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A Controlled Experiment for Program

Comprehension through Trace Visualization

Bas Cornelissen, Andy Zaidman, Member, IEEE Computer Society,

and Arie van Deursen, Member, IEEE Computer Society

Abstract

Software maintenance activities require a sufficient level of understanding of the software at hand

that unfortunately is not always readily available. Execution trace visualization is a common approach

in gaining this understanding, and among our own efforts in this context is EXTRAVIS, a tool for the

visualization of large traces. While many such tools have been evaluated through case studies, there

have been no quantitative evaluations to the present day. This paper reports on the first controlled

experiment to quantitatively measure the added value of trace visualization for program comprehension.

We designed eight typical tasks aimed at gaining an understanding of a representative subject system,

and measured how a control group (using the Eclipse IDE) and an experimental group (using both

Eclipse and EXTRAVIS) performed in terms of correctness and time spent. The results are statistically

significant in both regards, showing a 22% decrease in time needed for the given tasks, and a 43%

increase in correctness of the results for the group using trace visualization.
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I. INTRODUCTION

Program comprehension has become an increasingly important aspect of the software develop-

ment process. As software systems grow larger and their development becomes more expensive,

they are constantly modified rather than built from scratch, which means that a great deal of effort

is spent on performing maintenance activities. However, as up to date documentation is often

lacking, it is estimated that up to 60% of the maintenance effort is spent on gaining a sufficient

understanding of the program at hand [1], [2]. It is for this reason that the development of

techniques and tools that support the comprehension process can make a significant contribution

to the overall efficiency of software development.

With respect to such techniques, the literature offers numerous solutions that can be roughly

broken down into static and dynamic approaches (and combinations thereof). Whereas static

analysis relies on such artifacts as source code and documentation, dynamic analysis focuses on

a system’s execution. An important advantage of dynamic analysis is its precision, as it captures

the system’s actual behavior. Among the drawbacks are its incompleteness, as the gathered data

pertains solely to the scenario that was executed; and the well-known scalability issues, due to

the often excessive amounts of execution trace data. Particularly this latter aspect is troublesome

because of the cognitive overload on the part of the maintainer.

To cope with the issue of scalability, a significant portion of the literature on program

comprehension has been dedicated to the reduction [3], [4] and visualization [5], [6] of execution

traces. One of these techniques and tools is EXTRAVIS, a tool that offers two interactive views

of large execution traces [7]. Through a series of case studies we illustrated how EXTRAVIS can

support different types of common program comprehension activities. However, in spite of these

efforts, there is no quantitative evidence of the tool’s usefulness in practice. As we will show

in the next section, no such evidence is offered for any of the trace visualization techniques in

the program comprehension literature.

The purpose of this paper, therefore, is a first quantification of the usefulness of trace visual-

ization for program comprehension. Furthermore, to gain a deeper understanding of the nature

of its added value, we investigate which types of tasks benefit most from trace visualization and

from EXTRAVIS. To fulfill these goals, we design and execute a controlled experiment in which

we measure how the tool affects (1) the time that is needed for typical comprehension tasks,
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and (2) the correctness of the solutions given during those tasks.

This paper extends our previous work [8] with a survey of 21 trace visualization techniques,

an additional group of subjects with an industrial background (thus strengthening the statisti-

cal significance as well as the external validity), and a discussion on the implications of our

EXTRAVIS findings for trace visualization tools in general.

The remainder of the paper is structured as follows. Section II extensively reviews existing

techniques and tools for trace visualization, and motivates our intent to conduct a controlled

experiment. Section III offers a detailed description of the experimental design. Section IV

presents the results of our experiment, which are then discussed in Section V. Section VI

discusses threats to validity, and Section VII offers conclusions and future directions.

II. BACKGROUND

A. Execution trace analysis

The use of dynamic analysis for program comprehension has been a popular research activity

in the last decades. In a large survey that we recently performed, we identified a total of 176

articles on this topic that were published between 1972 and June 2008 [9]. More than 30 of

these papers concern execution trace analysis, which has often shown to be beneficial to such

activities as feature location, behavioral analysis, and architecture recovery.

Understanding a program through its execution traces is not an easy task because traces are

typically too large to be comprehended directly. Reiss and Renieris, for example, report on an

experiment in which one gigabyte of trace data was generated for every two seconds of executed

C/C++ code or every ten seconds of Java code [3]. For this reason, there has been a significant

effort in the automatic reduction of traces to make them more tractable (e.g., [3], [10], [4]). The

reduced traces can then be visualized by traditional means: for example, as directed graphs or

UML sequence diagrams. On the other hand, the literature also offers several non-traditional

trace visualizations that have been designed specifically to address the scalability issues.

In Section II-B we present an overview of the current state of the art in trace visualization.

Section II-C describes EXTRAVIS, our own solution, and Section II-D motivates the need for

controlled experiments.
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TABLE I

OVERVIEW OF EXISTING TRACE VISUALIZATION TECHNIQUES

References Tool Evaluation type Applications

[11] GRAPHTRACE small case study debugging

[5], [12], [13],

[14]

JINSIGHT;

OVATION; TPTP*

preliminary; user feedback general understanding

[15] SCENE* preliminary software reuse

[6], [16] ISVIS* case study architecture reconstruction, feature location

[17], [18] SCED; SHIMBA case study debugging; various comprehension tasks

[19] FORM case study detailed understanding; distributed systems

[20] JAVAVIS preliminary; user feedback educational purposes; detailed understanding

[21], [4], [22],

[23]

SEAT small case studies; user feed-

back

general understanding

[24], [25], [26],

[27]

SCENARIOGRAPHER multiple case studies detailed understanding; distributed systems; fea-

ture analysis; large-scale software

[28], [29], [30] – small case study quality control; conformance checking

[10] – multiple case studies general understanding

[31] – case study trace comparison; feature analysis

[32] – case study feature analysis

[33] – case study architecture reconstruction; conformance check-

ing; behavioral profiles

[34] TRACEGRAPH industrial case study feature analysis

[35], [36] SDR; JRET* multiple case studies detailed understanding through test cases

[37] FIELD; JIVE; JOVE multiple case studies performance monitoring; phase detection

[38] – – API understanding

[39], [7] EXTRAVIS* multiple case studies fan-in/-out analysis; feature analysis; phase de-

tection

[40] OASIS user study various comprehension tasks

[41] – small case studies general understanding; wireless sensor networks
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B. Execution trace visualization

There exist three surveys in the area of execution trace visualization that provide overviews of

existing techniques. The first survey was published in 2003 by Pacione et al., who compare

the performance of five dynamic visualization tools [42]. Another survey was published in

2004 by Hamou-Lhadj and Lethbridge, who describe eight trace visualization tools from the

literature [43]. Unfortunately, these two overviews are incomplete because (1) the selection

procedures were non-systematic, which means that papers may have been missed; and (2)

many more solutions have been proposed in the past five years. A third survey was performed

by the authors of this paper in 2008, and was set up as a large-scale systematic literature

survey of all dynamic analysis-based approaches for program comprehension [9]. However, its

broad perspective prevents subtle differences between trace visualization techniques from being

exposed, particularly in terms of evaluation: for example, it does not distinguish between user

studies and controlled experiments.

To obtain a complete overview of all existing techniques and to reveal the differences in

evaluation, we have used our earlier survey to identify all articles on trace visualization for

program comprehension from 1988 onwards, and then reexamined these papers from an evalua-

tion perspective. In particular, we have focused on techniques that visualize (parts of) execution

traces. We have looked at the types of validation and the areas in which the techniques were

applied. Also of interest was the public availability of the tools involved, which is crucial for

fellow researchers seeking to study existing solutions or perform replications of the experiment

described in this paper.

Our study has resulted in the identification and characterization of 21 contributions1 that were

published between 1988 and 2008, shown in Table I. For each contribution, the table shows the

appropriate references, associated tools (with asterisks denoting public availability), evaluation

types, and areas in which the technique was applied. In what follows, we briefly describe the

contents of each paper.

1988-2000

Kleyn and Gingrich were among the first to point out the value of visualizing run-time behavior

[11]. Their visualization of execution traces is graph-based and aims at better understanding

1Of the 36 papers found, Table I shows only the 21 unique contributions (i.e., one per first author).
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software and identifying programming errors. In particular, their graph visualization is animated,

in the sense that the user of the tool can step through the entire execution and observe what

part(s) of the program are currently active. A case study illustrates how their views can provide

more insight into the inner workings of a system.

De Pauw et al. introduced their interaction diagrams, very similar to UML sequence diagrams,

in Jinsight, a tool which could visualize running Java programs [5]. Jinsight was later transformed

into the publicly available TPTP Eclipse plugin, which brings execution trace visualization to

the mainstream Java developer. The authors also noticed that the standard sequence diagram

notation was difficult to scale up for large software systems, leading to the development of their

“execution pattern” notation, a much more condensed view of the typical sequence diagram

[12].

Koskimies and Mössenböck proposed Scene, which combines a sequence diagram-like visu-

alization with hypertext-like facilities [15]. These hypertext facilities allow the user to browse

related documents such as the source code or UML class diagrams. The authors are aware of

scalability issues when working with sequence diagrams and therefore proposed a number of

abstraction techniques.

Jerding et al. created the “Interaction Scenario Visualizer” (ISVis) [6], [16]. ISVis combines

static and dynamic information to accomplish amongst others feature location, the establishment

of relations between concepts and source code [44]. ISVis’ dynamic component visualizes

scenario views, which bear some resemblance to sequence diagrams. Of particular interest is the

Information Mural view, which effectively provides an overview of an entire execution scenario,

comprising hundreds of thousands of interactions. The authors have applied ISVis to the Mosaic

web browser in an attempt to extend it.

Systä et al. presented an integrated reverse engineering environment for Java that uses both

static and dynamic analysis [17], [18]. The dynamic analysis component of this environment,

SCED, visualizes the execution trace as a sequence diagram. In order to validate their approach,

a case study was performed on the Fujaba open source UML tool suite, in which a series of

program comprehension and reverse engineering tasks were conducted.

2000-2005

Souder et al. were among the first to recognize the importance of understanding distributed
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applications with the help of dynamic analysis [19]. To this purpose, they use Form, which

enables to draw sequence diagrams for distributed systems. The authors validate their approach

through a case study.

Oeschle and Schmitt built a tool called JAVAVIS that visualizes running Java software, amongst

others through sequence diagrams [20]. The authors’ main aim was to use JAVAVIS for educa-

tional purposes and their validation comprises informal feedback from students using the tool.

Hamou-Lhadj et al. created the Software Exploration and Analysis Tool (SEAT) that visualizes

execution traces as trees. It is integrated in the IDE to enable easy navigation between different

views [22]. SEAT should be considered as a research vehicle in which the authors explored

some critical features of trace visualization tools. Subsequently, they began exploring such

solutions, such as trace compression [4] or removing parts of the trace without affecting its

overall information value [23]. While the degree of compression is measured in several case

studies, the added value for program comprehension remains unquantified.

Salah and Mancoridis investigate an environment that supports the comprehension of dis-

tributed systems, which are typically characterized by the use of multiple programming languages

[24]. Their environment visualizes sequence diagrams, with a specific notation for inter-process

communication. The authors also report on a small case study. Salah et al. later continued

their dynamic analysis work and created the so-called module-interaction view, that shows

which modules are involved in the execution of a particular use case [27]. They evaluate their

visualization in a case study on Mozilla and report on how their technique enables feature

location.

Briand et al. specifically focused on visualizing sequence diagrams from distributed applica-

tions [28], [30]. Through a small case study with their prototype tool they have reverse engineered

sequence diagrams for checking design conformance, quality, and implementation choices.

Zaidman and Demeyer represented traces as signals in time [10]. More specifically, they

count how many times individual methods are executed and using this metric, they visualize the

execution of a system throughout time. This allows to identify phases and re-occurring behavior.

They show the benefits of their approach using two case studies.

2006-2007

Kuhn and Greevy also represented traces as signals in time with their “dynamic time warping”
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approach [31]. In contrast to Zaidman and Demeyer, they rely on the stack depth as the underlying

metric. The signals are compared to one another to locate features, as illustrated by a case study.

Greevy et al. explored polymetric views to visualize the behavior of features [32]. Their

3D visualization renders run-time events of a feature as towers of instances, in which a tower

represents a class and the number of boxes that compose the tower indicates the number of live

instances. Message sends between instances are depicted as connectors between the boxes. The

authors perform a case study to test their approach.

Koskinen et al. proposed behavioral profiles to understand and identify extension points for

components [33]. Their technique combines information from execution traces and behavioral

rules defined in documentation to generate these profiles, which contain an architectural level

view on the behavior of a component or application. Their ideas are illustrated in a case study.

Simmons et al. used TraceGraph to compare execution traces with the aim of locating features

[34]. Furthermore, they integrate the results of their feature location technique into a commercial

static analysis tool so as to make feature location more accessible to their industrial partner. The

authors furthermore report on a case study performed in an industrial context.

2007-2008

Cornelissen et al. looked specifically into generating sequence diagrams from test cases, arguing

that test scenarios are relatively concise execution scenarios that reveal a great deal about the

system’s inner workings [35]. They initially applied their SDR tool to a small case study, and

later extended their ideas in the publicly available JRET eclipse plugin, which was evaluated on

a medium-scale open source application [36].

Over the years, Reiss has developed numerous solutions for visualizing run-time behavior [37].

Among the most notable examples are FIELD, which visualizes dynamic call graphs, and JIVE,

which visualizes the execution behavior in terms of classes or packages. JIVE’s visualization

breaks up time in intervals and for each interval it portrays information such as the number of

allocations, the number of calls, and so on.

Jiang et al. concentrated on generating sequence diagrams specifically for studying API usage

[38]. The rationale of their approach is that it is often difficult to understand how APIs should

be used or can be reused. An evaluation of their approach is as yet not available.

Bennett et al. engineered the Oasis Sequence Explorer [40]. Oasis was created based on a
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focus group experiment that highlighted some of the most desirable features when exploring

execution traces. The authors then performed a user study to validate whether the Oasis features

were indeed helpful during a series of typical software maintenance tasks, with quite useful

measurements as a result.

Dalton and Hallstrom designed a dynamic analysis visualization toolkit specifically aimed

at TinyOS, a component-based operating system mainly used in the realm of wireless sensor

networks [41]. They generate annotated call graphs and UML sequence diagrams for studying

and understanding TinyOS applications. They illustrate the benefits of their tool through a case

study on a TinyOS component.

C. Extravis

Among our own contributions to the field of trace visualization is EXTRAVIS. This publicly

available2 tool provides two linked, interactive views, shown in Figure 1. The massive sequence

view is essentially a large-scale UML sequence diagram (similar to Jerding’s Information Mural

[45]), and offers an overview of the trace and the means to navigate it. The circular bundle

view hierarchically projects the program’s structural entities on a circle and shows their inter-

relationships in a bundled fashion. A comparison of EXTRAVIS with other tools is provided in

our earlier work [7].

We qualitatively evaluated the tool in various program comprehension contexts, including trace

exploration, feature location, and top-down program comprehension [7]. The results provided

initial evidence of EXTRAVIS’ benefits in these contexts, the main probable advantages being its

optimal use of screen real estate and the improved insight into a program’s structure. However,

we hypothesized that the relationships in the circular view may be difficult to grasp.

D. Validating trace visualizations

The overview in Table I shows that trace visualization techniques in the literature have

been almost exclusively evaluated using case studies. Indeed, there have been no efforts to

quantitatively measure the usefulness of trace visualization techniques in practice, e.g., through

controlled experiments. Moreover, the evaluations in existing work rarely involve broad spectra

2EXTRAVIS, http://swerl.tudelft.nl/extravis
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Fig. 1. EXTRAVIS’ circular bundle view and massive sequence view.

of comprehension tasks, making it difficult to judge whether the associated solutions are widely

applicable in daily practice. Lastly, most existing approaches involve traditional visualizations,

i.e., they rely on UML, graph, or tree notations, to which presumably most software engineers

are accustomed [9]. By contrast, EXTRAVIS uses non-traditional visualization techniques, and

Storey argues [46] that advanced visual interfaces are not often used in development environments

because they tend to require complex user interactions.

These reasons have motivated us to empirically validate EXTRAVIS through a controlled

experiment in which we seek to assess its added value in concrete maintenance contexts.
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III. EXPERIMENTAL DESIGN

The purpose of this paper is to provide a quantitative evaluation of trace visualization for

program comprehension. To this end, we define a series of typical comprehension tasks and

measure EXTRAVIS’ added value to a traditional programming environment: in this case, the

Eclipse IDE3. Similar to related efforts (e.g., [47], [48]) we maintain a distinction between time

spent and correctness. Furthermore, we seek to identify the types of tasks to which the use of

EXTRAVIS, and trace visualization in general, is the most beneficial.

A. Research Questions and Hypotheses

Based on our earlier case studies, we distinguish the following research questions:

1) Does the availability of EXTRAVIS reduce the time that is needed to complete typical

comprehension tasks?

2) Does the availability of EXTRAVIS increase the correctness of the solutions given during

those tasks?

3) Based on the answers to these research questions, which types of tasks can we identify that

benefit most from the use of EXTRAVIS and from trace visualization in general?

Associated with the first two research questions are two null hypotheses, which we formulate

as follows:

• H10: The availability of EXTRAVIS does not impact the time needed to complete typical

comprehension tasks.

• H20: The availability of EXTRAVIS does not impact the correctness of solutions given

during those tasks.

The alternative hypotheses that we use in the experiment are the following:

• H1: The availability of EXTRAVIS reduces the time needed to complete typical compre-

hension tasks.

• H2: The availability of EXTRAVIS increases the correctness of solutions given during those

tasks.

3Eclipse IDE, http://www.eclipse.org
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The rationale behind the first alternative hypothesis is the fact that EXTRAVIS provides a broad

overview of the subject system on one single screen, which may guide the user to his or her

goal more quickly than if switching between source files were required.

The second alternative hypothesis is motivated by the inherent precision of dynamic analysis

with respect to actual program behavior: for example, the resolution of late binding may result

in a more detailed understanding and therefore produce more accurate solutions.

To test hypotheses H10 and H20, we define a series of comprehension tasks that are to be

addressed by both a control group and an experimental group. The difference in treatment

between these groups is that the former group uses a traditional development environment (the

“Eclipse” group), whereas the latter group also has access to EXTRAVIS (the “Ecl+Ext” group).

We maintain a between-subjects design, meaning that each subject is either in the control or in

the experimental group.

Sections III-B through III-G provide a detailed description of the experiment.

B. Object

The system that is to be comprehended by the subject groups is CHECKSTYLE, a tool that

employs “checks” to verify if source code adheres to specific coding standards. Our choice for

CHECKSTYLE as the object of this experiment is motivated by the following factors:

• CHECKSTYLE is open source, which helps to make the results of our experiments repro-

ducible.

• CHECKSTYLE comprises 310 classes distributed across 21 packages, containing a total of 57

KLOC.4 This makes it tractable for an experimental session, yet adequately representative

of real life programs.

• It is written in Java, with which many potential subjects are sufficiently familiar.

• It address an application domain, adherence to coding standards, which will be undestand-

able to most potential subjects.

• The authors of this paper are familiar with its internals as a result of earlier experiments

[49], [50], [7]. Furthermore, the lead developer is available for feedback.

4Measured using sloccount by David A. Wheeler, http://sourceforge.net/projects/sloccount/.
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To obtain the necessary trace data for EXTRAVIS, we instrument CHECKSTYLE and execute it

according to two scenarios. Both involve typical runs with a small input source file, and only

differ in terms of the input configuration, which in one case specifies 64 types of checks whereas

the other specifies only six. The resulting traces contain 31,260 and 17,126 calls, respectively,

which makes them too large to be comprehended in limited time without tool support.

Analyzing the cost of creating these traces is not included in the experiment, as it is our prime

objective to analyze whether the availability of trace information is beneficial during the program

comprehension process. In practice, we suspect that execution traces will likely be obtained from

test cases – a route we also explored in our earlier work [35].

C. Task design

With respect to the comprehension tasks that are to be tackled during the experiment, we

maintain two important criteria: (1) they should be representative of real maintenance contexts,

and (2) they should not be biased towards either Eclipse or EXTRAVIS.

To this end, we apply the comprehension framework from Pacione et al. [51], who argue that

“a set of typical software comprehension tasks should seek to encapsulate the principal activities

typically performed during real world software comprehension”. They have studied several sets of

tasks used in software visualization and comprehension evaluation literature and classified them

according to nine principal activities, representing both general and specific reverse engineering

tasks and covering both static and dynamic information (Table II). Particularly the latter aspect

significantly reduces biases towards either of the two tools used in this experiment.

Using these principal activities as a basis, we propose eight representative tasks that highlight

many of CHECKSTYLE’s aspects at both high and low abstraction levels. Table III provides

descriptions of the tasks and shows how each of the nine activities from Pacione et al. is covered

by at least one task. 5 For example, activity A1, “Investigating the functionality of (part of)

the system”, is covered by tasks T1, T3.1, T4.1, and T4.2; and activity A4, “Investigating

dependencies between artifacts“, is covered by tasks T2.1, T2.2, T3.2, and T3.3.

To render the tasks more representative of real maintenance situations, tasks are given as

open rather than multiple-choice questions, making it harder for respondents to resort to simply

5Table III only contains the actual questions; the subjects were also given contextual information (such as definitions of fan-in

and coupling) which can be found in the appendix.
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TABLE II

PACIONE’S NINE PRINCIPAL COMPREHENSION ACTIVITIES

Activity Description

A1 Investigating the functionality of (a part of) the system

A2 Adding to or changing the system’s functionality

A3 Investigating the internal structure of an artifact

A4 Investigating dependencies between artifacts

A5 Investigating run-time interactions in the system

A6 Investigating how much an artifact is used

A7 Investigating patterns in the system’s execution

A8 Assessing the quality of the system’s design

A9 Understanding the domain of the system

guessing. Per answer, 0–4 points can be earned. Points are awarded by the evaluators, in our

case the first two authors. A solution model is available (see the appendix), which was reviewd

by CHECKSTYLE’s lead developer. To ensure uniform grading among the two evaluators, the

solution of five random subjects are first graded by both evaluators.

D. Subjects

The subjects in this experiment are fourteen Ph.D. candidates, nine M.Sc. students, three

postdocs, two professors, and six participants from industry. The resulting group thus consists of

34 subjects, and is quite heterogeneous in that it represents 8 different nationalities, and M.Sc.

degrees from 16 universities. The M.Sc. students are in the final stages of their computer science

studies, and the Ph.D. candidates represent different areas of software engineering, ranging

from software inspection to model-based fault diagnosis. Our choice of subjects partly mitigates

concerns from Di Penta et al., who argue that “a subject group made up entirely of students

might not adequately represent the intended user population” [52]. All subjects participate on

a voluntary basis and can therefore be assumed to be properly motivated. None of them have

prior experience with EXTRAVIS.

To partition the subjects, we distinguish five fields of expertise that could strongly influence the

individual performance. They represent variables that are to be controlled during the experiment,

and concern knowledge of Java, Eclipse, reverse engineering, CHECKSTYLE, and language

March 8, 2010 DRAFT

Cornelissen, Zaidman, van Deursen - A Controlled Experiment for Program Comprehension

14 TUD-SERG-2009-001



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 15

TABLE III

DESCRIPTIONS OF THE COMPREHENSION TASKS

Task Activities Description

Context: Gaining a general understanding.

T1 A{1,7,9} Having glanced through the available information for several minutes, which do you think are the

main stages in a typical (non-GUI) Checkstyle scenario? Formulate your answer from a high-level

perspective: refrain from using identifier names and stick to a maximum of six main stages.

Context: Identifying refactoring opportunities.

T2.1 A{4,8} Name three classes in Checkstyle that have a high fan-in and (almost) no fan-out.

T2.2 A{4,8} Name a class in the top-level package that could be a candidate for movement to the api package

because of its tight coupling with classes therein.

Context: Understanding the checking process.

T3.1 A{1,2,5,6} In general terms, describe the life cycle of the checks.whitespace.TabCharacterCheck

during execution: when is it created, what does it do and on whose command, and how does it end

up?

T3.2 A{3,4,5} List the identifiers of all method/constructor calls that typically occur between TreeWalker and a

TabCharacterCheck instance, and the order in which they are called. Make sure you also take

inherited methods/constructors into account.

T3.3 A{3,4,5,9} In comparison to the calls listed in Task T3.2., which additional calls occur between TreeWalker

and checks.coding.IllegalInstantiationCheck? Can you think of a reason for the

difference?

Context: Understanding the violation reporting process.

T4.1 A{1,3} How is the check’s warning handled, i.e., where/how does it originate, how is it internally represented,

and how is it ultimately communicated to the user?

T4.2 A{1,5} Given Simple.java as the input source and many_checks.xml as the configuration, does

checks.whitespace.WhitespaceAfterCheck report warnings? Specify how your answer

was obtained.

technology (i.e., CHECKSTYLE’s domain). The subjects’ levels of expertise in each of these

fields are measured through a (subjective) a priori assessment: we use a five-point Likert scale,

from 0 (“no knowledge”) to 4 (“expert”). In particular, we require minimum scores of 1 for

Java and Eclipse (“beginner”), and a maximum score of 3 for CHECKSTYLE (“advanced”). A

characterization of the subjects is provided in the appendix.
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Fig. 2. Average expertise of the subject groups.

The assignments to the control and experimental group are done by hand to evenly distribute

the available knowledge. The result is illustrated by Figure 2: in each group, the expertise is

chosen to be as similar as possible, resulting in an average expertise of 2.12 in both groups.

E. Experimental procedure

The experiment is performed through a dozen sessions, most of which take place at the

university. Sessions with industrial subjects take place at their premisses, in our case the Soft-

ware Improvement Group6, the industrial partner in our project. The sessions are conducted

on workstations with characteristics that were as similar as possible, i.e., at least Pentium 4

processors and comparable screen resolutions (1280×1024 or 1600×900). Given the different

locations (university and in house at company) fully equivalent setups were impossible to achieve.

Each session involves at most three subjects and features a short tutorial on Eclipse, highlight-

ing the most common features. The experimental group is also given a ten minute EXTRAVIS

tutorial that involves a JHOTDRAW execution trace used in earlier experiments [7]. All ses-

sions are supervised, enabling the subjects to pose clarification questions, and preventing them

from consulting others and from using alternative tools. The subjects are not familiar with the

experimental goal.

6Software Improvement Group, http://www.sig.eu
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The subjects are presented with a fully configured Eclipse that is readily usable, and are given

access to the example input source file and CHECKSTYLE configurations (see Section III-B). The

Ecl+Ext group is also provided with two EXTRAVIS instances, for each of the two execution

traces mentioned earlier. All subjects receive handouts that provide an introduction, CHECK-

STYLE outputs for the two aforementioned scenarios, the assignment, a debriefing questionnaire,

and reference charts for both Eclipse and EXTRAVIS. The assignment is to complete the eight

comprehension tasks within 90 minutes. The subjects are required to motivate their answers at

all times. We purposely refrain from influencing how exactly the subjects should cope with the

time limit: only when a subject exceeds the time limit is he or she told that finishing up is, in

fact, allowed. Finally, the questionnaire asks for the subjects’ opinions on such aspects as time

pressure and task difficulty.

F. Variables & Analysis

The independent variable in our experiment is the availability of EXTRAVIS during the tasks.

The first dependent variable is the time spent on each task, and is measured by having the

subjects write down the current time when starting a new task. Since going back to earlier

tasks is not allowed and the sessions are supervised, the time spent on each task can be easily

reconstructed.

The second dependent variable is the correctness of the given solutions. This is measured by

applying our solution model to the subjects’ solutions, which specifies the required elements and

the associated scores.

To test our hypotheses, we first test whether the sample distributions are normal (via a

Kolmogorov-Smirnov test) and whether they have equal variances (via Levene’s test). If these

tests pass, we use the parametric Student’s t-test to evaluate our hypotheses; otherwise we use

the (more robust, but weaker) non-parametric Mann-Whitney test.

Following our alternative hypotheses, we employ the one-tailed variant of each statistical test.

For the time as well as the correctness variable we maintain a typical confidence level of 95%

(α=0.05). The statistical package that we use for our calculations is SPSS.
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TABLE IV

DESCRIPTIVE STATISTICS OF THE EXPERIMENTAL RESULTS (34 SUBJECTS VERSION)

Time Correctness

Eclipse Ecl+Ext Eclipse Ecl+Ext

mean 77.00 59.94 12.47 17.88

difference -22.16% +43.38%

min 38 36 5 11

max 102 72 22 22

median 79 66 14 18

stdev. 18.08 12.78 4.54 3.24

one-tailed Student’s t-test

Kolmogorov-Smirnov Z 0.606 0.996 0.665 0.909

Levene F 1.370 2.630

df 32 32

t 3.177 4.000

p-value 0.002 <0.001

G. Pilot studies

Prior to the experimental sessions, we conduct two pilots to optimize several experimental

parameters, such as the number of tasks, their clarity, feasibility, and the time limit. The pilot for

the control group is performed by an author of this paper who had initially not been involved in

the experimental design. The pilot for the experimental group is conducted by an outsider. Both

would not take part in the actual experiment later on.

The results of the pilots led to the removal of two tasks because the time limit was too strict.

The removed tasks were already taken into account in Section III-B. Furthermore, the studies

led to the refinement of several tasks in order to make the questions clearer. Other than these

unclarities, the tasks were found to be sufficiently feasible in both the Eclipse and the Ecl+Ext

pilot.

IV. RESULTS

Table IV shows descriptive statistics of the measurements, aggregated over all tasks; the

measurements themselves are available as a spreadsheet.7

7Results spreadsheet (34 subjects version), http://www.st.ewi.tudelft.nl/∼cornel/results-new.xlsx
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TABLE V

DESCRIPTIVE STATISTICS OF THE EXPERIMENTAL RESULTS (24 SUBJECTS VERSION)

Time Correctness

Eclipse Ecl+Ext Eclipse Ecl+Ext

mean 74.75 59.42 12.75 18.25

difference -20.51% +43.14%

min 38 36 5 11

max 102 72 19 22

median 78 67 14 19

stdev. 18.34 14.19 4.18 3.25

one-tailed Student’s t-test

Kolmogorov-Smirnov Z 0.512 0.908 0.984 1.049

Levene F 0.467 1.044

df 22 22

t 2.291 3.598

p-value 0.016 0.001

one-tailed Mann-Whitney test

U 32.50 22.00

p-value 0.011 0.002

Table V shows the same data, but pertaining to our earlier results, involving 24 subjects instead

of 34.8 The remainder of this report discusses the results of the 34 subjects version.

Wohlin et al. [53] suggest the removal of outliers in case of extraordinary situations, such as

external events that are unlikely to reoccur. We found four outliers in our timing data and one

more in the correctness data, but could identify no such circumstances and have therefore opted

to retain those data points.

As an important factor for both time and correctness, we note that two subjects decided to stop

after 90 minutes with two tasks remaining, and one subject stopped with one task remaining,

resulting in ten missing data points in this experiment (i.e., the time spent by three subjects on

task T4.2 and by two subjects on task T4.1, as well as the correctness of the solutions involved).

Nine others finished all tasks, but only after the 90 minutes had expired: eight subjects from the

Eclipse group and one subject from the Ecl+Ext group spent between 95 and 124 minutes. The

8Results spreadsheet (24 subjects version), http://www.st.ewi.tudelft.nl/∼cornel/results.xlsx
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remaining 22 participants finished all eight tasks on time.9

In light of the missing data points, we have chosen to disregard the last two tasks in our

quantitative analyses. Not taking tasks T4.1 and T4.2 into account, only three out of the 34

subjects still exceeded the time limit (by 6, 7 and 12 minutes, respectively). This approach also

has the advantage that any ceiling effects in our data, that may have resulted from the increasing

time pressure near the end of the assignment, are strongly reduced. The remaining six tasks still

cover all of Pacione’s nine activities (Table III).

A. Time results

We start off by testing null hypothesis H10: the availability of EXTRAVIS does not impact the

time that is needed to complete typical comprehension tasks.

Figure 3(a) shows a box plot for the total time that the subjects spent on the first six tasks.

Table IV indicates that on average the Ecl+Ext group required 22.16% less time.

The Kolmogorov-Smirnov and Levene tests succeeded for the timing data, which means that

Student’s t-test may be used to test H10. As shown in Table IV, the t-test yields a statistically

significant result. The average time spent by the Ecl+Ext group was clearly lower and the p-

value 0.002 is smaller than 0.05, which means that H10 can be rejected in favor of the alternative

hypothesis H1, which states that the availability of EXTRAVIS reduces the time that is needed

to complete typical comprehension tasks.

B. Correctness results

We next test null hypothesis H20, which states that the availability of EXTRAVIS does not

impact the correctness of solutions given during typical comprehension tasks.

Figure 3(b) shows a box plot for the scores that were obtained by the subjects on the first

six tasks. Note that we consider overall scores rather than scores per task (which are left to

Section V-C). The box plot shows that the difference in terms of correctness is even more

explicit than for the timing aspect. The solutions given by the Ecl+Ext subjects were 43.38%

more accurate (Table IV), averaging 17.88 out of 24 points compared to 12.47 points for the

Eclipse group.

9Related studies point out that it is not uncommon for several tasks to remain unfinished during the actual experiments (e.g.,

[48] and [40]).
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Fig. 3. Box plots for time spent and correctness.

Similar to the timing data, the requirements for the use of the parametric t-test were met.

Table IV therefore shows the results for Student’s t-test. At less than 0.001, the p-value is

very low and implies statistical significance, meaning that H20 can be rejected in favor of our

alternative hypothesis H2, which states that the availability of EXTRAVIS increases the correctness

of solutions given during typical comprehension tasks.

V. DISCUSSION

A. Reasons for different time requirements

The lower time requirements for the EXTRAVIS users can be attributed to several factors.

First, all information offered by EXTRAVIS is shown on a single screen, which eliminates the

need for scrolling. In particular, the overview of the entire system’s structure saves much time

in comparison to conventional environments, in which typically multiple files have to be studied

at once. Second, the need to imagine how certain functionalities or interactions work at run-time

represents a substantial cognitive load on the part of the user. This is alleviated by trace analysis

and visualization tools, which show the actual run-time behavior. Examples of these assumptions

will be discussed in Section V-C.
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On the other hand, several factors may have had a negative impact on the the time requirements

of EXTRAVIS users. For example, the fact that EXTRAVIS is a standalone tool means that context

switching is necessary, which may yield a certain amount of overhead on the part of the user. This

could be solved by integrating the trace visualization technique into Eclipse (or other IDEs), with

the additional benefit that the tool could provide direct links to Eclipse’s source code browser.

However, it should be noted that EXTRAVIS would still require a substantial amount of screen

real estate to be used effectively.

Another potential factor that could have hindered the time performance of the Ecl+Ext group

is that these subjects may not have been sufficiently familiar with EXTRAVIS’ features, and were

therefore faced with a time-consuming learning curve. This is partly supported by the debriefing

questionnaire, which indicates that five out of the seventeen subjects found the tutorial too short.

A more elaborate tutorial on the use of the tool could help alleviate this issue.

B. Reasons for correctness differences

We attribute the added value of EXTRAVIS to correctness to several factors. A first one is

the inherent precision of dynamic analysis: the fact that EXTRAVIS shows the actual objects

involved in each call makes the interactions easier to understand. Section V-C discusses this in

more detail through an example task.

Second, the results of the debriefing questionnaire (Table VI) show that the Ecl+Ext group

used EXTRAVIS quite often: the subjects estimate the percentage of time they spent in EXTRAVIS

at 70% on average. In itself, this percentage is meaningless: for example, in a related study it

was observed that “heavy use of a feature does not necessarily mean it (or the tool) helps to

solve a task”, and that “repeated use may actually be a sign of frustration on the part of the

user” [40]. However, the questionnaire also shows that EXTRAVIS was used on seven of the eight

tasks on average and that the tool was actually found useful in six of those tasks (86%). This is

a strong indication that the Ecl+Ext subjects generally did not experience a resistance to using

EXTRAVIS (resulting from, e.g., a poor understanding of the tool) and were quite successful in

their attempts.

The latter assumption is further reinforced by the Ecl+Ext subjects’ opinions on the speed and

responsiveness of the tool, averaging a score of 1.35 on a scale of 0-2, which is between “pretty

OK: occasionally had to wait for information” and “very quickly: the information was shown
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TABLE VI

DEBRIEFING QUESTIONNAIRE RESULTS

Eclipse Ecl+Ext

mean stdev. mean stdev.

Miscellaneous

Perceived time pressure (0-4) 2.18 1.19 2.06 0.66

Knowledge of dynamic analysis (0-4) 2.26 1.22 2.53 1.12

Perceived task difficulty (0-4)

T1 1.00 0.71 1.65 0.79

T2.1 2.59 1.18 1.18 0.64

T2.2 2.24 1.15 1.53 0.80

T3.1 2.12 0.78 2.12 0.70

T3.2 2.29 0.92 1.53 0.72

T3.3 2.18 0.95 1.47 0.94

T4.1 2.40 0.63 2.65 0.86

T4.2 1.53 0.92 1.63 1.02

Average 2.04 1.72

Use of EXTRAVIS

No. of features used 7.12 2.67

No. of tasks conducted w/ tool 7.00 1.06

No. of tasks successfully conducted w/ tool 6.00 1.55

Est. % of time spent in tool 70.00 24.99

Perceived tool speed (0-2) 1.35 0.49

instantly”. Furthermore, all 34 subjects turned out to be quite familiar with dynamic analysis:

in the questionnaire they indicated an average knowledge level of 2.3 on a scale of 0-4 on this

topic, which is between “I’m familiar with it and can name one or two benefits” and “I know

it quite well and performed it once or twice”.

As a side note, in a related study [48], no correlation could be identified between the subjects’

experience levels and their performance. While in our experiment the same holds for the Ecl+Ext

group and for correctness in the Eclipse group, there does exist a negative correlation between

expertise and the time effort in the latter group: a high average expertise yielded lower time

requirements, and vice versa. This observation partly underlines the importance of an adequate

selection procedure when recruiting subjects for software engineering experiments.
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Fig. 4. Averages per task.

C. Individual task performance

To address our third research question, whether are certain types of comprehension tasks that

benefit most from the use of EXTRAVIS (see Section III-A) we examine the performance per

task in more detail. Figure 4 shows the average scores and time spent by each group from a

task perspective.

While the experiment concerned only eight tasks, our data does suggest a negative correlation

between time spent and correctness, in the sense that relatively little effort and a relatively high

score (and vice versa) often go hand in hand.

Task T1

The goal of the first task was to identify and globally understand the most prominent stages in

a typical CHECKSTYLE scenario (Table III). The groups scored equally well on this task and

required similar amounts of time. According to the motivations of their solutions, the Eclipse

group typically studied the main() method: however, such important phases as the building and

parsing of an AST were often missing because they are not directly visible at the main() level.

On the other hand, the EXTRAVIS users mostly studied an actual execution scenario through the

March 8, 2010 DRAFT

Cornelissen, Zaidman, van Deursen - A Controlled Experiment for Program Comprehension

24 TUD-SERG-2009-001



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 25

massive sequence view, which proved quite effective and led to slightly more accurate solutions.

Task T2.1

Task T2.1 concerned a fan-in/fan-out analysis that turned out to be significantly easier for the

Ecl+Ext group, who scored 1.1 more points and needed only half the time. This is presumably

explained by EXTRAVIS’ circular view, from which all classes and their interrelationships can

be directly interpreted. The Eclipse group mostly carried out a manual search for utility-like

classes, opening numerous source files in the process, which is time-consuming and does not

necessarily yield optimal results.

Task T2.2

This task was similar to the previous one, except that the focus was more on coupling. While

there still exists a performance difference, it is much smaller this time round. According to the

given solutions, the Ecl+Ext group again resorted to the circular view to look for high edge

concentrations, while the Eclipse group mostly went searching for specific imports. The fact that

a more specific (and automated) search was possible in this case may account for the improved

performance of the latter group.

Task T3.1

Task T3.1 asked the participants to study a certain check to understand its life cycle, from

creation to destruction. The performance difference here was quite subtle, with the Ecl+Ext

group apparently having had a small advantage. Eclipse users typically studied the check’s

source code and started a more broad investigation from there. EXTRAVIS users mostly used

our tool to highlight the check in the given execution trace and examine the interactions that

were found. Interestingly, only a handful of subjects discovered that the checks are in fact

dynamically loaded, and both groups often missed the explicit destruction of each check at the

end of execution, which is not easily observed in Eclipse nor in EXTRAVIS.

Task T3.2

The goal of this follow-up task was to understand the protocol between a check and a certain

key class, and asked the subjects to provide a list of interactions between these classes. The fact

that the check at hand is an extension of a superclass that is an extension in itself, forced the

Eclipse group to distribute its focus across each and every class in the check’s type hierarchy.
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EXTRAVIS users often highlighted the mutual interactions of the two classes at hand in the tool.

As suggested by Figure 4, the latter approach is both faster and much more accurate (as there

is a smaller chance of calls being missed).

Task T3.3

This task was similar to the previous one, except that it revolved around another type of check.

The difference is that this check is dependent on the AST of the input source file, whereas the

check in task T3.2 operates directly on the file. Finding the additional interactions was not too

difficult for the EXTRAVIS users, who could follow a similar routine to last time. On the other

hand, in Eclipse the subtle differences were often overlooked, especially if it was not understood

that (and why) this check is fundamentally different from the previous one.

Task T4.1

Task T4.1 posed the challenging question of how CHECKSTYLE’s error handling mechanism

is implemented. It is the only task on which the Ecl+Ext group was clearly outperformed in

terms of both time and correctness. The Eclipse group rated the difficulty of this task at 2.4,

which is between “intermediate” and “difficult”, whereas EXTRAVIS users rated the difficulty

of this task at 2.65, leaning toward “difficult”. An important reason might be that EXTRAVIS

users did not know exactly what to look for in the execution trace, because the question was

rather abstract in the sense that no clear starting point was given. On the other hand, the Eclipse

group mostly used one of the checks as a baseline and followed the error propagation process

from there. The latter approach is typically faster: the availability of EXTRAVIS may have been

a distraction rather than an added value in this case.

Task T4.2

The focus in the final task was on testing the behavior of a check: given that a new check

has been written and an input source file is available, how can we test if it works correctly?

The Ecl+Ext group often searched the execution traces for communication between the check

and the violation container class, which is quite effective once that class has been found. The

Eclipse group had several choices. A few subjects tried to understand the check and apply this

knowledge on the given input source file, i.e., understand which items the check is looking for,

and then verify if these items occur in the input source file. Others tried to relate the check’s
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typical warning message (once it was determined) to example outputs given in the handouts; yet

others used the Eclipse debugger, e.g., by inserting breakpoints or print statements in the error

handling mechanism. With the exception of debugging, most of the latter approaches are quite

time-consuming, if successful at all. Still, we observe no large difference in time spent: the fact

that eight members of the Eclipse group had already exceeded the time limit at this point may

have caused them to hurry, thereby reducing not only the time effort but also the score.

Summary

Following our interpretation of the individual task performance, we now formulate an analytical

generalization [54] based on the quantitative results discussed earlier, the debriefing questionnaire

results, and the four case studies from our earlier work [7].

Global structural insight. From the results of tasks T2.1 and T2.2 it has become clear

that EXTRAVIS’ circular view is of great help in grasping the structural relationships of the

subject system. In particular, the bundling feature ensures that the many relations can all be

shown simultaneously on a single screen. This poses a great advantage to using a standard IDE,

in which often involves browsing through multiple files when a high-level structural insight

is required. While any trace visualization technique could be helpful for such tasks, it should

provide some means of visualizing the system’s structural decomposition (e.g., UML sequence

diagrams with hierarchically ordered lifelines [55]).

Global behavioral insight. In addition to structural insight, EXTRAVIS provides a navigable

overview of an entire execution trace through the massive sequence view. As illustrated in earlier

case studies and in task T1, this view visualizes the trace such that patterns can be visually

distinguished. These patterns correspond to execution phases, the identification of which can be

quite helpful in decomposing the subject system’s behavior into smaller, more tractable pieces

of functionality. In the case of CHECKSTYLE, this approach turned out to reveal more accurate

information than could be derived from examining the main() method. A trace visualization

technique must include some sort of navigable overview for it to be useful for such tasks.

Detailed behavioral insight. One of the main benefits of dynamic analysis is that occurrences

of late binding are resolved, i.e., the maintainer can observe the actual objects involved in an

execution scenario. This contributes to a more detailed understanding of a program’s behavior.

This is illustrated by tasks T3.2 and T3.3, which proved quite difficult for the Eclipse group
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as these tasks concerned the identification of inherited methods, which are difficult to track

down unless some form of run-time analysis is possible. We expect this particular advantage of

dynamic analysis to be exploitable by any trace visualization technique.

Goal-oriented strategy. Trace visualization is not always the best solution: the results for

task T4.1 showed a clear advantage for the Eclipse group. We believe that the reason can be

generalized as follows: dynamic analysis typically involves a goal-oriented strategy, in the sense

that one must know what to look for. (This follows from the fact that an appropriate execution

scenario must be chosen.) If such a strategy is not feasible, e.g., because there is no clear starting

point (such as the name of a certain class), then a strong reliance on dynamic analysis will result

in mere confusion, which means that one must resort to traditional solutions such as the IDE

instead.

D. Related experiments

There exist no earlier studies in the literature that offer quantitative evidence of the added

value of trace visualization techniques for program comprehension. We therefore describe the

experiments that are most closely related to our topic.

The aforementioned article from Bennett et al. concerned a user study involving a sequence di-

agram reconstruction tool [40]. Rather than measure its added value for program comprehension,

they sought to characterize the manner in which the tool is used in practice. To this end, they

had six subjects perform a series of comprehension tasks, and measured when and how the tool

features were used. Among their findings was that tool features are not often formally evaluated

in literature, and that heavily used tool features may indicate confusion among the users. Another

important observation was that much time was spent on scrolling, which supports our hypothesis

that EXTRAVIS saves time as it shows all information on a single screen.

Quante performed a controlled experiment to assess the benefits of Dynamic Object Process

Graphs (DOPGs) for program comprehension [48]. While these graphs are built from run-time

data, they do not actually visualize execution traces. The experiment involved 25 students and a

series of feature location tasks for two subject systems. The use of DOPGs by his experimental

group led to a significant decrease in time and a significant increase in correctness in case

of the first system; however, the differences in case of the second system were not statistically

significant. This suggests that evaluations on additional systems are also desirable for EXTRAVIS
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and should be considered as future work. Also of interest is that the latter subject system was

four times smaller than the former, but had three DOPGs associated with it instead of one. This

may have resulted in an information overload on the part of the user, once more suggesting that

users are best served by as little information as possible.

Among the contributions by Hamou-Lhadj and Lethbridge are encouraging quantitative results

with respect to their trace summarization algorithm, effectively reducing large traces to a little as

0.5% of the original size [4]. However, the measurements performed relate to the effectiveness of

the algorithm in terms of reduction power, rather than its added value in actual comprehension

tasks.

VI. THREATS TO VALIDITY

This section discusses the validity threats in our experiment and the manners in which we have

addressed them. We have identified three types of validity threats: (1) internal validity, referring

to the cause-effect inferences made during the analysis; (2) external validity, concerning the

generalizability of the results to different contexts; and (3) construct validity, seeking agreement

between a theoretical concept and a specific measuring procedure.

A. Internal validity

Subjects. There exist several internal validity threats that relate to the subjects used in this

experiment. First of all, the subjects may not have been sufficiently competent. We have reduced

this threat through the a priori assessment of the subjects’ competence in five relevant fields,

which pointed out that all subjects had at least an elementary knowledge of Eclipse (2.47

in Figure 2) and no expert knowledge of CHECKSTYLE. Furthermore, participants could ask

questions on both tools during the experiments, and a quick reference chart was available.

Second, their knowledge may not have been fairly distributed across the control group and

experimental group. This threat was alleviated by grouping the subjects such that their expertise

was evenly distributed across the groups (Figure 2).

Third, the subjects may not have been properly motivated, or may have had too much

knowledge of the experimental goal. The former threat is mitigated by the fact that they all

participated on a voluntary basis; as for the latter, the subjects were not familiar with the actual

research questions or hypotheses (although they may have guessed).
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Tasks. The comprehension tasks were designed by the authors of this paper, and therefore may

have been biased toward EXTRAVIS (as this tool was also designed by the authors). To avoid

this threat, we have applied an established task framework [51] to ensure that many aspects of

typical comprehension contexts are covered. As a result, the tasks concerned both global and

detailed knowledge, and both static and dynamic aspects.

Another task-related threat is that the tasks may have been too difficult. We refute this

possibility on the basis of the correctness results, which show that maximum scores were

occasionally awarded in both groups for all but one task (T3.1), which in the Eclipse group

often yielded 3 points but never 4. However, the average scores for this task were a decent 2.53

(stdev. 0.51) and 2.88 (stdev. 0.86) in the Eclipse group and Ecl+Ext group, respectively. This

point of view is further reinforced by the subjects’ opinions on the task difficulties: the task

they found hardest (T4.1) yielded good scores, being 3.07 (stdev. 1.10) for the Eclipse group

and 2.82 (stdev. 0.81) for the Eclipse+Extravis group.

Also related to the tasks is the possibility that the subjects’ solutions were graded incorrectly.

This threat was reduced in our experiment by creating concept solutions in advance and by

having CHECKSTYLE’s lead developer review and refine them. This resulted in a solution model

that clearly states the required elements (and corresponding points) for each task. Furthermore, to

verify the soundness of the reviewing process, the first two authors of this paper independently

reviewed the solutions of five random subjects: on each of the five occasions the difference

was no higher than one point (out of the maximum of 32 points), suggesting a high inter-rater

reliability.

Miscellaneous. The results may have been influenced by time constraints that were too loose

or too strict. We have attempted to circumvent this threat by performing two pilot studies, which

led to the removal of two tasks. Still, not all subjects finished the tasks in time, but the average

time pressure (as indicated by the subjects in the debriefing questionnaire) was found to be 2.18

(stdev. 1.19) in the Eclipse group and 2.06 (stdev. 0.66) in the Ecl+Ext group on a scale of

0-4, which roughly corresponds to only a “fair amount of time pressure”. Also, in our results

analysis we have disregarded the last two tasks, upon which only three out of the 34 subjects

still exceeded the time limit.

As several test subjects did not finish tasks T4.1 and T4.2 (within time), we decided to elimi-
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nate these tasks from the analysis of our results. This removal may have benefited the EXTRAVIS

results because task T4.1 is one of the few tasks at which the Eclipse group outperformed the

EXTRAVIS users. Fortunately, with EXTRAVIS shown to be 43% more accurate and 21% less

time-consuming, the conclusion that EXTRAVIS constitutes a significant added value for program

comprehension would likely still be valid if tasks T4.1 and T4.2 were taken into account. Future

refinements of the experimental design should examine optimizations of the time limit policy.

The two execution traces that we provided to the experimental group for use in EXTRAVIS are

relatively small, containing 31,260 and 17,126 calls respectively. The fact that these traces are

relatively small might influence the usability of EXTRAVIS: in particular, large traces could render

EXTRAVIS a little less responsive and therefore a bit more time-consuming to use. However,

earlier case studies [7] that we performed with EXTRAVIS (involving much larger traces) lead

us to believe that the usability impact of using larger traces is probably minor.

Furthermore, our statistical analysis may not be completely accurate due to the missing data

points that we mentioned in Section IV. This concerned two subjects who did not finish the last

two tasks and one subject who did not finish the last task. Fortunately, the effect of the missing

timing and correctness data points on our calculations is negligible: had the subjects finished

the tasks, their total time spent and average score could have been higher, but this would only

have affected the analysis of all eight tasks whereas our focus has been on the first six.

Another validity threat could be the fact that the control group only had access to the Eclipse

IDE, whereas the experimental group also received two execution traces (next to Eclipse and

the EXTRAVIS tool). However, we believe that the Eclipse group would not have benefited from

the availability of execution traces because they are too large to be navigated without any tool

support.

Lastly, it could be suggested that Eclipse is more powerful if additional plugins are used.

However, as evidenced by the results of the debriefing questionnaire, only two subjects named

specific plugins that would have made the tasks easier, and these related to only two of the eight

tasks. We therefore expect that additional plugins would not have had a significant impact.

B. External validity

The generalizability of our results could be hampered by the limited representativeness of the

subjects, the tasks, and CHECKSTYLE as a subject system.
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Concerning the subjects, the use of professional developers instead of (mainly) Ph.D. candi-

dates and M.Sc. students could have yielded different results. Unfortunately, motivating people

from industry to sacrifice two hours of their precious time is quite difficult. Nevertheless, against

the background of related studies that often employ undergraduate students, we assume the

expertise levels of our 34 subjects to be relatively high. This assumption is partly reinforced by

the (subjective) a priori assessment, in which the subjects rated themselves as being “advanced”

with Java (avg. 3.06, stdev. 0.65), and “regular” at using Eclipse (avg. 2.47, stdev. 0.90). We

acknowledge that our subjects’ knowledge of dynamic analysis may have been greater than in

industry, averaging 2.26 (Table VI).

Another external validity threat concerns the comprehension tasks, which may not reflect real

maintenance situations. We tried to neutralize this threat by relying on Pacione’s framework

[51], which is based on activities often found in software visualization and the comprehension

evaluation literature. The resulting tasks were reasonably complicated: Both groups encountered

a task of which they rated the difficulty between 2.5 and 3.0, roughly corresponding to “difficult”

(See the debriefing questionnairre results in Table VI). Furthermore, they also included an element

of “surprise”: Task 3.1, for example, required the subjects to describe the life cycle of a given

object, which made the majority of subjects enter in a fruitless search for its constructor, whereas

the object was in fact dynamically loaded. Last but not least, the tasks concerned open questions,

which approximate real life contexts better than multiple choice questions do. Nevertheless,

arriving at a representative set of tasks that is suitable for use in experiments by different

researchers is a significant challenge, which warrants further research.

Finally, the use of a different subject system (or additional runs) may have yielded different

or more reliable results. CHECKSTYLE was chosen on the basis of several important criteria: in

particular, finding another system of which the experimenters have sufficient knowledge is not

trivial. Moreover, an additional case (or additional run) imposes twice the burden on the subjects

or requires more of them. While this may be feasible in case the groups consist exclusively of

students, it is not realistic in case of Ph.D. candidates or professional developers because they

often have little time to spare.
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C. Construct validity

In our experiment, we assessed the added value of our EXTRAVIS tool for program compre-

hension, and sought to generalize this added value to trace visualization techniques in general

(Section V-C). However, it should be noted that the experiment does not enable a distinction

between EXTRAVIS and trace visualization: we cannot tell whether the performance improvement

should be attributed to trace visualization in general or to specific aspects of EXTRAVIS (e.g.,

the circular bundle view). To characterize the difference, there is a need for similar experiments

involving other trace visualization techniques.

As another potential threat to construct validity, the control group did not have access to

the execution traces. This may have biased the experimental group because they had more

data to work with. The rationale behind this decision was our intent to mimic real-life working

conditions, in which software engineers often limit themselves to the use of the IDE. The subjects

could still study the behavior of the application using, e.g., the built-in debugger in Eclipse (which

in the experiment was available to both groups and was indeed used by some).

VII. CONCLUSIONS

In this paper, we have reported on a controlled experiment that was aimed at the quantitative

evaluation of EXTRAVIS, our tool for execution trace visualization. We designed eight typical

tasks aimed at gaining an understanding of an open source program, and measured the perfor-

mance of a control group (using the Eclipse IDE) and an experimental group (using both Eclipse

and EXTRAVIS) in terms of time spent and correctness.

The results clearly illustrate EXTRAVIS’ usefulness for program comprehension. With respect

to time, the added value of EXTRAVIS was found to be statistically significant: on average, the

EXTRAVIS group spent 22% less time on the given tasks. In terms of correctness, the results

turned out even more convincing: EXTRAVIS’ added value was again statistically significant, with

the EXTRAVIS users scoring 43% more points on average. For the tasks that we considered, these

results testify to EXTRAVIS’ benefits compared to conventional tools: in this case, the Eclipse

IDE.

To determine which types of tasks are best suited for EXTRAVIS or for trace visualization

in general, we studied the group performance per task in more detail. While inferences drawn

from one experiment and eight tasks cannot be conclusive, the experimental results do provide a
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strong indication as to EXTRAVIS’ strengths. First, questions that require insight into a system’s

structural relations are solved relatively easily due to EXTRAVIS’ circular view, as it shows all

of the system’s structural entities and their call relationships on one single screen. Second, tasks

that require a user to globally understand a system’s behavior are easier to tackle when a visual

representation of a trace is provided, as it decomposes the system’s execution into tractable parts.

Third, questions involving a detailed behavioral understanding seem to benefit greatly from the

fact that dynamic analysis reveals the actual objects involved in each interaction, saving the user

the effort of browsing multiple source files.

This paper demonstrates the potential of trace visualization for program comprehension, and

paves the way for other researchers to conduct similar experiments. The work described in this

paper makes the following contributions:

• A systematic literature survey of existing trace visualization techniques in the literature,

and a description of the 21 contributions that were found.

• The design of a controlled experiment for the quantitative evaluation of trace visualization

techniques for program comprehension, involving eight reusable tasks and a validated

solution model.

• The execution of this experiment on a group of 34 representative subjects, demonstrating

a 22% decrease in time effort and a 43% increase in correctness.

• A discussion on the types of tasks for which EXTRAVIS, and trace visualization in general,

are best suited.

A. Future work

As mentioned in Section V-D, a related study has pointed out that results may differ quite

significantly across different subject systems. It is therefore part of our future directions to

replicate our experiment on another subject system.

Furthermore, we seek collaborations with fellow researchers to evaluate other existing trace

visualization techniques. By subjecting other such techniques to the same experimental procedure,

we might be able to quantify their added values for program comprehension as well, and compare

their performance to that of EXTRAVIS.

Finally, we believe that strong quantitative results such as the ones presented in this study

could play a crucial role in making industry realize the potential of dynamic analysis in their
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daily work. In particular, they might be interested to incorporate trace visualization tools in their

development cycle, and be willing to collaborate in a longitudinal study for us to investigate the

long-term benefits of dynamic analysis in practice. Another aim of such a longitudinal study

could be to shed light on how software engineers using a dynamic analysis tool define an

execution scenario, how often they do this, and how much time they spend on it.
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Subjects & Results

TABLE VII

CHARACTERIZATION OF THE SUBJECTS AND THEIR PERFORMANCE, ORDERED BY AVERAGE EXPERTISE.

Expertise (0-4) Performance (T1-T3)

Subj. Affil. M.Sc. Avg Java Ecl. Chkst. Lang.tech. Rev.eng. Time Correctness

1 SIG VU 3.4 4 4 1 4 4 54 22

2 CWI UvA 3.2 4 4 1 4 3 56 7

3 TUD .at 3.0 4 4 0 3 4 67 13

4 SIG UU 3.0 3 3 3 3 3 55 14

5 TUD TUD 2.8 4 3 2 2 3 70 18

6 SIG TU/e 2.8 4 4 1 2 3 68 17

7 TUD UU 2.8 4 4 0 4 2 68 20

8 CWI UvA 2.8 4 3 3 2 2 38 16

9 SIG .pt 2.4 3 3 1 2 3 64 18

10 SIG .pt 2.4 3 3 1 2 3 84 9

11 TUD KUN 2.2 3 3 1 3 1 59 18

12 TUD .pt 2.2 3 2 0 3 3 37 11

13 TUD TUD 2.2 3 2 0 3 3 63 15

14 .pt .pt 2.2 3 3 2 2 1 78 8

15 .fi .fi 2.0 4 1 1 0 4 70 22

16 UT UT 2.0 3 1 1 3 2 70 14

17 TUD TUD 2.0 2 3 0 3 2 96 9

18 TUD TUD 2.0 3 3 0 2 2 70 13

19 TUD .fr 2.0 3 2 0 2 3 81 19

20 .be .be 2.0 3 2 0 2 3 84 14

21 .au .au 2.0 2 2 0 4 2 77 15

22 TUD TUD 1.8 3 2 0 2 2 66 19

23 TUD TUD 1.8 3 2 0 3 1 36 19

24 TUD .es 1.8 3 2 0 2 2 58 19

25 TUD RUG 1.8 3 2 0 3 1 38 20

26 TUD TUD 1.8 3 3 0 2 2 72 22

27 TUD TUD 1.8 3 2 0 3 0 97 14

28 TUD TUD 1.6 3 2 0 2 1 70 18

29 TUD TUD 1.6 2 1 0 2 2 44 22

30 TUD UU 1.6 2 1 0 3 2 88 15

31 TUD TUD 1.4 3 2 0 1 1 69 13

32 TUD .de 1.4 3 2 0 2 0 79 7

33 .be .be 1.2 2 2 0 1 1 102 5

34 TUD TUD 1.0 2 1 0 2 0 100 11
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Handouts

Introduction

Thank you for your willingness to participate in this experiment! Empirical studies are not very

common in the field of software understanding because this field has a strong cognitive aspect

that is difficult to measure. This makes controlled experiments (such as the one in which you

are now participating) all the more valuable. I hope you will find it an interesting experience.

The context of this experiment concerns a (fictive) developer who is asked to perform certain

maintenance tasks on a system, but who is unfamiliar with its implementation. The focus of the

experiment is not on performing these maintenance tasks, but rather on gaining the necessary

knowledge and measuring the effort that is involved therein.

The case study in this experiment is Checkstyle. From the Checkstyle site:

Checkstyle is a development tool to help programmers write Java code that adheres to

a coding standard. It automates the process of checking Java code to spare humans of

this boring (but important) task. This makes it ideal for projects that want to enforce

a coding standard.

In short, Checkstyle takes as inputs a Java source file, and an XML configuration file that

specifies the coding standards that must be enforced, i.e., the checks that are to be used.

Most people are not familiar with Checkstyle’s implementation. However, IDEs (such as

Eclipse) and effective tools may be able to assist in understanding Checkstyle’s inner workings,

and most of the source code is fairly documented.

You are given 90 minutes for four comprehension tasks, which have been structured according

to their maintenance contexts. Each task involves several related subtasks, some of which

designed to help you on your way. The task ordering implies a top-down approach: we start by

building a general knowledge of the system and then drill down to a more detailed understanding.

For each of the subtasks, you are asked to write down the following items:

• Your answer.

• A motivation of your answer. In most cases it suffices to briefly describe how your answer

was obtained.

• The time at which you started this subtask (important!).
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Furthermore, you are asked (1) to not consult any other participants, (2) to perform the tasks in

the order specified, and (3) to not return to earlier tasks because it affects the timing. Finally,

while there is an online documentation available for Checkstyle, you are kindly requested not

to use this, because we want to simulate a real life case in which up-to-date documentation is

often lacking. Using the Internet is allowed only for Java-related resources (e.g., APIs).

We start off by describing the tools at your disposal. You are then presented with the compre-

hension tasks, at which point your 90 minutes start ticking. The experiment is concluded with

a short questionnaire.
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Using the Eclipse IDE

Eclipse is the IDE that you will be using to perform the tasks. You are expected to have a basic

knowledge of Eclipse, but a quick “reference chart” is provided nonetheless. While this chart

only shows the basic features, of course you are encouraged to use more advanced functionalities

if you are familiar with them.

Your Eclipse setup contains a project with Checkstyle’s source (and links to its external

libraries). Several aspects are worth mentioning:

• Checkstyle’s testsuite is not available to you. This reflects real life cases in which the

testsuite is not complete, out of date, or non-existent at all.

• The experiment will not be concentrating on Checkstyle’s GUI.

• You may compile and run the application if so desired.

Finally, you have at your disposal an input source file, Simple.java; and two different

configuration XML-files, many_checks.xml and several_checks.xml. The resulting

outputs of running Checkstyle with these inputs are given on the next few pages.

Should you have trouble using Eclipse, please refer to the reference chart, or consult me (Bas).
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Using Extravis

In addition to the Eclipse IDE, you will also have access to Extravis during the experiment.

Extravis is a dynamic analysis tool, which means it provides information on the system’s run-

time behavior. In this experiment, this is done through execution traces, which were obtained

by instrumenting Checkstyle and then having it run a certain execution scenario. Such traces

contain:

1) A chronological ordering of all method and constructor calls that occurred during execution.

Typically this amounts to thousands or even millions of events for each scenario.

2) The actual class instances (objects) on which these methods and constructors were invoked.

This means that (e.g.) if class A inherits method a() from some superclass B, the trace

will show the receiver of the call A.a() to be A, not B.

Extravis visualizes these execution traces and the program’s package decomposition, and

provides means to navigate this information.

A quick reference chart of Extravis has been provided as part of the handouts. In addition to

depicting all method and constructor calls that occurred in the scenario, Extravis also shows the

actual parameters and actual return values for those calls. The developer is thus provided with

a rich and accurate source of information with respect to the scenario at hand.

You have two execution traces at your disposal:

simple-many_checks and simple-several_checks. The former trace is the result of

Checkstyle’s execution with Simple.java and many_checks.xml as its parameters; the

latter trace was also obtained using Simple.java, but with

several_checks.xml as the configuration file.

Finally, some aspects that are worth noting:

• Only Checkstyle’s core functionalities were instrumented, which means that the resulting

traces do not contain calls to, or from, external libraries or the JDK.

• Extravis provides two linked views: changes made in the one view are propagated toward

the other.

• The leftmost view concentrates on visualizing the target system’s structure and its (run-

time!) interrelationships, whereas the rightmost view focuses more on navigating the trace.
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In other words, Extravis answers questions related to a program’s actual execution, and aims

to provide insight in the interactions that take place.

You are free to use Extravis during your tasks whenever you see fit. Should you have trouble

using the tool, please refer to the reference chart, or consult me (Bas).
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Checkstyle outputs

bas@laptop:˜/checkstyle-4.4$ java

-jar checkstyle-all-4.4.jar

-c several_checks.xml Simple.java

Starting audit...

Simple.java:11: Line has trailing spaces.

Simple.java:17:1: Line contains a tab character.

Simple.java:18:1: Line contains a tab character.

Simple.java:19:1: Line contains a tab character.

Simple.java:20:1: Line contains a tab character.

Simple.java:21:1: Line contains a tab character.

Simple.java:23:1: Line contains a tab character.

Simple.java:24:1: Line contains a tab character.

Simple.java:25:1: Line contains a tab character.

Simple.java:26:1: Line contains a tab character.

Simple.java:27:1: Line contains a tab character.

Simple.java:28:1: Line contains a tab character.

Simple.java:29: Line has trailing spaces.

Simple.java:29:1: Line contains a tab character.

Simple.java:30:1: Line contains a tab character.

Simple.java:31:1: Line contains a tab character.

Simple.java:32:1: Line contains a tab character.

Simple.java:33:1: Line contains a tab character.

Simple.java:34:1: Line contains a tab character.

Simple.java:35:1: Line contains a tab character.

Simple.java:36:1: Line contains a tab character.

Simple.java:37:1: Line contains a tab character.

Simple.java:38:1: Line contains a tab character.

Simple.java:40:1: Line contains a tab character.

Simple.java:40:9: Missing a Javadoc comment.

Simple.java:41:1: Line contains a tab character.

Simple.java:42:1: Line contains a tab character.

Simple.java:43:1: Line contains a tab character.

Simple.java:44:1: Line contains a tab character.
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Simple.java:45:1: Line contains a tab character.

Simple.java:46:1: Line contains a tab character.

Simple.java:47:1: Line contains a tab character.

Audit done.

bas@laptop:˜/checkstyle-4.4$ java

-jar checkstyle-all-4.4.jar

-c many_checks.xml Simple.java

Starting audit...

/home/bas/checkstyle-4.4/package.html:0: Missing

package documentation file.

Simple.java:11: Line has trailing spaces.

Simple.java:17:1: Line contains a tab character.

Simple.java:17:9: Missing a Javadoc comment.

Simple.java:18:1: Line contains a tab character.

Simple.java:18:9: Missing a Javadoc comment.

Simple.java:19:1: Line contains a tab character.

Simple.java:19:9: Missing a Javadoc comment.

Simple.java:19:23: ’<’ is not preceded with

whitespace.

Simple.java:19:24: ’<’ is not followed by

whitespace.

Simple.java:19:31: ’>’ is not preceded with

whitespace.

Simple.java:20:1: Line contains a tab character.

Simple.java:20:9: Missing a Javadoc comment.

Simple.java:21:1: Line contains a tab character.

Simple.java:21:9: Missing a Javadoc comment.

Simple.java:23:1: Line contains a tab character.

Simple.java:24:1: Line contains a tab character.

Simple.java:25:1: Line contains a tab character.

Simple.java:26:1: Line contains a tab character.

Simple.java:27:1: Line contains a tab character.

Simple.java:28:1: Line contains a tab character.
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Simple.java:29: Line has trailing spaces.

Simple.java:29:1: Line contains a tab character.

Simple.java:30:1: Line contains a tab character.

Simple.java:31:1: Line contains a tab character.

Simple.java:32:1: Line contains a tab character.

Simple.java:33:1: Line contains a tab character.

Simple.java:34:1: Line contains a tab character.

Simple.java:34:21: Parameter map should be final.

Simple.java:35:1: Line contains a tab character.

Simple.java:36:1: Line contains a tab character.

Simple.java:37:1: Line contains a tab character.

Simple.java:38:1: Line contains a tab character.

Simple.java:40:1: Line contains a tab character.

Simple.java:40:9: Method ’initialize’ is not

designed for extension - needs

to be abstract, final or empty.

Simple.java:40:9: Missing a Javadoc comment.

Simple.java:41:1: Line contains a tab character.

Simple.java:41:38: ’<’ is not preceded with

whitespace.

Simple.java:41:39: ’<’ is not followed by

whitespace.

Simple.java:41:46: ’>’ is not preceded with

whitespace.

Simple.java:41:47: ’>’ is not followed by

whitespace.

Simple.java:42:1: Line contains a tab character.

Simple.java:43:1: Line contains a tab character.

Simple.java:44:1: Line contains a tab character.

Simple.java:45:1: Line contains a tab character.

Simple.java:46:1: Line contains a tab character.

Simple.java:47:1: Line contains a tab character.

Audit done.
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Tasks

1. Gaining a general understanding

The first thing the developer might desire is a first impression of how Checkstyle works,

especially in case domain knowledge is lacking.

• Task 1. [ current time: . . : . . ]

Having glanced through the available information for several minutes, which do you think

are the main stages in a typical (non-GUI) Checkstyle scenario? Formulate your answer

from a high-level perspective: refrain from using identifier names and stick to a maximum

of six main stages.

2. Identifying refactoring opportunities

In certain cases (not necessarily Checkstyle) it is desirable to modify the program’s package

hierarchy. Examples include the movement of tightly coupled classes to the same package, and

the movement of classes with high fan-in and (almost) no fan-out to a utility package.

The fan-in of a class is defined as the number of distinct methods/constructors directed

toward that class, not counting self-calls. Its fan-out is defined as the number of distinct meth-

ods/constructors directed toward other classes.

• Task 2.1. [ current time: . . : . . ]

Name three classes in Checkstyle that have a high fan-in and (almost) no fan-out.

Assume that a tight coupling is characterized by a relatively large number of different method

calls between two structural entities (e.g., classes or packages).

• Task 2.2. [ current time: . . : . . ]

Name a class in the default package (i.e., classes not in any package) that could be a

candidate for movement to the api package because of its tight coupling with classes

therein.

3. Understanding the checking process

Checkstyle’s purpose is the application of checks on its input source file. These checks each have

their own class and are located in the checks-package. They can be written by a developer

and contributed to the Checkstyle package: For example, one could write a check to impose a

March 8, 2010 DRAFT

Cornelissen, Zaidman, van Deursen - A Controlled Experiment for Program Comprehension

48 TUD-SERG-2009-001



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 49

limit on the number of methods in a class. If our developer wants to write a new check, one

way to gain the necessary knowledge is to study existing checks (i.e., learning by example).

Let’s assume that we want to know how

checks.whitespace.TabCharacterCheck interacts with the rest of the program, and

that this check is part of the current configuration (and will therefore be applied).

• Task 3.1. [ current time: . . : . . ]

In general terms, describe the life cycle of this check during execution: when is it created,

what does it do and on whose command, and how does it end up?

Do not go into details yet, and use no more than five sentences.

The TreeWalker class plays an important role in Checkstyle’s inner workings and interacts

extensively with the checks. We now take a closer look at the protocol between TreeWalker

and the various checks.

• Task 3.2. [ current time: . . : . . ]

List the identifiers of all method/constructor calls that typically occur between TreeWalker

and a checks.whitespace.TabCharacterCheck instance, and the order in which

they are called. Make sure you also take inherited methods/constructors into account.

• Task 3.3. [ current time: . . : . . ]

In comparison to the calls listed in Task 3.2., which additional calls occur between TreeWalker

and checks.coding.IllegalInstantiationCheck? Can you think of a reason

for the difference?

4. Understanding the violation reporting process

Once the developer has written a new check, he/she would like to know if it works, i.e., whether it

reports warnings when appropriate. Consider the situation in which some check has encountered

a violation.

• Task 4.1. [ current time: . . : . . ]

How is the check’s warning handled, i.e., where/how does it originate, how is it internally

represented, and how is it ultimately communicated to the user?

Verifying whether a check actually found violations is not trivial: most of the warnings that are

reported in Checkstyle’s output (provided a few pages back) cannot be traced back directly to
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the checks from which those warnings originate. Some reported warnings may even be quite

confusing.

• Task 4.2. [ current time: . . : . . ]

Given Simple.java as the input source and many_checks.xml as the configuration,

does

checks.whitespace.WhitespaceAfterCheck report warnings? Specify how your

answer was obtained.
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Debriefing Questionnaire [ current time: . . : . . ]

The experiment is concluded with a short questionnaire in which we ask for your opinions on

several experimental aspects. You may fill in your answers on the handouts themselves.

• On a scale of 1 to 5, how did you feel about the time pressure?

1) too much time pressure: could not cope with it, regardless of task difficulty

2) fair amount of time pressure: could certainly have done better with more time

3) not so much time pressure: hurried a bit, but it was OK

4) very little time pressure: felt quite comfortable

5) no time pressure at all

• Regardless of the time given, how difficult would you rate the tasks? Please mark the

appropriate difficulty for each of the tasks:

impossible difficult intermediate simple trivial

Task 1

Task 2.1

Task 2.2

Task 3.1

Task 3.2

Task 3.3

Task 4.1

Task 4.2

• Which particular Eclipse features did you frequently use?

– Package explorer

– Open declaration

– Open type hierarchy

– Open call hierarchy

– Text search

– other:

...

...
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• Do you feel that additional Eclipse plugins (that you know of) could have helped during

the experiment? If so, please name those plugins and briefly explain how they would have

assisted you.

...

...

• “Dynamic analysis” is the study of a program through its run-time behavior. Are you familiar

with dynamic analysis and its benefits?

1) Never heard of it

2) I know what it is, more or less

3) I’m familiar with it and could name one or two benefits

4) I know it quite well and performed it once or twice

5) I’ve used it on multiple occasions
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And finally, several questions on your use of Extravis:

• During which tasks did you use Extravis, and in which of these tasks did you actually find

it helpful?

used it used it successfully

Task 1

Task 2.1

Task 2.2

Task 3.1

Task 3.2

Task 3.3

Task 4.1

Task 4.2

• Can you give a rough estimate of the percentage of time that you spent on using Extravis?

...

• Which particular Extravis features did you use more than once? Please mark those features

on your reference chart.

• Which (types of) Extravis features did you feel were missing?

– Compare multiple traces side-by-side

– Interactiveness in terms of the input (e.g., support for creating and visualizing own traces)

– More readable / intuitive views of detailed interactions

– Direct link from actual calls to their source code locations

– Search capabilities

– other:

...

...

• On a scale of 1 to 3, how did Extravis perform in terms of speed and responsiveness?

1) Quite sluggishly: I got impatient very often

2) Pretty OK: occasionally had to wait for information
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3) Very quickly: the information was shown instantly

• Did you experience a certain “resistance” to using Extravis and, instead, stuck to Eclipse as

much as possible? If so, how would you explain this tendency? (multiple answers possible)

– Time pressure

– I’m so comfortable or skilled with Eclipse that I prefer to use Eclipse whenever I can

– I felt that the tasks simply did not require more than Eclipse / source code

– I’m not sufficiently familiar with Extravis (tutorial was too short)

– I’m not (sufficiently) familiar with the benefits of using run-time information in general

– Extravis is standalone rather than embedded in Eclipse, and I’m not comfortable with

context switching

– other:

...

...
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Answer model

Task 1

The following stages largely capture a typical Checkstyle scenario, and represent the minimum

for this question. We can be somewhat flexible since the task deals from a very high level

perspective.

Assign one point for each stage that is contained by the given answer. Additional stages are

permitted but do not yield additional points. Motivations are not necessary if the answer is

meaningfully-named or self-explanatory.

• Initialization: command line parsing, or config reading, or environment setup (creation of

checkers, listeners etc.)

• Source parsing: source input file is read/parsed, or AST construction

• Checking: input file is checked, or AST traversal

• Error reporting/Termination/results logging: conveyance of warnings, and teardown of ap-

plication

Task 2.1

The second list below is alphabetically ordered and shows all classes of which the fanin is

higher than the fanout. (Classes not in this list are obviously incorrect.) We were looking for

classes with a (relatively) high fanin and a low fanout, so award points in case of appropriate

proportions between the two. Examples include fanin 5 + fanout 0, fanin 10 + fanout 1, fanin

15 + fanout 2, etc. (flexible scale).

Each correct class receives one point; award four points in case all classes have appropriate

fanins and fanouts of 0 or 1. In case no plausible motivation is given, award no points.

Task 2.2

The first list below shows all classes in the default package, and their degrees of coupling with

the api package. The coupling values in this list were statically derived; it is defined as the sum

of the no. of distinct calls from, and the no. of calls to, classes in the api package.

TreeWalker and Checker receive 4 points because in the context of the question (i.e., our

definition of ”coupling”) they have the strongest api-coupling by far. The next four classes are

awarded 2 points; all others receive none.
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For certain alternative classes it can be argued that they have a strong coupling with the api

because they communicate exclusively with the api (and with external libraries). While this is

reasonable, it is not according to the given definition of coupling, and therefore receives only 2

points. Award one point in case one went looking in the api-package.

Task 3.1

The following elements largely capture the lifecycle of a TabCharacterCheck instance during the

specified execution scenario. Again we can be a bit flexible due to the high-level perspective,

but the elements below must be mentioned because they answer the four implicit sub-questions

(where does it originate, what does it do, on whose command, how does it end up). Assign one

point for each element that is contained in the given answer.

• The check is created/configured during config reading / init. / environment setup / in

setupChild() / by ModuleFactory / by PackageObjectFactory.

• The check scans (the file contents of) the input source for tab character occurrences (which

may lead to the creation of warning messages).

• The above happens at the command of TreeWalker (as it commences processing the input

source). (mentioning beginTree is sufficient)

• The check is explicitly destroyed (by TreeWalker).

Task 3.2

Listed below are the eight calls that occur between TreeWalker and TabCharacterCheck during

this specific scenario. Assign one point for every two correct calls (in the right order). Subtract

one point for every two incorrect calls (and in case of one single incorrect call).

Note that in fact there is one more call, destroy(), but a bug in Extravis prevents this call from

being shown in the MSV, even at 100visibility. Therefore, the reviewer should not take this call

into consideration in either of the two subject groups.

Note that if the answer specifies nested calls within correct calls, they may be ignored by the

reviewer as long as it is clear that they are nested.

contextualize

configure
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init

getTokenNames

getDefaultTokens

setFileContents

beginTree

finishTree

destroy (not considered due to Extravis bug)

Task 3.3

visitToken

leaveToken

One correct: 2 points. Both correct: another point.

Subtract one point for each incorrect call. Also allow implementation-based reasoning.

Award 1 ”bonus” point in case the motivation specifies that IllegalInstantionCheck actually

visits/checks for tokens (in the AST), whereas TabCharacterCheck does not (because it processes

the file contents directly) – regardless of (in)correctness of the abovementioned identifiers.

Task 4.1

The following elements largely capture the essence of the error handling process. Assign one

point for each element that is contained in the given answer. Note that mentioning the check’s

”mMessages”-field implies knowledge of both 2. and 3., and therefore yields points for both of

these elements.

• A violation results in a call to log(), or in a read of message.properties for a human-readable

format.

• The warning is internally stored/represented as an api.LocalizedMessage.

• The LocalizedMessage is added to the api.LocalizedMessages field (called ”mMessages”)

of its Checker (in this case, TreeWalker) – note that there are multiple such repositories,

not a global one!

• At the *end* of execution, the messages are relayed to the listeners (which each convert
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the messages to different output types – human readable format / xml / etc.). Mentioning

fireErrors() and its effect is also sufficient.

Task 4.2

The answer is no, which yields two points. The remaining points depend on the soundness of

the motivation. The following are correct examples:

• Look for communication between the check and api.LocalizedMessage(s) in an execution

trace.

• or: look for communication between the check and api.DetailAST.

• or: investigate the actual effect of visitToken().

• or: find out what kind of human-readable message should result from violations in this

check, and match this message with Checkstyle’s (example) output. The true conclusion

should be that there is no match: none of the warnings in this scenario’s output relate to

the check at hand.

• or: run and debug the application (e.g., using print statements, breakpoints, etc.).

If the answer is solely based on the interpretation of the ws.notFollowed file, the answer is

partly correct because this trail will run cold – award two points in case the conclusion was

”no”, one point in case of a ”yes”.

Only two points are awarded if the reasoning is based on an understanding of what the check

is looking for, and on the fact that the input source file contains no occurrences of whitespaces

after tokens. No full score here because through this reasoning it cannot be determined that the

check actually works.

Coupling measurements

Acquired through an automated analysis of the static call graph.

43 TreeWalker

35 Checker

------------------------

8 XMLLogger

6 CheckStyleTask
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6 DefaultLogger

6 DefaultConfiguration

------------------------

4 ConfigurationLoader$InternalLoader

3 PackageNamesLoader

2 ConfigurationLoader

2 DefaultContext

2 Main

1 PackageObjectFactory

1 PropertyCacheFile

Fanin/Fanout measurements

Acquired through an automated analysis of the static call graph.

api.AbstractFileSetCheck 32 11

api.AbstractLoader 8 0

api.AbstractViolationReporter 123 6

api.AuditEvent 25 6

api.AuditListener 5 0

api.CheckstyleException 11 0

api.Comment 20 0

api.Configurable 4 0

api.Configuration 10 0

api.Context 2 0

api.Contextualizable 3 0

api.DetailAST 375 0

api.FileContents 23 3

api.FileSetCheck 3 0

api.Filter 3 0

api.FilterSet 9 5

api.FullIdent 55 2

api.LocalizedMessage 14 0

api.LocalizedMessages 9 0
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api.MessageDispatcher 14 0

api.Scope 11 0

api.ScopeUtils 36 3

api.SeverityLevel 14 0

api.SeverityLevelCounter 8 2

api.StrArrayConverter 1 0

api.TextBlock 19 0

api.TokenTypes 10 0

api.Utils 37 0

checks.AbstractFormatCheck 32 1

checks.AbstractOption 10 7

checks.AbstractOptionCheck 16 1

checks.AbstractTypeAwareCheck$ClassAlias 4 4

checks.AbstractTypeAwareCheck$ClassInfo 10 0

checks.AbstractTypeAwareCheck$RegularClass 5 3

checks.AbstractTypeAwareCheck$Token 10 3

checks.ArrayTypeStyleCheck 4 4

checks.BlockFrame 1 1

checks.blocks.AvoidNestedBlocksCheck 4 4

checks.blocks.BlockOption 1 1

checks.blocks.LeftCurlyOption 1 1

checks.blocks.NeedBracesCheck 4 3

checks.blocks.RightCurlyOption 1 1

checks.CheckUtils 15 7

checks.ClassFrame 1 1

checks.ClassResolver 2 0

checks.coding.AbstractIllegalCheck 4 0

checks.coding.AbstractSuperCheck$MethodNode 4 0

checks.coding.AvoidInlineConditionalsCheck 6 4

checks.coding.DeclarationOrderCheck 5 5

checks.coding.DoubleCheckedLockingCheck 4 4

checks.coding.EmptyStatementCheck 4 3

checks.coding.FinalLocalVariableCheck 8 8

checks.coding.HiddenFieldCheck$FieldFrame 6 0

checks.coding.IllegalThrowsCheck 6 6
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checks.coding.InnerAssignmentCheck 4 4

checks.coding.ModifiedControlVariableCheck 8 7

checks.coding.MultipleStringLiteralsCheck$StringInfo 3 0

checks.coding.MultipleVariableDeclarationsCheck 4 4

checks.coding.NestedIfDepthCheck 5 5

checks.coding.NestedTryDepthCheck 5 4

checks.coding.PackageDeclarationCheck 8 3

checks.coding.ParameterAssignmentCheck 8 6

checks.coding.ReturnCountCheck 9 7

checks.coding.SimplifyBooleanExpressionCheck 7 4

checks.coding.SimplifyBooleanReturnCheck 4 4

checks.coding.StringLiteralEqualityCheck 4 3

checks.coding.SuperCloneCheck 1 0

checks.coding.SuperFinalizeCheck 1 0

checks.DescendantTokenCheck 16 7

checks.design.FinalClassCheck$ClassDesc 7 0

checks.design.InterfaceIsTypeCheck 6 4

checks.design.ThrowsCountCheck 6 6

checks.duplicates.ChecksumInfo 3 0

checks.duplicates.StrictDuplicateCodeCheck$ChecksumGenerator 1 0

checks.duplicates.StrictDuplicateCodeCheck$JavaChecksumGenerator 1 1

checks.duplicates.StrictDuplicateCodeCheck$TextfileChecksumGenerator 2 1

checks.FileContentsHolder 6 1

checks.FrameStack 5 2

checks.GlobalFrame 1 1

checks.header.CrossLanguageRegexpHeaderCheck$FileSetCheckViolationMonitor 2 1

checks.header.HeaderInfo 9 1

checks.header.HeaderViolationMonitor 2 0

checks.header.RegexpHeaderCheck$CheckViolationMonitor 2 1

checks.header.RegexpHeaderInfo 5 2

checks.imports.AccessResult 1 0

checks.imports.AvoidStarImportCheck 4 4

checks.imports.Guard 3 0

checks.imports.PkgControl 4 2

checks.indentation.ExpressionHandler 129 41
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checks.indentation.FinallyHandler 1 1

checks.indentation.HandlerFactory 4 1

checks.indentation.IndentLevel 24 0

checks.indentation.LineSet 9 0

checks.indentation.PrimordialHandler 6 2

checks.indentation.StaticInitHandler 1 1

checks.indentation.SwitchHandler 6 6

checks.indentation.TryHandler 3 3

checks.j2ee.AbstractInterfaceCheck 5 1

checks.j2ee.AbstractJ2eeCheck 17 5

checks.j2ee.BeanManagedMethodChecker 9 9

checks.j2ee.BeanMethodChecker 8 7

checks.j2ee.EntityBeanMethodChecker 16 10

checks.j2ee.HomeInterfaceMethodChecker 5 5

checks.j2ee.LocalInterfaceMethodChecker 2 2

checks.j2ee.MessageBeanMethodChecker 9 8

checks.j2ee.MethodChecker 32 16

checks.j2ee.PersistenceOption 1 1

checks.j2ee.RemoteInterfaceMethodChecker 2 2

checks.j2ee.SessionBeanMethodChecker 9 9

checks.j2ee.ThisParameterCheck 6 6

checks.j2ee.ThisReturnCheck 6 6

checks.j2ee.Utils 33 5

checks.javadoc.HtmlTag 7 0

checks.javadoc.JavadocMethodCheck$ExceptionInfo 5 5

checks.javadoc.JavadocTag 14 0

checks.javadoc.Point 3 0

checks.LexicalFrame 6 0

checks.LineSeparatorOption 3 1

checks.MethodFrame 1 1

checks.metrics.AbstractComplexityCheck 13 4

checks.metrics.BooleanExpressionComplexityCheck 8 7

checks.metrics.ClassDataAbstractionCouplingCheck 3 2

checks.metrics.ClassFanOutComplexityCheck 3 1

checks.metrics.CyclomaticComplexityCheck 5 2
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checks.metrics.JavaNCSSCheck 9 7

checks.metrics.JavaNCSSCheck$Counter 2 0

checks.modifier.ModifierOrderCheck 4 3

checks.naming.ConstantNameCheck 4 4

checks.naming.LocalFinalVariableNameCheck 4 4

checks.naming.LocalVariableNameCheck 4 4

checks.naming.MethodNameCheck 3 1

checks.naming.ParameterNameCheck 4 2

checks.naming.StaticVariableNameCheck 4 4

checks.naming.TypeNameCheck 3 1

checks.sizes.AnonInnerLengthCheck 4 4

checks.sizes.ExecutableStatementCountCheck$Context 4 0

checks.sizes.FileLengthCheck 4 2

CheckStyleTask$Property 2 0

checks.UpperEllCheck 4 3

checks.whitespace.NoWhitespaceAfterCheck 5 5

checks.whitespace.OperatorWrapOption 1 1

checks.whitespace.PadOption 1 1

checks.whitespace.TabCharacterCheck 4 2

checks.whitespace.TypecastParenPadCheck 6 5

DefaultConfiguration 13 2

DefaultContext 5 0

DefaultLogger 8 6

doclets.CheckDocsDoclet 1 0

doclets.TokenTypesDoclet 0 0

filters.IntFilter 2 0

filters.IntMatchFilter 2 0

filters.IntRangeFilter 2 0

filters.SuppressionCommentFilter$Tag 5 2

grammars.CommentListener 2 0

grammars.GeneratedJavaLexer 4 4

grammars.GeneratedJavaRecognizer 3 2

gui.AbstractTreeTableModel 6 2

gui.FileDrop 2 1

gui.FileDrop$Listener 1 0
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gui.JTreeTable$ListToTreeSelectionModelWrapper 3 0

gui.JTreeTable$TreeTableCellRenderer 3 1

gui.ParseTreeInfoPanel$FileDropListener 2 1

gui.ParseTreeInfoPanel$FileSelectionAction 1 1

gui.ParseTreeInfoPanel$ReloadAction 1 1

gui.ParseTreeModel 8 8

gui.TreeTableModel 7 0

ModuleFactory 2 0

PackageObjectFactory 3 1

PropertiesExpander 3 0

PropertyCacheFile 4 1

PropertyResolver 1 0

StringArrayReader 1 0

TreeWalker$SilentJavaRecognizer 1 1
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