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Abstract: Accurate quantitative mineralogical data has significant implications in mining 
operations. However, quantitative analysis of minerals is challenging for most of the sensor outputs. 
Thus, it requires advances in data analytics. In this work, data fusion approaches for integrating 
datasets pertaining to the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral 
regions are proposed, aiming to facilitate more accurate prediction of SiO2, Al2O3, and Fe2O3 
concentrations in a polymetallic sulphide deposit. Two approaches of low-level data fusion were 
applied to these datasets. In the first approach, the pre-processed blocks of MWIR and LWIR data 
were concatenated to form a fused data block. In the second approach, a prior variable selection was 
performed to extract the most important features from the MWIR and LWIR datasets. The extracted 
informative features were subsequently concatenated to form a new fused data block. Next, 
prediction models that link the mineralogical concentrations with the infrared reflectance spectra 
were developed using partial-least squares regression (PLSR), principal component regression 
(PCR) and support vector regression (SVR) analytical techniques. These models were applied to the 
fused data blocks as well as the individual (MWIR and LWIR) data blocks. The obtained results 
indicate that SiO2, Al2O3, and Fe2O3 mineral concentrations can be successfully predicted using both 
MWIR and LWIR spectra individually, but the prediction performance greatly improved with data 
fusion; where the PLSR, PCR, and SVR models provided good and acceptable results. The proposed 
approach could be extended for online analysis of mineral concentrations in different deposit types. 
Thus, it would be highly beneficial in mining operations, where indications of mineralogical 
concentrations can have significant financial implications.  

Keywords: MWIR; LWIR; polymetallic sulphide ore; minerals; data fusion; PLSR; PCR; SVM 
 

1. Introduction 

In mining, access to accurate quantitative mineralogical data has significant implications for the 
production process efficiency. Quantitative mineralogical data, available in real-time, would greatly 
assist material characterization (e.g., ore versus waste), operational decision making, optimization of 
ore processing, and the specification of product quality. Understanding material composition in 
mineral processing can also minimise the technical and financial risks. It may thereby greatly enhance 
economic, safety, and environmental performance of a mining operation. 

Geometallurgical investigation links the geological and mineralogical characteristics to the 
metallurgical performance of an orebody. It is an important approach to optimize resource efficiency 
and reduce the technical risk associated with mining operations. The required information for 
geometallurgical applications is not limited to knowledge on the grades of valuable elements and 
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their variability, but also extends to the gangue minerals, as their composition and volume also play 
a crucial role in ore processing. Extant studies highlight the importance of mineralogical information 
for the sustainability and energy efficiency of geometallurgical processes [1,2]. Ore minerals occur in 
veins, disseminated in the host rock and/or in pores with varying concentrations of other associated 
minerals such as silica, oxides and carbonates. The concentration of these minerals can be associated 
with the metallurgical behaviour of the ore minerals. Therefore, quantitative mineralogical 
information on the co-occurring minerals is one of the crucial parameters for the optimisation of ore 
processing.  

Despite rapid advances in sensor technologies, there is still a demand for novel ideas to enable 
quantitative investigations of mineralogical compositions using sensor-derived data. In addition, in-
situ application of sensor technologies requires portable and high-speed systems. Portable sensor 
technologies (such as X-ray fluorescence—XRF, and short-wave infrared—SWIR) that provide 
geochemical or mineralogical data are available. However, most of the currently available sensor 
technologies are laboratory-based techniques. Owing to the growing interest in an accurate, in-situ 
and on-line quantitative analysis of minerals, infrared technologies coupled with advanced data 
analytics can be promising alternative tools. Despite rapid advances in sensor technologies, there is 
still a demand for novel ideas to enable quantitative investigations of mineralogical compositions 
using sensor-derived data. In addition, most of the currently available sensor technologies are 
laboratory-based techniques. Owing to the growing interest in an accurate, in-situ and on-line 
quantitative analysis of minerals, infrared technologies coupled with advanced data analytics can be 
promising alternative tools. Infrared (IR) spectroscopy is a well-established analytical technique that 
can be applied in qualitative and quantitative analysis of organic and inorganic materials [3−5]. State-
of-the-art infrared technologies are fast, portable, non-destructive, and can operate over a wide 
electromagnetic spectral range [6,7]. The IR region of the electromagnetic spectrum extends from λ = 
0.7 to 1000 µm and is subdivided into different regions [5,8]. For example, it can be divided into the 
near infrared (NIR: 0.7–1.4 µm), SWIR: 1.4–2.5 µm and far infrared (FIR: 15–1000 µm) regions. The 
mid-wave infrared (MWIR) and long-wave infrared (LWIR) are the subsets that correspond to the 
wavelength ranges of 2.5−7 µm and 7−15 µm, respectively [9,10]. Spectral signals in MWIR and LWIR 
regions are produced as a consequence of molecular vibrations of the functional groups that can be 
related to mineralogy [11,12].  

Numerous previous studies indicate that IR technologies can be utilised for the accurate 
identification of minerals. Such applications are usually qualitative. For example, near-infrared (NIR) 
sensors can provide accurate identification of clay minerals and rock-forming minerals [13,14], 
whereas short-wave infrared (SWIR) is one of the most widely used infrared technologies for the 
identification of alteration minerals [15,16]. On the other hand, LWIR permits identification of rock-
forming minerals, whereas far-infrared (FIR) can be used for the identification of rare earth minerals 
[11,17]. Characteristic features of the minerals have also been utilised to quantitatively relate 
variations in mineral concentrations. For example, Hecker et al. [18] estimated concentrations of rock-
forming minerals using LWIR. Similarly, Mroczkowska-Szerszeń and Orzechowski [19] used ATR-
FTIR (attenuated total reflectance Fourier transform infrared) for semi-quantitative analysis of 
minerals in carbonate rocks. Palayangoda and Nguyen [20], on the other hand, estimated mineral 
concentrations in oil shale using ATR-FTIR spectra combined with Principal Component Regression 
(PCR) method. In another study, Guatame-Garcia and Buxton [21] assessed the use of infrared 
spectroscopy for predicting the soluble Al2O3 content in calcined kaolin. Although few researchers 
indicated the potential for using IR technologies in quantitative analysis of minerals, some authors 
also discussed the limitations of this approach. Specifically, Kaufhold et al. [22] assessed the 
possibility of the use of infrared spectra for quantitative analysis of clay minerals and pointed out the 
mineral-specific challenges owing to instrument detection limit, availability of suitable reference and 
particle size. At present, IR techniques are insufficiently used in quantitative analysis of minerals. 
Moreover, most of the existing studies in this field addressed the challenge for the development of 
reliable calibration models to predict mineral concentrations in complex mixtures. Consequently, 
there is a need for advanced data-driven approaches and spectral signal pre-processing techniques 
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that can be incorporated into comprehensive calibration models, thus to achieve accurate estimation 
of mineral concentrations in different commodities.  

Data fusion is the term applied to the integrated analysis of multiple data blocks from different 
data sources, such that they can interact and inform each other [23]. Fusing of different data sources 
enhances the reliability of prediction or classification models owing to the synergy among the 
incorporated datasets. Data fusion can be implemented in different ways and at different levels using 
various multivariate linear (e.g., partial-least squares regression—PLSR) and non-linear (e.g., support 
vector machine—SVM) data analysis techniques [23,24]. Data fusion can be realised at low-, mid-, 
and high-level. In low-level fusion, data from the different sources are pre-processed and 
concatenated to form a fused data block [23,25]. Thus, it is commonly referred to as data-level fusion. 
The mid-level fusion requires two modelling steps. First, the informative features (relevant 
information) of the different data blocks are separately extracted using suitable variable screening or 
selection methods [23,26]. In the second step, the extracted features are concatenated into a single 
matrix and are used to develop models based on multivariate analysis techniques. In mid-level 
fusion, feature extraction can be accomplished using different strategies, such as data decomposition 
(Multivariate curve resolution—MCR) and feature selection (Principal Component Analysis—PCA) 
methods. Mid-level fusion is therefore also called features-level fusion. High-level fusion is a 
decision-level fusion, as the outputs (predicted value) of the prediction or classification models 
developed for each data block are fused (e.g., by averaging). Data fusion approaches are now widely 
used in several disciplines, such as robotics [27], image processing [28], food analysis [24,29,30], and 
pharmacological studies [26]. Findings yielded by pertinent studies indicate that data fusion 
approaches can be highly beneficial for mineralogical applications [31,32]. However, at present, the 
application of data fusion for mineralogical investigations remains very limited.  

The MWIR and LWIR provide spectral signals that can be used to identify various minerals. The 
LWIR permits identification of the rock-forming minerals. Whereas, the MWIR is the least-explored 
region of the electromagnetic spectrum, however, it has a great potential for material 
characterization. Therefore, combinations of the two regions can potentially result in a 
comprehensive and enhanced characterization of minerals. To date, quantitative analysis of minerals 
in polymetallic sulphide ore samples using MWIR and LWIR spectra combined with data fusion 
methods has never been conducted. This gap in the current analytical methodology and the 
promising findings [33] reported recently have motived the present study. Its main aims are thus (1) 
to investigate the use of diffuse reflectance infrared (MWIR and LWIR) spectra for quantitative 
analysis of mineral mixtures in polymetallic sulphide ore samples, and (2) to evaluate the data fusion 
methods using linear (PLSR and PCR) and non-linear (SVR) multivariate regression techniques. The 
implemented low-level data fusion approaches are data fusion without feature selection (fusion of 
the entire variables in the MWIR and LWIR data blocks) and with feature selection (fusion of the 
extracted features of the two data blocks).  

2. Materials and Datasets 

2.1. Samples  

The study described in this paper is based on 58 representative rock samples collected from a 
polymetallic sulphide ore deposit formed by hydrothermal mineralisation processes. The typical ore 
minerals constituting the deposit are galena (PbS), pyrite (FeS2), sphalerite ((Zn, Fe)S), arsenopyrite 
(FeAsS), and chalcopyrite (CuFeS2), whereas associated gangue minerals include quartz (SiO2), barite 
(BaSO4), fluorite ((Ca, Ce, Y)F2), and carbonates (CO3-2) [34,35]. The samples were obtained from the 
ore and waste materials, which are sourced from different locations (Figure 1). A detailed description 
of the deposit type can be found in the work published by Desta and Buxton in 2018 [36].  
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Figure 1. Location of the study site (the green star on the inset map) and underground mine face 
photo. The yellow line shows the boundaries of the ore zone. Outside of the ore zone, the host rock is 
gneiss. Some of the locations of the 58 samples used in this study are indicated in green boxes. 

2.2. Instrumentation and Datasets  

2.2.1. Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIR) Datasets  

The collected samples were powdered, and measurements were performed using the Agilent 
portable 4300 Fourier-transform infrared spectroscopy (FTIR) sensor. The FTIR infrared reflectance 
spectra required for the present investigation were acquired over the ~2.5 to ~15.0 µm wavelength 
range, as a mean of 64 sample scans at a resolution of 4 cm-1 using a diffuse reflectance-sampling 
interface. Samples heterogeneity was accommodated by collecting multiple spectra from each 
sample. Depending on the observed variability within each sample, 7 to 10 measurements were 
collected, and the averages were subsequently computed for each sample. 

The acquired full-range FTIR dataset (covering the full wavelength span from 2.5 to 15.0 µm) 
were split into MWIR (2.5 to 7.0 µm) and LWIR (7.0 to 15.0 µm) spectral datasets. The full-range FTIR 
data were also analysed to compare the obtained results with the individual datasets and the data 
fusion outcomes. Therefore, the SiO2, Al2O3, and Fe2O3 composition prediction accuracy obtained 
using the three datasets (namely full-range FTIR, MWIR, and LWIR) and the fused datasets 
pertaining to 58 samples are discussed and compared in the sections that follow.  

2.2.2. Chemical Analysis (XRF) 

X-ray fluorescence (XRF) is a well-established technique for the analysis of chemical 
composition. It is an excellent method for determining the major and minor elements constituting 
whole rock. In this work, a conventional laboratory-based Malvern PANalytical Axios mAX 
wavelength dispersive x-ray fluorescence (WD-XRF) was used to acquire mineralogical information 
on SiO2, Al2O3, and Fe2O3 minerals. The detection limit of the XRF system is 0.01%. The quantitative 
mineralogical data obtained were employed in the validation of the developed methodological 
approaches. 
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3. Methodology  

3.1. Multivariate Analysis  

As a part of the exploratory data analysis, PCA was performed. Quantitative prediction of 
mineral concentrations in the polymetallic sulphide ore samples was achieved using both linear 
(PLSR and PCR) and non-linear (SVR) techniques. A brief description of these multivariate 
techniques is given below. 

3.1.1. Principal Component Analysis (PCA) 

Principal component analysis (PCA) was performed to reduce data dimension by generating 
new sets of variables called Principal Components (PCs). This allows visualisation of multivariate 
data in a few PCs that are mutually orthogonal and thereby describe complementary information. In 
the present study, PCA was applied to the individual datasets as well as to the fused spectral data. 
The scores and loading plots of the PCA models were used to investigate sample−variables 
relationships and the grouping structure (intra-sample relationships).  

3.1.2. Partial-Least Squares Regression (PLSR) 

Partial least-squares regression (PLSR) is a multivariate data analysis technique that maximises 
the covariance between the predictor (X) and the response (Y) matrices. It models the response and 
predictor matrices simultaneously to find the latent variables in the predictor (X) that will best predict 
the latent variables in the response (Y). PLSR generates principal components (PCs) that explain the 
variation in X that correlates to the variation in Y [37]. While PCA is utilized to extract PCs that 
describe variations in the data, PLSR allows PCs to be correlated with the response (Y) to compute 
latent variables (LVs). Thus, the LVs in X can be used to predict the LVs in Y. LVs are important factor 
in determining model performance. In this work, the dependent variables (the response) are mineral 
concentrations and the independent variables (the predictors) are the IR spectra (e.g., MWIR and 
fused data blocks). The PLSR models were developed using both individual and fused data blocks. 
The calibration datasets were used to develop the PLSR models and their predictive performance was 
validated using independent datasets (validation datasets).  

3.1.3. Principal Component Regression (PCR) 

Principal component regression (PCR) is a regression technique that relates the variance in a 
response variable (Y) to the variance in several predictors (X variables). As PCR is a two-step method, 
the X-matrix (comprising of X variables) is decomposed using PCA [38−40]. In the second step, the 
PC scores (instead of the original X variables) are used as predictors to fit a multiple linear regression 
(MLR) model, aiming to establish a linear relationship between the predictor (X variables) and the 
response (Y variable) using the typical least squares procedure [41]. As the PCR is based on the 
orthogonal scores, the model does not suffer from collinearity effects. Unlike in the PLSR, the 
response variable in PCR plays no role in identifying the PCs’ directions. In the present study, the 
PCR models were developed using the IR spectra (individual MWIR and LWIR, as well as fused data 
blocks) as the predictor and the mineral concentrations as the response variables. The Singular Value 
Decomposition (SVD) algorithm was used to calculate the PCs of the PCR models. The weights of X 
variables and the Y variables were standardised.  

3.1.4. Support Vector Regression (SVR) 

Support vector machine (SVM) is a supervised learning algorithm for the analysis of 
classification (support vector classification—SVC) and regression (support vector regression—SVR) 
problems [42,43]. SVM maps the input data into a higher-dimensional feature space using kernel 
functions, which can take many forms, such as linear, polynomial, radial basis function (RBF), 
sigmoid, etc. Therefore, SVM is a powerful technique that can be applied to both linear and non-
linear systems. Detailed theoretical background on SVR can be found in pertinent literature [42−45]. 
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In this study, three different kernel functions (RBF, sigmoidal, and polynomial) were examined and 
the optimal kernel function was selected based on the RMSE and R-squared values. As result, RBF 
kernel function was selected. RBF can be utilised to model non-linear systems of varying complexity. 
The SVM regression type used in this work is ε-SVR with RBF kernel function. The key model 
parameters for the specification of ε-SVR models are C value and epsilon (ε), as they respectively 
determine the trade-off between the training error and the model complexity (flatness), and control 
the width of the band where the cost of errors in the epsilon-intensive loss function is zero. The value 
of ε can thus affect the number of support vectors (SVs) used to construct the regression function. 
The ε-SVR models developed as a part of this work use the IR spectra (comprising the individual and 
fused datasets) as the input vector and mineral (SiO2, Al2O3, and Fe2O3) concentrations as the response 
vector. As in SVM the values of the optimal model parameters are not known in advance, C and ε 
were optimised using grid search approach with a leave-one-out cross-validation.  

3.2. Model Performance Assessment 

The performance of the prediction models was investigated using root mean square error of 
cross validation (RMSECV), root mean square error of prediction (RMSEP), and the correlation 
coefficient (R2). In RMSECV, the error on test split is calculated using a cross-validation scheme; 
however, performance is based on the calibration cases. In this work, the RMSECV corresponds to 
the results of a leave-one-out cross-validation that prevents model over-fitting. Specifically, when 
calculating the RMSECV value, each sample was removed at a time from the calibration data and the 
models were built using the remaining data in the training set. Performance of each of these resulting 
models was validated using the removed sample. The process was repeated until each sample in the 
training dataset has been removed once. The RMSECV was used to select the optimal number of PCs 
in the PLSR and PCR models, and to specify model parameters in SVR. RMSEP represents the 
prediction error based on a comparison of real cases not used to make the model with reference values 
(in this case, an independent dataset). Consequently, RMSEP indicates how well the model built 
using calibration data performs when applied to unknown cases. R2 denotes the strength of the linear 
relationship between the response and predictor variables. When R2 is computed using the validation 
samples it signifies a model’s predictive ability. Improved predictive performance is associated with 
a lower value of statistical error terms (RMSECV and RMSEP) and a higher predicted R2. 

3.3. Data Pre-processing  

Infrared measurements include undesired variations (e.g., instrumental artefacts), which are 
generally compensated by data pre-processing, whereby unwanted variation within the data is 
removed to enhance the signal pertaining to the analytical information [46,47]. The choice of data 
filtering techniques adopted for this purpose affects the outcome. Therefore, design of experiment 
(DoE) is required to identify the optimal data pre-processing techniques that yield the best results (in 
this case, mineral concentrations prediction). In the present study, DoE was developed considering 
mean centring (MC) and the signal correction methods, namely baseline correction, normalisation, 
standard normal variate (SNV) and smoothing (Gaussian filter smoothing) data pre-processing 
techniques. These methods were chosen, as the aim was to remove the most common artefacts from 
the infrared spectra (e.g., baseline shift). 

MC is a data scaling technique that can be adopted to remove offsets by subtracting the variable 
mean from each value [46,48]. Baseline correction subtracts the unwanted “background signal” from 
each spectrum [46]. The aim of normalisation is to divide each spectrum based on the estimation of 
its spectral intensity and remove undesired intensity variation due to multiplicative effects [46]. SNV 
minimises the light scattering effect and particle size effects in the spectra data. It is employed to 
normalise the spectrum by subtracting its mean value from each variable and dividing the resulting 
variables by the spectrum standard deviation [46,49]. Finally, smoothing allows random noise to be 
removed from the dataset by averaging the neighbouring points [46]. The signal correction methods 
are performed on one sample at the time (row-wise), whereas for mean centring, the pre-processing 
is applied to individual columns.  



Sensors 2020, 20, 1472 7 of 19 

 

3.4. Data fusion  

Integration of data blocks from multiple sensors can enhance prediction accuracy and support 
better interpretation of model outputs. Data fusion requires pre-processing of the individual datasets, 
ultimate multivariate data analysis method and robust correlation of the dependent and independent 
variables [23]. The schematic diagram of the data fusion method adopted in this work is provided in 
Figure 2. As can be seen, the pre-processed datasets and the three multivariate techniques (PLSR, 
PCR, and SVR) were used for the realisation of low-level fusion of the MWIR and LWIR data blocks 
without feature selection and with feature selection (the grey and blue boxes of Figure 2, 
respectively). The methodological approaches applied for the implementation of the two data fusion 
approaches are described below.  

3.4.1. Low-level Data Fusion without Feature Selection  

Depending on the dataset or detector, the amount and type of noise might differ across the IR 
range. Therefore, pre-processing of the individual data blocks, separately, allows investigating and 
treating the various noise sources across the two IR (MWIR and LWIR) wavelength ranges, 
independently. In the low-level fusion without feature selection approach, the individual pre-
processed reflectance spectra acquired from the MWIR and LWIR data sources were concatenated 
into a single matrix, as shown in the grey box of Figure 2. Therefore, four fused data blocks were 
generated, corresponding to the application of four pre-processing techniques (SNV, normalise, 
baseline, and smoothing) to the individual data blocks (MWIR and LWIR). The fused data blocks 
were used to develop the prediction models using PLSR, PCR, and SVR algorithms, as shown in 
Figure 2. The models were developed using the training (calibration) datasets and were subsequently 
validated using the independent (validation) datasets.  

 
Figure 2. Workflow diagram depicting the steps of the low-level fusion (1) without feature selection 
(the grey box) and (2) with feature selection (the blue box). 

3.4.2. Low-level Data Fusion with Feature Selection 

Unlike low-level fusion, mid-level data fusion requires features reduction, which is achieved 
through variable screening, and thus allows all non-informative variables to be removed in the 
feature selection step. The mid-level fusion requires a modelling step for the extraction of the 
informative features. However, the feature selection method deployed in this study was not based 
on models’ outputs. Thus, the approach is not a standard mid-level fusion where modelling is 
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involved for the extraction of the important variables. Therefore, it is referred to as a low-level fusion 
with feature selection.  

In the low-level fusion with feature selection approach, informative features (in this case, those 
that contain information pertinent for the prediction of mineral compositions of interest) were 
independently extracted from the MWIR and LWIR data blocks. The variable selection or feature 
extraction technique used in this study is based the reference spectra of the minerals from the well-
established mineral spectral libraries. Feature selection requires highly efficient data reduction 
methods, as the aim is to retain only the most important variables in the model. The mineral libraries 
show the infrared reflectance spectra of the (relatively pure) minerals and were used to identify the 
wavelength locations of the spectral features corresponding to the functional groups of the target 
minerals (e.g., Si−O). In this work, the hypothesis for the low-level fusion with feature selection 
implementation is that variables that correspond to the main spectral features are the most 
informative for the prediction of mineral concentrations. Therefore, variable screening was 
performed based on a prior knowledge-based approach.  

The pre-processing techniques described in Section 3.3 were applied on the individual datasets 
prior to variable screening. Subsequently, the important variables (relevant information related to the 
chemical composition) were retrieved from both MWIR and LWIR pre-processed data blocks 
separately. The extracted features from the two data blocks were aligned and concatenated into a 
single matrix. Therefore, the most relevant variables that explain most of the variations in the spectra 
were fused and mean centred. Prediction models were developed using the fused data blocks 
comprising of the extracted features and the three multivariate regression techniques (PLSR, PCR, 
and SVR). The workflow of the low-level fusion with feature selection approach is presented in the 
blue box of Figure 2.  

3.4.3. Individual Datasets  

The prediction models were developed using the individual data blocks (MWIR and LWIR) and 
the three aforementioned analytical techniques (PLSR, PCR, and SVR). The Y (response) variables are 
the concentrations of the minerals (SiO2, Al2O3, and Fe2O3). A series of models were developed using 
the pre-processed MWIR and LWIR data separately. The prediction performance of each model was 
evaluated using independent validation datasets. Next, performance of the prediction models based 
on the fused datasets was compared with that of the models developed using individual data blocks 
(MWIR and LWIR). In the present study, the MWIR and LWIR spectral data were acquired using a 
single instrument (physically integrated system). Thus, to assess the performance of the full-range 
FTIR data model with the fused and individual data blocks, prediction models were developed using 
the full-range FTIR data. The main difference between the full-range FTIR data and the low-level 
fusion is the later pre-processed the individual datasets separately and concatenated. Whereas, the 
former considers both ranges (the MWIR and LWIR) in the pre-processing stage. The low-level fusion 
approach is useful in treating different forms of noise in the spectra data block by data block. Finally, 
the prediction performances of the models developed using the individual techniques, the full-range 
FTIR and the two low-level data fusion approaches were assessed based on the RMSECV, RMSEP, 
and R2 values. 

3.5. Calibration and Validation Datasets  

The 58 samples that were analysed were divided into calibration and validation subsets using a 
random sample selection algorithm, which was first applied to the MWIR dataset. The randomly 
selected samples were assigned into the calibration and validation datasets of the full-range FTIR and 
LWIR datasets. The same procedure was followed for the three datasets (Si2O3, Al2O3, and Fe2O3) to 
ensure that all models related to each mineral utilise the calibration and validation datasets 
comprising of the same samples. The calibration dataset consisted of 43 sample measurements and 
the validation dataset included 15 remaining measurements. To allow a direct model comparison, 
the same split was maintained in the calibration and validation datasets of the individual data blocks 



Sensors 2020, 20, 1472 9 of 19 

 

(MWIR and LWIR), the full-range FTIR dataset, and the fused datasets. In this study, all the analyses 
were performed using the Unscrambler and R software.  

4. Results and Discussion  

4.1. The Individual Datasets  

4.1.1. Spectra Features of the Minerals  

Typical MWIR and LWIR spectra of nearly pure SiO2, Al2O3, and Fe2O3 are shown in Figure 3. In 
the MWIR region, the Al2O3 spectrum exhibits significant features at 2.9 µm, 3.97 µm, 4.75 µm, and 
6.28 µm wavelengths. In the LWIR region of the SiO2 spectrum, stretching vibration modes can be 
seen in the 8−10 µm and 12–14 µm regions due to Si-O stretching. Fe2O3 spectrum similarly shows 
prominent spectral features (peaks) at 3.45 µm, 3.97 µm, 5.57 µm, and 6.76 µm. The spectra pertaining 
to the three minerals show important features (prominent peaks) that are caused by the molecular 
vibration of the functional groups of each mineral. Therefore, it is likely that the mineral 
concentrations can be related to the reflectance value of each sample’s spectrum.  

 
Figure 3. The mid-wave infrared (MWIR) and long-wave infrared (LWIR) reflectance spectra of (a) 
SiO2; (b) Fe2O3; and (c) Al2O3 (Source: Ecostress Spectral library [50]). 

4.1.2. Exploratory Analysis  

Mineral concentrations varied greatly among the analysed samples, as the Fe2O3 value ranged 
from 3.03 to 59.9 wt% with a mean of 24.61, whereas the SiO2 value ranged from 1.66 to 84.1 wt% with 
a mean of 41.28 wt%, and 0.06−15.9 wt% (M = 4.22 wt%) was obtained for Al2O3. Figure 4 shows the 
PCA model score plots of the full-range FTIR data for the SiO2, Fe2O3, and Al2O3 datasets. The plots 
provide information on the potential patterns that are related to the mineral’s concentration.  
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Figure 4. Principal component analysis (PCA) model score plots of (a) SiO2; (b) Fe2O3; and (c) Al2O3 
concentrations categorized into two ranges (the concentrations are expressed in wt %). 

4.1.3. MWIR and LWIR Data Models 

In Table 1–3, the calibration and prediction statistics of the five datasets for Fe2O3, SiO2, and Al2O3 
prediction, respectively, are summarised. The prediction models were developed once each dataset 
has been subjected to the data pre-processing techniques mentioned in section 3.3. However, the 
prediction performance of the data models declined after SNV filtering and not showed significant 
improvement after data smoothing. Therefore, the tabulated data indicate model performance after 
normalisation and baseline correction have been applied to the datasets.  

It is evident that a more accurate prediction was obtained by applying the data pre-processing 
techniques to MWIR, LWIR, and full-range FTIR datasets. For example, for Al2O3 prediction using 
PLSR, the normalized MWIR data model resulted in an improved performance than the raw MWIR 
data model (Table 3). Similarly, the prediction performance of both PCR and SVR models improved 
after data pre-processing (Table 1–3). For all three models (PLSR, PCR, and SVR) used to predict Fe2O3 
and SiO2, the error terms declined and the R2 value improved after MWIR data normalisation. 
Likewise, the LWIR data models developed using the three algorithms (PLSR, PCR, and SVR) 
exhibited improvement after data pre-processing. For example, for the prediction of SiO2 
concentration, the normalized LWIR data model showed a remarkable improvement than the raw 
LWIR data model (Table 2).  

As can be seen from the results reported in Table 1–3, normalisation of the IR data resulted in 
remarkable improvement in the performance of all models, suggesting presence of undesired 
intensity variations in the spectra caused by multiplicative effects. On the other hand, not all data 
filtering techniques necessarily improved model performance, as was the case for the SNV filtering 
technique, irrespective of the dataset or multivariate regression method (PLSR, PCR, or SVR) used. 
This is most likely due to the minimal effects of light scattering and particle size in the IR spectra of 
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the analysed samples. Combination of the pre-processing techniques were analysed for the prediction 
of the mineral’s concentration, however, the prediction performances of the models were not 
improved, thus the results are not included in this paper.  

It is also evident that the prediction performance of models based on MWIR and LWIR data 
depends on the mineral type. For example, LWIR-based models outperform those utilising MWIR 
data in the quantification of the SiO2 concentration (Table 2). Conversely, MWIR data models yielded 
more accurate Al2O3 concentration prediction (RMSEP = 1.86, R2 = 0.85) than those based on LWIR 
(RMSEP = 2.14, R2 = 0.8), as shown in Table 3. It is likely that prediction accuracy is linked to the 
amount of spectral information (relevant spectral features) in the IR dataset. For example, as shown 
in Figure 3 and discussed in Section 4.1.1, the Al2O3 spectrum contains more informative spectral 
features in the MWIR region than in the LWIR region. Conversely, the SiO2 spectrum shows a greater 
number of prominent spectral features in LWIR than in the MWIR region (Figure 3), thus resulting 
in superior prediction of SiO2 concentration by the model based on LWIR data.  

Table 1. Statistical summary of the partial-least squares regression (PLSR), principal component 
regression (PCR), and SVR models for the prediction of Fe2O3.The concentrations of Fe2O3 in the 
analysed samples were in the range of 3.03−59.9 wt%. 

Datasets/ Fusion Method  Pre-
Processing  

PLSR PCR SVR 
RMSEP R2 RMSEP R2 RMSEP R2 

MWIR 
Raw  6.18 0.78 7.88 0.64 5.50 0.81 

Normalize 4.53 0.88 4.97 0.86 3.95 0.90 
Baseline 5.02 0.86 4.01 0.91 6.39 0.77 

LWIR 
Raw  7.32 0.69 5.97 0.80 4.78 0.85 

Normalize 4.51 0.88 5.34 0.84 4.57 0.87 
Baseline 7.50 0.68 5.79 0.81 5.26 0.84 

Full-range 
Raw  6.05 0,79 5.2 0,84 4.71 0.87 

Normalize 3.68 0,92 3.95 0.91 3.40 0.93 
Baseline 4.29 0.89 4.03 0.91 4.86 0.87 

Low-level Normalize 3.30 0.94 3.36 0.94 3.16 0.95 
Baseline 4.57 0.88 3.87 0.91 4.94 0.84 

Low-level with the selected 
features 

Normalize 4.22 0.90 4.44 0.89 4.34 0.89 
Baseline 5.18 0.85 5.76 0.81 7.34 0.69 

Table 2. Statistical summary of the PLSR, PCR, and SVR models for the prediction of SiO2.The 
concentrations of SiO2 in the analysed samples were in the range of 1.66−84.1 wt%. 

Datasets/ Fusion Method  
Pre-

Processing  
PLSR PCR SVR 

RMSEP R2 RMSEP R2 RMSEP R2 

MWIR 
Raw  7.95 0.87 8.22 0.86 10.30 0.74 

Normalize 7.77 0.88 8.80 0.84 8.47 0.86 
Baseline 8.40 0.86 7.38 0.89 9.89 0.82 

LWIR 
Raw  12.8 0.67 9.69 0.81 9.13 0.83 

Normalize 6.12 0.92 6.50 0.91 6.56 0.90 
Baseline 9.13 0.83 9.06 0.83 8.74 0.85 

Full-range 
Raw  6.95 0.90 7.55 0.88 9.14 0.86 

Normalize 6.42 0.92 7.16 0.90 7.52 0.90 
Baseline 7.19 0.90 8.44 0.86 9.08 0.83 

Low-level 
Normalize 5.96 0.93 7.17 0.90 6.85 0.90 

Baseline 7.66 0.88 8.56 0.85 8.69 0.89 
Low-level with the selected 

features 
Normalize 6.40 0.92 6.06 0.93 6.77 0.91 

Baseline 8.30 0.86 8.37 0.86 10.10 0.81 
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Table 3. Statistical summary of the PLSR, PCR, and SVR models for the prediction of Al2O3. The 
concentrations of Al2O3 in the analysed samples were in the range of 0.06−15.9 wt%. 

Datasets/ Fusion Method  Pre-
Processing  

PLSR PCR SVR 
RMSEP R2 RMSEP R2 RMSEP R2 

MWIR 
Raw  2.16 0.79 2.05 0.81 1.69 0.86 

Normalize 1.86 0.85 1.92 0.84 1.93 0.83 
Baseline 2.11 0.80 1.99 0.82 1.68 0.88 

LWIR 
Raw  2.47 0.73 2.59 0.70 2.3 0.77 

Normalize 2.09 0.80 2.03 0.82 1.86 0.85 
Baseline 2.29 0.76 2.71 0.75 1.83 0.84 

Full-range 
Raw  2.02 0.82 1.99 0.82 1.75 0.87 

Normalize 2.02 0.82 1.99 0.82 1.9 0.85 
Baseline 2.15 0.79 1.82 0.85 1.69 0.87 

Low-level 
Normalize 1.95 0.83 2.06 0.81 1.83 0.86 

Baseline 2.06 0.81 2.13 0.80 1.68 0.88 
Low-level with the selected 

features 
Normalize 1.40 0.91 1.48 0.90 1.79 0.86 

Baseline 1.82 0.85 1.77 0.86 1.59 0.89 
 
As shown in Figure 3, the pure minerals show spectral features in both MWIR and LWIR regions. 

However, the spectrum of each sample also includes information pertaining to the complex matrix 
of sulphide minerals, making identification of each individual component challenging. For this 
reason, in this work, three multivariate analysis techniques (PLSR, PCR, or SVR) were adopted, 
confirming that semi-quantification of the minerals in a polymetallic sulphide ore samples was 
possible using individual MWIR and LWIR datasets. This is an interesting finding, since the MWIR 
region of the electromagnetic spectrum is rarely used in lithological material characterisation. 

4.2. Low-level Fusion without Feature Selection  

In low-level data fusion, data integration occurs in the initial stages of the analytical data flow, 
after proper pre-processing [23]. Thus, mineral concentration prediction based on this approach is 
highly influenced by the choice of pre-processing techniques. In the present study, as shown in Table 
1, a better prediction of Fe2O3 concentration (RMSEP = 3.31, R2 = 0.94) was achieved using the PLSR 
model when the normalised MWIR and LWIR data blocks were fused than when these datasets were 
treated with SNV (RMSEP = 4.76, R2 = 0.87). Moreover, the SVR model resulted in a better prediction 
of Fe2O3 after normalisation (RMSEcv = 3.90, RMSEP = 3.16, R2 = 0.95) relative to that yielded by the 
PLSR or PCR models (Table 1 and Figure 5).  

Similarly, enhanced SiO2 prediction was achieved after the normalised MWIR and LWIR data 
blocks were fused compared to the outputs produced using other pre-processing techniques (Table 
2). For the prediction of Al2O3, low-level fusion of normalised MWIR and LWIR data blocks resulted 
in a better prediction than when the data blocks were treated with the other data filtering techniques 
(Table 3, Figure 6, and Table S3). These findings confirm the need for adopting DoE in the selection 
of most optimal data filtering techniques.  

As noted in Section 2.2.1, the MWIR and LWIR datasets were acquired using a single-sensor FTIR 
spectrometer. This allowed the performance of models based on the full-range FTIR data (which 
includes both MWIR and LWIR datasets) to be assessed and compared to the low-level fusion results. 
The findings revealed that the prediction models applied to the dataset formed by low-level fusion 
are superior to the full-range FTIR data models. For example, for the prediction of Fe2O3, the optimal 
PLSR model after low-level fusion has an RMSEP = 3.3 and R2 value of 0.94, compared to RMSEP = 
3.68 and R2 = 0.92 obtained for the full-range FTIR (Table 1). Similarly, using low-level fusion for the 
prediction of SiO2 and Al2O3 concentration is superior to the results obtained using the full-range 
FTIR data (Tables 2 and 3). This might be due to the different amount of noise in the MWIR and LWIR 
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wavelength regions that require independent pre-processing of the two data blocks. Even though 
these improvements are not statistically significant, the results suggest data fusion as a better and 
comparative option for a combination of multiple sensors. This is an interesting point, since the 
physical integration of multiple sensors into a single platform is challenging and expensive, in terms 
of practical implementation. Thus, for a combination of multiple data sources, data fusion can be 
considered as an economic and practical alternative option. 

 
Figure 5. (a) SVR; and (b) PCR regression results for the predicted vs. actual Fe2O3 concentration after 
applying low-level fusion on the normalised MWIR and LWIR data blocks.  

 

Figure 6. PLS regression results based on the dataset formed by low-level fusion of the normalised 
MWIR and LWIR data blocks for predicting Al2O3 concentrations (a) the explained variance (b) the 
predicted vs. actual concentration for the calibration (RMSEcal) and cross-validation (RMSEcv) 
models. 

4.3. Low-level Data Fusion with Feature Selection 

In this study, the extracted informative variables from the two data blocks are indicated in Table 
4. The prediction of Al2O3 concentration using PLSR and the low-level fusion with the selected 
features after data normalization, significantly improved compared to applying the models to 
datasets subjected to low-level fusion without feature selection as well as the full-range FTIR data 
models (Table 3). Similarly, after low-level fusion with the selected features, enhanced Al2O3 
prediction performance was observed for models based on the PCR and SVR (Table 3). These findings 
indicate that the feature selection approach was able to capture most of the important variations in 
the spectral data. In addition, by excluding the irrelevant information, feature selection method 
enhanced the prediction performance of the Al2O3 models. 

Table 4. The wavelength range of the features related to SiO2, Al2O3, and Fe2O3 mineral composition 
extracted from the MWIR and LWIR reflectance datasets. 
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Minerals  MWIR Wavelength (µm) LWIR Wavelength (µm) 

Al2O3 2.85–3.10 7.00–7.29 
3.83–5.73, 6.20–6.40 10.50–11.40 

Fe2O3 

2.78–2.92, 3.38–3.5, 3.92–4.03,  
5.0–5.10 

7.00–7.20, 7.74–8.05,  
9.38–10.00 

5.30–5.39, 5.53–5.69, 6.15–6.31,  
6.76–7.00 11.30–11.6, 13.90–14.10, 14.40–14.60 

SiO2 3.65–4.93 
8.00–10.00 

12.00–13.00 
The SiO2 and Fe2O3 prediction models after the selected features fusion were better than the 

individual datasets models (Table 1, 2, and Figure 7). However, low-level fusion without feature 
extraction resulted in a better Fe2O3 and SiO2 concentration prediction relative to the extracted 
features fusion (Tables 1 and 2). This is likely due to the fact that not all relevant information was 
retained in the extracted spectra of the minerals. Therefore, alternative feature extraction techniques 
(e.g., multivariate curve resolution-MCR) can likely improve the fusion results.  

 
Figure 7. PLS regression of predicted vs. actual SiO2 concentration after the selected features fusion 
of the normalised MWIR and LWIR data blocks (a) for calibration and cross-validation; and in (b) the 
prediction model. 

The main advantage of feature selection (variable screening) is that non-informative variation 
can be removed in the variable screening step, potentially enhancing the prediction accuracy. The 
rapid advances in sensor technologies allow generation of multi- and mega-variate data. These 
datasets can be utilised in data-driven approaches. Nonetheless, high data volume remains a 
significant challenge for both data processing and storage. Therefore, data volume reduction without 
loss of information is always preferable. This can be achieved using multivariate data analysis 
techniques and data fusion approaches. For example, in this work, when variable screening was 
performed prior to the implementation of the low-level data fusion, data volume reduction from 79% 
to 58% was achieved. Specifically, for the prediction of Fe2O3 and Al2O3 concentration 21% and 40% 
of the variables (data) were used, respectively, in the prediction models to retain the important 
information while enhancing prediction accuracy (Tables S1–S3). 

4.4. Data Fusion vs. Individual Sensors 

Despite the fact that IR technologies are mainly used for qualitative analysis of materials, the 
results obtained in this work show the potential of the individual techniques (MWIR and LWIR) for 
quantitative analysis of minerals in polymetallic sulphide ore samples. Moreover, data fusion both 
with and without feature selection yielded better prediction performance compared to those based 
on individual techniques and the full-range FTIR data models (Table 1–3). This is likely due to the 
fact that the fused data blocks use the synergy between the two data blocks (MWIR and LWIR). In 
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addition, extraction of the informative variables maximizes the relevant information (related to the 
concentration of the minerals) in the fused data models. Therefore, data fusion is a preferred 
approach for quantitative analysis of minerals.  

It is also worth noting that some of the models based on individual (MWIR and LWIR) datasets 
yielded more accurate prediction than did models based on the full-range FTIR dataset. For example, 
applying models based on PLSR, PCR, and SVR on the LWIR data resulted in enhanced SiO2 
prediction compared to the full-range FTIR model (Table 2). This indicates the importance of 
extracting the informative variables from the two datasets prior to modelling, which was achieved in 
this work by adopting data fusion. 

Data fusion allows handling different forms of uncertainties (e.g., different forms of noise) prior 
to modelling and is thus very useful approach for both classification and prediction problems 
analysis using various classification or regression algorithms. Its main benefits are enhanced 
prediction accuracy, lower uncertainty, enhanced availability of information, and holistic description 
of materials under investigation. Moreover, the physical integration of sensors requires complex and 
expensive system design. Therefore, data fusion is a promising alternative for enhanced 
characterisation of materials in mining operations using multiple sensors.  

4.5. Comparison of the Proposed Models  

In the present study, adoption of linear and non-linear multivariate techniques (PLSR, PCR, and 
SVR) resulted in comparable performance in terms of prediction of the minerals concentrations. 
Particularly, the PLSR and PCR results are similar. The major difference was obtaining the higher 
number of factors (PCs) for PCR (Tables S1–S3). In general, the overall results show both the linear 
and non-linear techniques provided good and acceptable results. Therefore, for the given datasets, 
moderate effects of the choices of models (linear or non-linear models) were observed.  

4.6. Benefits and Limitations of the Proposed Approach for Mining Applications  

The results reported in this work demonstrate that MWIR and LWIR spectral ranges capture 
information relevant for predicting mineral concentrations in polymetallic sulphide ore samples. 
While data fusion appears to enhance model prediction accuracy, it may be difficult to apply to data 
obtained from multiple sources. A further potential challenge stems from the large data matrix 
produced by data concatenation, as this is likely to cause both computational and data storage issues. 
However, fusion of the extracted informative variables minimises the data volume using variable 
screening and was shown in this work to yield enhanced or comparable prediction performance. This 
is an interesting finding, since it shows the potential of the proposed approach for integration of 
multiple data sources (such as SWIR or Raman spectra) without generating a large data matrix after 
concatenation.  

Quantified mineralogical information is crucial for elucidating the variability within a deposit, 
and can benefit in geometallurgical characterisation (e.g., different minerals have different flotation 
properties), controlling ore grade, defining blasting parameter requirements, and ensuring product 
quality. Thus, it can be highly valuable for maximising the potential economic benefit of mining 
operations. Currently, quantitative analysis of minerals is conducted using x-ray diffraction (XRD) 
or automated scanning electron microscopy (ASEM), both of which are laboratory-based techniques. 
Thus, IR systems coupled with data fusion approaches can be considered as complementary 
techniques to achieve rapid determination of mineral concentrations. Overall, the prediction 
accuracies achieved in this study are sufficient for rapid in-situ indication of mineral concentrations 
in polymetallic sulphide ores using a portable system. Therefore, the availability of the portable 
instruments combined with the promising results of this study supports the practicality of the 
proposed approach for online in-situ analysis of minerals.  

5. Conclusions  
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In this work, different scenarios were investigated to assess their influence on the prediction of 
SiO2, Al2O3 and Fe2O3 concentrations in polymetallic sulphide ore samples using infrared reflectance 
spectra, namely:  

(1) the use of individual spectral regions (MWIR and LWIR);  
(2) the effect of different data pre-processing techniques on the prediction performance;  
(3) potential for improvement in prediction accuracy by applying low-level and low-level with 

feature selection data fusion approaches; 
(4) comparative benefits of applying linear (PLSR and PCR) and non-linear (SVR) multivariate 

analysis techniques. 

The results reported in the preceding sections show that both MWIR and LWIR datasets include 
relevant information that can be employed in determining mineral concentrations. Moreover, data 
fusion significantly improved model prediction accuracy. Models incorporating both the linear and 
non-linear multivariate techniques (PLSR, PCR, and SVR) resulted in comparable performance. The 
choice of the data pre-processing techniques was shown to exert significant influence on the model 
output. For the prediction of Al2O3, the best-performing model was achieved using PLSR and the 
low-level fusion of the extracted features after data normalisation (RMSEP = 1.4, R2 = 0.91). The PLSR 
model better predicted Fe2O3 in polymetallic sulphide ore after low-level fusion of normalised MWIR 
and LWIR data blocks (RMSEP = 3.3, R2 = 0.94). Finally, the best prediction of SiO2 concertation was 
achieved by the PLSR model after normalised data blocks were subjected to low-level fusion (RMSEP 
= 5.96, R2 = 0.93). Overall, both the linear and non-linear techniques provided good and acceptable 
results. Although the acquired prediction accuracies are lower than those of the standard laboratory-
based techniques, the proposed method is suitable for rapid in-situ indication (semi-quantification) 
of mineralogical concentrations along the mining value chain. 

The fact that the use of the extracted features significantly reduced the data volume and resulted 
in promising results suggests a great potential of applying data fusion to data obtained from multiple 
sources. Our future work will focus on extending the data fusion framework for integration of 
additional data sources (e.g., SWIR and Raman) to achieve a holistic description and improved 
quantification of minerals in different deposit types using the synergy among the different data 
sources. This will be beneficial for improving resource efficiency in the mining industry.  

Supplementary Materials: The following are available online at www.mdpi.com/1424-
8220/20/5/1472/s1, Table S1: Statistical summary of the PLSR, PCR and SVR models for the prediction 
of Fe2O3. The concentrations of Fe2O3 in the analysed samples were in the range of 3.03−59.9 wt%, 
Table S2: Statistical summary of the PLSR, PCR and SVR models for the prediction of SiO2. The 
concentrations of SiO2 in the analysed samples were in the range of 1.66−84.1 wt%, Table S3: 
Statistical summary of the PLSR, PCR and SVR models for the prediction of Al2O3. The 
concentrations of Al2O3 in the analysed samples were in the range of 0.06−15.9 wt%.  
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