners from the
same subnet. The latter indicator by itself is already able to instantly confirm the presence
of confirmation by visual inspection. In figure 7.2 we witnessed another group of scanners
where the source IP addresses are not in close proximity. That is, they do not reside within
the same /24 or not even /16 subnet. Traditionally, IP address proximity was the most relied
upon characteristic to infer collaboration between scanners. However, visualisation of long-
term activity reveals a common feature among scanners which can serve as a fingerprint to
identify a group regardless of the source addresses.

The strength of this evidence lies in the fact that there are 360 seperate days for which
there are two observations possible: Either a scanner has sent one more probes or none
at all. Both the collective presence and the absence of an entire cluster provides additional
confidence to the correct identification of a group. The statistical probability of such an event
where multiple scanners have exactly the same operating days is very low. Even without
quantification of the probability, intuitively one could confidently say that they are in fact
collaborating. We continued to discover multiple instances in which the potential cluster
as a whole followed a distinctive pattern throughout the year. These observation were key
supporting evidences in the formulation of a hypothesis that distributed scanners share the
same long-term activity pattern. Thus, we consider this characteristic as a powerful feature
that can be used to effectively correlate scanners to their respective group and seperate them
from other data points.
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7 long-term activity feature

Figure 7.1: Example of patterns in scan activity found during data exploration

Figure 7.2: Scanner with similar activity not within same subnet
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7.2 Inluding target ports in activity

Figure 7.3: Instance of a verified cluster and its targeted TCP ports over time

7.2 Inluding target ports in activity

Currently we have only discussed binary activity patterns where a scanner can either be
active or inactive in a specific time window. In addition, the previously created daily sum-
maries also recorded how many packet were sent to a port number. Which port numbers a
group as whole is targeting reveals what information is of interest to the initiator of the scan.
Port scanning as a form of network reconnaissance involves mapping the network of interest
and obtaining knowledge about running services. Therefore, we can expect the individual
scanners to operate in line with a common goal. Fig 7.3 depicts a moderately sized cluster
for which collaboration has already been verified by means of both subnet proximity and
matching binary activity sequence. By visualising the targeted ports in daily intervals we
can infer the purpose of such a scan campaign. The services associated with port 80, 443
and 22 are HTTP, HTTPS and SSH respectively.

For the purpose of detecting distributed scanners we do not intend to dive deeper into why
anyone is interested in specific target ports and their corresponding services. However, these
observations do provide evidence that not only do clusters operate on the same days, but
they also are also instructed to simultaneously target a common set of ports. It’s these shared
characteristics between scanners that will enable group detection beyond and establish con-
fidence beyond reasonable doubt. Thus, including target ports in scanner activity increases
the entropy. Depending on the uniqueness of any activity sequence we can confidently say
that similar scanners in terms of activity are related. In figure 7.4 another cluster instance is
shown with a much more complex target pattern. In light of such evidence one can hardly
argue the presence of a coordination.
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7 long-term activity feature

Figure 7.4: Instance of a verified cluster with more complex target scheduling and larger set
of interested ports

7.3 selecting activity as feature

For every scanner encountered during the 360 day observation period a sequence of bits
will be created. Each bit indicates whether the scanner was seen active during the corre-
sponding day. A scanner is considered active when at least incoming probe arrives at the
network telescope. Therefore, the slowest rate this model can accommodate is 1 probe per
day which should be applicable to the majority of slow scanners. Modern IDS have a much
higher threshold configured in the range of multiple probes within 5 minutes for their scan
detection. For the adversary it would seem unnecessary to sacrifice any more speed when
the scanner is already blending in with normal traffic. The study performed here is the first
to track scanners for nearly a whole year. Therefore, any adversary with a strong inten-
tion to obfuscate his reconnaissance efforts is unlikely to have accounted for such analysis.
Furthermore, there is a difference in attempting to evade real-time detection and going un-
noticed during post-analysis. This work falls under the latter category which can afford a
much longer observation period due the absence of some time constraints present in real-
time detection. Scanners typically are more concerned with completing their reconnaissance
objective and thus it is sufficient to prevent being blocked during an ongoing scan.

7.3.1 Data distribution

With 360 measurements in a year, there exists many combinations of binary activity se-
quences or also called bitstrings. Although each solo scanner or group exhibits some degree
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7.3 selecting activity as feature

Figure 7.5: Cumulative distribution function of active days per scanner

of uniqueness with respect to its strategy, some notable trends can be observed. The first
analysis seeks to answer how many days a scanner is active in general during the period
of one year. In order to unambiguously identify groups by means of their activity pattern,
there should be at least a certain amount of active days to allow for sufficient combinations
of bitstrings. The number of possible combinations can be calculated using the following
equation

C(n, r) = n!/r! ∗ (n − r)! (7.1)

This is a general equation from set theory to find the total number of combinations of size
r from a set of size n. Application to the current context translates to determining how
many variations in bitstring are possible when a scanner is active for a certain amount of
days. More possible combinations make it less likely that unrelated scanners will have a
similar bitstring. The maximum number of combinations is achieved when r = n/2 Thus,
for identified groups of which the scanners approach 180 active days it can be said with
increasing confidence that these are indeed collaborating. At on extreme, scanners have
only one active day and it does not require much elaboration why groups formed by the
same logic do not make a strong case.

Fig 7.5 and fig 7.6 depict the distribution of active days from all 31 million scanners present
in the dataset. What these figures tell us is that the majority of scanners are only active for a
fraction of the year. With 95 percent of the scanners being less than 20 days active, this is not
an ideal situation considering the scenario with maximum combinations was determined at
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7 long-term activity feature

Figure 7.6: Probability density function of active days per scanner

180 active days. Even more problematic is that 50 percent of the scanners are only active
for a single day in which case there are only 360 combinations. Such a small number of
possibilities is nowhere near enough to uniquely identify groups within the pool of over 15
millions scanners without containing many false positives. Continuing on this thought, this
work acknowledges that correlation based on activity bitstrings with a low-false positive rate
can only be reliably performed for scanners exceeding a minimum number of active days.
During post-analysis of the correlation results, the corresponding activity threshold can be
set in accordance with the false-positive tolerance to query clusters meeting this criteria. A
lower false-positive rate comes at the expensive of fewer clusters returned, but due to the
large size of the database this should still yield ample results. In other words, settings such
an activity threshold is an assumption made on the number of active days which exclude
certain type of scanners.

Another interesting observation made is the relationship between active days and the num-
ber of distinct campaigns launched with the scanner. A campaign is defined as an uninter-
rupted sequence of active scanning days, inactivity of at least a full day marks the end of
a campaign. In addition to knowing what fraction of the year a scanner is active, this also
provides more insight to how long campaigns tend to last. In 7.7 a surface plot is provided
that with one picture is able to roughly illustrate 360 cumulative distribution functions of
how many campaigns are launched by the scanners categorized by active days. Fewer cam-
paigns imply that most of the activity appear in consecutive days which is especially the case
for less active scanners, partly due to the mere fact that fewer combinations are possible as
previously discussed. Scanners approaching the 180 days of activity have more options and
this is reflected in the same figure by a less steep rise of the curve. However, in general most
of the active days are concentrated in a significant less number of campaigns which supports
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Figure 7.7: 360 Cumulative distribution functions of campaign count
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7 long-term activity feature

the idea that once scanners arrive in an (in)active state they are more likely to continue to
remain there in following day.
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8 Methodology for correlating distributed
scanners

8.1 Correlation features

Within the observation period of one year a vast amount of data has been collected from
the university network telescope. During this time more than 31 million scanners have
been sighted. Distributed scanners are considered a form of advanced scanning technique
where multiple scanners are under the control of the same initiator. In this work an attempt
is made to detect such a coordinated relationship based on the assumption that scanners
part of the same group are likely to exhibit similarities in terms of their scanning behavior
due to economies of scale. Similarities can express itself in many characteristics of scanner
behavior, but two types are of particular focus of this work. These are a scanner’s activity
pattern and targeted services which are expected to be highly correlated within a group.
More specifically, when the entire observation period is divided into roughly equal time
intervals, then all scanners within the groups are likely to be simultaneously in the same
operational state, either active or inactive depending whether or not at least one probe has
been received. Additionally, in the active state also the set of targeted destination ports must
match across the entire group. Due to the degree of uniqueness of such observed behavior,
seemingly unrelated scanners in a very large candidate pool can be associated to a single
group with low false-positive rate.

8.2 Dataset characteristics

The dataset contains an unknown number of clusters, because there is neither a lower nor
upper limit (besides the number of available IPv4 addresses) of how many distributed scan-
ners have been observed by the telescope within the timespan of 360 days. However, due
to the lower barrier of entry and simplicity the majority of scanner are assumed to be oper-
ating solo as this approach is often sufficient for a typical network reconnaissance without
obfuscation requirements. Therefore, the majority of datapoints are considered noise as solo
scanners are not the subject of interest, only a small subset belongs to an unknown number
of clusters. For a dataset of this scale containing roughly 31 million scanners, this should
still yield a sufficient amount of results with reasonable confidence despite inevitably some
distributed scanners remain undetected, because the aforementioned assumptions of similar
activity patterns and target ports are a generalisation and do not apply to the whole class of
distributed scanners.
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8.3 Common clustering algorithms

To solve the clustering problem there are many popular algorithms which have been exten-
sively used in other research areas. The choice of algorithm largely depends on the nature
of the problem. For this reason, the main data characteristics discussed in 8.2 are taken into
consideration during the selection process. If none of the options perfectly fit this specific
case then this necessitates developing a tailored solution. Clustering algorithms are primar-
ily classified based on the distribution of data. Each class makes assumptions about the
pattern or structure in which the data points are arranged in. For example, the well known
K-means algorithm tends to be effective in situations where the data points are arranged
in a circular shape surrounding the cluster’s center, also referred to as the centroid. Being
one of the most simple and fast unsupervised learning techniques has now made it become
ubiquitous in literature. The letter K in the name stands for the pre-defined number of clus-
ters that will be generated. Centroids initially are placed at an arbitrary locations which are
subjected to an iterative optimisation process. The end goal is to assign all data points to
a centroid with minimal distance. Several reasons can be named why this algorithm is not
a viable option to cluster the data in this work. The most important one relates to the core
assumption of being able to specify the number of clusters in advance which is not possible
in the context of distributed scanners present in real-world data. Additionally, there is no
concept of noise and it is designed to work with numerical features as opposed to categor-
ical features. Therefore, K-means can be quickly disregarded as a potential solution to the
cluster problem.

Keeping the earlier criticism in mind which was used to judge the K-means algorithm,
DBSCAN Ester [2017] is a better alternative. DBSCAN stands for Density-Based Spatial
Clustering of Applications with Noise. It performs well in separating high density from
low-density areas. Clusters can be formed of any arbitrary shape as long as the data points
are considered to be in a high density area, the rest are deemed outliers. Depending on the
context of the application, outliers can provide valuable information such as in intrusion de-
tection where anomalies indicate deviations from normal behaviour. However, in this work
the focus lies on the high-density areas that represent distributed scanners with similar be-
havior. Solo scanners share little to no commonalities with others and thus can be treated
as unwanted noise which should be filtered out. Another major advantage of DBSCAN
is that no a priori knowledge about the number of clusters is required. The algorithm is
able to detect how many clusters are present though some trial and error is required during
parameter configuration to achieve optimal results. The outcome can greatly vary depend-
ing on the choice of minPts and epsilon. Sensitivity to parameter configuration is a known
drawback of this algorithm and it can be computationally expensive for large datasets due
to its O(n2) runtime which gets even worse for high-dimensional data. Therefore, clustering
on the full dataset will be computationally infeasible. Even if the process could be com-
pleted in acceptable runtime, the end result of cluster algorithms in general can be hard to
interpret. Different parameter configurations can lead to completely different results which
might pose some uncertainty to the validity of the labelled data points by the algorithm.
Additional adjustments can be made after the evaluation of produced clusters, but this re-
quires measuring the performance by comparing to the ground truth, which unfortunately
is absent in real-world data. This problem can be partially mitigated by running the al-
gorithm with artificially generated data, but these are often not representative of reality
because its hard to correctly model the true distribution. As a consequence, the produced
data is a simplification which incorporates the assumptions made by the analyst for which
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8.4 Implementation

the performance metrics can paint a too optimistic picture of its efficacy. Both the scale of
the dataset and the difficulty of cluster interpretation were the main reason to be in favor of
creating a custom algorithm especially suited for the task which is more fast and simple.
After reviewing these existing clustering algorithm we decided that none of them are suited
for detection on large scale data. The algorithms are computationally expensive due to calcu-
lation of pairwise distances and the results are hard to interpret. Therefore, we opt to require
scanners have exact matching patterns instead of being similar in order to drastically reduce
the complexity. The following section will discuss the custom algorithm in more detail.

8.4 Implementation

8.4.1 Overview

Figure 8.1 presents a high-level overview of the correlation method. Starting from the univer-
sity telescope data, scanner related traffic captured within the observation period was aggre-
gated into a more compact format which has been discussed in section refsection:telescope.
Without the necessary reduction in data size, long-term analysis would not have been feasi-
ble. A total of 360 summaries, one for each 24 hour period, contain all source IP addresses
that have contacted the telescope including the corresponding number of packets destined
to each TCP port. The presence of a specific scanner in any particular day can be queried
in O(1). When performed over all 360 days in the observation, a scanner’s activity can be
represented as a string of bits where a 1 value indicates the active state and a 0 means that
the scanner was absent.

8.4.2 Bitstring correlation

For all 31 million scanners in the dataset their corresponding bitstring are calculated. The
initial clusters are produced by matching scanners with equal bitstrings. Scanners that are
seen either active or inactive on exactly the same days for the whole year are likely to be
cooperating. In the example output from figure 8.1, IP2 to IP5 have the same bitstring and
therefore they are included in the same cluster. Here the strings are simplified to length 6
for illustration purposes. In reality there are 360 bits, one representing the state for each
day. IP1 is the only scanner in its cluster and is therefore operating on its own. A lower
limit for the number of scanners can be set in order to filter out small clusters. Correlation
based on bitstrings alone can be sufficient depending on the tolerance for the number of
false-positives in the results. Due to the large number of data samples, there is a non-
negligible chance that two unrelated scanners have matching bitstrings by coincidence. A
longer observation period divided into many intervals somewhat mitigates this issue due to
increased entropy.

8.4.3 Target Port Set Correlation

In an effort to reduce the number of false-positives even further, this work employs an
additional correlation step that also takes into account which TCP destination ports are
targeted. A commonly observed strategy for coordinated scanners is that they target the
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Figure 8.1: Methodology overview: Correlation steps and intermediate results
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8.5 Algorithm analysis

same destination ports. Therefore, the previously produced clusters are split according to the
assumption of matching port sets. A port set includes all the destination ports a scanner has
contacted within a day. The number of active days indicated by the bitstring is accompanied
by an equal number of port sets. After all, being active implies scanning at least one port.
The size of a set can vary anywhere between one and the theoretical upper limit where all
ports are included, which is !(216 − 1). However, we typically see only a handful of ports
being targeted. Continuing on the previous example in Fig 8.1, IP2 to IP5 which share the
same bitstring do not all have the same sequence of target sets. These scanners with this
particular bitstring will have two port sets, because that equals the number of times they
have been observed in the active state. Only IP2 and IP3 have matching port sets across all
days, thus IP4 and IP5 end up in a different cluster. IP1 had a unique activity pattern to
begin with, no split can occur with just a single member in the cluster.

8.4.4 Storing results

Matching based on both bitstrings and port sets should occur fast with no false-positives,
preferably in O(1). Fast look-up times allow scanners to be quickly placed in their respective
clusters. One common data structure that possesses such property is a dictionary. In a
dictionary, data is stored as key-value pairs where the key is used as the input to a hashing
algorithm. A good hashing algorithm transforms keys to distinct values which serve to
point to the exact memory locations containing the corresponding value. Given that enough
memory is allocated to accommodate the number of keys, instances where two keys produce
the same hash (collisions) will be rare and look-up can complete in constant time. Scanners
are first matched according to their bitstrings and subsequently to port sets. Consequently,
this approach is reflected in how clusters are stored. A two-layer nested dictionary uses
bitstrings as key in the first layer, the value will hold a second dictionary using port sets
as key. Finally, the scanners matching both keys are added to the cluster. Unseen keys
are added to the dictionary at first occurrence. A requirements for keys is that the data is
immutable which a standard set data type to hold the ports is not. Therefore, an immutable
version of the set called a frozenset is used. The ordering of frozensets matter as they
indicate which ports are scanned on any active day. Lists preserve the order, but are also not
immutable. Thus the key for the second-layer dictionary will have one or more frozensets
contained in a tuple.

8.5 Algorithm analysis

In fig 8.2 the distinct steps of the algorithm will be described in psuedocode which can
be understood by anyone with basic programming knowledge. Psuedocode is useful at
explaning the thought process without also having to deal with language-specific syntax. It
is more detailed than a flow-chart, but much easier to read than actual lines of code.

The input to this algorithm are all encountered scanners in the dataset represented by their
source IP. Therefore, a run-time analysis is provided which is entirely dependent on the
number of scanners. The first loop at line 2 cycles through every scanner and that is exactly
the number of times the rest of the code is executed, from line 3 till the end. As a result,
the algorithm run-time can be immediately identified to be at least O(n). Within the loop,
first the scanner specific bitstring and targets variable are initialised. Continuing on, the
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Figure 8.2: Psuedo code of the correlation algorithm

second for loop at line 5 is responsible for determining both which days the scanner is
active and what ports it has scanned. The necessary information are all contained in the
summary files which have been already loaded into memory. In this specific context there
are a fixed number of summaries (360) and no dependency on the input size thus the for loop
is considered to be executed in constant time. Upon completion the remaining instructions
place the scanner in a set collection associated by its corresponding bitstring and sequence
of targeted port sets. The dictionary data structure was specifically chosen to hold bitstrings
since a lookup can be completed in O(1). Although the statements contained in the initial
for loop take non-negligble amount of time, they do not increase the run-time complexity
beyond O(n).

The quality of an algorithm besides execution time is also defined by its efficient usage of
memory. Typically in computer science both time complexity and space complexity analysis
is performed to evaluate an algorithm. The latter consists of the total memory of the input
space and auxiliary space combined as function of the input. Auxiliary space is the extra
space or temporary memory required during execution of the algorithm. For instance, to
store variables and other constant which are not present in the final output. The correlation
algorithm takes as input the observed scanners contained in the summary files which are
loaded into memory. Hence, the total size of the summaries is directly correlated to the
number of scanners. An increase in the number of scanners corresponding to a linear in-
crease of the input space, because each scanner can only occur once in a summary regardless
of how many other scanners are present. The correlation result is stored in the ”clusters”
variable of the dictionary type. Memory allocated for dictionaries in python grow as more
key-value pairs are added. They are implemented as hashtables and typically will have n
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keys and n values which leads to O(n) space consumption. In the worst case scenario, each
scanner has a distinctive bitstring and will end up in a cluster of size 1. With n scanners the
cluster dictionary has n key entries.
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9 Results

The detection methodology discussed in the previous section was able to detect a signifi-
cant number of clusters containing distributed scanners. Briefly said, there are a total of
54611 clusters and 1.7 million participating scanners. Correlation of coordinating scanners
as proposed in this work is based on the assumption of similar behavioral activity (from the
perspective of the defender’s network) across the entire observation period. Fig 9.1 provides
a simple example of the necessary condition in which a set of scanners is assigned to the
same group. Each scanner’s entire activity is defined as a sequence of daily observations of
the targeted port numbers. Unique ports that have received at least one probe are recorded
in a corresponding set for that particular day. In the complete absence of probes, the set re-
mains empty and the scanner is considered inactive for that day. Those scanners possessing
exactly the same sequence of targeted ports during the entire span of 360 days are consid-
ered to be collaborating due to the small likelihood that these happen to match by chance. In
essence this is how correlation is implemented and this chapter will go into more detail how
the end result is stored as a data file following the same hierarchical structure. Furthermore,
guidance is provided in how to query the end result for future analysis. One such analysis
is subsequently performed to grant insight into the size distribution of detected clusters.

9.1 Algorithm output

Implementation The implemented algorithm tasked was tasked with finding all distributed
scanners within a one year observation period. Without the necessary pre-processing steps
on the data, correlation as proposed in this research would not have been computationally
feasible. Trimming and aggregating the massive amount of data into daily summaries has
enabled the algorithm to effectively complete in less than a few hours.

Data structure of the result The result containing all detected clusters and participating
scanners are stored in a single file. Fig 9.2 shows the hierarchical structure in which the
data is stored. Additionally, an effort has been made to elaborate which values are valid
for the various elements in set notation. The data storage follows the same approach as the
proposed methodology which consists of two layers. First, the presence of activity in any
of the 360 days recorded as boolean values. And second, the corresponding port numbers
which have been scanned during active days. This means that any detected cluster can be
unambiguously identified by these two parts since all participating scanners with have a
matching activity sequence. As a consequence, a scanner can not be part of more than one
cluster according to this definition. The top layer consists of an unordered set of boolean
sequences of length 360, each corresponding to a single day. Depending on which ports
have been targeted, the group of scanners matching the first part are further partitioned into
smaller clusters when some have deviating targets. For this reason, scanners can be con-
sidered part of many different cluster even though they have been witnessed active during
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9 Results

Figure 9.1: Simplified clusters correlation example based on targeted ports during active
days
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9.2 Cluster Size

the same days. It can be argued that there is a reasonable chance that these smaller cluster
are actually part of the same scanning effort, because there is some degree of similarity in
their strategy. A stronger case can be made for activity sequences that involve multiple state
transitions, but this discussion will be continued in the next chapter.

Minimum cluster requirements and storage space The algorithm computes the activity
sequence for every scanner in the dataset, but only those that have a minimum number
of matching scanners will be recorded in the end result. This significantly reduces the
required storage space when only clusters of non-trivial size are of interest. In the current
implementation the minimum cluster size has been set to 5. Another requirement is the
minimum number of active days. Scanners should be active for at least 3 out of 360 days in
an attempt to reduce false positives. Recall that there are a total of 31 million scanners in
the dataset. Combining that with the typically low number of active days seen per scanner
necessitates such a filter requirement. Furthermore, the majority of scanners are assumed to
be operating individually. Subsequent post-analysis would be hindered if such false-positive
noise are included in the resulting collection of detected distributed scanners. The final disk
size to store the result is 19.5 MB.

Result Queries Queries performed on the result is straightforward and fast especially when
the cluster activity and target ports can provided as an input. Due to hierarchical structure
of the dataset, accessing the top layers is easier as it requires less iteration than for example
leaf nodes which are the scanner IP addresses. Both activity sequences and the ports set
can be accessed in O(1), because the hash of these values are computed for the purpose of
storage and retrieval. Only when these values have to meet a certain condition is it necessary
to iterate over all entries in the unordered dictionary in which these have been stored. For
example, retrieving those clusters matching a specific 360 day sequence of activity will be
performed instantaneously. In contrast, when filtering for specific activity on a subset for
days requires iterating over all entries. The slowest query is looking for which cluster a
specific scanner IP address belongs to. In the worst case both the activity sequence and
the port sets have to be fully iterated which requires O(n2) runtime. However, due to the
manageable number of detected clusters this does not pose a significant issue as of yet and
such type of queries can still be completed within reasonable time. Should the need arise
in the future to speed up certain type of queries for which the current structure is currently
deemed inefficient, then it can be readily transformed into for example a binary tree. An
alternative is to the reverse the layers to support looking for specific scanners.

9.2 Cluster Size

Why size matters At the start of this chapter it was mentioned that a total count of 44491
cluster have been detected which involved 1.6 million scanners. Not all clusters are equal
and one of the main characteristics is its size. As mentioned before, the size of cluster
is an indication of the adversary’s sophistication. Assembling and coordinating a large
number of scanners requires both many resources and advanced skills. This can involve
developing custom software which are not readily available tools such as nmap. Deploying
a large number of scanners in a single campaign enables them to complete reconnaissance
faster while also avoiding detection. For these reasons, larger clusters are potentially more
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Figure 9.2: Hierarchical structure output file of detected clusters

dangerous. Some basic analysis has been performed on the initial results in order to provide
insights into the distribution of the clusters in terms of size. Intuitively, fewer instances
of clusters can be expected as they grow. This hypothesis is supported by Fig. 9.3 which
shows a histogram of the cluster sizes. The number of clusters decreases exponentially as
the size doubles in each bin. One cluster involved 9017 participating scanners and is by far
the largest in the result.

A more detailed perspective of the cluster distribution is provided in table 9.4. However,
instead of isolated bins now the counts are shown for clusters that exceed a particular size.
This helps answer questions regarding the prevalence of threats that are above a threshold
that’s considered dangerous. A group of 40 scanners working together is in our opinion
already pretty significant of which there are 8219 those present. Above size 160 are 2045
occurrences which likely includes entire \24 subnets. Further analysis will be performed
on the largest clusters in order to understand how the size is being utilised. There might
be a correlation between cluster size and scan rate of the individual scanner if the purpose
is obfuscation. An interesting observation can be made by counting the total number of
scanners across clusters above a certain size. There a many more smaller clusters, but the
majority of scanners participate in those that are larger. For instance, 60 percent of the
largest clusters account for 92 percent of the scanners. And also, the top 9% contain 58% of
all scanners. In other words, the relatively few instances of large clusters does not necessarily
mean a lower number of threats in terms of scanner count.

9.3 Case Study: Slow Korean Scanners

Manual investigation of all detected clusters is too time consuming. There are however some
notable clusters that deserve increased attention. Since the detection methodology has been
developed with the capability of detected extremely slow clusters, it would be interesting to
dive deeper into such an example where the scanners deliberately send probes at a low rate
which would have gone unnoticed by conventional detection methods.
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Figure 9.3: Histogram of cluster size distribution

Figure 9.4: Table of cluster size distributions
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Revealing the slowest Scanners The rate at which scanners operate is determined by the
number of packets received within a specified time window. If scanners deliberately adjust
their scan rate to avoid detection then we can expect them to be configured to never cross
a certain output threshold. A scanner’s scan rate may vary, but it should never exceed
its configured threshold which is why measuring the maximum scan rate is of particular
interest. The availability of timestamped packets from all the scanners present in the result
allows us to move a sliding window along the entire observation period and count the
maximum number of packets at any give moment during a scanner’s operation. However,
determining the window size is not trivial. Scanners operate in short bursts of activity of
varying duration. Setting a window size that is too long will make scanners appear slower
than they actually because inactive periods are included in calculating the average scan rate.
On the hand, very short window sizes will likely be able to overlap a fully active period.
However, the ability to distinguish very slow scanners becomes impossible, because the
lower limit for any scan rate is 1 packet per window size. Therefore, there is no single fixed
window size that will provide a correct estimation in all cases. In our attempt to highlight
the slowest scanners, the window size is set to one hour. For every scanner the maximum
number of packets received within any one-hour interval has been recorded. Selecting a
windows size of one hour was already conservative, because that is well below what any
conventional threshold-based algorithm is able to detect. Still, we discovered 12277 scanners
that never exceeded 1 packet per hour. This means that they potentially are far slower which
the current window size is unable to capture.

Single origin Quick inspection of the source IP addresses revealed that the majority be-
longed in the same 42.42.0.0/16 subnet. 12073 out of the intial 12277 of slow scanners come
from the same Autonomous System (AS). This simplifies validation as in addition to the ab-
normally low scan rate it is highly probable that all scanners from the same AS are all part of
the same group. The corresponding AS number is 9644 and it is registered by SKTELECOM
in South Korea, a wireless telecommunications operator with more than 50% local market
share. The prefix of this AS is 42.32.0.0/12 which is 4 times larger than a /16 prefix.

Activity Cluster activity is plotted in increasing detail. Fig 9.5 contains the full view of the
telescope during its one-year observation period. The vertical axis contains all the scanners
from the cluster and the horizontal axis is the timeline from march 2018 till march 2019. We
can reduce the observation period to only include the dense regions which can be seen in
fig 9.6. Apart from some minor noise, the obvious bursts of activity are concentrated in 4
periods: july 29th, august 21st till august 29th, september 14th till september 20th and finally
october 31st till november 3th. The highest participation of scanners occurs in august. To
better quantify the number of active scanners on any given day, the vertical axis has been
replaced with scanner count. Figure 9.7 again shows four clear periods of activity where
the number of participating scanners spikes with the most prominent one happening in
august. Leveraging the summaries in PCAP allows us to zoom in the august campaign to
get a more detailed perspective. Figure 9.8 reveals an interesting pattern of how the cluster
operates during its most active period. Some form of scheduling can be observed that leads
to oscillating cluster activity reaching its peak once a day.

Target In terms of target ports the entire cluster solely scans port 5555. This port is used
by the Android Debug Bridge which is a feature that is usually turned off by default. If
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Figure 9.5: Scatter plot of individual slow Korean scanners presence from march 2018 till
march 2019

Figure 9.6: Scatter plot of individual slow Korean scanners presence from august 2018 till
november 2018
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Figure 9.7: Counting scanner participation during the full observation period from slow

Figure 9.8: Counting scanner participation from august 21st 2018 till august 29th 2018 from
slow korean scanners in PCAP resolution
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however the user decides to allow external control over the device which is common for
jailbraking or application testing then port is opened. Devices capable of running ADB can
range from smartphones, mediaplayer, TVs and more. Additionally, sometimes and Chinese
products in particular are shipped with ADB turned on. A port that is heavily targeted in
internet-wide scans often indicates an exploitable vulnerability of the service. In this case
however, whenever ADB is remotely reachable from the internet is an immense security risk
by itself. Any malicious who is able to connect to an ADB enabled devices will have full
control. The service is working as intended, but should always be aware of the security risk
when turning ADB on and at the very least only make it only locally accessible. We suspect
only a small percentage of all Android devices have ADB facing the internet, but the sheer
number of devices still make it a worthwhile target. Apart from the port we can also look
at the destination IP addresses and observe any patterns in how the cluster traverses the
addresses of the telescope. The same heatmap as in Fig 6.1 and 6.2 got slowly populated
over time in what appears like randomly generated target IP addresses. This is in line of our
expectation how most scanners traverse the IPv4 space.

Scan rate The scan rate of individual scanners and the cluster as a whole is the reason for
performing this case study. This cluster stood out, because the scanners never exceeded 1
packet per hour during the entire observation period. Even more interesting, the majority of
them originate from a common AS. A window size of one hour was insufficient to accurately
measure the true scan rate. Therefore, another approach was taken to estimate the scan rate
specifically for the analysis of this cluster. Instead of running a sliding window, we can
calculate the expected time between consecutive packets from the same scanner. This is also
known as the interarrival time of packets. It is still important not to include any large periods
of inactivity in the measurement. For this reason, currently the focus lies on the most active
period from august 21st till august 29th. Figure 9.9 shows the expected interarrival times,
due to the very slow scan rate it is measured in hours. Some scanners are slower than others
and it is not uncommon to only see a single packet per day. And in extreme case down
to one packet every 6 days. To call these scanners slow would be a huge understatement.
However, the telescope is not able to observe the entire internet thus the perceived scan rate
which has been estimated needs extrapolation. Previously the true telescope resolution was
estimated at approximately 52000 IP addresses. Excluding reserved special IPv4 address
blocks, the total number of IPv4 address are larger by around magnitude 77100. So for
every packet that reaches the telescope, another 77100 is expected to have been sent by the
scanners. This seems like a lot, but considering that for many of the scanners in this case
study we witnessed less than 1 packet per day. After extrapolation that amounts to less than
1 packet per minute for the true scan rate and in some cases 1 packet every 5 minute. This
is by a large distance the slowest detected distributed group that has been encountered.
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Figure 9.9: Histogram of packet interarrival times and their probabilities from august 21 till
august 30
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Detection challenges One of the biggest challenges in distributed scan detection research
is validation of the results. In the absence of ground truth, in most cases it is impossible
to know for certain whether a group of scanners are collaborating. The issue lies in the
limited perspective of the defender. A scanner being part of a distributed scheme is not
an attribute that is announced by the attacker from the stream of packets arriving at the
destination. Therefore, defender’s will have to resort to a best-effort attempt into establishing
such a relationship between scanners. However, A moderately sized network could receive
malicious probes from a million unique scanners each day. To distinguish multiple separate
clusters from the noise is a daunting task if not infeasible. Despite that, some research
has been performed on this topic and even reported having great results. However, much
improvement can still be made in particular to the verification of the developed detection
methodology which ultimately provides the necessary credibility to the research.

Cluster validation in related work A common approach that has been taken to verify the
chosen methodology is through testing the system with synthetic data. The idea here is to
generate traffic resembling that of distributed scanners according to a mathematical model,
and mixing it with another live dataset. However, this model is a simplification of the entire
class of distributed scanners. It only produces samples which adhere to the assumptions
made about the real entity. Since the detection method is designed to be effective at recog-
nising a specific type of pattern, it wouldn’t be surprising to see a high detection accuracy.
What such tests do achieve is showing that the algorithm is working as intended, but the
resulting clusters are left unvalidated. This raises the question whether the assumptions
made actually apply to distributed scanners in live data. In ?? the authors performed confir-
mation through manual inspection, but they did not elaborate on the criteria used to judge
correct detection of a potential cluster. This leaves the reader unable to assess the quality
of their work. Furthermore, such a labor intensive approach is only feasible in small-scale
experiments.

Evaluation approach In order to address the concerns in related work, this work aims to ex-
tensively evaluate the proposed method through validation of detected clusters. The dataset
gathered from the network telescope provides a unique opportunity to view the scanners
from different perspectives which can contribute to increased confidence in the results. The
motivation for this approach is to independently validate detected clusters through alterna-
tive characteristics inherent to typical distributed groups. The goal of cluster validation is to
establish certainty beyond reasonable doubt. If the majority of the clusters can be confirmed
then the methodology as proposed in this work is considered effective. However, satisfying
said requirement is challenging and that may have partly been the reason why there is lim-
ited research done in this area despite the threat of distributed scanners being as old as the
internet and potentially even more prevalent in the current day. Additionally, validation can
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Figure 10.1: Dataset in varying levels of granularity

also serve to eliminate noise from the results in favor of a high true-positive rate at the risk
of excluding good clusters.

Data perspectives Fig 10.1 provides a brief overview of the available perspectives that have
been created to analyse the scanner’s in varying resolutions. At the most course level there
are 360 daily summaries where each contain all the scanners that have been observed includ-
ing the aggregated number of packets sent to each distinct port number. This allows quick
determination of a scanner’s activity on a daily level as been utilised in the detection method.
Additionally, the same type of summaries are also present in PCAP resolution. However,
these do not span time windows of fixed length since they follow the original raw record-
ing files. What they do offer is more detailed analysis into the activity patterns that take
place within a specific day by splitting it into approximately 100 segments. To complement
analysis at the finest level, a copy was made of every PCAP file but only including packets
that belong to scanners present in the detection results. Valuable information such as exact
timestamp of packet arrival and TCP/IP protocol header values are preserved. Keeping the
available data perspectives in mind, several patterns that indicate a coordinated relationship
between distributed scanners can be checked. The presence of any one of these patterns
provide sufficient evidence for accurate detection.
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Validation techniques First, the current methodology is evaluated from a statistical point
of view. Scanners are assumed to have a similar strategy during the observation period
due to economies of scale. A low-false positive rate is achieved, because the probability of
unrelated scanners having matching behavior is suspected to be unlikely for a moderately
long observation period. In the next subsection the aim is to better support this hypothesis
by attempting to quantify occurrences of collisions. For this purpose, scanners are modelled
as a Markov chain in order to assess the uniqueness of each scanner’s observed strategy.
Secondly, the cluster’s response to their C&C is exposed. Every scanners from a partic-
ular cluster will at one point relatively simultaneous receive a command to deviate from
the current operation. Notably during a transition from one state to another as defined in
the Markov chain. For example, the moment a cluster is seen active after a period of in-
activity. The degree of synchronisation is determined by measuring the duration in which
every scanner in the group has sent its first probe. High and/or consistent synchronisation
throughout multiple operational transitions validates the cluster. Third, cluster members are
check whether their IP addresses lie in the same subnet. Scanners from the same /16 or even
/24 subnet can be considered to belong to the same organisation due to the way IP addresses
are issued by the Internet Corporation for Assigned Names and Numbers (ICANN).

10.1 Modelling behavioral complexity as a Markov Chain

Entropy The detection method assigned scanners with the same activity sequence to the
same cluster. The probability in which two unrelated scanners will have a matching sequence
was instinctively assumed low due to the many possible combinations that could occur for a
large observation period. However, not sufficient evidence has yet been provided to support
this claim. A scanner’s activity is a sequence 360 daily observation of which destination
ports have been targeted. Each day a scanner can be completely inactive or have sent at least
one probe to any of 216 port numbers. So in theory, if any of the port numbers can either
receive more than 1 probe or none at all then are a total of 2216

different combinations of
port sets possible. In practise however, certain ports are more often targeted than others and
the number of unique ports are limited. Therefore, the effective entropy is greatly reduced
from its theoretical maximum which can only follow from a uniform distribution over the
values. Some activity sequences are definitely less frequently occurring than others which
an analyst will intuitively be able to confirm that scanners with that kind of behavior are
likely to be cooperating. To help avoid manual confirmation of each cluster and to better
quantify uniqueness for the sake of correctness, consistency and transparency, a markov
chain is created from the available data.

Building an initial Markov Chain The idea of modelling scanner behavior using a Markov
Chain follows from the observation that how a scanner acts on the next day is largely deter-
mined on its action on the current day. In general, a scanner is much more likely to continue
scanning once it has started. Conversely, after being switched off there is an even smaller
chance of expecting it to come online again. These rules for a behavioral model are able to
describe the majority of scanners which are seen to be active in bursts of several days before
becoming dormant again. Initially we can define at least two states, a simplified scanner is
either inactive or active. The probability for transitioning between any of the states is prob-
abilistic rather than deterministic and can be calculated from the available data. For this
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Figure 10.2: Markov chain for a simplified scanner to describe daily activity

Figure 10.3: Decreasing probability of cluster activity sequences calculated with Markov
chain

reason, a Markov chain is well suited since its purpose is to describe a sequence of events
where the probably for each event only depends on the current state.

In Fig 10.2 the two states and corresponding transition probabilities are shown. Probabilities
are calculated from a large sample size of scanner activity sequences to account for vari-
ance. With just two states, the behavior is very easy to understand. Almost halve of the
time, an active scanner stays active. However, once it does transition to an inactive state
there is just a 1 percent chance for it to resume scanning again. Such a model is helpful in
determining what type of observed sequence is a rarity. And if it is rare, then it is unlikely
to be a coincidence when multiple scanners share this behavior. Therefore, there is enough
supporting evidence to confirm a coordinated relationship. Fig 10.3 provides several exam-
ple cluster sequences with decreasing probability that have been calculated with the markov
chain model.

Accounting for destination ports There are approximately 50000 ports that are used by the
TCP protocol for identifying and application or service. Certain ports are more common,
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because these have become the default port for a popular service like port 22 for SSH.
Malicious actors show more interest in services with a large user base due to the higher
chance of finding a potential victim. This is also reflected in the dataset where the most
highly scanned ports are associated with HTTP, SSH, FTP, Telnet, SMTP, MySQL and so
on. While it is possible for the user to deviate from the default port and therefore achieve
security by obscurity, not all of them do for reasons such as convenience in favor of the
connecting clients. The discrepancy between targeted port numbers might be leveraged to
further increase confidence in clusters that have scanned ports that are relatively uncommon.
However, the frequency in which a port is scanned is also heavily influenced by the recent
discovery of a new vulnerability. Spikes of specific port activity can be observed in internet-
wide scans for services during the period a critical vulnerability remains unpatched and is
being actively exploited. The implication of this time-sensitive phenomena leads to reduced
effectiveness of generalised port distribution statistics for the purpose of evaluation. The
distributions are calculated over a large time period. A relatively rare port number can
receive a sudden increase in interest by a large number of unrelated scanners even though
the corresponding service is ignored most of the time. For this reason, the choice was made
to not make a distinction between common and uncommon ports.
One observation made regarding the targeted ports is that scanner typically do not deviate
from their initial configured behavior once started. It would not be surprising to witness
an adversary lose interest in a particular service and goes on to direct all scanners within
the cluster to another set of ports. However, in practise this does not happen frequently
as is illustrated in table 10.4. The number of transitions have been calculated from all the
scanners in detected clusters. A port set transition is defined as the occurrence of scanning
a different set of ports on the subsequent active day. Two subsequent sets are equal if the
sets have the same cardinality and contain the same port numbers. The aim is to notice
a change in behaviour in which all scanners within a cluster seem to follow. However,
less than 6% of the scanners have one or more transitions in their targets. So relatively
few scanners change targets, but those that do are very likely to be indeed part of the same
cluster. Ideally this probabilistic behaviour would be incorporated in the same Markov chain
which described the online/offline activity of 10.3. Unfortunately, it does not make sense
to translate a property such as dissimilarity of targets to independent states in the Markov
chain. Regardless of the target, the scanner is in principle performing the same type of
function. Both the Markov chain and the port set distribution table can be used as seperate
guidelines to judge the level of complexity in the adversaries long-term strategy.

Determining the minimum threshold One could set a minimum threshold and only retrieve
those clusters that exhibit patterns with a low probability of occurring. These tend to be
more complex behaviours which imply a coordinated effort from a single entity in order
to have all participating scanners have the same target on each day of the year. It is up to
the analyst to determine the threshold depending on the desired false-positive rate. A high
threshold will more likely retain only true distributed scanners, but with the possibility of
being too strict and therefore unintentionally exclude certain groups. From both the Markov
chain in 10.3 and port set distribution in table ?? it is clear that there is a huge drop in
probability in two cases. The first case is an active scanner which stops scanning, after
which it resumes again between one or multiple days of inactivity. And secondly, a scanner
that has at least one transition from one port set to another. One suggestion would be to
demand a certain number of days a cluster must be active and set the threshold accordingly
for which the distribution is show in Fig 10.5. A steep decline in number of applicable
clusters can be observed from 8 to 9 days. While the probability still decreases exponentially
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Figure 10.4: Table of port set transition probability distribution

Figure 10.5: Effect of probability threshold expressed in number of consecutive active days
on fraction of validated clusters

with each additional active day, the threshold is easier to gradually adjust than the steep
decline associated with state transitions.

10.1.1 Synchronisation during behavioural changes

Cluster manual command and control Scanners are software programs which are main-
tained and configured by the controlling entity. Basic parameters such as scan rate, range of
destination IP addresses and TCP ports are determined during initialisation. The degree of
autonomy can vary, but typically a scanner continues with its pre-configured settings until
an explicit command is issued to deviate from the current operation. A change could be the
stop scanning or to switch to a different target. Due to the scale of large clusters, one would
expect that controlling multiple scanners is done by issuing commands which are applica-
ble to the cluster as a whole. The speed in which commands can be communicated to all
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Figure 10.6: Arrival times of packets near a state transition of synchronised scanners

nodes heavily depends on the chosen topology. Botnets for example, which can be utilised
as a scanning cluster, have been encountered with a centralised, hierarchical or peer-to-peer
architecture. Each come with their own characteristics such as speed, resiliency, scalability
and complexity. The most important part is that the botmaster is able to maintain a com-
munication channel between the command and control (C&C) and the bots. This allows the
botmaster to update malicious software or perform large scale disruptive attacks. In the con-
text of distributed scanners, it is suspected that individual scanners will respond within a
reasonable time frame as the command propagates throughout the entire cluster. Therefore,
one way to confirm a potential cluster is to expose their degree of synchronisation. In other
words, scanners are more likely to be cooperating when the entire cluster switches from one
state to the next within a relatively short time window. Such a relationship has already been
established on a long-term scale due to the nature of the detection method. The detected
clusters are confirmed to target the same ports on a daily basis. This validation method
takes this approach one step further by zooming in on the moments in which the cluster as
a whole transitions between the active and inactive state.

Visualising transitions Considering a simple cluster of just 5 members in the results. That
implies that the detection method has confirmed scanners having a matching activity pattern
throughout the entire observation period of one year on a daily resolution. For illustration
purposes, the observation period is reduced to 5 days. The cluster is active on 2 out of 5
days, with a day of inactivity in between as depicited in 10.6. So on two occasions, the
cluster transitions from the inactive to active state, subsequently referred to as a start tran-
sition. Conversely, a transition from active to inactive is defined as a pause which in this
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Figure 10.7: CDF of cluster start transition packets dispersion as MAD

example also happens twice. In order to validate the cluster, additional evidence can be pro-
vided by inspecting the similarity in arrival times of packets during those start and pause
operations. Since it is already known in which days the transitions occur, the timestamp
of every scanner’s first appearance within that particular day is recorded in the case of a
start transition. These packets are highlighted as a green dot. Red dots indicate the last
packets before at least a full day of inactivity. The deviation between the packet timestamps
shows the reactivity of the cluster as a whole. The frequency and amount of packets re-
ceived in between the first and last packets are of no interest for this particular analysis
and thus ignored. Only those packets on the borderline of a behavioural changes might
indicate collaboration on the finest scale. The hypothesis is that distributed scanners tend to
generally be more synchronised during state transitions compared to unrelated scanners in
a false-positive cluster. Additionally, they’ll have consistent response times throughout the
multiple transitions which indicates a common topology for the propagation speed of C&C
commands.

Measure degree of synchronisation In order to determine the degree of synchronisation it
necessary to quantify dispersion of incoming packets during a state transition. Both the Stan-
dard Deviation (STD) and the Median Absolute Deviation are commonly used in statistics
to measure variability of univariate dataset. The MAD seems the more obvious choice due
to its robustness to outliers. Outliers would have been more heavily weighted in the calcula-
tion of STD, because the distances from the mean are squared. Especially larger scan clusters
might contain a few false-positives, but that result should not be disregarded if the majority
of scanners are actually part of the same scheme. Additionally, the STD assumes a normal
distribution of the data samples which might not be applicable. Calculation of the MAD
is achieved by taking the median of the absolute deviations from the data’s median. From
a set of timestamps {1532000001, 1532000002, 1532000003, 1532000005, 1532000007}, the me-
dian value is 1532000003. Therefore, the absolute deviation of the samples from this median
is {2, 1, 0, 2, 4}. Taking once again the median will lead to the MAD which in this case is
2. An important discussion is what to consider as a low MAD value which provides suffi-
cient confidence for a correctly classified cluster. This discussion will continue shortly after
reviewing the MAD of all detected clusters.
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Calculation of MAD MAD calculation is fast and straightforward, but retrieving the packet
timestamps is very resource intensive. The daily summaries can point to the exact day in
which a transition occurs and the corresponding pcap summaries can instantly confirm the
presence of a scanner. In the last step the filtered pcap file is being iterated linearly packet
by packet to find the first or last occurrence of a scanner depending on the transition type.
Performing this search operation for the many clusters in the results was computationally
feasible due to hierarchical approach of being able to quickly locate the exact pcap capture
file. For clusters with multiple instances of a start transition, the lowest MAD value is
currently used to provide a general overview of synchronised transitions in Fig 10.7. Stop
transitions have been excluded in this graph to speed up computation and because they
typically have higher MAD values for which evidence will be provided shortly. The blue line
corresponds to the MAD of clusters in the results expressed in minutes instead of seconds
in order to avoid large numbers. Deviation in minute precision is sufficient to confirm
coordinated behaviour since a day in which any transition happens consists of 1440 minutes.
Therefore, the maximum MAD is 720 in the worst case where the values are furthest apart
from eachother. Clearly not all clusters exhibit synchronised transitions, but a significant
portion of the result does have a low MAD. Almost 10 percent of the clusters have starting
packets that deviate within 60 minutes on a transition.

Low MAD as an indicator of collaboration Close to 5 percent of the clusters have scanners
that collectively transition with a 30 minute MAD. In order to put the calculated MAD values
into perspective, these are compared to artificially generated clusters which should resemble
unrelated scanners as a false-positive result. After a full day of inactivity, the start transition
of a single scanner can take place at any moment within a particular day. Therefore, a
group of multiple scanners having absolutely no coordinated relationship among eachother
is expected to show a uniform distribution of their first arriving packet. The MAD will
be much higher for these random clusters that have timestamps evenly spread throughout
the day. Therefore, this extreme worst case scenario of having only false clusters can be
used to highlight the significance of the observed synchronisation characteristics during a
transition. For this purpose, 40000 artificial clusters, approximately the same number has
the result size, have been generated. The size of clusters follow the same distribution as the
real detected clusters recorded in Table 9.4. The scanners have only one active day with one
probe inserted at random. The MAD for every random cluster is calculated in the same way
as the detected clusters and plotted in the same figure 10.7. From this figure a significantly
lower MAD can be observed for the group of detected clusters which are suspected to be
controlled by a single entity. Compared to the random clusters, the difference is overall
not enormous but obvious nonetheless. Only when taking a closer inspection on the lower
spectrum less than 60 minutes do we see a larger contrast. Fig 10.8 is an enlarged view with
a maximum MAD of 60 minutes. Such a low degree of dispersion is very unlikely given
the uniform distribution of unrelated scanners. There are 10 times as many instances from
the detected clusters at this level which does provide compelling evidence for synchronised
behaviour. The difference in likelihood of both sets only increases as the MAD decreases.
Therefore, any group of scanners with a high degree of synchronisation during their start
transitions is more likely to be collaborating. This degree of synchronisation can be inferred
from a low MAD, the definition of low and the corresponding threshold value is determined
by making a trade-off between false-positive and false-negative rate.
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Figure 10.8: CDF of cluster start transition packets MAD max 60 minutes

Synchronisation during resume and terminate state Preliminary analysis on random sam-
ples revealed that scanners responded within a smaller time window during a resume tran-
sition than on a pause transition. This was the reason why only the former was used to
infer the degree of synchronisation. For some reason, the last packet of every scanner in the
cluster before going into inacitivty is more spreadout throughout the day. It is worth investi-
gating if this also applies to a larger sample size of tightly coordinated scanners. Therefore,
all clusters for which a very low MAD value was observed during their start transition were
used in a more extensive comparison. In total there are 2160 cluster with a MAD lower than
30 minutes which can be considered strong indication for collaboration. The expectation
was to observe similar and consistent deviations in packet arrival times during transitional
phases with such a strictly controlled group of scanners. Fig 10.9 illustrates both distribu-
tions as a CDF. There is clearly much more deviation in the time required for a cluster’s
scanners to collectively stop their actions. The difference with start transitions is evident
which strengthens the initial suspicion that clusters are more synchronised when switching
from the inactive to active state. Therefore, opting to disregard pause transitions is under-
standable considering the objective is to validate clusters showing coordinated behaviour
through alternative statistics.

10.2 Scanner origin

Autonomous systems and IP address allocation Scanners are associated with their source
IP address which is a value of 32 bits in the IPv4 protocol. An IP address can either be
used as the source or destination for effectively routing packets in two-way communications
across the internet. In order to understand the origin of an observed scanner, a brief intro-
duction is provided about addressing in the internet. The internet is actually not just one
network, but a collection of many large subnetworks called autonomous systems (AS), each
controlled by a single administrative entity. Organisations that heavily depend on network-
ing capabilities or Internet Service Providers (ISP) enabling internet access to businesses
and consumers typically operate one or multiple autonomous systems. The relationship
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Figure 10.9: Comparison of start and pause transition synchronisation of 2160 clusters with
a start transition lower than 30-minute MAD

and connectivity between the many autonomous systems is what defines the internet. Bor-
der Gateway Protocol (BGP) routing finds the most efficient path from the available peers
of one AS to the next. For this purpose, each AS is assigned a unique Autonomous System
Number (ASN) and a collection of routing prefixes. ICDR notation is used to specify the
size of the routing prefixes in human readable form such as 123.123.123.1/24. The prefix
denotes the network part of the address and the suffix behind the slash symbol specifies
the number of significant bits. Prefixes can regarded as blocks of usable IP address which
are assigned and managed on an international level by the Internet Assigned Numbers Au-
thority (IANA). In turn it is the responsibility of five regional Regional Internet Registries
(RIR) to assign both the ASN and IP prefixes to local organisations. ASN initially were
16-bit numbers wtih a maximum of 65536 assignment, but the rapid growth of the internet
necessitated expansion to 32-bit before all ASN were depleted. IPv4 faces a similar problem
with its addressing which is why there is a strong push towards IPv6 allowing plenty of ad-
dresses for the forseeable future. So scarcity, cooperative nature of the internet and efficient
routing mandates the careful management of IPv4 addresses and ASN. Thus, from the IP
address of the scanner it can be quickly determined under which prefix and AS it falls to
reveal information about its origin within the internet.

Validation based on origin One of the earliest methods of determining whether a group of
scanners belong to the same entity is by their IP address proximity. Yegneswaran et al. [2003]
would even go as far as to define distributed scanners as a group of at least five scanners in
the same /24 subnet active in the same hour. Since the IPv4 space is partitioned into many
smaller blocks, it seems understandable to imply a relationship between scanners within the
same subnet, because the scanners have their origin in the same part of the internet. More
so if the subnet is relatively small as is the case with a /24 suffix of only 255 address space.
Without extensive data analysis, there is visible evidence of coordination from just the source
IP address of individual scanners operating within a specified time period. However, this
type of indicator becomes less convincing for subnets with a larger prefix length such as a
/16 subnet. Furthermore, from the IP address alone it is not possible without additional
queries to know whether it is an actual subnet operated by a single administrative entity
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and acknowledged by the respective RIR. Autonomous systems can have prefixes of varying
length, but its safe to assume that they are at least the size of /24 subnet. To complicate the
matter, an AS can have a collection of prefixes. Seemingly unrelated IP addresses in human
readable form might still fall under the same administration. Regardless of the subnet
size, the important potentially common characteristic is whether the source IP addresses in
scan clusters originate from the same administrative domain. It is possible for a cluster to
utilise the entire range of IP addresses belonging to the corresponding AS during network
reconnaissance. In such a case, the defender might imply the involvement of the AS operator
in the malicious activity. Establishing such a relationship is difficult to prove and outside of
the scope of this paper. Similar to an ISP who is not always held accountable for the digital
actions of its end users. All things considered, IP address origins in terms of their respective
network portion associated with an AS provides valuable information which can be used
in conjunction with this work detection method for the purpose of cluster validation. A
common scanner origin is only applicable to certain type of clusters where likely the hosts
are under direct control and ownership of the adversary. This as supposed to a collection of
infected hosts organised as a botnet which may involve all parts of the internet.

IP to ASN mapping Team Cymru is a security orientated organisation that provides a free
service to map IP addresses to the corresponding ASN. Other AS related information such
as country code, BGP prefix, allocation date, regional registry can also be retrieved. For the
purpose of cluster validation through origin detection we are only interested in the ASN. A
single query to their WHOIS server allowed the mapping of all 1.6 million scanners involved
in the detected clusters to their respective ASN in bulk. The next step is to iterate over the
cluster results and discover how many of them actually originate from the same AS. A
minimum similarity threshold of 95 percent of the scanners is set to accommodate potential
outliers for very large clusters. It turns out 4661 out of the 44491 total detected clusters can be
traced back to a single AS which is a little over 10 percent. More interestingly, there are only
113 unique ASN which implies that the detection method has fragmented larger clusters into
smaller ones where each has a slight variation in its activity and targets. Therefore, while the
total number of involved scanners might be correct there may be an overestimation in the
number of clusters due to fragmentation. Depending on the chosen definition it is arguable
whether clusters with an entirely strategy different should be viewed as distinct clusters.

10.3 Validation of results

This work has discussed three methods for validating clusters. The basis for each validation
method is an assumption made about observable patterns from the perspective of the net-
work telescope. Such patterns are an expression of the implement strategy of the adversary
controlling the clusters. Encountered strategies can vary considerably in both temporal and
spatial complexity with many adjustable variables. The purpose of every scanner is to per-
form reconnaissance on the target network of interest, but the actual implementation and
execution is entirely determined by the initiator. Therefore, there is no single data pattern
which can capture the entire class of distributed scanners. Nevertheless, an attempt is made
to validate clusters exploiting three different characteristics that intuitively should apply for
a reasonable number of clusters due to similarity in certain aspects of their operation.
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Markov validation From Fig 10.5 a sensible choice would be to set the threshold at a prob-
ability equal to 7 or 8 consecutive number of days. From 9 days there is steep decline in
number of applicable clusters. So the aim is significantly reduce the likelihood of false-
positive clusters without eliminating too many results. Therefore, the markov validation
technique is applied with a probability equal to 8 consecutive days. This however does not
mean that every cluster needs to be active for at least 8 days in order to pass this validation.
The reason being that the markov chain describes a much lower probability for clusters that
show at least a full day of inactivity between active sessions. Thus a clusters with only 2
active days separated by a one day pause would still pass the validation with the current
threshold. For simplicity and time constraints the decision was made to currently omit inclu-
sion of port set transitions in the calculation of probabilities. Application of this validation
techniques revealed that a total of 21049 cluster containing 325869 scanners met the criteria
which is 47 percent of the clusters.

Synchronised Transition validation In situations where scanners within a clusters are tightly
synchronised we expect a small deviation in arrival times during a transition from the in-
active to active state. Referring to Fig 10.7 a threshold of 240 minutes would retain almost
50 percent of the clusters. Depending on the needs of subsequent analysis, reduction of this
threshold is beneficial to the reduction of false-positive results. This thesis will opt for more
strict validation, because the large result pool allows for more aggressive filtering while re-
taining sufficient number of clusters to analyse. Therefore, a 60-minute MAD threshold was
set which typically means that a cluster completes a transition with a two-hour window. For
4163 clusters involving 129946 scanners such synchronised transition were observed, less
than 10 percent of the total clusters.

Origin Validation Cluster validation based on origin compared to the previous two tech-
niques much more straightforward. Origin is defined as the IP prefix belonging to the
autonomous system. The corresponding ASN can be looked up from the source IP ad-
dress of a scanner. If the majority scanners from a cluster originate from the same AS then
they are assumed to be collaborating. In this case at least 95 percent of the scanners must
share the same origin to account for noise data points. This was the case for 4661 clusters,
approximately 10 percent of the total clusters in the results.

Combined validation Every cluster in the results is subjected to all three validation meth-
ods. The outcome can be concisely summarised in 10.5 through definition of three sets, one
for each method. Clusters that pass the validation method are member of the corresponding
set. One additional set indicates the fraction of clusters left unvalidated through current
means.

The markov chain is able to validate a large portion of the results. In addition, both syn-
chronised transitions and the common origins method provide the necessary confidence to
approximately 10 percent of the clusters. However, a cluster can pass more than one method
which is why the union of these three sets will inform what portion of the results can safely
be said that they are actually collaborating. 51.5 percent of the results can be validated by at
least one of the described methods.
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Figure 10.10: Sets of various validation methods

Unvalidated clusters 48.5 percent of the clusters in the unvalidated set are not provided
with additional evidence. This neither confirms nor denies a collaborative relationship be-
tween the scanners, only that we can not confirm them through the limited three validation
methods which do not cover all types of scanners. Relaxing the thresholds is a trade-off
between the number of unvalidated clusters and the risk of false-positives. However, the de-
tection methodology already yields only clusters for which the scanners exhibit some degree
of similarity. Namely, their temporal and spatial activity matches exactly during a one-year
observation period. There is a minimum of 3 active days with cluster sizes larger than 6.
Thus there is already some statistical evidence by design. Depending on the requirements
additional validation might not be necessary.
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11 Discussion

From data analysis obtained from the network telescope we noticed similarities in long-term
activity between scanners from the same group. A scanner’s daily activity can be described
by the set of ports it has contacted. In this manner, we created sequences of 360 days long
as a simple representation of a scanner’s operational behaviour over the course of one year.
This eliminates much of the dependence on the original dataset which is far too large to
work with, especially to answer simple queries such a whether scanner A is active in any
day of the year. Much of the original data is redundant for long-term analysis as scanner
typically scan the same target port many times within a few minutes, let alone a full day.
Activity sequences served as a powerful fingerprint to identify unique clusters. We detected
many clusters of which its scanners shared exactly the same behavioral pattern. Due to the
high entropy of an activity sequence, and also by additional verification steps we can say
with high confidence that many of the groups contain scanners that are actually under the
control of a single entity. The resulting dataset can be shared with other researchers so they
can study other properties of distributed scanners or evaluate new detection methods. It is
the best alternative for a labeled dataset which currently does not exist. Techniques used
in this thesis can also be applied on data from other network telescopes and/or different
observation periods.

11.1 Limitations

Overall the results indicate a decent number of detected clusters of which many are success-
fully validated later on. We therefore are satisfied with that the initial hypothesis of similar
activity patterns is applicable to many clusters present in the dataset. Moreover, this also
provided confidence in the correct implementation of the algorithm. However, the devel-
oped detection methodology is not without limitations. A perfect solution would be able
to detect all distributed scanners in the dataset with 100% accuracy, sadly that is not case.
Therefore, a discussion is provided where the approach of scanner correlation is critically
assessed. We highlight its shortcomings and associated impact on the obtained results.

11.1.1 Coverage

There is no standard way in how scanners operate since they are software implementations
which satisfy the goals of the attacker. Open-source tools such as nmap or zmap can be
more commonly in use due to their low-barrier for deployment. With no coding knowledge
required, these tools provide moderately skilled cybercriminals with the ability of having
a scanner running within a few minutes. As the sophistication level increases, so does the
complexity of strategies and custom tools. The underlying host on which the scanners run
may be self-owned or an infected device part of a botnet. All these factors contribute to a
wide variety strategies for which no single observed pattern is applicable to the whole set of
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distributed scanners. Despite the many clusters detected in the results, it is also important
to discuss the method’s weakness. Or in other words, how many clusters out there in
the wild we have potentially missed. Once again there is no labeled dataset to provide
a straightforward answer. Nevertheless, analysis of the correlation algorithm can tell what
type of scanners will remain undetected. We approach this by considering the characteristics
of certain classes of distributed scanners such as botnets and even deliberately trying to
circumvent our own correlation algorithm by describing hypothetical scanners.

Detection circumvention The current methodology assumes an exact matching of activity
sequences between scanners from the same cluster. Such a sequence is comprised of 360
daily consecutive observations. For each day a scanners is considered actively scanning a
set of ports when at least one probe has been received for every unique port number in
the set. In favor of a low false-positive rate the minimum number of active days is set
at 3 with the minimum cluster size containing at least 6 scanners. So in order to evade
detection, the attacker must distribute its scanners in such a way that less than 6 of its
scanners can have a matching pattern. The simplest way to do that is by introducing small
deviations in the targeted ports. Considering a cluster of size N. We can make each scanners
appear slightly different by sending one additional probe to a unique port not present in the
other N − 1 scanners which effectively misleads the detection algorithm. Another way to
achieve obfuscation is to create variations in which days the scanners are active, but given
the long daily intervals that requires more complex orchestration. In addition, scanners
might operate on time constraints in order to quickly find the services of interest once a
vulnerability has been disclosed to the public. In short, small variations in either active days
or targeted ports over the entire sequence will prevent correlation to the same group. If 6 or
more scanners from a larger cluster follow a particular variation then they will be treated as
a separate cluster. This does not entirely evade detection as the subclusters are still included
in the results, but the whole cluster will appear fragmented into smaller ones.

Botnets Botnets are a special type of distributed scanners in the sense that they are com-
prised of infected devices. The owners of these devices are unaware that these are being
controlled by an external entity in the engagement of malicious activities. Botnets exploit
a known vulnerability in order to amass as many zombie hosts as possible. Thus a botnet
starts with several host and quickly grows overtime as it scans the internet for potential
victims. Typically those infected also participate in reconnaissance to speed up the search.
Therefore, the size of a botnet is very dynamic. It can grow very quickly, but also shrink
when hosts become unreachable when turned off by their legitimate owner. The latter rea-
son is also why botnet operators can’t expect any of its zombie host to be available when
requested, because those are not physically under his control. However, due to the sheer
size of modern botnets ample firepower for performing scans or DDoS attacks remains. We
highlight the dynamic nature of botnets, because these are more difficult to detect using the
correlation algorithm in this thesis. This is due to the assumption of a coordinated rela-
tionship present during the entire observation period. Detection of the whole clusters only
works for a static group of scanners, which zombie hosts in a botnet obviously are not. For a
moderately sized botnet, subclusters are still detected if at least 6 scanners share an activity
sequence. Thus the many zombie hosts still appear in the results but only as fragmented
clusters since any of the subclusters will show similar but slightly deviating behaviour.
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11.1.2 IP Churn

In research typically the source destination IP addresses are associated with a unique host.
Thus its common to see IP addresses being used as a proxy metric to quantify the size of
a botnet or group of scanners. This one-to-one relationship is a simplification which does
not always hold true. IP addresses can be dynamically assigned by network operators to
their clients upon request with no guarantee of maintaining the same address over time.
Scarcity of IPv4 addresses forces network operators to maximise the utility of their available
addresses. This means that through dynamic assignment a block of IP addresses can serve
a greater number of hosts assuming they are not all active simultaneously. An IP addresses
is leased for an unspecified amount time. After expiration of the lease the hosts receives a
new address. This phenomena of hosts changing IP addresses is called IP churn and the
rate of change varies from network to network. The implication of IP churn to this study
is the potential overestimation of cluster sizes, because we identify scanners based on their
IP address. Thus simply counting the number of distinct IP address in a cluster does not
always produce an accurate estimate of size. In Griffioen and Doerr [2020b] the authors
presented a novel method to quantify the prevalence of IP churn using large botnet traffic.
They were able to measure the presence of IP churn for all Autonomous Systems (AS) in
the dataset. IP churns varies between countries and even between netblocks within a single
AS. Overall they observed an overestimation of 20% for the Mirai botnet. Additionally, The
effect of both IP churn and Network Address Translation (NAT) were compared. The latter
enables multiple host to operate behind a single IP address which leads to underestimation.
They witness NATs having a larger effect on estimation than IP churns. Taking this into
account, IP churns also hinder describing a scanner’s activity using the 360-day sequence
as done in this thesis. From the perspective of the network telescope a scanner may seem
to have stopped scanning while in reality it continues using another IP address. Thus the
activity sequence can only capture behaviour for a certain period of a scanner’s operation
until it switches to the next IP address. This may explain why in 7.5 almost 50% of the
scanners appear to be active on only a single day during the whole year. So unfortunately
distributed scanners that are affected by IP churn where the rate is less than 3 days can
not accurately be detected. The correlation algorithm currently expects 3 active days as a
minimum requirement in order to reduce false-positives. In Griffioen and Doerr [2020b]
they observed 1 out of 6 infections of a botnet changed their IP address due to IP churn. In
90% of those cases, change of address occurred within 3 days. Therefore, clusters that are
detected in the results of this thesis are unlikely to exhibit IP churn.

11.2 Future Work

Mitigating cluster fragmentation A limitation of the current detection method is that a sin-
gle cluster in reality might appear as multiple smaller clusters in the results. Exact matching
of activity patterns means that two scanners from the same cluster but with slight deviation
in their activity will be treated as if they were from a separate group. This effect can be
mitigated by loosening the similarity requirement which can accommodate such deviations.
In other words, scanners from one group might not behave exactly the same but they should
be very similar relative to the other unrelated data points. If the group is large enough
then the majority of scanners will still be present in the result. The requirement is a cluster
size of 6 scanners for any combination of activity sequence. Even moderately sized botnets
can be captured in this way. Thus the problem becomes fusing separate clusters into larger
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ones which are likely to be part of the same scheme. The search space for this is much
smaller than the original telescope dataset with overwhelmingly more scanners. A solution
can potentially be found through the use of state-of-the-art cluster algorithms.

Correlation between scanrate and cluster size One common assumption is that large dis-
tributed scanners are able to evade current IDS by lowering the individual scanrate below
a certain threshold. It would be interesting to verify this hypothesis with the available data
used in this thesis. Scanners that are present in confirmed clusters will have their scanrate
compared to the unfiltered set encountered by the network telescope in order to observe any
statistical difference. In addition, there might be a correlation between scanrate and cluster
size. Some clusters are larger than others. How large clusters are utilise their size is worth
investigating. For instance, these are able to afford a lower scanrate while achieving the
same overall throughput.

Efficacy of current intrusion detection systems The current threat of distributed scan-
ners can be assessed by estimating their prevalence in the overall landscape. Not only the
quantity, but also how many of these forms of malicious network reconnaissance are able
to evade state-of-the-art IDS. One way of benchmarking these systems is by replaying the
packets from detected clusters and observe what portion is able to successfully evade de-
tection. Some IDS might perform better than others. Through gained insights from this
thesis and the benchmark some recommendations can be given to improve the overall detec-
tion accuracy. However, IDSs need to take into account the strict near real-time processing
requirements.
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12 Conclusion

This research is the first to study scanners for a prolonged period of approximately one year
long. To make this computationally feasible, the dataset acquired from a network telescope
was transformed into compact and efficient summaries. These enabled fast queries about
any active scanner observed in daily intervals. A more detailed perspective is provided at
smaller intervals of the length of a raw PCAP file ranging between 5 and 20 minutes. This
effectively achieved a 18000 time size reduction of the data and much faster processing times
while retaining all the relevant information for studying scanners. Initial analysis provided
supporting evidence that scanners from the same distributed group are likely to be simul-
taneously active during the same days and target the same set of ports. By leveraging this
pattern of group behaviour we were able to identify a large number of clusters for which
these conditions hold true in acceptable run-time. More than 1.6M scanners distributed
across 44k groups where the size of each group ranges from 6 up to 9K. However the as-
sumption of matching activity pattern leads to cluster fragmentation which means that in
reality the number of unique groups is likely lower, but bigger in size. The results were
subjected to additional cluster validation techniques to confirm that the correlation method-
ology was able to accurately detect distributed scanners. A scanner’s activity is modeled
using a Markov chain to judge the rarity of an activity sequence. Additionally, we measure
the cluster’s response during state transitions. Finally, a cluster is check whether the major-
ity of scanners originate from the same AS. The first two methods have adjustable thresholds
that can influence the performance metrics in accordance with the analyst’s requirements.
This study prefers a low-false positive rate at the risk of missing some clusters. Due to the
absence of ground truth, we aim to establish sufficient confidence beyond reasonable doubt.
There is enough evidence to show that 50% of the resulting clusters have been correctly
identified. We can provide this dataset of highly probable coordinated scanners to other
researchers who want to conduct research on the topic. The current lack of data is a tough
barrier for the study of distributed scanners. The correlation methodology is able to detect
both very large and very slow scanning clusters. Stretching the observation period to a full
year enabled the detection of distributed scanners that normally would be able to blend in
with the noise in small-scale observations. A case study was provided to highlight a group
with an extremely low scanrate. A single packet in every few days reaching the telescope
from individual scanners is sufficient to identify the corresponding group. In addition, the
generated perspectives in various resolutions of the original telescope data proved to be
beneficial for analysis. It becomes trivial to reveal both long-term and short-term activity
patterns and which services are being targeted.
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