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Preface

This document is supplementary to the paper Generative CoLearn: steering and cost prediction with
generative adversarial nets in kinodynamic RRT, for submission to the International Conference on
Robotics and Automation 2019. The paper has been written in collaboration with W.J. Wolfslag, a
postdoctoral researcher at the University of Edinburgh, United Kingdom. Wolfslag was primarily con-
cerned with the data generation aspect of the research, focussing on the equations of motion and
indirect optimal control. My personal contribution involved the complete implementation of the required
software, mainly focussing on the machine learning aspect. This work consists of implementation, tun-
ing and benchmarking of the neural nets, implementation of the path planning algorithm and all the
necessary analysis. A summary of the system is presented in Appendix B.

Generative CoLearn is an extension to RRT-CoLearn, currently the state-of-the-art kinodynamic plan-
ner by Wolfslag et al. [1]. The purpose of this document is to give a detailed overview of the MSc
thesis project, especially on the work that has not been covered in the paper. Within these appen-
dices, the reader will find various supplementary figures, which further back up the conclusions in the
paper, a thorough breakdown of the various research paths taken during the project and details on
implementation. Initially, the architecture of the software stack will be presented to give the reader an
understanding of the working parts. Various efforts in terms of machine learning will be presented as
well, detailing the reasoning behind the use of Generative Adversarial Networks (GAN). Finally, the
implementation of the Rapidly-exploring Random Trees (RRT) will be covered including the effect of
several key improvements to the algorithm.

I would like to thank my supervisors, whom are co-authors on the paper, Dr. ir. C. Hernández Corbato,
Dr. ir. M. Bharatheesha and Prof. dr. ir. M. Wisse for their insightful comments and feedback. Addi-
tionally, I would like to thank my family and friends for their endless support during my Master thesis
project.

Nick Tsutsunava
Delft, September 2018
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A
Preliminaries

A.1. Introduction
The goal of kinodynamic planning is to plan a path in state space, with kinematic and dynamical con-
straints. This is computationally difficult since it requires solving a two-point boundary value prob-
lem, known to be NP-HARD [2]. Therefore, with the current solutions, it is prohibitive to implement
kinodynamic planning in real-time applications such as motion planning in autonomous vehicles [3].
Throughout literature, various methods are explored to speed up computation, most notably by means
of machine learning and sampling based methods such as Rapidly-exploring Random Trees (RRT).
These type of Learning-RRT approaches use an online-offline paradigm where long running tasks, e.g.
data generation and training the machine learning algorithm, are shifted to an offline process. As a
result, the trained model can then be used to make quick predictions during online planning. With this
predictive approach, it is no longer necessary to solve computationally hard problems during path plan-
ning. Currently, the state-of-the-art of such systems is RRT-CoLearn, a method to predict both the cost
and steering inputs to steer a dynamical system from one state to another [1]. However, its limitation
lies in the fact that it uses a simple machine learning algorithm that is inadequate for scaling to systems
with more degrees of freedom. As a solution to the limitation of RRT-CoLearn, Generative CoLearn is
presented.

The novelty of Generative CoLearn lies in the use of generative adversarial networks (GAN) as the
learning algorithm for online predictions during RRT [4]. The GAN is a very popular, deep generative
model (DGM) and has seen applications in medical data analysis, robotics and autonomous driving
[5–7]. It is capable of learning extremely non-linear relationships from data (i.e. images) after which
new and similar data can be generated.

With Generative CoLearn we plan a path in state space for a pendulum and a planar arm using RRT. For
each system, we generate short time optimal trajectories with corresponding cost and steering inputs.
We train a GAN on this dataset to be able to predict the cost and steering inputs based on a query
trajectory. With Generative CoLearn, we see a considerable improvement in performance compared
to RRT-CoLearn, attributed to the learning capacity of the GAN. Consequently, we demonstrate path
planning on a planar arm.

In these appendices the implementation of Generative CoLearn is detailed. Additionally, supplementary
figures and analyses to the conference paper are presented. Appendix B presents the architecture of
the software, giving an overview of the working parts. The data generation and subsequent analysis is
detailed in Appendix C. In Appendix D themachine learning aspect of Generative CoLearn is discussed,
including implementation and evaluation. Finally, the path planning implementation and supplementary
results are presented in Appendix E.

1



2 A. Preliminaries

A.2. Text Formatting
Different text formatting is used to exemplify specific meaning. Below is a list of the formats used.

• Typewriter is used to exemplify code such as classes, filenames, extensions and general
components.

• Italics is used to indicate importance of a term.

A.3. Acronyms
CGAN: Conditional Generative Adversarial Network
CVAE: Conditional Variational Autoencoder
DGM: Deep Generative Model
GAN: Generative Adversarial Network
KNN: 𝑘-Nearest Neighbour
LSGAN: Least Squares Generative Adversarial Network
MSE: Mean Squared Error
RRT: Rapidly-exploring Random Trees
ReLU: Rectified Linear Unit
VAE: Variational Autoencoder



B
Architecture

Generative CoLearn is a novel approach to kinodynamic planning. It is mainly written in Python and
uses several open-source libraries for its implementation. Even though Generative CoLearn is based
on RRT-CoLearn, it is completely written from the ground up. This section will detail the architecture of
the system, and the reasoning why it has been rewritten.

At the start of the project, the code for RRT-CoLearn was supplied. However, two main issues neces-
sitated writing the codebase for Generative CoLearn from scratch. First and foremost, the code for
RRT-CoLearn is convoluted and difficult to read. Building on top of such a fragile system would only
hamper the research. Second, the data generation script, supplied by Wouter Wolfslag, is not com-
patible with RRT-CoLearn. Rewriting parts of RRT-CoLearn to conform to the data generated by the
script would already result in major changes. Therefore, Generative CoLearn is built from the ground
up, resulting in a better understanding of the code, a cleaner implementation and modularity.

A thorough yet simple design was created that could support the changing nature of the research. The
system is written in Python 3 with the Object Oriented Programming (OOP) design pattern. Benefits
of such a pattern include easy extensibility, encapsulation and readability, all of which were driving
factors in the implementation of Generative CoLearn. A somewhat simplified schematic of the design
is presented in Figure B.1. Each main block will be extensively covered in the next appendices, with
brief summaries following later in this section.

The implementation of Generative CoLearn consists out of various subsystems or blocks. These blocks
have dependencies with each other and one can visualise these dependencies as stacking them on one
another. Hence the term stack is used when referring to the complete implementation of the system.
These blocks make it easy to swap them out for other implementations such as different machine
learning algorithms or other dynamical systems. In fact, in the early stages of the research it was
already known that some blocks would require swapping more than others, which prompted the idea of
dynamically loading an implementation of a subsystem without explicitly coding dependencies. With a
single configuration file it is easy to select which block to use. This greatly reduces development time
and increased flexibility overall, at the cost of spending slightly more time during initial implementation.

As is common for Learning-RRT systems, Generative CoLearn employs an offline-online paradigm and
is visualised in Figure B.2. Initially, data is generated and used for training, both happening offline. The
data contains the initial and final states (𝑥ኺ, 𝑥ኻ), the steering inputs 𝑢, and the steering cost, which
are used for training the GAN. The GAN consists of two neural networks, the generator 𝐺(𝑧|𝑦) and the
discriminator 𝐷(𝑥), which are trained adversarially. The trained model can then be used online to make
predictions for cost and steering inputs during path planning. Additionally, the discriminator is used as
a classifier for determining the feasibility of query trajectories during path planning. The use of GAN
speeds up online path planning as solving boundary value problems is no longer necessary. However,

3



4 B. Architecture

Simulation 
(offline) 

Data Generator

System EOM 

Planner 
(online) 

RRT

Node

Reachability

Data 
(offline) 

Loader

Cleaner

Machine Learning 
(hybrid) 

Algorithm

Trainer 

Validation 

Figure B.1: The implementation of Generative CoLearn is modular. The dependencies are indicated with arrows. For example,
the machine learning and simulation components are injected into the planner. Note the difference of what occurs online and
offline. Machine learning is a hybrid as training occurs offline and prediction is online.

data generation and training of the learning algorithm do take substantially more time than planning
itself, but is considered a reasonable trade-off.

Next, a brief summary will be given of the subsystems. Their detailed implementation and explanation
is covered in corresponding appendices. The code for Generative CoLearn is fully open-sourced and
is available on GitHub1.

B.1. Simulation
The Simulation subsystem contains the equations of motion of a dynamical system and a method
for generating data for the machine learning model. There are two subsystems that depend on Simu-
lation, namely Planner, which uses it for forward simulation and Data providing an API for the rest
of the stack.

B.2. Data
Once the simulation is complete and the data has been saved as a .csv file, the Loader class reads
the data into memory and provides a simple API to the rest of the system. This API makes sure that
the data is available throughout the entire stack and allows for splitting of the data into a training and
test set, pre-processing and batch selection. Additionally, the Cleaner class implements the cleaning
algorithm mentioned in Appendix C.

1http://github.com/ortix/generative-colearn

http://github.com/ortix/generative-colearn


B.3. Machine Learning 5
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Online Planning 
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Figure B.2: Generative CoLearn is split up in two phases. First, data is generated and used for training the GAN. Next, the
trained model is used to enable fast path generation.

B.3. Machine Learning
At the core of Generative CoLearn lies machine learning. In particular, a deep generative model (DGM),
implemented with neural networks is used as a function approximator. Such a DGM can be conditioned
on auxiliary information (supervised learning) such that it can predict values based on a query. The
Algorithm is trained on the generated data consisting of trajectories and corresponding steering
inputs and cost by the Trainer. In this text this is often referred to as a trained model or simply
model. Afterwards, the model is validated with a variety of tests from the Validation class. The
model is then available throughout the system and has a uniform interface for predicting values.

B.4. Planner
Finally, all the parts come together during path planning using Rapidly-exploring Random Trees (RRT).
Both the trained model and the Simulation class are injected into RRT for prediction and forward
simulation. The Node class serves as a wrapper for representing the state during path planning with
some helpful functions. The Reachability class ensures that only nodes that meet a certain criteria
are considered for expansion during planning.





C
Simulation and Data Generation

In machine learning applications, a large amount of data is necessary in order to successfully train
a model. Generative CoLearn is no exception as it relies on many examples of short time optimal
trajectories with corresponding steering inputs and cost for training. Since the data generation and
simulations are implemented by Wouter Wolfslag, these systems are mostly regarded as black-box
during the research. Therefore, the theory will not be covered in depth. Instead, this section details
generation of the data and its analysis.

C.1. Time Optimal Trajectories
A challenge in kinodynamic planning is that the steering inputs are difficult to learn. This is caused by the
large amount of variables that parametrise the steering input [1]. Similar to RRT-CoLearn, Generative
CoLearn aims to solve this by formulating the steering function as an indirect optimal control problem,
simplifying and reducing the amount of inputs. Per degree of freedom the steering input can be defined
by two parameters, also known as the costates 𝜆 and 𝜇. The costate 𝜇 directly affects the initial torque
of the system while the costate 𝜆 mainly affects the time until 𝜇 switches sign resulting in a bang-bang
type control. For trajectories where the sign of 𝜇 does not switch, a large range of values for 𝜆 are
allowed. This occurs where the simulation time is shorter than the time for the switch to occur. In the
case that the sign of 𝜇 does switch, there is a one-to-one relationship between the costates. Such
trajectories are shown in Figure C.1.

The machine learning approach in kinodynamic RRT is to learn by example. In Generative CoLearn,
these examples are short time optimal trajectories of a pendulum and planar arm. The trajectories are
generated by a forward simulation with randomly sampled costates and an initial state (𝜃ኺ, 𝜔ኺ), resulting
in a final state (𝜃ኻ, 𝜔ኻ). The initial states are uniformly sampled over their domain. For simplification in
learning and analysis, the costates are sampled from a unit circle for the pendulum and a 4D-sphere
for the planar arm. Therefore, the domain for each costate is constrained to (-1,1), resulting in the norm
of the costate vector to be unity. This feature is key in analysis of the learning performance.

C.2. Data Generation
Data generation for the pendulum is realised directly from within Python with the corresponding equa-
tions of motion. The pendulum swing-up task involvesmoving from (𝜃, 𝜔) = (−𝜋, 0) to (0, 0). Therefore,
initial states are sampled according to

7



8 C. Simulation and Data Generation
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(a) Trajectory without switching torque
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(b) Trajectory with switching torque

Figure C.1: If ᎘ is sampled such that the torque does not switch within the simulation time, a trajectory is generated as shown in
C.1b. If the simulation time is sufficiently long for ᎙ to switch, a trajectory is generated as shown in C.1a.

Table C.1: The dataset is divided into features and labels for the machine learning algorithm.

Features Labels

Row 𝜆ኺ 𝜇ኺ 𝑡፟ cost 𝜃ኺ 𝜔ኺ 𝜃ኻ 𝜔ኻ
1 0.951 -0.306 0.840 0.840 0.357 -0.575 0.135 0.016
2 0.872 -0.488 0.900 0.900 -4.434 -1.619 -5.297 -0.324

𝜃 ∼𝒰(−32𝜋, 𝜋) (C.1)

𝜔 ∼𝒰(−𝜋, 𝜋). (C.2)

For the initial conditions of 𝜃 a larger range is used to facilitate enough examples where swinging back-
and forth is possible. The link length and mass are set to unity. The maximum torque is 𝜏max = 0.5.
These initial conditions together with the equations of motion result in final states and are stored in a
.csv file. In total 40000 simulated samples are generated by means of forward simulation using the
classical Runge-Kutte method for numeric integration. An example of what is stored in the .csv file is
shown in Table C.1. The costates along with the cost are the features to be learned by the machine
learning algorithm. The initial and final states are the labels with which the machine learning algorithm
is conditioned. Note that the features include an additional variable 𝑡፟, which is the simulation time. As
the optimal trajectories are time optimal, the cost is equal to the simulation time. This feature duplication
does not negatively affect training. Additionally, separating cost and simulation time allows for future
changes in the type of optimal control, such as energy optimal, which has a different cost.

The equations of motion and dataset generation for the planar arm dataset is realised with Julia. In order
to make use of the simulation, a Python-Julia interface (pyjulia) is necessary, leading to overhead
and slower planning times. Due to limitations in the interface, data can not be generated directly from
within the Generative CoLearn stack and requires running the generation script manually.

The task for the planar arm involves moving from (𝜃ኺ, 𝜃ኻ, 𝜔ኺ, 𝜔ኻ) = (−0.25𝜋, 0, 0, 0) to (0.25𝜋, 0, 0, 0).
As such, the initial states for the planar arm are sampled according to

(𝜃ኻ, 𝜃ኼ) ∼𝒰(−0.5𝜋, 0.5𝜋) (C.3)
(𝜔ኻ, 𝜔ኼ) ∼𝒰(−1, 1) (C.4)
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Table C.2: As the degrees of freedom grow, so does the dimensionality of the dataset. For space saving reasons, values have
been omitted.

Features Labels

Row 𝜆ኺ 𝜇ኺ 𝜆ኻ 𝜇ኻ 𝑡፟ cost 𝜃ኺኺ 𝜃ኺኻ 𝜔ኺኻ 𝜔ኺኼ 𝜃ኻኻ 𝜃ኻኼ 𝜔ኻኻ 𝜔ኻኼ
1 -0.895 ⋯ 0.24 -0.742 ⋯ -0.965

Table C.3: The cleaning of the dataset is not necessary as reducing the amount of overlapping trajectories has a detrimental
effect on KNN, which is the machine learning algorithm used by RRT-CoLearn.

𝑑 0 0.1 0.2 0.3 0.4 0.5

Error 0.09 0.09 0.12 0.16 0.17 0.21
Nodes 156 166 270 327 447 549

Fail rate 40% 43% 32% 24% 14% 24%

and are used as the parameters for the equations of motion in the forward simulation. The link lengths,
masses and torques are all set to unity. In order to increase state-space coverage, half of the total
samples are simulated backwards in time. This is accomplished by using the initial states as final
states and integrating the equations of motion from 𝑡 = 𝑡፟ to 𝑡 = 0. Similar to the pendulum, the
classical Runge-Kutte method is used for numeric integration. Generating 500000 samples in Julia
takes around 4-6 hours, depending on the machine. As such, the data is only generated once for the
experiments, as opposed to the pendulum dataset, which is generated for each epoch. An example of
the generated dataset is shown in Table C.2

C.3. Data Cleaning
An inherent issue to the data generation method of RRT-CoLearn, results in overlapping trajectories
with different costs and costates. When the trained machine learning algorithm is queried with a tra-
jectory during RRT, it looks up several similar trajectories it has seen and averages the corresponding
costates. Due to the parametrisation of the costates in RRT-CoLearn, this averaging results in in-
valid trajectory-costate combinations. A cleaning algorithm solves this issue by reducing the amount
of overlapping trajectories, improving the performance of the algorithm.

The original premise of Generative CoLearn was to avoid cleaning by using a more powerful machine
learning algorithm that did not average the costates. Even though trajectories in Generative CoLearn
also overlap, they do not adversely affect the predictions due to the re-parametrisation of the costates.
As a result, cleaning of the dataset is longer necessary. This is experimentally confirmed by implement-
ing and running the cleaning algorithm from RRT-CoLearn. The cleaning algorithm is parametrised by
𝑑 which is the Euclidean distance between trajectory vectors (𝜃ኺ, 𝜔ኺ, 𝜃ኻ, 𝜔ኻ) in the dataset and can be
interpreted as a measure of how much trajectories overlap. Trajectories that lie within 𝑑 to each other
are removed. This process is repeated multiple times until there are no longer trajectories that over-
lap. After the cleaning process, we run Generative CoLearn with KNN1 and observe that the planning
performance is adversely affected. This is repeated for various values for 𝑑 of which the results are
summarised in Table C.3. From this table we can confirm that cleaning is not necessary and has a
detrimental effect on the performance, as it simply reduces the amount of samples to learn from. It
is still unknown why exactly the fail rate decreases. However, the fail rate is considered a robust-
ness measure, whereas the amount of nodes and error are true performance measures. As such, the
conclusion that cleaning is detrimental to the performance does not change.

1More details on this learning algorithm are presented in Appendix D.
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C.4. Data Coverage
In order for the learning algorithm to generalise well, the generated data needs to cover the state-space
sufficiently. Even though the planar arm does converge with limited coverage, it results poor accuracy
near the goal with a relatively high node count. This can clearly be observed in Figure C.2a by two
features. First, the clustering of nodes near the goal region is visible. Second, straight lines crossing
the goal region are visible, which can be interpreted as the end-effector overshooting. Both features
are indicative of the GAN having difficulty predicting costates that result in a sufficiently low angular
velocity near the goal state. A reasonable heuristic is to increase the amount of samples in the dataset
to increase state space coverage. However, doubling the samples from 250000 to 500000 resulted in
only a slight improvement. The question then arises: how much data do we need?. In other words, we
are interested in finding how the amount of data affects the performance of GAN during planning. This
section will detail the analysis of the generated data that led to the augmentation of the dataset, which
resulted in a substantial improvement in convergence for the planar arm, shown in Figure C.2b.
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(a) Without data augmentation
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(b) With data augmentation

Figure C.2: The GAN has difficulty predicting costates resulting in low velocity states near the goal. Augmenting data with more
examples of low velocity states, results in improved convergence.

For the RRT algorithm to converge, a Euclidian distance of 0.15 between the final state and goal state is
required. This means that the learning algorithm must be able to generate the corresponding costates
that result in a final state near the goal state. A look in the generated dataset of 500000 samples reveals
that there are merely 26 samples from which the learning algorithm needs to learn. This tiny fraction
will almost certainly cause the GAN to miss this mode during training. Unfortunately, doubling the size
of the dataset only increased the amount of samples that fall within the 0.15 threshold to 47. In fact, a
problem was that the velocities of the final state were too high as these are sampled uniformly during
generation. This was especially observed during RRT where the algorithm converged to the position,
while the velocity was still far too high.

Figure C.4 gives more insight into the issue by converting 5000 random training samples from state-
space to task space. We indeed see that the coverage is extremely limited near the goal region. There
are almost no points available below the threshold of 0.15 for the learning algorithm, as shown in
Figure C.4a. In Figure C.3b it can be seen that even though the position space is sufficiently covered,
the velocities are not within the necessary range, resulting in a high Euclidean distance.

A remedy for the low state-space coverage near the goal is to simply generate more points there. The
reasoning behind this approach is to force the learning algorithm to capture a specific mode. This
can give us insight in how an increase in state-space coverage affects convergence. Augmenting
the dataset in such a way is more efficient than generating an order of magnitude more data points.
Consequently, an additional 100000 points are generated near the start and goal regions. This is done
by sampling the initial states from a normal distribution instead of a uniform distribution. The angles
and velocities for both start and goal positions are sampled as
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Figure C.3: The sparsity of the state-space coverage is a limiting factor for the learning algorithm to generalise.

(𝜃ኻ, 𝜃ኼ) ∼ (𝒩(±0.25, 0.1),𝒩(0, 0.1)) (C.5)
(𝜔ኻ, 𝜔ኼ) ∼𝒩(0, 0.1Iኼ). (C.6)

The dataset generated with this sampling method is merged to the already existing dataset and used
for training. This augmented dataset results in an improved coverage near the goal. If we plot the
task-space again, we see that now the goal region is sufficiently covered with enough points. As a
result of this augmentation, the node count decreased drastically from around 600 to around 100 with
improved accuracy near the goal, as shown in Figure C.2b.

Recall the previously posed question: how much data do we need? It is not possible to answer the
question with a number, but it has become clear from these results that substantially more data results
in improved performance. This comes at the cost of longer generation and training times. Note that this
is not necessarily a solution, but rather an observation of how the amount of data affects performance.

There are two potential issues with the GAN that could explain the data requirement2. First, the condi-
tioning of the the networks could be too aggressive resulting in poor generalisation. This would lead to
the GAN learning one-to-one relationships between trajectories and costates across the entire state-
space. Second, the GAN might suffer mode collapse where it simply recreates what it has seen during
training. These are hard to debug issues as there is no simple way to observe if the generated samples
make sense and contain enough variety. Even though the aforementioned issues with the GAN are
hypothetical, reducing the amount of required data is still a standing challenge and left for future work.

2It is advised to first read Appendix D before continuing.
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Figure C.4: Augmenting the dataset by sampling initial states near the goal during generation results in improved state-space
coverage.



D
Machine Learning

The main contribution of Generative CoLearn is the novel use of a machine learning algorithm. Similar
to RRT-CoLearn, machine learning is used in Generative CoLearn to approximate the steering cost and
steering inputs during path planning, tremendously speeding up the process. However, the algorithm
used in RRT-CoLearn is limited in terms of computation speed and generalisation. Therefore, we aim
to use a deep generative model (DGM) for cost and steering predictions. In a preliminary literature
survey, it was found that the two most popular deep generative models are the Variational Autoencoder
(VAE) and Generative Adversarial Networks (GAN) [8, 9]. Both models are implemented and tested.
From analysing various benchmarks, GAN is superior over VAE in the context of Generative CoLearn.
This appendix will detail the choice and implementation of these deep generative models. Furthermore,
an analysis of the performance of GAN is given and compared to the learning algorithm used in RRT-
CoLearn.

D.1. 𝑘-Nearest Neighbour
One of the most simple machine learning algorithm is 𝑘-nearest neighbour (KNN). It is a non-parametric
learning algorithm in the sense that all the available data is stored in memory and used for predic-
tion. Generally, KNN is used as a classification algorithm, but is also suitable for regression problems
by means of interpolation. The use of KNN is simple. The available training data is stored in a 𝑘-
dimensional tree. When the algorithm is queried, the 𝑘 nearest neighbours to the query are looked up
in the tree and are averaged. This works well for simple linear problems or when a massive amount of
data is available. However, for the latter case, the algorithm becomes extremely slow as lookup time
for tree traversal grows with data dimensionality. This is one of the reasons why the KNN algorithm is
not suitable for learning based kinodynamic RRT applications where real-time performance is critical.

The implementation of KNN in Generative CoLearn is similar to RRT-CoLearn. The KNN library from
scikit-learn is used for integration in the stack [10]. Similar to RRT-CoLearn, 𝑘 = 3, the distance metric
is Euclidean and the leaf size is set to 10.

In the next section we will investigate other machine learning algorithms, which can alleviate the lim-
itations of KNN. Nevertheless, KNN will be used as as baseline benchmark to compare Generative
CoLearn to RRT-CoLearn.

13
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Figure D.1: A GAN trained on celebrities is able to generate high quality images of never before seen faces [11].

D.2. Deep Generative Models
In literature the two most widely used deep generative models are the VAE and GAN and are typically
implemented with deep neural networks. Their goal is to model a data distribution such that new but
similar samples can be generated. For example, a GAN trained on images of celebrities can generate
new, never seen before faces, shown in Figure D.1.

There is a notable difference between the GAN and VAE. The VAE models the data distribution explic-
itly by inference. This means that it is trying to match the data distribution of the ground truth by means
of likelihood maximisation. The GAN on the other hand is more flexible and implicitly models the data
distribution. Both modelling approaches have their benefits and drawbacks. The VAE on one hand is
easy to train and has good generalisation abilities. Unfortunately, it assumes that the underlying fea-
tures of the data can be mapped to a standard Gaussian distribution. This causes oversimplification of
the data resulting in poor samples [12]. The GAN on the other hand, does not make such assumptions.
This allows the GAN to generate superior samples for extremely complex and high dimensional data
such as images of faces. This comes at the cost of being notoriously difficult to train [13].

Initially, the VAE was implemented as interpolation in its simple and structured latent space seems
more appropriate in the setting of path planning in state space. However, the data distribution proved
to be too complex for the VAE to capture. As a result, the GAN was implemented with the assumption
that its power to learn the data distribution implicitly would yield improved results, which ultimately is
the case. Furthermore, the original formulation of both VAE and GAN is unconditional and thus training
is unsupervised. However, in the context of Generative CoLearn, the learning algorithm needs to be
conditioned on the labels (initial and final states), resulting in supervised learning. Note that conditioning
deep generative models is still an active field of research and no consensus exists on how to do so.
The next sections will cover the implementation of both models and how they are conditioned. After
that, benchmark results are presented, which show the learning performance of VAE and GAN.

D.2.1. VAE Implementation

The first algorithm implemented is the VAE and is done in Keras 2.1 (with Tensorflow backend), a
high-level API for creating deep learning models. This library was initially chosen due to its simplicity
compared to Tensorflow, with readily available resources for creating the VAE. The implementation of
the VAE on the Keras blog1 was used as a reference design for the actual implementation in the stack.
The main components of the model are the encoder, decoder and the sampler for the latent space.

1https://blog.keras.io/building-autoencoders-in-keras.html

https://blog.keras.io/building-autoencoders-in-keras.html


D.2. Deep Generative Models 15

The core idea behind the VAE is to model the dataset with a normal distribution by outputting its param-
eters, 𝜇 and 𝜎ኼ, from the encoder network. This is achieved by the recognition model 𝑞Ꭻ(𝑧|𝑥), which
is a parametrised probability distribution implemented with a neural network. Formally the encoder
network represents

𝑞Ꭻ(𝑧|𝑥) = 𝒩(𝑧|𝜇(𝑥), 𝜎(𝑥)ኼ) (D.1)

The decoder then samples a standard normal distribution, known as the latent space according to
𝑧 ∼ 𝒩(0, Iኼ). Similar to the encoder, the network also represents a probability distribution and is
known as the likelihood 𝑝᎕(𝑥|𝑧). Consequently, the decoder reconstructs the input sample 𝑥. This
reconstruction represent the mean of a non-linear transformation of the sampled latent space by the
decoder. Both the encoder and decoder are jointly trained to balance two losses, formalised with the
following equation.

ℒ(𝑥, 𝜃, 𝜙) = 𝔼፪ᒣ(፳|፱) log𝑝᎕(𝑥|𝑧)⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
reconstruction loss

−𝐷ፊፋ [𝑞Ꭻ(𝑧|𝑥)||𝑝᎕(𝑧|𝑥)]⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝
latent loss

(D.2)

Equation (D.2) is known as the expectation lower bound (ELBO). The aim is to maximise the expecta-
tion that the reconstructed sample originates from the true data distribution 𝑝(𝑥), while simultaneously
minimising the KL divergence between the recognition model and the latent space. Since maximising
the expectation is intractable we instead minimise the ELBO, measured as the mean squared error
between input and output [8].

The code snippets for the losses are shown in Figure D.2. The KL loss is solved analytically since
we assume that the latent space is a Gaussian distribution as presented in the original paper. Note
that for the pendulum dataset it was observed that the KL loss almost immediately converged to zero.
Therefore, a manually tuned regulariser term was added, which ultimately did not have any effect.

Figure D.2: The VAE has two losses: the reconstruction loss and the KL divergence between the standard normal distribution
and the normal distribution sampled with the output parameters from the encoder.

The encoder is a simple 2-layer ReLU network with (256, 128) units per layer. The network accepts the
features (costates and cost) and the labels (initial and final states) as inputs, which are concatenated
to a single tensor. This is the suggested method for conditioning the model on the labels [14]. The
encoder outputs the the parameters for a normal distribution 𝜇 and 𝜎ኼ. The decoder network has
the same structure with the amount of units flipped. The output of the decoder is set to linear as
constraining them to the domain of the variables is detrimental. Furthermore, the decoder samples
a standard normal distribution from which it attempts to recreate the input. The sampling is provided
by a Lambda layer to ensure that back-propagation is possible through a random distribution. Code
snippets for the encoder and decoder are presented in Figures D.3 and D.4, respectively.

Training for the VAE is handled directly by the fit() function from Keras, which minimises the total
loss. The choice for optimiser is RMSProp with the default learning rate of 1e-3, as suggested by the
reference design. Other optimisers have been tested and do not improve performance. The batch size
is set to 100. Training is terminated after 30 epochs once the loss has converged.
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Figure D.3: The encoder network encodes the samples from the dataset to the parameters of a normal distribution.

Figure D.4: The decoder network attempts to reconstruct the input from a standard normal distribution.

D.2.2. GAN Implementation

The implementation of GAN is a remedy to the poor learning performance of VAE in the context of
Generative CoLearn. Similar to VAE, an open-source online implementation2 is used as a reference
design. Note that the GAN implementation is done directly in Tensorflow as the implementation in Keras
only results in convoluted code and suboptimal performance.

The main two components of GAN are the generator 𝐺(𝑧) and the discriminator 𝐷(𝑥), the adversarial
networks. Both networks play aminimax game where they try to beat each other in their objective. The
generator aims to generate samples from a random distribution that looks as real as possible to fool the
discriminator. The discriminator on the other hand, tries to discern real samples from generated sam-
ples. The feedback signal from the discriminator is used to improve the generated samples, resulting
in an implicitly learned generator distribution, represented by 𝐺(𝑧). The GAN objective is formalised by

min
ፆ

max
ፃ
𝑉(𝐷, 𝐺) = 𝔼፱∼፩ᑕᑒᑥᑒ(፱)[log𝐷(𝑥)] + 𝔼፳∼፩ᑫ(፳)[log(1 − 𝐷(𝐺(𝑧)))]. (D.3)

As a result of this adversarial objective, the original formulation of GAN is notoriously difficult to opti-
mise. Various attempts have been made in literature to stabilise GAN training. A recent large scale
study presented several popular adversarial objectives (loss functions), which improve sampling quality
and stability during training [15]. From the proposed losses, the least-squares loss function is imple-
mented in this research for three reasons. First, the implementation is very straightforward and does
not require loss regularisation as with other proposed objectives, resulting in fast training times and
reduced complexity. Second, the quality of the generated samples is very much on par with the other
objectives. Finally, the authors of the least-squares GAN propose a method to condition the networks,
which is not the case for most methods found in the study. Therefore, the implementation for the least-

2https://github.com/wiseodd/generative-models/

https://github.com/wiseodd/generative-models/
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squares GAN is warranted. The formulation of the conditional least-squares GAN is given by Equation
(D.4).

min
ፃ
𝑉(𝐷) = 1

2𝔼፱∼፩ᑕᑒᑥᑒ(፱)[(𝐷(𝑥|𝑦) − 1)
ኼ] + 12𝔼፳∼፩ᑫ(፳)[𝐷(𝐺(𝑧|𝑦))

ኼ]

min
ፆ
𝑉(𝐺) = 1

2𝔼፳∼፩ᑫ(፳)[(𝐷(𝐺(𝑧|𝑦)) − 1)
ኼ]

(D.4)

Implementation of both networks is straight forward. The generator, uses a fairly deep network with 5
ReLU layers and each (32,64,128,256,512) units, which gives the best results for the pendulum dataset.
The latent space 𝑧 has 32 dimensions. The inputs are the labels and noise sampled as 𝑧 ∼ 𝒰(−1, 1),
concatenated as a single tensor. This concatenation step conditions the network on the labels allowing
it to generate conditional result [16]. The output of the generator is constrained to the domain of the
variables by means of activation functions. For the costates tanh is used, whereas for the cost ReLU is
used to constrain the output. The discriminator uses 5 hidden Leaky ReLU layers with the order of units
flipped. The inputs for the discriminator are the true or generated samples and the corresponding labels.
For conditioning, both the sample and label tensors are concatenated. After a batch normalisation step
each layer is conditioned additionally on the labels as suggested by [17]. The output layer has a single
unit with linear activation. Generator samples that look fake will cause the discriminator to output a
negative value while real looking samples will output a positive value. The decision boundary is at 0.
The networks are visualised in Figure D.5.
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Figure D.5: The objective of the two adversarial networks is to outcompete each other. The generator tries to fool the discrimi-
nator, which in turn tries to discern true from generated samples.

The training for GAN is performed manually, in contrast to the VAE. Both networks are optimised using
the Adam optimiser with 𝛽ኻ = 0.5 while keeping the other hyper-parameters set to their default value.
The batch size is 100. First, the discriminator is trained by showing it real samples and generated
samples from the generator. The weights of only the discriminator are updated. Next the generator is
trained by generating samples and showing only those to the discriminator. The output signal of the
discriminator is used to update the weight of only the generator. These operations account for a single
epoch. In total, the GAN is trained for 30000 epochs. The goal for the GAN is that both networks reach
an equilibrium value. However, this does not mean training has converged. In fact, at this point both
networks are performing equally and are improving each other. This is one of the reasons why training
GAN is so difficult as it is generally unknown when training has converged. Typically, deep learning
practitioners rely on generating images for inspection during training and terminating it if the samples
meet some subjective requirement. However, this inspection is not trivial for real valued samples as
is the case in Generative CoLearn. The next section will detail how the learning performance of the
models is evaluated.
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D.3. Benchmarking
During development of a DGM it is important to quickly receive feedback on its performance. Waiting
until the training has converged to generate samples or testing the performance online during RRT, is
impractical due to long training times, which is especially the case for GAN. Furthermore, for GAN it
is not known when training has converged as both networks improve while their loss is in equilibrium.
Therefore, two benchmarks were devised to give insight in the training dynamics of the DGM and the
quality of the generated samples. The first benchmark uses a popular dataset used throughout machine
learning. The second benchmark uses the pendulum dataset and visualises how well the DGM can
uncover features known a priori. During training, figures are generated to give insight in the learning
performance. The content of the figures depends on the dataset. The DGMs that are benchmarked
next are the conditional variants of the VAE and GAN.

D.3.1. MNIST Validation

Initially, the correctness of implementation is tested with MNIST3, which is generally the default bench-
marking dataset in machine learning. The dataset contains labeled 28×28 images of handwritten digits
from 0-9. In unsupervised learning the DGM simply learns to generate random real-looking digits. How-
ever, it is also possible to condition the DGM on labels. This is done by converting the labels to one-hot
encoding, which is essentially a boolean vector for the digit value. For example, the number 2 would
become [0,0,1,0,0,0,0,0,0,0]. This vector is concatenated to the target data. In the case of
MNIST this is a vector of size 784 resulting from reshaping the original matrix to a single dimension.
Using this benchmark gives us the ability to see whether the models are being conditioned properly as
this is difficult to do with the real valued datasets. During training the models generate digits from 0-9.
As soon as the digits are in the right order and look realistic, as shown in Figure D.6, the training is
terminated, confirming the success of implementation.

Figure D.6: Generated digits by the GAN verifies that implementation of the conditional modification is successful. These are
results after only 30000 epochs and learning errors are still clearly visible in digits 2,3 and 4.

D.3.2. Pendulum Dataset Validation

Following the validation of the model implementation, the DGMs are trained on the pendulum dataset
to determine which performs better. Unlike MNIST, it is not trivial to generate meaningful samples for
determining the preferred DGM, as the data consists of real valued numbers. This makes it increas-
ingly difficult to properly tune the hyper-parameters since feedback during training is limited. However,
several features are known a priori, such as the data distribution and that the costates are to be sam-
pled from the unit sphere. Instead of relying solely on the raw data output by the DGM, we use the
data to generate figures in Python and observe whether the output matches our expectation on these
known features. This can give us insight in the learning performance of the DGM both during and after
training.

The GAN and VAE generate costates and cost by querying them with labels from the test set, which
3http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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consists of 20% of the total dataset (8000/40000). Recall that for a simple pendulum, the learning
data consists out of 4 labels (𝜃init, 𝜔init, 𝜃final, 𝜔final), containing the initial and final states and 4 features
(𝜆, 𝜇, cost, 𝑡፟), containing the costates, cost and simulation time. The generated samples are used to
create the aforementioned figures. The figures shown in this section have been generated after the
optimal hyper-parameters have been found. However, the methodology of these figures was used to
tune the DGMs.

Initially, the generated costates are used to observe if and how well they are generated from the unit
circle, shown in Figure D.7. It is clear that the VAE is struggling to uncover that the costates should lie
on the unit circle.
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Figure D.7: The GAN is able to generate costates that lie on the unit circle while CVAE struggles to uncover this feature.

Additionally, a similar discrepancy in performance appears when the generated and true data distribu-
tions are visualised by means of histograms. For each feature, the complete test set is used as the
ground truth and as queries for generating samples. In Figure D.8 it is clear that GAN outperforms
VAE. The GAN is able to match the modes in the true data distribution, seen as the edge peaks in the
distribution of the costates. The VAE struggles to match the distribution.

As a result, it can be concluded that the GAN outperforms VAE, specifically in the domain of Generative
CoLearn. The GAN is able to generate costates that lie on or very close to the unit circle. Furthermore,
GAN is superior in capturing the modes of the data distribution. The VAE is not able to sufficiently
perform in this benchmark and as such is not subject to further evaluation. The next step is to compare
GAN with KNN, which is the learning algorithm used in RRT-CoLearn and is discussed next.

D.4. Model Analysis
The learning algorithm in Generative CoLearn is GAN and is used for predicting steering inputs and
cost. In contrast, RRT-CoLearn uses KNN as the learning algorithm for prediction. Since Genera-
tive CoLearn is an extension of RRT-CoLearn, it is necessary to compare both learning algorithms
for benchmarking purposes. Therefore, a variety of tests are performed with the pendulum dataset.
Additionally, the planar arm dataset is used for further analysis.

Initially, the KNN algorithm is subject to the same two tests of the benchmark described in the previous
section. The first test involves the proximity of costates to the unit circle by generating costates from
1000 query trajectories from the test set. From Figure D.9a it is clear that KNN is not able to generate
costates from the unit circle. Since KNN is a non-parametric learning algorithm, it simply stores the
data in a tree. Once the algorithm is queried with a trajectory, it looks up 𝑘 neighbours that are the
closest to the query in terms of Euclidean distance. These neighbours are averaged and returned as
a prediction. Since the nearest neighbours all lie on the unit circle, the predicted costates tend to end
up within the unit circle. A clear representation can be seen in Figure D.9b. The samples from the
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Figure D.8: The GAN is able to capture the multimodal nature of the data, visible as the edge peaks in the costates (D.8a). The
VAE attempts to capture the edge peaks, but is not able to properly match the true data distribution (D.8b).
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(a) 1000 generated costates by KNN. Interpolation
results in costates inside the unit circle.
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Figure D.9: KNN is struggling to generated the costates from the unit circle.

test set that lie nearest to the ground truth on the unit circle are not necessarily the nearest in terms
of Euclidean distance. The three darkest circles represent the costates of the nearest sample to the
query. Interpolating over these nearest costates results in the predicted costate to lie within the unit
circle. This prediction is not necessarily invalid due to the parametrisation of the costates and the
1-dimensional nature of the problem. However, these type of predictions may not be appropriate for
higher dimensional problems.

The second test involves the visualisation of the true and generated data distributions. From Figure
D.10 it is clear that the generated distribution for the costate 𝜆 does not match the true distribution. This
is also easily observed in D.9a, where the majority of the points lie near 𝜆 = 0 for 𝜇 ± 1.

Additionally, we are interested in finding how well both GAN and KNN can generalise. From the test set,
3 random samples are selected from which the trajectories are used to query the learning algorithm.
For each query, 1000 costates are generated and plotted. As expected from KNN, shown in Figure
D.11b, the generated costates lie on the same location and generally within the unit circle, attributed
to the deterministic nature of the algorithm. However, GAN is able to generate multiple costates for a
single trajectory. This is generally the case when the trajectory does not involve a switch in the sign
of 𝜇. If a query trajectory involves a switch in 𝜇, then 𝜆 is sampled accordingly. The fact that GAN is
able to uncover this relationship between trajectory and torque is quite remarkable. This effect can be
observed in Figure D.11a where the costates that involve a switching torque are all concentrated near
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Figure D.10: KNN is able to nearly match the distribution for ᎙, yet falls short in the distribution for ᎘.

the green star.

A more in depth approach in analysing the performance of the learning algorithms is to use the gener-
ated costates in a forward simulation. From the test set 1000 samples are selected. Recall that these
samples contain (𝜃init, 𝜔init, 𝜃final, 𝜔final) and (𝜆, 𝜇, cost, 𝑡፟). The trajectories are used to query both KNN
and GAN to generate costates and cost. The difference between true and predicted cost is measured
as the mean squared error (MSE) between the two values, shown in Table D.1. Furthermore, the initial
state, generated costates and cost are fed into a forward simulation. Since we already know the final
state from the test set, we can compare it to the final state provided by the forward simulation using the
generated costates. The MSE is computed between the target and actual final state and is summarised
in Table D.1. We see that the GAN slightly outperforms KNN. The relatively high error is still not fully
understood, but it is hypothesised that it is attributed to the low state-space coverage of only 40000
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Figure D.11: GAN is able to generate multiple costates for a single query. Due to the deterministic nature of KNN, all the
generated costates lie on the same location for each query.
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Table D.1: A summary of the model analysis for GAN and KNN.

DoF Proximity 𝜃ፄ 𝜔ፄ Costፄ 𝑡single 𝑡batch
GAN 1 1.0 ± .09 .240 .713 .006 0.4 ms 63 ms
KNN 1 .85 ± .50 .250 .723 .012 0.3 ms 65 ms

GAN 2 1.0 ± .10 .006 .049 .005 0.4 ms 1.9 s
KNN 2 0.7 ± .21 .008 .031 .016 0.4 ms 18.0 s

samples. Next, the performance of GAN is investigated for the planar arm.

Visualisation of the costates for a pendulum is simple, yet is impractical for a system with more degrees
of freedom. If we take the planar arm, for example, the costates are sampled, and thus generated, from
a 4D-sphere, which is difficult to visualise. As a result, the norm of the costates is plotted in a histogram.
This is justified by the fact that the true costates are always sampled as points from a unit 𝑛-sphere.
This requires that the norm of the costates to be equal to unity. Therefore, the generated costates
should approach unity. A trained GAN on the planar arm dataset generates costates near the unit
sphere, of which the histogram is shown in Figure D.13a. The KNN algorithm does not generate the
costates from the unit sphere as the distribution of their norm varies wildly, shown in Figure D.13b.
Additionally, the feature distribution is shown in Figure D.12 for both GAN and KNN. Similar to the
pendulum dataset, the GAN is able to properly match the true data distribution, while KNN is struggling
with some distributions. Forward simulations with generated costates are also performed of which the
results are tabulated in Table D.1. The probable reason why the errors for the planar arm are lower than
the pendulum is due to the size of the dataset. Since the dataset contains 1.1 million samples, there is
a much higher state-space coverage and both algorithms are able to effectively learn from many more
examples, resulting in more accurate predictions.

Finally, the prediction time for KNN and GAN is measured. For real-time RRT applications, prediction
time is critical, especially when the amount of nodes, and as such the required predictions increase.
Prediction time is measured for both the pendulum and planar arm dataset by querying a single sample
or a batch of samples, resulting in 𝑡single and 𝑡batch. The reported measurements are median values
over 10 epochs. The batch of samples contains 8000 and 240000 samples for the pendulum and
planar arm, respectively. For the pendulum we find that both KNN and GAN perform almost identically.
However, for the planar arm a much larger batch size is used and the difference between the two
algorithms becomes apparent. Even though the prediction time for a single sample is 0.4 ms for both
GAN and KNN, the large batch size is detrimental for KNN. The GAN is almost an order of magnitude
faster. The results are summarised in Table D.1.

In this section the machine learning aspect of Generative CoLearn was further substantiated regard-
ing the original material presented in the conference paper. The goal was to find a deep generative
model that could compete against KNN for predicting cost and steering inputs for RRT. Out of VAE
and GAN, the two most popular generative models, the GAN proved to be much more capable in the
domain of Generative Colearn. Further analysis revealed that the GAN outperforms KNN as well, and
has excellent generalisation capabilities for both the pendulum and planar arm datasets. In the next
section, we will find how these results affect RRT performance and why it is not practical to use KNN
for kinodynamic RRT with higher DoF systems.
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Figure D.12: For the planar arm, the GAN is able to properly resolve and match the data distribution of the training data with only
minor errors. The KNN algorithm is struggling to match the distribution for ᎘ and the cost.
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Figure D.13: The true costates are always sampled from the unit ፧-sphere. Therefore, most of the generated costates should
lie near unity.
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The computational difficulty of kinodynamic planning is generally alleviated with sampling based meth-
ods. The most popular of such methods is Rapidly-exploring Random Trees (RRT) and allows for
effective exploration of the planning space, i.e. state space, in kinodynamic planning. The implemen-
tation of the RRT algorithm is straight forward and general and as such only notable deviations from
the algorithm will be discussed in this section. The main RRT algorithm used in Generative CoLearn is
outlined in Algorithm 1.

E.1. Reachability
A key component in Learning-RRT algorithms, is selecting a set of nodes from which the randomly
sampled state can be reached, aptly called reachability, which is visualised in Figure E.1. Reachability
is based on the notion that not all randomly sampled nodes are dynamically feasible [3]. For example,
robots have both dynamic constrains (i.e. maximum torque) and kinematic constrains (i.e. maximum
angle). Therefore, some target states are not reachable1 from an initial state, exemplifying the necessity
of a reachability check. As this is a difficult to compute problem, real-time performance in kinodynamic
applications is hindered, necessitating approximate methods. In the case of Generative CoLearn, the
limitation of reachability exposes itself in the generalisation capability of the learning algorithm and is
caused by two inherent limitations. First, standard machine learning algorithms, which include GAN
and KNN, have poor extrapolation abilities resulting in poor predictions for queries that lie outside of
the region the training data was sampled from [18]. Second, even if the query lies within the sampled
region, sufficient examples are necessary for the learning algorithm to make a meaningful prediction.
In the case of KNN, the prediction is a result of linear interpolation in Euclidean space, which is not
necessarily valid. For the GAN, the interpolation occurs on some learned data manifold, which has
embedded the non-linear relationship between samples. However, if the amount of samples is small,
important modes can be missed, still resulting in invalid predictions.

As a result of this limitation inmachine learning, only queries that will yieldmeaningful predictions should
be considered. In Generative CoLearn two types of reachability methods are implemented. The first
type is the Euclidean reachability, which is a simple method as is used in RRT-CoLearn. Second is
discriminative reachability, which is a novel approach where the trained discriminator of the GAN is
used for classification of feasible trajectories. First we discuss Euclidean reachability.

1Note the difference between feasibility and reachability: a trajectory is feasible if the target node is reachable from the corre-
sponding node in the tree.

25
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Algorithm 1 Generative Colearn
data ← generate_data()
ፆ,ፃ ← train_network(data)
node_tree ← ፱start
while not goal() do
፱random ← random_state()
ፍreachable ← empty()
for ። in node_tree do
ፓ ← {፱ᑚ, ፱random}
፮̂, cost ← ፆ(ፓ)
if ፃ(፮̂, ፓ) ጻ ኺ then

append(ፍreachable, {፱random, ፮̂, cost})
end if

end for
፱near, ፮̂ ← min_cost(ፍreachable)
፱final ← simulate(፱near, ፮̂)
append(node_tree,፱final)

end while

E.1.1. Euclidean Reachability

Once a random node has been sampled, a set of trajectories is generated from each node in the current
tree. This is equivalent to creating a matrix 𝑇, containing entries (𝜃። , 𝜔። , 𝜃rand, 𝜔rand) for 𝑖 nodes in the
tree. The feasibility of each trajectory in 𝑇 needs to be determined by checking its similarity to what has
been seen during training of the learning algorithm. Similar to RRT-CoLearn, this is implemented by
fitting a separate KNN model with only the trajectories from the training set and performing a nearest
neighbour lookup. Trajectories that are within a Euclidian distance of 𝛿max to two nearest neighbours
are considered feasible. The nodes in the tree corresponding to the feasible trajectories are stored as
a reachable set 𝑁reachable. For each node in the set, the steering and cost is predicted by the learning
algorithm. The node with the lowest cost is expanded by running a forward simulation. This process is
visualised in Figure E.1.

The problem with Euclidean reachability ultimately lies in scalability. Aside from tuning 𝛿max being
cumbersome, performing a nearest neighbour lookup is prohibitively expensive as the data dimension-
ality grows. Therefore, using the discriminator as a classifier for feasible trajectories is an appropriate
replacement for the reachable bound.

E.1.2. Discriminative Reachability

Another approach to reachability is to use the trained discriminator as a classifier for feasible trajec-
tories. This approach is eliminates the tuning of the reachable bound 𝛿max and is much faster than a
nearest neighbour look-up. The latter is impractical for real-time applications as the dimensionality of
the dataset grows. This has been observed from preliminary benchmarks in Appendix D. This section
will discuss the implementation of this approach and is outlined in Algorithm 1.

The discriminator is trained to discern generated samples from real samples originating from the dataset.
Additionally, the generator is trained to generate samples that are real with feedback from the discrim-
inator. Therefore, the following assumptions are made.

1. The generator will generate realistic samples for queries that are similar to those seen during
during training, resulting in feasible trajectories.

2. The generator will generate unrealistic samples for queries that are not similar to those that have
been seen during training, resulting in trajectories that are not feasible.

3. The discriminator will classify the generated samples to the correct side of the decision boundary
based on assumptions 1 and 2.
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Figure E.1: An example of reachability for the pendulum is presented. A random state (yellow triangle) is only reachable from a
set of nodes (green dots) that result in feasible trajectories. From that set the node with the lowest cost is selected for expansion.
The trajectory resulting from forward simulation with predicted costates is shown in blue.
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Figure E.2: The discriminator classifies the reachability of a set of trajectory queries from RRT based on the generated costates.

Similar to the Euclidean reachability, a set of trajectories is generated from the nodes in the tree to
the randomly sampled node. These trajectories are fed into the generator and then directly into the
discriminator for classification, as shown in Figure E.2. The output of the discriminator is a linear value
with 0 being the decision boundary. If the generated costates with the associated trajectory result
in a positive output, then the trajectory is regarded as feasible and the corresponding node in the
tree is added to 𝑁reachable. Otherwise, the discriminator outputs a negative value and the trajectory is
disregarded. If an empty set of reachable nodes is returned, a new random node is sampled. The
discriminative reachability approach is much faster than Euclidean reachability and does not require
tuning 𝛿max.

E.1.3. Determining the Reachable Bound

Only trajectories that fall within the reachable bound 𝛿max are considered feasible. However, deter-
mining the value for 𝛿max is not trivial as there is no heuristic. The most straightforward method is to
run the RRT algorithm 100 times for values of 𝛿max sampled from linspace(0.1,1,10). Due to the
computational cost, this method can only be performed on the pendulum dataset. Three metrics are
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collected and visualised in Figure E.3. The failure rate indicates when the RRT run is terminated after
reaching 1000 nodes without convergence. The node count and steering error are straightforward and
are the main performance metrics. It is clear that the reachable bound has an effect on both learning
algorithms. As the value for 𝛿max increases, the amount of nodes and steering error for both learning
algorithms increases as well. However, the key is that GAN remains relatively stable across all three
metrics, exemplifying its robustness. With this visual aid, it is now easy to determine the value for 𝛿max
for both learning algorithms. We find for GAN, 𝛿max = 0.4 and for KNN, 𝛿max = 0.3. These values are
chosen based on the most balanced performance between all three metrics.
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Figure E.3: Reachability has an impact on the performance of both learning algorithms. However, KNN is affected more than
GAN. The failure rate is indicated as a percentage on top of the boxes.

E.2. Pendulum Results
Most of the analysis of the pendulum results have been presented in the conference paper. A sum-
mary of the RRT performance is given in Table E.1. Even though KNN has a slightly better error and
planning time, GAN is much more robust and requires far fewer nodes for successfully planning a path.
The discrepancy in planning time is attributed to the prediction time, which is slightly higher for GAN.
However, GAN is invariant to data dimensionality in terms of prediction time and is far less sensitive to
large batch sizes as opposed to KNN.

Additionally, this section provides insight in the expansion of the nodes during swing-up. In Figure E.4
various examples are shown in the initial stages of RRT on how the tree is expanded by GAN. Note
that these results do not differ much from KNN and simply serve as a visual aid. The GAN is able to
predict steering inputs accurately resulting in small errors. More remarkably, trajectories are predicted
that contain a switch in torque and still result in the final state to be near the target state. It is interesting
to note that the selected node for expansion is not always the nearest node in Euclidean space. This
is an indication that cost prediction works appropriately.
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Figure E.4: The GAN is able to accurately predict costates to expand the nearest node. Note that some expansions include a
switch in torque which can be seen as trajectories with sharp turns between nodes. The yellow triangle indicates the target state.
The cyan star indicates the true final state and sometimes overlaps the yellow triangle indicating a near perfect prediction. The
path taken is indicated with the blue line.
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Table E.1: For the pendulum dataset, GAN has better performance in terms of fail rate and node count. KNN is slightly faster
and accurate.

Error Time Nodes Fail

GAN 0.15 0.85 s 92 13%
KNN 0.11 0.81 s 132 50%

E.3. Planar Arm Results
The goal of Generative CoLearn is scaling to systems with higher degrees of freedom. There still
remains an uncertainty on how much data is necessary for a learning algorithm to generalise well. As
such, a simple planar arm is tasked to move from (𝜃ኺ, 𝜃ኻ, 𝜔ኺ, 𝜔ኻ) = (−

ኾ , 0, 0, 0) to (

ኾ , 0, 0, 0). This

relatively simple task is chosen as a proof of concept to demonstrate that Generative CoLearn works
for systems with more degrees of freedom. More complex tasks, e.g, that include gravity, are also
possible by modifying the equations of motion from Appendix C and is left for future work.

From the previous sections, we have learned that KNN does not scale well with data dimensionality. As
the node tree grows during RRT, the KNN algorithm becomes slower in prediction, and more critically,
in finding a reachable set of nodes. This speed deterioration makes KNN impractical for larger scale
planar arm experiments as previously performed for the pendulum. Initial tests have indicated that with
a threshold of 1000 nodes, the algorithm never converged in 10 attempts. Each attempt lasted about
10 minutes, becoming slower as thee tree grew. This warrants the disregard of KNN for experiments
on the planar arm. Instead, only the GAN is considered for the planar arm experiments, of which the
results are summarised in Table E.2. With the large amount of data and incorporated augmentation,
GAN is very robust with near constant convergence and low node count. The high planning time is
caused by the suboptimal implementation.

Table E.2: Only GAN is considered for the planar arm experiments as KNN combined with reachability is simply too slow.

Error Time Nodes Fail

GAN 0.16 8.80 s 94 0.1%

Visualisation of high dimensional parameter- and state-space is impractical. The path taken by the
planar arm is therefore shown in an augmented state-space representation. In Figure E.5a, the axes
represent the angles of the joints (𝜃ኻ, 𝜃ኼ) and the colour of the nodes represents the norm of the angular
velocities (𝜔ኻ, 𝜔ኼ). This augmented view gives insight in the path taken by the arm in terms of angles.
The most logical path would be a straight line across 𝜃ኼ = 0, where the second link does not move.
However, the classical RRT algorithm does not guarantee an optimal trajectory [19]. This is especially
obvious when the path is visualised in configuration space, shown in Figure E.5b. The planar arm
initially moves away from the target and follows a peculiar and very non-optimal path, after which it
overshoots the target. However, the algorithm ultimately converges to the goal, as can be seen in the
figure. In order to achieve optimal trajectories, planning algorithms that guarantee that optimality are
required, such as RRT*.
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Figure E.5: RRT does not guarantee an optimal path. In (E.5a) the most logical trajectory would be along ᎕Ꮄ  ኺ. A task-space
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