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Preface

Adversarial learning stands as a cornerstone in contemporary machine learning research, offering in-
sights into the vulnerabilities and limitations of neural network models. Through the investigation of
adversarial examples and the development of defense mechanisms, researchers strive to enhance the
robustness and reliability of machine learning systems.

One prominent issue addressed in this thesis is the presence of bias in neural network models towards
benign data, i.e. data without adversarial perturbation. In general, biased models can perpetuate and
amplify societal biases, leading to inequitable outcomes and reinforcing existing disparities. By identi-
fying and mitigating such bias in machine learning algorithms we can foster fairness and accountability
in decision-making processes.

Bias may also be injected at training time to form a backdoored or poisoned model. As frequently
stated, ‘garbage in equals garbage out’: misguided evidence at training time ultimately serves as an
unmediated source of bias for machine learning models. Understanding the origins of bias and its prop-
agation in neural networks is essential for developing strategies to combat it effectively.

Through rigorous experimentation and analysis, this thesis endeavors to contribute to the ongoing di-
alogue surrounding adversarial learning and bias mitigation in machine learning. By addressing these
challenges head-on, we aim to pave the way for more robust and equitable artificial intelligence sys-
tems.

Acknowledgement: I would like to express my sincere gratitude to my daily supervisor, Dazhuang
Liu (TU Delft), who made this project possible for me.

Ruben Stenhuis
Delft, September 2024
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Abstract

Previous research has explored the detection of adversarial examples with dimensional reduction and
Out-of-Distribution (OOD) recognition. However, these approaches are not effective against white-box
adversarial attacks.1 Moreover, recent OOD methods that utilize hidden units hinder the scalability of
the target model.

For that reason, various explanations of adversarial examples are studied to get a better understanding
about its properties and anomalies. Furthermore, we discuss the added value of using natural scene
statistics and utility functions to improve the relevance of the features for detection. By utilizing the
anomalies we identified for adversarial examples in an ensemble, this thesis is the first to propose a
robust solution for adaptive and white-box attacks.

Particularly, we address these challenges with MeetSafe. A Gaussian Mixture Model that leverages
principal component analysis, feature squeezing, and density estimation to detect adaptive white-box
adversaries. Furthermore, our enhanced Local Reachability Density (LRD) algorithm further improves
the efficiency of state-of-the-art OOD methods. In particular, the proposed LRD enhances scalability
by feature bagging hidden units with large absolute Z-scores. We then show that predictors, including
LRD, are far more effective in ensembles like MeetSafe which supports prior conjectures that a range
of different heuristics may further constrain adversaries when combined.

Extensive experiments on 14 models show that MeetSafe detects adaptive perturbations with an ac-
curacy of 62% on STL-10, 75% on CIFAR-10, and 99% on MNIST, using either adversarial training or
Reverse Cross Entropy (RCE), achieving an improvement of at least 8.1% for each evaluated method
by averaging across the three datasets.

1Our detector is designed for an adaptive, white-box adversary that has complete knowledge of model, dataset, and defense.
This is a stronger assumption than state-of-the-art attacks like AutoAttack [Tra+20].
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1
Introduction

Neural networks paved the way to a diverse field in science. Convolutional Neural Networks (CNN), for
example, have significantly improved the performance of computer vision. This made some promising
steps towards some essential challenges. Challenges that concerns medical treatment and wellbeing
[Lit+17], object detection [Li+22], or facial recognition [Li+22; Zha+03]. In most of these applications,
the reliability and robustness of machine learning models are of paramount importance. This robust-
ness is currently lacking for neural networks. A slight and imperceptible perturbation is enough to
cause state-of-the-art models to misclassify at a high rate [Sze+14].

Perturbations that cause these misclassifications are generated by evasion methods, which involve
strategically altering the input data, typically with gradient information, to deceive the neural network.
Most evasion methods craft near-optimal adversarial examples, which use the ℓp-norm as a part of its
objective. By minimizing the example’s ℓp distance from benign input, it is likely that the crafted sample
is imperceptible to humans. Popular evasion methods include C&W [CW17b], DeepFool [MFF16], and
the Fast Gradient Sign Method (FGSM) [GSS15].

Adaptive adversarial examples complicate the task of developing robust neural networks even further,
as these dynamically adjust the perturbation based on the model’s defenses. A common approach
to generate adaptive adversarial examples is with existing evasion methods on gradient information
of both the defense and target model. Appending the logits of neural networks with the ones of the
detector would thereby allow the evasion method to account for a detector [CW17a].

To mitigate this, some defenses intentionally break gradient descent and cause obfuscated gradients
[ACW18]. Non-differentiable defenses can’t be evaded with iterative evasion methods, and thus its
authors often claim robustness. For instance, dropout [Fei+17] has stochastic gradients and RAID
[ECW20], that randomly chooses out of a pool of predictors, has nonexistent, shattered gradients. Un-
fortunately, Backward Pass Differentiable Approximation (BPDA) [ACW18] successfully addressed
such obfuscated gradients by substituting the non-differential parts with an estimate. Obfuscating the
gradients is thus not the solution for adaptive adversarial examples.

Previous work proposed many methods to optimize the robustness of machine learning models [SN20]
and detect [Ald+22] any adversarial example. However, to the best of our knowledge, no previous
defense achieved useful performance in an adaptive white-box setting. Existing methods that do, either
obfuscate the detector’s gradient or render the evaluation of exact gradients too costly [CSG20; Hu+19;
Rag+21; Tia+21; ACW18]. Solutions like these may therefore not be guaranteed to be secure.

Certified methods [Wen+18b; RSL18] can also be used for adversarial detection by means of minimum
distance decoding [Tra22], but such methods generally operate on small ℓp distances. This would be in-
effective for semantic examples [GSG20] that manipulate color or shadows to reach substantially large
and imperceptible perturbations. As such, Ghiasi et al. [GSG20] show that any perturbation on se-
mantic attributes – such as shadows – may be just as effective as contrived noise. Similarly, given the
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2 Chapter 1. Introduction

vastness of an image’s semantics, supervised detection may be inadequate for evasion attacks [ZH18].

The increasing adoption of neural networks in all kinds of critical environments necessitates ongoing
research and innovative approaches to ensure the security and reliability of neural networks in practical
applications. This work aims to explore semi-supervised detection methods and propose new method-
ologies to enhance the robustness of neural networks against sophisticated and adaptive adversarial
examples.

1.1. Problem Statement
Various attempts have been made to detect adversarial examples. However, many were later cir-
cumvented by Carlini et al. [CW17a; ACW18; AC18; Tra+20] using white-box attacks that adaptively
optimize against the detector. One example of such method is based upon Principal Component Anal-
ysis (PCA) [HG17]. According to Carlini, this may be evaded by limiting perturbations along low-rank
eigenvectors.

Other works [HG17; Ald+22] proposed to combine discrepant detectors with other defenses to constrain
the adversary’s level of pathology. Indeed, even imperfect detectors may constrain the adversary. The
adversary should, in that case, consider and evade each defense. Combining defenses to form a more
robust detector has been referred to as the ‘meet the defense’ approach. Unfortunately, both papers
only stated the idea and did not construct such a detector.

Meanwhile, some defenses [ZH18; Fei+17] do not scale well with the increasing number of param-
eters when each (hidden) unit of such models is treated as a separate feature. For example, the full
covariance matrix Σ, used in I-Defender [ZH18], is scaled as O(d2) with respect to the input dimension
d. Likewise, a rise in the number of features exponentially degrades the performance of any method
that employs the Euclidean distances on these features, such as Feinman et al.’s method [Fei+17], due
to the curse of dimensionality.

1.1.1. Research Objective
We hypothesize that the linearity of the predictor is one of the reasons that detection methods can be
evaded. Other explanations may be because the method is narrow, or overfitting. For one, we ex-
plained how PCA has been shown to be too linear. Conversely, non-linear methods [Fei+17; XEQ18]
may not cover every perturbation type. As was suggested by Feinmann et al. [Fei+17]: multiple meth-
ods should be considered for adversarial examples that are ’near’- and ’far’ from benign training sam-
ples, since Density-based and variance-based methods only cover certain levels of perturbation.

To test the above hypothesis, this thesis proposes a new detection method to resolve white-box security
and the scalability challenges by leveraging the Local Reachability Density (LRD) metric [Bre+00] and
Gaussian Mixture Models (GMM). LRD is a distance-based method that can determine global outliers
using a smoothed k-distance called reachability. For LRD, we use two utility functions based on a hid-
den unit’s Z-scores or rate of change under perturbation. This should enhance its memory efficiency,
and improve the scalability of the underlying k-Nearest Neighbors (kNN) density estimation. LRD will
then be combined with two other detection methods in a Gaussian Mixture Model (GMM) called Meet-
Safe. Our MeetSafe effectivelymeets detectors of different statistical regularities. MeetSafe can easily
be applied on larger models, as the feature space is reduced by only considering the 10 best features
according to the utility functions.

We evaluate MeetSafe on models that were trained on CIFAR-10, Tiny-ImageNet, STL-10, and MNIST.
Most of our models use adversarial training [GSS15] or Reverse Cross Entropy (RCE) [Pan+18]. We
tested MeetSafe under both the grey- and white-box threat model at a True Negative Rate (TNR) of
around 90%. Experiments on CIFAR-10 show that MeetSafe attains a 74%+ detection accuracy under
the white-box threat model; and a 96%+ detection accuracy against FGSM. The results will also show a
79%+ accuracy for PCA under white-box attacks, contradicting some prior work. Our main contributions
can be summarized as follows:

i MeetSafe, a detection algorithm for adaptive adversarial examples.
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ii Two utility functions that allow LRD and other detectors to scale based on a unit’s Z-scores or
rate of change under perturbation.

iii Theoretical discussion of four properties of adversarial examples that induce essential measures
for detection methods.

iv Theoretical evaluation of methods using local density with a rational difference equation.
v Extensive empirical evaluations on 4 datasets and 14models that show effectiveness of whitening
(i.e. PCA) [HG17] and MeetSafe under adaptive white-box attacks.

1.2. Outline
The thesis will be presented in the following structure. Chapter 2 gives some background on the secu-
rity game for adversarial learning. The chapter assesses concepts such as robustness, perturbation,
convexity, and transferability. Chapter 3 will show further details of our contribution, motivation, and
points of interests for CNNs. Chapter 4, explains why and how adversarial examples can be created.
It will introduce explanations like the boundary tilting perspective and linear explanation. Chapter 5,
discusses our detector in detail. Chapter 6 will contain the methodology and results of our experiments
on the GMM and individual detectors. Chapter 7 concludes this work.





2
The Security Game of Adversarial

Learners

The thesis begins with an elementary discussion on neural networks. This introduces a couple of con-
cepts that are necessary to understand the underlying vulnerabilities of neural networks. The chapter
then continues with a discussion on adversarial learning and different attack types. One can show
strong connections to adversarial example generation, which is the main subject of this thesis. The
chapter ends with a taxonomy of these attack types.

The basic building block of a neural network is a neuron, which is composed of an activation function
such as ReLu or Sigmoid. A neural network is a connected graph of these neurons. This allows the
(deep) neural network to recognize complex and non-linear relations of the input features. Something
that other AI techniques as Support Vector Machines (SVM) have difficulty with. The main argument
for this difficulty is one of dimensionality. Neural networks allow for the adaption of its basis functions,
which enables neural networks to be sparser than linear models. This is essential for big data, as
increasing the dimensionality with fixed basis functions will result in the curse of dimensionality . A
downside of neural networks is that the likelihood function is no longer convex. This proves to be a
major issue when estimating the robustness of neural networks.

Another argument can be made on the complexity of neural networks. The dimensionality of its in-
puts and outputs are frequently determined by the dataset (e.g. amount of classes, features, etc.).
The amount of hidden units are left free for tuning, which may adjust the generalization capability of a
neural network. However, complex networks may also be more vulnerable, especially on large feature
dimensions [GSS15]. In combination with non-convexity, dimensionality aggravates the estimation of
its robustness.

Different architectures of neural networks are proposed for specific problems. One of these architec-
tures is an autoencoder, which are perfect in modelling sparse nonlinear dynamics [Cha+19]. We will
focus on the Resnet-50 [He+16] and Visual Geometric Group-13 (VGG-13) [SZ15] architecture. These
architectures are popular for image recognition and often used to test solutions for adversarial learning.
Both models will be explained after a short and formal introduction of neural networks.

2.1. Neural Networks
As discussed, neural networks resemble a connected graph of neurons. Outputs of neurons resemble
a basis function f (l)(X|W,B) : Rm → RL that is controlled by the parameters W (l) and its biases
B(l) up to the layer l [Bis06]. the basis function is formed by a series of similar transformations with a
nonlinear function h(·) of a linear input, called its activation. When we define the dimension of a layer
to be D(l), then the first fully connected layer can be thought of like shown in Eq. 2.1.

5



6 Chapter 2. The Security Game of Adversarial Learners

f
(0)
j (X|W (0), B(0)) = h(

D(0)∑
w

(0)
i,j xi + b

(0)
j ) (2.1)

Subsequent layers wrap around the output of its previous layer. Meaning that xi ∈ X would be sub-
stituted by f

(l−1)
i (X|W (l−1), B(l−1)). These outputs are referred to as hidden units of the neuron (i.e.

the basis function of f (l)). Finally, the last layer outputs logits of the model. Logits are especially
interesting for evasion attacks (Sec. 4.2.1) as it counteracts vanishing gradients and a wrong sense
of relative importance between labels when compared to the usage of probits.

Normally, the logits are processed by another nonlinear function to give probits as output vector Y .
The choice of activation function is determined by the set of properties Y should have. Probits act as
probabilities and Softmax ensures this exact property. It ensures two properties:

• Probability values: Y satisfies 0 ≤ yi ≤ 1

• Additivity property:
∑|Y |

yi = 1

For simplicity, logits will be defined to be Z(X) and softmax outputs to be F (X). A summary of this
notation can be found in Appendix E.

2.1.1. Convolution & VGG
Classification of images requires some more regularization of the model. The plain model that is in-
troduced could in principle learn any invariance in the image data. Think of rotations or translations.
However, this would ignore one obvious correlation among invariances, which is the relative location
of the pixels. This will often not change much, or only slightly. At least, its disparity with the change of
the raw data is enormous. That is why CNNs are ubiquitous for image recognition tasks.
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Figure 2.1: The convolution operation

In addition to the fully connected layers (Eq. 2.1), CNN’s have at least two other operations: con-
volution and pooling . Convolution is illustrated in Fig. 2.1. On the left, the units of one plane are
shown. Each convolutional layer may operate on multiple planes or feature maps. The kernel is of
a predetermined size and slides over the whole feature maps (omitting its stride). This results in the
convolution on the right. The cells in the kernel function are just like neurons. They have their own
linear combination of weights and biases.

Pooling also operates with a kernel, but will not have weights. It takes pooling operations (averag-
ing, centering, etc.), the size of the feature map is therefore typically smaller after a pooling layer. In
theory, convolution layers provide some weight sharing across the feature map that recognizes pat-
terns regardless of its position. Pooling layers removes small invariance of the feature map.

VGG is a convolutional network that is designed for ImageNet. It improves upon earlier networks with a
small kernel size of 3x3 for convolutions and 2x2 for pooling. This enables the network to go deeper on
similar input sizes. In our case, the depth of VGG equals ten layers. Followed by one fully connected
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layer (original VGG has three). That is because it is used for smaller-sized images, in our case (Chap.
6). For detailed information about the profile of the architecture, we refer to the original paper [SZ15].

2.1.2. Convexity & Resnets
Intuitively, the depth of neural networks have the potential to greatly decrease any under-fitting. After
all, more hidden units would increase the complexity of the model. This is not entirely true. To explain
this, recall the meaning of convexity. A classifier g(·) of an input space I is convex when the following
holds (Eq. 2.2):

g(tX1 + (t− 1)X2) ≤ tg(X1) + (t− 1)g(X2) (2.2)

where ∀X1, X2 ∈ I and 0 ≤ t ≤ 1. Non-convex functions can have disjoint local minima, convex
functions only have one (if it exists). During the training of neural networks, the model converges to
a local minimum of the error function. This is equivalent to maximizing the likelihood function of the
neural network. One example of an error function is the cross entropy loss for multi-class classification.
These Likelihood/error functions are, just like the error function of the model, non-convex implying the
presence of (suboptimal) local maxima/minima, which has some consequences for the model’s robust-
ness and convergence.

The authors of Resnet [He+16] called this specific issue with non-convexity a degradation problem.
They demonstrated that accuracy of very deep neural networks degrade rapidly when the amount of
hidden units increased. This is not caused by overfitting, as it is characterized by a high training error;
but rather the convergence to local minima.

Residual learning was proposed as a solution. It allows neural networks to reduce to shallow vari-
ants with an identity mapping after a set of convolutions. The dimension must remain equal before and
after the set of convolutions. The identity mapping f (l)(X|W,B)+PlX of some sets, called bottlenecks,
thus need a projection matrix Pl if it is not equal. Resnets are able to reach much higher depths (up to
152 layers) than VGG with this technique. The interested reader is again referred to the original paper
for Resnet’s profile [He+16].

2.2. Threat Model
Training on benign data involves minimizing an error function Lf (X|W,B) : RB×m → R. The objective
of the error function changes, however, when an adversarial setting is considered. Then the model’s
parametersW andB should remain its accuracy under some noise δ. The empirical riskR for dataset
D would provoke a min-max problem , when the error function is minimized [SN20]. Instead of mini-
mizing the desired loss, the model should minimize the loss under the most perturbation. Solving this
equation requires a solution to the inner maximization (Eq. 2.3).

R∗
f = min

W,B

1

|D|
∑
Xi∈D

max
δ
Lf (Xi + δ|W,B) (2.3)

The optimization of this term is NP-hard with deterministic techniques [RSL18, p.4]. Many certification
methods have been proposed that relax Eq. 2.3 to a convex hull (Sec. 4.4.3); but this comes at a cost for
the model’s accuracy or computational efficiency during training. Another approach is to substitute the
minimum provided by powerful attacks for approximation. The achieved δ of these attacks is measured
with the ℓp-norm . The norm computes the Minkowski distance ||X − X ′||p between the sampled
benign imageX and resulting adversarial exampleX ′. The introduction (Chap. 1) already teased the
downside of this metric: it does not simulate the perception of human vision. This is misleading when
some invariances of images cause large changes in the pixel values.

2.2.1. Robustness
The ℓp-norm is often assumed to represent the severity of an attack [MFF16]. Following this argument,
robustness of a model would be the average perturbation that is needed to misclassify an image (Eq.
2.4). This kind of usage of the ℓp-norm is a misconception. The attacker is far more likely, in practice, to
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maximize the perturbation with high confidence attacks . A lot of defenses failed to be effective under
these and white box attacks [CW17a; ACW18; CW16; AC18; Tra+20; He+17]. We are not even aware
of any detector that is secure in a white box setting. Security Evaluation Curves may also capture
robustness by plotting the model’s accuracy along an increasing ℓp-norm [BR18].

1

|D|
∑

Xi∈D

||X −X ′||p
||X||p

(2.4)

A related factor to robustness that is not always is covered is the transparency of neural networks.
Whilst, it plays a large part in the robustness. Without interpretability, any human intervention against
intentional malice is hindered. Decision can thus be manipulated when opaque models were used for
decision-making. In fact, following the Chinese Room argument, we can question if neural networks
may ever be strong AI with this vulnerability, regardless of how intelligently or human-like the decisions
of the model may be. Currently, it seems that neural networks can’t replace humans. In Europe, recent
regulation enforces explainable Artificial Intelligence (XAI) [GF17] . The European Union argues
that administrators should be able to reflect on their systems. Especially when the system operates on
sensitive data.

Methods that can visualize these boundaries (i.e. white-box models) are therefore of high value. It
helps system designers to trust and explain the model’s decisions. Machine learning models should
thereby be able to detect novelties that do not fit into the training data. Human intervention can then be
asked for edge cases [BR18]. The dilemma here is one of the model’s accuracy against its robustness.
How many human resources or mitigations are we prepared to invest to ensure correct classifications
before its benign accuracy is of higher importance.

Takeaway 1.
Knowledge of anomalies is crucial for human intervention, however there are shortcomings for
these three points:

� Current certified defenses for neural networks are limited to convex relations.
� The ℓp-norm does not comprise the bias of human vision.
� White box detection is yet unsolved.

2.2.2. Taxonomy
This thesis focuses on adversarial examples. Adversarial examples are strongly related with two other
categories of adversarial attacks (model extraction and poisoning), depending on the strategy of an
adversary. Model Extraction is combined with adversarial examples to evade models in a black box
scenario. Also, some poisoning attacks use similar gradient-based techniques to manipulate models
at training time. Essential dimensions where these three types of adversarial attacks differ are:

• Timing: Poisoning attacks are performed during the training phase of the model by injecting
synthetic and malicious data. Of course, the injection may happen earlier. For example, mal-
functioning sensors or aggregators in a Wireless Sensor Network (WSN) can alter the dataset.
On the other hand, Federated Learning solutions expose the training process directly. Evasion
attacks assume a converged model.

• Knowledge: Adversarial knowledge can be defined in terms of a space Θ [BR18]. This space
can include multiple components to which the adversary has access to. In a white box setting,
this includes any information that is interesting for the adversary. For evasion attacks these are
often the gradients, defenses protocol, and architecture: Θ = {∇Xf(X),Π, f(·)}. The space of
poisoning attacks diverges from this. Weaker assumptions for the adversary are the grey- and
black box setting. Grey box attacks refer to those in which the attacker has no knowledge about
the defenses. Whereas black box attacks only assume knowledge of soft labels F (X) and input
without information on the model or dataset.

• Capability: Adversaries are also influenced by the constraints imposed by the system. For ex-
ample, adversarial examples must contort itself to evade any security measure in place. The
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Figure 2.2: Our taxonomy for adversarial learning

question of what and how data is malleable is defined by these constraints. Poisoning attacks
are also known as causative attacks, whilst evasion attacks are exploratory [BR18]. They thus
distinct in what data is manipulated. Poisoning attacks may manipulate both training and test
data. This is not the case with evasion attacks.

• Intention: Model Extraction causes a privacy violation. Extraction of variables like model param-
eters give insight to the training data and decision boundaries via its returned confidence. This
aim is in contrast with evasion and poisoning. Those affect the integrity of the model.

• Specificity: Attack specificity is about the target that is chosen by the attacker [BR18]. During
in vitro evaluation we consider three approaches of targeting an incorrect class: best, worst, and
average case [CW17b]. These target the incorrect class that is close, far, or any proximity from
the sampled point X respectively.

Fig. 2.2 subdivides the main categories for adversarial learning based on earlier proposed taxonomies
[ZCW21; Tia+22; SN20] and our literature review in Chap. 4. In the literature review, different expla-
nations are given for adversarial examples. Each perspective results in an observable characteristic
of adversarial examples. To this end, we can categorize detectors by which of these novelties they
measure. Before delving into the specifics, the sections below provide a high overview of the different
attack types first.

Evasion
The work of Szegedy et al. [Sze+14] was the first to show the existence of adversarial examples . A
small perturbation is enough to cause misclassifications of neural networks at a high rate. Manipulation
of the input towards the adversarial direction is called evasion. The adversarial example can be very
close to the benign input, with on average a Euclidean distance of 0.3 for CIFAR models [CW17b].

The intra-boundary distance of different neural network architectures are much smaller than the pertur-
bation [Tra+17]. As a result, examples often transfer to multiple architectures and even other learning
algorithms. Transferability is particularly relevant in black-box attack scenarios, where the attacker
may not have complete knowledge of the target model’s architecture and parameters. This property is
far less present for CNNs or models that have independent subsets of input features. One explanation
for transferability is Model-Agnostic perturbation, which is perturbation between class norms. Each
model can be evaded towards this direction [Tra+17].

Adversarial examples don’t have to be close to the benign data point. There are other perturbations
with different levels of pathology. Some research has shown fooling images that are also unrecogniz-
able by human vision [NYC15; RD18]; physical perturbations with shadows [Zho+22]; and semantic
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perturbations [GSG20]. This thesis will focus on near-optimal perturbations and thus follow-up work
of Szegedy. Most methods of this kind utilize the first or second-order gradient of a model (Sec. 4.2).
These seek to minimize the following objective (Eq. 2.5):

A(X’,X) = ||X− X’||p + λ(Lf (X|W,B)− Lf (X’|W,B)) (2.5)

where λ ∈ [0,∞). This objective may have additional constraints, like its specificity and the capability
of the attacker.

Although it is not the main focus of this work, the robustness metric (Sec. 5.3.2) may prove useful
for semantic examples . That is because semantic examples minimize the naturalness of images,
related to distribution p(X), (Eq 2.6) instead of the ℓp-norm. The paper [GSG20] does this with the
addition of a penalty for variance, mean, and ratio of the color channels.

A(X’,X) = −p(X) + λ(Lf (X|W,B)− Lf (X’|W,B)) (2.6)

Poisoning
The basic idea of poisoning is to degrade the overall performance of the model for benign input. That
assumes a higher level of influence than evasion attacks. The adversary needs to have the neces-
sary capabilities to manipulate data during training. Still, examples of such attacks are not uncommon
[BR18]. The data that may be manipulated are its labels, features, or both. The latter is an issue for
federated learning algorithms. As it is hard to know which data is malicious when its data isn’t indepen-
dent identically distributed (non-iid) [Tia+22].

The amount of perturbation for dataset samples is determined with gradient-based methods (e.g. line
search) [ZCW21]. Evasion attacks are therefore closely related to poisoning. Poisoning problems,
however, have an inner-minimization (Eq. 2.7) that is hard to solve with a direct gradient. Rather, the
minimization is solved with a system of Karush Kuhn Tucker conditions [BR18]. Although this method
is out of scope for this thesis, it shows that poisoning can be reduced to the evasion case.

A(D’,D) = −Lf (X |W ′, B′)
s.t. argmin

W ′,B′
Lf (D ∪ D’|W ′, B′) (2.7)

Complete robustness against poisoning attacks is not achievable. This issue can partly be seen as an
engineering problem. We should be able to assume a certain level of integrity from the testing data.
Misguided evidence is an unmediated source of bias for machine learning [Tsa+21].

Model Extraction
Evasion and poisoning attacks have a large potential to disrupt the functionality of neural networks . At
least, when some information about its gradient is known. Papernot et al. [Pap+17] were the first to
mimic target models in a black box context. Their strategy is to substitute the model and learn its pa-
rameters based on queries. This process can be achieved by traversing the target model with specially
crafted inputs designed to elicit informative responses. The traversal of the target model is determined
with regular sampling techniques, evasion methods, or data-free searching (e.g. line search) [ZCW21].

The adversary can use any architecture to train a substitute model, given that its generalization perfor-
mance is enough. The source model can best be adapted to the input-output relation. As such, it would
help to utilize a CNN for image recognition. The final objective of the adversary would be to minimize
the Kullback-Leibler (KL) divergence (Sec. 6.1.1) of the target g(·) and source model f(·) (Eq. 2.8).

A(f(·), g(·)) =
∑
X∈I

g(X) log( g(X)

f(X)
) (2.8)

The confidence of a substitute model can hint towards the training data [FJR15]. The fact that this
information leaks through basic interactions with a model is worrisome for the privacy guarantees of
the training set. The transferability also adds the possibility of subsequent attacks of the other two
kinds. We find evasion the most interesting, as its gradient-based methods seem to be a universally
applicable across all three threats.



3
Contribution

This chapter states the requirements, intuition, and motivation of our contribution. It first discusses the
relevant features for CNNs. The chapter then reviews the related work and shows the limitations of
these methods. We consider semi-supervised detection methods, which includes image purification
and estimation of the manifold. The chapter concludes with the contribution of this thesis.

A generalized perspective of adversarial examples is based on the training manifold . Many high-
dimensional datasets only use a small fraction of the space, which is this manifold. A common intuition
of adversarial perturbation is that it pushes benign samples off the manifold. According to Szegedy
et al. [Sze+14], this places the sample in a blind spot of neural networks, where the model is extrap-
olating the classification. When this argument is followed it implies three possible situations [Fei+17],
where the adversarial exampleX ′ is either near the manifold, far from it, or near the decision boundary.

Our goal is to cover all cases so that the detection is more sound. The recurring theme in this work is
the idea of meeting the defense [Ald+22]. Stating that harmonizing prevention and detection covers
both near and far samples most effectively. The potential of samples that lie close to the manifold can
be lowered with robust optimization. Like limiting the Lipschitz constant (Sec. 4.4.3) or regularizing the
model. For large perturbations, these methods impact the fitting of the model. But, in this case, these
examples introduce certain anomalies towards the training set.

Meanwhile, current methods decide on narrow statistical regularities [HG17]. This collapses when
the metric becomes a target for the adversary. For example, principal components can be evaded and
variance can be gamed. This may not be the case for an ensemble of several strong but imperfect
predictors. The same holds for different Points of Interests (POI) in the neural network. For instance,
the raw image can be distorted on a block level by a large margin, so that the flattened image can be
near the trained set. To counter this and improve the robustness of detectors, our main contribution of
this thesis is a detector that measures irregularity on different POI, whilst being assisted by robustness
optimization techniques for small perturbations.

3.1. Point of Interests in CNNs
Typical CNNs exist of two main stages: feature extraction and classification (Fig. 3.1). During feature
extraction (shown in blue), the image is feature mapped by kernel convolutions and downsampled with
pooling. This will result in multiple planes of a lower resolution. The feature maps are then flattened, for
the subsequent Fully-Connected (FC) layers that do the classification. The details of these operations
were explained earlier (Sec. 2.1).

From this construction, one can determine at least three POI for our detection. On the raw image,
block level distortion may be found with an image quality assessment like BRISQUE [MMB12]. The
underlying features of BRISQUE quantify the ’naturalness’ of the image, which will be elucidated in the

11
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Figure 3.1: Visualization of VGG-13

next chapter (Sec. 4.3.1). The features of the raw image are also called Natural Scene Statistics (NSS)
and our first point of interest. Next, the flattened image represents the learned features of the model.
The flattened image after convolution excludes small invariances of the raw image and is the direct
input of the discriminating network. We will call the utilization of the flattened image Learned Features
Analysis (LFA). Lastly, the hidden layers of the model can be analyzed. Goodfellow et al. [GSS15]
showed that hidden layers can be highly responsive to perturbations, as the activation for some neu-
rons is much higher under adversarial examples. Indeed, one can expect that the adversarial examples
are likely to target neurons with higher gradients towards the target label when these often optimize
on gradient information (Ch. 4).

3.2. Requirements
Most detection techniques easily detect adversarial examples that were generated by the Fast Gradient
Sign Method (FGSM) [Ald+22], but this does not mean that the detection is sound. Carlini & Wagner
[CW17a] recommend evaluating the models on more powerful attacks. Their suggestions, including
this one, lead to the following requirements for our defense technique:

• R1: The defense should be robust in a white box or adaptive setting. Security in a grey box
setting is not enough, this would replace the problem by one of reverse engineering. Following
the famous Kerchoffs’ principle from the field of cryptography: Security through obscurity is not
sustainable.

• R2: The first requirement implies that the system should be secure against an universal threat.
Meaning that any evasion method generating adversarial perturbation, whether noisy or near-
optimal, should be detected.

• R3: Its security must scale well with the dimension of the input or output, both in its predictive
and computational capabilities. Small datasets, such as MNIST [LeC98], are significantly more
distorted under the same amount of ℓ2 perturbation than others like STL10 [CNL11] and ImageNet
[LY15]. As a result, these might need different heuristics to be effective on higher and lower
resolutions.

• R4: Speed of the network should be maintained and especially at employment. As such, the
system’s complexity should grow O(n) with the size of the neural network. The complexity at
training time, however, can be seen as a fixed cost and has less of an impact.

• R5: The model should remain accurate in classification when any regularization is used. This re-
lates to remedies involving weight decay, L1 or L2 regularization, and robust optimization. These
increase the risk of under-fitting.
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Figure 3.2: Illustration of the submanifold M for p(X|ŷ) and an ϵ-ball of foreign input.

3.3. Related Work
The literature review is limited in line to the requirements in Sec. 3.2. We are not aware of any work
that solicits a detector which is known to be secure in a white box setting. The scope of the related work
will therefore only cover work that possibly have some resistance. In particular, it leverages the general
characteristics of normal data rather than being narrowly tailored to specific attack patterns, thereby
enhancing robustness against a variety of unforeseen threats. These are semi-supervised detectors
with a pronounced accuracy on near-optimal adversarial examples and without gradient obfuscation.
Supervised detectors may outperform under the attack that is used during training; but are not consis-
tent on other incursions [ZH18] and this is validated in our experiments as well (Sec. 6.2.3). To this
extent, the following papers were consulted. Divided in two sections for clarity.

3.3.1. Measurement of Intrinsic Properties
Papernot & McDaniel [PM18] improve the interpretability , robustness , and confidence estimates of
neural networks with the (Deep) k-Nearest Neighbor (DkNN) algorithm. They leverage the kNN algo-
rithm to calculate the credibilitymetric from the hidden units. Credibility represents the level of support
under the training set D. This is the amount of evidence that is congruent to the new prediction ŷ. In
other words, the metric estimates the conditional probability p(ŷ|D, X).

Credibility is a characterization of the model’s confidence. Other methods to estimate confidence in-
clude Bayesian approaches. A simple example is Monte Carlo (MC) dropout [GG16]. Dropout’s original
use was regularization of neural networks; but was later proposed as a proximate for Bayesian infer-
ence of the posterior. To this extent, Gal et al. [GG16] illustrated that confidence depends on the
log-likelihood of multiple Bayesian approximations at test time. The results of Papernot & McDaniel
[PM18] show a low credibility for adversarial examples (∼ 75%+ recovery of Carlini & Wagner attacks);
a similarity in the semantics of neighboring adversarial examples; and demonstrate interpretability via
analysis of nearest neighbors.

Feinman et al. [Fei+17] devise their detector using the assumption that adversarial examples lie off
the small manifold of training data. They argue that the identification of low-confidence regions is less
effective for data that lie far from the data manifold. Density estimation is used for these situations
instead. Kernels on the train points should give an estimate of what the submanifold corresponding to
a label ŷ is. MC dropout can provide additional information about model confidence not conveyed by
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distance metrics. They show a consistent and high ROC-AUC measures across five attack algorithms
(AUC of 72%+).

Kernel Density Estimation (KDE) and kNN are both nonparametric methods. A fascinating prop-
erty of these methods is its flexibility. It can be shown that the methods converge to the true density
function in its limit to infinite sample sizes. The KDE of Feinman et al. [Fei+17] model the conditional
probability p(X|D, ŷ). The difference between the two estimators is that kNN fixes density and KDE
the volume of the density estimate. KDE is therefore less adaptive than kNN. In regions of high data
density, KDE may construct a washed-out structure of training data.

Ma et al. [Ma+18] use this argument (i.e. over-smoothing) to show that KDE has some limitations
in local adversarial pockets. Measuring the local dimensional structure instead of the kernel density of
the data would solve this problem. Dimensionality of the local data is revealed by the growth of the data
on each dimension. They use the fact from physics that a m-dimensional ball grows in a polynomial
order of m when it is scaled by radius r. Local Intrinsic Dimensionality (LID) estimates the growth of
the local volume using this property. One way to do this is with the kNN algorithm (Sec. 4.3.2). Ma et
al. [Ma+18] show higher ROC-AUC measures for LID (AUC of 82%+).

Lee et al. [Lee+18] improved upon LID by estimating the density with the Mahalanobis distance. Their
method is specifically designed for detecting OOD samples. The idea is to measure the probability den-
sity of test data using a class-conditional Gaussian. They thereby assume the normality of the logits of
neural networks. Lee et al. [Lee+18] show again higher ROC-AUC measures for Mahalanobis (AUC
of 99%+).

Similarly, Zheng & Hong [ZH18] propose I-Defender to estimate the training manifold p(X|ŷ) account-
ing latent variables. They assume the manifold to be a distribution of k hidden states. The marginal
distributions of Gaussian Mixture Models (GMM) (Sec. 5.3.1) can approximate these hidden states of
each class, which models p(X|ŷ). I-Defender uses that estimate to reject new samples. Their results
show an adversarial accuracy of 78%+.

A novel algorithm to find the maximum likelihood for GMMs is Expectation-Maximization (EM) . The
algorithm iterates between the E-step and M-step. The E-step computes the posterior of the model,
given the covariance matrices Σk and means µk. The M-step updates the parameters of the model. A
concern that will be discussed shortly is the size of Σk. This hyperparameter grows quadratically with
the dimension of the input.

Raghuram et al. [Rag+21] propose JTLA, which is another generative classifier for detecting adver-
sarial examples. JTLA models and aggregates the class counts of kNN in a Dirichlet distribution. On
each layer, this should result in a class-conditional probability of the test sample. The authors propose
two techniques to normalize the class-conditional probabilities based on its p-value. The authors show
a precision of 23%+ of on adaptive and non-adaptive attacks.

Hendrycks & Gimpel [HG17] show that near-optimal perturbations result in a higher variance of low-
rank principal components. They proposed to PCA whitening to detect an abnormal emphasis on
lower-ranked principal components compared to clean images, which simply measures the variance of
such components. Their results show a perfect classifier on the FGSM attack. Li & Li [LL17] propose
another application of PCA that measures extreme neuron activations (Sec. 4.3.4).

3.3.2. Image Purification
The idea of image purification is to move foreign images X ′ back to the training distribution. That
should remove any adversarial noise of the image. Purified images may then be classified by a regular
classifier. Song et al. [Son+18] propose a denoiser approach for purification. Their method, PixelDe-
fend, seeks the highest likelihood of p̂(X) within the ϵ-ball of X ′. Fig. 3.2 illustrates this setting among
three activations. The purified image can be determined with optimization techniques like L-BFGS. The
authors chose a greedy approach instead, which increases the performance to 3.6 CIFAR10 [KH09]
images a second. This setup results in an adversarial accuracy of 81%+ with adversarial training and
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Table 3.1: Comparison with prior work. R3 and R5 also depend on the target model.

Detector Universal (R2) White Box (R1) No Singularity Non-linear Efficient (R4)

DkNN 7 7 3 3 3

KDE & Dropout 3 7 3 3 7

LID 7 7 3 3 3

Mahalanobis 7 7 3 3 3

I-Defender 3 7 7 3 7

JTLA 3 7 3 3 7

Whitening 7 7 3 7 3

Extremal 7 7 3 7 3

Feature Squeezing 7 7 3 3 3

Pixeldefend 7 7 3 3 7

LRD (Ours) 7 7 3 3 3

MeetSafe (Ours) 3 3 3 3 3

under small perturbations.

Xu, Evans, & Qi [XEQ18] reduced the degrees of freedom with predetermined filters or Feature Squeez-
ers. A diminutive change on features with low variance are discarded due to these filters, which limits
the opportunities of adversaries significantly. At least, for near-optimal perturbations. They explore two
types of Squeezers: bit-depth, and spatial smoothing (median blur). A detector compares the ℓ1 dis-
tance between the probits F (X) of the squeezed and original image. Their results showed an overall
detection rate of 84%+. However, the results on highly perturbed images were notably lower, with a
rate of 20%+. Feature squeezing is similar to the work of Liang et al. [Lia+18].

3.3.3. Opportunities & Motivation
Tab. 3.1 summarizes the related work based on the discussed requirements. Singularity and non-
linearity are of additional interest. Prior work has evaluated multiple linear detection methods [CW17a],
of which ones based on PCA. Indeed, analysis of principal components show vast differences between
benign and manipulated data [HG17]. Only, the linearity of this behavior seems to make it unfit for the
white box setting [CW17a].

A second challenge arises when one scales the target model too wide. Ultimately, treating each (hid-
den) unit of wide models as a feature challenges the scalability of the detector. For instance, I-Defender
[ZH18] faces such issue already for the ResNet-50 [He+16] model. The full covariance matrix Σ of this
defense grows O(n2) in the input dimension d. I-Defender would thus have around half a million in-
dependent variables (≈ 10002+1000

2 ). As a result, smaller but common datasets like STL-10 [CNL11]
and Tiny-ImageNet [LY15] induce singularities in the detector’s likelihood function, because the sam-
ple covariance matrix is likely to be positive semidefinite when there are less training samples than
the number of variables.

Besides, some classifiers degrade on wide models because of the curse of dimensionality. A reduction
of parameters and detector’s complexity might thus be necessary, for example by assuming the matrix
Σk to be diagonal. Alternatively, one may prune the considered features with feature engineering. To
this extent, we indeed show that some units change more than other under perturbation, allowing a
heuristic to extract relevant features from only a subset of the units (Appendix B).

Similarly, for the issue of dimensionality, it is at least crucial to maximize the data. The segmenta-
tion in the KDE and DkNN method is not preferable. After all, we are not certain of the true class of a
given sample. Meaning that inherent misclassifications, that are not caused by any perturbation, will
be compared to an ill-suited distribution. The KDE method can thus hypothetically be improved by
estimating the density function with all labels. In addition to what was suggested by the authors of the
LID heuristic [Ma+18].

A third issue is the coverage of the detectors, this is shown in the table as universal. Most detec-
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tors focus their method on a specific perturbation type, making them vulnerable in the white box setting.
As an example, Feinman et al. [Fei+17] showed that distance based metrics are not effective for small
perturbations. Similarly, a squeezer can’t filter out substantial changes in the input. Whilst squeezing
helps in lowering the relative noise, it will not remove the vulnerability of the classifier. Indeed, their
results on major perturbations are not consistent [XEQ18] for this reason. The fourth challenge is the
robustness measure and interpretability of neural networks (Sec. 2.2.1). The robustness measure,
consisting of the ℓp-norm, does currently not resonate with human vision. It is crucial for certified meth-
ods to have a metric that does relate better to human perception.

These four shortcomings in current technology are the motivation to propose a model-agnostic detec-
tor that measures nonconformity on multiple POIs of a CNN. This detector is an ensemble of different
heuristics to reach a higher coverage. We want to test the following hypothesis:

Hypothesis 1:
Detectors fail in white box situation when it is either linear, overfit, or has narrow statistical

regularities.

Takeaway 2.
Literature review of the recent advancements in the detection of adversarial examples results in
the following conclusions:

� Supervised detection, using the possibly manipulated image as feature, fails to be consistent.
� KDE may be over-smooth in regions of high density.
� Feature engineering is necessary on the hidden units
� Current detectors decide on narrow statistical regularities.

3.4. Contribution
The next chapter will show how the related work fits in the taxonomy of Sec. 2.2.2. The thesis will then
turn to the proposed detector, MeetSafe. This method combines the ’perks’ from three heuristics in a
GMM. Our first intuition was to use Local Outlier Factor (LOF) to measure nonconformity, improving
upon the KDE method. That failed and the reason why is later proven in Sec. 6.2. With the lessons
learned of this set back, the thesis proposes a new heuristic that outperforms other nonconformity
measures. To summarize, this paper contributes:

• C1: The thesis discusses four properties of adversarial examples that induce essential measures
for detection methods. Each related work is then categorized in the proposed taxonomy (Sec.
2.2.2).

• C2: The thesis shows an unexpected limitation of heuristics for local density using a rational
difference equation. Which are, among others, LOF and LID (Sec. 6.2.2).

• C3: It proposes MeetSafe, a detector that uses three heuristics in a Gaussian Mixture (Chap. 5).
• C4: The thesis proposes LRD, a new method on nonconformity estimation. This improves the
complexity and robustness of prior methods (Sec. 5.1.2).

• C5: The thesis introduces two utility functions that allow LRD and other detectors to scale based
on a unit’s Z-scores or rate of change under perturbation.

• C6: The thesis Empirically validates hypothesis 1 with different models (Resnet-50 and VGG-13).
It shows MeetSafe to have an 74%+ accuracy on the white box threat model; and 96%+ accuracy
on FGSM perturbations. This is with a True Negative Rate (TNR) around 90%. The thesis will
also draw interesting conclusions about PCA, contradicting some prior work when robustness
optimization is used. (Chap. 6).



4
Background

Gradients have a crucial role in the process of generating adversarial examples. This chapter will
therefore start with a discussion of the gradient field and its use in optimization. This part will comprise
essential concepts for gradient-based optimization like the Hessian, Jacobian, and backpropagation.
It will then continue with the different methods on adversarial example generation and discuss the
anomalies these introduce to the data. The chapter will conclude with a brief review of the research
directions in robust optimization. This will give rise to the methods: adversarial training, regularization
and certification. Both the theory on any anomalies and robust optimization will prove useful for our
detector.

The discussion of Chap. 2 showed universal applicability of gradient-basedmethods across three types
of adversarial attacks. That is perhaps less surprising when one considers its dependence on the loss
term Lf (X’|W,B). In particular, recall the objective functions of evasion (Eq. 2.5-2.6). The objectives
consist of a term measuring human perceptual similarity and another term for the model’s confidence.
The challenge here is to optimize the model’s loss whilst remaining similar. To do this, we often resort
to similar procedures as during network training. Maximizing the error function under a certain budget
(e.g. ϵ-ball).

The error function is visualized in Fig. 4.1 for two weights of the model. Note that the blue arrows
below the error function points in the direction of the greatest increase for the function. Such a vector
field is known as the gradient field ∇Lf . A step of ∂W would therefore change the error function by
∂WT · ∇WLf . The smallest value of Lf occurs on a stationary point where that gradient ∇Lf is of
length zero.

Stationary points are on the saddle, minima, and maxima of the function. Finding the optimal or a good
feasible solution by solving Lf directly is rather infeasible. The error function has a broad non-linear
dependence on the input and can have, as discussed in Chap. 2, distinct local optima. Stochastic Gra-
dient Descent (SGD) is a more naive approach for network training. It takes a select amount of training
samples, a mini-batch, to calculate the new gradient ∇WLf ; and then update to update W according
to Eq. (4.1) with learning rate η. The algorithm iterates the first step in a randomized fashion.

Wt+1 = Wt − η∇WLf (4.1)

A more applicable optimizer for adversarial generation is the Adam optimizer [KB15; CW17b]. Adam
scales a momentum m̂ for η up or down according to the amount that a specific parameter has changed.
Evaluated against the sum of squared (prior) gradients (Eq. 4.4). The adjustments ensure a balanced
convergence among each parameter. For adversarial generation, this promotes diffuse perturbation.
The term v̂ also allows the algorithm to decay the learning rate η. The update rules for the momentum
m, v, and parameters W are as follows:

mt+1 = β1mt + (1− β1) · ∇WLf (4.2)

17
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Figure 4.1: The Gradient Descent Algorithm

vt+1 = β2vt + (1− β2) · (∇WLf )
2 (4.3)

Wt+1 = Wt −
η

ϵ+
√

v̂t+1

m̂t+1 (4.4)

where the hat refers to its normalized counterparts and β1, β2 are discount parameters.

Less frequently used, but possibly even stronger, are second-order optimizers. The second deriva-
tive of the error function adds additional information about its curvature. Take a saddle point as an
example. Saddle points, shown on the diagonal of Fig. 4.1, are by definition suboptimal. With the
limited information of ∇Lf , SGD can get stuck. The gradient of the error function will vanish on these
points. Sometimes leading to no perturbation at all under attack algorithms that rely on first-order gra-
dients (Sec. 6.2.1).

The second-order gradient of the error function ∇∇Lf measures the curvature towards each parame-
ter. This matrix is better known as the Hessian matrix H . To demonstrate the meaning of this matrix,
we will decompose it in its eigenvectors:

H =

|W |∑
λiuiu

T
i (4.5)

where ui are eigenvectors. The characteristic of H allows distinguishing saddle, maxima, and minima
points. A negative eigenvalue λi corresponds to a downward curvature in direction ui. The combina-
tion of both positive and negative eigenvalues thus suggests a saddle point at a vanishing first-order
gradient. Similarly, a maxima has only negative eigenvalues. Under these situations, H is positive
semi-definite. Any local minima would in turn have a positive definite H (Eq. 4.6) . If not, the error
function can be improved towards the inconclusive eigenvectors.

uT
i ·H · ui > 0 (4.6)

Gradient-based techniques work very well on large dimensions. Each variable provides an extra path
on which the state of them can be moved. For neural networks, it is unlikely to end up in poor local
minima [RHW86]. Despite this fact, the process is usually restarted with different starting values.

4.1. Exact Gradient Evaluation
The Hessian and gradient can be computed efficiently with the use of partial derivatives respect to
components within the network. This approach lowers the naive complexity from O(|W |2) to O(|W |).
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It consists of two phases: the forward pass evaluating Lf ; and the backward pass that propagates the
errors back through the neural network [RHW86]. Because of the backwards calculation, the method is
often referred to as backpropagation . The process is demonstrated for the first-order gradient below.

The first step in the backward pass is to calculate ∂Lf

∂zi
of each logit zi ∈ Z(X). Backward steps

then utilize the chain rule for partial derivatives to evaluate either the parameter (Eq. 4.8) or previous
layer (Eq. 4.9). For Eq. 4.8, we multiply the partial derivative of a logit, or any other activation, with
the derivative of the activation function h′(·). That obtains the effect of the activation aj before h(·) on
Lf . Since each activation has a linear contribution with respects to the weight, it is enough to multiply
this and the previous unit to get the gradient. Note that this last part equals to one for the bias term.
The same idea is repeated in Eq. 4.9, but now it is linearly dependent on the activation f

(l−1)
j and is

summed over each unit. A sequence of both equations allows evaluating any gradient. The Hessian
can, whilst more involved, be calculated with the same rules.

∂f
(l)
j

∂aj
= h′(

D(l−1)∑
w

(l−1)
i,j f

(l−1)
i + b

(l−1)
j ) (4.7)

∂Lf

∂w
(l−1)
i,j

=
∂Lf

∂f
(l)
j

∂f
(l)
j

∂aj
f
(l−1)
i (4.8)

∂Lf

∂f
(l−1)
j

=
D(l)∑ ∂Lf

∂f
(l)
i

∂f
(l)
j

∂aj
wi,j (4.9)

Evasion methods often calculate the gradients with backwards propagation, but may start on interme-
diate components like the logits Z(X) that outputs a vector instead of a single value. That will result
in a |W | × |Z(X)| matrix of partial derivatives for the weights or pixel values. This is the Jacobian and
includes gradients for each label in this example. One can estimate the distance to the closest decision
boundary, knowing the value of Z(X) and the Jacobian (Sec. 4.2.1). When we relate all concepts with
each other, then the Hessian can be seen as the Jacobian of the gradient field ∇Lf .

The chain rule allows a large usability for backpropagation and is certainly not limited by neural net-
works. Pytorch keeps track of the partial derivatives with a computational graph during each forward
pass. It includes ‘backward’ functions for each performed operation within this graph. That way, any
model can be computed with gradient-based optimizers. Even though, PGD may not always be the
best choice for optimizing parameters. Specifically, the iterative and approximate nature of optimizers
may be burdensome. Besides, the complexity of evaluating the Hessian is not practical in most cases.
That matrix has O(|W |2) (O(|W | · |Z(X)|) for the Jacobian) components. First-order gradient-based
methods are thus ubiquitous; but require multiple iterations and are not guaranteed to converge.

4.2. Generating Adversarial Examples
The gradient of the error function has a crucial role in the process of generating adversarial examples.
Almost all techniques that generate near-optimal perturbations use ∇XLf to determine in which direc-
tion the pixel’s values should be changed. That is, the gradient with respect to the input data, instead
of the model’s parameters. After that, the algorithm ensures human imperceptibility with some distance
metric as the ℓp-norm. An exception to this regularity are algorithms that rely on Constraint- (CP) or
Linear Programming (LP). LP and CP can only be effective in convex regions because of the discussed
min-max problem of neural networks.

4.2.1. First-Order Gradient-based Attacks
The scope of this thesis is limited to attacks that optimize the ℓ2 distance in a white box or grey box
setting. Attacks, other than the Fast Gradient Sign Method (FGSM), that are an example of other
approaches are briefly discussed at the end of this section. We focus on these methods since the ℓ2
distance gives a rather unrelated measure of perturbation towards the resolution used by the targeted
image. Besides, black box evasion methods add more noise to adversarial examples. Our experiments
aim to test the worst case under similar amounts of perturbation (Chap. 6).
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Algorithm 1 Carlini & Wagner ℓ2 Algorithm
1: Require
2: D Dataset in input space I
3: F (·) Softmax outputs
4: f̂(·) Criterion of adversarial examples
5: Ensure
6: X′ Batch of adversarial examples
7: X ∈ D
8: δ ← 0
9: X′ ← ∅
10: t← argmax F (X)
11: for epochs do
12: for iters do
13: l← cf̂(X) + ||X||2
14: δ ← Adam(δ, l)
15: X ← X + δ
16: if argmax F (X) ̸= t then
17: Append X′ with (X, δ)
18: end if
19: end for
20: c← Binary_Search(c,X′)
21: end for
22: return X′

Fast Gradient Sign Method (FGSM)
Goodfellow et al. [GSS15] allege that neural networks are too linear around the proximate region of
benign input. The activation functions are in fact non-linear, but are designed to behave linearly almost
all the time. For instance, a popular activation functions called ReLu exhibits only non-linear behavior
near inputs of zero. Whilst, Sigmoid is very linear around small activations.

FGSM uses this fact to perturb the target image X with a ℓ∞ distance of ϵ as follows (Eq. 4.10). It
first applies the sign of the gradient ∇Lf . The algorithm will then adjust the values of the pixel up or
down (uniformly) according to the gradient. Goodfellow et al. [GSS15] showed that such ℓ∞ adjustment
around 0.015 is enough to fool unprotected neural networks. This operation is quick because of the lin-
earity assumption, which is the primary reason to still discuss this method even though it optimizes ℓ∞.
Using FGSM, we select our features (Sec. 5.2) and optimize the robustness of the model (Sec. 4.4).

X ′ = X + ϵ · sign(∇XLf ) (4.10)

Kurakin et al. [KGB18] refine this approach with the Basic Iterative Method (BIM), which iterates FGSM
according to the projected gradient. Essentially clipping the resulting image to the maximum ℓ∞ pertur-
bation of ϵ after each iteration.

Carlini & Wagner Attacks
The Carlini & Wagner (C&W) attacks [CW17b] are a follow-up of the first method for adversarial genera-
tion called Broyden–Fletcher–Goldfarb–Shanno (BGFS) (Sec. 4.2.2). By utilizing first-order gradients,
C&W manages to be faster than the original work and the strongest first-order evasions in our exper-
iments. Both methods optimize an objective function that is solved with an optimizer: Adam [KB15]
and BGFS [Fle70]. It directly computes A(X ′, X) (Eq. 2.5) with some minor differences. The objective
function consists out of the ℓp distance and a criterion f̂(X) : Rm → R (Eq. 4.11) guarded by the
sensitivity c. The equation demonstrates one of the seven criterions advertised in their paper [CW17b].
Eq. 4.11 measures the ℓ1 distance towards the highest, untargeted logit zi ∈ Z(X).

f̂(X) = (max
i ̸=t

(zi)− zt + κ)+ (4.11)
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Algorithm 2 DeepFool Algorithm
1: Require
2: D Dataset in input space I
3: fi i’th softmax output in F (X)

4: Ensure
5: X ′ An adversarial example
6: X ∈ D
7: δ ← 0
8: k0, t← argmax F (X)
9: while k0 ̸= t do
10: for ki ̸= k0 do
11: wi ← ∇Xfki −∇Xfk0

12: pi ← fki − fk0

13: end for
14: l← argmin |pi|

||wi||2
15: δ ← δ + |pl|

||wl||2wl ▷ ||wl||22 in their paper, ||wl||2 in their code
16: end while
17: return X + δ

The use of logits is related to the fact that logits represent raw, unnormalized predictions. Probits, on
the other hand, lost the distance information of the original domain after the contraction towards prob-
ability space. Moreover, distillation (Sec. 4.4) aggravates contraction during network training, as it
divides the logits with a distillation temperature in the softmax function. In effect, the model exhibits
vanishing gradients that are not useful for evasion methods [Pap+16a]. C&W attacks circumvents this
defense regardless of how much the softmax layer changes the relative importance.

In addition, Carlini & Wagner [CW17b] propose using high-confidence attacks to test adversarial ro-
bustness. Especially because they [CW17b; CW17a; ACW18; CW16; AC18; Tra+20; He+17] showed
that most detectors fails to show reasonable robustness under these circumstances. The strength of
C&W adversarial examples can be improved in at least three ways. The targeted confidence of the
model can be increased with κ. This parameter encourages Adam to find examples X ′ with a larger
distance from the decision boundary.

A second parameter is that may be adjusted is c. This influences the value of such larger distance
with respect to the noise δ. A binary search approach on c can be used to find the best balance. The
third option is to include the suspicion of employed defences into the function f̂(X) with another sensi-
tivity of c∗.

To ensure the validity of the perturbation δ as an image, certain Box Constraints are applied. One
box constraint is already discussed, which is the projected gradient. A better approach is to use the
tanh-space for clipping (Eq. 4.12). It could smooth out the clipped gradient so that it eliminates the
problem of getting stuck in extreme regions. For this reason, the image is projected on the tanh-space
leading to an inverse domain of [−1, 1]. When we shift that domain accordingly, the values leading to
a valid image can be demarcated.

X ′ =
tanh(Xclip) + 1

2
(4.12)

Algorithm 1 shows an overview of the l2 C&W attack, which is one of the three proposed attacks in their
paper [CW17b]. Generally, the method chooses a new starting point at the beginning of each epoch
and continues for some iterations. A successful perturbation during the epoch divides the sensitivity
parameter c by 2 according to the divide-and-conquer strategy of binary search, as this would suggest
that it is possible to find a smaller perturbation.
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DeepFool
Deepfool [MFF16] fits a hyperplane on the target model. The hyperplane is an aggregation of the binary,
affine classifier a(X) : Rm → R2. The binary case is vulnerable to any perturbation orthogonal to the
classifier’s boundary. More formally, it is enough to perturb a sample X with the following to reach the
boundary of a(X):

a(X)

||∇Xa(X)||22
· ∇Xa(X) (4.13)

where∇Xa(X)may be replaced with the weights of the affine operation. A similar function is important
in second-order optimization (Sec. 4.2.2) and well known as Newton’s method , which is an iterative
way of finding roots. This method uses Newton’s method to find the root a(X) = 0. In the next section,
we show how to find a stationary point ∇XF (X) = 0 with second-order optimization.

Now, we use a comparable, but first-order, intuition for any multi-class classifier A(X) : Rm → RL.
Geometrically, this classifier constitutes a convex polyhedron, where the classification t also depends
on the confidence of other outputs in A(X); since we classify test samples to be the label with the max-
imum output among A(X). That is, the class t is enclosed in the set {at|at ≥ ai} for any ai ∈ A(X).
Application of Eq. 4.13 to this relation gives,

|at − ai|
||∇Xat −∇Xai||22

· (∇Xat −∇Xai) (4.14)

which is again enough to reach the decision boundary with class i. Notice, that this point is on the
boundary. To make A(X) misclassify the sample, a small overshoot η should be added as a scalar.

Moosavi et al. [MFF16] estimate the boundaries of neural networks with the gradients of the probits.
This assumes linearity of the boundary. Their method is iterative for this reason, not doing so might
lead to insufficient perturbation (Algorithm 2). Though, it will generally halt quickly, after around 1-3
iterations; and whilst it has a higher complexity than the previous methods, it is often much faster than
the C&W attacks.

More recently, Croce & Hein [CH20a] made three improvements to DeepFool with their Fast Adap-
tive Boundary (FAB) Attack. They include (i) multiple restarts (ii) a dependency on the original sample
for each iterative step. The reasoning behind this is that the adversarial example should be biased to
the original sample. Projecting the latest iteration in a convex combination of the original sample would
minimize the divergence from this starting point. Similarly, FAB adds (iii) a Backward step after each
iteration towards the original sample. FAB, projected descent, and the Square Attack [CH20b] were
used in an ensemble of attacks called Auto Attack, which is currently considered state-of-the-art for the
grey box setting.

Semantic Attacks
The downside of using the ℓp-norm in RGB space is that it does not fully simulate human perception
[GSG20]. A simple example is that invariances like rotations and translations cause large differences
in RGB space, but contain identical characteristics for human vision. There is, however, a recent line
of work on semantic perturbation that can find perturbation more aligned with human vision [Luo+22;
Dua+21; ZLL20; GSG20]. Semantic attacks exploit such invariances to reach extreme perturbations,
whilst preserving the structural information of the targeted image. Semantic attacks are thus not re-
stricted to the ℓp distance in RGB space, and rather optimize attributes that do simulate human percep-
tion. What follows are two examples of semantic attacks.

The shadow Attack [GSG20] is a Projected Gradient Descent (PGD) on three semantic penalties and
the average model’s cross-entropy loss ∇XLf over a batch of Gaussian perturbed copies (Eq. 4.15).
Penalty C(δ) restricts the perturbation to each color channel, which prevents extreme color changes.
TV (δ) encourages the perturbation δ to be smooth and uniform across the pixel values by penalizing
total variation. Penalty Dissim(δ) promotes the perturbation to be similar on each color channel. The
constants λc, λtv, λs are part of the hyperparameters for the shadow attack method.

max
δ
∇XLf − λcC(δ)− λtvTV (δ)− λsDissim(δ) (4.15)
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PerC [ZLL20] alters C&W’s objective function to have the perceptual color distance CIEDE2000∆E00 :
R2×3 → R that better aligns with human perception. In particular, ∆E00 calculates the weighted ℓ2
distance in chroma ∆C ′, lightness ∆L′, and hue ∆H ′ attributes (Eq. 4.16). The weight functions
SL, SC , SH , RT were specifically optimized to human vision. PerC is proposed in two variants. PerC-
C&W adds∆E00 into the joint optimization of C&W’s objective: ||∆E00||2+c · f̂(X). PerC-AL alternates
between the respective left and right term each epoch.

∆E00 =

√
(
∆L′

SL
)2 + (

∆C ′

SC
)2 + (

∆H ′

SH
)2 +RT

∆C ′

SC

∆H ′

SH
(4.16)

Additional Attacks
Additionally, some attacks with a differing threat model will be discussed. These will not be implemented
for our experiments, but have strong connections with- or are frequently cited by the other work. In or-
der, we will now discuss a black box, ℓ0, and an input-agnostic method.

Black box methods have by definition no access to backpropagation. An analogous approach to this
algorithm is numerical differentiation . It does not utilize any structural information, like backpropaga-
tion. That makes this method less accurate and O(|X|2); but still interesting for the black box context.
Numerical differentiation calculates the gradients with finite (central) differences for each partial deriva-
tive. This would thus add a small perturbation ϵ on any pixel value xi,j,k ∈ X to two forward passes
and takes its normalized difference to be the gradient (Eq. 4.17).

∂Lf

∂xi,j,k
≈ Lf (X+ ϵ)− Lf (X− ϵ)

2ϵ
(4.17)

Zeroth Order Optimization (ZOO) [Che+17] applies this method on FGSM and C&W. It only considers
the confidence scores of multiple queries. They lower the complexity of this numerical differentiation
by reducing the dimension of the image with a hierarchical scheme.

Andriushchenko et al. [And+20] use random sampling to perturb samples without gradient informa-
tion. They propose the Square Attack, which iteratively perturbs one squared window under a uniform
distribution. Their ℓ2 attack also ’moves mass’ of the intermediate perturbation X ′ −X from a second
squared window. Meaning that the algorithm uses the budget of the second window so that the pertur-
bation is localized and the ℓ2-norm is further minimized.

Papernot et al. [Pap+16b] introduced an attack optimized for ℓ0 perturbation known as the Jacobian-
based Saliency Map Attack (JSMA) . This algorithm builds a saliency map of the input in terms of a pair
of pixels (p, q). The saliency map depends on the gradient of the pair towards the target label αp,q and
any other label βp,q. The algorithm then chooses the candidate maximizing Eq. 4.18 for perturbation.

(p, q) = (−αp,q · βp,q) · (αp,q > 0) · (βp,q < 0) (4.18)

Moosavi et al. [Moo+17] demonstrate a method for Universal Adversarial Perturbation (UAP); pertur-
bations that are input-agnostic capable of causing misclassification across most images in a given
dataset. To do this, they accumulate the perturbation of evasion methods over a batch of samples until
the perturbation achieves the fooling rate (1− τ).

4.2.2. Second-Order Gradient-based Attacks
Second-Order optimization methods leverage the available information with the (estimated) Hessian
HX of the error function. The rationale of these methods is to find a root of the gradient field ∇Lf

where HX is positive definite. A simple approach to this problem is to iteratively update an initial point
towards the root. Recall that this can be done with Newton’s method (Eq. 4.13),

Xt+1 = Xt −H−1
X · ∇XLf (4.19)

notice that this converges faster than gradient descent (Eq. 4.1), as the curvature is now included
instead of approached with a learning rate.
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Algorithm 3 Broyden–Fletcher–Goldfarb–Shanno Algorithm
1: Require
2: D Dataset in input space I
3: B Initial guess of the positive definite Hessian H
4: A Objective to solve
5: Ensure
6: δ Near-Optimal perturbation
7: X ∈ D
8: δ0 ∈ 0
9: for n ∈ {0..iters} do
10: P ← −B−1 · ∇XA(X,X +

∑n
δi)

11: α←[Wol69] argmin A(X,X + αP +
∑n

δi) ▷ adhering to the Wolfe conditions
12: δn ← αP
13: y ← ∇A(X,X +

∑n
δi)−∇A(X,X +

∑n−1
δi)

14: B ←[Fle70] Correction(δn, y) ▷ Update B with the rank two correction
15: end for
16: return

∑iters
δi

A problem with this approach is that the Hessian HX is not guaranteed to be positive definite after
termination. After all, Newton’s method will converge to any root of the gradient. Whilst one can know
from the Hessian if this is the case, it would still mean that Newton’s method may converge to a saddle
point or maximum, especially for non-convex functions. It is thus necessary to restrict the Hessian to
be positive-definite. Also, computing the hessian is not realistic for large inputs. The inverse operation
requires O(|X|3) operations, as H is a |X| × |X| matrix. An approximation of HX would therefore be
more practical.

Broyden, Fletcher, Goldfarb and Shanno independently proposed BGFS [Fle70], which allows for the
approximation of a positive definite matrix H−1 close to the previous point Xt. They approximate H
with an approximation B, which is updated at each step according to the secant condition ,

Bt · (Xt −Xt−1) = ∇Xt
Lf −∇Xt−1

Lf (4.20)

this condition arises because it is true for any exact hessian. This gives some limited information on
what H should be, so we approximate Bt by substituting the left and right-hand side of Eq. 4.20 for
Bt−1 in the vectors u and v of a rank 2 update (Eq. 4.23). Since we also need to impose the secant
condition of the updated Hessian, we scale the outer products with α and β respectively.

α = (∇XtLf −∇Xt−1Lf )
T · (Xt −Xt−1) (4.21)

β = (Xt −Xt−1)
T ·Bt−1 · (Xt −Xt−1) (4.22)

Bt = Bt−1 + α−1uuT + β−1vvT (4.23)

Then a point Xt should be found that also constraints the new matrix Bt to be positive definite. A
fast way is to do this is by preserving this property on each update via the Wolfe Conditions [Wol69].
These operations lead to Algorithm 3, with some references to the full equations, as these may cause
clutter and refrain from the main idea. This and its computational complexity are significant downsides
of second-order gradient-based attacks. Even though their convergence benefits from the added cur-
vature approximation.

The work of Szegedy et al. [Sze+14] proposed a box constrained BGFS optimization for the adver-
sarial objective (Eq. 2.5). This was the first method to generate adversarial examples. The use of
a general optimization methods, like for the BGFS method and C&W attacks, is beneficial. It adds
some flexibility in adding new constraints and objectives. For instance, one may add the suspicion of
deployed defenses or instead optimize human perceptual similarity.
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4.2.3. Convex Optimization
The process of optimizing an objective function, as the C&Wand BGFSmethod do, is called constrained
optimization . Here, an objective function is restricted with hard constraints on the variables. These
define the feasible region of that function. Till now, all techniques for adversarial example generation
optimize a non-linear set of constraints. This section will turn to the linear case. The constraints are
thus limited to the form:

D∑
ajxj ≤ b (4.24)

for dimension D and constants a ∈ RD and b. Geometrically, this can be seen as a convex polyhedron
or polytope for enclosed problems. Each extreme point of that shape is of interest during optimization.
Since the linear constraints ensure convexity, it is possible to find a better, feasible solution each step.

A popular method for linear programming is Simplex. Simplex systematically finds better extreme
points by choosing a new pivot or element to optimize. The method adds this variable to the basis,
which represents a new extreme point. This element can only be nonzero on one constraint, the pivot
row, to be in the basis. The solution is optimal when none of the elements in the objective function
contributes to a better value. More specifically, each element has the coefficient aj ≤ 0 given a maxi-
mization problem. As an example, consider the basis of the following linear program:

min z = x1 + 12s1

s.t. 13x1 + x2 + 12x3 + s1 = 5

x1 + x3 + s2 = 16

x1, x2, x3 ≥ 0

(4.25)

this basis consists of x2 = 5, and x3 = 16 and is optimal.

It can be shown that the worst case complexity of simplex is O(2|W |) in its input. This is the case
where each constraint is used in the pivot row, for all possible constraints for a set of parameters |W |.
Such cases are Klee-Minty cubes [KM72]. Practically, the complexity of the next methods will not
meet this instance, as the constraints are independent at each layer of the model or formalize a simple
model-agnostic approach.

Convex Restriction
Bastani et al. [Bas+16] model the convex relations of neural networks in a linear program. It follows
the same logic as the paper of Goodfellow et al. [GSS15]. Stating the linearity of nearby inputs. This
region is defined by a set of linear activations A →h(·) {f (l)}Nl=1 and non-linear units {f (l)}Nl=1 for N
layers. For Resnet and VGG the nonlinear function is the ReLu, that is the function (x)+. Networks
can be encoded in the constraints:

Cf = (

|A|∧
Cact) ∧ (

|{f(l)}N
l=1|∧
Cunit) ∧ Cout (4.26)

this gives three components to define. The constraints for units, activations, and the required label.
Pooling layers can be encoded similarly to the unit or ReLu function [Bas+16]. The activation’s con-
straints are by definition linear, so no reformulation is necessary here. However, the unit’s constraints
of the ReLu z = (a)+ ∈ {f (l)}Nl=1 handles the max operation in a disjunction:

Cunit = (a ≤ 0 ∧ z = 0) ∨ (a ≥ 0 ∧ z = a) (4.27)

and the targeted label t is enforced with the Cout constraints:

Cout =
|F (X)|∧

yt ≥ yi (4.28)

where F (X) are the probits of the neural network. Resnet and VGG can thus be written as these three
(Cact, Cunit, Cout) linear sets. The final challenge is to reach convexity, which Simplex requires. Con-
junctions form a polyhedron or polytope, as discussed. However, the disjunction is not convex when it
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Table 4.1: Performance of each attack on CIFAR10. N/A values denotes unreported performances by the original paper.

Evasion Complexity Advertised ℓ2
[CW17b; Bas+16] Accuracy Assumes Linearity

FGSM O(|X|+ |W |) 0.831 87.2% 3

C&W Attacks O(|X|+ |W |) 0.17 100% 7

DeepFool O(|X| · |F (X)|+ |W |) 0.85 100% 3

FAB O(|X| · |F (X)|+ |W |) N/A 99% 3

PerC-AL O(|X|+ |W |) N/A N/A 7

Shadow Attack O(|X|+ |W |) N/A N/A 7

L-BFGS O(|X|2 + |W |) N/A N/A 7

Model-agnostic O(|X|) N/A N/A 3

LP & CP O(2|W |) 0.612 61.5% 3

is part of the convex hull. The disjunction of Eq. 4.27 should thus be restricted to be convex.

A simple solution that Bastani et al. [Bas+16] propose to eliminate the disjunct that is False for the
sampled image X. The resulting constraint models a subset of the original, feasible region. Some
solutions are thus lost; but that burden should be minimal when one assumes linearity in the proximate
region of X

Model-agnostic Perturbation
Model-agnostic perturbation shifts the benign image towards the intra-class mean of another label
[Tra+17]. That is the expected value of a feature mapping ϕ(X). For a fixed mapping, the perturbation
is most effective when it is orthogonal to the target label t and original label l:

δϕ =
Et[ϕ(X)]− El[ϕ(X)]

2
(4.29)

where X is a benign input. That direction must fool accurate classifiers at some point. To put these
concepts into perspective, consider the neural network’s last basis function f (l−1) to be a feature map
to its latent space. So just before the last linear layer [Tra+17]. If the weights of the final layer are
aligned with δϕ, i.e. its dot product is not zero, then that direction will certainly fool the model.

However, this assumes that we know f (l−1), whilst we do not. Therefore, one has to test if is if the
feature mapping is linear enough (i.e. pseudo-linear) to propagate the perturbation of its input space.
Meaning, the orthogonal component of δϕ should remain small for effective perturbation between input-
class means (Eq. 4.30). In general, this is true for most classifiers. Tramer et al. [Tra+17], showed this
for deep neural networks, linear-, and quadratic classifiers. Although, CNNs seem to be lacking this
property.

f (l−1)(X + δ)− f (l−1)(X) = α · δf(l−1) + β · δ⊥f(l−1) (4.30)

The generalization to multi-class classifiers can be made through pairwise differences in means, where
one only considers the target t and original label l. Model-agnostic perturbation can then be applied
according to the ℓ2 norm as in Eq. 4.31 with constant ϵ.

δ = ϵ · (Et[X]− El[X]) (4.31)

4.2.4. Learning in an Adversarial Environment
Tab. 4.1 shows the performance of each evasion method. The computational complexity of Gradient-
based approaches consists of backpropagation O(|W |), and application of the perturbation O(|X|).
The lowest bound of near-optimal perturbations is thus Ω(|X|+ |W |). Deepfool and BGFS exceed that
bound. That is because, these calculate the Jacobian and Hessian respectively. Still, the effect of
the increased complexity are misleading. In practice, it shows that Deepfool is faster due to its limited

10.015 ℓ∞ on CIFAR10, converted to ℓ2
20.011 ℓ∞ on CIFAR10, converted to ℓ2
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amount of iterations. Even though one iteration takes longer than C&W; but that may change when
the number of probits increase. The complexity of Simplex is also deceptive. Resnet and VGG-13
are feed-forward networks, a good pivot rule would be a constraint of the next layer. Feed-forward
networks have a uni-directional flow, therefore any layer is independent of subsequent activations.

Not all models are vulnerable to near-optimal perturbations. Generative models, that model p(X, y)
for input X, can approximate the probability distribution p(X) to find anomalies, which is a property
that this thesis will use with the use of GMMs. Other methods are immune to adversarial examples.
Radial Basis Functions (RBF) lose confidence when X is far from the input space [GSS15]. These
models depend on the radial distance to the mean µl for each label during training. That makes linear
combinations of RBFs hard to fool imperceptibly. The only downside is that the limited complexity of
RBF results in a poorer ability to generalize invariances.

Takeaway 3.
Methods for adversarial example generation succeed to generate small perturbations that fool
converged models; only it is apparent that their performance is at least dependent on:

� The use of logits, contraction of its domain changes the relative importance across the labels.
� The gradient ∇Lf , which can efficiently be computed with backpropagation, is widely used

by evasion attacks. Gradient-based techniques work well on high dimensions and are thus
expected to find smaller, effective perturbations on higher resolutions.

� Exact Hessians can add useful curvature information; but is currently not practical to calcu-
late.

� Near-optimal perturbation often hinges on a radial distance to the decision boundary which
is small. RBF networks are therefore immune to these perturbations.

4.3. Properties of Adversarial Examples
The existence of adversarial examples has driven a few explanations for near-optimal perturbations,
which are based on some notable anomalies induced by the methods in Sec. 4.2. Some nuance
the adversarial strength of such examples (Sec. 4.3.2). Others conjecture the origin of adversarial
examples (Sec. 4.3.1). The following sections will present existing theories to perturbation and also
some interesting anomalies that can be used for detection.

4.3.1. Szegedy's Low-probability Pockets
Szegedy et al. [Sze+14] regarded adversarial examples as blind spots of the neural network, close to
the manifold. Normally, the network is expected to assign insignificant probits much further away from
input space. For example, under some random noise or invariances. Near-optimal perturbation is an
exception to this. These change the model’s prediction, even with a small perturbation on training data.

That seems to suggest a dense manifold, where the adversarial examples represent low-probability
pockets near almost any benign input. The work of Szegedy et al. [Sze+14] measure the possible
magnitude of this effect with the Lipschitz constant. This constant is a measure of the rate of change
of a function. It is defined as the smallest constant K such that the following inequality holds for all x1

and x2 in the domain of the function g(·):

||g(x1)− g(x2)||p ≤ K||x1 − x2||p (4.32)

where the ℓp-distance is used. The Lipschitz constant can give an upper bound for the additive insta-
bility of neural networks, and can be expressed independently for each layer. The final constant is the
product of the resulting constants. Fig. 4.2 illustrates the segregated calculation of K for linear layers.
The rate of change of a linear transformation depends on the weightsW and equal to ||Wr⃗||p for some
unit direction r⃗. Since the constant K must be the upper bound of ||Wr⃗||p one can assume the extreme
value ||W ||p to be the Lipschitz constant for a linear transformation. Non-linear activations don’t change
this upper bound. Function h(·) is either contractive (ReLu) or has a reduced slope (Sigmoid), so their
rate of change satisfies Eq. 4.32 for an K ≤ 1. Convolutional layers require wavelet approximation of
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Figure 4.2: The upperbound of the Lipschitz constant

the kernel.

According to Szegedy et al. [Sze+14], A high Lipschitz constant enables the manifold to be dense
and adversarial examples closer to benign input. Such adversarial directions exploit the Lipschitz con-
tinuity to change the labels, even though other features are present. This unintended result is likely not
trained upon and nonconform.

This explanation gives some new angles to detecting adversarial examples. The risk of an effective
adversarial direction increases when the sample is nonconform and of low-probability (i) or when it
provokes large instabilities in the network (ii). For instance, by activating neurons with large weights.
We will turn back to the latter metric in Sec. 4.3.4.

Detection methods that measure nonconformity or, in general, the sample’s support of the training
data are DkNN [PM18], I-Defender [ZH18], KDE [Fei+17], and numerous other works [CSG20; Lee+18;
Rag+21; Gro+17; YKR19; LBS19]. Nonconformity was introduced by Papernot et al. [PM18] to esti-
mate the lack of support for a label l based on the training dataD given a setΩX,k of k nearest neighbors
(Eq. 4.33).

α(X, l) = |{n | (n) ∈ ΩX,k, argmax F (n) ̸= l}| (4.33)

However, the definition of nonconformity can be extended to something more closely related to the
marginal likelihood of the data (Sec. 5.1.2) and a conditional probability through its empirical p-value
[PM18]. Earlier work [SGV99] that Papernot et al. cited followed a generalized definition, calling non-
conformity supportiveness instead.

An example of a supervised approach is proposed by Akhtar, Monteiro & Falk [AMF18] andmeasure dis-
tortion with no-reference image quality features. To this extent, the features are classified by supervised
methods: Random Forests (RF), Support Vector Machines (SVM), and kNN. SVM showed the best per-
formance, it attained at least an 89% accuracy for MNIST and 60% for CIFAR10. A similar work only
evaluates no-reference image quality assessment called BRISQUE on an SVM [Khe+20]. In the next
chapters, we show that this can be improved by a large margin, whilst being semi-supervised.

4.3.2. Boundary Tilting Perspective
A geometric analysis renders a different perspective towards adversarial examples. When the boundary
tilts too much towards the manifold of one label, then the distance of another classification is relatively
close [TG16]. In other words, the classifier is said to suffer from adversarial examples iff the mirror
image is in the ϵ-ball and off the manifold of the other class. Where the mirror image is the image on
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the other side of the boundary, having a similar classification score for another label.

This setting can best be illustrated geographically, see Fig. 4.3. The blue boundary suffers from adver-
sarial examples on the label ’truck’, as the sample is close to the boundary. A better boundary would
be the red one. In general, one can say that a robust boundary is the bisecting boundary B, that lies
exactly between the two manifolds. When we assume a linear model then,

f(X1)

||W ||2
= −f(X2)

||W ||2
(4.34)

is a bisecting boundary, whereX2 is the mirror image ofX1 andW are the weights of a hyperplane f(·).
This boundary minimizes the strength of adversarial examples, because the distance to the opposed
manifold tends to zero for mirror images.

Now let C be the boundary of the target model. We can suppose that the boundary C should be at
least a standard deviation σl, for label l, away from the centroid to be an accurate classifier. So in the
worst case, adversarial examples (mirror images) are on average 2σ from the benign sample. This
condition can be reached by tilting on one of the bases. Of course, the severest tilt is the one on com-
ponents with low variance. Since this allows the boundary to be closer to the manifolds.

Tanay & Griffin [TG16] measure the adversarial strength to be the deviation angle γc of C regarding
B. The deviation angle tilts the boundary to the normal of B, called the zenith direction z. Expressing
the angle using this component gives a normal of C (Eq. 4.35). An additional parameter is the ratio rc.
As shown in Fig. 4.3, the tilt might not be centered. If the manifold of the opposite class is down left,
then the tilt would be less severe for one class. So some ratio is introduced into the final measure of
Tanay & Griffin (Eq. 4.36).

c = cos(γc) · z + sin(γc) · z⊥ (4.35)

sC = arctan(

√
sin2(γc) + r2c

cos(γc)± rc
) (4.36)

The boundary tilting perspective implies some important properties of adversarial examples. Firstly, it
shows that the variance of the manifold influences the strength of adversarial examples. The boundary
C can tilt further and mirror images are closer when the variance along the zenith direction is small,
without major performance hits of C. Thus, if near-optimal perturbations exist, they must use the com-
ponents with the smallest variance. Secondly, the existence of near-optimal perturbation conveys a
lack of regularization. The boundary C should be restrained in altering too much.

The first property is of interest for detectors. Small perturbations, such as those induced by Deep-
Fool and C&W, can likely be attributed to their small variance components. The detectors using that
measure are feature squeezing [XEQ18], LID [Ma+18], and whitening [HG17] and much more [Tia+21;
Hu+19; Lia+18; Son+18]. Feature squeezing removes small variances with so-called squeezers and
then measures the change in F (X). The other two extract this information in-place, along the training
data, with LID and Principal Component Analysis (PCA). LID [Ma+18] is a metric for the volumetric
change within the data. For the statistical setting, this is formulated as the expected number of neigh-
bors. Ma et al. [Ma+18] estimate this value to be:

− k∑k log( ri(X)
rk(X) )

(4.37)

where rk is the k-distance. PCA decomposes the data in terms of principal components. We presume
that the reader is familiar with the details of PCA.

4.3.3. Bayesian Uncertainty Perspective
The probits F (X) of a neural network are regularly interpreted as empirical probabilities of the labels,
given an input X. It posits some level of confidence of the model. That is partially true, the probits
generalize the estimate far outside the training data and are therefore a meaningless measure for epis-
temic uncertainty [PM18] . That is the confidence, or the absence of confidence, introduced by limited
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Figure 4.3: The Boundary Tilting Perspective.

training data. Adversarial examples illustrate this misconception very well. These force the output to
change, and often with pronounced probits for a wrong class. Supposedly, having a higher confidence
than benign samples.

Considering the probit’s shortcommings, the instability of neural networks has at least two reasons
[PM18]. First, the model is too sensitive when extrapolating unseen data. Second, the model learned
shared features across classes and the input includes the ambiguities. As a result, the probits are
increased for two or more labels. This thesis did already discuss of how the adversary chooses the
target label in the second situation (Sec. 2.2.2). The adversary’s specificity is largely based on probits.
Deepfool and especially C&W choose the target label utilizing the relative importance according to the
logits or probits. The difference in the perturbation’s effect between the worst- and best case approach,
using the model’s confidence, is roughly tenfold [CW17b].

This difference shows the imbalance of local features described by Pang et al. [Pan+18]. They ar-
gue that predictions are more reliable when that imbalance is minimized. Concretely, this is the case
when each non-maximal element in fi ∈ F (X) have uniform uncertainty. In theory, the target of choice
would be equally far for best, and worst case adversarial examples.

Pang et al. [Pan+18] construct non-Maximal Entropy (non-ME) to measure the uniformity (Eq. 4.38).
This metric is somewhat related to what the certainty sensitivity penalty [RD18] tries to optimize. With
the only difference that non-ME focuses on non-maximal components (i.e. i ̸= l).

H(X) = −
∑
i ̸=l

fi(X) log(fi(X)) (4.38)

Interesting about the constriction to local features for labels is its increased interpretability. Other work
showed perturbations regulated by certainty sensitivity to be more convincing and reasonable for hu-
man vision [PM18; RD18]; the results are also promising for adversarial detection. Optimizing amodel’s
confidence increases perturbations. Besides, it constraints possible perturbations to have a certain
amount non-ME, as it would advert a serious anomaly otherwise.

Methods that measure the model’s certainty for detection areReverse Cross Entropy (RCE) [Pan+18],
dropout [Fei+17], and DkNN [PM18]. Earlier, this thesis described dropout and DkNN (Sec. 3.3). The
problem with these two is its performance for large models. Whilst DkNN is much more efficient than a
Monte Carlo solution, RCE requires almost no computation. That is because it is a training procedure.
RCE trains models only with the regularization method called label smoothing. Pang et al. [Pan+18]
reverse the target label, encouraging uniformity:

Y (X) =

{
1

L−1 yi = 0,

0 otherwise (4.39)

where Y (X) is the target label and L the amount of classes. If the model is then reversed after training
by negating the logits, we will obtain a model that returns ordinary predictions; and maximizing Eq. 4.38.
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Because of the negation, the models are often referred to as reversed models.

4.3.4. Linear Explanation
The linear explanation of Goodfellow et al. [GSS15] shows that solely the high capacity of models is not
necessary to produce adversarial examples. Even when a class is well-separated by a linear classifier,
a small perturbation is enough to misclassify samples. To see this, consider the adversarial example
in Eq. 4.40. The right side adds a major perturbation when the weights W have a high dimension.
This effect grows linearly given the dimension. So the average image on ImageNet would have a ℓ1
perturbation of ϵ · 2242 when each pixel is changed with ϵ.

WTX ′ = WTX +WT ϵ (4.40)

Goodfellow et al. [GSS15] describe this effect as accidental steganography. Even though the signal
has different features that are similar, the small differences in its amplitude can mislead the model.
Adversarial examples occur therefore naturally on higher dimensions.

Looking back to the Lipschitz continuity of Eq. 4.32, one can indeed find that the rate of change for
a function g(·) does depend on the change of the input and capacity of the model. High dimensional
samples that aim to maximize the Lipschitz constant K via the gradient have thus much potential. One
characteristic that is apparent for this strategy is the excited activations it causes. Li & Li [LL17] came
up with an extremal statistics to detect this behavior. They measure the activations on each layer and
normalize these by its standard deviation during training.

Takeaway 4.
Near-optimal ℓ2 perturbations are comprised of a small, worst-case perturbation. The Lipschitz
continuity in Eq. 4.32 implies that such examples are highly aligned with the error function’s gradi-
ent on most dimensions of the input. In practice, this is manifested by the following properties:

� The sample is nonconform to the training data and in a so-called blind spot of the model.
� Accurate classifiers can tilt the boundary the most on low variance components. Strong

adversarial examples thus differ the most on the smallest principal components.
� Adversarial examples act on regions with a low epistemic certainty.
� Maximizing the Lipschitz continuity causes extremely excited neurons.

4.4. Robustness Optimization
Defenses of adversarial attacks can be subdivided in twomain types [SN20]. The first option is to control
the capacity of the neural network during training, also to avoid over-fitting on the training data. Popu-
lar regularization techniques can, in theory, already increase the resilience towards strong adversarial
examples [TG16]; and this thesis indeed finds that especially strong attacks suffer from regularization
techniques (Sec. 6.2).

Robustness optimization is a strategy more specific for adversarial examples. These methods improve
themodel with derivative-based penalties to smooth out gradients or lower the Lipschitz constant to limit
the worst-case potential of adversarial examples. This thesis will briefly discuss these methods in the
following sections, as some regulations prove helpful for detecting adversarial examples. It, metaphor-
ically, raises the bar for the adversary, in particular for finding strong perturbations.

The second option is to find statistical outliers on one or more properties described in Sec. 4.3. The
idea is to detect point anomalies, rather than contextual- or collective ones. Sequential information
would be interesting to detect oracle queries for model extraction (e.g. ZOO). Although, it would also
have a lot of noise when multiple actors use the model, and similarly rendering it less effective against
white box attacks.

An additional option is to obfuscate the gradients at classification. Some uncertainty around pertur-
bations could make the attacks less effective, as the targeted classification cannot be ensured with
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small deviations. Whilst this is true, gradient obfuscation often leads to security by obscurity and
should not be used as the main defense [ACW18]. The randomness of stochastic gradients, for exam-
ple, may even out after multiple iterations. The remainder of this chapter will now focus on robustness
optimization. We refer to Silva et al. [SN20] for an extended inquiry.

4.4.1. Gradient Obfuscation & Masking
Gradient masking complicates the generation of adversarial examples with manipulated, stochastic, or
vanishing gradients. Those gradients are not useful for iterative optimizers. One popular defense uses
knowledge distillation [Pap+16a], which originated as a method for imparting knowledge to a second
network with limited capacity. It trains two networks on the same dataset, where the shallow network
trains on distilled probits F (X) (Eq. 4.41) of the teacher. A hyperparameter called the temperature T
provides a way to control the level of uncertainty during the training procedure, as the influence of small
variations are reduced. Papernot et al. [Pap+16a] argue that the probits will contain more information
about similarities between classes, which increases robustness. Later, it has been demonstrated that
the defense relies on vanishing gradients [CW17b].

F (X) =
e

Z(X)
T∑

zi∈Z(X) e
zi
T

(4.41)

4.4.2. Regularization
Regularization techniques, described by Silva et al. [SN20], apply some penalty term during training.
Limiting the rate of change for the model. A common candidate for this term is the gradient, as the
instability of neural networks can likely be explained by sensitive gradients (Sec. 4.3.3). The process
of adding a gradient to the error function is known as double backpropagation [DL92].

Others [YGZ18] optimize the robustness on near-optimal perturbations like DeepFool. Parseval net-
works [Cis+17] may be closely related with these methods. They also optimize the divergence but
then in terms of the Lipschitz constant. This by updating the weights towards Parseval tightness, i.e.
converging to a Lipschitz constant of one.

Adversarial training is a stream of research that has been proved successful. Models trained with
this technique augment the dataset with adversarial counterparts, leading to an increase in the model’s
robustness [GSS15]. There is, however, an active discussion on if adversarial training is an absolute
defense [SN20; ZH18].

Either way, The work of Goodfellow et al. [GSS15] proposed the use of fast gradient-based attacks
during training. Others improved upon this method [Bai+21]. For instance, Tramèr et al. [Tra+18] in-
troduced ensemble adversarial training, which involves adversarial examples from different pretrained
models.

4.4.3. Certification
Certified defenses are a promising alternative, as it instead proves the robustness of the model. This
comes only at a significant decrement in capacity or computational efficiency. The nonconvexity of the
adversarial setting forces an approximation of the actual robustness. For instance, via convex relax-
ations or interval propagation under a certain ℓp distance, even though the ℓp distance is not reminiscent
of human perception. CLEVER [Wen+18a] does this with cross-lipschitz’s extreme value theory. They
use sampling techniques to estimate a fixed probability distribution: the Weibull distribution. The Lips-
chitz continuity can then be calculated based on the estimated parameters. Others propose white box
methods instead, that can be optimized to maximally separate feature values [VV22].

4.4.4. Hardness Reduction to Robust Classification
Robust detectors can theoretically be reduced from classifiers up to a factor of two in the distancemetric
and up to computational constraints [Tra22]. That is, given a detector with an empirical risk of R∗

det for
attacks within a ϵ-radii, it has been shown that an inefficient classifier must exist with equal adversarial
loss for attacks within a ϵ

2 -radii. Moreover, the reverse direction is also true, thereby establishing an
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equivalence of detectors and classification systems [Tra22].

A useful construction to demonstrate the reduction utilizes minimum distance decoding that are of-
ten used for recovering messages sent over noisy channels. In particular, minimum distance decoding
recovers messages by minimizing a certain distance. Generally the Hamming distance. In the case of
adversarial examples, we can view its perturbation as the error which we want to recover. Where we
do not minimize the Hamming distance, but the verdict of the detector under any ℓp-norm.

A popular result of this strategy is the ball-packing argument: if it is possible to detect a perturbation of
ϵ perfectly, then it must be possible to recover half of that; since any benign example is at least ϵ away
from another one. Choosing the minimal distance would therefore only be just as successful when the
adversarial example is closer to the original sample, i.e. smaller than ϵ

2 . A direct consequence of the
equivalence is the dependence of the detector’s performance. We can write:

R∗
clf ≤ FPR+ FNR+Rdet (4.42)

Rclf =
1

|D|
∑
X∈D

1{argmax F (X) ̸=t} (4.43)

where FPR and FNR are the detector’s false-positive and false-negative rate for a fixed detection thresh-
old, and R is the defense’s standard risk with target label t (Eq. 4.43).





5
MeetSafe Defender

This chapter introduces MeetSafe, a novel detector that combines the Local Reachability Density (LRD)
with Feature Squeezing and Principal Component Analysis (PCA). The detector is trained with a Gaus-
sian Mixture Model (GMM) and optimized on reverse models. To decrease the burden of LRD, we
propose to use Z-values and BRISQUE. It limits the feature space to the most sensitive ones under
perturbation. The chapter concludes with the introduction of a new robustness measure that enjoys
the generative property of GMMs.

In the previous chapter, we argued that adversarial examples may exhibit larger differences on low-
variance features that are almost vacant within the training data. Also, we have reason to believe that
adversarial examples have limited support from the training data. To our knowledge, no prior work
has covered both statistical irregularities, and none others achieved useful performance in a whitebox
setting.

Carlini & Wagner tested tens of defenses that fail their most powerful attack [CW17a]. That is a method
that generates near-optimal perturbation. Concerning is the rise of semantic examples. Apparently, the
ℓp measure is not at all measuring human imperception. Semantic examples optimize conformity with
the training data instead.

As mentioned in Chap. 3, there is room for improvement for prior density estimation algorithms like
Feinman’s [Fei+17]. For instance, other methods like kNN are more adaptive on the kernel; fewer
intrinsic properties may be captured with segmentation, as it does not cover all training data. Lastly,
large models may need additional feature engineering. To use each hidden unit as a feature would
incur infeasible memory requirements for nonparametric methods.

For these reasons, we propose to use LRD with BRISQUE [MMB12] and Z-scores, a heuristic that
enjoys the flexibility of nonparametric methods with lower memory consumption. LRD estimates den-
sity by accounting for the proximity and distribution of neighboring training points. We then combine
LRD with variance-based anomaly detection – whitening [HG17] – and feature squeezing [XEQ18], for
which an ablation study is given in Sec. 6.2.5. The scores of the three heuristics are learned through
Expectation-Maximization (EM) of a GMM we call MeetSafe.

5.1. Towards Conformity
One way to approach point anomaly detection is by fitting a predefined generative model on the training
data (Sec. 4.2.4); but this would be less flexible, so our approach uses the distance-based method (i.e.
LRD) for large input spaces. Our goal is to find Hawkins-outliers [KN98] or global outliers with the use
of these local distances.
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Figure 5.1: The LRD metric

5.1.1. Estimating Density with k-Nearest Neighbors
Nonparametric methods model the distribution p(X) with limited assumptions for the underlying distri-
bution. This makes the models flexible. Distribution p(X) can, for instance, be generalized with its
volume V and cardinality K of X ’s proximite region, given enough observations. In contrast to KDE,
the kNN method fixes the cardinality and finds the appropriate volume from the data. For a specific
sample X, one can then estimate p(X) : Rm → R and p(y|X) : Rm → RL with:

p̂(X) =
K

|D| · V
(5.1)

p̂(y|X) =
Ky

K
(5.2)

where Ky models the density amongst label y and the dataset D is sampled from p(X). The volume
is defined by a sphere with as radius the k-distance. That volume is the smallest such that the fixed
cardinality K is satisfied, as illustrated in Fig. 5.1a. That makes the k-distance of a test sample X
sufficient to approximate the likelihood of the data. The estimate would only be shallow with limited
information from its neighbors. We may add recursive calls on neighbors to improve the estimate with
a higher depth.

By default, each feature has an equal contribution to the k-distance. Notice that BRISQUE features
or hidden units maybe affected by unequal standard deviations, as these are not normalized. Some
have thus more influence on the k-distance than others. This is not favorable, especially because it was
stated earlier that exactly the low variance components are important characteristics of strong adversar-
ial examples. Our method will therefore use the scaled Euclidean distance instead. This normalizes the
k-distance with respect to a diagonal covariance matrix Σ. Besides, we will lower the memory burden
of the kNN algorithm in Sec. 5.2, after we discuss the details and idea of LRD.

5.1.2. Local Reachability Density (LRD)
The intuition behind LRD comes from the work of Breunig et al. [Bre+00]. In that same paper, they
propose LOF, a heuristic for finding local outliers. LRD improves upon the k-distance as it smooths
out statistical fluctuations in at least two ways. First, the actual distance, called reachability, used to
estimate the volume V is capped by the k-distance of the neighbor. Second, The average is taken
amongst the k nearest neighbors. The reachability measure of node A and D is demonstrated in Fig.
5.1b, the value depends on the volume of node D and the Euclidean distance of A. Whichever value
is bigger equals the reachability from D to A, so that is written as:

d(X1, X2) = max
{
d′X2,k

,
√

(X1 −X2)TΣ−1(X1 −X2)
}

(5.3)

where d′ is the k-distance. Substituting the reachability fromA to its neighborsΩA,k in Eq. 5.1, yields its
reachability density (Eq. 5.4). Using reachability as a measure to assess the density in the proximate
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region of node A has the advantage that only a fixed amount of neighbors needs to be considered.

LRD(X) =
|ΩX,k|∑

ni∈ΩX,k
d(X,ni)

(5.4)

Our method adds one novel improvement called feature bagging to both LRD and LOF [LK05]. This
enables them to capture higher dimensions. The generalizability of kNN degrades under these circum-
stances, as the distance between all data points becomes larger and individual features have less of
an impact. Bagging is a popular approach to limit this issue. It takes a subset (with random cardinality)
of the features for multiple iterations and returns a combined LRD or LOF score. This will therefore
also smooth the heuristics, in Sec. 6.2.5 we will show the effect of this smoothing. To make use of the
full k-d tree, one takes the union of both branches when a feature is not in the feature bag.

Theoretically, LRD is on average more efficient than the KDE of Feinman et al. [Fei+17], whilst it
makes no assumption on the Parzen window and estimates the density by averaging its neighbors k-
distance (Corollary 5.1.0.1). To improve our detector even further, we show many feature engineering
possibilities to lower the memory requirements.

Corollary 5.1.0.1. When the size of the dataset equals |D| = n and a k-distance is used. Then the
LRD metric is, on average, computationally bounded by O(k · log(n)) and KDE [Fei+17] is O(n).

Proof. The k-distance can be estimated in O(log(n)) expected time, with an k-d tree [Ben75, Sec. 4.2].
The reachability distance is the maximum of the k-distance and the Euclidean distance. Meaning, it
would depend on the complexity of searching the k-d tree, which is again O(log(n) + c) and some
constant time c independent of n. LRD then consists of the average of the k reachability distances,
which takes O(k) to calculate. Combining these results gives a complexity of O(k · log(n)). On the
other hand, the KDE of Feinman et al. [Fei+17] is O(n), as it estimates the density for each sample
with a predefined kernel. Q.E.D.

5.2. Feature Engineering
Before combining the heuristics, we will consider the features of two possible Points Of Interests (POI)
for LRD first: the layer after convolution and the pixel values, where we refer to the former as Learned
Feature Analysis (LFA). Specifically, we explain how we select its features for both options as without
limiting its feature space, LRD would be space inefficient and suffer from sparse data.

On raw pixel values, we advise the use of BRISQUEand Z-scores during feature engineering. BRISQUE
fits a Gaussian-like distribution on the raw image while maintaining structural information, which can
evaluate the naturalness of an image. Moreover, BRISQUE is 149 times faster than wavelet methods
like DIIVINE and performs almost similar on white noise [MMB12].

On hidden layers, we extract a random set of hidden units. Depending on the chosen POI, the Z-
scores of FGSM examples X ′ will be used in order to select the best 10 features of BRISQUE or the
best 10 hidden units. We will now explain this feature selection more formally.

5.2.1. Feature Selection
For the hidden units f (l) a pool P is defined, so that P ⊆R f (l). Members of the pool are chosen
randomly at initialization and are preserved during execution. The detector then follows a watching
scheme upon P and its utility (Eq. 5.5-5.6).

The first equation calculates the difference in Z-scores of all features in the pool. It estimates the
units that were relevant under perturbation. The second estimates the rate of change of one layer.
The first utility is calculated with FGSM after every epoch, this is the fastest evasion method we know,
limiting the constraints on scalability or parameter updates. The second utility showed most potential in
the final layers, making that our preferred choice (Appendix B). Because of this, we believe the second
utility is optional.

UP =
1

|D|
∑
X∈D

|PX − PX′ |
σP

(5.5)
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Figure 5.2: The Paired Products of MSCN features.

Uf(l) =
||EX∼D[f

(l)
X′ ]− EX∼D[f

(l)
X ]||2

||EX∼D[f
(l)
X ]||2

(5.6)

BRISQUE
Ruderman [Rud94; MMB12] noticed that normalized luminance values are distributed like a Gaussian
for natural images. White noise or blur deviates from this Gaussian in its kurtosis: heaviness of its
tail. BRISQUE [MMB12] is a non-reference method that detect this and other statistical deviations of
an image. It utilizes normalized luminance values to fit one Generalized Gaussian Distribution (GGD)
and four Asymmetric GGDs (AGGD).

One GGD is fitted on the normalized luminance values and four AGGDs on structural components; the
pairwise products of neighboring pixels. The luminance values are better known as Mean Substracted
Contrast Normalized (MSCN) coefficients. Meaning that it is calculated with the contrast σ(i, j) and
mean µ(i, j) in the spatial domain of the greyscale image I ∈ Rm×n:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(5.7)

where the mean and deviation are calculated over a finite kernel with C as some constant. Then by a
pairwise product with neighboring pixels, the light blue positions in Fig. 5.2, one obtains the structural
components: H(i, j), V (i, j), D1(i, j), and D2(i, j). For neighbors on the horizontal, vertical, and diag-
onal direction respectively. We will now turn to fitting the Gaussians to this data.

The GGD and AGGD are generalized Gamma distributions. These may reduce to other density
functions such as Gaussians and Laplacian distribtions, depending on a shape parameter α that de-
fines the kurtosis. A value of 1 yields to the Laplacian and 2 to the Gaussian. In case of GGD we aim to
estimate the variance σ2, and shape α of the distribution, the mean is assumed to be zero [MMB12]. To
do this, we apply the Maximum Likelihood Estimation (MLE) under the observed Î(i, j) of one sam-
ple and calculate the shape α by adopting the generalized Gaussian ratio function (Eq. 5.8) [SL95].
The latter is a first-order moment match of the shape using a lookup table for α, which saves some
computation because the gamma function Γ(·) is not smooth for the domain of real numbers R. The
process results in two features: (α, σ2).

r(α) =
σ2

(E|X|[X])2
=

Γ(α−1) · Γ(3α−1)

(Γ(2α−1))2
(5.8)

AGGD divides GGD in a negative part and positive part and fits the exact same distribution on them.
AGGD consists of one shape parameter α for two distributions with variance σ2

l and σ2
r . Note that a
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difference in the variance changes the skewness of AGGD, it makes AGGD asymmetric. Therefore,
Mittal et al. [MMB12] measured the skew η, even though it is not one of the model’s parameters. The
moment matching is rather similar for AGGD. One first estimates the variances with MLE and the shape
with a similar ratio function [LSB09]. This results in four features: (η, α, σ2

l , σ2
r ).

5.3. How to Meet in the Middle
We combine LRD, using hidden units as POI, with variance-based anomaly detection – whitening
[HG17] – and feature squeezing [XEQ18]. The scores of the three heuristics are learned through
Expectation-Maximization (EM) of a GMM we call MeetSafe.

To detect a sample, we first select the best features based on UP for LRD and the eigenvectors of
the training data. Then we evaluate the three heuristics (denoted asHX ). Assuming normality, a three-
dimensional GMM fitted on benign data can classify the sample as malicious when it exceeds the 90’th
percentile of

− log p̂(X) = − log
{∑K

πi · N (HX |µi,Σi)
}

(5.9)

where πi is the prior of one latent feature, N (·) a multivariate Gaussian with variance Σ and mean µ,
and HX ∈ R3 a set with the suspicion of the estimators. The following sections describe GMMs in
more detail. We also add a novel idea to measure robustness with MeetSafe. The pseudocode of our
method can be found in Appendix D.

5.3.1. Gaussian Mixture Models
An GMM is a linear combination of Gaussians. It will provide some essential flexibility of the density
model, it is multi-modal. GMMs can be written as a joint distribution of the latent features ξi ∈ ξ and
observationsX. Each latent feature is assumed to be normally distributed. Something that is favorable
for its robustness. Our detector needs such combination because the whole dataset depends on latent
components that are not universal. For instance, it needs to model multiple classes with different local
features. One Gaussian is said may be responsible for one latent component. So we can say that one
Gaussian in the linear combination of Eq. 5.9 models p(X|ξi) and πi is its prior p(ξi). These definitions
give the opportunity to write the responsibility of ξj with use of Bayes’ rule,

p̂(ξj |X) =
πjN (HX |µj ,Σj)∑K

πiN (HX |µi,Σi)
(5.10)

where the notation is used of Eq. 5.9. This formula will be important during training. Here, p(ξj |X) is
optimized iteratively until convergence using a powerful algorithm called EM.

Expectation-Maximization
The EM algorithm is a powerful method to optimize the parameters of a GMM. It is a two-step algorithm
that iteratively optimizes the parameters of the GMM. The first step is the E-step, where the responsi-
bilities of the latent features are calculated for some fixed parameters Σj , µj , and πj . That gives the
current estimate of p(ξj |X), the probability that the sample X is caused by the latent component ξj .
The M-step updates the parameters by averaging out the responsibility of each Gaussian as shown
in Eq. 5.11-5.13. Where γ(ξ) is defined to be the sum of responsibilities

∑K
p̂(ξi|HX) and HD is the

family of sets {HX |X ∈ D}.

µj =
1

γ(ξ)

∑
HX∈HD

p̂(ξj |HX) · HX (5.11)

Σj =
1

γ(ξ)

∑
HX∈HD

p̂(ξj |HX) · (HX − µj)(HX − µj)
T (5.12)

πj =
γ(ξ)

|HD|
(5.13)
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5.3.2. Measuring Robustness
If one accepts the current explanations for adversarial examples (Sec. 4.3), then we can assume that
an adversarial example X ′ does not appear naturally within the training data. The samples fall off the
manifold after perturbation, either far or close to the manifold [Fei+17]. Its marginal likelihood is there-
fore (near) zero. A major advantage of generative models is that it allows the distribution p(X) to be
determined.

Following this argument, we may measure the severity of an evasion on the distance to the manifold.
Of course, the manifold is not closed form, as some benign noise may deduce to an adversarial pertur-
bation. In any case, it brings up two hypotheses. the sample is on the manifold (H0) or the sample is
off themanifold (H1). If there is enough support from the training data one can assumeH0 to be tenable.

The generative model gives an estimate of that input space. The hypothesis H0 can therefore be
accepted with a t-test below some critical value τ . We will conjecture the robustness of a model to be
the sum of (τ − p(X))+ for such conspicuous samples:

argmaxδ
1

|D|
∑
X∈D

(τ − p̂(X + δ))+ (5.14)

where δ is the perturbation of an adversarial example. This notation can give better estimates for
different datasets. For instance, the MNIST dataset has a rather small input space and the contrast of
the samples is large. In essence, the numbers are white with a black background. Samples that do not
adhere to the strong contrast are by default unlikely to occur naturally. The estimate p̂(X + δ) will be
much lower for most samples, and so models may reach a higher robustness. This is not necessarily
the case for the lp-based metric. Further experiments may prove this intuition. For this thesis, however,
it will be out of scope.



6
Experiments

This chapter reports the results of the experiments. The chapter starts with a description of the method-
ology used to evaluate the performance of the MeetSafe. It clarifies the choices made for the exper-
iments and the hyperparameters used. The chapter then presents the results of the experiments, in-
cluding the performance of the model, the sensitivity of the hidden layers, and the performance of the
prior methods.

We evaluate MeetSafe and LRD against several evasion methods including FGSM, DeepFool, and
C&W. The experiments will demonstrate white- and/or grey-box performance for four datasets: Tiny-
ImageNet [LY15], CIFAR-10 [KH09], MNIST [LeC98], and STL-10 [CNL11]. Only for Tiny-ImageNet,
we resized the samples to be in R3×64×64. The attacks are restricted to an ℓ2 distance to ensure a
fair comparison across datasets and ℓ∞-based methods. For instance, an ℓ∞ distance permits more
noise for higher resolution images. Consequently, we use the ϵ parameter given by Eq. 6.1, so that the
maximum allowed perturbation of FGSM equals that of ℓ2 methods (δmax); where the image X is given
by a Rm flattened matrix.

ϵ =

√
||δmax||22

m
(6.1)

Each attack, defense, and target model is re-implemented in Pytorch. Herewith, we evaluated 14 mod-
els based on ResNet-50 [He+16] and VGG-13 [SZ15] as shown in Tab. 6.1. Ten of them are trained
with robust optimization techniques, utilizing gradient smoothing (RCE) [Pan+18] or adversarial training
with FGSM (ℓ2-radii of 5) (AL) [GSS15]. The convergence graphs of the models are shown in Appendix
A.

The experiments also include some related methods that will be compared to MeetSafe and LRD. The
baseline for MeetSafe (MS) are KDE with predictive uncertainty (KDE+BU) [Fei+17], I-Defender (I-Def)
[ZH18], and theMahalanobis measure (MAH) [Lee+18]. Additional work that we tested are LID [Ma+18],
Whitening (PCA) [HG17], Feature Squeezing (FSQ) [XEQ18], extremal measure (EXM) [LL17], and an
earlier application of BRISQUE (SVM) [AMF18]. The method SVM is rather equivalent to the work of
kherchouche et al. [Khe+20].

6.1. Methodology
For the experiments, we trained the models for 150 epochs on predetermined training sets. During
training, a batch size was used of 256, learning rate of 0.01 with momentum 0.9 under a cosine anneal-
ing schedule, and 1e−4 weight decay. The model is also adapted to exhibit required invariances. All
training samples are normalized on each channel, randomly flipped horizontally, and cropped within
a padding of 4. Adversarially learned models were additionally trained half-on-half on benign and per-
turbed data.

41



42 Chapter 6. Experiments

Table 6.1: The architectures of our models for CIFAR-10. The output sizes and operations of conv_1 may differ on other
datasets, as this layer uses an adaptive convolution.

VGG-13 ResNet-50

Output Size Operations Output Size Operations

Conv_1 16 × 16
[
3 × 3, 32

]
× 2 33 × 33

[
2 × 2, 64

]
Conv_2 8 × 8

[
3 × 3, 128

]
× 2 33 × 33

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

Conv_3 4 × 4
[
3 × 3, 256

]
× 2 17 × 17

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

Conv_4 2 × 2
[
3 × 3, 512

]
× 2 9 × 9

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6

Conv_5 2 × 2
[
3 × 3, 512

]
× 2 5 × 5

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

FC_1 1 × 1 512-d 1 × 1 2048-d

Total Parameters 9.4 million 23.5 million

The detectors were then tested on unseen test images and organized according to the following at-
tack types. First, we test the defense and model on low strength perturbations. That includes FGSM,
as it does not directly optimize the ℓp distance. Then, we test the defenses on smaller perturbations
with DeepFool and C&W. One technique (RCE or AL) is chosen to be tested on white-box attacks.

White-box attacks can be generated by adding the detector’s likelihood function (Eq. 5.9) to C&W’s
objective [CW17a]. In essence, this optimizes a multi-objective gradient with Adam that considers both
the gradient of the detector’s internals and the confidence of the target model:

||X||p + c · f̂(X) + c′ · (−τ−1 log p̂(X)− 1 + κ)+ (6.2)

where τ is a given threshold and c∗ a constant that controls the sensitivity towards the detector’s gradi-
ent, optimized with binary search. The sample is updated with perturbation δ when its aggregate X+ δ
fools successfully. For our experiments, we limit the perturbation to a ℓ2 distance of 5.

White-box attacks follow an all-or-nothing strategy: the batch with adversarial examples are either
clean or fully successful. For this reason, we assume that the detector is successful if either the white-
box perturbation is detected or classified by the target model. Its true positives are thus in the set
{X | argmax F (X) ̸= k ∨ − log p̂(X) ≤ τ} for some true class k and threshold τ .

The performance of the defenses is measured using its overall detection accuracy of one test run
in both adversarial and benign situations, where the detector classifies at a TNR of 90%+. The adver-
sarial setting may include samples without perturbation when the target model already misclassifies
the clean sample. We therefore have an optimal detection accuracy of 1− Rf

2 with standard empirical
risk Rf of the target model.

During test runs we reduced the batch size to 128 (64 for white-box); other hyperparameters, used
for the attacks and defenses, were as follows. The magnitude ϵ of FGSM is deduced from Eq. 6.1,
DeepFool had an overshoot of 0.02, and C&W executed 5 steps with 500 iterations (10 and 1000 for
white-box) under a 0.05 confidence κ. For all defenses, we applied the same feature selection. That
took the best 10 in a pool of at most 500 features, given UP . In Appendix B, we demonstrate the added
value of such feature selection and give more details about the hyperparameters used. The experi-
ments were conducted on AMD Ryzen 7 7700X and Nvidia RTX 4070 Ti.

The hyperparameters’ selection of our detector will be briefly discussed in Sec. 6.2.2. We concluded
that an k of 8 for LRD and a GMM with 8 components performed best overall. The related work used its
default or recommended parameters by the original work; but there is one exception. The original work
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Table 6.2: Accuracies and proportion of stationary points for FGSM of the trained target models on the CIFAR-10,
Tiny-ImageNet, STL-10, and MNIST testing set respectively. VGG-13 is only trained on CIFAR-10. More details in-text.

Model’s Top-1 Accuracy ⇑

Model Learn. Robust Evasions (ℓ2 ≤ 5) → Benign FGSM C&W DeepFool
Rate Optim. Stat. Points (%) ↓ Eq. (6.1) κ = 0.05 η = 0.02

ResNet-50 0.01 7 50.5, 0.0 0.932, 0.581 0.619, 0.013 0.000, 0.000 0.061, 0.188
13.7, 12.8 0.711, 0.992 0.111, 0.307 0.008, 0.000 0.214, 0.130

ResNet-50 0.01 AL 37.9, 0.0 0.916, 0.559 0.640, 0.176 0.000, 0.003 0.086, 0.149
2.6, 8.1 0.612, 0.991 0.229, 0.2704 0.200, 0.000 0.221, 0.385

ResNet-50 0.01 RCE 0.0, 0.0 0.885, 0.030 0.485, 0.003 0.000, 0.000 0.106, 0.015
0.0, 0.0 0.614, 0.990 0.081, 0.085 0.000, 0.000 0.147, 0.228

VGG-13 0.01 7 22.4 0.928 0.294 0.000 0.096
VGG-13 0.01 AL 2.9 0.885 0.578 0.000 0.158
VGG-13 0.01 RCE 0.0 0.883 0.329 0.000 0.060

of the Akhtar et al. [AMF18] applies an SVM on multiple NSS than only BRISQUE. Our experiments
only include the features of BRISQUE as we found that this performed similarly, adds less complexity,
and is also utilized by LRD.

6.1.1. Kullback-Leibler Divergence
The Kullback-Leibler divergence (KL) [KL51] is a measure of how one probability distribution diverges
from a second probability distribution. It is a non-symmetric measure, that is, the KL divergence from
g to f is not the same as the KL divergence from f to g. The KL divergence of two distributions g and
f is defined as:

KL(g||f) =
∑
X∈D

g(X) log( g(X)

f(X)
) (6.3)

which will be used to measure the entropy given a mean µ and deviation σ of a feature. We observed
that this and the size of the dataset will influence the performance of LID and LOF dramatically. When
the density of a distribution gradually resembles a Gaussian and thus the entropy maximized, then
Local anomalies are less present for perturbations. That is why we measure Hawkins-outliers with
LRD. This is discussed further in Sec. 6.2.2.

6.1.2. Silverman's Rule
A crucial free parameter of a KDE is its bandwidth h. Its value influences the smoothness of the density
estimate. The distribution becomes spiky for smaller values of h, which has a poor generalizing ability.
An over-smoothed estimate, however, may fail to capture some essential properties of the source dis-
tribution.

The bandwidth h of the KDE is determined by Silverman’s rule in our experiments. This rule is based on
the standard deviation σ of the dataset, the amount of samples n, and dimension d. Silverman [Sil18]
showed that the mean integrated shared error is minimized for 1.06σn−0.2, assuming that the underly-
ing distribution is a uni-modal and uni-variate Gaussian. A generalization for more dimensions is given
in Eq. 6.4. This gives us a more refined estimate of h than the fixed h of Feinman et al. [Fei+17].

h = σ · (0.25d+ 0.5)−(d+4)−1

· n−(d+4)−1

(6.4)

6.2. Results
The following section will primarily discuss the performances on CIFAR-10. The results on the other
datasets and models led to the same conclusions for MeetSafe. In fact, we also find decent accuracies
under advanced semantic methods, like the shadow attack [GSG20] and PerC [ZLL20] (Appendix B-C).

6.2.1. Model Performance
The accuracy of the models is shown in Tab. 6.2. The CIFAR-10 ResNet-50 model is able to reach an
average cross-entropy of 0.0249 and a test accuracy of 93.2%. That is higher than the results of the
ResNet paper [He+16, Tab. 6]. The cross-entropy for robust optimization techniques is notably higher,
this increased to 0.47 for adversarial training and 431.1 for RCE. A higher value for RCE was expected,
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(a) FGSM on vanilla Resnet-50 (b) FGSM on the reversed Resnet-50

Figure 6.1: Examples of vanishing gradients

as almost each class now adds to the error instead of only the true class. We also observe that the
fit and convergence changes dramatically when the amount of classes is increased. Take ImageNet
which has 200 classes, where the others have 10, a RCE model trained on ImageNet does only reach
an accuracy of 3%. When we test the STL-10 subset, RCE does not show this behavior.

Furthermore, the convergence graphs in Appendix A shows interesting characteristics that seem ho-
mogeneous for adversarial training and RCE. Adversarial trained models diverge after convergence
on the benign images and especially for larger inputs. As well, the RCE models converge slower than
the other techniques. In fact, the Tiny-ImageNet did not fully converge after 150 epochs, whilst the
adversarial learned model did.

Robust optimization shows a descent prevention of FGSM for all models and no meaningful preven-
tion against C&W attacks. The high adversarial accuracy of the plain model is somewhat unexpected.
However, this has a clear reason. The confidence of this model is higher, which causes vanishing gra-
dients. The results of DeepFool show that the optimized models are often more robust than the plain
ones under small perturbations.

Vanishing Gradients
The effect of vanishing gradients is visible in Fig. 6.1. A look at the confidence score of the plain ResNet-
50 would show a unit vector towards the correct class for some images (Tab. 6.2), which means that
its gradient is zero. By inspection of the figure, it presents no perturbation for the two images on the
left; and indeed the ℓ2 distance is zero. This is expected, as these images may sit on a stationary point
for the current parameters. This is a major drawback of FGSM, but not present for DeepFool and C&W
which use gradients of different loss function.

It does give a sense of robustness for the plain model, whilst it is probably not. As such, small noise
may push the image off the stationary point, causing an effective FGSM perturbation. Besides, the op-
timized models predict with a decreased confidence. This is visible on the second figure. More noise
is visible here and sometimes even more spread as shown in the two images on the right.

Sensitivity of Hidden Layers
The utilities discussed in Sec. 5.2.1 grow more or less each layer for the CIFAR-10 ResNet. The RCE
and plain model exhibit the largest normalized ℓ2 distance at the fourth bottleneck and the smallest
distance at the raw input. Noteworthy is that the utility Uf(l) at the first and last bottleneck differ signif-
icantly with RCE; as for 5 samples, the 95% t-Confidence Interval (CI) is 0.29 ± 0.003 and 0.51 ± 0.01
respectively.
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(a) Normalized LFA features of the
adversarial learned Resnet-50

(b) Normalized BRISQUE features of the
adversarial learned Resnet-50

(Logarithmic)
(c) Normalized LFA Features of the

reversed Resnet-50

Figure 6.2: The distribution of LFA and MSCN features

This supports the unfolding intuition of Bengio et al. [Ben+13]. They argue that the deeper layers
provide more linear and ‘unwrapped’ manifolds to work with. Although, we find the behavior of adver-
sarial learned models to be different. There, the first layers seem to be the most sensitive, with the
first bottleneck (0.66± 0.14) having a higher utility than the fourth (0.48± 0.13). That may be because
similar perturbations are part of the training data, which gets unfolded by the neural network. Specif-
ically, FGSM samples form points of higher density compared to the general training procedure and
assuming the disentanglement of deeper layers [Ben+13, Hypothesis H3(b)], we expect less variance.
In any case, detection methods may thus be fine-tuned by utilizing different layers.

Takeaway 5.
The evaluation of the various models yields the following insights:

� RCE is sensitive to the amount of labels, as it regulates all labels that are not the target label.
� Robustness optimization is often effective against stronger perturbations.
� A major drawback of FGSM are vanishing gradients
� The last layer is often the best choice to detect perturbation, except when using adversarial

training.

6.2.2. Why LOF and LID fail
Fig. 6.2 shows three scatter plots of LFA and BRISQUE features. The axes are the features that have
the highest Z-score for FGSM examples. The chosen features on the hidden layer are rather random
each epoch; but this is not true for BRISQUE. Depending on the dataset, the best features are either
shape or variance parameters (Appendix B.1.1). For CIFAR10 the best three are: 1, 15, and 11 of the
generalized Gamma functions.

All three plots show dissimilarities between adversarial examples. The most left figure is more spread
out for adversarial examples, it has a large cluster on the large positive values. The plot in the middle
shows similar results, the adversarial examples have sometimes extreme variances; notice that this
plot is logarithmic. The red outliers in this plot are further on the original scale.

The right is far less spread, that plot is very dense for adversarial samples. That is expected when
we consider the added constraints of RCE. This behavior was actually the purpose of this technique
[Pan+18]. It enforces non-maximal activations to be uniform and thus harder to manipulate. The results
will show that distance-based metrics perform worse on such features (Appendix B.1).

The Issue of Local Outlier Detection
Local outlier detection, like LOF and LID, might fail on some features of BRISQUE as well. These
methods suffer under the gradual change in density of these features. When one measures the KL di-
vergence between the extracted features and a Gaussian, where the Gaussian maximizes the entropy
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Figure 6.3: k parameter for LOF and LRD on MSCN features

given one mode and variance, then we get a divergence of around 0.9 nats for BRISQUE and 2.0 for
LFA. BRISQUE will therefore not be suitable for LOF and LID.

To test this further, we first measured the accuracy of LOF and LRD (LRD detects Hawkings-outliers)
on features provided by BRISQUE. The result is shown in Fig. 6.3 for a range of k configurations. The
left vertical axis are the accuracies of LRD, and on the right of LOF. These were plotted separately
since their distance was too far for showing the shape of the two line plots. Both domains have a width
of 0.06 for the accuracy. From the ellbow of the plots we conclude an optimum of k = 8 for LOF and
LRD; and that value will be chosen for all methods that use kNN. Furthermore, we chose to use t = 30
feature bags to smooth out the curve.

Two observations can be made from the line plots. (i) The accuracy is higher for LRD with a large
margin, that confirms our suspicion of LOF’s performance. (ii) Also, the value of k has more impact on
LOF than for LRD, which also supports the metrics would perform better on more global scope. These
two observations are present for LID as well. The second point will now be elaborated.

An extreme example is when the underlying distribution will be a Gaussian. To show that the LOF
value of some sample would not change much when displaced under this circumstance, consider now
that we write the density as the affiliated Cumulative Density Function (CDF). Then we can determine
the expected frequentist parameters regarding Eq. 5.1 (Lemma 6.2.1).

Lemma 6.2.1. Let D be the complete dataset and f(x, d) = CDF [X − d,X + d] be the integral of the
cumulative density function of the domain [X − d,X + d]. Then the amount of neighbors |Ωx,k| within
radius d is on average f(X, d) · |D|.

Proof. The expected value of the regionR aroundX is the integral of the density of that region, which is
f(X, d). For N i.i.d observations, the amount of samples that fall in the region is binomially distributed
with N trials and f(X, d) chance of success. This has an expected value EBin(X|R,N)[X] of N · R.

Q.E.D.

As discussed in Sec. 5.1.1, the cardinality under a certain k-distance is fixed according to the frequentist
view and its volume is defined by the sphere of that distance. Lemma 6.2.2 follows from this definition
when applied to f(X, d).

Lemma 6.2.2. k-distance, which is subject to the function d(X) = f(X, d)− k
|D| = 0, follows the gradient

∇f(X, d) which is of length zero. That is, some infinitesimal vector r⃗ where ||r⃗ · [∂f(X,d)
∂X , ∂f(X,d)

∂d ]||2 = 0

Proof. The formula of d(X) follows from Lemma 6.2.1 by reordering the terms to the left side of the
equation. Since the density d(X) is constant by definition, it follows that d(X) should be zero. Suppose
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Table 6.3: Accuracies on CIFAR10 for rational methods as outlier detection. Evasions have a ℓ2-radii of 5, best performing in
bold.

Evasion Attack LOF-h LOF LID-h LID

FGSM 0.631 0.633 0.508 0.534
FGSM (Adv. Learned) 0.812 0.646 0.586 0.519
FGSM (RCE) 0.653 0.619 0.545 0.527

now that the partial derivatives exist for f(X, d) then the derivative of d(X) = 0 can be written as the
gradient field ∇f(X, d) = 0. Ignoring the constant term k

|D| . Q.E.D.

Informally, Lemma 6.2.2 causes changes in density to cancel out because the cardinality is homoge-
nous or the volume given by the k-distance (d) is changed. The constraint of function d(X) thus results
in an equilibrium. For simplicity, we will consider the one dimensional case for Lemma 6.2.3.

Lemma 6.2.3. Let p(X) be the probability density function of a region that is strictly increasing (or
decreasing) for r⃗. That means that ∇p(X) · r⃗ > 0 is true for any X. Then r⃗ · ∇dd(X) reaches its
maximum at a point dependent on d.

Proof. From Lemma 6.2.2 follows an equilibrium, as the density should remain constant. When the
input X has one dimension and a region is considered that is strictly increasing or decreasing in X.
Then it must be that ∂f(X,d)

∂X = p(X + d) − p(X − d) equals the difference in density with an updated
d to conserve the equilibrium. The maximum change in d is reached when convergence ∂2f(X,d)

∂2X = 0;
the convergence is dependent on d. Q.E.D.

These Lemmas can be combined to find the upper bound of LRD’s- and LOF’s estimate, since the
Gaussian has the smoothness properties that are required in Lemma 6.2.2. We conclude this section
with Theorem 6.2.4 and a review of the overall accuracy of LID and LOF.

Theorem 6.2.4. For a Gaussian, the effectiveness of LOF decreases exponentially with d. LRD will
degrade linearly with d.

Proof. Let p(X) be strictly increasing as in Lemma 6.2.3 and part of a normalized Gaussian N (0, 1).
The gradient ∇p(X) of the Gaussian corresponds to −X · p(X). Substituting this in ∂f(X,d)

∂X yields the
equilibrium:

(−X − d) · p(X + d)− (−X + d) · p(X − d) = 0⇒
(−X − d) · e

0.5(−d2−2Xd−X2)
√
2π

− (−X + d) · e
0.5(−d2+2Xd−X2)

√
2π

= 0⇒
e0.5(−d2−X2)

√
2π

· ((−X − d) · e−Xd − (−X + d) · eXd) = 0

Simplifying this yields:
p(X + d) · ((X − d) · e2Xd −X − d) = 0⇒

X(e2Xd − 1)− d · e2Xd − d = 0

X = −d+O(e−2d2

) ∨ X = d+O(e−2d2

).

The limit with d to infinity results thus in a stationary point on d and−d. On the other hand, when d goes
to zero the stationary point changes to the numerical differentiation of a Gaussian. both cases converge
and grow exponential to the above. Now, let LOF and LRD measure a set of random variables from
N (0, 1). Their upper bound is (by rewriting Eq. 5.4):

LRD(d) = l · dλl + (1− l) · d
LOF (d) = l · LRD(dλl)

LRD(d) + (1− l) · LRD(dλh)
LRD(d)
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Table 6.4: Accuracies of several detection algorithms against grey-, and white-box (GB/WB) adversaries on CIFAR-10, with a
ℓ2-radii of 5. White-box attacks are evaluated on the detector’s best performing robust optimization under DeepFool.

DeepFool’s and C&W’s results are dependent on the error rate errf of the models. A perfect detector has an accuracy of
1− errf

2
. Top-3 results are bolded.

Detection Accuracy ⇑

Evasion
Attack

Robust
Optim. POI → Hidden Units Scene Statistics Logits

WB ↓ LRD KDE+BU LID EXM LRD SVM PCA FSQ MAH

FGSM 7 7 0.680 0.545 0.508 0.584 0.698 0.725 0.722 0.570 0.596
FGSM AL 7 0.852 0.663 0.586 0.863 0.815 0.884 0.878 0.757 0.792
FGSM RCE 7 0.644 0.818 0.545 0.726 0.875 0.987 0.990 0.636 0.639

DeepFool 7 7 0.546 0.630 0.517 0.512 0.490 0.500 0.506 0.900 0.801
DeepFool AL 7 0.516 0.596 0.511 0.499 0.500 0.502 0.663 0.890 0.676
DeepFool RCE 7 0.775 0.785 0.513 0.564 0.498 0.501 0.533 0.759 0.756
C&W AL 7 0.520 0.561 0.501 0.500 0.502 0.500 0.758 0.744 0.635
C&W RCE 7 0.621 0.707 0.513 0.558 0.497 0.500 0.582 0.780 0.647
C&W Best Perf. 3 0.516 0.489 0.453 0.450 0.660 0.619 0.792 0.484 0.474

where l is the ratio of neighbors having a lower density; dλl and dλh is the average k-distance of the
neighbors of lower or higher density. The latter increases exponentially in d. In effect, LRD(d) and
LRD(dλh) differ by similar margins. Q.E.D.

Tab. 6.3 presents the accuracy of LID and LOF for other POIs and confirms Theorem 6.2.4. Generally,
the algorithms perform better on the hidden layers when the robustness is optimized. LID, however,
achieves an accuracy close to the random classifier; whilst LOF has a reasonable accuracy of 0.812
for one setting. The KL divergence has been measured on the adversarial learned model, of which the
results are discussed. LID and LOF show expected results for this model: it has a higher accuracy for
LFA features.

6.2.3. Grey Box Detection
We start by examining grey-box attacks. This provides a more comprehensive understanding of our
method’s performance. Table 6.4 shows LRD besides various other works. Instance-based methods
similar to ours are KDE+BU, LID, and MAH. We see that LID does not lead to practical results. On
the other hand, LRD reaches an accuracy above 85% for FGSM perturbations, this outperforms similar
methods.

Robust optimization is often beneficial. The detection accuracy is frequently higher with one of these
methods. Particularly for PCA, its result against DeepFool and FGSM shows a respective difference
of 15% and 26%. Moreover, PCA shows strong and similar results as the supervised method SVM on
FGSM; the extremal measure, that also uses PCA, is less effective.

Dropout benefits from RCE models, the added entropy to benign examples segregates them from
adversarial examples (Appendix B). This method is part of Feinman’s KDE [Fei+17]. Feature squeez-
ing is not effective for FGSM perturbations. It achieves the lowest accuracy of 76%.

These results largely change for smaller perturbations. SVM drops from 90%+ accuracy to a random
classifier. In fact, almost all methods suffer from smaller perturbations, except for purification measures
like feature squeezing. Its situation is reverse for smaller perturbations and does improve in this setting,
which suggests that most methods do not have a sufficient scope to cover all evasion methods. This
supports the claims of Feinman et al. [Fei+17] that a distance-based metric is not enough for cases
near the manifold.

6.2.4. White Box Detection
We now turn to experiments in a more challenging scenario, allowing adaptive adversaries. The results
are also shown in Table 6.4. We find that most methods can be broken by an adaptive attacker. In
particular, the results for KDE+BU, LID, EXM, and MAH showed a true positive rate close to 0% on the
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CIFAR-10 and STL-10 datasets. These results do largely agree with prior work [CW17a; ACW18].

Regarding the other methods, we see that especially PCA excels with accuracies of around 80% for
CIFAR-10. Surprisingly, PCA was proven as not robust earlier [CW17a]. LRD is, besides PCA, also
somewhat resilient against adaptive attacks. Although, it should be noted that BRISQUE does utilize
local non-linear operations to estimate generalized gamma functions [MMB12], which are not smooth
functions. We can therefore only consider LRD robust on the hidden units.

Some results are worse than in the grey-box setting, that is possible due to the positive confidence
value. Hence, the adversarial example is stimulated to be 5% below the detector’s threshold, which
improves its transferability on models with feature bags or other uncertainties.

Takeaway 6.
Initial experiments on possible heuristics for MeetSafe results in the following:

� The PCA method of Hendrycks & Gimpel [HG17] works very well with adversarial learning.
� robustness optimization increases the results of detectors and dropout performs especially

well with RCE models.
� Most methods are not consistent under different levels of perturbation. SVM varies the most

between the variants, this method trains on adversarial examples.

6.2.5. Ablation Study
We continue to show the fluctuation of three methods (LRD, PCA, and FSQ) across different datasets
and compare this to their MeetSafe ensemble. We include LRD since it has the lowest average cor-
relation with PCA and FSQ across all results in Table 4.1. Additionally, LRD showed more resilience
against adaptive adversaries compared to similar method. Likewise, PCA and FSQ performed very
well on distinct evasion methods.

For the ablation study, the p-values of the method’s confidence are used. That is the value which
is compared to the threshold. We evaluate the p-values of 10 random FGSM samples on a reverse
ResNet-50 under the benign training set. A lower p-value is beneficial for the GMM’s generalization,
as this assumes normality.
On MNIST, an opposing utility between LRD and whitening techniques becomes clear. Here, LRD has
a p-value of near zero (≤ 1e-99), whilst whitening has a value of 6e-6. On the other hand, whitening
performs relatively better on CIFAR-10 with a p-value smaller than 1e-80 against 5e-17 for LRD. Whiten-
ing and LRD might therefore offset each other’s effects against FGSM.

The added value of feature squeezing is apparent for small perturbations. Fig. 6.4 shows the per-
formance of the three detectors for DeepFool and FGSM. It shows a noticeably higher AUROC for
feature squeezing on DeepFool. Furthermore, feature squeezing has the smallest p-value of 0.01 for
CIFAR-10, followed by LRD with 0.25. Feature squeezing could thus be helpful in the case when the
adversarial sample is near the benign input. Indeed, the ROC curves for MeetSafe, which combines
all three heuristics, has the highest lowerbound among DeepFool and FGSM. Moreover, experiments
on C&W also showed the added value of feature squeezing with a slight benefit LRD (Appendix 6.4).

(a) ROC curves for MNIST. (b) ROC curves for STL-10.

(c) ROC curves for CIFAR-10.
indicating the importance of the

features for C&W. (d) ROC curves for CIFAR-10.

Figure 6.4: ROC curves of MeetSafe’s features on a reverse ResNet-50 as target model. The curves show the performance
against C&W, DeepFool, and FGSM.
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Table 6.5: Accuracies of GMM-based detectors against grey-, and white-box (GB/WB) adversaries with a ℓ2-radii of 5.
DeepFool’s and C&W’s results are dependent on the error rate errf of the models, like in Tab. 4.1. The t-CI is based on 5 runs.

Top-3 results are bolded.

Detection Accuracy ± [t-CI 95%] ⇑

Evasion
Attack

Robust
Optim.

Dataset
/ Model → CIFAR-10 STL-10 VGG-13

WB ↓ MS-4 MS-8 MS-16 I-Def MS-8 I-Def MS-8 I-Def

FGSM 7 7 0.680 0.671 0.672 0.627 0.520 0.549 0.808 0.569
FGSM AL 7 0.876 0.829 0.853 0.925 0.485 0.508 0.942 0.508
FGSM RCE 7 0.965 0.926 0.895 0.717 0.737 0.567 0.956 0.606

DeepFool AL 7 0.691 0.752 0.762 0.520 0.665 0.502 0.686 0.552
DeepFool RCE 7 0.738 0.785 0.745 0.571 0.612 0.531 0.657 0.633
C&W AL 7 0.746 0.804 0.815 0.518 0.517 0.498 0.803 0.509
C&W RCE 7 0.810 0.818 0.814 0.557 0.574 0.518 0.689 0.574
C&W RCE 3 0.762 0.745 ± 0.04 0.689 0.469 0.544 0.475 0.896 0.492

We further will extend upon the ablation study by removing each component of MeetSafe systematically.
This further establishes the importance of each component within the ensemble. For the ablation, we
trained 3 GMMs all with two of the original components (LRD, PCA, FSQ) on a reversed ResNet-50
for the CIFAR-10 dataset. Firstly, when we remove LRD the accuracy decreases by 0.079 for C&W,
0.027 for FGSM, and 0.150 for DeepFool. LRD is thus beneficial for MeetSafe. Similar to the results
in Sec. 6.2.3, these results show that LRD does not add much for FGSM perturbations on CIFAR-10.
Second, when we remove PCA the accuracy decreases by 0.191 for C&W, 0.234 for FGSM, and 0.145
for DeepFool. Whitening is thus an important component on CIFAR-10. However, Fig. 6.4 shows that
this may not be the case for MNIST. Third, when we remove FSQ the accuracy decreases by 0.150
for C&W, 0.101 for FGSM, and −0.040 for DeepFool, which is also in line with the results in Sec. 6.2.3.
The scatterplots of Fig. 6.5 also show the relative importance of each component. We observe that
either FSQ, PCA, or LRD may be necessary to effectively segregate the data.

Deterministic Feature Bagging
We did also test MeetSafe (MS-8) with deterministic feature bagging. To this extent, the random seeds
are set to 144 at the start of evaluating LRD. Without this randomness, MeetSafe has an accuracy of
0.651 for CIFAR-10, 0.990 for MNIST, and 0.516 for STL-10 against an adaptive, white-box adversary.

6.2.6. GMM-based Detection
The prior section established that each of these methods has at least one scenario that particularly
favors one over the others. Based on these results, we have chosen PCA, feature squeezing and LRD
for our final model. Following that, We test MeetSafe’s performance under a certain number of latent
components: 4, 8, and 16 (Table 6.5). For grey-box perturbations, we see that only 4 latent variables
may be useful for FGSM, but this increases for small perturbations. To balance these accuracies, we
think that 8 components is desirable. Comparing the performance of MS-8 to that of I-Defender shows

(a) (b) (c) (d)

Figure 6.5: Scores of LRD (f0), feature squeezing (f1), and whitening (f2) before and after a perturbation with a ℓ2-radii of 5.
The scores were in the same configuration as used by MeetSafe. (a) Scores for a reverse ResNet-50 model on CIFAR-10;
evaded with FGSM (b) Scores for a reverse ResNet-50 model on MNIST; evaded with FGSM (c) Scores for a reverse

ResNet-50 model on CIFAR-10; evaded with DeepFool (d) Scores for a reverse ResNet-50 model on STL-10; evaded with
FGSM.
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Figure 6.6: Graph that shows the inference times of MeetSafe and a reversed ResNet-50 for a variation of input sizes. The
data points are from the datasets: MNIST, CIFAR-10, Tiny-ImageNet, and STL-10. The error bar denotes the t-CI across 5 runs.

similar results on FGSM, but lower accuracies on stronger attacks.

Though, it should be noted that the accuracy for RCE and MeetSafe do not scale well. This is most
notable when we compare the efficacy for datasets of higher resolution. Tiny-ImageNet shows accu-
racies on C&W of at most 0.553 for MeetSafe and 0.511 for I-Defender. STL-10 shows similar results
(Table 6.5). However, the effect of dimensionality is not a limitation specific to our method but rather a
general issue of defenses against adversarial examples [GSS15; Sha+18].

MS-8 achieves an improvement of at least 8.1% on adaptive attacks and 10.2% on the worst-case
results for each evaluated method by averaging across STL-10, MNIST, and CIFAR-10. MeetSafe
may therefore be employed universally whilst maintaining a considerable detection accuracy.

6.2.7. Inference Times
Fig. 6.6 shows the time taken for performing inference on MeetSafe and its target model when us-
ing a reversed ResNet-50. We test the inference time on all four datasets: MNIST, CIFAR-10, Tiny-
ImageNet, and STL-10. These are plotted ad four data points on the x-axis according to its input size:
dim(R1×28×28), dim(R3×32×32), dim(R3×64×64), and dim(R3×96×96) respectively. From the figure, we
can observe that the discrepancy of ResNet-50 and MeetSafe converges to a factor of about 2.3 when
the input size gets larger. The inference time seems therefore reasonable, after training. Especially for
larger input sizes.

To challenge the performance of MeetSafe further, we increased the feature size from 10 to 17 and
the pool size from 500 to 850. More could not fit in our VRAM. We anticipated that this would lead to
increased computation, especially for LRD. The results on CIFAR-10 demonstrate that this increase
led to a slower processing rate, with the model running 0.28 batches per second slower than before.
We consider this change to be limited, indicating that the computational overhead is also manageable
given the increased feature and pool sizes.

Complexity
The worst-case computational complexity of MeetSafe is O(4n + dim(D) + k · d) where d is the input
dimension for LRD and n the target model’s parameters. The complexity consists of 3 forward passes
for feature squeezing O(3n), 1 forward pass to acquire the hidden units for LRD O(n+k ·d). For which
we refer to Corollary 5.1.0.1 that describes the complexity of LRD. Whitening needs O(dim(D) · c)
to decompose the dataset into c eigenvectors [HMT11, Algorithm 5.1]. Even though the GMM has
an exponential complexity in with respect to the input dimension, our application only takes the three
heuristics as features, regardless of the dataset size and target model.





7
Concluding Remarks

The purpose of this thesis was to analyze whether the ‘meet the defence’ approach [Ald+22] of detec-
tors leads to white box robustness, whilst retaining a linear computational complexity. Our literature
review presents four possible shortcomings in current technology (Chap. 3). This thesis challenges
at least three of them with the hypothesis: Detectors fail in white box situation when it is either linear,
overfit, or has narrow statistical regularities.

A novel detector, MeetSafe, was proposed, to improve the state-of-the-art. It leverages variance and a
new distance-based metric (called LRD) in GMMs; harmonizing prevention and detection techniques to
ensure sound detection for both small and larger perturbations. Since not all units of the neural network
may be of interest, MeetSafe will perform a fast feature selection based on FGSM perturbations.

The hypothesis is tested based on in-vitro experiments with C&W white box attacks and other grey
box methods that generate a near-optimal ℓ2 perturbation. The results of MeetSafe can be used as
support for the hypothesis, when compared to methods that are either linear, trained on adversarial
examples, or impose weak constraints on the adversary. We were surprised by a few outcomes, that
forced us to revise the hypothesis to the one below. The reason for this will become clear next section.

Hypothesis 1 (Revised):
Detectors fail in white box situation when it is either overfit, limited by the target’s robustness, or

has narrow statistical regularities.

7.1. Findings & Discussion
The experiments show promising results of our proposed methods: LRD and MeetSafe. LRD alone has
a lower complexity than Feinman’s KDE [Fei+17]. LRD’s theoretical complexity is O(k log(n)) instead
of O(n) for k neighbors. Additionally, it performs much better on FGSM and white-box perturbations.
MeetSafe more effectively detects adversarial examples from a wide range of attacks and datasets.
Especially compared to our evaluated methods. MeetSafe achieves accuracies of around 80% with a
TNR of at least 90%. We observed only major difficulties for input spaces with a lot of classes; but this
was not unique to MeetSafe. The main findings are as follows.

Finding 1: RCE optimization is sensitive to the amount of labels
Input spaces that have a large class cardinality are not beneficial to the robustness of target models.
This can be observed by the accuracy of Reverse Cross Entropy (RCE) [Pan+18] on higher dimensions.
RCE stimulates neural networks to learn distinct features. A large set of classes, however, would mean
that the training is more constrained. Leading to a slow convergence of the network and, in extreme
cases, unacceptable accuracies of 3%. Goodfellow et al. [GSS15] already argued that adversarial
examples come naturally from an increased dimension. We think that this holds true for labels as well.
Maybe it has an even higher impact, as there are methods to purify images by reducing the degrees of
freedom [XEQ18]. Adversarial training shows instability in another way. It seems to diverge after the
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model has learned to classify benign images. Most likely, the adversarial penalty causes the model to
diverge.

Recommendation: limit the number of classes, apply class-incremental learning, and adjust the learn-
ing rate η on the applied robustness optimization.

Finding 2: Robustness optimization is beneficial for detection
Robustness optimization decreases the classification error on small perturbations and are of additional
value during detection, as optimized models had higher detection rates for any evasion method. We
observed an additional accuracy of around 20% when such an approach was taken. With this result,
some earlier work can be put into question. Carlini & Wagner [CW17a] considered PCA broken in the
white box setting; but this is actually not true for optimized models. We consider it almost as effective
as MeetSafe, and the only method besides MeetSafe to be robust under white box perturbations. How-
ever, we find that the performance of PCA primarily stands out on CIFAR10. MeetSafe performs well
on more datasets. We therefore conclude that the robustness of the target model is a crucial limiting
factor and not the linearity of PCA.

The last layer is often the best choice to detect perturbation, except for adversarial training. Our exper-
iments revealed that the sensitivity to perturbation is highest on the last layer of plain and RCE models.
Our feature selection algorithm will thus always take the last layer out of all hidden layers. That sup-
ports the work of Bengio et al. [Ben+13], they argue that the deeper layers provide more linear and
‘unwrapped’ manifolds to work with. Still, we find the exact reverse behavior for adversarial training,
which suggests that selection on a layer’s or hidden unit’s utility may be beneficial.

Recommendation: add robustness optimization and apply any detection where there the ℓ2 distance
is high between benign and adversarial samples.

Finding 3: Narrow statistical regularities
Feinman et al. [Fei+17] simplified adversarial examples to be in one of two scenarios. These are either
near or far away from the manifold. Our results showed that one metric can hardly cover both situations.
For instance, distance-based metrics are good at detecting high perturbations, but lose a significant
accuracy on lower ones. Feature squeezing has similar issues for larger perturbations, and this is also
reflected by the performance illustrated in the original paper [XEQ18]. Pixel binning the input can purify
the image for perturbations within a certain interval; but will not solve the problem for larger perturba-
tions. Hendrycks & Gimpel [HG17] call such metrics too narrow. They proposed that detectors should
instead combine imperfect measures in an ensemble. The improved generalization that we observed
for MeetSafe and Feinman et al.’s KDE [Fei+17] along multiple datasets supports these claims.

Recommendation: combine distance-based metrics with variance metrics.

Finding 4: Local anomalies do not detect adversarial examples
Local anomaly detection fails in most cases, especially for raw image features (i.e. BRISQUE). These
methods suffer under the gradual change in the density of these features. Local outliers are not de-
fined by the global view of the data. Rather, these are anomalies relative to their local neighborhoods
[Bre+00]. These only work under a large differential entropy. The absence of this in some features
results in a better performance for global anomaly detection, like LRD or KDE. This is called Hawkins-
outlier detection.

Recommendation: use Hawkins-outlier detection.

7.1.1. Limitations
The experiments in this thesis focus on the robustness of MeetSafe and other detectors under near-
optimal perturbations. This is one specific type of perturbation out of several others. For instance, other
types include physical perturbations [Zho+22], semantic perturbations [GSG20], and fooling perturba-
tions [RD18]. Whilst the ℓ2 distance of these other methods is not necessarily small, they do assume
that the manipulation is constrained to human imperceptibility.



7.1. Findings & Discussion 55

Yet, practical applications might already be vulnerable with human perceptibility. When one follows
this argument, it can be concluded that adversarial images can’t be mitigated, since an unrestricted,
inter-means perturbation is almost always sufficient to misclassify the sample [Tra+17].

Also, this paper only covers the general case; but There aremore specialized applications. For instance,
the perturbation for language models has to have semantic similarity [ZDS17]. The discussed evasion
methods would generate ungrammatical sentences. Similar work is the shadow attack [GSG20], en-
coder attack [KW13], and semantic segmentation attack [Xie+17]. The performance of MeetSafe is
partially unknown for semantic examples. This may also be true for some other architectures. While
our experiments were conducted using two widely adopted architectures, we can not conclude similar
performance on architectures like transformers, or even other machine learning algorithms.

Similarly, we are aware that there are multiple stochastic defenses published that may achieve higher
accuracies. On the other hand, we also have seen significant shortcomings of stochastic defenses
and denoising. Athalye et al. [ACW18] were the first to criticize the use of randomness in defenses
(stochastic gradients), as these may be easily circumvented with Backward Pass Differentiable Ap-
proximation (BPDA). The paper [Tra+20], that was published later, likewise evaded a lot of stochastic
defenses. Because the performance of obfuscated gradients often prove wrong or is at least question-
able, we did only refer to the apprehension in the introduction. Additionally, we believe some methods
like denoisers or JTLA [Rag+21] would not offer a fair comparison given their computational cost. We
thus focus on detectors that use local invariants and have quasi-deterministic gradients.

Another limitation of our research is due to resource constraints. We considered I-Defender and Fein-
man et al.’s [Fei+17] KDE not practical in certain situations. For models like ResNet-50, it would cost at
least 372.53 GiB to evaluate I-Defender. On the other hand, KDE+BU required a large computational
graph in Pytorch during white box testing. That was because of the tens of forwards for dropout. For
the same reason, we could only utilize Uf(l) for the extremal value. Other methods (LRD, LID, and
KDE+BU), require instance-based learning and more memory. Also, we left the evaluation of vision
transformers, large language models and other transformers for future work. Such architectures are
vastly different from CNNs, so we may not conclude the performance of MeetSafe on transformers.
Lastly, we solely relied on BRISQUE image quality features for our experiments. These may not cap-
ture all relevant aspects of image quality.

A key property of MeetSafe is the diversity of its components which makes it more robust under larger
range of datasets. Other methods may outperform MeetSafe on specific attacks. For example, SVMs
achieve higher accuracies on FGSM (Table 6.4); but such improvement is not universal across all at-
tacks. The consistency and robustness against white-box attacks is exactly what makes MeetSafe
superior to related work. Even under considerable perturbations, like adversarial examples with a ℓ2
distance of 5. MeetSafe manages to separate such adversarial examples from benign ones; even
though perturbation is often perceptible, as shown in Fig. 7.1.

(a) (b) (c) (d)

Figure 7.1: FGSM perturbations with an ℓ2 of 5 and applied on the top row. Images were sampled from (a) CIFAR-10, (b)
MNIST, (c) STL-10, and (d) ImageNet. The target model was a reverse ResNet-50 model.
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Relaxing the Requirements
The findings and limitations of this thesis showed the requirements in Chap. 3 to be presumptuous.
For instance, considering the model-agnostic perturbation of Tramer et al. [Tra+17] one can conclude
that detecting any evasion method is an overstatement and not feasible. Instead, we should relax this
requirement to human perceivable perturbations (R2) and even this is not really possible for larger di-
mensions.

In addition, We observed that all evaluated defenses against adversarial examples do not scale well.
This is especially true when training models with RCE (Finding 1). We can therefore not ensure that
the target model remains accurate on larger feature spaces (R5). However, it does aid detection on at
least CIFAR-10 and MNIST whilst remaining accurate on the sample’s classification.

7.2. Conclusion
In conclusion, this thesis has investigated the efficacy of various defense mechanisms against adver-
sarial attacks, focusing particularly on the ‘meet the defence’ approach and the development of the
MeetSafe detector. The thesis identifies potential shortcomings in existing technology and formulating
hypotheses to challenge these limitations. The subsequent development of MeetSafe, leveraging vari-
ance and novel distance-based metrics in Gaussian Mixture Models (GMMs), represents a significant
advancement in the field of adversarial defense mechanisms.

7.2.1. Future Work
Future research should explore the application of robustness optimization and detection techniques
across diverse perturbation types, including semantic attacks and fooling perturbations. Additionally,
the dimensionality of the classes and its effect on robustness can lead to interesting insights. Lastly,
we limited the image quality features to BRISQUE. Other techniques or an ensemble of them might be
of added value.
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A
Convergence Graphs of the Trained

Models

(a) Convergence graph for
ResNet-50, trained on CIFAR-10.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 2-8) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(b) Convergence graph for an
adversarial learned ResNet-50,
trained on CIFAR-10. Showing
the training, testing, and Grey

Box (GB) adversarial (FGSM, ℓ2:
2-8) accuracy on a scale
between 0 and 1. The

hyperparameters are given
in-text.

(c) Convergence graph for the
reverse ResNet-50, trained on
CIFAR-10. Showing the training,
testing, and Grey Box (GB)
adversarial (FGSM, ℓ2: 2-8)

accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(d) Convergence graph for
ResNet-50, trained on

Tiny-ImageNet. Showing the
training, testing, and Grey Box

(GB) adversarial (FGSM, ℓ2: 2-8)
accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(e) Convergence graph for an
adversarial learned ResNet-50,

trained on Tiny-ImageNet.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 2-8) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(f) Convergence graph for the
reverse ResNet-50, trained on
Tiny-ImageNet. Showing the
training, testing, and Grey Box

(GB) adversarial (FGSM, ℓ2: 2-8)
accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(g) Convergence graph for
VGG-13, trained on CIFAR-10.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 2-8) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(h) Convergence graph for an
adversarial learned VGG-13,
trained on CIFAR-10. Showing
the training, testing, and Grey

Box (GB) adversarial (FGSM, ℓ2:
2-8) accuracy on a scale
between 0 and 1. The

hyperparameters are given
in-text.
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(g) Convergence graph for
VGG-13, trained on CIFAR-10.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 2-8) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(h) Convergence graph for an
adversarial learned VGG-13,
trained on CIFAR-10. Showing
the training, testing, and Grey

Box (GB) adversarial (FGSM, ℓ2:
2-8) accuracy on a scale
between 0 and 1. The

hyperparameters are given
in-text.

(i) Convergence graph for the
reverse VGG-13, trained on

CIFAR-10. Showing the training,
testing, and Grey Box (GB)
adversarial (FGSM, ℓ2: 2-8)

accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(j) Convergence graph for
ResNet-50, trained on MNIST.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 5) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(k) Convergence graph for an
adversarial learned ResNet-50,
trained on MNIST. Showing the
training, testing, and Grey Box
(GB) adversarial (FGSM, ℓ2: 5)
accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(l) Convergence graph for the
reverse ResNet-50, trained on
MNIST. Showing the training,
testing, and Grey Box (GB)
adversarial (FGSM, ℓ2: 5)

accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(m) Convergence graph for
ResNet-50, trained on STL-10.
Showing the training, testing,
and Grey Box (GB) adversarial
(FGSM, ℓ2: 5) accuracy on a
scale between 0 and 1. The
hyperparameters are given

in-text.

(n) Convergence graph for an
adversarial learned ResNet-50,
trained on STL-10. Showing the
training, testing, and Grey Box
(GB) adversarial (FGSM, ℓ2: 5)
accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

(o) Convergence graph for the
reverse ResNet-50, trained on
STL-10. Showing the training,
testing, and Grey Box (GB)
adversarial (FGSM, ℓ2: 5)

accuracy on a scale between 0
and 1. The hyperparameters are

given in-text.

Figure 2: Convergence graph for each evaluated model. Showing the training, testing, and Grey Box (GB) adversarial (FGSM,
ℓ2-radii between 2-8) accuracy on a scale between 0 and 1. The hyperparameters are given in-text.



B
Feature Extraction and

Hyperparameters

This Appendix analyzes the feature engineering methods of Sec. 5.2 in more detail. This will support in-
text claims about feature selection with additional empirical results. To this extent, we show the added
value of selecting hidden units with larger, absolute Z-scores, higher normalized ℓ2 scores on the last
layers, and the feature separability of BRISQUE features. The Appendix ends with the hyperparameters
that were used in our experiments.

(a) (b) (c) (d)

Figure B.1: Absolute Z-scores for FGSM evasions with a ℓ2-radii of 5. Samples were from a random pool of 500 hidden units,
directly after convolution. (a) The Z-scores when using a ResNet-50 on CIFAR-10 (b) The Z-scores when using a VGG-13 on

CIFAR-10 (c) The Z-scores when using a ResNet-50 on MNIST (d) The Z-scores when using a ResNet-50 on STL-10.

B.1. Z-scores of the Hidden Units and other Features
To demonstrate the added value of our feature selection with utility UP , we plotted 500 Z-scores of nine
models in Fig. B.1. The challenge with functions which employ the Euclidean distance lies in the curse
of dimensionality. Whilst such functions may perform well in low-dimensional space, a rise in the num-
ber of dimensions exponentially increases the volume V = rd for some radius r, which causes data to
be more sparse for similar dataset sizes.

The figure shows a large variance for the hidden units’ utility, except for VGG-13. The first and third
sub-figure presents a long tail for adversarial trained models. Reaching absolute Z-scores of 5, when
the mean is around 1. This suggests that certain units more often show irregularities under perturba-
tion than others. We also see an apparent shift for RCE in these two plots, having lower bins. The
uniformity of the perturbation among the hidden units is thus lower.

We can confirm the observations again with the scatterplots in Fig. B.2. The first two plots show
the dispersion of best- and worst-case hidden units for CIFAR-10 in terms of its Z-score. The former
has far outliers on higher values for unit f69. With this, the three features separate a large portion of the
adversarial examples. The units with small Z-scores (Fig. B.2b) do not have such segregation, which
demonstrates the diminishing significance of these features.
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(a) (b) (c) (d)

Figure B.2: Activations’ Z-Score of 3 hidden units before and after an FGSM perturbation, with a ℓ2-radii of 5. The activations
are sampled from a random pool of 500 hidden units, directly after convolution. (a) Activation of the hidden units with the

highest Z-score for an Adversarial Learned ResNet-50 model on CIFAR-10 (b) Activation of the hidden units with the lowest
Z-score for an Adversarial Learned ResNet-50 model on CIFAR-10 (c) Activation of the hidden units with the highest Z-score
for a reverse ResNet-50 model on CIFAR-10 (d) Activation of the hidden units with the lowest Z-score for a reverse ResNet-50

model on CIFAR-10.

The last two plots shows a similar picture, but with more restricted perturbations due to the RCE loss.
The two distributions are more distinct on dense regions of the benign data. Forming an enclave of
adversarial samples on both plots, which is not ideal for density-based measures on benign data.

We did notice that such distribution, as the last plots, is useful for supervised methods. Reaching
a detection accuracy of 0.984 and 0.884 with a Support Vector Machine on the units of the latter and
former plots respectively. The hyperparameters are listed at the end of this Appendix.

B.1.1. Analyzing BRISQUE Features
In Fig. B.3 we perform the same analysis on all 17 BRISQUE features. The MSCN variance emerges
as a noteworthy indicator of adversarial examples. It consistently shows the largest absolute Z-scores.
notable, is the increase of this feature’s score for the MNIST dataset to a value 8 to 24, which is atypical
for benign images.

Furthermore, the shape parameters of structural components distinguishes larger perturbations. Whereas,
we see that relatively smaller perturbations on STL-10 yield stronger anomalies in terms of the skew of
the AGGD distributions.

B.1.2. Predictive Uncertainty & Robust Optimization
To measure the importance of dropout in Feinman’s KDE [Fei+17], we extract the linear relationship,
i.e. weights, from the logistic regressor. An adversarial learned ResNet-50 on CIFAR-10 yields the
coefficients -1.003 for the KDE estimate and 0.019 for dropout. This increases to -2.319 and 0.4530 for
the reverse model. RCE is thus especially beneficial for dropout, as the weight’s magnitude grows by
a factor of 23.8.

For STL-10, the coefficients change from -1.3488 to -2.0615 for the density estimate and 0.1014 to -
0.1608 for dropout. Both datasets indicate the effectiveness of RCE for KDE and dropout, with dropout
exhibiting a larger advantage, especially on CIFAR-10.
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(a) Features extracted from CIFAR-10
training samples with an adversarial
learned ResNet-50 as target model.

(b) Features extracted from CIFAR-10
training samples with a reverse ResNet-50

as target model.

(c) Features extracted from MNIST training
samples with an adversarial learned

ResNet-50 as target model.

(d) Features extracted from MNIST training
samples with a reverse ResNet-50 as

target model.

(e) Features extracted from STL-10 training
samples with an adversarial learned

ResNet-50 as target model.

(f) Features extracted from STL-10 training
samples with a reverse ResNet-50 as

target model.

Figure B.3: Absolute Z-scores of all 17 BRISQUE features under a FGSM perturbation with a ℓ2-radii of 5. BRISQUE includes
2 features from Generalized Gaussian Distribution (GDD) on the MSCN field and 4 for the Asymmetric GGDs (AGGD) on
pairwise products of horizontal (h), vertical (v), and diagonal (dl, dr) neighbors. The results include 5 measurements of the
features. Some colors are intentionally emphasized with a triangle on the top right. The features are in the same order

(top-down) as described in Sec. 5.2.
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(a) Distances for the reverse and
adversarial learned model on CIFAR-10.

(b) Distances for the reverse and
adversarial learned model on MNIST.

(c) Distances for the reverse and
adversarial learned model on STL-10.

Figure B.4: The average, normalized Euclidean distance between FGSM (ℓ2 of 5) and benign samples, Uf(l) in-text, at each
ResNet-50 layer with ’layer#’ denoting the bottlenecks. The error bars denote the 95% t-CI based on 5 runs.

B.2. Sensitivity and Utility of the Hidden Layers
Fig. B.4 explores the Uf(l) utility in the paper. The barplots show the utility at the outputs of that layer,
which tends to increase when the perturbed sample traverses deeper layers; but this may come with
fluctuations. For instance, the value’s for the STL-10 models seem to decrease on the last layers. The
adversarial learned CIFAR-10 model also decreases in utility after the first bottleneck. Still, the final
bottleneck remains in the Top-3, suggesting its pivotal role in model performance and feature extraction.
Conversely, the initial convolution, denoted as ’conv1’, frequently exhibits the least utility.

We also see a major difference in the CI’s critical region of the CIFAR-10 models. Specifically, the
adversarial learned model displays notable variability on each layer, especially when compared to the
RCE model. That is in line with the narrow activations in the scatterplots of Fig. B.2. The RCE models
exhibit greater utilities in its deeper layers. Consequently, we anticipate enhanced performance when
these hidden units are utilized for detection purposes. Otherwise, adversarial learning would become
more intriguing due to the improved model accuracy (Tab. 6.2).
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Table B.1: Hyperparameters used by default for each detection method, implementation is present in the supplementary
material.

Algorithm Parameters

Default Used the best 10 features from a pool of 500, se-
lected as discussed in-text. The Constant of Eq.
5.7 is set to 1. Utilized the cross entropy loss func-
tion. All generated adversarial examples are untar-
geted.

Shadow attack Used 200 iterations, copy size of (10, 1, 1, 1), batch
size of 64, λtv=0.1, λch=20, λdissim=10, σ=0.05

PerC attack Used 200 iterations, batch size of 64, αl=1, αc=0.5
Logistic Regression learned for 100000 epochs with learning rate 0.01
Support Vector Machine learned for 100000 epochs with learning rate 0.1,

early stopping and a scale γ of (N ∗ σ)−1 for the
RBF network,N features, and variance σ. An SVM
has been trained on BRISQUE features

Local Reachability Density 8 neighbors with a t = 3 iterations of feature bag-
ging

Local Outlier Factor 8 neighbors with a t = 3 iterations of feature bag-
ging

Local Intrinsic Dimensionality 8 neighbors without feature bagging
Kernel Density Estimation 50 (15 for white-box) iterations of dropout and a

bandwidth chosen with Silverman’s rule
Gausian Mixture Model 8 latent components with k-means initialization,

learned till convergence
I-Defender Trained 1 GMM with 50 hidden features were se-

lected for CIFAR-10 and MNIST; 5 for STL-10; and
20 (RCE) / 30 (other models) for Tiny-ImageNet.
This, with the discussed feature selection (Sec.
5.2)

Feature Squeezing The squeezers used are: a bit depth reduction to 5
and a median pool with kernel 2× 2 and padding 1

Whitening used 500 low-rank PCA components: MNIST 284-
784, CIFAR-10 2500-3000, Larger datasets 10000-
10500

Principal Component Analysis
(LFA)

used 200 last PCA components, in reduced form,
rounded to hundreds: 800-1000 (ResNet-50)

Criterion 1 [Hu+19] Gaussian noise sampled from N (0, 0.001).
Mahalanobis ODIN perturbation ϵ of 0.002.





C
Experiments on Additional Datasets

and Models

Table C.1: Accuracies of several detection algorithms against grey-, and white-box (GB/WB) adversaries on STL-10, MNIST,
CIFAR-10 respectively top to bottom; with a ℓ2-radii of 5. C&W attacks are evaluated on the detector’s best performing robust
optimization (AL/RCE) under DeepFool. DeepFool’s and C&W’s results are dependent on the error rate errf of the target

model (like in Tab. 4.1): VGG-13 on CIFAR-10 only and ResNet-50 on any dataset. Also, note that PerC-AL requires datasets
to be in color. The top-3 results are bolded.

Detection Accuracy ⇑

Evasion
Attack

Robust
Optim. Dataset WB MS-8 I-Def LRD (LFA) PCA KDE+BU FSQ MAH

FGSM 7 STL-10 7 0.520 0.549 0.511 0.521 0.542 0.494 0.546
MNIST 0.823 0.814 0.829 0.612 0.809 0.667 0.797

VGG-13: CIFAR-10 0.808 0.569 0.690 0.843 0.748 0.594 0.682
FGSM AL STL-10 7 0.485 0.508 0.517 0.506 0.498 0.497 0.505

MNIST 0.897 0.894 0.928 0.614 0.957 0.828 0.915
VGG-13: CIFAR-10 0.942 0.508 0.489 0.941 0.538 0.676 0.571
FGSM RCE STL-10 7 0.737 0.567 0.528 0.531 0.571 0.667 0.635

MNIST 0.953 0.935 0.955 0.678 0.975 0.915 0.659
VGG-13: CIFAR-10 0.956 0.606 0.570 0.949 0.602 0.593 0.592
DeepFool 7 STL-10 7 0.540 0.495 0.507 0.500 0.542 0.481 0.556

MNIST 0.951 0.877 0.726 0.522 0.840 0.942 0.938
VGG-13: CIFAR-10 0.640 0.568 0.519 0.502 0.601 0.894 0.756

ResNet-50: CIFAR-10 0.729 0.700 0.546 0.506 0.630 0.900 0.801
DeepFool AL STL-10 7 0.665 0.502 0.509 0.500 0.503 0.588 0.510

MNIST 0.941 0.880 0.744 0.645 0.829 0.915 0.927
VGG-13: CIFAR-10 0.686 0.552 0.501 0.560 0.579 0.857 0.650
DeepFool RCE STL-10 7 0.612 0.531 0.647 0.500 0.611 0.634 0.524

MNIST 0.953 0.934 0.925 0.505 0.960 0.947 0.945
VGG-13: CIFAR-10 0.657 0.633 0.546 0.567 0.850 0.759 0.698
C&W Best perf. STL-10 7 0.517 0.518 0.512 0.500 0.524 0.586 0.522

MNIST 0.958 0.924 0.894 0.609 0.866 0.949 0.947
VGG-13: CIFAR-10 0.803 0.574 0.542 0.564 0.652 0.870 0.638
C&W Best perf. STL-10 3 0.619 0.475 0.507 0.456 0.498 0.547 0.479

MNIST 0.989 0.953 0.940 0.599 0.912 0.986 0.988
VGG-13: CIFAR-10 0.896 0.492 0.536 0.581 0.521 0.606 0.485

PerC-AL3 RCE STL-10 7 0.523 0.503 0.503 0.526 0.516 0.533 0.505
MNIST N/A N/A N/A N/A N/A N/A N/A

VGG-13: CIFAR-10 0.815 0.745 0.771 0.795 0.782 0.514 0.766
ResNet-50: CIFAR-10 0.553 0.529 0.560 0.612 0.525 0.548 0.667

Shadow Attack4 RCE STL-10 7 0.587 0.479 0.624 0.450 0.683 0.597 0.464
MNIST 0.927 0.937 0.887 0.453 0.963 0.449 0.833

VGG-13: CIFAR-10 0.665 0.477 0.511 0.698 0.529 0.504 0.663
ResNet-50: CIFAR-10 0.653 0.561 0.596 0.716 0.485 0.513 0.619

3The RCE Model’s Top-1 Accuracies under the PerC-AL attack are (Top-Down):
→ 0.569 (STL-10); - (MNIST); 0.317 (VGG-13,CIFAR-10); 0.631 (ResNet-50,CIFAR-10).

4The RCE Model’s Top-1 Accuracies under Shadow Attack are (Top-Down):
→ 0.124 (STL-10); 0.078 (MNIST); 0.122 (VGG-13,CIFAR-10); 0.137 (ResNet-50,CIFAR-10).
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Table C.2: Accuracies of GMM-based detectors against grey-box adversaries on Tiny-ImageNet, STL-10 and CIFAR-10, with a
ℓ2-radii of 5. Demonstrating the efficacy of small-scale models in comparison to datasets containing images of higher resolution.
DeepFool’s and C&W’s results are dependent on the error rate errf of the models, like in Tab. 4.1. Best results are bolded.

Detection Accuracy ⇑

Evasion
Attack Model Dataset Robust

Optim.→ Plain Model AL Model RCE Model

WB ↓ MS-8 I-Def MS-8 I-Def MS-8 I-Def

FGSM ResNet-50 Tiny-ImageNet 7 0.954 0.532 0.939 0.533 0.976 0.503
C&W VGG-13 CIFAR-10 7 0.790 0.593 0.803 0.509 0.689 0.574
C&W ResNet-50 STL-10 7 0.531 0.499 0.517 0.498 0.574 0.518
C&W ResNet-50 Tiny-ImageNet 7 0.553 0.494 0.523 0.497 0.502 0.511



D
Implementation Details

Algorithm 4 MeetSafe
1: Require
2: D Dataset of benign samples
3: Pmax Maximum amount of features
4: K, τ90 Latent components and threshold
5: f (l) Basis function of the neural network
6: X′ Suspicious samples
7: Ensure
8: MX′ MeetSafe classifications

9: Uf(l) ← 0
10: for X ∈ D and basic block l do ▷ Get the utility of each layer (optional)
11: X ′ ← X + ϵ · sign(∇XLf )

12: Uf(l) ← Sequential_Avg(Uf(l) , f
(l)
X′ , f

(l)
X ) ▷ Eq. 5.6

13: end for
14:
15: Let {l} have the largest Uf(l) value and let {P} ⊆R f (l).
16: for X ∈ D do ▷ Get the utility of each hidden unit in P
17: X ′ ← X + ϵ · sign(∇XLf )

18: PX ← f
(l)
X where {f (l)} ∈ P

19: PX′ ← f
(l)
X′ where {f (l)} ∈ P

20: end for
21: UP ← 1

|D|
∑

X∈D
|PX−PX′ |

ΣP
▷ Eq. 5.5

22: P ← top_n(Pmax,P) ▷ Pick the best hidden units
23:
24: for X ∈ D do ▷ Initialize the GMM
25: Initialize {µi} ∈ R via the K-means algorithm and

{πi,Σi} ∈ R,R3×3 uniformly at random.
26: HX ← Extract_Features(D,P,Pmax, X) ▷ Algorithm 2
27: end for
28: µi,Σi, πi ← EM(µi,Σi, πi,HX) i ∈ [0..K), ∀ X ∈ D
29:
30: for X ′ ∈ X′ do ▷ Classify samples
31: HX′ ← Extract_Features(D,P,Pmax, X

′)
32: end for
33: return − log

{∑K
πi · N (HX′ |µi,Σi)

}
> τ90 ∀ X ′ ∈ X′ ▷ Eq. 5.9
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Algorithm 5 MeetSafe’s Feature Extraction
1: Require
2: D Dataset of benign samples
3: P Set of basis functions
4: Pmax Maximum amount of features
5: X A benign or adversarial sample
6: Ensure
7: HX X ’s Features

8: if kNN or SVD is not initialized then ▷ Prepare heuristics
9: kNN ← Prepare_kNN(f

(l)
D ) where {f (l)} ∈ P

10: Ut,St,Vt
T ← SV D(D) ▷ Truncated to a predefined range of 500 components

11: for X ∈ D do
12: X ′ ← X + ϵ · sign(∇XLf )
13: P∗

X ← XVt
14: P∗

X′ ← X ′Vt
15: end for
16: UP∗ ← 1

|D|
∑

X∈D
|P∗

X−P∗
X′ |

ΣP∗ ▷ Eq. 5.5
17: Vt ← top_n(Pmax, P

∗) ▷ Pick the best eigenvectors
18: end if

19: ΩX,k ← kNN(f
(l)
X ) where {f (l)} ∈ P

20: Σ← Diag(σP)
21: H0 ← 1

LRD(f
(l)
X ,ΩX,k,Σ)

where {f (l)} ∈ P ▷ Eq. 5.3-5.4

22: Xcolor, Xblur ← Reduce_Bit_Depth(X), Blur(X)
23: H1 ← max

{
||F (X)− F (Xcolor)||1, ||F (X)− F (Xblur)||1

}
▷ Feature Squeezing [XEQ18]

24: H2 ← V ar(XVt) ▷ Whitening [HG17]
25: return {H0,H1,H2}
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Table E.1: Table of Notations.

Notation Description

X, X A batch of samples, a single sample
X′, X ′ An adversarial batch, adversarial example
X(i, j) Indexing of an image to row i and column j
P Pool of features (e.g. hidden units or eigenvectors)

D, I Dataset & input space of benign samples
m,L input-, output size
B The chosen batch size
HD Feature set of dataset D

U(·), U· Utility function or current utility for a given input
R∗,R Empirical risk of a classifier with and without adversarial perturbations
A(·) Adversarial objective given his/her intention, capability, and strategy
θ,Π Adversarial knowledge defined as the space θ, which may include

the implemented defense protocol Π
K The Lipschitz constant

γc, rc Deviation angle and ratio of a boundary C w.r.t. the bisecting boundary B
Cϕ A set of linear constraints that encodes the feature map ϕ

f (l)(·) Basis functions of a deep neural network at layer l
h(·) An activation function, like ReLU, Sigmoid etc.
f
(l)
X The activation of hidden units for the classifier f (l)(X),

sample X, and layer l. Possibly conditioned with its weights W and bias B
zi ∈ Z(·), yi ∈ F (·) Logits and probits of a deep neural network

D(l) The dimension of the (hidden) layer l
Lf (·) Loss function of classifier f (l)(X)
∇XLf Gradient for the current model w.r.t. loss Lf (·)
HX Hessian for the variables in X
ui, λi Eigenvectors, and -values
B Positive definite estimate of the Hessian

δ, δϕ Adversarial perturbation generated by an evasion method. δϕ denotes only
the effective perturbation towards the inter-class boundary of feature map ϕ

ϵ scaler for an (adversarial) perturbation to control its ℓp-radii
κ Confidence parameter of the C&W attack,

regulating the strength of adversarial samples
λtv, λch, λdissim Scalars for the shadow attack,

regulating the total variation TV (δ), color channels C(δ),
and similarity on each color channel Dissim(δ). Given the perturbation δ

∆E00 CIEDE2000 color distance using
chroma ∆C ′, lightness ∆L′, and hue ∆H ′ attributes

µP , σ
2
P Mean and variance given the data in P

πi Mixing coefficient for the i’th latent variable of a Gaussian Mixture
N (µ,Σ) Guassian with mean µ and covariance Σ
N (·|µ,Σ) Density function of the Guassian

ξi A latent variable modeled by the Gaussian Mixture
γ(·) Sum of responsibilities

∑K
p̂(ξi|HX) for K Gaussians

p̂(·) Estimate of the distribution p(·)
α Shape parameter of a GGD (unless stated otherwise)
η Skewness (GGDs), learning rate, or overshoot (DeepFool)
τ Threshold or critical value, used to regulate the conspicuousness

of a certain sample and for a given metric
|| · ||p, d′·,k, (·)+ ℓp, k-distance, and ReLU

1A Indicator function of A
Ef [·] The expected value of the function f(X)
Γ(·) The Gamma function
ΩX,k Set of nearest neighbors for X
M A submanifold of sampled data

O(·),Ω(·) Big O & Big Omega notation
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