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A minimal longitudinal dynamic model of a tailless
flapping wing robot for control design

K.M. Kajak∗, M. Karásek†, Q.P. Chu‡, G.C.H.E. de Croon§

Delft University of Technology, Kluyverweg 1, The Netherlands

ABSTRACT

Recently, several insect- and hummingbird-inspired tail-
less flapping wing robots have been introduced. How-
ever, their flight dynamics, which are likely to be sim-
ilar to that of their biological counterparts, remain yet
to be fully understood. We propose a minimal dynamic
model that is not only validated with experimental data,
but also able to predict the consequences of various im-
portant design changes. Specifically, the model captures
the flapping-cycle-averaged longitudinal dynamics, con-
sidering the main aerodynamic effects. We validated the
model with flight data captured with a tailless flapping
wing robot, the DelFly Nimble, for air speeds from near-
hover flight up to 3.5 m/s. Moreover, the model succeeds in
predicting the effects of changes to the center of mass lo-
cation, and to the control system gains. Hence, the model
is suitable even for the initial control design phase. To
demonstrate this, we have used the simulation model to
tune the robot’s control system for higher speeds. Using
the new control parameters on the real robot improved its
maximal stable speed from 4 m/s to 7 m/s.

1 INTRODUCTION

Flapping wing flight remains rare in the context of man-made
aircraft, but it is the only form of powered flight among bio-
logical fliers. It may be an attractive solution for small-scale
micro air vehicles (MAVs). At these scales, fixed wings are
impractical, as they need to maintain a relatively high speed
to generate enough lift. Flapping wings offer, just like ro-
torcraft, a combination of hovering ability with flight in any
direction. In comparison to rotorcraft, flapping wing designs
are expected to be more energy efficient in forward flight, and
allow further miniaturisation in future. Several of the pio-
neering man-made designs have used aerodynamic dampers
to achieve passive stability [1, 2, 3, 4], but tailless designs are
more desirable due to their potentially higher agility. Exam-
ples of working tailless designs can be found in [5, 6, 7, 8, 9].
∗Email address: karlmartin.kajak@gmail.com
†Email address: m.karasek@tudelft.nl
‡Email address: q.p.chu@tudelft.nl
§Email address: g.c.h.e.decroon@tudelft.nl
This is the version of the article before peer review or editing, as sub-

mitted by an author to Bioinspiration & Biomimetics. IOP Publishing Ltd is
not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The Version of Record is available online at
https://doi.org/10.1088/1748-3190/ab1e0b.

The agility of tailless designs comes at the cost of inherent
instability, requiring an active control system and a wing ac-
tuation system that can provide stabilizing control moments
[10, 11, 12, 13, 14].

Figure 1: The DelFly Nimble tailless flapping wing robot
used for model validation. Its parameters are summarized in
Table 1.

In order to design such a control system, models of flap-
ping flight dynamics would be of great use. However, due
to the complexity of flapping wing aerodynamics, the exist-
ing flight dynamics models are mostly theoretical and often
include numerous parameters that need to be identified for
each specific animal or robot. Some works utilize computer
fluid dynamic (CFD) simulations, e.g. [15, 16, 13, 17], which
provide highly detailed information on the flow evolution.
First attempts have even been made to model the complex
fluid-structure interaction when considering the wing flexi-
bility [18, 19]. However, setting up and running such simula-
tions is costly in terms of time and effort.
A very popular approach is the use of quasi-steady models,
relying on force coefficients obtained either empirically [20,
21, 22, 23] or derived entirely from first principles [24, 25].
In these models, to reduce simulation times, analytic formu-
las are used to estimate instantaneous wing forces that are
treated as independent from their time history. These mod-
els have also been used with flexible wings [26]. In both
CFD and quasi-steady aerodynamic models, the wing typi-
cally follows prescribed 3D wing kinematics and the forces
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are resolved with fine temporal resolution. However, for sub-
sequent stability and control analysis, the model is typically
reduced via cycle averaging, a rigid-body assumption and lin-
earization [27, 28, 29, 19].
There is yet a simpler class of models, modeling directly the
average aerodynamic forces as linear damping with respect
to body velocities [30, 3, 31, 9]. Although being a rough ap-
proximation of the otherwise complex aerodynamics, these
models are attractive as they describe the dominant cycle-
averaged effects with a minimal number of parameters. While
models from all the three classes (CFD, quasi-steady, linear
damping) have been employed for stability analysis and con-
trol design in simulation, e.g. [27, 29, 17, 19], so far, only
[9] shows validation with real flight data, though limited to
oscillations around the hover condition. Due to the lack of
validation, these models could only provide general insights
to the robot flight dynamics but, to our knowledge, none of
the existing models have explicitly been used in the design
phase of its control system (i.e. gain tuning), while this is one
of the main goals of such models.
In this work, we propose a minimal model of the longitu-
dinal dynamics of a tailless flapping wing robot based on
the linear damping model. The highly reduced aerodynamic
model, which models only the flapping-cycle-averaged ef-
fects, makes it applicable to any flapping wing flyers, regard-
less of the number of wings, their design and configuration
(conventional vs X-type), dimensions and kinematics. We
validate the model with flight data captured with the DelFly
Nimble tailless flapping wing robot [32] with X-type wings
(Figure 1), at flight conditions between hover (0 m/s) and for-
ward flight (3.5 m/s), for different center of mass locations,
and for different controller parameters. Furthermore, we use
the model to improve the performance of the robot’s control
system so that it can fly stably even at high speeds (up to 7
m/s).
The paper is organized in three parts. Section 2 presents
the experimental setup utilized in the course of the validation
campaign. Section 3 presents the structure of the developed
dynamic model, identification of the actuator dynamics and
validation of the open loop model. Section 4 introduces the
controller architecture, describes the closed loop model val-
idation procedure and results, and, finally, the model is used
to improve the flight controller of the robot.

2 EXPERIMENTAL SETUP

The flapping wing robot used for flight tests is the DelFly
Nimble [32] shown in Figure 1. Its main parameters are sum-
marized in Table 1. As previous DelFly designs [33], it em-
ploys the X-wing concept where the two wing pairs flap in
opposition. This solution enhances the produced thrust by the
clap-and-peel effect and, at the same time, minimizes the re-
sultant reaction force on the body, as the approximately iden-
tical drag forces of individual wings, acting in opposite di-
rections, cancel out. However, unlike its predecessors, the

Table 1: DelFly Nimble parameters.
Parameter Value
Wing span 0.33 m

Wing length 0.14 m
Chord length 0.088 m

Number of wings 4
Flapping amplitude 44◦

Flapping frequency (hover, max.) 17 Hz, 22 Hz
Maximum speed 7 m/s
Battery capacity 180 mAh @ 3.7 V

Battery life (hover) 5 minutes
Weight (inc. tracking markers) 29.4 g

x
y

z

Φ

M

T/2

T/2

Figure 2: Pitch moment generation mechanism of the DelFly
Nimble: moving the flapping wings back by a dihedral angle
γ shifts the mean thrust T backwards and results in a nose-
down moment M .

DelFly Nimble has no tail; instead, the robot is stabilized and
controlled only through its wing actuation system. The robot
has two separate flapping mechanisms, each driving its own
wing pair on the left and right side. The independent modu-
lation of flapping frequency, and thereby thrust, on each side
allows for roll control. A servo-driven gear mechanism in
between the two flapping mechanisms allows to change the
dihedral angle, i.e. the angle between the wing-closed posi-
tions, which results in a longitudinal shift of the flap averaged
thrust forces and provides pitch control (see Figure 2). The
bottom servo offers yaw control by deflecting the wing sur-
faces such as to tilt the thrust vectors of the two wing pairs in
opposite directions.
Unlike in [32], the robot used here is equipped with a lighter,
yet more powerful, 1.5 g Lisa MXS autopilot [34]. A micro
SD card was used for storing on-board data logs. Four custom
made reflective markers (10 mm styrofoam balls covered in
reflective tape) were attached to the robot such that it could
be tracked with a motion capture system. The details on the
robot’s control system as well as its performance can be found
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in [32].
The flights were recorded in two ways. On-board Euler angle
estimates, gyro readings, radio control set points, on-board
generated controller references, controller outputs, and motor
speeds were recorded onto the micro SD card at a rate of
approximately 100 Hz. At the same time, the position and
orientation of the robot was recorded with an OptiTrack
motion tracking system. Most flights were performed in the
Cyberzoo facility of Delft University of Technology, which
is a 10 m × 10 m × 7 m flight arena equipped with 12
OptiTrack Prime 17W cameras. The position and orientation
data was captured at 200 Hz. Since this setup did not provide
enough space for high speed tests, these were performed in
a large indoor flight hall with 12 Flex13 cameras covering a
tracking volume of approximately 8 m in length and 4 m in
width and height on one side of the hall. This setup allowed
to approach the robot’s maximal speed prior to entering the
tracking volume. These tests were recorded at a rate of 120
Hz. Videos from some of the flight tests are available online:
https://www.youtube.com/playlist?list=
PL_KSX9GOn2P8nD6go-RTL9Vp_MbO8b5jn.
The velocities and accelerations were obtained from the mo-
tion tracking data by time differentiation using a central dif-
ference scheme such that no phase lag was introduced. In
[35] this technique was successfully used to estimate the sub-
flap forces acting on a FWMAV in flight, where the errors
resulting from the numerical differentiation were also thor-
oughly analysed. The differentiated measurements were then
filtered with a 4th order Butterworth filter with a 5Hz cut-off
frequency such the noise due to measurement error, amplified
by the differentiation, as well as due to flapping-induced body
oscillations was attenuated.
The actuator dynamics were identified using the data from
our previous test-bench experiments presented in [32], cap-
tured with a high precision force balance system (Nano17-Ti,
ATI Industrial Automation, Inc.) and a high-speed data acqui-
sition system (NI cRIO-9024 FPGA, National Instruments).
The wind tunnel used to collect data about trimmed flight was
the Open Jet Facility (OJF) of Delft University of Technol-
ogy.

3 LONGITUDINAL DYNAMICS MODEL

Here we present a longitudinal dynamics model of a tailless
flapping wing robot, which is based on the linear damping
model [30, 31], and which is applicable to flight conditions
ranging from hovering to forward cruise flight. Compared
to previous models of the same type, e.g. [9], we include
also the vertical dynamics (necessary for non-hovering flight)
and the pitch control mechanism. Experimental data is used
to identify the model parameters, and finally to validate the
model. The overall model structure, which was implemented
in Simulink (MATLAB 2016b, Mathworks, Inc.) is shown in
Figure 3. This section will focus on its open loop part.

3.1 Linear drag model

The validity of approximating the body-motion-induced flap-
average drag force of flapping wings with a linear damping
force was demonstrated e.g. in [3], employing the quasi
steady assumption [36]. Assuming a model case, where a
wing flaps with constant velocity and angle of attack in both
upstroke and downstroke (saw tooth flapping profile), the
wing velocity at the centre of pressure (assumed to lie at
half of the wing length R for simplicity) can be written as
U = 2Φf R2 = ΦfR, where Φ is the flapping amplitude and
f the flapping frequency. If u is the body velocity (which
can also be considered as the free stream velocity), the wing
airspeed will then be Ua = U + u during downstroke and
Ua = U − u during upstroke (Figure 4). We express the drag
force, which acts opposite to Ua, in the form d = b̂U2

a , where
b̂ is a force coefficient, which in our case is constant (the an-
gle of attack is assumed to be constant). The drag force dur-
ing the upstroke and downstroke (defined as positive when in
the direction of body motion u) is dd = −b̂(U + u)2 and
du = b̂(U − u)2, respectively. Since the two strokes have an
equal time duration, the average force over a flapping cycle
reduces to d̄ = 1

2 (dd + du) = 1
2 b̂[−(U + u)2 + (U − u)2],

which can be reduced to d̄ = −2b̂Uu, i.e. the drag force
is a linear function of the body velocity u. However, this
is only true if u < U . If u > U , the drag force will al-
ways point in the direction opposite to the body motion u,
irrespective of the flapping motion direction. The drag in
the downstroke will be du = −b̂(U − u)2, and the flap-
averaged force will remain nonlinear with respect to u, d̄ =
1
2 b̂[−(U+u)2−(U−u)2] = −b̂[U2+u2]. Figure 5 compares
the velocity component of the cycle-averaged drag force with
and without the simplifying assumption u << U . When the
ratio of the body velocity to wing velocity due to flapping
u/U is higher than 1, the non-linearity of the drag force be-
comes apparent. At u/U = 2, which we consider to be the
limit of validity of our model, the error between the linear
and non-linear model is about 20%, which we consider still
acceptable for stability analysis and control design purposes.
Since wing length R and flapping amplitude Φ are constant,
we can rewrite the drag force as

d̄ = −2ΦRfb̂u = −bfu, (1)

where b is a force coefficient depending on the wing geometry
and kinematics, but independent of flapping frequency.

Linear damping models have been shown to predict well
the horizontal drag forces of flapping wings measured in a
wind tunnel [3]. Moreover, the linear damping character of
the drag forces in all the body directions, termed flapping
counter force, was demonstrated analytically using a quasi-
steady model in [14], which justifies its use also for the drag
force in the vertical body direction.
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Figure 5: The validity region of the linear drag model. Com-
parison of a linear and nonlinear drag force models (f = 17
Hz, Φ = 40◦, R = 0.14 m, resulting in U ≈ 1.7 m/s). The
non-linearity becomes apparent for u/U > 1, the grey shad-
ing shows the considered validity region (max. error ≈ 20
%).

3.2 Flight dynamics
The robot is considered to be rigid and its movable parts (in-
cluding the wings and the flapping mechanisms) massless.
This means that the center of mass (CoM) is a fixed location
within the flapper body. The standard rigid body equations
of motion can be used in this case [37]. In this study, we
constrain ourselves to the longitudinal dynamics, assuming a
perfect symmetry of the robot and no wind, i.e. wind speed is

equal to air speed:

mu̇ = −mθ̇w −mg sin θ +X (2)

mẇ = mθ̇u+mg cos θ + Z (3)

Iθ̈ = M. (4)

Here m is mass, I moment of inertia along the lateral body
axis, g gravitational acceleration, u longitudinal body veloc-
ity, w vertical body velocity, θ body pitch angle, X longitudi-
nal body force, Z vertical body force and M the pitch torque.
The equations of motion follow the standard aerospace nota-
tion, where the forces, moments and velocities are expressed
in body-fixed coordinates.

CoP

CoM

T

Dz

Dx

mg

xbody

zbody

xinertial

zinertial

lz

ld

θ

Figure 6: 2D longitudinal free body diagram of a flapping-
wing MAV (side view). CoP represents the mean center of
pressure, CoM the center of mass. Blue color indicates the
control variables.

The free body diagram of the robot’s model is shown in Fig-
ure 6. All the aerodynamic effects originate from the flapping
wings, the drag of the body is neglected. The two wing pairs

4



are represented by a thrust force T and a drag force D, both
acting at the flap-averaged center of pressure (CoP). The ad-
justable dihedral angle of the real robot, used for pitch torque
generation, is represented in the model by the adjustable lon-
gitudinal position ld of the CoP with respect to the CoM.
Because the model should be applicable to flight in any di-
rection, the drag force D has longitudinal and vertical com-
ponents

Dx = −bxfuCoP (5)
Dz = −bzfwCoP , (6)

where bx and bz are the force coefficients in the respective
axes, capturing the drag effects of both wing pairs, and uCoP
and wCoP are the longitudinal and vertical components of the
CoP velocity. The CoP velocities can be expressed as

uCoP = u− lz θ̇ + l̇d (7)

wCoP = w − ldθ̇, (8)

where ld and lz represent the longitudinal (adjustable) and
vertical (fixed) CoP location in the body frame, respectively.
Because ld changes over time as it is used for pitch control,
its time derivative l̇d is also included in the velocity expres-
sions; the corresponding term had a non-negligible effect on
the results of closed loop simulations.
The thrust force T generally depends on the flapping fre-
quency f . To keep the model applicable to a general vehi-
cle, we will assume a general function T (f). The function
applicable to the vehicle used for model validation will be
identified in the next section.
Following the free body diagram in Figure 6 and combining
(5-8), the body forces and moment are found as

X = Dx = −bxf(u− lz θ̇ + l̇d) (9)

Z = Dz − T = −bzf(w − ldθ̇) − T (f) (10)

M = Dxlz + (Dz − T )ld =

= −bxflz(u− lz θ̇ + l̇d) + bzfld(w − ldθ̇) − T (f)ld.

(11)

Finally, inserting equations (9-11) into (2-4) yields the com-
plete set of longitudinal flight dynamics equations

mu̇ = −mθ̇w −mg sin θ − bxf(u− lz θ̇ + l̇d) (12)

mẇ = mθ̇u+mg cos θ − T (f) − bzf(w − ldθ̇) (13)

Iθ̈ = −bxflz(u− lz θ̇ + l̇d) + bzfld(w − ldθ̇) − T (f)ld.
(14)

The model has 2 inputs (the adjustable horizontal CoP loca-
tion ld and the flapping frequency f ) and only 5 parameters
(mass m, moment of inertia I , drag force coefficients bx and
bz , and vertical location of the CoP lz). We will discuss the
parameter identification in Section 3.5.

3.3 Thrust model
Making the assumption that the produced thrust only depends
on the flapping frequency and is insensitive to the body air
speed (these effects will be partially modeled by the linear
damping), the thrust to flapping frequency relationship can
be found experimentally in still air using a force balance. The
thrust force T has been found to depend on the second power
of flapping frequency f in a hummingbird-like flapping wing
robot [38]. However, the DelFly designs with X-wing con-
figuration exploit the clap-and-peel thrust-enhancing mech-
anism [33], and the thrust to flapping frequency relationship
can be approximated by a linear function in the neighborhood
of operational flapping frequencies. This is also the case for
the DelFly Nimble (Figure 7) with an operating frequency ∼
17 Hz in hover. Thus, a linear fit of this relationship from [32]
was incorporated into the dynamic model as

T = 2(c1f + c2), (15)

where c1 and c2 are the fitted coefficients (see Table 2) and
f is the flapping frequency. The factor of two accounts for
having two wing pairs.

0 5 10 15 20 25

Flapping frequency [Hz]

0

0.05

0.1

0.15

0.2

0.25

T
h

ru
s
t 

[N
]

Measurement

Linear fit

Figure 7: Thrust of a single wing pair versus flapping fre-
quency. Each data point represents an average over a 2-s
measurement, the error bars represent the standard deviation.

3.4 Actuator dynamics
Because the on-board actuators cannot reach infinite acceler-
ations, their dynamics need to be included in the model. We
have performed the experiments necessary for their identifi-
cation in our previous work [32].
To determine the dihedral actuator dynamics, a pulse train
was sent to the dihedral servo actuator while both wing pairs
were flapping. Because we could not measure the dihedral
angle with high accuracy, we used the pitch moment measure-
ments during a tethered test on a force balance instead (flap-
ping frequency approximately 14 Hz). The pitch moment,
filtered with a low-pass fourth order Butterworth filter with
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Figure 8: Measured and simulated (second order transfer
function) pitch moment in response to a series of step com-
mands. The minimum and maximum dihedral servo com-
mand was 28% and 68%, respectively, both flapping mecha-
nisms were driven with a 50% throttle command, which re-
sulted in a flapping frequency of approximately 14 Hz.

a cutoff frequency of 10 Hz to keep only the sub-flapping-
frequency signals characterizing the actuator dynamics, is
shown in Figure 8. Because of the observed response type,
typical for a second order linear system, a second order trans-
fer function was chosen

Hdihed =
ω2
n

s2 + 2ξωns+ ω2
n

, (16)

where ωn is the natural frequency and ξ the damping ra-
tio. The transfer function parameters were estimated with the
tfest() function from the Matlab 2016b System Identification
toolbox. Figure 8 confirms that the second order system with
the identified parameters (ωn = 24 rad.s−1, ξ = 0.634) is a
good approximation of the dihedral angle dynamics on a test
bench. The identified natural frequency corresponds to ap-
proximately 3.8 Hz, which is well below the cutoff frequency
of the low-pass filter. The actuator dynamics was thus well
preserved in the filtered signal.
In flight, an additional effect was found to influence the dihe-
dral angle of the wings. In forward flight maneuvers recorded
during the trials described in [32], an error between the com-
manded and measured dihedral angle of the wings was ob-
served, see Figure 9. This error, specific to the design of the
robot’s dihedral actuation mechanism, is likely due to me-
chanical elasticity or even play, but it could also be a steady
state error of the controller of the dihedral servo in the pres-
ence of aerodynamic drag in forward flight. We have noticed
that this error strongly correlates with the body axis velocity
u. Figure 9 shows that an additional correction factor in the
form ccorru can predict this error reasonably well. The pa-
rameter cu was found by numerical optimization (lsqnonlin()
function of Matlab 2016b), see Table 2.
By including this term, the dihedral angle model becomes

γ = γsim + ccorru, (17)

where γsim is the dihedral angle estimated by the transfer
function (16) and γ is the dihedral angle after corrections.

experiment

model

model with
correction

d
ih

e
d
ra

l 
[d

e
g
]

u
 [

m
/s

]

Figure 9: Measured and modeled dihedral angle. A correc-
tion proportional to forward velocity u was applied to com-
pensate for the initial model error.

To convert the dihedral angle γ to the horizontal CoP position
ld we need the distance lw from the dihedral mechanism hinge
to the CoP of the wing pair on one side of the robot

ld = lw sin γ. (18)

We estimated lw from the pitch moment measurements as
lw = M

Tsin(γ) , where T is the thrust average over the whole
two second measurement, M is the steady state of the filtered
pitch moment achieved at the end of each pulse, and γ is the
dihedral angle at the end of each pulse, which we could mea-
sure in a static case, when the wings were still.
The actuator dynamics of the motor-driven flapping mech-
anism was determined from an experiment where a pre-
programmed pulse train was sent to the motor controller and
the flapping frequency was recorded. A first order transfer
function in the form

Hflap =
1

τs+ 1
(19)

was again estimated with the tfest() function from the Matlab
2016b System Identification toolbox on the basis of the unfil-
tered flapping frequency measurements and the commands. τ
is the first order system time constant, its identified value is
in Table 2. A response simulated with the estimated transfer
function in Figure 10 demonstrates that the first order system
is a good representation of the flapping mechanism dynamics.

3.5 Model parameters identification
The flight dynamics equations (12-14) contain only 5 param-
eters that need to be identified: mass m, force coefficients bx
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Figure 10: Measured and simulated (identified first order
transfer function) flapping frequency in response to a series of
step commands. The motor speed controller command con-
sisted of a pulse train with a minimum and maximum throttle
value of 36.7% and 53%, respectively.

and bz , moment of inertia I , and vertical location of the CoP
lz .

The mass of the robot prototype was measured by a precision
scale (Adam Equipment PGW 4502e). The moment of inertia
was estimated from the locations and masses of its individual
components. Alternatively, it can be estimated from an (ac-
curate) CAD model or experimentally, e.g. using a bifilar
vertical-axis torsional pendulum method [39].

Since our robot was flight capable and stable at a wide
range of flight speeds (thanks to its active on-board stabiliza-
tion [32]), we estimated the force coefficients from trimmed
steady level flights at various wind speeds, performed in a
wind tunnel. Alternatively, a static wind-tunnel experiment,
such as in [3], or a pendulum test, such as in [40], can also be
used to estimate the force coefficients.

When collecting the flight data, a human pilot flew the robot
in the test section of an open jet wind tunnel (Open Jet Facil-
ity at Delft University of Technology, test section 2.8 m × 2.8
m) at various wind speeds between 1 - 2.4 m/s. The velocity
reading of the wind tunnel is not reliable below this range and
above that it becomes difficult for the pilot to keep the robot
in steady flight in the center of the open jet test section. The
data logged on-board included the flapping frequency and the
body pitch angle, and the wind speed was logged simultane-
ously off board.

Assuming steady state in the translation equations (12-13),
the accelerations u̇ and ẇ, angular rate θ̇ as well as derivative
of the (adjustable) horizontal CoP location l̇d are zero and the
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Figure 11: Drag forces estimated at steady level flight at var-
ious wind speeds and a linear model fit. The maximal u and
w during this test correspond to u/U ≈ 0.9 and w/U ≈ 1.1.

aerodynamic drag forces can be expressed as

Dx = −bxfu = mg sin θ (20)
Dz = −bzfw = −mg cos θ − T. (21)

For each wind tunnel speed set point, we estimated the steady
state conditions by averaging the data over a several sec-
ond long segment where the pilot managed to keep the robot
in near-steady flight. The body velocity components u and
w were computed from the averaged body pitch and wind
speed. The generated thrust was estimated from the aver-
aged flapping frequency f using the relationship 15. In total
5 trim points yielded an overconstrained system of equations
that was solved for bx and bz using the linear least squares
method. A comparison of the obtained linear model and the
drag forces estimated at each condition is shown in Figure 11,
confirming that the linear model is a good approximation.
The last unknown parameter is the vertical CoP location lz .
For the initial estimate, we adopted the common assumption
of simpler quasi-steady models that the CoP lies at a quarter-
chord distance from the wing leading edge.

3.6 Open loop validation
To validate the open loop model, we have used existing
flight data recorded during the experiments described in [32].
Namely, we have selected 3 maneuvers: a maneuver where
the vehicle quickly transitions from hover to forward flight
and returns back to hover and a maneuver where the vehi-
cle starts a vertical climb and returns back to hover, and fi-
nally a 360-deg pitch flip maneuver. The motion tracking and
on-board logged data contained the vehicle states needed to
estimate the dihedral angle γ and to evaluate the state deriva-
tives according to equations (12-14). In these experiments the
flapping frequency f was measured only on the right wing
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(limitation of the autopilot board), but a perfect symmetry
was assumed. The estimates were compared to the filtered
state derivatives (4th order Butterworth filter, 5Hz cut off)
that were derived directly from the flight data. The 5Hz cutoff
frequency was chosen to suppress the (high frequency) oscil-
lations due to flapping, but keep the (low frequency) body
dynamics.
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Figure 12: Pitch acceleration measured in flight and predicted
by the model. The natural frequency of the dihedral actuator
model was adjusted to achieve a better phase match.

The initial results revealed that the identified model of the
dihedral actuation mechanism underestimated its bandwidth.
Figure 12 compares the estimated and measured pitch accel-
eration. While in general the two curves match reasonably
well, the estimated acceleration peaks lagged behind the mea-
surements. We have thus increased the natural frequency of
the actuator to almost twice the original value (from 24 to
40 rad/s) to improve the phase match. We hypothesize that
our originally identified natural frequency was too low be-
cause, unlike in flight, the vehicle body was clamped during
the force balance tests. It is likely that in free air, due to action
and reaction principle, the body moves opposite to the wings
when the dihedral angle is being adjusted, and thus the work
done by the dihedral actuator is lower than when the body is
fixed.
In Figure 13, the state derivatives predicted by the model
(with the optimized actuator dynamics) are compared to the
filtered measurements for a pitch maneuver. Despite minor
differences, qualitatively speaking, all state derivatives and
even the dihedral angle follow their expected trends well.
This is also confirmed by the correlation coefficients (u̇: 0.91,
ẇ: 0.98, q̇: 0.86, γ: 0.89) and low range-normalized root-
mean-square error (NRMSE) values (u̇: 0.082, ẇ: 0.048, q̇:
0.116, γ: 0.095).
Figure 14 shows the model predictions and filtered measure-
ments for a vertical climb maneuver. Again a good overall
match can be seen. The vertical acceleration ẇ seems to be
predicted less well around t = 3 s, when the flapping fre-
quency returns back to the value ensuring trimmed hovering
flight. Possibly, additional non-linear effects (not covered by
our model) are present in this phase, where the vehicle still
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Figure 13: Pitch maneuver: measurement vs open loop model
prediction of the state derivatives and hinge angle.

moves upwards at a considerable speed while the flapping fre-
quency is decreasing. Nevertheless, the good overall match is
also illustrated by high values of correlations coefficients (u̇:
0.79, ẇ: 0.98, q̇: 0.83, f : 0.95) and low NRMSE (u̇: 0.145,
ẇ: 0.067, q̇: 0.125, f : 0.091), especially for the excited de-
grees of freedom ẇ and f .
Finally, Figure 15 shows the results for a 360-degree pitch
flip. This maneuver consists of several phases: 1) a vertical
climb to gain altitude, 2) a pitch acceleration by command-
ing maximal dihedral deflection γcmd (effectively a response
to an open loop step command), 3) a free rotation where
neutral dihedral angle and minimal flapping frequency are
commanded, and finally 4) return to the closed loop stabi-
lization once the pitch rotation, monitored by integrating the
pitch rate, approaches 270 degrees. Due to flat tracking mark-
ers placed on the flapping mechanisms, the motion-tracking-
based dihedral angle measurement is only available for a lim-
ited range of pitch angles around the vertical (hovering) body
orientation [32]. Even such an extreme and highly nonlin-
ear maneuver is predicted fairly well by the model, as con-
firmed by the correlation coefficient values (u̇: 0.91, ẇ: 0.86,
q̇: 0.90, γ: 0.73, f : 0.93) and NRSME values (u̇: 0.061, ẇ:
0.169, q̇: 0.058, γ: 0.15, f : 0.074).
Because our aim is to develop a complete closed loop model,
more detailed validation is given in the next section that also
includes the controller. Since the flapping frequency is con-
trolled manually by the pilot through the throttle stick, and
(unless climbing or performing fast forward flight) the adjust-
ments in typical flight conditions are only marginal (ensuring
trim of the vehicle), we will further focus only on the pitch
maneuvers that require auto-stabilization of the pitch rotation.
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Figure 14: Climb maneuver: measurement vs open loop
model prediction of the state derivatives and flapping fre-
quency (right wing pair).

4 CLOSED LOOP MODEL AND ITS VALIDATION

Because tailless flapping flight is inherently unstable [12, 11,
41, 10, 22], active stabilization is necessary to keep the bal-
ance and stay aloft. It is hypothesized that natural flyers pri-
marily rely on proportional feedback on body rates [31, 42,
43], and similar control systems are used in man-made tail-
less systems [5, 7, 8, 9], including the DelFly Nimble [32].
In this section, we extend the model with the control sys-
tem used on-board of the robot. We describe the experiments
carried out to collect data for fine tuning of the closed loop
model parameters. We report on experiments used for the fi-
nal model validation, which included a change of the center
of gravity, moment of inertia and a change of the control pa-
rameters. Finally, results of the validation are presented.

4.1 Controller
The DelFly Nimble is being stabilized by a fixed-gain parallel
feedback architecture, which involves rate and attitude feed-
back [32]. The controller layout, reduced to the longitudinal
case, is shown in Figure 16. This is the standard controller
architecture in the open-source Paparazzi UAV autopilot soft-
ware (version 5.12), with the addition of the low-pass filter on
the commands. The reference attitude and rate are generated
from the attitude setpoint given by the pilot (received via RC)
via a second order system reference generator, described in
[32]. Its function will be demonstrated in Section 4.3, Figure
18.
Despite a vibration isolator, which is used to mount the au-
topilot to the robot’s fuselage [32], some of the high fre-

f
[H
z]

Figure 15: 360-degree pitch flip maneuver: measurement vs
open loop model prediction of the state derivatives, dihedral
angle and flapping frequency (right wing pair).

quency mechanical vibration of the fuselage (excited by the
flapping wings) is captured by the on-board sensors and prop-
agates through the feedback control loop. The final command
is thus filtered by a second order Butterworth filter (biquad
implementation, fcut = 15 Hz cut-off frequency) before be-
ing sent to the actuators in order to reduce the high frequency
signal ”noise”. The controller parameters, identical in our
simulations as well as in the test flights, were KP = 0.511
and KD = 0.0654 s.

4.2 Model parameter optimization
To achieve the best match between the simulation and
recorded flight data, we have optimized the flight dynamics
parameters that were only roughly approximated in the initial

Reference
Generator s KD

Low Pass
Filter (fcut) FWMAV IMU

AHRS

KP

θsp

θref

θ̇ref −

θ̇m

−
θm

γcmd

Figure 16: Controller architecture, where set point is denoted
by subscript sp, reference by subscript ref and measurement
by subscript m. The parameters used in the simulations as
well as in the test flights were KP = 0.511, KD = 0.0654 s
and fcut = 15 Hz.
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open loop validation, namely the CoP vertical location lz and
the moment of inertia I . Because of the minimalist nature of
the flight dynamics model, estimating these parameters from
free-flight data was desirable as the optimized values could
also capture, to some extent, the unmodeled phenomena, such
as added mass inertia.
The flight data collected for the optimization purposes con-
sisted of a set of remotely-piloted pitch maneuvers, where the
pilot commanded various set points (ramps and steps of var-
ious magnitudes and durations, see Figure 17), such that a
significant part of the longitudinal system flight envelope was
covered. These maneuvers were different to the ones used
in the validation phase, such that the validation could detect
possible overfitting of the model. Since lz and I mainly in-
fluence the pitch attitude dynamics, the cost function to be
minimized was simply the sum of squares of the errors be-
tween the simulated and the recorded pitch angle. In this way
we could avoid a multi-objective optimization that would be
necessary if also the velocity states were included. A particle
swarm global optimization routine [44] was used to minimize
the cost function. The optimized parameter values are listed
in Table 2.
The optimized lz and I values show that our initial estimates
used in the OL simulations might have been imprecise, how-
ever, it is also possible that the optimization results account
for some of the unmodified phenomena. Finally, unlike the
flight data used in the OL simulations, the flight data used
in the CL optimization was recorded with a different vehicle,
equipped with a new, lighter autopilot board, which can also
explain some of the differences.
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Figure 17: Model fitting maneuver set points, shown in two
separate plots due to different time scales.

4.3 Validation procedure
When collecting the flight data for model validation, we had
three goals in mind. First, we wanted to verify that the model

is valid for flight conditions ranging from hover to fast for-
ward flight. Second, we wanted to test whether physical
changes to the robot, such as a change of the CoM and mo-
ment of inertia, will be captured correctly by the model. Fi-
nally, we wanted to test whether changes to the control sys-
tem parameters have the same effect in simulation as well as
in real flight.
The flights of all data sets included step-like pitch commands,
starting at a near-hover condition, i.e. with zero attitude set
point and a throttle set point that resulted in zero vertical ac-
celeration. The commands were given manually to maintain
control of the robot at all times in order to avoid flying into the
sides of the motion tracking arena. However, repeatability of
individual trials was ensured by: 1) the reference generator,
which ”filtered” the pilot’s manual step-like commands (set
points θsp(t)) into nearly identical attitude reference time his-
tories θref (t) (see Figure 18) and 2) by pre-programming the
maximal pitch set point value θspmax

. The maneuvers were
aligned in time at the point where their pitch references θref
reached 10◦.
For each test condition, the maneuver was repeated at least
five times. Each recorded trial was simulated using the
onboard-recorded pitch set point as model input. Because the
thrust produced at a constant throttle setting varies with the
battery voltage (a phenomena not captured by our model),
a flapping frequency resulting into thrust force that is equal
to the vehicle weight (inverse of (15)) was used in the sim-
ulations instead. The mean and the standard deviation was
calculated for the measured and simulated states of each ma-
neuver.

Figure 18: Comparison of 45 degree pitching maneuver set
points and references.

4.4 Validation results
In the first validation set (Figure 19), we compare the simu-
lated and recorded response for pitch step commands of 15◦,
30◦, 45◦ and 60◦. The solid lines represent the average mea-
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Table 2: Model parameters used in open loop (OL, Section 3.6) and closed loop (CL, Section 4.4) simulations.

Parameter Value Unit SourceOL CL
m 29.4 g Measured
Iyy 1.00e-4 1.26e-4 kgm2 Flight data (Section 4.2)
bx 4.21e-3 Ns2m−1 Wind-tunnel-flight data (Section 3.5)
bz 9.16e-4 Ns2m−1 Wind-tunnel-flight data (Section 3.5)
lw 81 mm Force balance data (Section 3.4)
lz 11.0 27.1 mm Flight data (Section 4.2)
ωn 40 s−1 Flight data, tuned manually (Section 3.6)
ζ 0.634 − Force balance data (Section 3.4)

ccorr 0.175 sm−1 Flight data (Section 3.4)
τ 0.0796 s Force balance data (Section 3.4)
c1 0.0114 NHz−1 Force balance data (Section 3.4)
c2 -0.0449 N Force balance data (Section 3.4)

sured state and the dashed lines the average simulated state.
The shaded regions represent the standard deviation. It can
be appreciated, that the experiments are highly repeatable. In
general, the simulation is in a very good agreement with the
experimental results. The damping of the real system seems
to be slightly weaker than in simulation, the oscillations are
attenuated earlier in the model. The horizontal body speed
component u is predicted less well by the model, which also
under-predicts its steady state value, but the trends remain
well captured.

Figure 19: Comparison of forward pitching maneuvers in bal-
anced configuration for various pitch set point values (color
coded according to the legend). Solid lines correspond to
mean measured states, dashed lines to mean simulated states.
Belts around lines correspond to standard deviation.

The second set consists of 30◦ pitch step maneuvers per-
formed with three different robot configurations. In the nom-
inal, balanced configuration the CoM and CoP were aligned
in longitudinal direction, i.e. the robot was trimmed to hover.
In the ”front heavy” configuration the battery was shifted for-
ward, which resulted in an approximately 4.8 mm shift of the
CoM towards the nose. Finally, in the ”bottom heavy” config-
uration the battery was shifted down along the fuselage and
the CoM was approximately 6 mm lower than in the balanced
configuration. The change of moment of inertia due to the
battery shift was estimated using the Steiner’s theorem.
A comparison of the recorded and simulated maneuvers for
all three configurations is in Figures 20. The simulation re-
sults are again following the trends observed in the real flight
data. As expected when using a controller without an integra-
tor, a notable steady state error is present in the nose heavy
configuration, where the vehicle is pitched slightly forward
(and as a result flies forward) even with a zero attitude com-
mand. Similar positive bias in the pitch angle is observed
after the step, compared to the balanced configuration, both
in the simulated as well in the recorded flight data. The bot-
tom heavy configuration, on the other hand, has trouble to
reach the 30◦ reference, which is again expected, since the
controller is competing against a stronger stabilizing aerody-
namic moment due to forward flight. As in the first validation
set, the higher order oscillations are attenuated faster in the
simulation, and the u velocity is in general over predicted.
In the final data set, we performed 30◦ pitch-step maneuvers
while varying attitude and rate feedback gains. A compari-
son of flight data and simulation results with different attitude
feedback gains (while rate feedback gains were fixed) is given
in Figure 21. The model correctly predicts the behaviour ob-
served in flight, i.e. longer response times and over-damped
response character for lower gains (green) and more apparent
higher order oscillation for larger gains (blue), compared to
the nominal case (red).
Figure 22 shows a comparison of captured and simulated
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Table 3: Measurement versus simulations: correlation coefficients and range-normalized root mean squared errors (NRMSE)

Experiment Correlation coefficient (-) NRMSE
u w q θ u w q θ

Nominal (Step 30 deg) 0.98 0.89 0.96 0.98 0.066 0.145 0.026 0.050 Fig. 19-22
Step 15 deg 0.97 0.70 0.88 0.97 0.114 0.155 0.034 0.076

Fig. 19Step 45 deg 0.98 0.97 0.96 0.99 0.054 0.115 0.028 0.032
Step 60 deg 0.97 0.93 0.95 0.98 0.073 0.105 0.044 0.040
Front heavy 0.99 0.82 0.95 0.99 0.073 0.149 0.025 0.035 Fig. 20Bottom heavy 0.98 0.87 0.93 0.99 0.070 0.143 0.033 0.038

Lower P gain 0.93 0.94 0.96 0.96 0.220 0.141 0.042 0.214 Fig. 21Higher P gain 0.96 0.96 0.97 0.98 0.076 0.091 0.033 0.053
Lower D gain 0.95 0.95 0.97 0.98 0.100 0.082 0.032 0.100 Fig. 22Even lower D gain 0.96 0.97 0.97 0.98 0.107 0.099 0.040 0.086

Figure 20: Averaged 30-degree forward pitching maneuvers
in balanced/nose heavy/bottom heavy configurations (color
coded according to the legend). Solid lines correspond to
mean measured states, dashed lines to mean simulated states.
Belts around lines correspond to standard deviation.

flights performed with different rate feedback gain values.
Again, a good agreement is found between the experiment
and simulation, both confirming that lowering the rate gains
results in a less damped response and vice-versa.

4.5 Analysis of model performance
The overall results demonstrate that the model, despite its
simplicity, is able to capture the dominant dynamic effects
well and that the simulated states were in a good agreement
with the measurements. The good match is demonstrated
also by high values of correlation coefficients and low range-
normalize root mean squared errors, presented in Table 3 for

KP = 0.51

KP = 0.26

KP = 0.77

Figure 21: Comparison of flights with different attitude feed-
back gains (color coded), identical for the experiment and
simulation. Solid lines correspond to mean states. Color belts
around lines correspond to standard deviation.

all the validation sets.

The small differences observed can be attributed to unmod-
eled dynamics (unsteady aerodynamic effects, added mass in-
ertia, hysteresis in the robot’s pitch mechanism, ...), random
external disturbances (light air drafts during the tests) as well
as limitations of the measurement techniques (motion track-
ing and attitude estimation precision). One particular source
of a slight disagreement between the recorded and simulated
data could be the difference observed between the attitude es-
timated on board (used for control of the real vehicle) and
the attitude estimated by the motion tracking system (used in
the simulations). This time-dependent difference, combining
the effects of estimation errors of both systems and imperfect
alignment of their reference frames, always remained below
5 degrees. We preferred to use the motion-tracking-based at-
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KD = 0.052

KD = 0.039

KD = 0.065

Figure 22: Comparison of flights with different rate feedback
gains (color coded), identical for the experiment and simu-
lation. Solid lines correspond to mean states. Color belts
around lines correspond to standard deviation.

titude in simulation, as these measurements should be closer
to the real attitude. Finally, due to hand assembly, the robot
mechanisms and wings are not perfectly aligned as assumed
in the model, and the robot components are to some extent
compliant and its mechanisms allow for certain amount of
play, unlike in the model.
Nevertheless, the results presented in the previous sections
show that these imperfections are of a secondary importance,
as the dominant effects, as well as the trends when changing
the vehicle (and model) parameters, remained well captured
by the simulation.

4.6 Controller improvement for fast forward flight
The model was further used to improve the robot’s control
system performance. While the hand-tuned gains gave sat-
isfactory performance in a wide range of body pitch angles,
ranging from hover to 60◦, the pitch rotation was less well
damped at higher body pitch angles (Figure 19). In fact, when
attempting to reach the robot’s maximal speed by command-
ing 70◦ pitch in combination with full throttle, a divergent
pitch oscillation with an amplitude of approximately ∼ 30◦

and a frequency of ∼ 1 Hz would develop (Figure 23).
Despite the fact that this high speed flight condition (body
speed to wing velocity ratio w/U = 3.5) lies already outside
of the validity region of the model, the simulation does
predict pitch oscillation of similar magnitude and frequency
(Figure 23). In simulation, we could stabilize the robot by
increasing the rate feedback gain by a factor of 2.5 (Figure
24). However, it should be noted that the steady state pre-
diction of the model (θSS =52◦) was already quite different
from the average body pitch during the fast forward flight
with diverging oscillation of the real robot (θSS ∼70◦). Nev-
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Figure 23: Pitch oscillation developing at full thrust with rate
feedback gain of 0.0654. Due to limited tracking volume size
only part of the maneuver was captured with the motion cap-
ture system.

ertheless, increasing the rate feedback gain in the real robot
by the same factor did result in a stable flight and allowed
to reach the speed of 6.7 m/s (Figure 25). Speeds of up to 7
m/s were captured in further trials with a second vehicle, not
equipped with on-board logging. Videos of the high-speed
flights with the original and the adjusted gain can be found
online: https://www.youtube.com/playlist?
list=PL_KSX9GOn2P8nD6go-RTL9Vp_MbO8b5jn.
Thus, the model still captures some of the dynamic behaviour,
and can be useful for initial control gain tuning, even outside
of the validity region for the linear drag assumption. The
gains adjusted for high speed flight still stabilize the robot
at hover, although with a slightly worse performance. For
maximal performance in any flight regime, a gain scheduling
approach could be used to adjust the gains in function of the
flight speed.

5 CONCLUSIONS AND RECOMMENDATIONS

We have presented a minimal longitudinal dynamic model for
a tail-less flapping wing robot, which we validated with flight
recordings of a real robot, the DelFly Nimble, for flight con-
ditions ranging from near-hover to cruise forward flight (∼
3.5 m/s). Moreover, we showed that the model captures well
also the effects of varying some of the robot properties, such
as the centre of mass location or the controller parameters.
Although the model validity is limited only to speeds that are
comparable to or lower than the mean wing speed due to flap-
ping (∼ 1.7 m/s), the dynamic trend shown by the model was
informative enough to help improve the flight controller even
for high speeds, and allowed to achieve stable fast forward
flight even at maximum throttle, reaching a speed of 7 m/s.
While the model parameters were identified for a specific
robot, the model structure is directly applicable to any flap-
ping wing robots or natural fliers that utilize the mean stroke
angle modulation for pitch control, e.g. [6, 45]. Adjusting the
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Figure 24: Comparison of effect of different rate feedback
gains during a maximum thrust, 70 degree forward pitch set
point maneuver.
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Figure 25: Stable full thrust level flight with rate feedback
gain of 0.1635.

model to other means of pitch torque generation, as in [5, 7,
9], is also possible. Further research should look into extend-
ing the validity region, possibly by including non-linearity in
the cycle averaged drag forces. Following the same approach
as in the current work, the model can be extended to 3D by
including also the lateral dynamics.
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