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1. Introduction

Uncertainty and complexity challenge industrial decision 
makers. As unpredictability and volatility of market 
requirements grow, worldwide industries experience reduction 
in product lifecycles, increased variety, and higher product
complexity. These changes often trigger high-effort
reconfigurations that negatively affect performances over time,
leading to, for example, reduced efficiency, quality or 
reliability of the system. Global pressures towards 
sustainability goals, changing regulations, resource 
exhaustion/unavailability, and geo-political challenges also 
require often unplanned and costly reconfigurations in 
products, processes, and technologies that also affect systems’
performances. Furthermore, rapid innovation in industrial and 
smart technologies and the diffusion of software, data 
analytics, and big data technologies in industrial systems 

require decision makers to possess a combination of technical
and managerial expertise to interact with complex cyber-
physical systems and implement the right decisions.

As uncertainty and complexity grow, the reconfigurability 
capability – that is the capability of an industrial system to 
quickly and cost-effectively adapt to changes - is needed. The 

develop this capability, the strategic process of planning 
industrial systems need reconsideration. While several flexible 
and reconfigurable technologies and systems have been 
researched and matured over time (e.g., reconfigurable machine 
tools, advanced robotic systems, adaptive control systems), the 
development of new solutions for strategic planning of these 

that requires implementing flexible and reconfigurable systems 
and technologies to rapidly adapt manufacturing and logistics 
capabilities to market and technological evolution.  To fully 

reconfigurability capability is a strategic life-cycle capability 
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systems still requires research efforts. To investigate this gap,
this paper aims to outline how industrial system’s planning is
expected to change in order to enable higher levels of
reconfigurability. To this end, section 2 describes industrial
system’s planning modules and related challenges. Section 3
reviews literature and outlines multi-sectorial requirements for 
system’s planning. Section 4 introduces a conceptual model for
strategic planning of reconfigurable industrial systems and 
value chains. Accordingly, the concepts of hierarchical 
interfaces, functional interfaces, and reconfigurability 
bottleneck are introduced to outline directions for future 
research. Section 5 concludes and outlines future research 
directions.

2. Industrial planning systems

Industrial systems manufacture, assemble, and/or transport
products along value chains and therefore play a significant role 
in national and global economies,

Industrial planning systems support the design and
coordination of manufacturing resources, equipment and 
materials flows in order to accommodate market requirements.
Consequently, planning systems require different stakeholders,
technical and managerial knowledge, and life cycle 
assessments. To address this complexity, a planning system
can be broken down into the following modules:
• process design (A), this module has strategic and long-term

implications as it determines both system’s configuration
and equipment development based on long-term market
trends. It constraints system’s performance in the long-term
and can lead to capital expenditures, outsourcing, change
management or, introduction of organizational or
procedures. Success criteria strictly depend on the system’s
strategy and can generally be assessed only in the long-term.

• process planning and scheduling (B), this module has
tactical and mid-term implications as it ensures that the
system is able to successfully deliver the required products
to customers based on mid-term forecast and/or customer
orders. It usually requires clustering material flows based on
process and/or customer constraints, and leads to the
definition of plans and schedules for the required tasks that
optimize one or more success criteria. Success criteria for
this stage can be either process-driven (e.g. productivity,
efficiency, utilization, lead time, …) and/or supply-driven
(e.g. takt time, dependability, quality,…) and depend on
system’s configuration and materials flows complexity.

• process control (C), this module has operational and short-
term implications as it ensures that the system promptly
reacts to internal i.e. process-driven (e.g., equipment failure,
rework, scrap, workforce availability,…) and/or external i.e.
supply-driven (e.g., materials shortage, supply/delivery
delays, …) disruptions and contingencies.
In a stable and highly predictable environment, modules A

and B are sequential steps and module C is unnecessary. In this 
ideal scenario, the structure of the system is only determined at 
the beginning of the system’s life cycle through module A, and 
it therefore affects once and for all module B. This also means 
that in this ideal scenario, decision logics of module B will not 
change over time and module B can potentially be fully 

automated as the actual execution of tasks will exactly follow 
plans and schedules.

Worldwide, increasing uncertainty about market evolution 
and global trends makes system’s planning extremely 
challenging. On the one hand, the structure of the system needs 
frequent adaptations to changes, and thus module A is 
repeatedly implemented within the system’s life cycle, and 
therefore it dynamically constraint and requires changes in 
module B. On the other hand, process- and supply- related 
disruptions and contingencies make module C extremely 
relevant: describing the actual execution of tasks in spite of 
plans and schedules, it leads to changes in process planning and 
scheduling (B), for example in a production environment where 
internal disruptions (e.g. rework) are frequent.

Fig. 1 summarizes industrial system’s planning modules 
and interfaces in uncertain scenarios.  

As detailed in Section 3, to identify multi-
sectorial requirements for planning systems in uncertain 
scenario, the literature analysis also considered the system’s 
level of detail, distinguishing between: workstation, system, 
company, and supply chain levels.  

3. Literature review

A literature search was conducted in Scopus, combining the
keywords “reconfigurability” and “planning” and overall 192
papers were reached. Among these 68 were excluded, as: (i) 59
were not related to the manufacturing industry, and (ii) 9 were
not related to planning solutions. The remaining sample of 124
papers was analysed and classified according to the production
level, distinguishing between: workstation, system, company,
and supply chain.

In the literature at the workstation level (30 articles), the 
following types of systems were considered: (i) machining (in 
five articles, i.e. 17%), and (ii) robotic (in 25 articles, i.e. 83%). 
In the machining domain (five articles), literature mainly 
addressed process design (A) for reconfigurability. For 
example, [1] provided a methodology of setting module groups 
for the design of reconfigurable machine tools; while, [2]
focused on machine fixture design. Three studies in this domain
focused on both process design (A) and process planning (B).
For example, [3] developed a transformable pin array fixture 
system including reconfiguration planning software that finds 
the optimal position for mounting an assembly part and 
automatically generates a pin height control code. In the robotic 
domain (25 articles), literature mainly addressed process design 
(A) and process control (C). Specifically, process design was
combined with mechanisms for: (i) robot fault control in one
article [4]; (ii) grasp or motion planning and control in six
articles (e.g., [5,6]); path planning and control in six articles

Fig. 1. Industrial system's planning modules and interfaces in uncertain
scenarios
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(e.g., [7,8]), and shopfloor data integration for robot control in 
three articles (e.g., [9,10]).

In the literature at the system level (67 articles), the 
following types of systems were considered: (i) mixed, i.e. with 
both humans and robots or machines (in 48 articles, i.e. 72%),
or (ii) robotic (in 19 articles, i.e. 28%). In the mixed domain, 
i.e. systems with both humans and robots or machines (48
articles), two types of systems were mainly referred to, i.e.
production (23 articles), and assembly (13 articles). Overall,
only three articles looked at process (specifically production)
control (C), in terms of implementation of agent/holon
technologies for distributed automation [13,14], or for
diagnostic purposes [15]. The other articles focused on several
themes, such as scheduling of production [16], assembly [17],
or material handling [18] systems, software design for system
automation [18–22], shopfloor data integration for production
[23] or assembly [24] control. In the robotic domain (19
articles), literature was fairly distributed around: process design
(A), process planning (B), and process control (C). Of these,
process control was the prevailing theme, and five articles
within this set specifically focused on motion planning (e.g.,
[11,12]).

In the literature at the company level (18 articles), the 
following types of systems were considered: (i) human (four 
articles), (ii) mixed (10 articles), or (iii) automated (four 
articles). In the human domain, prevailing themes were: 
business and plant planning [25], and workforce planning [26–
28]. In the mixed domain, prevailing themes were: business and 
plant planning [33,34], IT architecture design [35–40],
resources’ connectivity [41] and functional architecture [42]. 
In the automated domain, prevailing themes were: factory 
control [29], factory ramp-up [30], warehouse control [31], and 
IT architecture design [32].

In the literature at the supply chain level (nine articles), the 
following types of systems were considered: (i) business (three 
articles), plant (two articles), or (iii) mixed, i.e. plants and 
vehicles (four articles). In the business domain, literature 
focused on collaborative planning in terms of data-sharing 
methods [43] and tools [44], and business models [45]. In the 
plant domain, literature addressed factory and network planning
[45,46]. In the mixed domain, prevailing themes were: factory 
location [47,48] and/or transport planning [49], and factory and 
transport coordination and scheduling [50].

The literature review process led to the identification of
multi-sectorial requirements for strategic planning of 
reconfigurable industrial system as summarized in Table 1 and 
described as follows:

• At the workstation level, reconfigurability planning
modules are: (A) process technology design, (B) process life
cycle planning, and (C) task automation;

• At the system level, reconfigurability planning modules are:
(A) layout and configuration design, (B) system life cycle
planning, and (C) system monitoring and control;

• At the company level, reconfigurability planning modules
are: (A) business planning and change management, (B)
plant life cycle planning, and (C) IT architecture and factory
control;

• At the supply chain level, reconfigurability planning
modules are: (A) collaborative business design, and (B)
product life cycle planning.

A relevant insight from the literature analysis is that only a
small subset of the analysed literature (15 out of 124 articles) 
provided planning solutions at multiple levels. Seven focused
at workstation and system levels, five at system and company 
levels, and three at company and supply chain levels. Four were 
published after 2020, while two were published before 2005. 
Nearly all these articles proposed collaboration and/or 
coordination solutions enabled with digital and smart 
technologies. Specifically:
• Six articles described enablers of collaboration. Of these:

two focused on collaboration between different
workstations enabled with collaborative [51] or mobile
robot [52] technologies; three focused on collaboration
between different systems enabled with communication
capabilities based on radio access [34] technology, Internet
of Things [40], or edge and cloud [38] technologies; one
focused on collaboration between different plants enabled
with cyber-physical systems [45] technologies.

• Six articles described enablers of coordination. Of these:
five focused on coordination of workstations enabled with
topology network [53], holon/agent-based [54], Artificial
Intelligence [55], intelligent mechatronics components [56]
or  Internet of Things [57] technologies; only one focused

Industrial 
system

Planning 
module Prevailing themes Multi-sectorial requirements

WS
Machining

Robotic

A,B

A, C

A. Modular machine design, Fixture and tooling design
B. Modular machine design, Fixture and tooling design 
C. Fault control, grasp/ motion planning, path planning and control, shopfloor data integration 

A. Process technology design
B. Process lifecycle planning
C. Task automation

S Mixed 
Robotic

A, B

A, B,C

A. Production/assembly/handling system planning
B. Production/assembly/handling scheduling, line balancing, production system ramp-up
C. Process control and motion planning, software design and shopfloor data integration

A. Layout and configuration design
B. System lifecycle planning
C. System monitoring and control 

C
Human 
Mixed 
Automated 

A, B
A,B,C

C

A. Business and plant planning, workforce planning
B. Functional architecture design, plant ramp-up
C. Resource connectivity design, IT architecture design, factory control, warehouse control

A. Business planning, change management
B. Plant lifecycle planning
C. IT architecture and plant control

SC
Business 
Plant (2)
Mixed (4)

A, B
A,B
A, B

A. Collaborative business model design, plant location and supply/distribution planning
B. Transport planning, plant and transport coordination and scheduling 

A. Collaborative business design
B. Network lifecycle planning

Table 1. Literature analysis and findings. From prevailing literature themes to multi-sectorial requirements for strategic planning of industrial systems 
at workstation (WS), system (S), company (C), and supply chain (SC) levels 
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on coordination of systems enabled with the web service 
technology [37].

• Finally, two papers described enablers of both collaboration
and coordination. In 2003, [58] proposed workflow
automation for collaboration and coordination of different
businesses within a supply chain, in 2023, [39] referred to
Artificial Intelligence and MES technologies for
collaboration and coordination of different resources within
a company.

4. A conceptual model for strategic planning of industrial
systems and value chains

A conceptual model for strategic planning of industrial 
systems and value chains is provided in Fig. 2. This
framework allows to introduce the concepts of hierarchical 
interfaces, functional interfaces, and reconfigurability 
bottleneck to outline directions for future research. These 

industries. 
The conceptual model shows four hierarchical interfaces 

between production levels, and, at each production level, 
functional interfaces between planning modules can also be 
identified. Both hierarchical and functional interfaces represent 
cause-effect relationships: hierarchical, i.e. between functions 
at different production levels, and time-based, i.e. between 
functions over time. Obviously, functions at lower levels are 
contained in higher levels, and goals at higher levels can be 
broken down to sub-goals at lower levels. As requirements 
change over time, time is also a relevant variable. Thus, the 
stages of the system’s life cycle are considered.

Hierarchical interfaces are the interfaces between planning 
systems at different production levels, namely W-S, S-C and 
C-SC in Fig. 2. Through hierarchical interfaces, the decision
maker can set values and reconfigurability goals for a system
and the related sub-systems based on the external environment.

Functional interfaces are the interfaces between planning 
modules within each production level, namely A-B, B-C, C-D 
in Fig. 1. Through functional interfaces, the decision makers 
adopt a life cycle perspective to identify new functional 
requirements for the system as a whole and then reassesses the 
sub-functions needed at the lower level, identifies functional 

gaps and consequently investigate technological and
managerial solutions to address reconfigurability bottlenecks.

A reconfigurability bottleneck is any component of an 
industrial system that at a certain time prevents the system from 
implementing a higher-value lower-effort reconfiguration. To 
identify reconfigurability bottlenecks, hierarchical and 
functional interfaces for strategic planning of reconfigurable 

In Fig. 2, both the type of system and system planning 
modules at each production level are classified as per the 
literature review. Depending on type of system the impact of 
humans on decision making changes as also shown in Fig. 2. 
Whenever planning modules (either A, B, and/or C) are 
represented as green blocks instead of gray blocks, it means that 
at least one article covered one or more themes in the related 
module. More in detail: 
• 78% of the analysed literature focused at workstation (24%,

i.e. 30 articles) and system (54%, i.e. 67 articles) levels. At
the workstation level, literature mostly addressed themes
within robotic tasks’ planning, introducing requirements for
process technology design (A) and task automation (C). At
system level, literature mostly addressed themes within
mixed system’s layout and configuration design (A) and
system’s lifecycle planning (B).

• Only 15% of the analysed literature focused at company
level. In this sample, the impact of human on decision-
making was significantly higher than the impact of
automation (56% of the literature at company level referred
to human systems, 31% referred to mixed, and 13% referred
to automated systems). In contrast, at workstation and
system levels decision-making was mainly embedded in
automation. Prevailing themes in this sample introduced
requirements within business planning and change
management (A), and plant lifecycle management (B).

• A small percentage (7%) of the analysed literature focused
at supply chain level. In this sample, the impact of human
and automation on decision-making was rather balanced.
Prevailing themes provided requirements within
collaborative business design (A), and product life cycle
management (B).
From left to right, Fig. 2 also highlights how the

managerial effort required for a system’s reconfiguration 

Fig. 2. A conceptual model for strategic planning of reconfigurable industrial systems and value chains

industrial systems and value chains need to be developed first. 

concepts are all relevant for strategic planning in several 

Alessia Napoleone / Procedia CIRP 122 (2024) 1071–1076
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increases at higher production level, while the technical effort 
reduces at higher levels. For example, workstation planning can 
be challenging due to technological complexity which can be 
very technology-specific, while, supply chain planning has 
managerial complexity due to the involvement of multiple 
stakeholders and industries. Additionally, Fig. 2 shows that 
research at higher production levels is rather scarce compared 
to research at workstation and system levels (78% of the 
sample), thus confirming that industrial system’s planning for 
reconfigurability is still an open topic especially at company 
and supply chain levels.

Ultimately, Fig. 2 shows that the impact of the external 
environment, such as global sustainability challenges, on 
decisions increases with the extension of the production level. 
Indeed, even if the information detail needed for decision 
making is reduced moving from lower to higher production 
levels, a broader variety of information will progressively need 
consideration.

5. Conclusion

As uncertainty and complexity grow, industrial decision
makers are urged to reconsider traditional planning systems and 

operational modules (cause), or due to new regulations (cause).
To this end, the model introduces the concept of functional 

This study also shows that as uncertainty and complexity 
grow, hierarchical and functional interfaces deserve further 

Future research will particularly aim to apply the proposed 
model in Dutch and European industries to support 
competitiveness and sustainability.
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