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A B S T R A C T

Efficient operation of bioreactors is crucial for the success of biomanufacturing processes. Traditional Compu-
tational Fluid Dynamics (CFD) simulations provide detailed insights but often involve lengthy computation times
and complexity, hindering their practicality for real-time applications. This study introduces a novel multivariate
unsupervised learning algorithm that clusters bioreactors into physically meaningful regions based on CFD-
generated and real-world data. These clusters not only facilitate the determination of internal reactor regimes
but also serve as a foundational step for developing compartment models. Our approach utilizes a custom k-
means clustering algorithm, which ensures spatial continuity of clusters by incorporating geometric data, and
optimizes the number of compartments to maximize physical significance and data retention. This optimization
is guided by a Pareto front analysis, balancing the need for clear compartment definition with the preservation of
maximum information from the dataset. The effectiveness and versatility of this methodology were verified
through case studies involving a 202 m3 Rushton impeller bioreactor (steady state simulation) and an 840 m3

airlift reactor (dynamic simulation). In the airlift reactor, the clustering algorithm accounted for dynamic fluc-
tuations by averaging the simulation results, providing a robust method for incorporating temporal variations
into the compartment analysis. The findings highlight the advantages of 3-D compartmentalization in capturing
the intricate dynamics of fluid motion and cellular activities, thereby advancing the design of bioreactors and
scaling down experiments for more efficient industrial applications.

1. Introduction

The significance of industrial biotechnology in producing diverse
compounds such as pharmaceuticals, enzymes, food products and
commodity products has grown considerably in recent years. The per-
formance of large-scale bioreactors is crucial to biotechnological pro-
cesses, as the spatio-temporal variation in the conditions experienced by
microorganisms directly affects process yield, productivity, and product
quality. As a result, considerable effort has been devoted to under-
standing and predicting conditions within bioreactors, particularly
focusing on the interaction between biological reactions and heteroge-
neous hydrodynamics arising from scale-related issues.

Computational Fluid Dynamics (CFD) simulations have been utilized
to examine the inherent heterogeneous behavior of bioreactors under
various conditions (Sharma et al., 2011). However, due to the
complexity of the models and the high-density mesh necessary for high
resolution results, computation times can be excessively long.

Consequently, CFD is not an ideal solution when fast simulations are
required for process control, optimization, or when simulations contain
complex models, such as the combination of CFD with metabolic
models.

Compartment Models (CMs) offer a suitable compromise between
CFD simulations and the homogeneity assumption in reactors, reducing
the computation time while sacrificing some accuracy in the results
(Tajsoleiman et al., 2019). CMs represent non-ideal mixed systems as a
network of well-mixed compartments connected by the transfer of mo-
mentum, heat and mass (Mann &Mavros, 1982). This allows for the use
of continuity equations and transfer between compartments to simulate
heterogeneous bioreactors, without the need for Navier-Stokes equa-
tions (Bezzo et al., 2004).

Creating a CM involves two important steps that affect the model’s
accuracy. First, compartments must be defined, with the size and posi-
tion of each compartment chosen optimally. If a compartment is too
small, then more compartments will be required, and the computation
time will suffer. If a compartment is too big, or is incorrectly positioned,
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the assumption of within-compartment homogeneity will be invalid,
leading to inaccurate results. Second, exchange flows between com-
partments must be identified; this step requires the calculation of mo-
mentum, mass, and energy exchange flows among compartments in the
reactor.

CM models can be classified into three generations, corresponding to
advances in the methods used to determine the compartments and flows
and the compartmentalization objective variable. These are shown
schematically in Fig. 1.

The first-generation models (Mann & Mavros, 1982), defined com-
partments (then also known as Network of Zones or NoZ) manually by
looking at the hydrodynamic profile (Knysh & Mann, 1984), based
solely on user expertise. The flows between compartments were calcu-
lated using global variables, which resulted in an underestimation of the
complexity of turbulent flows and bioreactor gradients. Hydrodynamics
was the primary variable used to define compartments. Enfors et al.
(2001) used compartment models to study the physiological response of
microorganisms in large-scale bioreactors, while Zahradník et al. (2001)
employed NoZ analysis to investigate the mixing and mass transfer in
three different industrial cases.

The second generation commenced with the work of Bezzo et al.
(2004), who combined NoZ with CFD to compute flowrates between

compartments (Bezzo et al., 2004; Rigopoulos & Jones, 2003). Bezzo &
Macchietto (2004) developed a method for automatic compartment
definition using aggregation techniques, albeit only for a structured
mesh consisting of cells systematically arranged in a regular grid
pattern. The primary variable for compartmentalization during this
generation remained hydrodynamics-related, focusing primarily on the
velocity field range. Wells & Ray (2005) automated the compartmen-
talization by assigning a tolerance range to variables in the entire vol-
ume; however, this resulted in non-spatially-continuous compartment
definitions. Le Moullec et al. (2010) used CFD and CMs in combination
to compute flowrates between compartments, albeit with a manual se-
lection to determine NoZ.

The third generation began with the work of Delafosse et al. (2014)
and has been further developed by Tajsoleiman et al. (2019) and Le
Nepvou De Carfort et al. (2024). This generation is characterized by
generalized automatic compartmentalization that applies to all types of
meshes, albeit sometimes necessitating mesh transformation (Le Nepvou
De Carfort et al., 2024; Tajsoleiman et al., 2019). This approach allowed
the inclusion of variables beyond hydrodynamics for defining the com-
partments and the integration of CFD/CMs with dynamic models, pop-
ulation balances, stochastic particle tracking, and chemical and
metabolic models (Delafosse et al., 2015; Haringa et al., 2022;

Nomenclature

Variables

CS Substrate concentration
[
kgS
m3

]

D S Diffusion coefficient of substrate in carrier
[
m2
s

]

vt Turbulent viscosity
[
m2

s

]

Sct Turbulence Schmidt number

SS Substrate uptake rate
[
kgS
m3s

]

qS,max Maximum substrate specific uptake rate
[

kgS
kgX ⋅ s

]

KS Half-saturation constant
[
kgS
m3

]

CX Biomass concentration
[
kgX
m3

]

P Pressure [Pa]

FS Volumetric substrate feeding rate
[
kgS
m3s

]

m Total number of data points
KH Scaled kernel function
x Evaluation point for density estimation
xi Individual data points from the dataset
xi→ Individual data point, vector representation with the

features and cell coordinates
μl→ Centroid of cluster l with all features (vector)
xi→ Individual data points in the clustered dataset with all the

features (vector)
k Total number of clusters
n Total number of features
w→ Weight vector for the fetures used to cluster
Cl
→ Datapoints assigned to cluster l
V Matrix (example)
D Distance matrix
Dnorm Normalized distance matrix
Sl Average distance between all data points within a cluster l

and its centroid

dl,o Inter-cluster distance between to distinct clusters l and o
Rl,o Cluster similarity ratio between clusters l and o
DBI Davies-Bouldin Index
SS Average silhouette score
CV Coefficient of variation
H Average homogenenity score

Operators
⊘ Element-wise division

Subscripts (Clustering)
f Clustering features (exclude euclidean coordinates)
i Datapoint
j Datapoint different than i
t Turbulence
e Euclidean coordiantes
l Cluster
o Cluster, different than l

Functions
J(C, μl→) Loss function evaluated for a set of centroids with different

features
f̂H (x) Estimated density function evaluated at point x
C(xi→) Clustering function per each datapoint
d(p1,p2) Custom distance between points p1 and p2
D(xi→) Distance from each data point to the nearest initialized

cluster
P(xi→) Probability of the centroid to be initialized at a certain

datapoint
C(l)(xi→) Assignation of datapoint xi→ to cluster l
S(V) Normalization of matrix V
σ(V) Variance of matrix V
V Mean of matrix V
a(xi→) Average distance between point in cluster and all other

points in the same cluster
b(xi→) Minimum average distance betweena point and all points

in any other cluster
s(xi→) Silhouette function for single point
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Nadal-Rey, McClure, Kavanagh, Cassells, et al., 2021; Nauha et al.,
2018; Nørregaard et al., 2019; Pigou & Morchain, 2015). During this
period, regime analysis emerged as a new approach derived from
compartmentalization, focusing on identifying regimes based on various
factors such as metabolic states, pH, and substrate concentration
(Haringa et al., 2016; Nadal-Rey, McClure, Kavanagh, Cornelissen,
et al., 2021; Nørregaard et al., 2019).

Despite these advancements, the use of manual compartment defi-
nitions persisted (Nauha et al., 2018; Nørregaard et al., 2019). While
Tajsoleiman et al. (2019) and Delafosse et al. (2015) provided a
framework for reactor compartmentalization using any design variable
and automated computation of flow rates between compartments, their
methods were confined to 2-D applications, assuming radial symmetry.
Moreover, the required user expertise for determining the number of
compartments based on design variables highlighted a gap in evaluating
the optimal number of compartments. Recently, Le Nepvou De Carfort
et al. (2024) proposed a compartmentalization method for 3-D models
based on hydrodynamics, though it required mesh transformation to a
structured format and user selection of the number of compartments.

In parallel developments within the field of combustion chemical
engineering, new methodologies for dividing reaction domains into re-
gimes based on unsupervised learning have emerged. Notably, the
Chemical Reactors Network (CRN) introduced by Perini et al. (2014)
employed clustering techniques in CFD simulations of fuel combustion
to reduce computational demands. This approach was further advanced
by Yu et al. (2019), who utilized clustering to define soot regimes in CFD
results from combustion furnaces, and by Fooladgar & Duwig (2018)
and Rovira et al. (2022), who aimed to reduce dataset dimensionality
before clustering flame simulations into similar zones based on

combustion characteristics. The problem of ensuring continuous spatial
integrity of the clusters was addressed by Savarese et al. (2023), who
combined clustering with graph analysis, although some manual cura-
tion remained necessary. Continuous spatial integrity of the clusters was
less problematic for CRNs, as the clustering was applied to 2-D simula-
tions characterized by distinct and discrete conditions. Additionally, the
simulation space featured continuous geometries without abrupt or
unusually shaped gradients, ensuring straightforward application of
clustering techniques.

In this paper, we propose a new generalized regime analysis method
based on unsupervised learning, specifically custom clustering algo-
rithms. This approachmerges knowledge from CRNs, modified to ensure
spatial continuity in 3-D non-structured meshes without manual inter-
vention, with regime analysis for bioreactors. This method enables
clustering based on any target variable (or multiple ones) without
causing an exponential increase in the number of compartments
(Tajsoleiman et al., 2019). As this approach can cluster data using any
target variable(s), its primary use case is like that of regime analysis in
identifying zones with similar conditions, with the advantage of using
the number of compartments/regimes as the sole design variable. These
regimes can serve to characterize reactor performance, or as a basis to
design scale-down experiments (Haringa et al., 2017). With the appro-
priate choice of clustering parameters, the approach can equally serve as
an initial step for CMs, as this has in essence the same objective, dividing
the domain into a limited number of spatial zones to capture certain key
characteristics, in this case flow-related.

This work also proposes a general evaluation method for deter-
mining an optimal number of compartments or regimes that accurately
describe the bioreactor’s properties without the drawbacks of excessive

Fig. 1. Timeline illustrating the evolution of compartment models – regime analysis and chemical reactor networks based on the most cited literature, highlighting
three design fields described above.
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clustering. Our algorithm automatically identifies patterns within CFD
datasets, eliminating the need for manual identification or tolerance-
based algorithms.

2. Methods

This paper presents an application of unsupervised learning for
discerning patterns in unlabeled datasets originating from CFD simula-
tions or actual data cases. The procedure for identifying reactor com-
partments includes iterative steps that derive the optimal number of
clusters to best represent the provided data. These steps can be auto-
mated through an optimum regime analysis where a Pareto front for the
optimum number of compartments is obtained (Fig. 2).

Data can be read from a variety of standard formats, including
comma-separated value (CSV) files. These files are loaded into data-
frame structures using the programming language Python. A major goal
of this research project was to ensure the algorithm’s versatility across
diverse datasets, regardless of the data-generating source, which could
be, for example CFD software, soft-sensor, or static probes.

In this section, the main ideas behind the algorithm are described.
Please refer to Section 3

Theory/CalculationTheory/Calculation, for a more complete math-
ematical formulation of all steps of the algorithm.

2.1. CFD Simulations, Data Generation

Although not the focus of this paper, a simple CFD simulation of a
bioreactor was performed to generate an initial test case dataset for the
clustering algorithm. The simulation models a representative geometry
for a standard industrial stirred bioreactor (202 m3) at the end of an

industrial fed-batch fermentation. Fig. 3 represents a sketch of the
bioreactor; the sizes of the different parameters are found in the ge-
ometry set-up table (Table 1).

Assuming radial symmetry, and pseudo-steady state (Multiple Frame

Fig. 2. Automatic compartmentalization process flowchart. Actions are defined in rectangles, input datasets in bottom-curved rectangles, outputs in sides-curved
rectangles, merged actions in a circular cross and decisions in ovals/rhombus (acceptable/deficient). The solid lines represent an individual analysis path, whilst
the dashed lines represent the optimum regime analysis path (Pareto Optimization for different number of clusters).

Fig. 3. Sketch of the Rushton-Rushton impeller bioreactor.
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Reference) only 1/6 of the reactor (33 m3) was simulated, including a
unique baffle. The symmetry and pseudo-steady state assumptions mean
that certain hydrodynamic phenomena such as macro-instabilities are
not modelled even though they are relevant for accurate assessment of
mixing in multi-impeller systems (Haringa et al., 2018). Still, these
simplifications are acceptable for the purpose of demonstrating the
regime analysis and testing the clustering algorithm.

A well-validated RANS approach was used for the single-phase CFD
simulation. This combines k-ε for turbulence with MRF (Multiple-
Reference Frame) for the impellers (Coroneo et al., 2011; Gunyol &
Mudde, 2009). The substrate transfer is ruled by the general
micro-balance for mass transport, as shown in Equation 1.

∂Cs

∂t +∇⋅(uCS) = − ∇⋅
[

−

((

D +
vt
Sct

)

∇CS

)]

+ SS (1)

The fluid flow and species transport were resolved using a coupled
scheme for pressure-velocity coupling, alongside second-order upwind
spatial discretization for all variables. A global timestep pseudo-time
method was employed to ensure stability and enhance accuracy.
While this approach yields superior results with higher accuracy and
stability, it demands significantly higher computational resources.

The source term (SS) was computed using simple Monod kinetics

with the parameter values, maximum substrate uptake rate
(
qS,max

)
and

half-saturation constant (KS), taken from Lin et al. (2001), to simulate E.
Coli bio-kinetics. The feed used as substrate in the bioreactor was
glucose. A summary of all the parameters used in the simulation can be
found in Table 2.

SS = qS,max⋅
(

CS

CS + KS

)

⋅CX + FS (2)

A summary of all the parameters used in the CFD simulation can be
found in Table 2.

2.2. Bi-Variate KDE Analysis

For the exploratory analysis, multivariate Kernel Density Estimation
(KDE) of the response variable was performed,

f̂H(x) =
1
m
∑m

i=1
KH(x − xi) (3)

Scott’s method was used to determine the smoothing passed to the
Gaussian KDE (Scott, 2015) with the multiplicative scale factor (KH) set
to 1.

2.3. Custom k-Means Algorithm

A modified k-means clustering algorithm was used for the
compartmentalization steps. K-means is a popular unsupervised ma-
chine learning algorithm that partitions a dataset into k distinct clusters
based on similarity measures. It seeks to minimize the within-cluster
similarity distance, also known as inertia, thereby ensuring that points
within each cluster are as similar as possible, while simultaneously
maximizing the separation between distinct clusters (Lloyd, 1982). The
customization involves the method used to determine similarity: our
algorithm uses a new distance metric specifically designed for clustering
continuous compartments in the bioreactor. Our metric accounts for the
similarities across multiple features.

The loss function (inertia), which is minimized during model
training, is modified as follows:

J(C, μl
→) =

∑k

l=1

∑

C(xi→)=l

d(xi, μl
→) (4)

In this project we used a composite distance metric d(xi→, μl
→) in

multidimensional space (Equation 5), between the clusters centroids
(μl
→) and the data points (xi). This metric combines a spatial Euclidean
distance for the 3-D mesh elements with a Manhattan distance for
various weighted features. This dual approach balances geometric
proximity and feature similarity, preventing bias towards outliers,
which is a common problem in CFD simulations of bioreactors. For
example, it is common to observe a very high substrate uptake rate
around the feed point. This method offers a robust solution for clustering

where both spatial
(
pi,e̅→
)
and feature-based

(
pi,f̅→
)
relationships are key.

d(p1→, p2→) =
⃒
⃒
⃒
⃒p1,e̅→− p2,e̅→

⃒
⃒
⃒
⃒+
∑nf

f=1
w→⋅
⃒
⃒
⃒p1,f̅→− p2,f̅→

⃒
⃒
⃒ (5)

Categorical variables can be included in the custom distance metric
along with continuous variables by employing one-hot encoding. This
technique converts each category value into a binary vector. Each
category is represented by its own unique binary column, where the
presence of a category is marked by ’1′ and the absence by ’0′, allowing
both categorical and continuous data to be integrated seamlessly for
analysis. Clustering can be conducted with multiple objective features,
which can be weighted (w→) to construct a comprehensive model
including multiple features: for example, both glucose and oxygen gra-
dients can be included.

The clustering process employed k-means++ for initializing the
centroids’ positions, a method particularly effective due to its strategy of
placing initial centroids to maximize the diversity of starting points,
thereby significantly improving the likelihood of achieving a global
optimum compared to random initialization (Arthur & Vassilvitskii,
2007). We set the number of initializations to 10 for each run (ninit). This
approach yielded consistent results in approximately 90% of cases
(lowest inertia), effectively avoiding local minima.

The full description of the custom K-Means algorithm developed
using NumPy with vectorization can be found in Section 3.1.

2.4. Performance Evaluation

In evaluating clustering effectiveness and determining the optimal
number of clusters, we applied the scoring metric at different levels:
individual data points, compartments (clusters) and whole simulations.
This approach allows for a comprehensive assessment, aiding fine-
tuning of the cluster hyperparameters to best represent the target

Table 1
Summary of geometric parameters for the Rushton-tank bioreactor.

Parameter Value

Liquid height (H) 11.75 [m]

Tank diameter (T) 4.7 [m]

Lower impeller clearance (C) T/3
Rushton impeller diameter (D) 0.4⋅T
Distance between impellers (ΔC) T
Baffle width

(
dbaffle

) 0.1⋅T
Shaft diameter (dS) 0.25 [m]

Table 2
Parameters used in the CFD simulation for the Rushton-tank bioreactor.

Parameter Value

Maximum Substrate Uptake Rate
(
qS,max

)

1.5
[
kgS
kgX ⋅ s

]

Half-saturation constant (KS) 0.02
[
kg
m3

]

Biomass concentration (CX) 82
[
kg
m3

]

Volumetric feeding rate (FS) 0.0025
[
kg
m3 ⋅ s

]

Stirring speed 150 [rpm]

Number of mesh elements 2⋅105
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variable’s continuous body.
An optimal regime analysis was conducted to identify the ideal

number of clusters representing the geometry and target variables, also
called features. This involved testing multiple compartment numbers
and utilizing whole simulation scores to establish a Pareto front or
identify elbow points where significant score changes occurred. A clear
elbow point indicates a threshold beyond which adding additional
clusters yields diminishing returns in model improvement. The Pareto
front was used to determine a compromise solution for inversely pro-
portional metrics.

2.4.1. Inertia
Already described above in the discussion of Equation 4, inertia is the

sum of the distances from each data point to the centroid of its assigned
cluster. Inertia is a whole-simulation metric which can be used to
compare simulations with different numbers of compartments.

2.4.2. Davies-Bouldin Index
The Davies-Bouldin Index (DBI) evaluates the overall quality of

clustering across the entire simulation by calculating the ratio of within-
cluster scatter to between-cluster separation, as described by (Davies &
Bouldin, 1979). Lower DBI values indicate superior clustering quality,
reflecting a lower average of the maximum similarity measures across all
clusters. The description of the DBI used in the algorithm can be found in
Section 3.2.1.

2.4.3. Silhouette Score.
The Silhouette score is a measure of how similar an object is to its

own cluster compared with similar it is to the other clusters based on the
distance metric used to determine the similarity. It ranges from -1 to 1,
with a high value indicating that the object is well matched to its own
cluster and distinct from neighboring clusters. Thus, values close to 1
imply ideal clustering (Rousseeuw, 1987).

The metric is data point specific, however the average values of the
metric can give general scores for each specific cluster and for the whole
clustering process.

Description of the Silhouette score as computed in our algorithm can
be found in Section 3.2.2.

2.4.4. Compartment Homogeneity.
This custom metric assesses compartment homogeneity indepen-

dently, focusing on internal similarity rather than overall clustering
performance. It evaluates similarity within a compartment but not
clustering performance. Since it is specific to each cluster, cluster ho-
mogeneity can be applied to the entire simulation through a weighted
average, with weights based on data point distribution. This metric
considers only the clustering features, excluding the spatial coordinates.

Description of compartment homogeneity as computed in our algo-
rithm can be found in Section 3.2.3.

2.5. Case Studies

Two distinct studies were conducted to verify the performance of our
algorithm, with modifications tailored to the specific decision variables
set prior to execution. These decision or objective variables are the ones
used to cluster the dataset. Given that our datasets originated from
physics simulations (CFD), they encompass multiple variables from the
3-D continuous body as results. For our analysis, biology-related vari-
ables were chosen because they encapsulate the integrated effects of
multiphysics phenomena (fluid flow, turbulence, transport of species
and bio-kinetics), providing a holistic view compared to variables like
velocity profiles which only reflect fluid dynamics and turbulence.
Additionally, the chosen objective variable was rendered dimensionless,
and logarithmic transformations were applied to enhance its correlation
with the distance to the feeding point, a gradient-related variable, as
detailed in Section 4.1.1 (Exploratory Analysis) and Section 4.2.1

(Exploratory Analysis). The specific choices made are outlined in
Table 3.

The data from the different CFD results were extracted using in-
house user defined functions. The datasets were subsequently
analyzed in python scripts.

3. Theory/Calculation

Some sections of the materials and methods can be further devel-
oped, based on the mathematical description of some variables.

3.1. Custom k-Means Computation

Custom k-means algorithm. Each step in the process represents a
function in the code, vectorized using NumPy.

The data given to the algorithm is defined as a set of m datapoints
with n features per each one.

X =

⎡

⎣
x1,1 ⋯ x1,n
⋮ ⋱ ⋮

xm,1 ⋯ xm,n

⎤

⎦ =

⎡

⎢
⎣

→
x1
⋮
→
xm

⎤

⎥
⎦ ∈ Rn x m (6)

3.1.1. k-Means Algorithm
The custom k-means algorithm has been coded in python, using

NumPy broadcasting for vectorization (Harris et al., 2020). This factor is
especially important for computation efficiency and allows to scale
entire vectors before advancing to the next step.

The custom k-means performs as follows:

1. Initialize centroids: Use k-means++ as initialization method (Arthur
& Vassilvitskii, 2007), it gives better results than the random
initialization method, reaching faster convergence. It consists of four
steps:
a. Select first centroid ( μ1̅→ ∈ Rn) at random from the data points:

μ1→= xi→, With probability =
1
m
, i ∈ {1, 2, …, m} (7)

b. For each remaining centroid, μl→(l = 2, 3, …, k), calculate the
distance from each data point xi→ to the nearest centroid that has
already been initialized. Use a custom distance metric d(xi→, μl→),
also referred as d.

D(xi→) = min{d(xi→, μl
→) : l ∈ {1, …, k − 1}} (8)

c. Select the next centroid μl→, from the dataset with probability
proportional to the distance calculated in the previous step. Data
points which are farther from initialized centroids will have a
higher probability of being chosen as next centroids:

Table 3
Clustering example from the CFD simulations, using different decision variables
available in the algorithm.

Reactor Set-
Up

Number of
Clusters

Objective Variable Optimum Regime
Analysis Performed

Rushton
Stirred
Tank

3-100
log10

(
qS

qS,max

)
Yes

3
log10

(
qS

qS,max

)

, position

respect to impeller

No

Bubble
Column

3-100
log10

(
qS

qS,max

)
Yes
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P(xi→) = xi→=
D(xi→)

∑m
í =1D(xí

→
)
, i ∈ {1, 2, …, m} (9)

d. Repeat steps 2-3 until all k centroids have been initialized.
2. Assign datapoints to clusters based on similarity using the custom
distance metric.

C(l)(xi→) = argmin(l)d(xi→, μl
→) =

= l : {xi→ : d(xi→, μl
→) ≤ d(xi→, μo

→)∀ o, l ∈ {1, 2, …, k}}, ∀i

∈ {1, 2, …, m} (10)

3. Update clusters’ centroids by computing the mean of all data points
assigned to each cluster, use all features measured per observation.

μl
→=

1
⃒
⃒
⃒Cl
→
⃒
⃒
⃒

∑

xi→∈Cl
→
xi→, ∀ l ∈ {1, 2, …, k}, i ∈ {1, 2, …, m} (11)

4. Repeat steps 2-3 till convergence of the loss function (inertia):

J
(
C→, μl

→
)
=
∑k

l=1

∑

C( xi)
̅→

=l

d(xi), μl
→

Once the model is trained, so the cluster centroids are well defined
we can perform a prediction for any other data point in the set. This step
is only useful when we have not used all the data points to define the
clusters (centroids), so we can predict the ones not used so far. For the
prediction we just need to repeat step 2 to assign the closest cluster to the
data points.

In case of too many data points to train the model, there is the option
to just select a fraction of the dataset as a training set and then predict
the rest of it.

The k-means steps explained above are repeated ninit times (10) to
assure we do not get into a local optimum for the loss function (inertia),
around 90% of the times, global optimum was reached.

3.1.2. Custom Distance Normalization
As we are working on a “vectorized manner” the distances represent

matrices of distances between all points and all centroids for all features.
These are normalized by the mean and variance before being added
together to have the same effect on the clustering algorithm.

S(V) = (V − V) ⊘ σ(V) → Dnormb = S(Db) ∀ b

∈ {e, f}, withDnormb , Db ∈ Rm×k×n (12)

The normalized distances are finally summed up to compute the final
distance between two data points, or in this case the data points and the
cluster centroids.

d(xi→, μl
→) = dnormp

(
μl,e
̅→, xi,e̅→

)
+ w→⋅dnormf

(
xi,f̅→, μl,f

̅→
)

(13)

3.2. Clustering Performance Evaluation

Once the clustering has been predicted, there is a need to evaluate
how good the clustering has been and evaluate what is the optimum
number of clusters to describe the continuous body for the target
variable.

For the evaluation step, multiple custom k-means can be performed
with a different number of clusters at each step. Per each prediction, four
scores/techniques are used to evaluate how good is the clustering and

how representative are they from the continuous body.

3.2.1. Davies-Bouldin Index Computation (DBI)

1. Compute intra-cluster distances: Average distances between all data
points (xi→) within a cluster l and its centroid μl→.

Sl =
1
|Cl|

∑

xi→∈Cl

d(xi→, μl
→) (14)

2. Compute inter-cluster distances: Distances between centroids of two
distinct clusters l and o, given by:

dl,o = d(μl
→, μo

→) (15)

3. Compute cluster similarity: A ratio that compares the sum of intra-
cluster distances of two clusters (l and o), to their inter-cluster dis-
tance (dl,o):

Rl,o =
Sl + So
dl,o

(16)

4. Compute DBI:

DBI =
1
k
∑k

l,o=1

max
(
Rl,o
)

∀ l ∕= o (17)

3.2.2. Silhouette Score

1. Compute the average distance between a point in a cluster and all
other points within the same cluster. This measures the cohesion
within a cluster.

a(xi→) =
1

|Cl| − 1
∑

xi→,xj→∈Cl

d
(
xi→, xj→

)
∀ i ∕= j (18)

2. Compute the minimum average distance between a point and all
points in any other cluster, of which the original point is not a
member. This quantifies the separation of the point from its nearest
neighboring cluster.

b(xi→) = min

⎡

⎣ 1
|Cl|

∑

xj→∈Cl , xi→∕∈Cl

d
(
xi→, xj→

)

⎤

⎦ (19)

3. Compute the silhouette values for each data point:

s(xi→) =
b(xi→) − a(xi→)

max(a(xi→), b(xi→))
(20)

4. Compute the average silhouette score for all the data points:

SS =
1
m
∑m

i=1
s(xi→) (21)

3.2.3. Homogeneity Score

1. Compute the coefficient of variation for each cluster:
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CVl =
σ(Cl)

Cl
(22)

2. Compute a weighted average based on how many points has each
cluster for the CV in all clusters. This one is the general (average)
homogeneity score. Subtract it from 1 so it is a score between 0 and 1,
being 1 the perfect homogeneity (no standard deviation):

H = 1 − CVweighted = 1 −
1
m
∑k

l=1

|Cl|

m
CVl (23)

3. Compute the homogeneity score for each individual cluster. Which is
the CV relative to the H:

hl =
CVl

H
(24)

3.3. Dataset Sampling and Computation Scalability

The custom k-means algorithm and associated clustering metrics
such as silhouette scores demand substantial computational resources,
often exceeding the capabilities of standard laptops, particularly when
processing entire datasets from high-resolution CFD simulations. The
computational complexity of this algorithm typically scales linearly with
the number of features, clusters, data points and initializations, repre-
sented as O(m⋅n⋅k⋅nin). However, under certain conditions where
exhaustive pairwise distances are computed or in specific algorithm
implementations, this complexity can escalate to O

(
m2) (Pakhira,

2014). Effective management of computational resources is crucial,
especially in the context of optimum regime analysis within the Pareto
front, where performance metrics are computed for each “experiment”.

Despite the algorithm’s efficient vectorization, RAM limitations
remain a challenge. Serialization techniques like looping in silhouette
score computations help manage memory by avoiding large pairwise
distance matrices, though this slightly reduces processing speed. The
greatest computational demands occur when managing many clusters or
conducting extensive optimum regime analyses, involving multiple
simulations to assess different clustering scenarios and metrics.

For performance evaluation of the clustering, using about 20% of the
dataset is practical, especially with a high number of clusters. Using 5-
10% of the dataset for CFD simulation models keeps the distribution of
the variables almost un-changed, as verified by Kernel Density Estima-
tion (KDEs). For training with very high cluster counts (over 300), using
up to 25% of the data is advisable. Prediction phases, which are less
resource-intensive, can efficiently utilize the entire dataset.

Ensuring that the KDE of the sampled dataset matches that of the full
dataset is crucial, as it confirms that the essential characteristics of the
data are preserved. This method guarantees that even if specific points
are not directly sampled, the surrounding volumes still accurately
represent the reactor dynamics. This balance between computational
efficiency and analytical accuracy is essential for the effective applica-
tion of k-means clustering in large-scale bioreactor simulations. Impor-
tantly, sampling the datasets does not alter the distribution of variables,
given the extensive size of datasets derived from CFD simulations.

For this study, we utilized several cores of a high-performance
computing (HPC) system to conduct optimum regime analysis. The
clustering range was serialized, but within each clustering operation,
parallelization was employed using 16 cores—the maximum number
supported by our algorithm. The total RAM consumption reached
approximately 24 GB, primarily due to the computation of pairwise
distance matrices required for score calculation. The comprehensive
optimum regime analysis, spanning 2 to 300 clusters, was completed in
about one day. In cases where the dataset was clustered with a fixed

number of clusters, the processing time varied significantly: clustering
with fewer clusters (e.g., 4) was nearly instantaneous, whereas clus-
tering with 300 clusters required up to 30 minutes, depending on the
fraction of the original dataset used.

4. Results & Discussion

We evaluated our algorithm’s effectiveness using two case studies:
One from a 202 m3 bioreactor and another one from an external loop
gaslift reactor (840 m3). For the first case study we compared two
different clustering approaches based on different objective variables. In
the presented case studies, the focus lies on the application of the
approach towards identification of coherent regimes of similar reaction
conditions in the bioreactor.

4.1. Case Study: 202 m3 Rushton-Impeller Bioreactor

4.1.1. Exploratory Analysis
The exploratory analysis started with the creation of a correlation

matrix that covered essential metrics for reactor operation, such as
response variables (like concentrations), positional variables, and flow
field characteristics (Fig. 4). This correlation matrix enabled the iden-
tification of variables with significant correlations with the response or
“target” variables.

For this study, cell performance was used as the response variable. It
was normalized from 0 to 1 against the maximum uptake rate, allowing
for a comprehensive analysis of the cell efficiency

(
qS/qS,max

)
.

The correlation matrix presented in Fig. 4 indicates pronounced
correlations between positional features, notably between the axial
positional variable

(
ycyl
)
and various response variables. This strong

association underlines the presence of an axial gradient, a distinctive
attribute of Rushton-impeller reactors. Such reactors are known for their
powerful radial mixing efficiency. The results of the analysis extend to
the categorical variables that define the spatial relation of exam mea-
surement point to the impellers, thereby delineating the distinct mixing
zones within the bioreactor: above the top impeller, between impellers,
and below the bottom impeller.

The observed correlations intensified upon the inclusion of a variable
representing the Euclidean distance from each point in the bioreactor to
the feeding point. We attribute this enhancement in correlation strength
to this variable’s encapsulation of information from other positional
variables, specifically the cylindrical coordinates r and θ. However, it is
predominantly influenced by ycyl, reflecting the reactor’s elongated cy-
lindrical shape. Upon comparison with alternative distance metrics such
as Manhattan or Haversine, which is tailored to account for radial
shapes, the Euclidean distance shows better correlation strength with
the response variable.

Equally surprising is the minimal correlation observed between the
fluid flow variables and the response variables. This highlights the key
importance of the species transport and microbial reaction kinetic
models in the simulations.

Having chosen the strongest correlated variable we visualized the
gradients in a bivariate KDE plot (Fig. 5), which gave us a “fingerprint”
of the substrate gradient in the bioreactor.

The KDE plot does not show a perfect correlated trend but normal-
shaped distributions, oval and circular, along the axis. These perfor-
mance clusters appear due to the complicated fluid dynamics inside the
stirred tank reactor, and the associated flow circulation patterns
(Haringa et al., 2016).

As these clusters indicate spatially contiguous regions of similar cell

response

(

qS
qS,max

)

, Fig. 5 gives a clear view of how the reactor can be

compartmentalized using clustering techniques (unsupervised machine
learning), while ensuring spatial connectivity.
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4.1.2. Optimum Regime Analysis
Clustering techniques offer a unique benefit in their ability to self-

evaluate performance through several metrics. These metrics can be
inversely related, particularly as cluster numbers increase. Higher
cluster counts usually capture more information while producing more
regime volumes in the reactor (diffuse boundaries between
compartments).

In this complex scenario, no single metric could be optimized
without affecting another. This is depicted in Fig. 6, which illustrates the
correlation of these scores across a range of 2 to 150 clusters. Broadly,
the metrics diverged into two trends:

Inertia and homogeneity score improve with more clusters,
capturing more information from the continuous body and creating
more uniform compartments. On the other hand, silhouette score and
DBI (Davies Bouldin Index) deteriorate as the number of clusters in-
creases, leading to a potential overlap and less separation, diminishing
cluster (compartment) clarity.

The trade-off between these metrics produced a Pareto front (Fig. 6),
allowing for the identification of an optimal balance between informa-
tion retention and clear differentiation of the compartments. This
strategy facilitates efficient multivariate optimization in clustering
analysis. For the continuous scores, which is only inertia in this case, a
sweet spot is observed by the presence of a knee (inflection point) in the
analysis, beyond which adding more clusters did not significantly
improve the performance.

Fig. 6 illustrates a Pareto front for optimal compartment/regime
number selection in a bioreactor, balancing design efficiency and ac-
curacy. This methodology works with homogeneity and DBI as well as
with inertia and silhouette score: the user can choose which variables to
analyze this way. The analysis extends to a 3-D Pareto front, although as
seen in the score’s correlation (Fig. 6), two scores should be sufficient.

The Pareto front method demonstrates remarkable adaptability
across a broad spectrum of experimental conditions, offering a diverse
array of optimal solutions for cluster analysis. At the higher end of the
spectrum, it favors well-defined clusters that are ideal for scale-down

experiments where clarity and manageability are paramount. These
clusters not only offer enhanced physical meaningfulness, as evidenced
by higher silhouette scores, but also ensure greater compartment clarity.
Conversely, the lower end of the Pareto front presents solutions with a
larger number of compartments, resulting in finer granularity and more
diffuse clusters. While this retains more data from the original dataset, it
does so at the expense of some physical meaningfulness, indicated by
lower silhouette scores.

Although alternative multi-objective optimization techniques such
as genetic algorithms or simulated annealing might effectively navigate
complex landscapes to avoid local minima, they introduce significant
complexities and greater computational demands. Moreover, these
techniques lack the Pareto front’s ability to provide a clear, visual rep-
resentation of trade-offs, from which users can select the most suitable
option based on their specific requirements. Opting for a high number of
clusters might be impractical for experimental scale-downs, but such
configurations are crucial for developing compartment models that
effectively capture the heterogeneity of the reactor. These models
significantly reduce computational costs compared to traditional
computational fluid dynamics (CFD) simulations.

Ultimately, the Pareto front method is employed to optimize the
number of clusters’ selection, utilizing a dataset enriched with physics
simulations (CFD) and reactor geometry data. This approach not only
ensures that the clusters retain a high degree of physical relevance but
also maximizes the informational content of the original dataset. By
leveraging the Pareto front, we identify clusters that exhibit the most
substantial physical meaning, evidenced by high silhouette scores and
low inertia. Clusters with lower silhouette scores, though less distinct
and possibly less physically meaningful, are crucial for maintaining the
integrity of the dataset’s information. Rather than amalgamating these
points into more distinct clusters, defining them separately allows for a
more comprehensive representation of the original data’s complexity.
This method balances the clarity and physical significance of each
cluster against the overarching goal of data preservation.

Fig. 4. Correlation matrix delineating the primary features extracted from CFD simulations. The features are categorized into three primary groups based on their
intrinsic correlations. The values of the matrix are Pearson’s correlation coefficients.
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4.1.3. Regimes Definition for a Rushton Stirred Tank
Optimal regime analysis identified five clusters as an effective rep-

resentation of a Rushton Impeller bioreactor (Pareto front), tailored to
its geometry, fluid dynamics and objective variables, so five regimes are
identified based on the cell performance inside the reactor.

InFig. 7, the clusters aremappedonto theCFDsimulation, highlighting
their spatial distribution. As observed, the clustering algorithm effectively
segregates thebioreactor into distinct zones, each characterized by the cell

performance variable

(

qS
qS, max

)

. These regimes are spatially continuous

and exhibit well-defined shapes and boundaries, whilst making physical
meaning as the objective variable derived from physics simulations are
used to cluster the reactor. A notable observation from the 3-D regime
analysis is the inadequacy of a simple 2-D radial symmetry approach. The
influence of the baffle on compartment formation is particularly evident in
Fig. 7 (left), where a rear view of the compartments demonstrates their

Fig. 5. (A). Kernel Density Estimate (KDE) plot to visualize the distribution of observations between the two most correlated variables in the bioreactor. This
correlation is explained due to the bad axial mixing resulting from the Rushton turbines. The plot includes a classification of each mesh element position with respect
to the impellers (legend). The KDE plots are weighted using the volumes corresponding to each element in the CFD simulation. The scale for the cell performance is
logarithmic. (B) Correlation matrix showing the relationships between scores. The scores came from clustering the bioreactor using a range of 2 to 150 clusters and
computing each individual score. Positive values indicate performance improvements with more clusters, while negative coefficients highlight score trade-offs.

Fig. 6. Performance metrics for the Rushton bioreactor compartmentalization over 150 clusters (compartments). The left plots describe each individual score per
each clustering with a different number of clusters. The inflection point in the inertia plot is indicated by the vertical dotted line. The right plot identifies the Pareto
front, which is highlighted in orange, and it is defined by the inertia and silhouette score. These two metrics are inversely proportional regarding their performance.
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spatial border over the vertical plane (baffle).
By integrating multiple variables, including a categorical one rep-

resenting each data point’s position relative to the impeller and the cell
performance, the clustering algorithm effectively compartmentalized
the bioreactor based on more complex situations. As shown in Fig. 7
(right), this approach ensures the cell performance-based zones do not
intersect with axial impeller planes, demonstrating the algorithm’s
ability to recognize multidimensional spatial regions while balancing
between multiple objective variables. In this case the a ‘constraint’ is
applied in the compartmentalization (no clusters between impeller
planes). The physical sense of the clusters is now defined by both the
objective variables, cell performance and position respect to the
impeller, as seen in the new clusters generated. Using multiple variables
as objective for clustering could describe the bioreactor in a more
complete way and could lead to easier validation.

Although we do not perform an extensive sensitivity analysis in this
study, altering certain operational parameters in the CFD simulations
leads to slight variations in the resulting clusters. For a specific biore-
actor geometry and turbine design, the fluid flow and gradient profiles
remain quite similar regardless of the operational conditions. However,
changing these conditions affects the optimal number of clusters needed
to accurately define the bioreactor, necessitating a new optimum regime
analysis. Consequently, the shapes of the clusters may also change.
Interestingly, when we increase the stirring speed by 100% and perform
clustering with five clusters, the results are quite similar to the original
case. This suggests that, as the tank becomes more homogeneous due to
increased stirring, a smaller number of clusters might better describe the
reactor, potentially leading to clusters with different shapes

Validating the compartments generated by any algorithm in a real-world
bioreactor setting presents challenges due to the current difficulty of
obtaining detailed spatial measurements in large-scale reactors. Typically,
measurements are limited to integrated parameters like power input or

mixing time, which are useful for validating overall CFD performance but
lack the spatial resolution needed for direct compartmentalization valida-
tion. Our primary objective in this paper is to introduce and validate a
clustering algorithm that effectively partitions bioreactors into physically
meaningful compartments based on available data. The algorithm is
designed to utilize real spatial 3-D data when available, making it ready for
future applications with such datasets. While the practical applicability is
currently limiteddue to the scarcityof real-world spatialdata, ourplatformis
developed to be applicable to both CFDand real data, ensuring it is prepared
for future experiments. In the meantime, clustering models rely on CFD
simulations that have been validated against experimental data for these
global parameters (Bach et al., 2017; Brannock et al., 2010; Puiman et al.,
2022). When a CFD model accurately predicts these integrated variables, it
increases confidence in its ability to represent the reactor’s internal fluid
dynamics. Consequently, the compartments derived from such validated
CFD data are considered realistic representations of spatial heterogeneities;
essentially, the clusters will reflect reality as accurately as the quality of the
input data permits. As explained in the Methods Section 2, the CFD simu-
lation used here is designed to showcase the application of the clustering
algorithm rather than to provide a precise description of a bioreactor.
Simplifying assumptions, such as pseudo-steady state and radial symmetry,
are employed, which can overlook phenomena like macro-instabilities.

Future work could involve employing advanced measurement tech-
niques or soft sensors to obtain spatially resolved data, providing direct
validation of the compartmentalization (Jiang et al., 2020) and enabling
real-time, comprehensivebiologicalmeasurementsacross theentire reactor
space (e.g., spatial-basedproteomics). Althoughamajor advantage of using
CFD-generated synthetic data is the high spatial and temporal resolution it
offers, experimental data are oftenmuch sparser due to constraints inherent
in experimental work, particularly at large scales. Nonetheless, the algo-
rithm should still be capable of capturing the regimes accurately, provided
that thedata are representative of the overall bioreactor state. To ensure the

Fig. 7. Compartmentalization results for the Rushton tank using cell performance as a single clustering objective (left) or using it combined with the position of each
data point with respect to the impeller, which is a categorical variable. The continuous solution is clustered into compartments which are continuous as seen in the
transparent plot of the reactor (1/6 symmetry).
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representativeness of the experimental low-resolution data, multiple data-
sets may need to be collected, and inferential statistical methods applied to
assess and enhance data reliability.

4.1.4. Metabolic States Inside the Rushton Stirred Tank
This methodology can also be extended to cluster metabolic states as

categorical objective variables if a suitable kinetic or metabolic model is
integrated. However, clustering based on metabolic states within the
reactor is complex, primarily because obtaining comprehensive meta-
bolic data across the entire reactor space is currently challenging due to
experimental limitations. To address this challenge, one approach is to
use computational models that couple fluid dynamics with metabolic
processes. For example, CFD-derived data can be integrated with
metabolic flux models, facilitated by hydrodynamic compartment
models, to estimate the intracellular flux distributions using Genome-
Scale Metabolic Models (GEMs) and Flux Balance Analysis (FBA)
(Promma et al., 2024). This approach allows the algorithm to map out
volumes related to different metabolic states based on predicted intra-
cellular clusters. A significant challenge in this integration is the high
dimensionality of metabolic data, which involves thousands of reactions
and entails high computational demands. To manage this complexity,
dimensionality reduction techniques like Principal Component Analysis
(PCA) can be applied, as metabolic fluxes are often highly correlated.

Alternatively, hybrid modeling techniques that combine first-
principles models with data-driven approaches, such as neural net-
works, can be employed to model the complexity of biological systems
(Pinto et al., 2022; Shah et al., 2022). This method would lead to a more
straightforward clustering process due to the reduced number of fea-
tures. However, it could lack the deep description of the metabolic
networks provided by GEMs.

Assuming there is adirect linkbetween the conditionsoutside a cell and
its internal metabolic state, the algorithm canmap out areas related to key
metabolic processes. In our study, we identified regions corresponding to
two key processes: overflow metabolism, marked in maroon, and starva-
tion, marked in blue. We achieved this by using cell performance, a
continuous variable, as the main clustering criterion. Both states were the
best-classified compartments based on their silhouette scores (Section
A.1). These findings align with those of (Nadal-Rey et al., 2023), reaf-
firming the high physical relevance of clusters with high silhouette scores.

4.2. Case Study: 840 m3 Airlift Loop with Down Comer (Bubble Column)

The second case study represents an airlift loop with a down-comer
and a total volume of 840 m3 for syngas-to-ethanol fermentation, as
described by Puiman et al. (2022).

4.2.1. Exploratory Analysis
In this study, like the Rushton case, cell performance emerged as the

variable most correlated with positional factors, though less strongly
than before. Thus, it was again chosen as the objective variable. Here,
cell performance is defined as the ratio of the observed to the maximum

apparent carbon monoxide uptake rate

(

qCO
qCO,max(app)

)

, reflecting the fact

that kinetic inhibition prevents the cells from the theoretical maximum
(
qCO,max

)
.

Notably, Kernel Density Estimation (KDE) analysis shows a clear
departure in gradient shapes from those observed in the Rushton tank,
indicating distinct kinetic and performance characteristics under
different tank configurations (Fig. 8).

The comparative analysis of the Rushton tank and the bubble column
case studies reveals distinct differences in flow dynamics and their
correlation with cell performance. The Rushton tank exhibits a low
radial gradient but a high axial gradient, in contrast with the bubble
column, which demonstrates the opposite pattern. This variation can be

attributed to the bubble column’s lower average liquid phase kinetic
energy and the absence of forced radial flow.

Furthermore, the correlation between the distance to the feeding
point and cell performance is weaker in the bubble column compared
with the Rushton tank. This weaker correlation is due to two main
factors: a modest pressure gradient and variations in substrate compo-
sition, as detailed by Puiman et al. (2022). Additionally, since the sub-
strate is a dissolved gas rather than a liquid solute, the maximum
concentration in the liquid phase is capped by (local) solubility, which
varies slightly through the domain due to the pressure gradient. This
means substrate is introduced in the liquid phase throughout the domain
via gas-liquid mass transfer, rather than a concentrated feed at a single
point. Consequently, the correlation between local cell performance and
‘feed point’ (sparger) distance is much weaker.

Kernel Density Estimation (KDE) analysis of the bubble column re-
veals that gradient variability is influenced by turbulence levels and re-
circulation patterns (Fig. 8). High radial gradients, challenging for the
clustering algorithm, correlate with re-circulation patterns and low
turbulence (zones 5 and 9). In contrast, areas with smaller re-circulation
patterns and higher turbulence (regions 2, 4 and 7) display more
consistent radial gradients, depicted as two-dimensional Gaussian dis-
tributions in the KDE plot. Special regions like 1 and 8 represent the
headspace and liquid-gas interface.

4.2.2. Regime Definition for a Bubble Column
Optimum regime analysis for the column identified 9 compartments

as the optimum number for the “cell performance” variable. The result is
however plotted with 10 regimes to account for the headspace also
considered in the CFD simulations (Fig. 9).

The algorithm successfully partitioned the column into the optimum
nine distinct zones, showcasing a pattern different from the more
orderly zones observed in the Rushton tank. This difference is attributed
to the complex re-circulation patterns typical in gas-mixed reactors.
Notably, Compartment 1 precisely captured the primary uplift gas flow
from the inlet and Compartment 3 comprises the whole down-comer,
ensuring seamless spatial integration among the zones.

Prior to this clustering, the headspace compartment (Compartment
10) was specified to prevent any disturbance of the liquid phase pat-
terns. Compartment 3 consolidates regions 2 and 3 (as depicted in
Fig. 8), highlighting the interaction between these areas. Similarly,
Compartment 9 focuses on region 4, the down-comer re-circulation inlet
(also detailed in Fig. 8).

It is worth noting that the compartments created account for dy-
namics, as theyarebasedon theaveragevalues fromdynamic simulations
spanning 100 seconds. This approach effectively integrates dynamic data
into the clustering process. One potential strategy for incorporating dy-
namic data is to average time-series data from these simulations, as has
been done so far. Alternatively, capturing snapshots at different stages of
the simulation couldprovide insights intohowcompartments evolve over
time in response to changes in fermentation variables and fluid flow
within the reactor (Nadal-Rey,McClure, Kavanagh,Cassells, et al., 2021).
As these operational conditions vary, the compartment configurations
are also likely to change, reflecting the dynamic nature of the process.
This dual approach of averaging data for stability and analyzing snap-
shots for temporal changes offers a comprehensive method for under-
standing and adapting to the dynamics within bioreactors.

The analysis of the airlift loopwith a down-comer provides a blueprint
for optimizing syngas-to-ethanol fermentation processes. By dividing the
system into distinct compartments, we not only gain insight in the inter-
play between cell performance and fluid dynamics but also identify op-
portunities for efficiency improvements and give a proper start point for a
scale-down replica of the industrial-scale case. This division facilitates
targeted interventions, allowing for the precise control of conditions
across different reactor zones. These findings underscore the potential of
compartmentalization to enhance bioreactor designs, making them more
effective for specific industrial applications and scale-down processes.
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Fig. 8. Gradient exploratory analysis of the bubble column. KDE plot of cell performance, correlated against the distance to the feed point, without the headspace
mesh elements (top-left). Contour plot of the CO concentration profile (top-right). Cell performance contour (bottom-left). Turbulent kinetic energy profile (bot-
tom-right).

Fig. 9. Clustering of the bubble column based on the average of the cell performance over 203 seconds of transient simulation time. The compartments are ordered
from high to low cell performance, being compartment 1 the one with the highest and 10 the lowest value (headspace).
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5. Conclusions

We developed a novel multivariate algorithm for segmenting bio-
reactors, or similar 3-D finite element volume geometries, into spatially
coherent compartments/regimes. Our method offers a precise way to
identify the ideal number of compartments/regimes for specific condi-
tions, based on amount of information captured and cluster clarity. Thus,
the number of compartments/regimes can stop being a design variable
based onuser expertise. This capability enhances spatial analysis and lays
a robust groundwork for subsequent scale down experiments, focusing on
balancing the granularity of regimes against the comprehensiveness of
the data captured by the clusters. In this work we focused on the use of
algorithm to define clusters of coherent conditions, akin to regime anal-
ysis. These new clusters/compartments can be used alongside using any
desired objective variable, includinghydrodynamics-related variables, to
further perform a classical compartmentalization to replicate the CFD
simulations (Haringa et al., 2018).

The versatility and effectiveness of the algorithm were demonstrated
through its application to two case studies: A 202 m3 Ruston impeller
bioreactor and an 840 m3 airlift reactor (Puiman et al., 2022). In the
Rushton tank, it identified five distinct compartments, illustrating the
significance of 3-D compartmentalization due to the influence of the
baffle and the impact of the axial gradient on cell performance and
metabolism. In contrast, for the airlift reactor, the algorithm delineated
nine compartments, uncovering the intricate dynamics of radial gradi-
ents and re-circulation patterns characteristic of gas-mixed systems
(Tabib et al., 2008). The selection of the optimal number of compart-
ments and their configuration was determined through rigorous analysis
of inertia and silhouette score, which together formed a Pareto front.
These compartments can be the basis for further down-scale experiments
or stochastic parcel tracking, to gain a fine-grained understanding of the
cell environment during fermentation.

In future work, the algorithm could be enhanced to better leverage
real-world data, potentially improving its predictive accuracy and
practical utility. For instance, integrating soft sensors or other data
sources could refine their applicability to real-world scenarios. The data
could also create hybrid-CFDmodels which could lead to a 3-D validated
CFD in-situ as it would use real data to define some of the simulation
parameters, as it has started to be done in homogeneous lab-scale
reactor simulations (Bangi et al., 2022).

Additionally, incorporating a complex metabolic model within the
CFD simulations could deepen our understanding of the interplay be-
tween reactor conditions and cellular metabolism, which is critical for
optimizing bioprocess outcomes. Further exploration could also focus on
the dynamic aspect of the bioreactor checking how the compartments
change over a fed-batch run.

Bioreactors represent a fusion of biological complexity and fluid
dynamics, resulting in an intricate environment that poses challenges for
replication across different scales and detailed modeling (i.e., for use in
digital twins for control purposes). This algorithm constitutes a novel
tool which may help to facilitate the identification of regimes across
multiple scales by integrating both biological and physical insights.

Author contribution

For transparency, we require corresponding authors to provide co-
author contributions to the manuscript using the relevant CRediT
roles. The CRediT taxonomy includes 14 different roles describing each
contributor’s specific contribution to the scholarly output. The roles are:
Conceptualization; Data curation; Formal analysis; Funding acquisition;
Investigation; Methodology; Project administration; Resources; Soft-
ware; Supervision; Validation; Visualization; Roles/Writing - original
draft; andWriting - review& editing. Note that not all roles may apply to
every manuscript, and authors may have contributed through multiple
roles. More details and an example.

Term Definition
Conceptualization Ideas; formulation or evolution of overarching research

goals and aims
Methodology Development or design of methodology; creation of

models
Software Programming, software development; designing computer

programs; implementation of the computer code and
supporting algorithms; testing of existing code
components

Validation Verification, whether as a part of the activity or separate,
of the overall replication/ reproducibility of results/
experiments and other research outputs

Formal analysis Application of statistical, mathematical, computational, or
other formal techniques to analyze or synthesize study
data

Investigation Conducting a research and investigation process,
specifically performing the experiments, or data/evidence
collection

Resources Provision of study materials, reagents, materials, patients,
laboratory samples, animals, instrumentation, computing
resources, or other analysis tools

Data Curation Management activities to annotate (produce metadata),
scrub data and maintain research data (including software
code, where it is necessary for interpreting the data itself)
for initial use and later reuse

Writing - Original Draft Preparation, creation and/or presentation of the published
work, specifically writing the initial draft (including
substantive translation)

Writing - Review &
Editing

Preparation, creation and/or presentation of the published
work by those from the original research group,
specifically critical review, commentary or revision –
including pre-or post-publication stages

Visualization Preparation, creation and/or presentation of the published
work, specifically visualization/ data presentation

Supervision Oversight and leadership responsibility for the research
activity planning and execution, including mentorship
external to the core team

Project Administration Management and coordination responsibility for the
research activity planning and execution

Funding acquisition Acquisition of the financial support for the project leading
to this publication

CRediT authorship contribution statement

Víctor Puig I Laborda: Writing – original draft, Visualization, Vali-
dation, Software, Methodology, Investigation, Formal analysis, Concep-
tualization. Lars Puiman: Writing – review & editing, Validation,
Resources. Teddy Groves: Writing – review & editing, Conceptualiza-
tion. Cees Haringa:Writing – review & editing, Supervision. Lars Keld
Nielsen:Writing – review & editing, Resources, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:

Víctor Puig I Laborda reports financial support was provided by Tech-
nical University of Denmark. If there are other authors, they declare that
theyhavenoknowncompetingfinancial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgements / Funding

This work was supported by the Novo Nordisk Foundation
(NNF20CC0035580 and NNF14OC0009473) within the framework of
the Fermentation-based Biomanufacturing Initiative (FBM), grant
number: NNF17SA0031362.

Lars Puiman contributed as part of the MicroSynC research program
(project number P16–10/5) and is (partly) financed by the Netherlands
Organization for Scientific Research (NWO).

V.P.I. Laborda et al. Computers and Chemical Engineering 194 (2025) 108891 

14 



Appendices

A.1. Individual Silhouette Score

As the Silhouette score can be computed individually for each data point, we can plot them directly to the continuous body to see which datapoints
are the best classified (Fig. Appendix 1).

Fig. Appendix 1. Silhouette profile of each data point belonging to each cluster and spatial distribution of the clusters in a KDE plot. Distinct centroids of clusters are
marked by encircled numbers. The average silhouette score for the whole analysis is set as the red dashed line.

As seen in the Figure, clusters 1 and 5 are the best classified with most of the datapoints being over the average silhouette score, and the centroids
being very separated from the other ones. This can be seen as the spatial distribution of the silhouette score in the 3-D CFD simulation body
(Fig. Appendix 2).
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Fig. Appendix 2. Silhouette scores for each individual data point represented in each mesh element in the 3-D geometry body.

As seen in Fig. Appendix 2, provides a 3-D view of the silhouette scores, highlighting lower silhouette scores at cluster borders, suggesting possible
classification overlaps. Clusters 1 and 5 exhibit high accuracy, likely representing overflow and starvation states.

Data availability

Data will be made available on request.
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