TU Delft

An analysis of Java release practices on GitHub

Vivian Roest!

Supervisor(s): Sebastian Proksch'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Vivian Roest
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Casper Poulsen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This paper examines the release practices of Java
Maven Repositories on GitHub. Most prior re-
search in this vein has been done on Maven Central,
the largest Maven package repository. However,
GitHub hosts 15.5 million Java repositories, and is
left untapped. Additionally of interest is the fact
that GitHub provides a competitor to Maven Cen-
tral, GitHub packages. To this end, the paper estab-
lishes an index of all Java repositories on GitHub.
Furthermore, this dataset also includes Maven con-
figuration (POM.xml) files. Additionally, an in-
depth analysis is done of a sample of 500000 of
those 15.5 million repositories. This sample ended
up containing 170 798 Java Maven repositories that
had those POM. xml files. In this sample we discov-
ered that of those 170798, 6 507 (~ 3.8%) had set
up distribution configuration. Maven Central ended
up being the most popular but GitHub packages and
others ended up being quite popular as well. In
the external repositories configured in those Java
projects we notice a distinct lack of GitHub pack-
ages, other repositories were still present. We the-
orize that the lower popularity of GitHub packages
is because it requires authentication, which is not
trivial to set up. We discuss several approaches that
can improve this situation.

1 Introduction

GitHub is the one of the most popular online code hosting
platforms, it hosts a staggering 284 million public reposito-
ries [1]. This makes it an extremely attractive source of data
to research what developers are doing in the wild. A lot of
research into the practices of Java developers is customarily
done using the data from Maven Central [2-7], the largest
Java artifact repository'. Some studies [8, 9], do use GitHub
rather than Maven Central. However, those still only analyse
a maximum 34 560 repositories which is a fraction of the 15.5
million Java repositories available.

Therefore, there is this large untapped set of real world data
on how developers use Java. Specifically what is interest-
ing are the unique qualities that set GitHub apart from other
sources. One such quality is that, unlike Maven Central which
only hosts libraries, GitHub contains a lot of applications and
personal projects. Additionally, GitHub potentially disrupts
the centrality of Maven Central by not just being a platform
to host Java source code, but also by hosting Java artefacts
with GitHub packages®. GitHub packages is essentially a di-
rect competitor to Maven Central.

This GitHub package repository also brings along with it
some unique challenges. One of them is the fact that to down-
load any package from the repository you need to configure
credentials in your Maven config for the specific repository

"https://mvnrepository.com/
2As determined by this paper
3https://github.com/features/packages

ID*. These GitHub repository URLs with their IDs are unique
per dependency so if one has a lot of (transitive) dependen-
cies on GitHub packages this can present quite the hassle to a
developer.

Furthermore, GitHub also provides a Continuous Integra-
tion (CI) solution called GitHub Actions® which might pro-
vide us with a way into seeing how developers actually end
up publishing their packages, and how specifically they deal
with the authentication issue.

This leads us to the main research question (RQ1) of this
paper: “What are the Maven release practices on GitHub?”
Which can be split into the following subquestions:

RQ2 Can we make a dataset of Java repositories on GitHub?
RQ3 Are these projects released, and where are they released?
RQ4 What is their use of external repositories?

RQS5 How is authentication for releasing packages to distribu-
tion repositories realized?

The main contributions of this paper are a dataset of all
Java repositories on GitHub, an analysis of where developers
release their packages (e.g. Maven Central or GitHub), the
usage of external (not Maven Central) repositories for down-
loading Java dependencies, and an investigation on the re-
lease practices of Java Maven projects.

For the dataset it is not only the data that is important
but also providing a scalable, extendable method of obtain-
ing this, as this could also be the starting point of research
questions not considered in this paper.

First the methodology will be outlined, followed by the re-
sults. Afterwards a section on responsible research follows.
Then the results and potential future work will be discussed
to then end with a conclusion.

2 Methodology

This section will discuss the method and implementation of
the pipeline that was created to answer the research questions.
We will first go into what data we need and how we retrieved
it in Subsection 2.1. Afterwards in Subsection 2.2 we will
explain how and what we analysed exactly.

Both the implementation of the pipeline as the analyser are
implemented in the Rust programming language because it
provides well-performing code, ways to create fault-tolerant
programs (specifically the error handling), and because of a
familiarity of it with the author(s).

2.1 The Dataset

To properly answer the research questions we need to gather
a certain set of data. This data needs to include a few things.

Firstly, for RQ2 we simply want an index of all Java repos-
itories on GitHub, similarly to how Maven Central provides
an index of all its packages®. We also want to do this in a scal-
able efficient way, and ensure it can be used by others. Sec-
ondly, for research questions RQ3 and RQ4 we need to de-
termine if a certain project releases its packages and if it uses

4See https://docs.github.com/en/packages/working-with-a-githu
b-packages-registry/working- with-the-apache-maven-registry

Shttps://github.com/features/actions

®https://maven.apache.org/repository/central-index.html

https://mvnrepository.com/
https://github.com/features/packages
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-apache-maven-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-apache-maven-registry
https://github.com/features/actions
https://maven.apache.org/repository/central-index.html

any external repositories. For this information we can uti-
lize “POM.xml” files”. These POM files define dependency
and project information for Maven Java Projects®. Finally, for
RQS5 we will fetch the GitHub workflow files of each reposi-
tory that has releases, so we can inspect them to see how they
realize their releases.

There do exist some prior attempts at mining GitHub
as a whole such as GHTorrent[10], and GitHub Archive’.
However, both are more focused on the stream of GitHub
events rather than the data contained within the repositories.
Therefore, these sources of GitHub data do not contain the
‘POM.xml’ or workflow files we need. Additionally, GHTor-
rent seems to sadly be unavailable since July 2019 accord-
ing to its README!?. Furthermore, some research on Python
notebooks [11] done at Microsoft itself leverages the fact they
have direct access to GitHub’s raw backend. This is because
they are the owners of GitHub. Unfortunately Microsoft does
not share this data.

Interestingly, the Rust programming language, actually al-
ready has some precedence regarding this:

We compile and test every single crate on crates.io
and every single Rust repository on GitHub with a
Cargo.lock file using the new version of Rust before
releasing it.

— Mara Bos[12, p. 4]

This program is called ‘Crater’[13] and fetches similar meta-
data for Rust projects as the kind of data we set out to look
for our Maven GitHub projects. We will turn to this project
to see if we can make it fetch the data we need.

2.1.1 Indexing all Java projects on GitHub
GitHub contains a lot of repositories, around 284 Million[1].
So indexing these all is non-trivial, and requires a solution
that is fault-tolerant and efficient. To start off with we turn
to the aforementioned ‘Crater’ and examine their approach to
help us make our own modified version fit for our purpose.
Crater’s indexer works as follows: It uses GitHub’s
/repositories API endpoint'! to request a list of (all)
repositories. This list is paginated and chronological. Then
for each repo on that list it does a GraphQL query to ascer-
tain, if, firstly, the repository contains Rust code and sec-
ondly, the repository is not a fork. If both conditions are met
it will check if a Cargo.lock (Rust’s version of a POM. xml)
file is present through the raw file API'? and save that in-
formation in a CSV list. Which contains a hashed identifier,
the repo path and a boolean indicating the presence of the
Cargo.lock. Afterwards this data is used to clone all repos-
itories and run a certain test suite on them to check if they
compile, however, this part of Crater is not as relevant to us.

"Project Object Model, see also: https://maven.apache.org/guide
s/introduction/introduction-to-the-pom.html

8These are similar to build.gradle, package.json, and
cargo. toml files from Gradle, NPM and Cargo respectively.

“https://www.gharchive.org/

https://github.com/ghtorrent/ghtorrent.org

Thttps://docs.github.com/en/rest/repos/repos?apiVersion=202
2-11-28

12Namely raw.githubusercontent.com/

Initially some straightforward changes were made to this.
Namely, changing it to search for Java instead of Rust, and
looking for POM. xml instead of Cargo. lock files. Addition-
ally, the code was also updated to use a newer version of Rust
and some small refactors were made to make the codebase
easier to work with.

However, as there are significantly more Java repositories
than Rust ones a bigger rewrite ended up being necessary for
our purpose. There are three additional major ways we dif-
fer from Crater’s implementation (beside the general refac-
tor and updating of the code). Firstly, our implementation
searches recursively through a/l POM. xm1 files instead of only
top-level ones, but more on that in the next paragraph. Sec-
ondly, we made error handling more robust. We did that
because the indexer is supposed to run for days on end to
gather all the data needed, and therefore it should not crash
randomly and require manual intervention. The update was
needed because while Crater could deal with certain errors it
seemed the GitHub API had changed the way it reports those
errors, this was of course important to change for our im-
plementation. The other things considered were mainly: mal-
formed responses from GitHub, unexpected status codes from
GitHub, and spurious network failures. Thirdly, GitHub has
a rate limit of 5000 API requests per hour'3. Which causes
problems when trying to index millions of repositories. For
Crater this was not as much of a consideration as the amount
of Rust repositories is comparatively smaller. Because the
5000 API request limit is per API token and not per IP ad-
dress the program accepts an array of GitHub tokens. It cycles
through these tokens whenever encountering an error code
that indicates the program is being rate limited. Whenever it
has wrapped around to the first token the program waits one
minute to not overload the API unnecessarily.

2.1.2 Downloading all POM files

After having compiled a list of Java repositories on GitHub, to
find answers to our research questions we need the POM. xml
files from these repositories. Because these files are not re-
quired to be top-level and that a project may have multiple
we need to search through all files and folders within a repos-
itory. To this end we use GitHub’s trees endpoint'#, which
gives as the Git tree at a specific commit of a repository. Be-
cause we do not need historical data we simply grab the latest
version of the main branch, this can be done by specifying
HEAD as our git ref.

Because a repository might have many POM. xml files these
files are fetched asynchronously and in parallel, as to not cre-
ate a bottleneck. This ensures we can fetch as many files as
the rate limit allows us to.

2.1.3 GitHub Workflow Collection

As we are also interested in if and how repositories use
GitHub workflows we use a similar approach as described
in Subsection 2.1.2, to download GitHub workflow files if

Bhttps://docs.github.com/en/rest/using-the-rest-api/rate-limits-f
or-the-rest-api?apiVersion=2022-11-28

“https://docs.github.com/en/rest/git/trees?apiVersion=2022- 1
1-28

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://www.gharchive.org/
https://github.com/ghtorrent/ghtorrent.org
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api?apiVersion=2022-11-28
https://docs.github.com/en/rest/git/trees?apiVersion=2022-11-28
https://docs.github.com/en/rest/git/trees?apiVersion=2022-11-28

present. Unfortunately, we have not analysed these work-
flow files programmatically given the limited time available
for this research. However, this was also done to show that
the scraper is relatively easy to extend. The complexity of
analysis is higher but of course also depends on the data that
is desired.

2.2 Analysis

Finally, to extract the statistics we want to know we need to
parse the POM.xml files. However, it is not necessarily that
straightforward, as POM files can inherit from other POM
files, so POM files are not self-contained. To address this
Maven has a command-line utility called ‘effective pom’,
which resolves a POM file into an effective POM, which
resolves parent POMs, interpolates variables and even can
run plugins to fully full in all information needed to build a
project. We run this utility for every POM file in a repository
and then merge the results to get one ‘report’ per repository.

Unfortunately generating these ‘effective POM’ files takes
quite a bit of time, partially because of the network requests it
may make, but also simply the execution of the Maven com-
mandline tool can take a while. To improve the throughput
of analysis we use multithreading to spread out the work on
all available CPU cores. The pipeline also has an option to
not generate this effective POM (but still read older ones that
were generated earlier), for testing or if one would not need
the full effective POM for their analysis. This speeds up the
analysis significantly.

The specific keys we extract from the final POM files are
as follows:

* The top-level repositories in the POM file, which are the
ones used for dependencies. To see if projects use exter-
nal repositories for their dependencies.

* The repositories under distributionManagement, to
see where and if a repository is released.

This report contains the following information
* Total number of repositories analysed

e Per distribution repository how many GitHub reposito-
ries use it

 Per external repository how many GitHub repositories
use it

* The flat number of repositories that have external repos-
itories configured

* A list of repositories that have distribution repositories
configured

* A list of errors that occurred during processing

Additionally, we also calculate per hostname how many
distinct repositories URLs there are, this is to ascertain the
decentralized nature of the repositories in the dataset.

3 Results

This section shows the results collected from the pipeline de-
scribed in Section 2. We will start with a look at the complete
dataset that was gathered in Subsection 3.1, to answer RQ2.

20080
10% | .
5% 6507 |
368
0%
7 o% Q .\@‘
& & &
> & O@
&Q 0\’\ 6Q
5 & &
. K
¢ N\ $

Figure 1: The percentage of repositories that have external repos,
distribution repos or invalid POM files out of a total of 170 798. The
y-axis shows percentage, the numbers on the bars are the absolute
number of repositories in each category.

Afterwards, we will look at the popularity of both distribu-
tion and external repositories in Subsections 3.2 and 3.3, to
answer RQ3 and RQ4 respectively. Finally, we will have a
look at the gathered workflow files for RQS in Subsection 3.4.

3.1 The Dataset

While creating the dataset of all Java repositories on GitHub
we ended up with a staggering 15.5 million repositories. This
statistic is already of note because GitHub’s search feature
claims that there are only 4.1 million Java repositories'.
It could be that GitHub only reports repositories that have
> 50% of Java files, but that’s purely a conjecture. GitHub
seemingly does not provide information on how this number
is established.

We ended up using a random sample of 500 000 of those
15.5 million to analyse. However not all of these ended
up containing POM. xml files, so we ended up with 170 798
repositories we actually analysed. This sample was entirely
randomly selected with a fixed seed programmed into the pro-
gram to ensure reproducibility given the same initial data.
The reason for not analysing all repositories is mostly be-
cause of the runtime of the Maven commandline tool to make
an effective POM, which could take up to three seconds per
POM. xm1 file.

3.2 Distribution Repositories

To answer RQ3 we will now look at which distribution repos-
itories are most popular and how prevalent using them and
thus releasing dependencies is.

SData from GitHub search retrieved on 2023-11-24

number of uses url

2362 https://oss.sonatype.org/service/local/staging/deploy/maven2

382 https://repository.apache.org/service/local/staging/deploy/maven2

193 https://s01.0ss.sonatype.org/service/local/staging/deploy/maven2

103 https://repo.spring.io/libs-release-local

101 https://repository. jboss.org/nexus/service/local/staging/deploy/maven2/
93 https://repo. jenkins-ci.org/releases/

67 http://oss.sonatype.org/service/local/staging/deploy/maven2/

55 dav:https://google-maven-repository.googlecode.com/svn/repository/

Table 1: Most Popular Maven distribution repositories, exact URLs

number of uses

distinct repositories url

2362 15
393 2
245 238
205 5
106 105
105 3
105 3
103 2

0ss.sonatype.org
repository.apache.org
maven.pkg.github.com
s0@l.oss.sonatype.org
api.bintray.com
repo.spring.io

repo. jenkins-ci.org
repository. jboss.org

Table 2: Most Popular Maven distribution repositories, grouped by hostname

To start off with we can look at Figure 1 to see that the num-
ber of Java Repositories (that have POM files) from GitHub
that use distribution repositories is 6 507 of the 170 798 which
translates to ~ 3.8%. This figure may seem on the one hand
small, but as we expected most repositories on GitHub are not
libraries but rather applications.

We also gathered which distribution repositories specifi-
cally were most popular. We split this into two tables. First by
exact URL as we can see in Table 1. Secondly, also by host-
name as seen in Table 2 to get a more generalized overview.

3.2.1 What do these URLs mean?

This section gives a summary of the most popular URLs
we are seeing. We can see that the most popular repository
URL is oss.sonatype.org, this makes a lot of sense as
this is the URL used by Maven Central to publish pack-
ages. Additionally, we also see s®1.0ss.sonatype.org
ranked highly which is the new URL to be used for Maven
Central'®. Both of these URLs for Maven Central have
a low number of distinct URLs as there might be some
variations with a leading backslash or not, http or https, and
with using for example the snapshot repository URL like
oss.sonatype.org/content/repositories/snapshots
to get newer versions of dependencies. If we also look at
the specific URLs we also see that some people still use the
unsecure http version of the URL.

Next up, we see that repository.apache.org is another
very popular repository. This repository contains the artefacts
of various Apache projects, and as many Apache projects in-
herit from the Apache parent POM!” they automatically in-

https://central sonatype.org/news/20210223 _new-users-on-s01
"https://github.com/apache/maven-apache-parent/

clude this distribution URL.

We also see that GitHub’s own package repository is rela-
tively popular sitting at third place, with 245 Java repositories
using it. Here we also see the high number of distinct URLSs
as for every GitHub package you get a new Maven repository
URL.

Similarly, for ‘bintray’ which was a competitor for Maven
Central to distribute one’s artefacts. It also uses unique URLSs
per dependency. It is less popular than GitHub, but that is
also because of the fact it is discontinued'.

Now we turn to repo.spring.io which is both used by
the Spring'® developers to publish their packages but was also
used as an artefact cache until 2020%° which allowed unau-
thenticated users to push their packages to it. As this has now
discontinued it is also falling out of favour, but plenty of old
repositories still have it configured.

Jenkins’s is a Continuous Integration platform?!, the reason
it is relatively high on the list of distribution repositories is
that after requesting permission®? a developer is allowed to
push their plugins for Jenkins to their repository.

Finally, repository. jboss.org is a shared repository
by all members of the JBoss community??, which allows them
to publish packages onto it. As again it is a relatively open
repository it has quite a bit of use.

Bhttps://bintray.com

Phttps://spring.io

Phttps://spring.io/blog/2020/10/29/notice- of-permissions-chang
es-to-repo-spring-io-fall-and-winter-2020/

2 https://jenkins.io

Zhttps://www.jenkins.io/doc/developer/plugin- governance/mana
ging-permissions/#release-permissions

Bhttps://developer.jboss.org/docs/DOC-11377

https://central.sonatype.org/news/20210223_new-users-on-s01
https://github.com/apache/maven-apache-parent/
https://bintray.com
https://spring.io
https://spring.io/blog/2020/10/29/notice-of-permissions-changes-to-repo-spring-io-fall-and-winter-2020/
https://spring.io/blog/2020/10/29/notice-of-permissions-changes-to-repo-spring-io-fall-and-winter-2020/
https://jenkins.io
https://www.jenkins.io/doc/developer/plugin-governance/managing-permissions/#release-permissions
https://www.jenkins.io/doc/developer/plugin-governance/managing-permissions/#release-permissions
https://developer.jboss.org/docs/DOC-11377

3.3 External Repositories

To answer RQ4 we will now look into the popularity of ex-
ternal repositories in our sample.

We also gathered which external repositories were most
popular. Again split into two tables. The exact URLs in Ta-
ble 3 and grouped by hostname in Table 4 which also again
has the number of distinct repositories per hostname that are
actually used, we can see again that some URLs are much
more fragmented than others.

Again we will look at some of these repositories individu-
ally to understand what they host and why they rank so high.

3.3.1 What do these URLs mean?

First up we see repo.spring.io being the most used ex-
ternal repository. Some Spring dependencies are just avail-
able on Maven Central but apparently not all, it being one of
the more popular Java frameworks it makes sense to see it so
high in popularity. We see some number of distinct repository
URLS for spring, this is because spring has various URLs for
snapshots, milestones, releases all per categories like plugins,
libs, etc.

Next wup, oss.sonatype.org and by extension
repol.maven.org are the URLs for Maven Central,
ordinarily you would not have to specify these URLs in
your POM file as it is included manually but evidently some
developers still do, this can again be for snapshots or other
reasons. Specifically of note is that repol.maven.org is the
old URL for maven.

Moving on, hub. spigotmc.org is also very popular. This
is a repository hosting plugins for the open source server soft-
ware of the video game Minecraft>*. When developing new
plugins one might want to import other ones. As this video
game is so popular, this ranks highly.

Furthermore, we see maven.aliyun.com which is the
Maven repository for the Alibaba cloud provider?, it pre-
sumably hosts or caches some packages for it, however the
documentation appears to be all in Chinese?®, which is a lan-
guage the author(s) of this paper do not speak, which made it
hard to draw conclusions.

Additionally, we see that jitpack.io is also relatively
popular. This is in essence a similar software solution to
GitHub packages or bintray with one major difference: it ref-
erences packages by Git URL and does not use Maven itself
for publishing, hence the exclusion in Subsection 3.2. For ex-
ample, one would reference a dependency that is hosted on
jitpack as seen in Figure 2.

Finally, we see the now familiar bintray, apache and jboss
repository. Whose popularity was already explained in the
previous section on distribution repositories.

Finally, a notable exclusion this time around is GitHub’s
package repository with only 89 uses in our sample. This was
not enough to show up in the list of most popular repositories.
All of these 89 uses are for different packages, there is no
singular popular dependency hosted on GitHub packages in
our dataset.

Zhttps://www.spigotme.org/
Bhttps://eu.alibabacloud.com/
*https://developer.aliyun.com/mirror/maven/

<repositories >
<repository >
<id>jitpack .io </id>
<url>https :// jitpack .io </url>
</repository >
</repositories >

<dependency >
<groupld>com. github . User </groupld>
<artifactld >Repo</artifactld >
<version >Tag</version>
</dependency>

Figure 2: Usage example of jitpack.io, taken from: https://jitpack.io

3.4 GitHub Workflow Release Practices

If we now focus on just the GitHub Java repositories that re-
lease their packages on some distribution repository in Fig-
ure 3 we can see the proportion of those that use GitHub
Workflows. As already mentioned in Section 2 no further
analysis was done.

4 Responsible Research

This section describes how we worked towards producing this
research responsibly. Firstly, this is achieved by designing for
reproducibility and providing all data that was used to make
replication easier. This can be read in Subsection 4.1 Sec-
ondly, the ethics of the research are considered in Subsec-
tion 4.2.

4.1 Reproducibility

An important step of the scientific method is the verification
of results by retesting the hypothesis. This can only be done
if the research is done in a reproducible manner.

To this end, the raw data that was scraped (the list of Java
repos), as well as their POM files and the raw results are
provided in a reusable machine-readable format of CSV and
JSON files. Furthermore, a fixed seed was used to select the
sample to make reproducing easier. Additionally, the imple-
mentation of the pipeline is also provided in a docker con-
tainer to make it straightforward to run on other machines
and eliminate the need for complex dependencies to run the
pipeline. Where to find this data is described in Appendix A.
The source code of the pipeline is also included there.

4.2 Ethics

There are a few ethical considerations with this research.
Firstly, as the scraper is indiscriminately downloading data
from GitHub it might happen that we might (accidentally)
download Personally Identifiable Information (PII) of a user
that has upload that (possibly by mistake). However, as this
data is already “in the wild” and we are not necessarily mak-
ing it easier to find such data, the impact of this is limited.
Secondly, a malicious entity could take the software as cre-
ated for this research to not just download what is essentially
metadata but to “hunt” for private or secure information such

https://jitpack.io
https://eu.alibabacloud.com/
https://developer.aliyun.com/mirror/maven/
https://jitpack.io

number of uses url

4332 https://repo.spring.io/milestone

3040 https://repo.spring.io/snapshot

1521 https://o0ss.sonatype.org/content/repositories/snapshots

866 https://hub.spigotmc.org/nexus/content/repositories/snapshots/
773 https://dl.bintray.com/rabbitmg/maven-milestones

750 https://jitpack.io

695 https://oss.sonatype.org/content/groups/public/

638 https://repo.spring.io/libs-release

Table 3: Most Popular Maven external repositories, exact URLs

number of uses

distinct repositories url

9488 54
3193 71
1250 4
1064 28
1033 11
1009 135
908 29
866 5
763 3

repo.spring.io
0ss.sonatype.org
maven.aliyun.com
repol.maven.org
hub.spigotmc.org
dl.bintray.com
repository.apache.org
repository. jboss.org
jitpack.io

Table 4: Most Popular Maven external repositories, grouped by hostname

as private keys that have accidentally been uploaded, or scrap-
ing data to train a Large Language Model (LLM) without con-
sent of the users. But again, the scraper does not unearth any
data that was not already public nor does it do anything to
directly help such a use case.

In the end, this software, like lots of other software, could
ultimately be used for unethical gains. But as the data we are
scraping was publicly available to start with, and the data col-
lected is mostly metadata the ethical concerns of this research
are limited.

5 Discussion

In this section we will discuss the findings as presented in
Section 3. First we will consider the dataset that we have cre-
ated in Subsection 5.1. Secondly, we will go into the use
of distribution and external repositories in Subsection 5.2.
Thirdly, we will have a closer look at the GitHub packages
repository in Subsection 5.3.

5.1 Dataset

For RQ2 we created a dataset of all Maven Java reposito-
ries on GitHub. It ended up containing a list of 15.5 million
repositories, with 3 960 369 repositories containing at least a
top-level POM file. However, due to time constraints only
500 000 of the full 15.5 million were recursively scanned for
POM files in subdirectories and GitHub workflow files. The
tooling created as described in Section 2 does allow for incre-
mental update of this data and will reuse data already on disk,
if completely re-indexing. In any case this dataset is much
more extensive than the ones presented in other papers[8, 9].

Even though we did not end up collecting and analysing
all the data, it was retrieved relatively quickly, roughly within
one week. Which shows it can be used in the future for other
research even for other purposes wider than Java as the code
was made to be extensible.

The most time-consuming part was the generation of the
effective POM, this part is also more easily sped up as it’s not
limited by a rate-limit. For example, executing this on a high
performance server could easily improve the analysis speed.

5.2 Distribution and External Repositories

The Maven Java dependencies’ ecosystem is seemingly start-
ing to move from a centralized ecosystem where every pack-
age is on Maven Central to a more decentralized one using a
variety of external package repositories. As could be seen in
Section 3. Especially the popularity for jitpack, bintray and
GitHub packages are of note there. What also needs to be
mentioned however is that quite a few of Maven repositories
where one was allowed to upload arbitrary artefacts have been
shutdown or limited. For example, we found that JFrog’s bin-
tray is one of the most popular external repositories but, it has
been sunset?’. For the time being read-only access remains,
but this does showcase that depending on external reposito-
ries can incur significant risk if even one of the most popular
ones gets deprecated. Even the spring repository allowed ar-
bitrary uploads but shut this down as well a few years ago?®.

Thttps://jfrog.com/blog/into-the-sunset-bintray-jcenter- gocente
r-and-chartcenter/

Bhttps://spring.io/blog/2020/10/29/notice-of-permissions-chang
es-to-repo-spring-io-fall-and-winter-2020/

https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter/
https://spring.io/blog/2020/10/29/notice-of-permissions-changes-to-repo-spring-io-fall-and-winter-2020/
https://spring.io/blog/2020/10/29/notice-of-permissions-changes-to-repo-spring-io-fall-and-winter-2020/

o

89.90%

O Uses GitHub workflows
O Does not use GH workflows

Figure 3: The number of repositories that use GitHub workflows compared to the number of repositories that are released (6 507).

In any case external repositories should not be discounted
as does sometimes occur in research such as in [6]:

“To ensure the consistency of our analysis, we
discard the artifacts that depend on libraries hosted
in external repositories” [6, p. 44]

Because they can remain a major source of dependencies for
developers.

5.3 GitHub Packages Repository

In particular the GitHub Maven package repository is one of
the more notable repositories as it is not aligned to a specific
project like the Apache or Spring repositories for example,
but a general purpose to be used by developers on GitHub.
However, it seems quite popular to publish on but not popu-
lar yet to use. This is likely due to the fact that the GitHub
package repository is unwieldy to use, given the need for au-
thentication. Additionally, the fact that the GitHub URL and
Maven ID need to be different for every dependency presents
even greater barriers for developers to use it.

For developers, when choosing to release on GitHub
packages, it is especially important to consider the down-
stream cost they are imposing on dependents of their pack-
ages. Because, now each user of that package needs to go
through the trouble of configuring GitHub credentials. How-
ever, after searching through the dataset for the literal token
‘maven.pkg.github.com’ we found that some developers
however have discovered an intriguing workaround for this.
As you can see in the snippets in Appendix B, some devel-
opers have, instead of relying on the authentication mecha-
nisms presented by Maven, to a hardcoded public (hopefully
scoped and read-only) token for GitHub Maven packages di-
rectly into the URL. This does immediately raise questions of
security as intuitively hard-coding an access token seems to
conflict with basic security principles. Although, as long as
this token is properly scoped and only allows read only ac-
cess to the very specific Maven GitHub package repository,
the attack surface seems slim. It is good to mention despite it
being relatively secure when properly configured, misconfig-
uration of these tokens would be dangerous. The actual usage
of this technique seems very small, in our sampled dataset as
described in Section 3, we only found two such cases.

Furthermore, researchers and developers can consider set-
ting up a local proxy for GitHub packages to add a given
authentication token to any request outbound to GitHub by

simply adding a header or rewriting the URL. Especially for
researchers needing to download large amount of packages
this seems to be a useful solution.

Finally, both the Maven tooling and GitHub could improve
this situation. If GitHub allowed developers to download
packages from their repo without credentials (like how Maven
Central does), this could alleviate some struggles. This would
only be a band-aid however as other package repositories
could come forth and encounter similar issues.

Alternatively, if Maven allowed developers to specify cre-
dentials for package repositories based on hostname instead
of the arbitrary user-chosen IDs, the developer experience
could be improved. Maven’s tooling improving would be the
preferred scenario as the ‘ID’ based system is very fragile in
any case, as there is no convention in choosing them.

6 Future Work

In this section we will sketch some topics that could be con-
sidered for future work.

The dataset that was created and explored in this paper can
also be used as a starting point for other research. For exam-
ple, to delve deeper into the release practices of developers
an analysis of how versioning is generally done could be of
interest. Furthermore, seeing how much overlap there is with
the GitHub dataset and Maven Central, and looking specifi-
cally at the practices of developers that host their source on
GitHub to publish to Maven.

Another topic could be finding ways to improve the Maven
tooling to suit a more decentralized nature. Can the Maven
external repository IDs be changed into something more co-
herent or deprecated altogether, how much of a reliance does
Maven itself have on these IDs. Likely inspiration and com-
parison to other package managers would also be prudent
here, both Java focused ones like Gradle but also Docker.
Docker specifically is notable in this regard as it mirrors the
ecosystem of Maven in a way by having one registry that is
most popular: Docker Hub (cf. Maven Central), but others
like GitHub again as well.

As a more short term solution the effectiveness of a proxy
that adds authentication to GitHub packages requests as out-
lined in Section 5, would also be an interesting avenue to eval-
uate. Because the authentication problem is not limited to the
Maven part of GitHub packages seeing if other package man-
agers also run into this problem and if such a proxy could also

help there, might yield a broader perspective.

The research as presented in this paper only looks at the
latest version of repositories. An additional angle that could
be considered is a more historical look to see if developers use
more or less external repositories over time. This research
could consider both a global, for all repositories sense but
also see if individual repositories switch away from external
repositories due to fragility.

An important consideration for this however is that deter-
mining the “date” of a repository is not necessarily straight-
forward, does one use the initial creation date or the latest
commit date, or even include multiple points in history for
every repository.

7 Conclusion

In conclusion, this study has delved into the large number of
Maven Java repositories on GitHub, shedding light on Maven
release practices and the unique aspects of GitHub’s role in
the development landscape. This was done to answer the
overarching research question of “What are the Maven re-
lease practices on GitHub?” For this we ended up looking
into distribution repositories, which are online repositories
where developers release their packages and external repos-
itories which are repositories to fetch Maven dependencies
from that are not Maven Central.

To gather the data required for the analysis a robust and
extendable pipeline was created to fetch a list of all Java
repositories on GitHub and their POM.xml files. We based
this pipeline on Rust’s Crater [13]. Furthermore, for se-
lected repositories it also fetched GitHub workflow files if
present. Additionally, to actually get a proper look at these
POM. xm1 files the pipeline also created ‘effective POM’ files,
which contain all data which might be inherited from parent
POM. xm1 files and the like.

We ended up with a total list containing 15.5 million repos-
itories. We then picked a random sample (with fixed seed) of
500 000 to analyse in depth. The sampled repositories did not
all have POM. xm1 files so our final set of analysed repositories
was 170798 large.

For distribution repositories (Subsection 3.2), we identified
6 507 Java repositories (approximately 3.8% of the analysed
subset. The most popular distribution repository ended up,
unsurprisingly, being Maven Central. Though what was per-
haps more surprising was that the third most popular distri-
bution repository ended up being GitHub packages, with 245
repositories using it. Furthermore, the now deprecated ‘bin-
tray’ also ranked highly, as well as the Spring and Jenkins
repositories.

For external repositories (Subsection 3.3), we saw Spring
being really popular, which makes sense given its widespread
use. Furthermore, various snapshot URLs were also quite
popular, as were specific projects like the Minecraft Server
‘SpigotMC’. A notable omission was GitHub packages only
being used 89 times for also 89 different dependencies. This
indicates that actually consuming GitHub packages is as of
now still unpopular. A repository that didn’t show up under
distribution but did under external was ‘jitpack’ which does
not use the Maven tooling to publish packages and is there-

fore also an interesting case.

Now turning to GitHub workflows, we did see they were
somewhat used, at around 10.10% of all the distribution
repositories. But clearly not ubiquitously, further analysis of
those might also be needed in the future as this research only
touched the surface in that regard.

Looking closer at the numbers we obtained we saw that
Maven Central is not as central as it might have used to be.
With quite a few uses of different package repositories, both
for publishing and consuming. Specifically GitHub packages
was an interesting case, being so popular for publishing but
not for using. The main reason is speculated to be the issue
of authentication. We discussed various workarounds such as
a proxy or even inlining authentication tokens.

References

[1] GitHub. Octoverse: The state of open source and rise
of Al in 2023. 2023. URL: https://github.blog/2023-
11-08-the- state- of - open-source- and- ai/ (visited on
11/24/2023).

[2] Steven Raemaekers, Arie van Deursen, and Joost
Visser. “Semantic Versioning versus Breaking
Changes: A Study of the Maven Repository”. In:
2014 IEEE 14th International Working Conference
on Source Code Analysis and Manipulation. 2014,
pp. 215-224. port: 10.1109/SCAM.2014.30.

[3] Lina Ochoa et al. “Breaking bad? Semantic versioning
and impact of breaking changes in Maven Central: An
external and differentiated replication study”. In: Em-
pirical Software Engineering 27.3 (2022), p. 61.

[4] Raula Gaikovina Kula et al. “Trusting a library: A
study of the latency to adopt the latest maven re-
lease”. In: 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER). IEEE. 2015, pp. 520-524.

[51 Amine Benelallam et al. “The maven dependency
graph: a temporal graph-based representation of maven
central”. In: 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR).
IEEE. 2019, pp. 344-348.

[6] César Soto-Valero et al. “A comprehensive study of
bloated dependencies in the maven ecosystem”. In:
Empirical Software Engineering 26.3 (2021), p. 45.

[71 Dimitris Mitropoulos et al. “The bug catalog of the
maven ecosystem”. In: Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
2014, pp. 372-375.

[8] Thomas Durieux, César Soto-Valero, and Benoit
Baudry. “Duets: A Dataset of Reproducible Pairs of
Java Library-Clients”. In: 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories
(MSR). 2021, pp. 545-549. po1: 10.1109/MSR52588
.2021.00071.

https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/MSR52588.2021.00071
https://doi.org/10.1109/MSR52588.2021.00071

(9]

[10]

[11]

[12]

[13]

[14]

Phuong T Nguyen et al. “Focus: A recommender sys-
tem for mining api function calls and usage patterns”.
In: 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE. 2019, pp. 1050—
1060.

Georgios Gousios and Diomidis Spinellis. “GHTor-
rent: GitHub’s data from a firechose”. In: 2012 9th IEEE
Working Conference on Mining Software Repositories
(MSR). IEEE. 2012, pp. 12-21.

Fotis Psallidas et al. “Data Science Through the Look-
ing Glass: Analysis of Millions of GitHub Notebooks
and ML. NET Pipelines”. In: ACM SIGMOD Record
51.2 (2022), pp. 30-37.

Mara Bos. Do we need a “Rust Standard” ? 2022. URL:
https://blog.m-ou.se/rust-standard/.

Crater: a tool to run experiments across parts of the
Rust ecosystem. URL: https://github.com/rust-lang/cra
ter.

Vivian Roest. Data underlying the BSc project: "An
analysis of Java release practices on GitHub”. 2024.
DOI: 10.4121/67A790FE-B65A-4C30- AAEO-C5B2
DC7E5SD4D.V1.

https://blog.m-ou.se/rust-standard/
https://github.com/rust-lang/crater
https://github.com/rust-lang/crater
https://doi.org/10.4121/67A790FE-B65A-4C30-AAE0-C5B2DC7E5D4D.V1
https://doi.org/10.4121/67A790FE-B65A-4C30-AAE0-C5B2DC7E5D4D.V1

A Reproducibility

The source code and data collected can be found on the 4TU Research Data repository [14]. Additionally, the source code is
also available on GitHub: https://github.com/NULLx76/maven_github_scraper.

B Hardcoded GitHub Tokens

<repositories>
<repository>
<id>Central</id>
<url>https: //repol .maven.org/maven2</url>
</repository>
<repository>
<id>github —public</id>
<url>https:// public: g
hp_Y6nRFazi9yNoOIMpxwTFlagW352c1539nyfn@maven . pkg. github .com/
kvalitetsit/«</url>
</repository>
<repository>
<id>github —-publicl</id>
<url>https:// public: g
hp_Y6nRFazi9yNoOIMpxwTFlagW352c1539nyfn@maven . pkg. github .com/
kvalitetsit/«</url>
</repository>
<repository>
<id>github —public2</id>
<url>https:// public: g
hp_Y6nRFazi9yNoOIMpxwTFlagW352c1539nyfn@maven . pkg. github .com/
kvalitetsit/«</url>
</repository>
</repositories>

Figure 4: An example from https://github.com/KvalitetsIT/medcom-video-api/blob/master/pom.xml.

<repositories>
<repository>
<id>github —public</id>
<url>https: //public:ghp_6thINalbtFpUo7SUEalaSypPpwkHOf25qgcG@maven. pkg.
github .com/1blod /x</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>

Figure 5: Another example from https://github.com/Iblod/jsonld-delta-service/blob/master/pom.xml.

https://github.com/NULLx76/maven_github_scraper
https://github.com/KvalitetsIT/medcom-video-api/blob/master/pom.xml
https://github.com/lblod/jsonld-delta-service/blob/master/pom.xml

	Introduction
	Methodology
	The Dataset
	Indexing all Java projects on GitHub
	Downloading all POM files
	GitHub Workflow Collection

	Analysis

	Results
	The Dataset
	Distribution Repositories
	What do these URLs mean?

	External Repositories
	What do these URLs mean?

	GitHub Workflow Release Practices

	Responsible Research
	Reproducibility
	Ethics

	Discussion
	Dataset
	Distribution and External Repositories
	GitHub Packages Repository

	Future Work
	Conclusion
	Reproducibility
	Hardcoded GitHub Tokens

