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Summary 

Study Relevance 

Public transport systems can be subject to disruptions, which have negative impacts on 

passengers. Disruptions can result in additional in-vehicle time, waiting time, transfer time and 

extra transfers for passengers. In addition, perceived journey times might increase due to higher 

crowding levels on public transport services. Public transport disruptions can also result in 

revenue losses, rescheduling costs, reimbursement costs and fines for the public transport 

service provider. Although it is thus important to reduce the impact of public transport 

disruptions, it is particularly challenging to foresee and study disruptions due to their 

uncertainty and variety. They occur in an environment with complex interactions between 

decisions made by both passengers and public transport service provider in response to these 

disruptions, surrounded by various sources of uncertainty in relation to disruption type, location 

and duration. In this research, we propose a generic, stepwise approach to reduce the passenger 

impacts of disruptions: 

 Step 1: Measure current disruption impacts. 

 Step 2: Predict future disruptions frequencies and impacts. 

 Step 3: Develop and evaluate measures aimed to control these disruption impacts. 

 

Research Objective and Research Questions 

The main research objective of this study is ‘to improve methods to measure, predict and 

control disruption impacts for urban public transport’. Based on a review of state-of-the-art 

research methods for measuring, predicting and controlling disruption impacts, different 

research gaps are identified. This results in the following three research questions: 

1. How can we measure and characterise the behavioural and demand response of 

passengers during planned and unplanned urban public transport disruptions? 

2. How can we incorporate disruption frequency and impact predictions in a public 

transport vulnerability analysis for urban and multi-level public transport networks? 

3. How can we predict and control the direct and propagated impacts of disruptions on the 

urban public transport network in a multi-level network environment? 
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Scope 

The scope of our research is as follows: 

 Focus on urban public transport, in a multi-level public transport network environment. 

Our research focuses on disruption impacts for the urban public transport network, 

consisting of metro, light rail, tram and bus services. Whilst other network levels are 

not the focus of this research, the multi-level network environment is considered. This 

implies we consider the role the train network might play both as means to mitigate 

impacts of urban network disruptions, and as a source for train network disruptions 

propagating to the urban public transport network level. 

 Address both recurrent and non-recurrent disruptions. Our research focuses on both the 

smaller, more frequent recurrent disruptions, and the larger, non-recurrent disruptions, 

with no, partial or full infrastructure degradation as result. We do not consider extreme 

events such as natural disasters or terror attacks in this research. 

 Consider both unplanned and planned disruptions. We study the impact of unplanned 

disruptions, as well as the impact of planned disruptions, such as planned track 

maintenance works. 

 

Research Contribution 

The following scientific contributions are made in this research (see Figure I.1): 

 

 

Figure I.1. Research structure and contribution 

 Development of an improved transfer inference algorithm for urban public transport 

journeys during disruptions. 

 Estimation of crowding perception multipliers for urban tram and bus journeys based 

on Revealed Preference. 

 Estimation of mode and route choice coefficients for passengers during planned public 

transport disruptions based on empirical data. 
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 Development of a methodology to predict disruption frequencies and disruption impacts 

for urban networks. 

 Development of a methodology to identify the links which contribute most to 

vulnerability of multi-level public transport networks. 

 Identification of urban public transport hubs and the key routes serving these hubs to 

prioritise for public transport synchronisation. 

 Development of a methodology to predict the disruption impact propagation from train 

network disruptions to the urban public transport network. 

 Evaluation of the impact of different train rescheduling strategies on the integrated 

multi-level public transport network. 

 

Main Findings 

Based on our research results, we provide answers to the three formulated research questions. 

 

1. How can we measure and characterise the behavioural and demand response of passengers 

during planned and unplanned urban public transport disruptions? 

 

To measure the passenger impacts of a disruption, passengers’ generalised journey costs need 

to be inferred from empirical data and compared between a disrupted and an undisrupted 

journey. As a first step, we develop a robust transfer inference algorithm with the ability to infer 

passenger journeys from individual smart card transactions during disrupted and undisrupted 

circumstances (Chapter 2). It relaxes existing state-of-the-art transfer inference algorithms to 

incorporate the atypical passenger behaviour that can be observed during a disruption, and 

considers an alighting a transfer if it satisfies the following temporal, spatial and binary criteria: 

 The temporal criterion states that an alighting is a transfer if a passenger boards the first 

reasonable vehicle arriving at a transfer location, thereby incorporating required 

transfer walking time, crowding levels and potential denied boarding for this vehicle.  

 The spatial criterion indicates that the maximum transfer walking distance should not 

exceed a certain threshold - for our case study calibrated to 400 Euclidean metres - 

unless a passenger uses public transport services at another network level or from 

another service provider as intermediate journey stage during a disruption.  

 The binary criterion states that a transfer to the same line is only possible when made 

to the next vehicle of this same line, to incorporate the effect of operational measures 

as short-turning or deadheading possibly being applied during a disruption.  

A partial validation shows that our algorithm improves inference during disruptions, without 

compromising inference results during undisrupted circumstances. 

 

A second step when measuring disruption impacts is to infer how passengers perceive the 

different journey components, especially in relation to crowding (Chapter 3). The following 

results from our estimated discrete choice model with panel effects are entirely based on 

Revealed Preference route choice observations: 

 The average in-vehicle time crowding multiplier for urban trams and buses equals 1.16 

when all seats are occupied and no passengers are standing. In case occupancies 

increase to an average standing density of 3 passengers per m2, this in-vehicle time 

multiplier equals 1.34.  

 For frequent passengers, these two values equal 1.31 and 1.75, respectively.  

 Infrequent passengers do not incorporate crowding in their route choice, due to the lack 

of prior knowledge about crowding levels.  
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 Our estimated crowding multipliers are lower than values found in previous Stated 

Preference experiments. This illustrates the tendency of Stated Preference experiments 

to overestimate values of coefficients, compared to Revealed Preference based studies. 

 

A third step is to infer passengers’ demand response in the event of planned disruptions 

(Chapter 4). For this study purpose, we calibrate route and mode choice parameters of a public 

transport ridership prediction model based on empirical data from two planned disruptions, 

which we validate using two different planned disruptions. A three-step rule-based procedure 

is developed for this. Our results suggest the following: 

 Passengers perceive in-vehicle time in replacement buses about 11% more negatively 

compared to the tram line being replaced.  

 Waiting time perception for rail-replacement buses is ≈30% higher than for regular 

trams or buses, potentially caused by limited facilities at temporal bus stops and by 

uncertainty about service headways and reliability.  

 The new parameter set improves prediction accuracy up to 13% compared to the default 

parameter set used to predict impacts of structural network changes. 

 

2. How can we incorporate disruption frequency and impact predictions in a public transport 

vulnerability analysis for urban and multi-level public transport networks? 

 

Predictions of the frequencies and impacts of public transport disruptions are necessary to 

identify the most critical components of a public transport network in a vulnerability analysis. 

We develop an improved pre-selection method and an improved full scan method to perform 

this analysis, which explicitly account for disruption frequencies next to disruption impacts. In 

Chapter 6, we propose a pre-selection method for multi-level public transport networks, which 

uses expected direct and indirect disruption exposure, as well as the expected number of 

affected passengers as indicators. Case study results indicate that busy links of the metro / light 

rail network generally have the largest contribution to vulnerability of the multi-level network, 

as both exposure and the number of affected passengers are relatively high. Our study results 

show the relevance of incorporating disruption frequencies in vulnerability analyses, as the list 

of most critical links differs substantially from a list based only on expected disruption impacts. 

 

We also develop a data-driven full scan methodology to identify the most critical stations of an 

urban public transport network within reasonable computation times (Chapter 5). A supervised 

learning approach is developed to predict the probability of each disruption type, and to predict 

passenger delay impacts of each disruption type for each individual station, based on demand 

predictors, temporal predictors and network topology predictors. In a last step, stations are 

clustered using unsupervised learning based on their expected contribution to network 

vulnerability. This improves the transferability of our case study results, as this indicates which 

types of stations contribute most to network vulnerability. Case study results from the 

Washington, D.C. metro network show that stations with high train frequencies and high 

passenger volumes on central trunk sections are most critical, together with transfer stations 

and terminals. 

 

3. How can we predict and control the direct and propagated impact of disruptions on the urban 

public transport network in a multi-level network environment? 

 

To control disruption impacts for the urban public transport network, one can apply control to 

urban public transport services, or apply control to train services to mitigate disruption 

propagation to the urban network level or to mitigate the impact of urban network disruptions.  
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Real-time synchronisation of urban public transport services is one type of control measure 

which can be applied to urban networks. Synchronisation of urban services is currently only 

optimised for relatively small case study networks, as the optimisation problem becomes 

difficult to solve within reasonable times for larger networks. Our contribution is the 

development of a generic, preparatory method to reduce dimensionality of this problem by 

identifying key locations and routes to prioritise for optimal synchronisation (Chapter 7). 

 First, using passengers’ transfer patterns as input, we apply a density based clustering 

technique to determine the subset of public transport hubs where synchronisation needs 

to be prioritised.  

 Second, we represent the transfer patterns within each hub using a C-space inspired 

topological network representation. By using a community detection algorithm, groups 

of lines are identified for which it is recommended to synchronise them simultaneously.  

When applied to the urban public transport network of The Hague, the Netherlands, as case 

study, results show that 70% of all transfers occurring within identified transfer locations would 

be captured by considering less than 1% of all transfer locations for synchronisation, thus 

substantially reducing the complexity of solving the optimal transfer synchronisation problem. 

 

To control disruption propagation from the train to the urban network level, we develop a 

method which combines a train rescheduling optimisation model and a dynamic public transport 

assignment model in an iterative procedure (Chapter 8). We incorporate the number of 

transferring passengers from the train to the urban network level in the objective function of the 

train rescheduling model. Then, we test the impact of this using the dynamic assignment model 

based on updated train timetables from the optimisation process. The train rescheduling model 

is then iteratively updated based on train passenger volumes resulting from the assignment 

model. In our case study, the propagation of passenger delays to the urban network could be 

reduced by up to 14-27%, without increasing delays for passengers on the train network. 

We also illustrate how the train network level can be used as means to reduce the impact 

of disruptions occurring on the urban level. To this end, a societal cost-benefit analysis 

framework is established (Chapter 6). A case study application to the southern part of the 

Randstad (the Netherlands) illustrates that mitigation measures applied to the train network can 

reduce the total disruption impacts resulting from an urban network disruption by 8%. Hence, 

this illustrates the potential of the multi-level network to mitigate disruption impacts. 

 

Implications for Practice 

We formulate several implications of our research for public transport service providers and for 

public transport authorities in relation to policy-making. 

 This research enables public transport authorities and service providers to improve the 

accuracy of their passenger predictions during planned and unplanned disruptions. 

 Methods developed in this research can result in an improved and easier quantification 

of disruption impacts based on empirical data. 

 Our study supports transport policy makers in prioritising the locations and disruption 

types for which to develop and implement robustness measures. 

 Results of our study can improve the real-time control decisions taken by controllers to 

mitigate disruption impacts, hence reducing the passenger impact of disruptions. 

These implications have the potential to result in better project assessments, better decision-

making during disruptions, and a higher level of service provided to passengers. This can 

improve passenger satisfaction and therefore potentially increase public transport ridership. 

 

Recommendations for Future Research 

Based on our work, we formulate several recommendations for future research directions: 
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 To set up a detailed study towards passengers’ demand response during planned 

disruptions, particularly focusing on the extent that passengers use alternative modes of 

transport, such as ride-hailing services or bicycle-sharing schemes. 

 To study passengers’ dynamic en-route choice behaviour during unplanned disruptions 

in detail, thereby incorporating factors such as real-time information provision or 

flexible working arrangements. 

 To investigate the influence of information provision to passengers before and during 

disruptions on the impact of disruptions. 

 To develop a more advanced method to attribute observed passenger delays from 

Automated Fare Collection (AFC) systems to individual disruptions. 

 To compare the performance and computation times of our proposed two-step approach 

to prioritise locations and routes for public transport synchronisation with new 

approaches for network-wide synchronisation. 

 

In summary, the objective of the developed methods in this research is to strengthen the 

passenger perspective when measuring, predicting or controlling disruption impacts. The 

application of our methods to different case study networks worldwide confirms our methods 

can be applied in practice. Although results might differ from case to case, our empirical 

evaluations and model application results suggest that passenger benefits can be realised when 

applying our approaches. Our research provides generic methods and tools for the public 

transport industry to apply to their specific public transport network. We recommend a close 

cooperation between science and the public transport industry, to implement methods and 

results from this research in the daily business of the public transport sector. This has the 

potential to further improve the public transport product delivered to passengers.
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Samenvatting 

Relevantie van betrouwbaar openbaar vervoer 

Verstoringen in het openbaar vervoer, zoals een defect voertuig of een aanrijding, kunnen leiden 

tot extra in-voertuigtijd, wachttijd, overstaptijd en tot extra overstappen voor reizigers. 

Daarnaast kan ook de ervaren reistijd toenemen als gevolg van toegenomen drukte. 

Verstoringen in het openbaar vervoer kunnen ook resulteren in kosten voor de vervoerder of 

vervoersautoriteit, bijvoorbeeld door inkomstenderving, bijsturingskosten, boeteclausules en 

restitutie van reiskosten. Het is daarom belangrijk om de impact van verstoringen te 

verminderen. Het is echter moeilijk om grip te krijgen op verstoringen als gevolg van 

onzekerheid en variatie waar en wanneer deze plaats vinden. Verstoringen vinden plaats in een 

omgeving met complexe interacties tussen beslissingen van zowel de reiziger als de vervoerder 

als reactie op verstoringen, omgeven door onzekerheid wat betreft locatie en duur van 

verschillende soorten verstoringen. In dit onderzoek ontwikkelen we een generieke, 

stapsgewijze benadering om de impact van verstoringen voor reizigers te verminderen: 

 Stap 1: Het meten van de huidige verstoringsimpact. 

 Stap 2: Het voorspellen van de frequentie en impact van toekomstige verstoringen. 

 Stap 3: Het ontwikkelen en evalueren van maatregelen om deze verstoringsimpact te 

beheersen. 

 

Onderzoeksdoel en onderzoeksvragen 

Het primaire onderzoeksdoel van deze studie is ‘het verbeteren van methoden om de impact 

van verstoringen voor het stedelijk openbaar vervoer te meten, voorspellen en beheersen’. Op 

basis van literatuuronderzoek identificeren we hiaten qua methoden om verstoringsimpact te 

meten, voorspellen en beheersen. Dit resulteert in de volgende drie onderzoeksvragen: 

1. Hoe kunnen we route- en vervoerwijze-keuze van OV reizigers als reactie op geplande 

en ongeplande verstoringen in stedelijk openbaar vervoer meten en kenmerken? 

2. Hoe kunnen voorspellingen van de frequentie en impact van verstoringen worden 

gebruikt in een kwetsbaarheidsanalyse voor stedelijke en multi-level OV netwerken? 

3. Hoe kunnen we de directe en indirecte impact van verstoringen voor het stedelijk 

openbaar vervoernetwerk voorspellen en beheersen in een multi-level netwerkcontext?  
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Scope 

Dit onderzoek is als volgt afgebakend: 

 Focus op stedelijk openbaar vervoer, in een multi-level netwerkcontext. Ons onderzoek 

richt zich op de impact van verstoringen voor het stedelijk openbaar vervoernetwerk 

(metro, lightrail, tram en bus). Hoewel andere netwerkniveaus van het openbaar vervoer 

netwerk, zoals het regionale spoornetwerk, niet de focus zijn van dit onderzoek, nemen 

we deze integrale, multi-level netwerkcontext wel in beschouwing. Dit betekent dat 

wordt meegenomen wat de potentiële rol van het spoornetwerk kan zijn als middel om 

de impact van verstoringen op het stedelijk netwerk te verminderen, maar ook als bron 

van verstoringen op het treinnetwerk die naar het stedelijk netwerk kunnen doorwerken. 

 Gericht op terugkerende en niet-terugkerende verstoringen. Onze studie richt zich 

zowel op de kleinere, vaker voorkomende, terugkerende verstoringen, als op de grotere, 

minder frequente verstoringen, die kunnen leiden tot het geheel, gedeeltelijk of niet 

beschikbaar zijn van infrastructuur. Extreme gebeurtenissen zoals natuurrampen of 

aanslagen vallen buiten de scope van dit onderzoek. 

 Onderzoeken van geplande en ongeplande verstoringen. We analyseren de impact van 

zowel ongeplande als geplande verstoringen, zoals geplande werkzaamheden.  

 

Studiebijdrage 

Dit onderzoek resulteert in de volgende wetenschappelijke bijdragen (zie Figuur II.1): 

 

 

Figuur II.1. Onderzoekstructuur en bijdrage 

 Het ontwikkelen van een verbeterd algoritme om reizen van passagiers in het stedelijk 

openbaar vervoernetwerk af te leiden tijdens verstoringen. 

 Vaststellen hoe reizigers drukte meewegen in hun routekeuze voor reizen met stedelijk 

tram- en busvervoer op basis van Revealed Preference.  
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 Het kalibreren van parameters voor vervoerwijze- en routekeuze voor passagiers tijdens 

geplande verstoringen in het openbaar vervoer op basis van empirische data. 

 Het ontwikkelen van een methode om de frequentie en de impact van verstoringen te 

voorspellen voor stedelijke openbaar vervoernetwerken.  

 De ontwikkeling van een methodologie om trajecten te identificeren die het meest 

bijdragen aan de kwetsbaarheid van multi-level openbaar vervoernetwerken. 

 Identificatie van hubs en clusters van OV lijnen die deze hubs bedienen in stedelijke 

openbaar vervoernetwerken om te prioriteren tijdens OV synchronisatie. 

 Het ontwikkelen van een methode om te voorspellen hoe de impact van verstoringen op 

het spoornetwerk doorwerkt naar het stedelijk openbaar vervoernetwerk. 

 Evaluatie van de impact van verschillende bijsturingsmaatregelen toegepast op het 

spoornetwerk voor het multi-level openbaar vervoernetwerk.  

 

Resultaten 

Op basis van de onderzoeksresultaten kunnen de drie onderzoeksvragen worden beantwoord. 

 

1. Hoe kunnen we route- en vervoerwijze-keuze van OV reizigers als reactie op geplande en 

ongeplande verstoringen in stedelijk openbaar vervoer meten en kenmerken? 

 

Om de verstoringsimpact voor reizigers te meten, moeten de gegeneraliseerde reiskosten van 

passagiers afgeleid worden uit empirische data en vergeleken worden tussen een verstoorde en 

onverstoorde reis. De eerste stap hiervoor is het ontwikkelen van een robuust algoritme, wat 

reizen van passagiers afleidt van individuele chipkaart transacties tijdens zowel verstoorde als 

onverstoorde situaties (Hoofdstuk 2). Op basis van verschillende criteria worden bij elkaar 

horende chipkaart transacties gekoppeld tot een reis. Dit algoritme is een relaxatie van eerder 

ontwikkelde algoritmes hiervoor, en neemt het atypische reizigersgedrag tijdens verstoringen 

in beschouwing. In dit algoritme wordt een uitstappende reiziger alleen als overstapper 

geclassificeerd, indien voldaan wordt aan een temporeel, ruimtelijk en binair criterium: 

 Het temporele criterium houdt in dat een uitstapbeweging alleen als overstap wordt 

beschouwd, indien een passagier vervolgens instapt in het eerstvolgende logische 

voertuig, waarbij rekening wordt gehouden met de benodigde overstaplooptijd, drukte 

en de mogelijkheid dat reizigers door drukte op de halte moeten achterblijven. 

 Het ruimtelijke criterium stelt een maximale overstaploopafstand vast - bij onze case 

study 400 meter hemelsbreed - tenzij een passagier tussentijds gebruik maakt van OV 

op een ander netwerkniveau of van een andere vervoerder tijdens een verstoring. 

 Het binaire criterium houdt in dat een overstap naar dezelfde lijn alleen mogelijk is, 

indien wordt overgestapt naar het direct achteropkomende voertuig van diezelfde lijn. 

Hiermee wordt rekening gehouden met de mogelijkheid dat tijdens verstoringen 

bijsturingsmaatregelen, zoals kort-keren, worden toegepast die hiertoe leiden. 

Een gedeeltelijke validatie laat zien dat ons algoritme het afleiden van OV reizen tijdens 

verstoringen verbetert, zonder dat resultaten verminderen tijdens onverstoorde situaties. Dit 

betekent dat het zowel tijdens verstoorde als onverstoorde situaties kan worden toegepast. 

 

De tweede stap bij het meten van verstoringsimpact is om af te leiden hoe passagiers de 

verschillende componenten van de reis ervaren, met name wat betreft het ervaren van drukte 

(Hoofdstuk 3). Hiervoor is een discreet keuzemodel met paneleffecten geschat. Dit model is 

geheel gebaseerd op geobserveerde routekeuze van reizigers op basis van chipkaart transacties, 

en op geobserveerde kenmerken van de verschillende routes afgeleid van voertuiglocatie data, 

chipkaart data en de fusie van deze databronnen om de ervaren drukte in het voertuig af te 

leiden. Dit model laat de volgende resultaten zien: 
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 Gemiddeld ervaren reizigers één minuut in-voertuigtijd in trams en bussen als 1,16 

minuut, wanneer alle zitplaatsen bezet zijn en er geen staande reizigers zijn. Wanneer 

de bezetting toeneemt tot gemiddeld 3 staande reizigers per m2, wordt één minuut  in-

voertuigtijd gemiddeld als 1,34 minuut ervaren. 

 Voor frequente passagiers zijn deze factoren respectievelijk 1,31 en 1,75. 

 Niet-frequente reizigers nemen drukte niet mee tijdens hun routekeuze, doordat zij 

vooraf geen kennis hebben van de verwachte drukte op de verschillende routes.  

 De geschatte druktebeleving is minder negatief dan geschat in eerdere studies op basis 

van Stated Preference experimenten. Dit illustreert de neiging van Stated Preference 

onderzoeken om coëfficiënten te overschatten, ten opzichte van schattingen op basis 

van daadwerkelijk vertoond gedrag.  

 

De derde stap is het meten van de impact van geplande verstoringen op het gebruik van 

openbaar vervoer (Hoofdstuk 4). In dit onderzoek kalibreren we coëfficiënten voor route- en 

vervoerwijze-keuze voor een model om reizigers te voorspellen op basis van empirische data 

van twee geplande verstoringen, gevalideerd met data van twee andere geplande verstoringen. 

De hiervoor ontwikkelde rule-based methode geeft de volgende resultaten: 

 Passagiers ervaren in-voertuigtijd in rail vervangend busvervoer ongeveer 11% 

negatiever ten opzichte van de tramlijn die vervangen wordt. 

 Wachttijd voor rail vervangend busvervoer wordt ≈30% negatiever ervaren dan voor 

reguliere trams en bussen. Mogelijk liggen de vaak beperkte faciliteiten bij tijdelijke 

bushaltes hier aan ten grondslag, of speelt onbekendheid aangaande de frequentie en 

betrouwbaarheid van vervangend busvervoer een rol. 

 De nieuwe set parameters verbetert de nauwkeurigheid van de voorspellingen tijdens 

geplande verstoringen tot 13% ten opzichte van de oorspronkelijke set parameters, die 

gebruikt wordt om het effect van structurele netwerkwijzigingen te voorspellen. 

 

2. Hoe kunnen voorspellingen van de frequentie en impact van verstoringen worden gebruikt 

in een kwetsbaarheidsanalyse voor stedelijke en multi-level openbaar vervoernetwerken? 

 

Het voorspellen van de frequentie en impact van verstoringen is noodzakelijk om in een 

kwetsbaarheidsanalyse de meest kritische elementen van een openbaar vervoernetwerk te 

identificeren. We ontwikkelen zowel een preselectie methode als een full scan methode 

hiervoor, die beide behalve de verstoringsimpact expliciet de frequentie van verstoringen in 

beschouwing nemen. In Hoofdstuk 6 is een preselectie methode voor multi-level openbaar 

vervoernetwerken ontwikkeld, welke zowel de verwachte directe en indirecte blootstelling aan 

verstoringen, als het verwachte aantal getroffen passagiers gebruikt als indicatoren. Case study 

resultaten laten zien dat met name drukke metro / lightrail trajecten het meest kritisch zijn in 

een multi-level netwerk, aangezien daar zowel het aantal verstoringen als het aantal getroffen 

reizigers relatief hoog is. Daarnaast tonen onze studieresultaten het belang aan om de 

frequenties van verstoringen een plaats te geven in kwetsbaarheidsanalyses, aangezien de lijst 

van meest kritische links substantieel verschilt van de lijst die alleen gebaseerd is op de 

verwachte verstoringsimpact.  

 

In ons onderzoek is daarnaast ook een data-driven full scan methodologie ontwikkeld om 

binnen een acceptabele rekentijd de meest kritische stations in een stedelijk openbaar 

vervoernetwerk te identificeren (Hoofdstuk 5). Een supervised learning benadering is 

toegepast om zowel de kans op elk verstoringstype, als de reizigersvertraging als impact van 

elke verstoring te voorspellen voor elk station. Hiervoor gebruiken we vraag-gerelateerde, 

netwerk-topologische en temporele voorspellers. Ten slotte wordt een unsupervised learning 
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methode toegepast om de verschillende stations te clusteren op basis van de mate waarin ze 

bijdragen aan de kwetsbaarheid van het openbaar vervoernetwerk. Hierdoor kunnen case study 

resultaten gegeneraliseerd worden, aangezien dit aangeeft welk type station het meest kritisch 

is. De case study resultaten toegepast op het metronetwerk van Washington, D.C. laten zien dat 

stations met de hoogste frequenties en de grootste passagiersaantallen op centrale secties van 

het netwerk het meest kritisch zijn, samen met overstaplocaties en begin- en eindpunten.  

 

3. Hoe kunnen we de directe en indirecte impact van verstoringen voor het stedelijk openbaar 

vervoernetwerk voorspellen en beheersen in een multi-level netwerkcontext? 

 

Om de verstoringsimpact voor het stedelijk openbaar vervoer te verminderen kan men 

beheersmaatregelen toepassen op het stedelijke netwerk zelf, of bijsturing toepassen op het 

treinnetwerk om het doorwerken van verstoringen van het spoornetwerk naar het stedelijk 

netwerk te verminderen of om de impact van verstoringen op het stedelijk netwerk zelf te 

mitigeren. Het real-time synchroniseren van stedelijke OV ritten is een van de mogelijke 

beheersmaatregelen voor het stedelijke netwerk. Synchronisatie wordt momenteel alleen 

geoptimaliseerd voor relatief kleine netwerken, aangezien dit optimalisatieprobleem moeilijk 

oplosbaar is voor grotere netwerken. De bijdrage van deze studie is het ontwikkelen van een 

generieke, voorbereidende methode om dimensionaliteit van dit probleem te verminderen, door 

een selectie van locaties en lijnen te prioriteren voor synchronisatie (Hoofdstuk 7). 

 Ten eerste gebruiken we een op dichtheid gebaseerde clusteringtechniek die, op basis 

van overstappatronen van reizigers, een subset van hubs vaststelt waar synchronisatie 

geprioriteerd moet worden. 

 Ten tweede representeren we overstappatronen binnen elke hub met een op C-space 

geïnspireerde topologische netwerkrepresentatie. We gebruiken een community 

detection algoritme om groepen van lijnen te identificeren die binnen elke hub simultaan 

gesynchroniseerd zouden moeten worden. 

De resultaten - na toepassing op het stedelijk openbaar vervoernetwerk van Den Haag - laten 

zien dat 70% van alle overstappen binnen de geïdentificeerde overstaplocaties in beschouwing 

wordt genomen wanneer minder dan 1% van alle overstaplocaties geselecteerd en geprioriteerd 

wordt voor synchronisatie. Dit laat zien dat de complexiteit van dit optimalisatieprobleem voor 

synchronisatie aanzienlijk kan worden verminderd met deze methode. 

 

Om het doorwerken van een verstoring op het treinnetwerk naar het stedelijk OV netwerk te 

verminderen, combineren we een train rescheduling optimalisatiemodel met een dynamisch 

toedelingsmodel in een iteratief proces (Hoofdstuk 8). Het aantal reizigers dat overstapt van 

het spoornetwerk naar het stedelijk openbaar vervoernetwerk wordt als input in het 

optimalisatiemodel gebruikt. Vervolgens wordt de impact hiervan getest met het dynamische 

toedelingsmodel, op basis van een geüpdatete spoordienstregeling als resultaat van het 

optimalisatieproces. Het optimalisatiemodel wordt vervolgens iteratief geüpdatet op basis van 

het aantal treinreizigers wat resulteert uit het toedelingsmodel. In onze case study kan de 

verstoringsimpact die doorwerkt naar het stedelijke netwerk tot 14-27% worden verminderd, 

zonder dat dit resulteert in meer vertraging voor reizigers op het spoornetwerk. 

 Ons onderzoek laat ook zien hoe het spoornetwerk gebruikt kan worden als middel om 

de impact van verstoringen die op het stedelijk netwerk plaats vinden te verminderen. Hiervoor 

is een maatschappelijk kosten-batenanalyse framework opgesteld (Hoofdstuk 6). Een 

toepassing voor het multi-level openbaar vervoernetwerk van het zuidelijke deel van de 

Randstad illustreert dat bijsturingsmaatregelen op het spoornetwerk de totale verstoringsimpact 

- resulterend van een verstoring op het stedelijk netwerk - met 8% kunnen verminderen. Dit laat 

de potentie van het multi-level netwerk zien om de impact van verstoringen te mitigeren.  
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Implicaties voor de OV sector 

Resultaten van ons onderzoek hebben de volgende implicaties voor vervoerders en 

vervoersautoriteiten:  

 Dit onderzoek helpt vervoerders en vervoersautoriteiten om de nauwkeurigheid van 

reizigersvoorspellingen tijdens geplande en ongeplande verstoringen te vergroten. 

 Methoden ontwikkeld in dit onderzoek leiden tot een verbeterde en snellere 

kwantificering van de impact van verstoringen op basis van empirische data.  

 Ons onderzoek ondersteunt beleidsmakers om robuustheidsmaatregelen te prioriteren 

voor locaties en verstoringstypen die de grootste invloed op de robuustheid van het 

openbaar vervoernetwerk hebben. 

 Dit onderzoek kan de kwaliteit van real-time bijsturingsmaatregelen verbeteren, 

waardoor de reizigersimpact van verstoringen verminderd kan worden. 

Deze implicaties hebben de potentie om de nauwkeurigheid van haalbaarheidsstudies te 

verbeteren, besluitvorming tijdens verstoringen te verbeteren, en reizigers een beter product te 

verstrekken. Dit kan leiden tot een hogere klanttevredenheid en in potentie tot een 

reizigerstoename in het openbaar vervoer. 

 

Aanbevelingen voor toekomstig onderzoek 

Op basis van dit onderzoek formuleren we de volgende aanbevelingen voor toekomstige 

onderzoeksrichtingen: 

 Het opzetten van een gedetailleerde studie naar de vervoerwijze-keuze van passagiers 

tijdens geplande verstoringen, met name gericht op de mate waarin passagiers gebruik 

maken van alternatieve vervoerwijzen, zoals deelfietsen of aanbieders van 

vervoerdiensten als Uber of Lyft.  

 Het uitvoeren van een vervolgstudie naar het dynamische routekeuzegedrag van 

reizigers tijdens hun reis in het geval van ongeplande verstoringen, en de invloed van 

factoren zoals real-time informatievoorziening en flexibel werken hierop. 

 Onderzoeken in welke mate het verstrekken van informatie aan reizigers voor en tijdens 

de reis de (gepercipieerde) impact van verstoringen beïnvloedt.  

 Het ontwikkelen van een geavanceerdere methode om geobserveerde reizigers-

vertragingen van Automated Fare Collection (AFC) systemen te kunnen toewijzen aan 

individuele verstoringen. 

 Het vergelijken van de prestatie en rekentijd van de door ons voorgestelde 

tweetrapsmethode om een selectie van locaties en lijnen te prioriteren voor 

synchronisatie, met recent ontwikkelde methoden voor netwerk-brede synchronisatie. 

 

Samenvattend is het doel van de ontwikkelde methoden in deze studie om het 

reizigersperspectief te versterken bij het meten, voorspellen en beheersen van de impact van 

verstoringen. De toepassing van onze methoden voor verschillende case study’s wereldwijd laat 

zien dat onze methoden toepasbaar zijn in de praktijk. Hoewel resultaten per case study zullen 

verschillen, laten onze empirische studies en modeltoepassingen zien dat het mogelijk is om 

reizigersbaten te realiseren. Dit onderzoek resulteert in generieke methoden en tools voor de 

openbaar vervoersector. We adviseren daarom een nauwe samenwerking tussen wetenschap en 

de openbaar vervoersector om methoden en resultaten van dit onderzoek te implementeren in 

de praktijk. Dit heeft de potentie om het openbaar vervoer voor de reiziger verder te verbeteren.
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1. Introduction 

1.1 Importance of Reliable Public Transport 

Disruptions in public transport (PT) have negative impacts on passengers. Disruptions can 

result in additional in-vehicle time, waiting time, transfer time and extra transfers for 

passengers. Besides, perceived journey times might increase due to higher crowding levels on 

alternative PT services. For example, Cats and Jenelius (2014) found that a 30-minute closure 

of a link on the Stockholm metro network during the morning peak increases the nominal and 

perceived passenger journey time on the total PT network by up to 11%, depending on the 

location of the disruption and the information provided to passengers. In Cats et al. (2016b), we 

calculated that yearly passenger disruption costs resulting from disruptions on one single light 

rail link in the metropolitan PT network of The Hague and Rotterdam, the Netherlands, can 

exceed €900,000. Meanwhile, in London all disruptions on Transport for London’s 

underground network during a four-week period from 28 April to 25 May 2019 have resulted 

in 2.2 million lost customer hours (Transport for London, 2019b). This number expresses the 

total perceived journey time increase for all passengers affected by the disruptions and 

illustrates the severity of the impact PT disruptions can have on passengers. 

PT disruptions can also result in revenue losses, rescheduling costs, reimbursement 

costs and fines for the PT service provider. Several service providers refund the fare to 

passengers if a delay exceeds a certain threshold. For example, the PT agency in Washington 

D.C., WMATA, fully reimburses passengers whose journey is delayed by more than 10 minutes 

during rush hours (WMATA, 2019). Transport for London automatically refunds passengers in 

case selected disruption types result in a delay of 15 minutes or more (Transport for London, 

2019a). In the Netherlands, passengers receive a partial or full reimbursement of their fare from 

the Dutch Railways (NS) when a delay exceeds 30 minutes (Nederlandse Spoorwegen, 2019). 

Besides, PT service providers can be required to pay a fine to the PT authority in the event of 

delays or disruptions, depending on the contractual agreements between authority and service 

provider. For example, PT service providers in the Amsterdam area in the Netherlands are fined 

if the number of delayed PT trips exceeds the contractually agreed threshold (GVB Holding 

NV, 2018). As another illustration, in 2016 MTR - service provider of the Hong Kong metro - 
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was required to pay HK$14.5 million (€1.7 million) due to delays (Straits Times, 2017). 

Additionally, service providers can suffer from temporary or systematic revenue losses when 

passengers decide not to travel by public transport in response to a disruption. Saberi et al. 

(2018) found an 85% increase in usage of bicycle sharing schemes during a strike on the London 

Underground network, whilst Shires et al. (2018) studied the impacts of planned rail closures 

on passengers’ mode choice, destination choice and trip frequency choice. Depending on the 

level of awareness and quality of the alternative service provision, they found a temporary rail 

demand reduction ranging from 5% up to 32% during planned rail closures. These examples 

illustrate the financial impact PT disruptions might have for the PT service provider involved. 

Passengers consider public transport reliability an important quality aspect. Based on 

Maslow’s hierarchy of human needs (Maslow, 1948), Van Hagen (2011) determined that safety 

and reliability are the most fundamental needs in the hierarchy of customer needs when using 

public transport. The perceived importance of PT reliability by passengers is also shown in 

studies by for example Bates et al. (2001) and Rietveld et al. (2001). Susilo and Cats (2014) 

and Abenoza et al. (2017) state that reliability is an important determinant of PT customer 

satisfaction, whilst Cats et al. (2015a) and Abenoza et al. (2019) conclude that passengers are 

systematically dissatisfied with information provided during planned and unplanned service 

disruptions, based on a study conducted in Stockholm. Olsson et al. (2012) illustrate that 

negative events, such as PT disruptions, leave a longer lasting mark on customer satisfaction. 

Van Oort (2016) states that unreliability is an important determinant for passenger route choice 

(e.g. Schmöcker and Bell, 2002; Liu and Sinha, 2007) and mode choice (Turnquist and 

Bowman, 1980). Hence, this stipulates the importance of reliable public transport, as 

(perceived) unreliability can result in dissatisfaction and PT ridership reductions. 

 

Although it is important to reduce the impact PT disruptions have on passengers, PT service 

providers and customer satisfaction, it is particularly challenging to foresee and study 

disruptions due to the uncertainty and variety with which they occur. As disruptions occur 

relatively infrequently, it is difficult to predict when and at which location a certain disruption 

will occur, and what the disruption duration will be. Besides, there is a wide range of disruptions 

varying from relatively small, recurrent disruptions (such as a train delay or cancellation), non-

recurrent disruptions (such as a train breakdown) to extreme events (such as strikes or natural 

disasters). There can be differences in susceptibility to these different disruption types for 

different locations on the PT network, during different seasons or for different periods of the 

day. Predicting the impact once a disruption happens is also a far from trivial task. This depends 

on the disruption type, location and duration, as well as the number and type of passengers 

affected (such as the mixture between commuting vs. leisure passengers). This also depends on 

the response of the PT service provider in terms of service adjustments and information 

provision to passengers, and passengers’ behavioural response based on actions of the PT 

service provider, prior knowledge and previous experiences. We therefore conclude that PT 

disruptions occur in an environment with complex interactions between decisions made on the 

demand and supply side of the PT system, surrounded by various sources of uncertainty. 

For a systematic approach to mitigate PT disruption impacts, we need to understand the 

current disruption impacts, predict future disruption frequencies and impacts, and then develop 

and evaluate measures aimed at controlling these disruption impacts. Our general framework 

for how to approach PT disruptions is presented in Figure 1.1. The first step is to measure 

disruptions and quantify the impacts of PT disruptions empirically for past disruptions. This 

provides a better understanding of the spatial and temporal distribution of disruptions and the 

magnitude of their impacts. Given the rare nature of many disruptions, in a second step it is 

necessary to predict how often, and at which locations different disruption types will occur in 

the future, together with predicting their impacts on passengers and PT service providers. This 
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enables performing a systematic PT vulnerability analysis to identify and quantify the 

vulnerability of different parts of the PT network to different disruptions. Once predictions of 

disruption frequencies and impacts are available, controlling disruption impacts takes place in 

the third step. In this step, measures aimed at reducing the disruption frequency and/or 

mitigating disruption impacts are developed. Potential measures can range from strategic 

(infrastructure or service network related), tactical (planning related) to real-time control (for 

example retiming, reordering or cancelling PT trips). Predicting the costs and benefits of 

potential measures is important to support policy makers in their decision with which measures 

to proceed towards the implementation phase. This research covers measuring, predicting and 

controlling disruptions impacts, as well as predicting disruptions (Figure 1.1). Measuring and 

controlling disruptions (rather than their impacts) both fall outside the scope of our research. 

 

 

Figure 1.1. Framework to reduce PT disruptions and disruption impacts for passengers 

1.2 State-of-the-Art and Research Gaps 

1.2.1 Measuring disruption impacts 

Over the last decades, metrics to measure PT disruption impacts have shifted from supply-

oriented to passenger-oriented indicators. These metrics aim at measuring PT (un)reliability: 

the extent to which the realised passenger journey deviates from the scheduled or expected 

passenger journey. This should reflect the impact on the total passenger journey, including in-

vehicle time, waiting time, walking time, crowding and the number of transfers. Traditionally, 

punctuality-based metrics measure the percentage of PT trips which depart or arrive with a 

delay smaller than a certain maximum number of minutes from/at a set of predefined stations. 

For example, for the Dutch railway network this threshold is set to 5 minutes (Vromans, 2005). 

Additionally, average punctuality can be calculated for each PT line (e.g. Van Oort, 2011). For 

high-frequent urban PT networks, vehicle regularity is often more important than punctuality. 

Hence, many studies focusing on urban PT networks use the Coefficient of Variation (CoV) of 

actual headways as a metric instead of punctuality (see for example Engelson and Fosgerau, 

2011). Based on the CoV, the additional waiting time and variation in waiting time for PT 

passengers caused by irregularity can be computed (see for example Turnquist and Bowman, 

1980; Van Oort, 2011). Under the assumption of random passenger arrivals at the PT stop, 

irregularity results in a larger passenger segment experiencing longer waiting times, whilst a 

smaller passenger segment experiences shorter waiting times. This results in an increase in both 

the average waiting time and variance in waiting time as consequence.  
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Recent years, passive data from Automated Vehicle Location (AVL), Automated Fare 

Collection (AFC) and Automated Passenger Count (APC) systems has become widely available 

in the PT sector, as well as data from GPS and mobile phone (e.g. Trépanier and Yamamoto, 

2015). These data sources provide opportunities to quantify metrics in a fast and automated 

manner. The availability of AVL data with scheduled and realised vehicle departure and arrival 

times enables automated quantification of the abovementioned metrics for all PT trips. 

Nevertheless, a clear disadvantage of these metrics is that all trips are weighted equally, 

regardless of the number of passengers affected. Passenger-weighted train punctuality aims to 

correct for this, by weighting arrival punctuality based on the expected train load (Vromans, 

2005). This metric is however still problematic due to its focus on separate train trips. None of 

the abovementioned metrics incorporates how a single PT vehicle delay affects the complete 

passenger journey, including the possibility of missed connections to other trains, or to trams 

and buses at the urban PT network level (as for example considered by Lee et al., 2014).  

Excess Journey Time (EJT) compares the realised passenger journey time with the 

scheduled journey time (Zhao et al., 2013; Hendren et al., 2015). Based on tap in and tap out 

data resulting from AFC systems, realised and scheduled times can be compared for the total 

passenger journey per origin-destination (OD) pair. However, this metric does not incorporate 

the difference in perceived journey times, for example caused by higher crowding levels. To 

capture the passenger disruption impact more completely, the total realised generalised journey 

time (GJT) needs to be compared with the planned or expected GJT. When expressed in 

monetary terms, passenger disruption impacts can then be expressed as welfare change between 

realised and scheduled journey (Cats and Jenelius, 2014).  

 

To measure the realised GJT empirically, all journey time components need to be obtained 

(typically using data from AFC, AVL and APC systems) and multiplied with their respective 

coefficients, which reflect how passengers perceive the different components (see our 

framework in Figure 1.2). As a first step, passenger journeys need to be inferred from the 

individual AFC transactions. Several studies have developed destination inference algorithms 

to infer the journey leg destination in case of AFC systems where passengers only need to tap 

in, or in case passengers (un)deliberately do not tap out in an entry-exit AFC system (e.g. 

Trépanier et al., 2007; Munizaga and Palma, 2012). Once destinations are inferred for 

individual AFC transactions, transfer inference algorithms are required to determine which 

transactions form one passenger journey. These transfer inference algorithms vary from 

relatively simple (such as applying a maximum transfer time threshold between a tap out and 

consecutive tap in by the same smart card) (e.g. Seaborn et al., 2009), to more complex (such 

as Gordon et al., 2013). These rule-based algorithms assume a certain behavioural logic in 

passenger route choice when distinguishing transfers from final destinations. Therefore, these 

can be applied during regular, undisrupted cases. However, during PT disruptions passengers 

can be confronted with service adjustments, imperfect knowledge about alternative routes and 

lack of information. This implies that the assumed logic for journey inference during 

undisrupted scenarios does not necessarily apply during disruptions, as passenger route choice 

behaviour during disruptions - such as making additional transfers, detours, or not boarding the 

first vehicle due to excessive crowding - would be considered illogical if there would be no 

disruption. Therefore, existing transfer inference algorithms are currently not suitable to capture 

passengers’ specific route choice behaviour accurately during disruptions. When this results in 

inadequate journey inference, this can potentially lead to an incorrect comparison of GJT 

between scheduled and observed journeys and an incorrect measurement of disruption costs. 

 Once passenger journeys are established, the second step to measure disruption impacts 

is obtaining the values of the journey time components. If the considered PT system has on-

board devices for passengers to tap in, the characteristics of each journey leg can be directly 
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obtained from AFC and AVL data. Examples can be found for urban tram and bus networks in 

the Netherlands (Van Oort et al., 2016) or in Brisbane, Australia (Alsger et al., 2016). In case 

of gate lines at the station, a passenger-to-train assignment needs to be performed first based on 

AFC and AVL data, as for example proposed by Hörcher et al. (2017) and Zhu et al. (2017). 

Once passenger itineraries are observed or inferred, the realised in-vehicle time for each journey 

leg can directly be obtained from AVL data. To measure the perceived in-vehicle time caused 

by crowding, load profiles for each trip and each line segment are necessary. Spatiotemporal 

load profiles and thus crowding levels can be obtained from APC systems, or by fusion of 

passenger itineraries (observed or inferred from AFC data) with AVL data (e.g. Luo et al., 

2018). Transfer time can be calculated by taking the difference between the AVL arrival time 

or AFC tap out time of one journey leg, and the AVL departure time or AFC tap in time of the 

consecutive journey leg. This transfer time can be divided into transfer walking time and 

waiting time, based on an assumed walking speed distribution (Hänseler et al., 2016; Zhu et al., 

2017). We can conclude that inference of the values of the different journey time components 

based on empirical data is a well-studied topic where important research gaps have already been 

addressed. 

 The third step to measure disruption impacts is to determine how passengers perceive 

the different journey time components. Many studies have been performed on how waiting time 

or walking time coefficients relate compared to in-vehicle time coefficients, for example in the 

UK (Wardman, 2004) and in the Netherlands (Bovy and Hoogendoorn-Lanser, 2005). In 

addition, during the last decades many studies have been performed on how in-vehicle time is 

perceived as a function of on-board crowding levels. Extensive meta-analyses of in-vehicle time 

crowding multipliers as function of load factor or standing density were performed by Wardman 

and Whelan (2011) and Li and Hensher (2011). However, these crowding multipliers are 

typically based on stated preference (SP) research, rather than using observed choice behaviour. 

SP research has the inherent limitation that there might be a discrepancy between the behaviour 

stated by respondents and their realised behaviour, the latter being used in revealed preference 

(RP) research. Therefore, there is a risk of potential bias when estimating crowding multipliers 

based on SP research, as suggested by studies where selected RP data was used to validate SP 

results (Kroes et al., 2014; Batarce et al., 2015). The availability of large amounts of AFC and 

AVL data nowadays does provide an opportunity to re-estimate models on how passengers 

value on-board crowding. This is especially relevant during PT disruptions, as train delays or 

cancellations typically result in increased crowding levels on alternative services. Using SP 

based crowding multipliers can result in incorrect disruption impact measurements. In addition, 

it can result in incorrect route choice predictions when predicting the impact of future 

disruptions. Only recently two studies have been performed to estimate crowding multipliers 

for metro passengers in Singapore (Tirachini et al., 2016) and Hong Kong (Hörcher et al., 2017) 

purely based on RP data. No studies have been performed in a European context, nor for other 

PT modes such as light rail, trams and buses. 

 After measuring the journey time components and how these are perceived, a fourth 

step is to consider the behavioural and demand response of passengers when a PT disruption 

occurs. Most studies to unplanned disruptions focus on en-route choice effects for passengers, 

and assume no PT demand suppression (e.g. Cats and Jenelius, 2014; Cats and Jenelius, 2015). 

Passengers are assumed to redistribute over the PT network, as there is no awareness assumed 

when starting the PT journey. Generally, in PT vulnerability analyses there is a strong focus on 

unplanned disruptions. The topic of planned disruptions, for example related to maintenance 

works, is relatively understudied (Shires et al., 2018). During planned disruptions a fixed PT 

demand assumption does however not apply. Due to awareness, passengers might change their 

mode, destination or trip frequency choice. There are however very few empirical studies which 

study passengers’ demand response in the event of planned disruptions. Van Exel and Rietveld 
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(2001) reviewed passenger behaviour specifically in response to public transport strikes based 

on 13 studies. The recent work of Shires et al. (2018) is one of the limited studies towards this 

demand response during planned rail closures in general, thereby focusing on long-distance 

trains in the UK. So far, no studies have been performed focusing on passengers’ behavioural 

and demand response during planned disruptions for urban PT networks. 

 

 

Figure 1.2. Framework to measure passenger impacts of PT disruptions from empirical data  

Based on the review of state-of-the-art research towards measuring PT disruption impacts, we 

can identify the research gaps as defined below. Addressing these research gaps is important to 

obtain a more accurate and more comprehensive understanding of PT disruption impacts based 

on empirical data. 

 1.1 There is no transfer inference algorithm which is able to infer public transport 

journeys under disrupted circumstances, as existing inference algorithms rely on 

behavioural route choice logic which does not necessarily apply during public transport 

disruptions. 

 1.2 It is unknown how passengers perceive public transport crowding during their 

journeys based on realised, empirically observed route choice behaviour, particularly 

for urban trams and buses and in a European context. 

 1.3 The demand response of public transport passengers in the event of planned 

disruptions on the urban public transport network is unknown. 

1.2.2 Predicting disruption frequencies and disruption impacts 

As PT disruptions occur relatively infrequently, measuring disruption impacts can only be 

performed for instances for which empirical data is available. This means that typically 

passenger impacts can be measured for a selection of locations, time periods and disruption 

types. Once historical data for a given time period (e.g. one or two years) would be considered, 

it is unlikely that empirical disruption observations will be available for all disruption types, for 

each location of the PT network, during each time period of the day due to the large number of 
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possible combinations of disruption types, locations and time periods. Prediction of PT 

disruption impacts is therefore necessary for future disruptions or disruptions for which 

empirical data is lacking, as well as for the evaluation of possible interventions to mitigate 

disruption impacts. This section discusses state-of-the-art work to predict PT disruption 

frequencies and disruption impacts. First, we address methods to predict disruption frequencies 

and disruption impacts. Second, methods used to perform PT vulnerability analyses to identify 

the locations in a PT network which contribute most to PT vulnerability are discussed. 

 

Traditionally static, frequency-based or schedule-based, PT assignment models are used to 

predict PT disruption impacts (Gentile et al., 2016), in some cases combined with variable 

demand models to capture mode choice impacts in the event of planned disruptions in 

particular. The disadvantage of using static assignment models for this purpose is their 

assumption that passenger route choice is determined before the journey starts, based on 

knowledge on how PT services are amended in response to a disruption. This means these 

models might be used to predict the impact of planned disruptions, where passengers are aware 

of the disruption when commencing their journey. These models are however unable to 

incorporate the dynamics of especially unplanned PT disruptions. Typically, passengers 

become aware of unplanned disruptions during their journey, requiring them to adjust their 

route during their journey, often based on limited information of the service adjustments or 

disruption duration. Static models also assume a stable PT service network during the 

disruption, whilst neglecting the transition from undisrupted to disrupted network and the 

recovery time the PT system needs once the disruption is resolved. In addition, the dynamic 

interaction between PT demand and supply during disruptions or delays, which can result in 

vehicle queuing or bunching, cannot be captured in static assignment models.  

To predict impacts of unplanned disruptions - assuming a fixed PT demand - there is a 

need for more advanced, dynamic PT assignment models, which are able to capture the demand 

and supply dynamics and their interactions during disruptions. In recent years, there have been 

several developments to use this type of models in transportation, instead of the aforementioned 

traditional static assignment models. For this purpose, mesoscopic, agent-based assignment 

models are developed for road networks (e.g. De Souza et al., 2019) and for PT networks. For 

example, Cats et al. (2016a) use BusMezzo, a dynamic, mesoscopic PT assignment model, for 

urban and metropolitan PT networks. As individual PT vehicles and passengers are simulated, 

it is possible to account for dynamic, en-route passenger route choice and test the impact of 

real-time information provision or day-to-day learning effects (Cats and Jenelius, 2014) for 

complete and partial service degradations (Cats and Jenelius, 2018). This model type however 

assumes operations without explicitly considering a railway signalling system. To predict 

impacts of heavy rail disruptions, often microscopic or mesoscopic simulation models such as 

Open Track (Nash and Huerlimann, 2004) are used, which specifically incorporate railway 

characteristics such as a signalling system, acceleration and braking characteristics of different 

rolling stock types and block lengths. These simulation models focus primarily on simulating 

trains, whilst passengers and their route choices are often incorporated in a simplified way. Not 

incorporating the full, dynamic interactions between PT demand and supply is typically less 

problematic for heavy rail networks, compared to high-frequent urban PT systems, due to 

railway characteristics. Heavy rail systems generally have lower service frequencies and early 

departures from stations are often prohibited due to the signalling system in place. Effectively, 

this implies that bunching between subsequent train services is less likely to occur, as trains are 

subject to holding until their scheduled departure time at the majority of the stations. 

Additionally, heavy rail networks have a lower network density than urban PT networks, which 

means that the number of feasible route alternatives available to passengers will be more limited 

than for urban networks. Hence, train simulations models are often used to predict disruption 
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impacts for heavy rail networks, in contrast to macroscopic or mesoscopic passenger 

assignment models being used for urban PT systems.  

Because of the different types of models used to predict disruption impacts for heavy 

rail and urban PT networks, the impact of disruptions for the integrated multi-level PT network 

is hardly calculated. The total PT network consists of different functional network levels - such 

as the (inter)regional train network level and the urban tram and bus network level - which are 

hierarchically connected to each other. We use the term multi-level network to refer to the total 

PT network consisting of these different network levels. As an illustration, a train network 

disruption can result in missed transfers to the urban tram or bus network, thereby affecting the 

journey time and crowding levels on the urban PT network level. Models generally only 

consider the transport modes which are subject to similar traffic and control regimes (such as 

light rail, trams or buses on the one hand, and heavy rail systems on the other hand). Hence, 

existing models only predict the impact of a disruption on the same network level as where the 

disruption originated, for those transport modes sharing the same traffic regime. The 

propagation of disruption impacts from one PT network level to another network level, operated 

by transport modes with different traffic regimes, is not considered.   

 

A PT vulnerability analysis is used to identify the network elements which contribute most to 

PT network vulnerability, and to quantify this contribution. This enables prioritising mitigation 

measures for the most critical network parts. Identification of the nodes or links which 

contribute most to the vulnerability of a transport network is a well-studied research topic. Two 

different approaches are broadly distinguished in literature: pre-selection methods and full 

computation methods. The first approach uses criteria to pre-select a smaller number of nodes 

or links which are expected to contribute most to network vulnerability. In a second step, full 

disruption impacts are only calculated for these selected nodes or links, thereby reducing the 

required number of model runs. The disadvantage however is that there is no guarantee the most 

critical nodes or links are selected. In the latter approach, disruption impacts are predicted for 

all nodes or links in the transport network, which enables listing the contribution of each node 

/ link to network vulnerability (e.g. Knoop et al., 2012). The disadvantage is that these methods 

are very time consuming when considering large, real-world transport networks, as a large 

number of predictions (often using model runs) would be required. This method is therefore 

only applicable to smaller or test networks within reasonable computation times. This illustrates 

that methods to predict disruption impacts for all locations of a large PT network in a systematic 

manner within reasonable computation times are currently lacking. 

There is a variety of indicators developed in scientific literature for pre-selection 

methods to identify nodes or links with the largest contribution to network vulnerability. Pre-

selection methods for road networks use for example the volume/capacity ratio of links, or the 

Incident Impact Factor as possible criteria (e.g. Tampère et al., 2007). For PT networks, 

potential criteria found in literature are amongst other node degree, betweenness centrality, or 

PT link volume (e.g. Bell, 2003; Cats and Jenelius, 2014). An important shortcoming is that 

existing pre-selection criteria only identify nodes or links for one network level. For example, 

Derrible and Kennedy (2010) only consider metro networks, whilst Cats and Jenelius (2014) 

only focus on urban PT networks. Existing studies do not identify the most critical links of the 

total multi-level PT network. To prioritise mitigation measures to reduce disruption frequency 

and impact, it is however important to understand how links of different PT network levels 

contribute to the vulnerability of the total multi-level PT network. 

To make PT vulnerability analyses useful for decision-making, predictions of both 

disruption impact and disruption frequency for each network location are necessary. When only 

disruption impacts are predicted, network elements with the most severe, yet rare, disruptions 

might be prioritised incorrectly. For a correct prioritisation, the joint contribution in terms of 
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both disruption frequency and disruption impact should be predicted for each network element. 

The methods discussed above however only focus on the prediction of disruption impacts, 

without explicitly considering disruption frequencies or disruption locations. The same applies 

for existing pre-selection criteria, which are only based on expected disruption impacts, without 

considering how often different nodes or links are exposed to different disruption types. This 

can often be explained by the lack of usable disruption log data, as log data of sufficient quality 

from a longer period of time would be needed to properly assess or predict the frequency of 

different disruption types at different locations, given their relatively infrequent occurrence. 

Notwithstanding, without assessing how often each disruption type occurs, together with its 

duration and location, it becomes difficult to correctly predict vulnerability and to incorporate 

robustness benefits of potential mitigation measures in appraisal studies or cost-benefit 

analyses.   

 

Based on this review of state-of-the-art research regarding the prediction of disruption 

frequencies and disruption impacts, the following research gaps are defined: 

 2.1 Methods to predict disruption impacts do not incorporate the propagation of 

disruption impacts between different network levels of the integrated, multi-level public 

transport network, but focus on one single network level instead. 

 2.2 There is no methodology to predict disruption frequencies and disruption impacts 

for all network locations and time periods in a systematic manner for large, real-world 

public transport networks within acceptable computation times. 

 2.3 Methods for public transport vulnerability analysis do not incorporate the frequency 

and location of different disruptions in the multi-level public transport network when 

identifying the nodes or links which contribute most to network vulnerability and when 

predicting this contribution. 

1.2.3 Controlling disruption impacts 

There is a wide variety of measures on a strategic, tactical and operational level aimed at 

controlling PT disruption impacts. The reader is referred to Van Oort (2011) for a 

comprehensive overview of potential measures. Strategic measures are for example related to 

the realisation of additional switches to enable short-turning during disruptions, or focused on 

a robust configuration of a rail terminal (Van Oort and Van Nes, 2010). On a tactical level 

measures can relate to the design of robust timetables for railways (e.g. Andersson et al., 2015) 

or urban bus networks (e.g. Gkiotsalitis et al., 2019), or to introduce holding stop points on a 

PT route to prevent early departures and enable delayed vehicles to adhere to the timetable 

again (e.g. Van Oort et al., 2012). Tactical measures can also focus on reducing driver schedule 

complexity, to limit disruption impact propagation and recovery time (Yap and Van Oort, 

2018). In the research area of railways, many studies are performed on real-time rescheduling 

of rolling stock and crew, typically using optimisation-based approaches (see for example 

Corman et al., 2010; Cacchiani et al., 2014; Van der Hurk et al., 2018). For urban PT networks 

studies focus on comparing rescheduling strategies (for example short-turning or diverting a 

trip) (Roelofsen et al., 2018), or on real-time synchronisation between services. Gavriilidou and 

Cats (2019) provide an overview of the extensive amount of research performed on PT 

synchronisation. They develop a rule-based controller for synchronisation of two urban rail 

lines, thereby incorporating expected crowding levels and passengers potentially being denied 

boarding. Daganzo and Anderson (2016) use simulation to evaluate transfer synchronisation 

between metro and bus, whilst Laskaris et al. (2018) use BusMezzo as simulation-based 

assignment model to evaluate different multiline holding control strategies. Nesheli and Ceder 

(2015) optimise real-time transfer synchronisation between three bus lines at two different 
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transfer locations, whereas Hadas and Ceder (2010) develop an optimal transfer synchronisation 

strategy for a case study network consisting of one train line and three bus routes. In addition 

to mitigating disruption impacts, measures can also aim at reducing the disruption frequencies, 

for example by maintenance optimisation (using techniques as described by De Jonge and Scarf, 

2019) or by the introduction of predictive maintenance for a train or bus fleet (see for example 

Killeen et al., 2019). 

We identify two limitations regarding existing approaches to control PT disruption 

impacts. The first limitation is related to transfer synchronisation, being one of the possible 

real-time control measures to control disruption impacts. Optimal transfer synchronisation 

becomes computationally challenging for larger, real-world urban PT networks, due to NP-

hardness of the transfer synchronisation problem (Desaulniers and Hickman, 2007). Existing 

studies to optimal PT synchronisation generally focus on heavy rail networks or smaller urban 

PT case study networks. Railway studies seldom fully account for the stochasticity in PT 

demand and supply: stochastic passenger route choice, stochastic demand or stochastic vehicle 

running times, and interactions between demand and supply due to bunching are often not 

considered or approximated in a simplified way (e.g. D’Ariano, 2007; Törnquist Krasemann, 

2012; Binder et al., 2017). This may be justified for lower-frequent railway services, where 

train separation is arranged by a signalling system and where early departures are often not 

possible. For high-frequent urban PT networks these stochastic and dynamic aspects are 

however considerably more relevant, but at the same time this induces extra challenges for 

solving the transfer synchronisation problem within reasonable computation times. Hence, 

abovementioned applications of optimal synchronisation for urban PT networks are limited to 

smaller networks. When considering larger urban PT networks, there can be many transfer 

locations with many different PT lines, for which synchronisation can be potentially relevant. 

Network managers need to determine in a systematic way at which transfer locations and 

between which routes PT synchronisation needs to be prioritised, once network-wide 

optimisation is not feasible. Transfer synchronisation can then be applied for selected locations 

and between selected routes (see for example Lee et al., 2014). At this moment, guidance to 

support controllers to prioritise locations and routes for synchronisation is lacking.  

The second limitation relates to the incorporation of disruption propagation impacts 

when devising and evaluating measures to control disruption impacts. Existing real-time control 

measures are focusing on one PT network level only, without considering the impacts on the 

other PT network levels. For example, optimal train rescheduling strategies only consider the 

effect on the train network, whilst neglecting the impact of these control decisions on the urban 

tram and bus network, for example via missed connections or increased crowding levels. The 

methodological difficulty here is related to incorporating the urban PT dynamics in the train 

rescheduling optimisation problem. Nevertheless, ignoring the disruption impact propagation 

to the lower PT network level potentially results in suboptimal rescheduling from a total 

passenger perspective. 

 

Based on the abovementioned review of state-of-the-art research related to controlling and 

mitigating PT disruption impacts, we can define the following research gaps: 

 3.1 When solving the network-wide transfer synchronisation problem is 

computationally not feasible for large, urban public transport networks, a systematic 

approach to support planners and controllers to prioritise transfer locations and routes 

for synchronisation is missing. 

 3.2 In the process of determining an optimal real-time control strategy for trains in 

response to a train network disruption, the impact of control decisions on the lower-

level urban public transport network is not quantitatively incorporated, potentially 

resulting in the application of suboptimal control strategies. 
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1.3 Research Objective, Questions and Scope 

1.3.1 Research objective 

As PT disruptions can have major implications for passengers, PT service provider and 

authority, it is important to quantify the impacts of these disruptions and to evaluate strategies 

aimed at mitigating disruptions and their impacts. This can result in a better PT product 

delivered to passengers and increase the attractiveness of public transportation. The review of 

state-of-the-art research shows there are several research gaps related to this topic which need 

to be addressed. The main research objective of this study is therefore formulated as follows: 

 

‘To improve methods to measure, predict and control disruption impacts for urban public 

transport’ 

1.3.2 Research questions 

We formulate three research questions which contribute to the main research objective. The 

first research question focuses on the first level of the disruption framework (Figure 1.1) and 

aims to improve measuring disruption impacts. This question addresses research gaps 1.1, 1.2 

and 1.3 and focuses on both unplanned and planned disruptions. It considers how measuring 

the behavioural response of passengers during disruptions based on empirical data sources can 

be improved, particularly in relation to transfer inference and crowding perception during 

disruptions. It also aims to better understand passengers’ demand response specifically for 

planned disruptions.   

 

1. How can we measure and characterise the behavioural and demand response of 

passengers during planned and unplanned urban public transport disruptions? 

 

The second research questions aims to improve the predictions of the frequency and impacts of 

PT disruptions (the middle level of Figure 1.1) and addresses research gaps 2.2 and 2.3. This 

research question aims to improve PT vulnerability analyses by developing new criteria to 

identify critical links based on disruption frequency and impact in multi-level PT networks. It 

also focuses on the development of an improved method to predict disruption frequency and 

impact for all locations in a larger urban PT network within acceptable computation times.  

 

2. How can we incorporate disruption frequency and impact predictions in a public 

transport vulnerability analysis for urban and multi-level public transport networks? 

 

The third research question aims to improve methods for prediction and control of PT disruption 

impacts (middle and lower level in Figure 1.1) and relates to research gaps 2.1, 3.1 and 3.2. 

The research question focuses on the prediction of disruptions impacts for the urban PT network 

in a multi-level network context. This entails disruptions occurring on the urban PT network, 

thereby acknowledging the availability of the multi-level PT network for potential mitigation, 

but also predicting and mitigating the propagation of disruption impacts from train network 

disruptions to the urban network. Besides, it considers how real-time control synchronisation 

measures can be prioritised for specific locations and routes to mitigate disruption impacts for 

larger, real-world urban PT networks.  

 

3. How can we predict and control the direct and propagated impacts of disruptions on the 

urban public transport network in a multi-level network environment? 
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1.3.3 Scope, definitions and conditions 

In line with the formulated research objective and research questions, our research focuses on 

disruption impacts for the urban public transport network, consisting of metro, light rail, tram 

and bus services. Whilst other PT network levels are not the focus of this research, the multi-

level PT network environment is considered. For example, this means we compare the 

contribution of urban PT links and train network links to PT network vulnerability. Besides, we 

consider the role the train network might play both as means to mitigate impacts of urban PT 

disruptions, and as a source for train disruptions propagating to the urban PT network level.   

In this research, we focus on recurrent and non-recurrent disruptions. Recurrent PT 

disruptions, such as a train door malfunctioning or a delayed departure from the terminal, occur 

relatively frequently whilst the impact is generally small. To the contrary, non-recurrent PT 

disruptions are relatively rare, but typically have larger impacts once they occur. One can think 

of examples as a faulty train, signal failure or vehicle derailment. Recurrent and non-recurrent 

disruptions are conceptualised in the framework shown in Figure 1.3. It should be noted that 

there is no explicit demarcation between recurrent and non-recurrent disruptions. Instead, they 

can be considered as two ends of the same scale. We do not consider extreme events such as 

natural disasters or terror attacks in this research. These events differ substantially from typical 

PT disruptions in terms of magnitude and behavioural response by passengers, PT service 

providers and authorities, for which a bespoke research approach is necessary (see for example 

Markolf et al., 2019). 

Unplanned disruptions as well as planned disruptions are incorporated in our research 

scope. The impact of planned disruptions - such as planned track maintenance works - is 

generally smaller than the impact this same disruption would have if unplanned. This is due to 

awareness and route and mode choice adjustments by passengers, as well as due to planned 

resource allocation by the service provider in anticipation of this disruption. Hence, the 

unplanned disruption impact can be considered an upper bound for the disruption impact of the 

same planned disruption.  

 

 

Figure 1.3. Conceptual framework of recurrent and non-recurrent disruptions 

We define disruptions (interchangeably referred to as disturbances) in this study as distinctive 

incidents which result in deviations from normal operations. This encompasses discrete events 

of which an underlying cause can be traced, in contrast to normal stochasticity in system input, 
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such as variability in passenger volumes or travel times, which is not considered a disruption. 

Within our research scope we consider a wide spectrum of disruptions, ranging from recurrent 

to non-recurrent disruption types. Some parts of this research focus only on specific types of 

disruptions (see Section 1.6), such as non-recurrent disruptions or planned disruptions which 

last for multiple days or weeks, while other parts consider the full range of disruptions. 

In this research, we define vulnerability as the degree of susceptibility of a PT network 

to disruptions and the ability of a PT network to cope with these disruptions. This definition is 

obtained by combining definitions as suggested by Rodriguez-Nunes and Garcia-Palomares 

(2014) and Oliveira et al. (2016). Vulnerability thus refers to both exposure, the degree to which 

a PT system is exposed to disruptions, and to the impact once a disruption occurs. Robustness 

of a PT network is the inverse of vulnerability (Snelder, 2010). Recurrent and non-recurrent 

disruptions result in degradation of the performance of a PT system, with unreliability for 

passengers as result. Resilience is defined as the ability of a PT system to maintain its function 

when exposed to disruptions (Rose, 2007) and the ability to return to its regular performance 

once the disruption has been resolved (i.e. recovery time) (Pimm, 1984). The relation between 

the different concepts is shown in Figure 1.4, obtained from McDaniels et al. (2008). Resilience 

is reflected by the blue coloured area. The conceptual impact of ex ante mitigation measures 

and ex post measures to reduce recovery time are visualised in this figure as well. 

In this study we refer to predictions as estimating the outcomes for unseen cases based 

on information or based on observations. For example, we use empirical data about disruption 

frequencies and disruption impacts to predict the future number of disruptions or the passenger 

impact of future disruptions for which no empirical data is available. In addition, we use PT 

models to predict passenger flows for non-observed PT disruptions based on empirically 

derived information about passengers’ behavioural and demand response during disruptions. In 

our study we perform relatively aggregate predictions (i.e. predicting future disruption 

frequencies or impacts), rather than real-time, short-term predictions of - for example - the exact 

time a disruption will occur, or the passenger flows for time 𝑡+15 minutes given demand at 𝑡. 

 

 

Figure 1.4. Conceptual relations between vulnerability, robustness and resilience 
Source: McDaniels et al. (2008, p.312) (‘vulnerability’, ‘resilience’ and ‘recovery time’ added by author) 
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Our research assumes the availability of passenger demand data from AFC systems and vehicle 

position data from AVL systems of the considered public transport network as input for our 

proposed methods. Our methods can be applied to both open and closed AFC systems, with 

entry-exit or entry-only tap in requirements. Depending on the AFC system in place for the PT 

network of interest, destination inference (for entry-only systems) or passenger-to-train 

assignment (for AFC systems with gates at the stations) might be required as a preparatory 

stage. In this research, developed methods are illustrated in a case study using the urban or 

multi-level PT network of The Hague, the Netherlands, or using the metro network of 

Washington, D.C. 

1.4 Research Contribution 

1.4.1 Scientific contribution 

The main scientific contributions of this research are the following. 

 

1. Development of an improved transfer inference algorithm for urban public transport 

journeys during disruptions (Chapter 2) 

In this research we adjust existing transfer inference algorithms - which are based on logic for 

passenger route choice during undisrupted circumstances - such that it is possible to infer PT 

journeys from individual AFC transactions during both disrupted and undisrupted 

circumstances. This is based on an empirical study to passenger route choice during disruptions 

in The Hague, the Netherlands based on AFC and AVL data. The work results in a robust 

transfer inference algorithm where no a priori demarcation between disrupted and undisrupted 

network state is required.  

 

2. Estimation of crowding perception multipliers for urban tram and bus journeys based on 

Revealed Preference (Chapter 3) 

This study estimates crowding multipliers for in-vehicle time during urban tram and bus 

journeys based on observed route choices. It contributes to the variety of Stated Preference 

based studies to crowding valuation, by using observed route choice from AFC data and 

observed attribute values from AVL and AFC data as input. This Revealed Preference approach 

corrects for potential inconsistencies between stated and realised behaviour in Stated Preference 

studies. The crowding multipliers are estimated using a discrete choice modelling approach. 

 

3. Estimation of mode and route choice coefficients for passengers during planned public 

transport disruptions based on empirical data (Chapter 4) 

This study contributes to a better understanding how PT passengers adjust their mode and route 

choice in the event of planned PT disruptions. Whilst the majority of PT vulnerability studies 

typically focuses on unplanned disruptions, this study puts the emphasis on planned disruptions 

such as rail construction works. Based on empirical data obtained from AFC and AVL systems 

for multiple planned disruptions, this study calibrates route choice parameters for the use and 

perception of rail-replacement buses, as well as mode choice elasticities which reflect 

passengers’ demand response to planned disruptions.  

 

4. Development of a methodology to predict disruption frequencies and disruption impacts for 

urban networks (Chapter 5) 

This study proposes a methodology to predict how often different stops of a metro network are 

exposed to different disruption types and to predict the passenger delay impact of these 
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disruptions. The contribution of this work lies in the development of a systematic approach to 

predict disruption frequency and impact for each individual station, time period and disruption 

type, even though empirical data is not available for all possible combinations and disruption 

scenarios. We develop supervised learning models to predict disruption frequency and impact 

using incident log data, AFC and AVL data as input, and apply unsupervised learning to cluster 

stations according to their contribution to PT vulnerability. This approach enables performing 

a full scan vulnerability analysis within reasonable computation times. 

 

5. Development of a methodology to identify the links which contribute most to vulnerability of 

multi-level public transport networks (Chapter 6) 

In this research, an improved methodology is developed to identify the links which contribute 

most to vulnerability of multi-level PT networks based on pre-selection criteria. While existing 

studies use pre-selection criteria reflecting disruption impacts for a specific PT network level, 

our new methodology explicitly incorporates both disruption frequency and disruption impact 

in the pre-selection criteria. Our method also compares links of the train, metro / light rail and 

tram network in terms of their disruption exposure and impact, to identify the most critical links 

for the total multi-level PT network. Incident log data for different PT modes combined with 

outputs from PT assignment models are used as input to develop this methodology. 

 

6. Identification of urban public transport hubs and their key routes to prioritise for public 

transport synchronisation (Chapter 7) 

This research supports PT synchronisation for large urban PT networks by identifying locations 

and routes to prioritise for synchronisation. Optimal transfer synchronisation is in current 

studies applied to train networks or to smaller urban networks, whilst rule-based 

synchronisation approaches are used for larger urban networks due to computational challenges. 

We use clustering to identify the most important urban PT hubs and to find groups of lines for 

each hub to prioritise for synchronisation. This results in a selection of locations and routes 

which can be incorporated in an optimal transfer synchronisation algorithm.  

 

7. Development of a methodology to predict the disruption impact propagation from train 

network disruptions to urban public transport network (Chapter 8) 

The contribution of this study is the quantification of disruption impact propagation from train 

network disruptions to the urban PT network. Existing studies predict disruption impacts for 

each PT network separately, without considering how this impact might propagate to another 

network level. The proposed methodology combines a mesoscopic optimisation-based train 

rescheduling model and an agent-based dynamic PT assignment model for this purpose. 

 

8. Evaluation of the impact of different train rescheduling strategies on the integrated multi-

level public transport network (Chapter 8) 

Current research towards strategies to control disruption impacts of train network disruptions 

only focus on the train network impacts. Train rescheduling strategies are optimised based on 

expected impacts on this network level, without incorporating the impact of these control 

decisions for passengers on the urban PT network level. The novelty of this study is that it 

incorporates predictions for disruption propagation to the urban network in the train 

rescheduling based on simulation-based optimisation. This enables testing different train 

rescheduling strategies to predict impacts on both the train and urban PT network. 
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1.4.2 Societal contribution 

The societal contributions of this research are divided into contributions for public transport 

service providers and for public transport authorities in relation to policy-making. 

 

Contribution for public transport service provider 

Our work helps public transport service providers to better understand characteristics of current 

and future passenger demand. The developed transfer inference algorithm can be used to 

improve OD matrix estimation during undisrupted and especially disrupted circumstances. The 

insights gained from the behavioural and demand response of passengers during disruptions can 

be used as input for transport planning to improve route choice and ridership forecasts. Updated 

crowding multipliers, demand elasticities and perception coefficients for rail-replacement buses 

can be incorporated in variable demand and assignment models to improve their prediction 

accuracy. This can support PT service providers in better aligning their PT supply during 

disruptions with predicted demand. This enables the provision of sufficient capacity for the 

remaining passenger demand during planned disruptions, which is potentially beneficial for 

customer satisfaction levels. In addition, it reduces provision of too much residual capacity on 

alternative services during planned disruptions, thereby reducing operational costs. 

 Our research supports network managers and controllers in improving the quality of the 

control decisions taken in the event of disruptions. Identifying key synchronisation locations 

and routes for real-time control helps them to prioritise their work. Incorporating disruption 

propagation impacts provides insights to controllers of the impact of their decisions on the total 

PT network and therefore supports them in their decision-making process. 

 

Contribution for public transport authority 

The identification of stations and links which contribute most to PT network vulnerability can 

be used by the public transport authority in policy-making to prioritise the most important 

locations to develop and implement mitigation measures for within a limited budget. By 

predicting both the frequency and impacts of future disruptions, robustness benefits of potential 

mitigation measures can be monetised and incorporated in appraisal studies or cost-benefit 

analysis frameworks. Incorporating the impact of disruptions and mitigation measures for the 

integrated PT network, rather than for one network level only, results in a more complete and 

therefore more accurate quantification of robustness benefits of different measures.  

Additionally, our work can support the PT authority in the development of passenger-

oriented reliability metrics. Our methods allow for the prediction of the impact of real-time 

control measures taken by the PT service provider for the integrated multi-level PT network, 

including the propagation to different network levels. This provides insights to the authority 

about the effectiveness of different reliability metrics to incorporate in contractual agreements 

with the PT service provider, so that the PT service provider undertakes the appropriate real-

time control measures consistent with these metrics, thereby putting passengers at the centre of 

their decision-making process.  

1.4.3 Highlights 

The aim of this research is to improve methods to measure, predict and control disruption 

impacts for urban public transport networks. Methods are developed to measure passengers’ 

behavioural and demand response during (un)planned disruptions. Additionally, we propose 

methods to predict the frequency and impact of disruptions for different locations of a PT 

network, and methods to identify those locations contributing most to network vulnerability 

based on expected disruption exposure and impact. At last, methods are developed to prioritise, 
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devise and evaluate control measures aimed at reducing impacts of disruptions - which originate 

either on the urban level, or on another network level - for the urban PT network. 

1.5 Research Context 

This research results from the TRANS-FORM (Smart transfers through unravelling urban form 

and travel flow dynamics) project, as part of JPI Urban Europe ERA-NET CoFound Smart 

Cities and Communities initiative. The overarching objective of the TRANS-FORM project is 

‘to better understand transferring dynamics in multi-modal public transport systems and to 

develop insights, strategies and methods to support decision-makers in transforming public 

transport usage to a seamless travel experience by using smart data’ (TRANS-FORM, 2019). 

The TRANS-FORM project develops, implements and tests real-time traffic management 

strategies to support proactive and adaptive public transport operations. Concepts and methods 

of behavioural modelling, passenger flow forecasting and network state predictions are 

integrated into real-time operations. New empirical knowledge and modelling foundations are 

developed by undertaking a multi-level approach for monitoring, mapping, analysing and 

managing dynamics of interchanging passenger flows. Analysis of passenger flows on the hub, 

urban and regional networks is facilitated by data secured from case studies in Switzerland, the 

Netherlands and Sweden, respectively. The outcomes contribute to improving coordination 

between different public transport modes, in particular in cases of public transport disruptions. 

 

The project consortium consists of five partners from four different countries, of which four are 

academic partners (Delft University of Technology, the Netherlands (main applicant and project 

coordinator); Blekinge Institute of Technology, Sweden; Linköping University, Sweden; École 

Polytechnique Fédérale de Lausanne, Switzerland) and one an industrial partner (ETRA I+D, 

Spain). This research is conducted as one of the main contributions of the Delft University of 

Technology to the TRANS-FORM project. This research focuses on analysing passenger flows 

on the urban public transport network during public transport disruptions, thereby incorporating 

the interactions with pedestrian flows within public transport hubs and passenger flows on 

regional train networks. 

1.6 Outline 

The outline of this research is shown in Figure 1.5. Black arrows in this figure indicate that 

research output from one chapter is directly used as input for the considered chapter. The thicker 

blue arrows reflect the general disruption framework as introduced in Figure 1.1, moving from 

measuring disruption impacts (step 1), via predicting disruption frequencies and impacts (step 

2), towards controlling disruption impacts (step 3).  

This research is divided into three different phases. Part I is related to measuring PT 

disruption impacts and addresses Research Question 1. Based on the identified research gaps, 

phase I focuses on Measuring passenger demand and behaviour during disruptions. It consists 

of three chapters. In Chapter 2, a transfer inference algorithm is developed to infer PT journeys 

during disruptions. This improved inference algorithm is used as one of the inputs for Chapter 

3, where passengers’ crowding valuation in urban tram and bus journeys is estimated. The 

improved transfer inference can also be used as input for Chapter 4, which studies the 

behavioural and demand response of passengers particularly during planned disruptions. 

 Part II of this research focuses on predicting disruptions and disruption impacts as the 

second step in the disruption framework. This phase answers Research Question 2 and partially 

Research Question 3. The aim of Chapter 5 is the development of a methodology to predict 
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disruption frequencies and disruption impacts for each location of an urban metro network. In 

Chapter 6, the urban PT network is considered together with the multi-level network 

environment: a method is proposed to identify PT links from the train, metro / light rail and 

tram networks with the largest contribution to total network vulnerability. In addition, this 

chapter predicts the impact of an urban PT network disruption on these identified critical links, 

given the availability of the total multi-level PT network for passengers. 

 In Part III of this research, we move towards controlling disruption impacts, which 

relates to the third step of the disruption framework in Figure 1.1. Research Question 3 is 

addressed in this phase. When mitigating disruption impacts for the urban PT network, Chapter 

7 focuses on synchronisation measures to be applied at the urban network level itself. The focus 

here is to enable optimal synchronisation for large urban PT networks, by proposing a 

preparatory method to prioritise key locations and routes for synchronisation. In Chapter 8, we 

consider the propagation of impacts of disruptions occurring on the multi-level network to the 

urban network level. We develop a method to quantify and control the propagation of train 

network disruptions to the urban PT network level. Finally, in Chapter 9 we formulate the main 

conclusions from our research, together with implications for the PT industry and 

recommendations for future research.   

 

 

Figure 1.5. Research structure
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Part I 

Measuring Passenger Demand and Behaviour  

during Disruptions 
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2. A Robust Transfer Inference Algorithm for Public 

Transport Journeys during Disruptions  

This chapter is the first component of Part I of this research, which contributes to answering the 

first research question (as defined in Section 1.3): how can we measure and characterise the 

behavioural and demand response of passengers during planned and unplanned urban public 

transport disruptions? The scientific contribution of this chapter is the development of a transfer 

inference algorithm to infer passenger journeys during both disrupted and undisrupted 

circumstances. This is based on an empirical study to passenger route choice during disruptions 

in The Hague, the Netherlands, based on data from Automated Fare Collection and Automated 

Vehicle Location systems. This can be considered a first step to correctly measure passenger 

disruption impacts. When comparing the realised and scheduled passenger journey times for 

each passenger journey, comparing the correct journeys in each scenario is essential. An 

incorrect inference of passenger journeys during disruptions - where passenger behaviour 

typically differs from behaviour during regular, undisrupted circumstances - can result in an 

incorrect comparison and thus result in an incorrect measurement of passenger disruption 

impacts.  

 

This chapter is based on an edited version of the following article: 

 

Yap, M.D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2017). A robust transfer inference 

algorithm for public transport journeys during disruptions. Transportation Research Procedia, 

27, 1042-1049.  

© 2017 The Authors. Published in Elsevier B.V. 
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2.1 Introduction 

Disruptions in public transport can have a major impact on passengers’ nominal and perceived 

journey time. The operation of public transport services without disruptions is considered a key 

quality aspect of public transport by passengers (Golob et al., 1972; Van Oort, 2011). Therefore, 

it is important to get insight in passenger behaviour during disruptions. Passive data availability 

the last decades provides an opportunity to get more insight in this. Automated fare collection 

(AFC) data, automated vehicle location (AVL) data, and data from automated passenger count 

(APC) systems are used for many purposes by scientists and practitioners on a strategic, tactical 

and operational level (Pelletier et al., 2011). Passive data availability allows for a comparison 

between the realised journey time during a disruption and the undisrupted travel time on an 

individual level, and therefore enables quantification of disruption costs. 

A first important requirement for this comparison is that journeys can be inferred in a 

valid way. When no valid distinction is made between transfers and destinations, this can result 

in a biased journey identification and thus a biased journey level quantification of disruption 

impacts. Last decade several studies are performed to estimate origin-destination (OD) matrices 

based on individual AFC transaction data (see for example Trépanier et al., 2007; Zhao et al., 

2007; Seaborn et al., 2009; Wang et al., 2011; Munizaga and Palma, 2012; Gordon et al., 2013; 

Nunes et al., 2016). These studies propose advanced algorithms to infer journeys from passive 

data for regular circumstances. However, these algorithms are based on a certain logic in 

passenger route choice. For example, when the next transaction is made in the same public 

transport line as the previous transaction, current algorithms infer an activity since there is no 

other reason why passengers would alight from a vehicle and then board a next vehicle of the 

same line again (Gordon et al., 2013). However, during disruptions passengers might have to 

adjust their route choice due to limited service availability, which can result in routes which 

would be illogical in case there were no disruptions. For example, due to operator rescheduling 

measures as deadheading or short-turning during disruptions, passengers might have to make 

an additional transfer to the subsequent vehicle of the same line. This means that the logic on 

which current transfer inference algorithms are based is not suitable to infer transfers during 

disruptions, given the illogical route and transfer choice passengers might be forced to during 

disruptions. Applying existing algorithms leads to biased transfer inference and thus to a biased 

OD matrix estimation. As a consequence, quantifying disruption costs on an OD level will be 

biased as well. 

To be able to infer transfers during disruptions therefore places additional challenges to 

transfer inference algorithms, since these algorithms must be robust to infer transfers during 

disruptions, while still providing valid results for undisrupted situations as well. This is 

necessary, since it is often difficult to infer the exact time demarcation between disrupted and 

undisrupted circumstances from disaggregated AVL and AFC data sources. This research 

develops such transfer inference algorithm. Section 2.2 discusses the methodology. The 

developed algorithm is applied to a case study, of which results are presented in Section 2.3. 

Conclusions and recommendations for further research are formulated in Section 2.4. 

2.2 Methodology 

2.2.1 The Hague case study network 

In our study we use passive data from HTM, the urban public transport operator of The Hague, 

the Netherlands. The urban network in The Hague consists of light rail, tram and bus lines. The 

set of public transport lines is denoted by 𝐿. Each public transport line 𝑙 ∈ 𝐿 is defined as an 
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ordered sequence of stops 𝑆𝑙 = (𝑠𝑙,1, 𝑠𝑙,2. . 𝑠𝑙,|𝑙|). Each line 𝑙 ∈ 𝐿 is operated by an ordered set 

of runs (run sequence), denoted by 𝑅𝑙. A run 𝑟 ∈ 𝑅𝑙 is performed by one vehicle serving the 

ordered stop sequence 𝑆𝑙 in one direction. For each run 𝑟 ∈ 𝑅𝑙 there exists a schedule with 

scheduled arrival times 𝑡�̃� and scheduled departure times 𝑡�̃� for each stop 𝑠𝑙,𝑗 ∈ 𝑆𝑙.  

When travelling in light rail, trams or buses in the Netherlands by smart card, passengers 

are required to tap in and tap out at devices which are located within the vehicle. This means 

that the passenger fare is based on the exact distance travelled in a specific public transport 

vehicle. Especially for buses, this is different from many other cities in the world where often 

an open, entry-only system with flat fare structure is applied, for example in London (Gordon 

et al., 2013) and Santiago, Chile (Munizaga and Palma, 2012). This means that for each 

individual transaction the boarding time and location, and the alighting time and location of 

each journey stage are known. Also, it is known in which public transport line, vehicle number 

and trip number (a unique number assigned to each one-directional run 𝑟 ∈ 𝑅𝑙) each passenger 

boarded with their unique smart card number. The AVL data provides the scheduled times 𝑡�̃� 

and 𝑡�̃�, and the realised times 𝑡𝑎and 𝑡𝑑 for each run at each stop, where each run is indicated 

by the same trip number as appears in the AFC data. By integrating AFC and AVL data based 

on the corresponding trip number, vehicle occupancy can be inferred for each run between each 

stop 𝑠𝑙,1, 𝑠𝑙,2.   

2.2.2 Full validation of destination inference algorithm 

Before starting the analyses, data cleaning and data processing is required. First, transactions 

where a system error occurred are removed from the dataset. In these cases there occurred an 

error in the AFC devices, leading to unrealistic alighting times or alighting locations, or to 

missing or unrealistic trip numbers. For The Hague, this percentage varies between 0.05% and 

0.50% of the daily transactions. The within-vehicle AFC systems implies that in general 

destinations of journey stages are directly available from the data, so no destination inference 

is needed. Therefore, destination inference needs to be performed only for transactions where 

there was a missing tap out. This occurs when passengers unintendedly forget to tap out when 

alighting from the vehicle, or deliberately do not tap out if the distance based travel costs are 

higher than the deposit deduced from the card when boarding for relatively long trips. The daily 

percentage of transactions with a missing tap out in The Hague varies between 1% and 2% on 

average. For destination inference we apply the well-known trip chaining algorithm as applied 

by Trépanier et al. (2007), Zhao et al. (2007) and Wang et al. (2011). The aim is to estimate the 

alighting stop �̂�𝑝𝑗𝑘
𝑎  of the 𝑗th journey stage of the total number of journey stages 𝑚 made by 

passenger 𝑝 on day 𝑘. The indices 𝑠𝑎 and 𝑠𝑏 reflect the alighting and boarding stop, 

respectively. The following basic assumptions are applied in this algorithm: 

 If 𝑚 > 1 and 𝑗 ≠ 𝑚: the most likely alighting location of 𝑗 is the stop which is closest to 

𝑠𝑝(𝑗+1)𝑘
𝑏 . 

 If 𝑚 > 1 and 𝑗 = 𝑚: the most likely alighting location of 𝑗 is the stop which is closest to 

𝑠𝑝(𝑗=1)𝑘
𝑏 . Assumed is that passengers return to the location where the first journey stage 

started (e.g. home) at the end of the day.  

 If 𝑚 = 1: trip chaining is not possible and no destination can be inferred. In that case, the 

transaction is removed from the dataset. Contrary to Trépanier et al. (2007), we did not 

incorporate travel behaviour made by the same card number on previous days in the 

algorithm. Since destination inference is not the main research goal of this study, we aimed 

to prevent too much noise in the dataset from complex destination inference algorithms.  
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The set of candidate stops 𝐴𝑝𝑗𝑘 for �̂�𝑗
𝑎 in case 𝑚 > 1 and 𝑗 = 𝑚 is shown by Eq.1 and contains 

all stops from the registered boarding stop 𝑠𝑙
𝑏 at line 𝑙 downstream to 𝑠𝑙,|𝑙|. In case 𝑚 > 1 and 

𝑗 ≠ 𝑚 an additional constraint is added, which guarantees that the realised arrival time 𝑡𝑎𝑠 of 

run 𝑟 at stop 𝑠 should be earlier than the boarding time at 𝑠𝑙
𝑏 of the next journey stage 𝑗 + 1. 

This is expressed by Eq.2. 

 

  𝐴𝑝𝑗𝑘 = {𝑠𝑙𝑗
𝑏 . . 𝑠𝑙𝑗

+}, 𝑗 = 𝑚𝑝𝑘        (1) 

 

  𝐴𝑝𝑗𝑘 = {𝑠𝑙𝑗
𝑏 . . 𝑠𝑙𝑗

+}, 𝑗 < 𝑚𝑝𝑘 𝑠𝑡. 𝑡𝑎𝑠𝑟𝑗 < 𝑡𝑑𝑠𝑟(𝑗+1)     (2) 

     

The selection of �̂�𝑝𝑗𝑘
𝑎  from 𝐴𝑝𝑗𝑘 is based on minimising the Euclidean distance 𝑑 between the 

candidate alighting stop and 𝑠𝑝(𝑗+1)𝑘
𝑏  or 𝑠𝑝(𝑗=1)𝑘

𝑏 . We minimise the Euclidean distance, instead 

of the generalised travel time as proposed by Munizaga and Palma (2012) and Sánchez-

Martinez (2017). Using generalised travel time is mostly beneficial if the set of candidate stops 

contains stops of a public transport line in both directions. Minimising the Euclidean distance 

could then infer a stop of the line in the opposite direction which is just slightly closer to the 

next boarding location, while neglecting the substantially longer in-vehicle time to reach that 

stop. Since our candidate set is one-directional and only contains stops downstream the 

boarding location, we can minimise the Euclidean distance without problems. A maximum 

walking distance threshold 𝑑𝑤𝑎𝑙𝑘 is applied. If no candidate stops can be found within a 

reasonable walking distance, it is likely that this passenger used another mode as intermediate 

journey stage. In that case no destination can be inferred. Eq.3 shows the applied destination 

inference algorithm. 

 

�̂�𝑝𝑗𝑘
𝑎 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑑(𝑠𝑝(𝑗+1)𝑘

𝑏 , �̂�𝑝𝑗𝑘
𝑎 )}       ∀ �̂�𝑝𝑗𝑘

𝑎 ∈ 𝐴𝑝𝑗𝑘, 𝑚𝑝𝑘 > 1      𝑠𝑡. 𝑑 ≤ 𝑑𝑤𝑎𝑙𝑘 (3) 

 

Validation of the applied destination inference algorithms shows to be difficult in other 

studies. Inferred destinations can be validated with passenger counts in vehicles or at stops, or 

by using surveys to a small sample of the population. Besides, a variety of walking distance 

thresholds is applied, varying between 400m (Zhao et al., 2007), 750m (Gordon et al., 2013), 

1000m (Wang et al., 2011; Munizaga and Palma, 2012) and 2000m (Trépanier et al., 2007). 

The fact that in the Dutch urban public transport network both tapping in and tapping out are 

required, however enables a full validation of the algorithm and allows for the selection of an 

optimal value for 𝑑𝑤𝑎𝑙𝑘 resulting in the most accurate destination inference. We selected all 

complete transactions made on the HTM network on one working day (≈286,000 transactions) 

and removed the alighting location. We applied the destination inference algorithm with 

varying values for 𝑑𝑤𝑎𝑙𝑘 to predict back these alighting locations and considered the percentage 

of destinations what was correctly, incorrectly and not inferred, respectively. Table 2.1 and 

Figure 2.1 provide the results. From Table 2.1 can be seen that, depending on 𝑑𝑤𝑎𝑙𝑘, in total 

between 70% and 87% of all destinations could be inferred. This is higher than percentages 

found by Trépanier et al. (2007) and Zhao et al. (2007) ranging between 66% and 71%. The 

higher 𝑑𝑤𝑎𝑙𝑘, the more destinations could logically be inferred. However, with an increasing 

number of inferred destinations the number of incorrectly inferred destinations increases faster 

than the number of correctly inferred destinations. From all inferred destinations, the percentage 

correctly inferred drops from 71% for 𝑑𝑤𝑎𝑙𝑘=200 to 65% for 𝑑𝑤𝑎𝑙𝑘=1600. This shows there is 

a trade-off between the quantity and accuracy of inferred destinations.  

To find the optimal 𝑑𝑤𝑎𝑙𝑘, we maximise the number of correctly inferred destinations 

�̂�𝑝𝑗𝑘
𝑎,𝑐

 corrected for incorrectly inferred destination  �̂�𝑝𝑗𝑘
𝑎,𝑤

, as shown by Eq.4. We increased 𝑑𝑤𝑎𝑙𝑘 
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stepwise by 200m starting from 200 to 1600 Euclidean metres. Figure 2.1 shows that this value 

is maximised when applying a maximum walking threshold of 400 Euclidean metres (on 

average ≈550 real metres). For 𝑑𝑤𝑎𝑙𝑘=400 we investigated the error margins for a subset of 

100 transactions. For 72% of incorrectly inferred destinations, the chosen destination was only 

one stop further upstream or downstream. This probably reflects passengers performing an 

activity between two stops and selecting the stop on the other side of the activity for boarding 

again.  

 

𝑑𝑤𝑎𝑙𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥(�̂�𝑝𝑗𝑘
𝑎,𝑐 − �̂�𝑝𝑗𝑘

𝑎,𝑤),  𝑑𝑤𝑎𝑙𝑘{𝑑200, 𝑑400. . 𝑑1600}    (4) 

Table 2.1. Destination inference results for varying values of 𝒅𝒘𝒂𝒍𝒌 

Variable 𝑑200 𝑑400 𝑑600 𝑑800 𝑑1000 𝑑1200 𝑑1400 𝑑1600 

% inferred destinations 69.6% 76.4% 80.6% 83.2% 84.5% 85.6% 86.1% 86.6% 

% correctly inferred from all inferred destinations 70.6% 70.1% 68.3% 66.9% 66.1% 65.7% 65.4% 65.1% 

         

% correctly inferred from total transactions 49.1% 53.6% 55.0% 55.6% 55.9% 56.2% 56.3% 56.4% 

% incorrectly inferred from total transactions 20.5% 22.8% 25.5% 27.5% 28.6% 29.4% 29.8% 30.2% 

% not inferred from total transactions 30.4% 23.6% 19.4% 16.9% 15.5% 14.4% 13.9% 13.4% 

 

 

Figure 2.1. Performance of destination inference algorithm for different maximum Euclidean 

walking distance values 

2.2.3 Robust transfer inference algorithm 

We show the state-of-the-practice and state-of-the-art transfer inference algorithms and then 

illustrate limitations of these algorithms based on a theoretical network. The state-of-the-

practice criterion to identify an alighting as transfer as applied in the Netherlands is based on a 

maximum time threshold between the previous tap out and next tap in with the same smart card 

ID. If the time between 𝑡𝑎𝑠𝑟𝑗  and 𝑡𝑑𝑠𝑟(𝑗+1) is larger than a transfer threshold time 𝑡𝑡,𝑚𝑎𝑥, the 

alighting is classified as activity. In the Netherlands, 𝑡𝑡,𝑚𝑎𝑥=35 minutes. This criterion can lead 

to biased transfer inference, mainly because it tends to underestimate short journeys. If activities 

are performed which last shorter than 35 minutes, two separate journeys are incorrectly 

considered as one journey. If this is a back-and-forth trip of which 𝑠𝑝𝑗𝑘
𝑏 = 𝑠𝑝(𝑗+1)𝑘

𝑎 , this journey 

is not included in the OD matrix at all. Given the high frequent services in urban public 

transport, a transfer time of 35 minutes will not often be exceeded. During disruptions longer 

transfer times are however also possible, which could also overestimate the number of journeys. 
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When considering state-of-the-art transfer inference algorithms, three criteria are formulated 

which should all be satisfied to define an alighting as transfer.  

 Temporal criterion. The temporal constraint as applied in practice is replaced by a criterion 

which expresses whether a passenger took the first passing vehicle at a transfer, by 

integrating AFC and AVL data (Gordon et al., 2013). Based on 𝑡𝑎𝑝𝑗𝑘 and the stop coordinates 

of the alighting stop and next boarding stop, the first realistic passenger arrival time at the 

next boarding time can be calculated. In this study, we correct the Euclidean distance by √2 

to obtain realistic transfer distances. We use the 2.5th percentile of the walking speed 

distribution derived by Hänseler et al. (2016) instead of the average walking speed, to prevent 

that on average 50% of transferring passengers might not be considered as transferring. The 

first realistic passenger arrival time at the next boarding stop is compared with realised 

vehicle departure times of the chosen line. If the first passing vehicle after the first realistic 

passenger arrival time is boarded, the alighting is considered a transfer. A minimum transfer 

allowance of 5 minutes is applied. 

 Spatial criterion. The spatial criterion constrains the maximum transfer distance to 𝑑𝑤𝑎𝑙𝑘. In 

this study we set 𝑑𝑤𝑎𝑙𝑘 to 400 Euclidean metres, in line with results from Section 2.2.2. 

 Binary criterion. The binary criterion indicates whether the next boarding line is equal to the 

previous boarding line. In this case, the alighting is considered to be related to an activity. 

Successive services in opposite direction indicate a return trip from an activity, whereas 

successive services in the same direction also indicate a performed activity (Gordon et al., 

2013).  

 

We adjust this state-of-the-art algorithm to make the algorithm robust to transfer inference 

during disruptions. To illustrate the relevance of this algorithm, we use a selection of the HTM 

case study network as shown in Figure 2.2. It shows a light rail connection between the centre 

of the satellite city Zoetermeer (nodes A-B on the left) via intermediate stop D to the centre of 

a main city (nodes F-G on the right). There is also a separate transit line between D-E. The 

public transport lines A-B-D-F-G (line 4), C-B-D-F-G (line 3), and D-E (line 19) are operated 

by the same operator (HTM). This means that both AFC and AVL data from these lines are 

available. Stops C and F provide transfer connections to the train network, which stations are 

indicated by C1 and F1. The train service C1-F1 is operated by another operator, which means 

that only AVL data (open data in the Netherlands) is available.  

We assume a disruption (e.g. a signal failure) occurs on the light rail track between D 

and F, leading to reduced capacity between D and F. In line with HTM disruption management, 

50% of the light rail services eastbound short-turn at D, whereas 50% of the westbound light 

rail services short-turn at F. We consider three different passenger journeys over this network, 

shown by Table 2.2. 

 

 

Figure 2.2. Selection of The Hague case study public transport network 
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Table 2.2. Illustration new transfer inference algorithm for three OD journeys E-G, B-G, A-G 

Boarding stop Alighting stop Smart card 

ID 

Transit line Transfer? 

Current algorithm 

Transfer? 

New algorithm 

E D 1233 19 No Yes 

D G 1233 3   

      

B C 1234 3 No Yes 

F G 1234 4   

      

A D 1235 3 No Yes 

D G 1235 3   

 

 Temporal criterion. We consider a journey from E to G. Due to reduced services between 

D and F, remaining vehicles can get very crowded. This means that transferring passengers 

at D (from E) can experience denied boarding in busy urban networks and might not be able 

to board the first passing vehicle. It is also possible that some passenger decide to wait for 

a next service, if they notice the very crowded vehicle arriving at the station. Applying the 

original temporal criterion would therefore incorrectly classify the alighting of these 

passengers at D as activity, since they did not take the first passing vehicle. Under regular 

circumstances, denied boarding in the Netherlands is very exceptional. However, in 

disrupted situations the frequency of denied boarding and very crowded vehicles increases 

substantially. To account for this we adjust this criterion such that an alighting is considered 

a transfer, if a passenger takes the first reasonable passing vehicle at a transfer location. 

Boarding a reasonable vehicle is quantified by adding an extra constraint to the temporal 

criterion. An alighting is considered a transfer if a passenger boards the first vehicle of a 

service after the first realistic passenger arrival time at the stop, of which the occupancy is 

lower than the norm capacity. By integrating AFC and AVL data, vehicle occupancies are 

derived. When occupancies are higher than the norm capacity, it can be expected that 

passengers decide to skip this vehicle or are even denied boarding.  

 Spatial criterion. We consider a journey from B to G. These passengers adjust their route 

choice, by using the train network at the side of the city centres as alternative. By 

transferring from C to C1, and back from F1 to F, the disruption is avoided. Especially in 

dense urban networks, passengers can use the total multi-level public transport network 

which remains available after a disruption (see e.g. Cats et al., 2016b). Since train services 

are operated by another operator, no AFC data of this journey stage is available. Since the 

distance between C and F is substantially larger than common values for 𝑑𝑤𝑎𝑙𝑘 (in this study 

400m), applying the original spatial criterion would incorrectly classify the alighting at C 

as journey destination and categorise the trip F-G as new journey. Since urban public 

transport is fully covered by AFC data, there is only the higher-level train network as multi-

level alternative which is not covered in the data. Therefore, we add a binary indicator to 

each stop which equals 1 if a train station is located within the maximum transfer 

distance 𝑑𝑤𝑎𝑙𝑘. If both 𝒔𝑝𝑗𝑘
𝑎  and  𝑠𝑝(𝑗+1)𝑘

𝑏  are equal to 1, we apply the temporal condition as 

explained above. We determine, given the train AVL data, whether the boarding time of a 

passenger in the urban network in F shows that this passenger took the first reasonable train 

alternative from C1 to F1. If the realised boarding time at F does not exceed the expected 

travel time given the realised train departure and arrival times, it is likely that another public 

transport mode is taken as intermediate journey stage. The alighting at C is then considered 

a transfer. A further relaxation of the original spatial criterion is applied, by considering a 

tap out and consecutive tap in to the same vehicle and trip number as transfer, even if the 

transfer distance exceeds 𝑑𝑤𝑎𝑙𝑘. This indicates that a passenger did not really alight the 
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vehicle, but (un)intendedly tapped out and in during the ride. This can be explained by 

passengers in doubt if the tap in was successful, holding their card to the device again and 

then tapping out. Another explanation relates to passengers who deliberately tap out during 

a part of the trip to save travel costs, given the fully distance based fare.  

 Binary condition. We consider a journey from A to G. A part of the passengers who keep 

using the light rail service have to alight from their short-turning vehicle at D and wait for 

a next service of this line headed for G. This means that the disruption forces these 

passengers to make a transfer to the same line 4. The original algorithm would therefore 

incorrectly infer the alighting at D as journey destination. We therefore adjust the algorithm 

such that when a transfer to the same line is made, this is considered a transfer if and only 

if a passenger boards the first run of this same line after the alighted run. This allows transfer 

inference in case of rescheduling measures as short-turning, stop-skipping or deadheading. 

By only allowing the first run after the alighted run as transfer, in high frequency urban 

networks the headway will be short. Measures as short-turning or deadheading are in 

practice especially performed if the next run already bunches behind the previous one. This 

means that false positive transfer inferences are very unlikely, since the time to perform an 

activity will be very short. This adjustment is also relevant in case part of the disrupted track 

is replaced by bus services operating under the same line number. Besides, this adjustment 

can be of relevance during undisturbed situations in case of non-typical route topologies, in 

which transfers to the same line number occur. For example, in case of lines with loops or 

in case of lines where short-services are operated under the same line number, it can occur 

that passengers have to transfer to a vehicle of the same line under planned circumstances.  

2.3 Results 

We compare the performance of the state-of-the-practice, state-of-the-art and newly developed 

transfer inference algorithm. For this aim, we use a dataset consisting of individual AFC 

transactions during two different non-recurrent disruptions which occurred on the HTM 

network in November 2015. The dataset contains transactions from passengers who specifically 

travelled over one of the disrupted lines and disruption location during one of these disruptions 

(in total ≈23,300 transactions). We applied the three different transfer inference algorithms to 

this dataset. For the state-of-the-practice algorithm we used a maximum transfer time of 35 

minutes. For the state-of-the-art and new developed algorithm we set 𝑑𝑤𝑎𝑙𝑘 equal to 400 

Euclidean metres. Based on a normal distributed walking speed 𝑁(1.34, 0.34) we applied a 2.5th 

percentile walking speed of 0.66 m/s (Hänseler et al., 2016). 

Table 2.3. Performance comparison between three different transfer inference algorithms 

 State-of-the-practice State-of-the-art New developed algorithm 

Average # trips per journey 1.44 1.18 1.21 

% journeys with 0 transfers 68% 85% 82% 

% journeys with 1 transfer 23% 14% 15% 

% journeys > 3 transfers 0.8% 0.0% 0.1% 

 
Table 2.3 shows that the algorithm as currently applied in practice results in a relatively 

high number of trips per journey (1.44), indicating that alighting is relatively often classified as 

transfer. This is because of the applied transfer threshold time without further behavioural rules. 

In the case study network, journeys with more than 3 transfers are highly unlikely. Only 

additional transfer behaviour during disruptions could require more than 3 transfers in total in 

rare occasions. Given that 0.8% of all journeys have more than 3 transfers, it shows that this 

state-of-the-practice algorithm overestimates transfer behaviour. The state-of-the-art algorithm 
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on the other hand shows less transfers and no journeys with more than 3 transfers. However, 

this algorithm is too strict in classifying an alighting as transfer, especially in case of 

disruptions. In our developed algorithm there is some relaxation of the transfer criteria of the 

state-of-the-art algorithm. This results in a slightly higher average number of trips per journey 

(1.21 instead of 1.18). As shown in Section 2.2.3, this new developed algorithm results in an 

improved transfer inference during disruptions. Besides, it also shows that still hardly journeys 

with >3 transfers are identified when applying this new algorithm, despite these relaxations.  

Figure 2.3 expresses the ratio between travelled distance by public transport and the 

Euclidean distance per identified journey. Journeys with a very high ratio are symptomatic for 

two separate journeys which are incorrectly identified as one (i.e. a back-and-forth travel 

identified as one journey). Thus, this ratio can be used to validate the performance of transfer 

inference algorithms. As can be seen, both the state-of-the-art and new algorithm prevent 

journeys with unrealistic high ratios, which are found using the state-of-the-practice algorithm. 

Our new proposed algorithm thus improves transfer inference during disruptions, without 

compromising on general inference quality. 

 

 

Figure 2.3. Distribution of ratio travelled/Euclidean distance for state-of-the-practice, state-of-

the-art and new robust transfer inference algorithm 

2.4 Conclusion 

Several rule-based algorithms exist to infer whether a passenger alighting and subsequent 

boarding is categorised as transfer or final destination where an activity is performed. Although 

this logic can infer transfers during undisrupted public transport operations, these algorithms 

have limitations during disruptions: disruptions and subsequent operational rescheduling 

measures can force passengers to travel via routes which would be non-optimal or illogical 

during undisrupted operations. We develop a new transfer inference algorithm which infers 

journeys from raw smart card transactions in an accurate way during both disrupted and 

undisrupted operations. In this algorithm we incorporate the effects of denied boarding, 

transferring to a vehicle of the same line, and the use of public transport services of another 

operator on another network level as intermediate journey stage during disruptions. A further 

validation of the proposed transfer inference algorithm is recommended for future research.  
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3. Crowding Valuation in Urban Tram and Bus 

Transportation based on Smart Card Data 

The purpose of this chapter is to determine how crowding is valued by passengers during urban 

tram and bus journeys entirely based on observed route choices and observed attribute values 

for each route alternative. This chapter belongs to Part I of this research and contributes to 

answering how passengers’ behavioural response can be characterised during disruptions 

(Research Question 1 as defined in Section 1.3). This chapter uses the results from the transfer 

inference algorithm as proposed in Chapter 2 as input. Applying this transfer inference 

algorithm results in individual passenger journeys between different origin-destination pairs 

inferred from individual transactions from Automated Fare Collection systems. For selected 

origin-destination pairs, these inferred passenger journeys together with their observed route 

choice are used in this chapter to estimate a discrete choice model to determine how crowding 

is valued and incorporated in passenger route choice. A better understanding of crowding 

valuation based on realised passenger route choice as performed in this study - instead of using 

stated choices from Stated Preference experiments - is particularly relevant to measure public 

transport disruption impacts accurately, as disruptions typically result in increased crowding 

levels on public transport services.  

 

This chapter is based on an edited version of the following article: 

 

Yap, M.D., Cats, O., Van Arem, B. (2018). Crowding valuation in urban tram and bus 

transportation based on smart card data. Transportmetrica A. DOI: 10.1080/23249935. 

2018.1537319 

© 2018 The Authors. Published by Informa UK Limited, trading as Taylor & Francis Group 
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3.1 Introduction 

Crowding in public transport can have major influence on passengers’ travel experience and 

therefore affect route and mode choice. Because of the expected increasing concentration of 

activities within urban agglomerations in many countries worldwide, crowding is expected to 

become an even more dominant factor in urban public transportation in the future. Therefore, 

it is important to understand and quantify how crowding in urban public transport is perceived 

by passengers. This can contribute to the quantification of societal benefits of measures aiming 

to alleviate passenger congestion, and thus potentially support policy makers in the decision-

making process regarding the implementation of such measures (see for example Prud’Homme 

et al., 2012; Haywood and Koning, 2015; Cats et al., 2016a).  

 Congestion and crowding are not always incorporated in public transport modelling, 

contrary to highway modelling. In highway modelling, link travel times are a direct function of 

(amongst others) the link congestion level. In public transport modelling, congestion and 

crowding levels influence passengers’ perceived in-vehicle times. Public transport crowding 

only affects the nominal travel times if dwell times would increase or in more extreme cases of 

denied boarding, what can result in costs for passengers and operators. Thus, in public transport 

there is a behavioural relation instead of a traffic flow relation between crowding and 

(perceived) travel times.  

The majority of studies which do incorporate public transport crowding use stated 

preference (SP) experiments for crowding valuation. For example, MVA Consultancy (2008), 

Whelan and Crockett (2009), Batarce et al. (2016) and Tirachini et al. (2017) use SP surveys 

where crowding is represented by pictures of crowding levels in public transport carriages, and 

crowding valuation is expressed using the average number of standing passengers per square 

metre. Lu et al. (2008) express crowding as the probability on occurrence (e.g. 2 out of 5 times) 

in a SP experiment, whereas Li et al. (2017a) describe and show different crowding levels using 

colours. Douglas and Karpouzis (2005) use pictures of crowding in their SP experiment, and 

estimate crowding in-vehicle time multipliers for different levels of crowding (e.g. seated no 

crowding, seated crowding, standing, crush standing) for different durations (e.g. during 10 or 

20 minutes). In some studies where crowding valuation is estimated based on SP experiments, 

results are validated against revealed preference (RP) data, for example by using surveys, 

passenger observations or cameras. For example, Kroes et al. (2014) validate SP based 

crowding estimates for Ile-de-France based on observed behaviour of passengers on platforms 

skipping a very crowded service and waiting for a next less crowded service. Batarce et al. 

(2015) estimate a mixed SP/RP model for the case of Santiago, Chile, combining a SP survey 

with pictured crowding levels and revealed passenger route choice based on smart card data. 

These mainly SP based results are applied in public transport models aiming to improve 

passenger assignment and predictions, see for example Hamdouch et al. (2011), Schmöcker et 

al. (2011), Nuzzolo et al. (2012), Pel et al. (2014), Cats et al. (2016a) and Van Oort et al. (2016). 

Extensive literature reviews regarding crowding valuation studies can be found in Wardman 

and Whelan (2011) and in Li and Hensher (2011). 

 We conclude that most crowding valuation studies are based on SP experiments. Studies 

which use RP data generally only use a relatively small RP dataset to validate SP estimates. It 

is however known that there can be a discrepancy between stated choices of respondents in SP 

experiments, compared to revealed choice behaviour in reality. This is a systematic discrepancy 

in which SP experiments tend to overestimate values compared to observed valuation in reality. 

This discrepancy can occur if respondents have difficulties imagining the stated, hypothetical 

choice situation, or if respondents lack sufficient experience with similar circumstances in 

reality to fully understand the trade-offs between the attributes in the choice set. The shortage 

of RP data usage in studies concerned with passenger perception of on-board crowding arguably 
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stems from the sparsity and difficulty to obtain passenger-related data in many public transport 

systems. However, the increasing availability of automated fare collection (AFC), automated 

vehicle location (AVL) and automated passenger count (APC) systems in public transport 

enables the estimation of crowding valuation fully based on large scale RP data. In particular, 

the availability of individual smart card transactions allows gaining insights into revealed trade-

offs between travel time, transfers, waiting time and crowding in public transport route choice. 

Only a limited number of studies exploited smart card data for this purpose, namely the works 

by Hörcher et al. (2017) and Tirachini et al. (2016). Hörcher et al. (2017) estimated discrete 

choice models incorporating crowding valuation in metro systems by fusion of AFC and AVL 

data. In their study, 32 origin-destination (OD) pairs of the MTR metro network of Hong Kong 

are used to estimate the valuation of the standing probability and crowding density (expressed 

as the number of standing passengers per square metre). Since the AFC system in Hong Kong 

is a closed, station-based system where passengers have to tap in and tap out at the metro station, 

the exact route and trip choice had to be inferred using a passenger-to-train assignment method. 

Tirachini et al. (2016) estimated the passenger valuation of crowding for metro travelling on 

the Singapore network, fully based on observed behaviour of passengers willing to travel in the 

opposite direction first to secure a seat in the trip in their preferred direction. 

The contribution of our study is that we estimate crowding valuation associated with 

urban tram and bus journeys, in a European context, entirely based on revealed route choice 

behaviour obtained from AFC and AVL data of the urban public transport network of The 

Hague, the Netherlands. We show additional evidence for the existing discrepancy between 

using RP and SP data for crowding valuation. Since passengers are required to tap in and tap 

out on-board each tram or bus vehicle, no inference of the exact route or the exact vehicle choice 

is required. By fusing AFC and AVL data, we directly determine the exact route and vehicle 

each passenger used, and deduce the stop-to-stop vehicle occupancy for each individual vehicle 

trip. This means we can eliminate one inference step of the methodology applied by Hörcher et 

al. (2017), thereby reducing potential uncertainty. We apply our methodology to a high-density 

public transport case study network, in which there is a large number of OD pairs between 

which different route choices can be observed.  

 This chapter is structured as follows. Section 3.2 describes the methodology, including 

data processing (Section 3.2.1), transfer inference (Section 3.2.2), selection of OD pairs 

(Section 3.2.3), determination of attributes and attribute levels (Section 3.2.4) and choice 

model formulation (Section 3.2.5). Section 3.3 provides the estimation results and discusses 

their implications. In Section 3.4, conclusions and recommendations for further research are 

formulated. 

3.2 Methodology 

3.2.1 Raw data semantics and processing 

When travelling by light rail, tram or bus in the Netherlands, passengers are required to tap in 

and tap out at devices located within each vehicle. This means that there is an entry-exit, 

distance based fare system applied in The Hague. This is different from most urban public 

transport systems in the world, in which especially for buses often an open, entry-only system 

with flat fare structure is applied. This can for example be seen in London (Gordon et al., 2013) 

or in Santiago, Chile (Munizaga and Palma, 2012). The fare system as applied in the 

Netherlands means that for each journey leg made by each individual travelling by the 

abovementioned modes the boarding time and boarding location, as well as the alighting time 

and location, are directly available from the raw dataset. Besides, for each smart card transaction 



46 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

the line number, vehicle number, trip number and smart card number are known. This means 

that each journey leg with its corresponding transaction information is registered as a separate 

row in the AFC dataset. In the Netherlands, the AFC data is closed data owned by the public 

transport operator. The AVL data, on the other hand, is open data and publicly available. The 

AVL dataset contains the scheduled and realised arrival time and departure time of each vehicle 

trip at each stop. In case spatiotemporal passenger information would not be directly available 

from the AFC system, boarding time and location, alighting time and location, and transfer 

times can be inferred. For example, Tu et al. (2018) propose a methodology to infer the boarding 

location for bus travels by fusion of smart card data and GPS trajectories, whereas Zhang et al. 

(2016) developed an approach to extract passengers’ spatiotemporal information by inference 

of boarding times and transfer times.   

We use the urban public transport network of The Hague, the Netherlands, to estimate 

public transport crowding valuation. This network consists of 12 tram lines and 8 bus lines, 

operated by the urban public transport operator HTM (Figure 3.1). Two of these 12 tram lines 

function as light rail service at the urban agglomeration network level, connecting The Hague 

with the satellite city of Zoetermeer. The other 10 tram lines and all bus lines function as urban 

lines within The Hague and neighbouring towns. During an average working day, more than 

300,000 AFC transactions are made on the urban public transport network in The Hague. 

AFC and AVL data of 28 days from November 2 – November 29, 2015 was made 

available by the incumbent operator for this study. This amounts to a dataset that consists of 

approximately 7.4 million AFC transactions and about 3.1 million AVL registrations. In the 

data processing phase, we apply the following steps: 

 Selection of morning peak data (07:00 – 09:00). 

 Removal of morning peaks with disruptions. 

 Removal of incomplete AFC transactions. 

 Inference and increase of occupancy data. 

 

 

Figure 3.1. Overview of urban tram and bus lines of case study network The Hague 



Chapter 3 – Crowding Valuation in Urban Tram and Bus Transportation based on Smart Card Data 47 

 

Since the aim of our study is to explore how passengers incorporate crowding in their route 

choice, it is essential that we select a time period in which crowding occurs. Compared to 

crowding levels reached in metro systems in cities like London, Santiago, Beijing or Tokyo, 

the level of crowding in The Hague can be considered quite moderate. Outside peak periods, in 

general no crowding occurs. In peak periods, crowding however does occur on several lines. 

Since public transport demand in the morning peak in the Netherlands is more concentrated 

within a relatively small period, compared to a more uniformly distributed demand in the 

evening peak, we only focus on AFC transactions during the morning peak. This means that 

only journeys of which the tap in record time is between 07:00 and 09:00 on working days 

(Monday – Friday) are considered.  

In our study we focus on explaining route choice based on expected attribute values for 

travel time, waiting time and crowding. Therefore, it is important that only regular, undisrupted 

periods are incorporated in the dataset. Since disruptions can force passengers to adjust their 

route choice, this might cause bias in the analysis. Based on the operator log file, containing all 

registered disruptions with corresponding time, duration and location, we removed the AFC 

data from morning peaks of days where a disruption occurred. Given the possibility of second-

order effects, in which a disruption on a certain public transport line might increase occupancies 

on other parallel lines, crowding levels on directly and indirectly affected lines can then deviate 

from expected crowding levels passengers have for undisrupted days (Malandri et al., 2018). 

Therefore, we adopted this conservative approach of excluding working day data if any 

disruption occurred anywhere on the considered case study network. From the 20 working days 

remaining in the dataset, data from 6 working days has been removed.  

For the AFC data of the remaining 14 morning peaks, we removed incomplete 

transactions. Transactions can be incomplete due to a system error or due to a human cause 

(human error by forgetting to tap out, or deliberately not tapping out), in both cases leading to 

a missing tap out time and/or location. Although there exist many destination inference 

algorithms in scientific literature (e.g. the well-known trip chaining algorithm as applied by 

Trépanier et al., 2007, Zhao et al., 2007 and Wang et al., 2011), we removed all incomplete 

transactions, since the percentage of incomplete AFC transactions in The Hague is with 1.9% 

rather low due to the entry-exit AFC fare system. From studies validating destination inference 

algorithms (e.g. Munizaga et al., 2014; Yap et al., 2017), we know that between 65% and 85% 

of the destinations for urban tram or bus journeys are correctly inferred. By removing 

incomplete transactions, we avoid introducing inaccuracies resulting from possibly incorrect 

destination inference. Besides, given the entry-exit AFC system, the percentage of incomplete 

AFC transactions in The Hague is with 1.9% rather low and not expected to systematically 

influence results. In the Dutch public transport system a deposit is written off from each smart 

card when tapping in as incentive for passengers to tap out due to its distance based fare system, 

which is transferred back to the card when tapping out again. Hence, we expect no correlation 

between (higher) crowding levels and (lower willingness of) passenger tap out behaviour.  

 Vehicle occupancies are derived by fusion of AFC and AVL data. Since both the AFC 

and AVL data contain the trip number, both data sources can be coupled. This results in the 

occupancy of each vehicle trip between each pair of stops. These smart card data based 

occupancies are corrected for the percentage travellers not using a smart card, and the 

percentage of incomplete AFC transactions. In the Netherlands, most passengers travel using 

their smart card. Only passengers who buy a ticket in the vehicle at the driver or vending 

machine, and passengers who (un)deliberately do not tap in during their trips are not captured. 

Since our study focuses on experienced crowding levels, these passenger groups are however 

relevant. Based on passenger counts performed by the urban PT operator, for each public 

transport line a correction factor is determined which can be used to increase the smart card 

based occupancies. This factor varies between 5% and 14% for different lines. This correction 
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factor is applied uniformly on a line-level, which implicitly assumes that the destination choice 

behaviour of non-smart card users is indistinguishable from the one characterising smart card 

users. Since our dataset contains transactions of morning peak periods in November, the share 

of very infrequent passengers (e.g. tourists) for whom the abovementioned assumption might 

not apply is arguably very low.  

3.2.2 Transfer inference 

For the individual AFC transactions for each passenger trip, it is determined whether an 

alighting is a transfer or a final destination. To this end, we applied the transfer inference 

algorithm as described by Yap et al. (2017). This algorithm is an extension on the algorithm 

described by Gordon et al. (2013), and uses AFC, AVL and inferred occupancy data. Below, 

this algorithm is shortly discussed. For a more detailed explanation, the reader is referred to 

Yap et al. (2017). The algorithm consists of temporal, spatial and line-based criteria whether to 

classify an alighting activity as a transfer. 

 Temporal criterion: an alighting activity is considered a transfer if the passenger boarded 

the first feasible vehicle of the next tap in line serving the next boarding location. A 

feasible vehicle is defined as the first vehicle serving the next boarding location - given 

the alighting time of the previous journey leg and required walking time - of which the 

occupancy does not exceed the norm capacity. 

 Spatial criterion: an alighting is considered a transfer if the distance between the 

alighting location and the next boarding location does not exceed a maximum transfer 

walking distance of 400 Euclidean metres. An exception to this threshold is made in 

case passengers use an intermediate public transport service offered by another operator, 

for which no AFC data is available. 

 Line-based criterion: an alighting is not considered a transfer if the next boarding is on 

the same line as the previous journey stage, since this suggests that an activity was 

performed in between. An exception is made in case of boarding the first passing vehicle 

of the same line directly following the alighted vehicle, since this can indicate (for 

example) a transfer from a short-service to the long-service vehicle of the same line or 

a transfer to the same line in case of loops. Given the relatively high frequencies of 

urban public transport lines, it is highly unlikely that such alighting and boarding of the 

next vehicle will be an activity.  

 

In total, the dataset contains 628,839 journeys resulting from 14 working days. Figure 3.2 (left) 

shows the resulting distribution of the number of transfers, whereas Figure 3.2 (right) shows 

the distribution of journeys over each 30-minute period of the morning peak (using the journey 

tap in time for aggregation). As can be seen, almost all journeys consist of 0 or 1 transfer. The 

busiest part of the morning peak on a network wide level is between 08:00 and 08:30, containing 

31% of all morning peak journeys.  

The boarding stop, alighting stop, and the travelled route and line of each passenger 

journey leg are directly observed from the AFC data, because of the entry-exit smart card 

regime with on-board devices for tap in and tap out. Applying our study to the The Hague case 

study network has therefore the advantage that no inference is required to determine passenger 

route choice, so that our study fully relies on directly observed route choice. Vehicle 

occupancies are also the direct result of fusing empirical AFC and AVL transactions, without 

relying on any further inference. The transfer inference algorithm, which is the only inference 

algorithm applied to the dataset, only relates to the interpretation whether an alighting is 

considered a transfer or final destination, but is not consequential in determining route choice 

or occupancies. 
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Figure 3.2. Journey distribution by number of transfers (left) and distribution per half-hour of 

the morning peak (right) 

3.2.3 Selection of origin-destination pairs 

In total, the database consists of 49,231 different chosen routes. This value can be considered 

as the sum-product of the number of chosen OD pairs and the number of chosen route 

alternatives for each OD pair. Different routes are considered to belong to one and the same 

OD pair, if the boarding stops are located in each other’s vicinity, as well as the alighting stops. 

The following criteria are used to select OD pairs to be included in the estimation of the discrete 

choice model with crowding effects: 

 Minimum choice set size of 2 for each OD pair. 

 Minimum number of 100 observed choices for each OD pair. 

 Minimum observed choice probability of 0.1 for each route alternative in the choice set. 

 Minimum expected seat occupancy of 50% on minimal one link of one route alternative.  

 Attribute variation over all OD pairs. 

 

In our study we only consider the observed route choice set. This prevents making assumptions 

regarding the incorporation of non-observed, possibly feasible route alternatives in the choice 

set and allows us to infer attribute levels for all alternatives entirely based on observed AFC 

and AVL data. The first criterion thus means that there should be an observed choice between 

at least two route alternatives for a given OD pair. A route is defined as a unique sequence of 

boarding locations, alighting locations and intermediate (combination of) lines. In case of routes 

with the same origin stop and the same destination stop, the routes should physically differ from 

each other, to be considered as separate route alternative in the choice set. In case of a bundle 

of different lines sharing the same infrastructure (e.g. for journeys within the city centre), 

passengers might take the first arriving vehicle suitable for their destination. Given our aim to 

explain route choice, we consider route alternatives as different from each other, only if these 

do not share the exact same geographical path (i.e. 100% overlap). 

 A minimum number of 100 observed choices for each OD pair is deemed necessary to 

incorporate sufficient choices of individual passengers to infer generic coefficients from. By 

setting a minimum value for the observed choice probability of 10% per chosen route 

alternative, we ignore route alternatives which are chosen only in a very limited number of 

cases. Such route alternatives might be chosen in case of (non-registered) delays, disruptions or 

a-typical passenger behaviour (e.g. passengers travelling for fun). Another requirement is that 

there should be at least a certain amount of crowding expected on (at least) one of the route 

alternatives of an OD pair. Since we want to estimate crowding valuation, we did not want to 

set a crowding constraint a priori. However, if no crowding occurs on all route alternatives at 

all, it is not possible to examine the influence of crowding on route choice. Therefore, we opted 
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for a light requirement here. If the expected seat occupancy exceeds 50% during some period 

of the morning peak on some part of one of the observed route alternatives, this requirement is 

fulfilled. A seat occupancy threshold of 50% is used, since passengers start having to sit next 

to each other from a seat occupancy of 50% or higher. It is expected that negative crowding 

experiences might arise from this value onwards. The robustness of estimation results towards 

the latter assumption has been investigated in a sensitivity analysis. Reducing this threshold 

value by 20% (to 40%) showed not to influence the number of OD pairs and observations in 

the dataset. An increase of this threshold by 20% (to 60%) resulted in only one OD pair not 

satisfying this criterion anymore, thereby reducing the number of observations in the dataset by 

2%. Since the total number of observations in the dataset is hardly influenced by this parameter 

value, this sensitivity test attests to the robustness of the estimation results to different values 

of this threshold. At last, we checked over all remaining OD pairs together whether they contain 

all attributes of the discrete choice model to be estimated. This means that at least some OD 

pairs should consist of a transfer, tram or bus, in order to be able to estimate the valuation of a 

transfer or to estimate the in-vehicle time perception in a tram compared to a bus.  

Applying the abovementioned criteria results in 58 remaining OD pairs, with a total of 

17,994 journeys (= 17,994 observed choices). The route set of 16% of these OD pairs consists 

of at least one route that involves a transfer. These 17,994 journeys are made by 7,083 different 

smart card numbers. Under the assumption that each passenger uses one, unique smart card, 

this means that there are on average ≈2.5 observations per passenger in the total dataset.  

3.2.4 Attributes and attribute levels of route choice alternatives 

In this section, we discuss the different attributes and attribute levels for the estimated models.  
 

In-vehicle time 

The expected in-vehicle time 𝑡𝑖𝑣𝑡 is determined for each journey leg of each route alternative 

separately. Based on the AVL data, we calculate the expected in-vehicle time by taking the 

average realised in-vehicle time over all observations using this route alternative for this OD 

pair. This means we use the expected in-vehicle time rather than the scheduled in-vehicle time 

as value for 𝑡𝑖𝑣𝑡. Since the scheduled travel times are constant during the whole morning peak, 

𝑡𝑖𝑣𝑡 is calculated for the whole morning peak as well. For each journey leg, index 𝑚 indicates 

whether the journey leg is made by tram or bus.  

 

Waiting time 

The expected waiting time 𝑡𝑤𝑎𝑖𝑡 expresses the initial waiting time before boarding the first 

journey leg. Since the AFC system in urban public transport in the Netherlands only has tap in 

/ tap out devices on-board the vehicle, it is not possible to empirically derive the passenger 

arrival time at the initial boarding stop from the smart card data. In order to quantify the initial 

waiting time, we assume a random passenger arrival pattern. Given the high frequency of the 

urban public transport services in the considered case study network, this assumption is 

considered to be reasonable. Therefore, we set 𝑡𝑤𝑎𝑖𝑡 as equal to half of the scheduled headway 

of the boarding line in the corresponding time period.  

 

Transfer time  

The expected transfer time 𝑡𝑡𝑟𝑎𝑛𝑠 expresses the time between the alighting time from the first 

journey leg and the boarding time of the next journey leg of a certain route alternative. This 

means that 𝑡𝑡𝑟𝑎𝑛𝑠 equals the sum of the transfer walking time and transfer waiting time, and 

equals zero for a route alternative without transfers. The expected value 𝑡𝑡𝑟𝑎𝑛𝑠  for a certain 
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route alternative is calculated by taking the average realised transfer time over all observed 

morning peak journeys using this route alternative. 

 

Number of transfers 

𝑛𝑡𝑟𝑎𝑛𝑠 is an integer variable which reflects the number of transfers of a certain route alternative, 

and equals 0 in case of a route alternative without a transfer. This variable is used to determine 

the perceived transfer penalty, which expresses the additional penalty associated with the 

inconvenience of performing a transfer beyond the additional (perceived) travel time it induces.   

 

Path size  

We calculate the path size factor to determine and correct for overlap between route alternatives 

of a certain OD pair. The natural logarithm of the path size factor, denoted by 𝑟, is used and 

incorporated into a standard MNL model. We quantify this commonality factor using the 

distance-based amount of overlap between route alternatives, as shown in Eq.1. We consider 

route alternative 𝑖 from all route alternatives 𝑗 of the observed choice set for a certain OD pair. 

Each route 𝑖 consists of a sequence of links 𝑎𝑖 ∈ 𝐴𝑖 with length 𝑙𝑎. The number of route 

alternatives of the choice set using link 𝑎 is indicated by |𝑗|𝑎. In case of two route alternatives 

without any overlap, 𝑟𝑖 equals ln (1), whereas 𝑟𝑖 equals ln (0.5) is case of two fully overlapping 

route alternatives. 
 

 𝑟𝑖 = ln (∑ ((
𝑙𝑎

∑ 𝑙𝑎𝑎𝑖∈𝐴𝑖

) ∙ (
1

|𝑗|𝑎
))𝑎𝑖∈𝐴𝑖

)       (1) 

 

Crowding: seat occupancy and standing density 

To quantify the valuation of public transport crowding, we use two different attributes: the seat 

occupancy 𝑞 and standing density 𝑑. Given the non-uniformly distributed demand pattern over 

the morning peak (Figure 3.2, right), it is not sufficient to calculate the average values for 𝑞 

and 𝑑 over the whole morning peak. The attribute values for both attributes are therefore 

calculated per line, per link (stop-to-stop line segment), per 30 minutes time period. Since 

crowding levels vary across trips, using a too large time period can result in the use of average 

crowding levels which do not match with the expected and experienced crowding levels as they 

evolve during the morning peak. Notwithstanding, passengers will usually not have knowledge 

of the expected crowding levels for each individual trip departure. By dividing the morning 

peak into four periods of 30 minutes, we aim to balance between excluding non-uniformly 

distributed demand on the one hand, and applying a time period for which passengers can have 

realistic crowding expectations on the other hand. 

The seat occupancy 𝑞 is calculated using Eq.2, and expresses the ratio between the 

expected passenger load 𝑙 and the vehicle seat capacity 𝜅. If the expected load exceeds the seat 

capacity, 𝑞 remains equal to 1. The expected passenger load is calculated based on the average 

realised occupancy for each link 𝑎𝑖 ∈ 𝐴𝑖 (stop-to-stop line segment) for each 30-minutes time 

period 𝑡 ∈ 𝑇. 𝜅 is determined using data provided by the operator, based on the vehicle type 

used for each line. To calculate 𝑞𝑖𝑡 for each journey leg for alternative 𝑖 in time period 𝑡, the 

weighted average value is calculated based on the expected seat occupancy and expected travel 

time 𝑡𝑎𝑖

𝑖𝑣𝑡 per link 𝑎𝑖 ∈ 𝐴𝑖 of the journey leg. 

 

𝑞𝑖𝑡 = min (
∑

𝑙𝑎𝑡
𝜅𝑎𝑡

∙𝑡𝑎
𝑖𝑣𝑡

𝑎𝑖∈𝐴𝑖

∑ 𝑡𝑎
𝑖𝑣𝑡

𝑎𝑖∈𝐴𝑖

, 1)        (2) 

 

The standing density 𝑑 is calculated using Eq.3, and reflects the expected number of standing 

passengers per 𝑚2. In line with Wardman and Whelan (2011), we use the standing density per 
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𝑚2 instead of the occupancy rate if 𝑙 > 𝜅, in order to account for different vehicle layouts. If 

the expected passenger load 𝑙 does not exceed 𝜅, this value equals zero. This expresses the 

assumption that passengers will stand only when all seats are occupied. When 𝑙 >  𝜅, 𝑑 is 

calculated by dividing the number of standing passengers by the total surface available in each 

vehicle type for standing 𝜃, thus assuming an equal distribution of standing passengers over the 

available standing surface. The expected value of 𝑑𝑖𝑡 for alternative 𝑖 in time period 𝑡 is 

calculated for each link 𝑎𝑖 ∈ 𝐴𝑖 (stop-to-stop line segment) for each 30-minutes time period 𝑡 ∈
𝑇 over all observed choices for route alternative 𝑖 for a certain OD pair. The expected value per 

journey leg is computed by using the (by expected travel time 𝑡𝑎𝑖

𝑖𝑣𝑡 ) weighted average over all 

links. 
 

𝑑𝑖𝑡 = max (
∑

𝑙𝑎𝑡−𝜅𝑎𝑡
𝜃𝑎𝑡

∙𝑡𝑎
𝑖𝑣𝑡

𝑎𝑖∈𝐴𝑖

∑ 𝑡𝑎
𝑖𝑣𝑡

𝑎𝑖∈𝐴𝑖

, 0)       (3) 

 

Table 3.1 depicts the seat capacity 𝜅 and surface available for standing passengers 𝜃 per vehicle 

type for our case study network. Table 3.2 shows the minimum and maximum values observed 

for 𝑞𝑡 and 𝑑𝑡 per half hour time period when calculated for the total dataset.  

Table 3.1. Seat capacity and standing surface per vehicle type (HTM data) 

Vehicle type Mode Lines (November 2015) Seat capacity Standing surface 

GTL-8 Tram 1,6,9,11,12,15,16,17 73 25.1 𝑚2 

Citadis Light rail 3,4,19 86 32.0 𝑚2 

Avenio Tram 2 70 33.8 𝑚2 

MAN Bus 18,21,22,23,24,25,26,28 31 8.9 𝑚2 

Table 3.2. Min/max seat occupancy and standing density in dataset 

Time period Seat occupancy Standing density 

Min Max Min Max 

07:00 – 07:30 0.10 1.0 0 0.81 

07:30 – 08:00 0.08 1.0 0 2.48 

08:00 – 08:30 0.13 1.0 0 2.04 

08:30 – 09:00  0.11 1.0 0 2.31 

3.2.5 Model formulation 

In this study we estimate four discrete choice models in total. Model 1 reflects a model without 

crowding, whereas model 2 is an extension of model 1 in which the two crowding attributes are 

incorporated. Model 1 and 2 estimate coefficients averaged over all passenger segments. Since 

our study focuses on incorporating expected crowding levels in the route choice, it can be 

hypothesised that a segmentation between frequent and infrequent travellers is relevant. 

Passengers travelling frequently over a certain OD  pair have a better expectation of crowding 

levels on the route choice alternatives based on their prior experiences, whereas infrequent 

passengers are expected to have limited or no prior crowding expectations on the specific route. 

Since the smart card number is known for all AFC transactions, it is possible to explicitly 

distinguish between frequent and infrequent travellers for each OD pair. We apply a binary 

classification, in which passengers who travel on average at least once per week on a certain 

route (in our case study: a minimum of four observations for a certain OD pair) are considered 

frequent travellers. Model 3 is a segment model without crowding, whereas model 4 is a 

segment model which incorporates crowding. We use a traditional utility maximisation 

framework, in which it is assumed that each respondent chooses the route alternative with the 
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largest utility (smallest disutility). The expected utility of a certain route choice alternative 

𝑈(𝑉, 𝜗, 𝜀) consists of the structural utility component 𝑉, which is a vector of observable 

attributes with their corresponding weights, and a random utility component 𝜀. The logarithm 

of the path size factor 𝑟 in incorporated into all four models to account for overlapping between 

route alternatives. This allows us to estimate standard MNL models as basis. Since there are 

multiple route choice observations in our dataset made by the same smart card number (= the 

same individual), we extend the standard MNL model to a mixed logit model with panel effects 

to correct for possible correlations between choices made by the same respondent. Therefore, 

𝑈 also consists of an individual specific utility component 𝜗.  

 We use Biogeme as software package for performing the maximum likelihood 

estimations (Bierlaire, 2003). In order to reduce the number of draws, we perform Halton draws 

from a normal distribution to incorporate the panel structure of the model. In order to determine 

the number of required Halton draws, we started with an initial number of five Halton draws 

and then doubled the number of draws and checked whether the model outcome can be 

considered stable. All four model showed to be very stable directly after doubling the number 

of Halton draws to 10.  

 

Model 1: no crowding, no segmentation 

Eq.4 shows the calculation of 𝑉, the structural deterministic part of the utility function, for 

model 1. The attributes corresponding to the first journey leg are denoted by index 1; attributes 

corresponding to the second journey leg are denoted by index 2. We experienced with all 

combinations between estimating only generic coefficients for 𝑡𝑤𝑎𝑖𝑡 , 𝑡𝑖𝑣𝑡 , 𝑡𝑡𝑟𝑎𝑛𝑠, 𝑛𝑡𝑟𝑎𝑛𝑠  and 

estimating all mode-specific coefficients. A model with mode-specific in-vehicle time 

coefficients, and generic waiting+transfer time and transfer penalty coefficients showed to give 

most reasonable results and the highest value for McFadden’s adjusted 𝑅2. Hence, as can be 

seen in Eq.4, generic coefficients are estimated for the initial waiting time and transfer time 

simultaneously, and for the transfer penalty. Mode-specific coefficients are estimated for in-

vehicle time. A ‘tram bonus’ indicating a lower perceived in-vehicle time for tram/rail travelling 

compared to bus travelling has been previously reported in the literature (Bunschoten, 2013). 

The selected model specification allows us to quantify this ‘tram bonus’ based on RP data as 

well. The estimated coefficients for all attributes are denoted by 𝛽. 

 

𝑉 = 𝛽𝑤𝑎𝑖𝑡 ∙ 𝑡𝑤𝑎𝑖𝑡 + 𝛽𝑚
𝑖𝑣𝑡 ∙ 𝑡𝑚,1

𝑖𝑣𝑡 + 𝛽𝑤𝑎𝑖𝑡 ∙ 𝑡𝑡𝑟𝑎𝑛𝑠 + 𝛽𝑡𝑟𝑎𝑛𝑠 ∙ 𝑛𝑡𝑟𝑎𝑛𝑠  + 𝛽𝑚
𝑖𝑣𝑡 ∙ 𝑡𝑚,2

𝑖𝑣𝑡 + 𝛽𝑟 ∙ 𝑟 (4) 

 

Model 2: crowding, no segmentation 

Model 2, being an extension of model 1, estimates the same mode-specific in-vehicle time 

coefficients and generic waiting+transfer time and transfer penalty coefficients. Eq.5 shows the 

structural part of the utility function when the seat occupancy 𝑞𝑡 and standing density 𝑑𝑡 for 

each 30-minutes time period 𝑡 with their corresponding coefficients 𝛽𝑞 and 𝛽𝑑 are incorporated. 

As can be seen, the total in-vehicle time coefficient is now equal to the original in-vehicle time 

coefficient 𝛽𝑖𝑣𝑡, multiplied by a crowding multiplier which is equal to (1 + (𝛽𝑞 ∙ 𝑞𝑡) + (𝛽𝑑 ∙
𝑑𝑡)) 

 

𝑉 = 𝛽𝑤𝑎𝑖𝑡 ∙ 𝑡𝑤𝑎𝑖𝑡 + (𝛽𝑚
𝑖𝑣𝑡 ∙ 𝑡𝑚,1

𝑖𝑣𝑡 ∙ (1 + (𝛽𝑞 ∙ 𝑞𝑡1) + (𝛽𝑑 ∙ 𝑑𝑡1))) + 𝛽𝑤𝑎𝑖𝑡 ∙ 𝑡𝑡𝑟𝑎𝑛𝑠 +

𝛽𝑡𝑟𝑎𝑛𝑠 ∙ 𝑛𝑡𝑟𝑎𝑛𝑠 + (𝛽𝑚
𝑖𝑣𝑡 ∙ 𝑡𝑚,2

𝑖𝑣𝑡 ∗ (1 + (𝛽𝑞 ∙ 𝑞𝑡2) + (𝛽𝑑 ∙ 𝑑𝑡2))) + 𝛽𝑟 ∙ 𝑟   (5) 

 

Model 3: segmentation, no crowding 

Model 3 can be considered an extension of model 1, to which initially an interaction-term is 

added for each estimated generic coefficient. The interaction-term is the product of an estimated 
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interaction-coefficient and a dummy-coded indicator-variable indicating whether an observed 

choice made by a certain respondent is classified as frequent or infrequent traveller. The 

indicator-variable equals 1 in case of a frequent traveller, and equals 0 in case of an infrequent 

traveller. This means that each total estimated coefficient is equal to the estimated generic 

coefficient which applies to both segments, plus the estimated interaction-coefficient multiplied 

by the indicator-variable which only applies to the frequent traveller segment. Initially, 

interaction-coefficients are estimated for all coefficients. Presented results in the next section 

show the estimation results for the final estimated model in which only significant interaction-

coefficients are incorporated in the model specification. The interaction-coefficient 𝛽𝑖𝑛𝑡 is 

denoted by superscript 𝑖𝑛𝑡. 

 

Model 4: segmentation, crowding 

Model 4 can be considered an extension of model 2, where also interaction-terms are added to 

the estimated crowding model. We adopt a similar approach here as described for model 3. In 

the final model only significant interaction-coefficients are incorporated in the model 

specification. 

3.3 Results and Discussion 

This section first shows the estimation results of the four models in Section 3.3.1. In Section 

3.3.2, implications of these results are discussed. 

3.3.1 Results 

Table 3.3 shows the values of the estimated coefficients with corresponding t-values for all 

four models, the number of estimated coefficients, the final log-likelihood and McFadden’s 

adjusted Rho-square.  

Table 3.3. Estimation results 

 Model 1 

(no crowding, 

no segments) 

Model 2 

(crowding, 

no segments) 

Model 3 

(segments, 

no crowding) 

Model 4 

(segments, 

crowding) 

𝛽𝑡𝑟𝑎𝑚
𝑖𝑣𝑡  (in-vehicle time tram) -0.158** (-20.6) -0.151** (-13.7) -0.156** (-16.9) -0.154** (-16.8) 

𝛽𝑏𝑢𝑠
𝑖𝑣𝑡  (in-vehicle time bus) -0.262** (-15.4) -0.250** (-18.0) -0.261** (-22.3) -0.255** (-21.5) 

𝛽𝑤𝑎𝑖𝑡 (waiting+transfer time) -0.398** (-24.9) -0.395** (-24.7) -0.397** (-24.9) -0.387** (-24.4) 

𝛽𝑡𝑟𝑎𝑛𝑠 (transfer penalty) -0.994** (-9.06) -1.20** (-10.3) -1.42** (-9.49) -1.33** (-11.6) 

𝛽𝑡𝑟𝑎𝑛𝑠,𝑖𝑛𝑡 (transfer penalty interaction) - - 0.681** (3.95) - 

𝛽𝑟 (log-path size factor) 2.65** (3.01) 2.37* (2.65) - - 

𝛽𝑟,𝑖𝑛𝑡 (log-path size factor interaction) - - 4.02** (3.89) 3.44** (3.54) 

     

𝛽𝑞  (seat occupancy) - 0.158** (4.97) - - 

𝛽𝑞,𝑖𝑛𝑡 (seat occupancy interaction) - - - 0.305** (7.94) 

𝛽𝑑 (standing density) - 0.0611* (2.15) - - 

𝛽𝑑,𝑖𝑛𝑡 (standing density interaction) - - - 0.149** (3.98) 

     

𝜎𝑝𝑎𝑛𝑒𝑙 (sigma constant for panel effects) -0.000 (-0.00) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00) 

Number of observations 17,994 17,994 17,994 17,994 

Number of individuals 7,083 7,083 7,083 7,083 

Number of Halton draws 10 10 10 10 

Number of estimated coefficients 6 8 7 8 

Final log-likelihood -11,404 -11,384 -11,398 -11,356 

Adjusted Rho-square 0.085 0.087 0.086 0.089 

t-values in parentheses. * p < 0.05; ** p < 0.01 
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From Table 3.3 we can conclude that all estimated coefficients are significant, except 

for the random parameter 𝜎𝑝𝑎𝑛𝑒𝑙 introduced to capture panel effects. We can also see that the 

direction of all estimations of time and transfer related coefficients is negative, which is 

plausible. When extending model 1 with crowding (model 2), the adjusted Rho-square increases 

by 2.4%. Although the explanatory power of model 2 is only slightly higher than model 1, the 

LRS-test indicates that the improvement in goodness-of-fit is significant. The LRS-value of 

40.6 is larger than the critical 𝜒2 value of 5.99 (with 8-6 = 2 degrees of freedom for α=0.05). 

Extending segment model 3 with crowding (model 4) results in 3.5% increase in the adjusted 

Rho-square. Also in this case the improvement in explanatory power is significant, since the 

LRS-value of 84.0 is larger than the critical 𝜒2 value of 3.84 (with 8-7 = 1 degree of freedom 

for α=0.05). 

Table 3.4. Scaled estimation results 

 Model 1 

(no crowding, 

no segments) 

Model 2 

(crowding, 

no segments) 

Model 3 

(segments, 

no crowding) 

Model 4 

(segments, 

crowding) 

   Frequent Infrequent Frequent Infrequent 

in-vehicle time tram 0.6 0.6 0.6 0.6 0.6 0.6 

in-vehicle time bus 1.0 1.0 1.0 1.0 1.0 1.0 

waiting+transfer time 1.5 1.6 1.5 1.5 1.5 1.5 

transfer penalty 3.8 4.8 2.8 5.4 5.2 5.2 

       

seat occupancy - 1.16 - - 1.31 1.00 

standing density - 1.06 - - 1.15 1.00 

 

In order to expose the trade-offs, utility function coefficients are expressed in relation 

to travel time on-board a bus. Table 3.4 shows the scaled estimation results for in-vehicle time, 

waiting+transfer time, transfer penalty and crowding, in which the in-vehicle time coefficient 

for bus 𝑡𝑏𝑢𝑠
𝑖𝑣𝑡  is set equal to 1. The trade-offs presented in Table 3.4 based on the estimation 

results for model 2 and model 4 (with crowding) exhibit plausible relations. A clear ‘tram 

bonus’ can be observed, since 1 minute in-vehicle time by bus is perceived as 0.6 minute in-

vehicle time by tram. Earlier research based on SP experiments indicated values ranging 

between 0.67 and 0.80 (Bunschoten, 2013), which means that our research suggests an even 

more substantial ‘tram bonus’. One minute waiting time is perceived 1.5 to 1.6 times more 

negatively, compared to one minute in-vehicle time. This is in line with values found in other 

studies (e.g. Balcombe et al., 2004), and also shows evidence that this multiplier has a lower 

value than assumed in earlier studies based on SP experiments. In addition, the transfer penalty 

of 5 minutes for each (urban) transfer is also plausible. In general, we see that RP estimates for 

the transfer penalty are somewhat lower than values reported in SP studies (e.g. Schakenbos et 

al., 2016). 

Table 3.5. Crowding multiplier as function of seat occupancy and standing density 

Seat occupancy 𝒒 

(% seats occupied) 

Standing density 𝒅 

(standing pass / 𝒎𝟐) 

Crowding multiplier 

Model 2 

Crowding multiplier 

Model 4 

   Frequent Infrequent 

0 0 1.00 1.00 1.00 

1 0 1.16 1.31 1.00 

1 1 1.22 1.45 1.00 

1 2 1.28 1.60 1.00 

1 3 1.34 1.75 1.00 
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Next, we analyse the crowding effects on route choice. Table 3.5 and Figure 3.3 show the 

estimated crowding multiplier as function of the seat occupancy and standing density. As can 

be seen, in the generic model (model 2) the crowding multiplier equals 1.16 when all seats are 

occupied. In case the occupancy level increases further, the crowding multiplier increases with 

0.06 for each increase in the integer number of standing passengers per 𝑚2, additional to the 

crowding multiplier of 1.16 at seat capacity. For instance, in case of on average three standing 

passengers per 𝑚2, the crowding multiplier thus equals 1.16 + (3 * 0.06) = 1.34. When 

segmentation is applied, a clear distinction can be observed between frequent and infrequent 

travellers. For frequent travellers, the crowding multiplier equals 1.31 when all seats are 

occupied. The multiplier further increases with 0.15 for each increase in passengers per square 

metre, additional to this value of 1.31. In case of three standing passengers per square metre on 

average, this results in a crowding multiplier of 1.75. This shows that frequent travellers 

incorporate crowding significantly more in their route choice than the average passenger, as 

estimated in model 2 without segmentation. On the other hand, the insignificant generic seat 

occupancy and standing density coefficients clearly indicate that infrequent travellers do not 

incorporate anticipated crowding levels in their route choice. This is plausible, given their lack 

of prior knowledge and experience regarding expected crowding levels. From Table 3.4 it can 

be seen that the sum of coefficients estimated for the seat occupancy and standing density 

(generic coefficient plus interaction-term) remains equal to 1 - the nominal in-vehicle time - for 

infrequent travellers.  

We also tested the estimation of a non-linear crowding function both related to the seat 

occupancy and the standing density. No plausible and significant results could however be 

found, thereby indicating a linear relationship between crowding and perceived in-vehicle time. 

Testing the estimation of a model with mode-specific crowding coefficients, next to the already 

incorporated mode-specific in-vehicle time coefficient, also resulted in implausible results. 

 

 

Figure 3.3. Crowding multiplier as function of the standing density for different traveller 

segments 

Figure 3.4 shows the estimated crowding multiplier as function of the load factor, which 

equals the passenger load divided by the seat capacity. As can be seen, there are different 

crowding functions for the different vehicle types operating on the considered case study 

network. This shows the relevance of using the standing density instead of the load factor, when 
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estimating crowding if passenger loads exceed seat capacity. It can be seen that the crowding 

multiplier increases steeper for vehicle types which have a relatively high number of seats, 

compared to the total capacity (e.g. vehicle type ‘GTL’ and ‘bus’ in Figure 3.4). For vehicle 

types with relatively few seats compared to the total capacity, the crowding function increases 

at a slower pace (e.g. the light rail vehicle types ‘Citadis’ and ‘Avenio’ in Figure 3.4). Besides, 

clear differences in crowding multiplier can be seen between frequent and infrequent travellers, 

where the crowding multiplier for infrequent travellers remains equal to 1 for all vehicle types.  

 

 

Figure 3.4. Crowding multiplier as function of the load factor per vehicle type 

3.3.2 Discussion 

The estimated coefficients exhibit plausible relations which are in line with directions found in 

earlier studies. When comparing model 3 (no crowding, segmentation) to model 1 (no 

crowding, no segmentation), a significant interaction coefficient is found for the transfer penalty 

and path size factor. These results suggest that frequent travellers have a less negative perceived 

transfer penalty compared to infrequent travellers. This might be explained by the higher level 

of knowledge about the network, transfer location and likelihood of reliability of the connecting 

service, compared to infrequent travellers. However, it can be seen that when crowding is 

incorporated in the segmented model (Model 4), the suggested difference in perceived transfer 

penalty between frequent and infrequent passengers in the segment model without crowding 

(Model 3) disappears. Besides, frequent travellers have a preference for non-overlapping route 

alternatives, whereas for infrequent travellers this does not significantly add explanatory power 

to their route choice. A possible explanation here is again the higher knowledge level of 

frequent travellers of other, non-overlapping route alternatives available in the network. 

 Regarding crowding we see that estimated crowding multipliers are lower than values 

found in SP experiments. For example, MVA Consultancy reports crowding multipliers up to 

1.6-1.9 when seat capacity has been reached, compared to the highest value of 1.3 found in our 

study for frequent travellers. This gives evidence for the tendency of SP experiments to 

overestimate values of coefficients, compared to RP based studies. In the context of choice 
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experiments in a survey, respondents are arguably more inclined to attach greater importance 

to crowding in their stated route choice, compared to their decision-making in real-world 

settings. When we compare the results of this study with the RP results found for the Hong 

Kong MTR metro by Hörcher et al. (2017), we note that for the Hong Kong case the estimated 

crowding multiplier equals 1.98 at a density of six standing passengers per square metre. This 

is the sum of a standing multiplier of 1.265 and an increase of the crowding multiplier by 0.119 

for each additional standing passenger per square metre. If we would linearly interpolate these 

results, the crowding multiplier for three standing passengers per m2 is estimated to be 1.62. In 

the RP-based study by Tirachini et al. (2016) the estimated crowding multiplier is 1.55 in case 

of a standing density of three passengers per m2. Our results suggest that the crowding multiplier 

equals 1.34 and 1.75 for average and frequent travellers, respectively, for a standing density of 

three passengers per m2. Our estimation for the average crowding coefficient thus yields 

somewhat lower values than those found for the Hong Kong and Singapore metro case studies. 

However, for frequent travellers the estimated crowding multiplier of 1.75 is slightly higher 

than the average values found for Hong Kong and Singapore.  

 From Table 3.4 it can be observed that 1 minute waiting time is perceived as 1.5 minutes 

in-vehicle time in a non-crowded vehicle by both frequent and non-frequent travellers. For 

frequent travellers, 1 minute travelling in a PT service with an average of 1.33 standing 

passengers per square metre is also perceived as equivalent to 1.5 minutes travelling in a non-

crowded vehicle. This shows the trade-offs passengers perceive between waiting time and 

crowding, and can contribute to ridership forecasts for different types of measures. For example, 

increasing the frequency of a non-crowded service from 6 to 8 services per hour will reduce the 

perceived travel time by passengers by 1.88 minutes under the assumption of a random arrival 

pattern at stops. Alternatively, reducing the crowding level for a 10-minute trip from an average 

of 2.0 to 1.0 standing passengers per square metre, reduces the perceived in-vehicle time by 1.5 

minutes for frequent travellers. Since infrequent travellers do not have knowledge about the 

expected crowding levels, measures purely aimed at reducing crowding without increasing the 

service frequency (e.g. use of longer vehicles) are not expected to increase the ridership levels 

of infrequent travellers, contrary to measures which target service headway. 

 We note that we only estimated coefficients for expected crowding levels, which can be 

different from a posteriori experienced crowding levels. Our study results also show the 

potential of crowding information provision to infrequent or less frequent travellers. Given the 

estimated values for frequent travellers, we might expect that infrequent travellers will 

incorporate crowding in a similar way in their route choice as frequent travellers if information 

is provided to them. This can affect route choice and occupancy levels on routes.  

3.4 Conclusions 

Crowding in public transport can have major influence on passengers’ travel experience and 

therefore affect route and mode choice. Due to the increasing concentration of activities within 

urban agglomerations in many countries worldwide, crowding is expected to become an even 

more dominant factor in urban public transportation in the future. Besides, it is important to 

incorporate valuation of crowding in a correct way within a cost-benefit analysis. Therefore, it 

is important to understand how crowding in urban public transport is perceived by passengers. 

In this study, the availability of individual smart card transactions was used to gain insights into 

revealed trade-offs between travel time, transfers, waiting time and crowding in public transport 

route choice entirely based on revealed preference data.  

 Model estimations confirm that crowding plays a significant role in passengers’ route 

choice in public transport. The average crowding multiplier of in-vehicle time equals 1.16 when 

all seats are occupied. For frequent passengers, this value further increases to 1.31 when all 
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seats are occupied. In case of standing passengers, the average crowding multiplier further 

increases with 0.06 for each increase in the integer number of standing passengers per 𝑚2. For 

frequent travellers, this increase per square metre is estimated to be equal to 0.15. Our results 

show that infrequent travellers do not incorporate expected crowding in their route choice, 

probably due to the lack of prior experience. Our results suggest that crowding valuation studies 

using stated preference experiments can have a tendency to overestimate crowding values.  

 Our study is the first in which crowding valuation is determined entirely based on 

revealed preference data particularly for urban tram and bus services, in a European context, 

thereby adding to the knowledge gained from crowding valuation studies for metro networks. 

The insights gained from our study can support the decision-making process by quantifying 

benefits of measures aiming to reduce crowding levels. For further research, it is recommended 

to consider how passengers are distributed throughout the vehicle. In case of unequal 

distributions, the experienced crowding can deviate from expected crowding levels based on 

equal passenger distributions. At last, an important limitation for this study is that no 

information is available regarding the realised passenger arrival time at the stop. Our study 

assumes that passenger route choice is fully based on expected crowding levels. Due to the lack 

of this information, we cannot determine whether a passenger boarded the first vehicle arriving 

at the stop, or deliberately skipped a crowded vehicle for a less crowded alternative. Information 

about this would enable us to investigate to which extent the real-time crowding level of the 

arriving vehicles affects route choice, compared to expected crowding levels based on prior 

experiences. 
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4. Improving Predictions of Public Transport Usage 

during Disturbances based on Smart Card Data 

The main contribution of this chapter is to infer passengers’ route and mode choice behaviour 

during planned disruptions, such as track maintenance works, based on empirical data from 

multiple planned disruptions. This chapter contributes to the first research question as 

formulated in Section 1.3 to measure and characterise passengers’ behavioural and demand 

response, in this case tailored to planned disruptions. This completes Part I of this research. 

When passenger journeys are inferred using a transfer inference algorithm (Chapter 2), the 

journey time components of each journey can be obtained or inferred from passive data sources 

and multiplied by a corresponding coefficient which reflects how passengers perceive each 

component of the journey (see Chapter 3 for crowding perception in particular). The last step 

to measure passenger disruption costs is to measure how passengers adjust their route and mode 

choice in the event of a disruption. Particularly for planned disruptions which can be 

communicated to passengers before commencing their journey, it is important to understand 

how passengers change their mode choice in response to this, and how passengers perceive 

temporary service adjustments made by the public transport service provider, such as the 

provision of rail-replacement bus services. The number of passenger journeys for each origin-

destination pair, which results from applying the proposed transfer inference algorithm in 

Chapter 2, is used as direct input in this study. This enables a comparison between the number 

of passenger journeys during different planned disruptions and during regular, undisrupted 

circumstances, based on which route and mode choice parameters are calibrated to capture the 

passenger response. 

 

This chapter is based on an edited version of the following article: 

 

Yap, M.D., Nijënstein, S., Van Oort, N. (2018). Improving predictions of public transport usage 

during disturbances based on smart card data. Transport Policy, 61, 84-95. 

© 2017 Elsevier Ltd. 
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4.1 Introduction 

The last decade, in several cities worldwide automated fare collection (AFC) systems are 

introduced for the public transport system by public transport operators and authorities. For 

these AFC systems, passengers need to use a smart card for public transport travelling. Open 

systems in which passengers only need to tap in, as well as closed systems in which both a tap 

in and tap out are required, are applied in practice. Although the main purpose of the 

introduction of AFC systems was to enable an easier way of revenue collection, additionally 

large amounts of data are generated which can be used to get more insight in passengers’ travel 

behaviour. Over the last years, data from AFC systems is used for many purposes by scientists 

and practitioners on a strategic, tactical and operational level (Pelletier et al., 2011). Data from 

AFC systems is for example used for destination inference in case of systems with tap in only 

(e.g. Trépanier et al., 2007; Nunes et al., 2016), transfer inference (e.g. Hofmann and 

O’Mahony, 2005; Jang, 2010) and journey inference to estimate origin-destination (OD) 

matrices (e.g. Seaborn et al., 2009; Wang et al., 2011; Munizaga and Palma, 2012; Zhao et al., 

2012; Gordon et al., 2013). Other studies focus on fusion of smart card data of different 

operators (e.g. Nijënstein and Bussink, 2015) or clustering public transport stops in order to 

identify and classify public transport activity centres based on smart card data (Cats et al., 

2015b).  

In addition to the aforementioned studies which use smart card data to describe, 

analyse, cluster and visualise current travel patterns, there are also studies focusing on public 

transport ridership prediction based on smart card inferred travel patterns. Idris et al. (2015) 

developed several mode choice models based on revealed preference, contrary to traditional 

mode choice models having the tendency to overestimate public transport ridership. Wei and 

Chen (2012) developed a forecasting approach for short-term ridership predictions in metros 

using a combination of empirical mode decomposition and neural networks, whereas Li et al. 

(2017b) predict metro ridership under special events using a multiscale radial basis function 

(MSRBF) network. Ding et al. (2016) predict metro ridership using gradient boosting decision 

trees, thereby incorporating temporal features and bus transfer activities. In Van Oort et al. 

(2015a) a smart card based prediction model is developed which allows the prediction of effects 

of changes in public transport supply, such as increasing the frequency or rerouting public 

transport services. This model considers the total urban public transport network and uses an 

elasticity approach, where parameter values are obtained based on revealed preference studies. 

Effects of crowding can also be incorporated in this short-term ridership prediction model (e.g. 

Van Oort et al., 2015b). This type of prediction model is of added value to improve prediction 

accuracy of the impact of structural network changes, which are usually implemented by 

operators on one or on a few fixed dates in the year. However, in practice many public transport 

operators are confronted with temporary closures of infrastructure many more times per year. 

These temporary infrastructure closures are for example caused by maintenance work, track 

renewal or redesign of public space. These closures usually result in longer travel time, more 

transfers, lower ridership, lower passenger satisfaction, and less revenues. In the Netherlands, 

a tendency can be observed of more, larger and more long-lasting rail infrastructure closures. 

For example, HTM, the urban public transport operator in The Hague, the Netherlands, was 

confronted with more than 20 temporary track closures in 2015. It therefore becomes more 

urgent for operators to predict the impact of these (planned) disturbances on their passengers, 

ridership and revenues. This impact of temporary track closures on demand and supply is 

different compared to the impact of structural network changes. Passengers might be willing to 

postpone a single trip, change their mode choice or route choice, or accept the use of rail-

replacement bus services for temporary situations. Operators on the other hand have to accept 

the temporary reduction in level of service - because of rail-replacement bus services, additional 
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travel time and transfers - and might accept the temporary additional operational costs for these 

bus services and communication. It can be concluded that the responses of passengers and 

operators differ in case of temporary network changes, compared to structural network changes. 

In order to predict passenger impacts of temporary network changes with sufficient accuracy, 

other/additional parameters and/or different parameter values in the public transport ridership 

prediction models are therefore required.  

This study aims to improve the prediction accuracy of the impact of planned, 

temporary disturbances on public transport usage. To this end, in this study a new parameter 

set is calibrated and validated to predict public transport ridership in case of planned 

disturbances. This parameter set is based on smart card data derived from AFC systems during 

several planned disturbances which occurred in The Hague in 2015. The study results in a new 

set of parameter values allowing to better predict passenger impacts of planned disturbances in 

urban public transportation. With this result, more insight is gained in passenger behaviour 

during disturbances. It also supports operators to predict the impact on their revenues, and to 

better align supply of rail-replacement services on alternative routes to the remaining demand, 

in order to efficiently use their scarce resources. This chapter is structured as follows. Section 

4.2 describes the methodology to calibrate and validate the parameter set of the ridership 

prediction model. Section 4.3 describes the case study network to which the methodology is 

applied. Section 4.4 discusses the results of this study. At last, in Section 4.5 conclusions and 

recommendations for further research are formulated. 

4.2 Methodology 

4.2.1 Origin-destination matrix estimation 

When travelling in trams or buses in the Netherlands by smart card, passengers are required to 

tap in and tap out at devices which are located within the vehicle. This means that in the 

Netherlands the passenger fare is based on the exact distance travelled in a specific public 

transport vehicle. Especially for buses, this is different from many other cities in the world 

where often an open, entry-only system with flat fare structure is applied, for example in 

London (Gordon et al., 2013) and Santiago, Chile (Munizaga and Palma, 2012). This means 

that for each individual transaction the boarding time and location, and the alighting time and 

location of each trip leg are known. Also, it is known in which public transport line and vehicle 

each passenger boarded and alighted with its unique smart card number. This within-vehicle 

system therefore eases the destination and journey inference, compared to open entry-only 

systems. When merging this within-vehicle AFC system with Automated Vehicle Location 

(AVL) data, vehicle occupancies can be inferred directly from the transaction data for each line 

segment and vehicle.  

For an urban public transportation network with tram and bus lines, journeys can be 

inferred by combining registered trip legs made with the same smart card ID. In this study we 

used a simple temporal criterion to determine whether a passenger alighting is considered a 

final destination or a transfer. When the boarding time in a vehicle follows within a certain time 

window after the alighting time of the previous trip leg made with that same card, two AFC 

transactions are considered as one journey. This approach is also used, for example, by 

Hofmann and O’Mahony (2005) and Seaborn et al. (2009). We are aware that in scientific 

literature more advanced transfer inference algorithms have been developed (e.g. Zhao et al., 

2007; Munizaga and Palma, 2012; Gordon et al., 2013; Yap et al., 2017). In Dutch practice 

however, operators apply only a time window threshold between the previous alighting and 

next boarding as transfer inference criterion. In order to compare the prediction accuracy of the 
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new proposed parameter set with the earlier operator predictions with the default parameter set, 

we decided not to adjust the transfer inference algorithm in this study. In this way, we can 

evaluate purely the effects of our new parameter set on the prediction accuracy, while not also 

changing the transfer inference algorithm simultaneously. In the Netherlands, a maximum 

threshold transfer time of 35 minutes is applied to classify trip legs made by the same smart 

card ID as one journey. By aggregating all journeys, a stop-to-stop smart card based OD matrix 

can be inferred. In the ridership prediction model, zones are located at the stop locations. Only 

stop codes which belong to the same stop from a passenger perspective, are aggregated to one 

zone. This means that stop codes of platforms of the same stop in opposite directions, or stops 

located at the same junction, are represented by one zone. This is done to prevent passenger 

travel patterns to be relying too strong on the exact current stop codes of boarding and alighting 

in the undisturbed scenario. Under the assumption that the distribution of destinations 𝑗 from 

each origin 𝑖 for non-card users is similar to the distribution of smart card users, which is in line 

with the assumption applied by Munizaga and Palma (2012) to correct for missing tap outs, the 

zone-based OD matrix can be scaled based on the small percentage of non-card users in the 

Netherlands. Determination of the share of non-card users is based on passenger counts. 

When travelling by train or metro in the Netherlands, there is an entry-exit system where 

transactions are required during boarding and alighting. For train and metro, devices are 

however located at the station gates. This means that train-train or metro-metro transfers, as 

well as exact chosen routes cannot be determined directly from the data and that trip and transfer 

inference algorithms are necessary to obtain these insights. 

4.2.2 Public transport ridership prediction model 

For the prediction of public transport usage in case of planned disturbances, in this study the 

public transport ridership prediction model as described in Van Oort et al. (2015a) is used as 

basis. For an urban public transportation network, let the set of public transport stops and lines 

be denoted by 𝑆 and 𝐿 respectively. Each line 𝑙 ∈ 𝐿 is defined by an ordered sequence of 

stops 𝑙 = (𝑠𝑙,1, 𝑠𝑙,2…, 𝑠𝑙,|𝑙|). 𝐿𝑡 ∈ 𝐿 and 𝐿𝑏 ∈ 𝐿 represent the subset of tram lines and bus lines of 

the considered network, respectively. |𝐿| expresses the number of public transport lines in the 

total set 𝐿. Trip schedules are imported in the model, based on which the frequency and stop-

to-stop travel times are inferred for each line 𝑙 ∈ 𝐿 in each distinguished time period 𝑡. Public 

transport demand is connected to this network by an OD matrix between all stops 𝑠 ∈ 𝑆 for 

each distinguished time period 𝑡. The OD matrix of the undisturbed base scenario 𝛿0 is based 

on smart card data and estimated as explained in Section 4.2.1. We use a conversion table 

between the stop ID of the boarding and alighting location in the smart card transaction data 

and the modelled zones in the prediction model, in order to connect travel demand to the 

modelled urban public transportation network.  

 For public transport ridership predictions, this model is based on a demand elasticity. 

For each OD pair 𝑖, 𝑗 the generalised travel costs - being the sum of costs for in-vehicle time, 

transfer walking time, waiting time, transfers and travel fares with their corresponding weights 

- are calculated for the base scenario 𝛿0 and for each scenario 𝛿. Eq.1 shows the calculation of 

the generalised costs, expressed in monetary terms. Applying a demand elasticity parameter to 

the relative change in generalised travel costs between 𝛿0 and 𝛿 for each OD pair allows for the 

calculation and assignment of a new public transport OD matrix for each scenario 𝛿. Eq.2 

shows the calculation of new public transport demand.  

The default parameter values for 𝑎1, 𝑎2, 𝑎3, 𝑎4 , 𝑎5 used in this prediction model for 

structural network changes are obtained based on a combination of model calibration and 

literature review (Balcombe et al., 2014). In this calibration process, model assignment results 

(number of passengers and passenger-distance on the network, per line 𝑙 ∈ 𝐿 and per link) for 
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the undisturbed base scenario 𝛿0  were compared with the raw smart card transaction data. The 

parameter set resulting in the highest fit between assignment results and raw smart card data, 

with parameter values within bounds found in literature, is applied to this model. The weight 

of in-vehicle time 𝑎1 equals 1.0, whereas one minute walking time 𝑎2 or waiting time 𝑎3 are 

valued 1.5 times more negatively compared to one minute in-vehicle time. This is also in line 

with values found in literature (e.g. Balcombe et al., 2004; Arentze and Molin, 2013). Given 

the focus on an urban public transport network with usually relatively short trips, a relatively 

small transfer penalty of 3 minutes is applied for 𝑎4. In this prediction model we only consider 

the marginal travel costs per travelled kilometer, without incorporating the base fare of €0.88 

which applies for all passengers and all trips in urban public transport in the Netherlands. This 

is justified since this fixed cost component, which is the same for each public transport route, 

does not add explanatory power to passenger route choice in the model. The marginal travel 

costs per travelled kilometre in the model are reflected by 𝑎5 and are equal to €0.05/km. 

Compared to the marginal travel costs of €0.15/km currently in the Netherlands (MRDH, 2016), 

this value shows a limited price sensitivity. This can be explained due to the fact that also 

passengers which are price-inelastic are incorporated in the data. These passengers do not have 

to pay for their tickets themselves (e.g. business trips paid by the company, or student trips paid 

by the Dutch government), have monthly or yearly travel passes (where the marginal travel 

costs are usually lower), or travel with discount (e.g. elderly, children). The Value-of-Time for 

the Dutch situation is determined based on Significance et al. (2013).  

In the model used in this study no segmentation in parameter values is used for 

passengers with different trip purposes or for different time periods. Differences in sensitivity 

to generalised cost components can for example be related to trip purpose or socio-economic 

status of passengers. In the model used for this study, no explicit distinction is made between 

the home-end and activity-end of a journey. Therefore, it is not possible to determine the home-

end of each journey explicitly, and to relate this for example to the socio-economic status of a 

specific area of the city. Also regarding trip purpose an explicit segmentation cannot directly 

be inferred from the AFC data. For example, in The Hague there are 58 different product types 

available for travelling by smart card (e.g. business card, student cards, monthly cards). For 

some card types it is relatively easy to match card type (e.g. student card) and trip purpose (e.g. 

education). However, for many other card types this match is less trivial. Besides, for this study 

no information was available regarding the product type used for each AFC transaction. In 

addition, our AFC dataset did not contain the ID of the smart card used for travelling. Therefore, 

it was not possible to infer trip purpose from long-term travel patterns. Different sensitivities 

during different periods of the day are mostly related to different mixtures of passenger 

segments (e.g. a high percentage commuters during peak periods, or a high percentage leisure 

/ shopping passengers during off-peak periods), as for example already shown by Nazem et al. 

(2011). Instead of aiming to infer these different travel segments from available travel patterns, 

we decided to come up with a robust parameter set which is - on average - able to improve 

prediction accuracy over these different passenger segments. For further research, there is 

definitely potential to further improve the parameter set specific for different passenger 

segments and areas of the city.  

 

𝐶𝑖𝑗 = (𝛼1 ∙ 𝐼𝑉𝑇𝑖𝑗 + 𝛼2 ∙ 𝑊𝐾𝑇𝑖𝑗 +  𝛼3 ∙ 𝑊𝑇𝑇𝑖𝑗 + 𝛼4 ∙ 𝑁𝑇𝑖𝑗) ∗ 𝑉𝑜𝑇 + 𝛼5 ∙ 𝑑𝑖𝑗 (1) 

 

With: 

𝐶𝑖𝑗   Generalised costs for OD pair i,j 

𝛼1,𝛼2,𝛼3,𝛼4, 𝑎5 Weight coefficients in generalised costs calculation 

𝐼𝑉𝑇𝑖𝑗   In-vehicle travel time for OD pair i,j 

𝑊𝐾𝑇𝑖𝑗   Walking time for OD pair i,j 
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𝑊𝑇𝑇𝑖𝑗   Waiting time for OD pair i,j 

𝑁𝑇𝑖𝑗   Number of transfers for OD pair i,j 

VoT   Value-of-Time (€/hour) 

𝑑𝑖𝑗   Distance travelled in public transport for OD pair i,j 

 

𝐷𝑖𝑗
𝛿 = (𝐸 ∙ (

𝐶𝑖𝑗
𝛿

𝐶
𝑖𝑗
𝛿0

− 1) + 1) ∙ 𝐷𝑖𝑗
𝛿0        (2) 

 

With: 

𝐷𝑖𝑗
𝛿    Demand for OD pair 𝑖, 𝑗 in scenario 𝛿 

𝐸   Elasticity 

𝐶𝑖𝑗
𝛿    Generalised costs in scenario 𝛿 

𝐶𝑖𝑗
𝛿0   Generalised costs in base scenario 𝛿0 

𝐷𝑖𝑗
𝛿0   Demand for OD pair 𝑖, 𝑗 in base scenario 𝛿0 

 

We can thus conclude that there is already a calibrated parameter set which is used to 

predict public transport ridership for undisturbed situations. In this study, we specifically 

investigate to what extent this parameter set needs to be adjusted to perform accurate passenger 

predictions in case of planned disturbances. 

4.2.3 Evaluation framework 

An evaluation framework is developed to evaluate the accuracy of different parameter sets for 

ridership predictions in case of (planned) disturbances. First, the subset 𝐿𝑎 ∈ 𝐿 is determined, 

where 𝐿𝑎 contains all public transport lines which are directly or indirectly affected by a certain 

disturbance 𝛿. Public transport lines of which the route, mode and/or frequency is adjusted due 

to a disturbance, are considered directly affected lines. Public transport lines parallel to the 

directly affected lines, which can function as alternative for passengers to reach their 

destination, are considered indirectly affected lines. Although route and frequency of these lines 

are not changed, the number of passengers and passenger-kilometres travelled over these lines 

can be affected due to the directly disturbed public transport lines. For all lines 𝑙 ∈ 𝐿𝑎 we 

consider the impact of a disturbance for the different distinguished time periods 𝑡. Since we do 

not estimate different parameter sets for different time periods, it is important to explicitly 

evaluate and compare the prediction accuracy of different parameter sets over the different time 

periods in order to develop a robust parameter set.  

 We use two indicators to express the impact of a disturbance: the relative impact of a 

disturbance on the number of passengers 𝑃 and on the number of passenger-kilometres 𝑃𝐾. 

This means we consider the relative increase or decrease in 𝑃 and 𝑃𝐾 for all affected public 

transport lines in all distinguished time periods during a specific disturbance 𝛿, compared to the 

undisturbed base scenario  𝛿0. For each disturbance, this leads to a total number of |𝐿𝑎| ∗ |𝑇| ∗
2 elements for which the empirical and predicted relative effect of a disturbance are compared. 

Eq.3 and Eq.4 formalise the calculation of the relative impact of a disturbance on the number 

of passengers 𝑃 and passenger-kilometres 𝑃𝐾, respectively.  
 

∆𝑃 = (
(𝑃𝛿,𝑙𝑡−𝑃𝛿0,𝑙𝑡)

𝑃𝛿0,𝑙𝑡
) ∗ 100            ∀ 𝑙 ∈ 𝐿𝑎, 𝑡 ∈ 𝑇     (3) 

 

∆𝑃𝐾 = (
(𝑃𝐾𝛿,𝑙𝑡−𝑃𝐾𝛿0,𝑙𝑡)

𝑃𝐾𝛿0,𝑙𝑡
) ∗ 100    ∀ 𝑙 ∈ 𝐿𝑎, 𝑡 ∈ 𝑇     (4) 
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With: 

𝑃𝛿,𝑙𝑡   Number of passengers in disturbed scenario 𝛿 

𝑃𝛿0,𝑙𝑡   Number of passengers in undisturbed base scenario 𝛿0 

𝑃𝐾𝛿,𝑙𝑡   Number of passenger-kilometres in disturbed scenario 𝛿  

𝑃𝐾𝛿0,𝑙𝑡   Number of passenger-kilometres in undisturbed base scenario 𝛿0 

 

In this study we use the well-known 𝑅2 measure to quantify the prediction accuracy of 

different parameter sets for all |𝐿𝑎| ∗ |𝑇| ∗ 2 elements, which compares empirically derived 

values ∆𝑃𝑙𝑡
̃  and ∆𝑃𝐾𝑙𝑡

̃  with predicted values ∆𝑃𝑙𝑡
̆  and ∆𝑃𝐾𝑙𝑡

̆ . The used prediction model 

consists of an undisturbed base scenario 𝛿0, of which the number of passengers and passenger-

kilometres are calibrated based on imported smart card data corresponding to this undisturbed 

base network (Section 4.2.2). The passenger impact of a disturbed scenario 𝛿 is predicted using 

the described elasticity approach after modelling the network corresponding to each scenario 𝛿. 

Based on the model output for 𝑃𝛿0
, 𝑃𝐾𝛿0

 and 𝑃𝛿 , 𝑃𝐾𝛿, predicted values ∆𝑃𝑙𝑡
̆  and ∆𝑃𝐾𝑙�̆� are 

calculated. The values ∆𝑃𝑙𝑡
̃  and ∆𝑃𝐾𝑙𝑡

̃  can be inferred from the AFC data. For both the 

undisturbed base scenario 𝛿0 and each disturbed scenario 𝛿 ∈ ∆, the raw smart card data is 

scaled for non-card users, thereby applying the same scaling factor as applied in the prediction 

model. Since the period of the year which is used to infer 𝑃𝛿0
 and 𝑃𝐾𝛿0

differs from the period 

which is used to infer 𝑃𝛿 and 𝑃𝐾𝛿, a correction for possible ridership variation which cannot be 

attributed to the adjusted public transport network needs to be applied. There can by systematic 

differences in travel patterns between the days used for 𝛿0 and 𝛿, for example due to holiday 

periods. Also seasonal differences can occur (e.g. different public transport ridership in January 

compared to June), as well as daily differences due to weather (rain or sunny weather), day of 

the week and random fluctuations. To prevent a biased comparison between ∆𝑃𝑙𝑡
̆  and ∆𝑃𝑙𝑡

̃ , and 

between ∆𝑃𝐾𝑙�̆� and ∆𝑃𝐾𝑙𝑡
̃ , we made sure that the generic travel patterns are similar for 𝛿0 and 

𝛿. This means that if 𝛿 occurs within the summer holiday, we also inferred data from the 

(undisturbed part of this) summer holiday for 𝛿0. Similarly, in case 𝛿 occurs during regular 

working periods, 𝛿0 is also based on days during a working period. We also made sure that the 

share of the different days of the week was similar for  𝛿0 and 𝛿 - by using AFC data from an 

equal number of Mondays, Tuesdays etc. for  𝛿0 and 𝛿 - to prevent bias due to differences in 

ridership over the different days of the week. This however does not exclude seasonal and daily 

random variation from the comparison yet. This is especially relevant, given the large number 

of disturbances occurring on the urban tram network of operators in the Netherlands. As 

illustration: for the tram network of The Hague, only 6 months out of the 36 months between 

July 2014 and July 2017 were totally free from planned disturbances. For example, if 𝛿 lasted 

during the whole month of November, there is no other option than using AFC data from one 

of these undisrupted months (e.g. March) for 𝛿0. In order to correct for possible seasonal and 

random variation between these periods, we applied a correction to the inferred values 𝑃𝛿0
 and 

𝑃𝐾𝛿0
 based on the ridership differences found on all public transport lines 𝑙 ∉ 𝐿𝑎 between 𝛿0 

and 𝛿. We calculated the average difference for 𝑃𝑡 and 𝑃𝐾𝑡 over all public transport lines which 

are not directly, nor indirectly, affected by a disturbance 𝛿, for each distinguished time period. 

Under the assumption that the seasonal and random effect for all lines 𝑙 ∈ 𝐿𝑎 is similar to the 

average effect found for all lines 𝑙 ∉ 𝐿𝑎, we corrected the originally directly inferred values 

𝑃𝑙𝑡, 𝛿0
′̃  and 𝑃𝐾𝑙𝑡, 𝛿0

′̃  using Eq.5. This allowed us to compute ∆𝑃𝑙𝑡
̃  and ∆𝑃𝐾𝑙𝑡

̃  without bias using 

Eq.3 and Eq.4, based on which the 𝑅2 measure could be computed using Eq.6. We illustrate 

the calculations in Eq.5 and Eq.6 for 𝑃, whilst these apply for calculating 𝑃𝐾 as well.  
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𝑃𝑙𝑡, 𝛿0
= ̃ 𝑃𝑙𝑡, 𝛿0

̃ ′
⋅ (

1

|𝐿|∉𝐿𝑎
) ⋅ ∑

𝑃𝑙𝑡,�̃�

𝑃𝑙𝑡, 𝛿0
̃𝑙∉𝐿𝑎             ∀ 𝑙 ∈ 𝐿𝑎, 𝑡 ∈ 𝑇    (5) 

 

𝑅2 = 1 −
∑ ∑ (∆𝑃𝑙𝑡−̃∆𝑃𝑙�̆�)

2

𝑙∈𝐿𝑎𝑡∈𝑇

∑ ∑ (∆𝑃𝑙𝑡−̃
𝑙∈𝐿𝑎𝑡∈𝑇 ∆𝑃̅̅ ̅̃̅ )2

                         ∀ 𝑙 ∈ 𝐿𝑎, 𝑡 ∈ 𝑇    (6) 

4.2.4 Experimental design 

In this study four planned disturbances which occurred on the HTM network in 2015 are 

considered, denoted by the total set  ∆. Subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2} and ∆𝐵∈ ∆ {𝛿3, 𝛿4}  are defined, 

which both contain 50% of the investigated disturbances for calibration and validation 

purposes, respectively. For the calibration phase, a rule-based three-step procedure is used to 

determine an improved parameter set which leads to a better fit between empirical AFC data 

and predicted public transport ridership during planned temporary disturbances.  

 

Step 1. Selection of parameters with potentially different values during disturbances 

In order to predict public transport usage in case of planned disturbances, it is important to 

determine which parameter values could be different, compared to the values used to predict 

regular passenger route choice and ridership for undisturbed scenarios as described in Section 

4.2.2. In theory, values can be different for all six parameters of Eq.1 - 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝑉𝑜𝑇 

- and the elasticity parameter 𝐸 of Eq.2. In a first step narrowing down the solution space, we 

determine which parameters can have potentially different values during disturbances based on 

theory. It is confirmed using a sensitivity analysis that parameters excluded from the solution 

space based on theory, do not or hardly affect prediction accuracy indeed.  

 First, the value of the elasticity parameter 𝐸𝛿 in case of disturbances is of relevance. As 

mentioned in Section 4.1, passengers react differently to temporary network changes compared 

to structural network changes. On the one hand, passengers might accept a longer travel time 

for a certain amount of time (indicating a less negative value of 𝐸𝛿). On the other hand, 

passengers might decide to change their mode choice or destination choice, or to postpone their 

trip in case of temporary track closures, until regular operations are restored (indicating a more 

negative value of 𝐸𝛿). Second, the modelling of rail-replacement services is of relevance. Let 

𝐿𝑅 ∈ 𝐿 be the subset of rail-replacing bus services. In many cases, operators will supply rail-

replacing bus services in case of track closures. These rail-replacing services differ from regular 

bus lines in several ways. For example, the existence, route and stop locations of such services 

are often less well known by passengers. Given the temporary existence of these lines, 

passengers are less familiar with aspects as departure time, travel time and reliability. When 

these buses replace rail services, these services have to use temporary stop locations nearby the 

closed rail stop, which often have less visibility and equipment like dynamic arrival information 

or shelters. It is therefore possible that passengers experience waiting time for rail-replacement 

services more negatively compared to waiting time for regular tram or bus services (indicating 

a higher value of parameter 𝑎3, related to waiting time 𝑊𝑇𝑇𝑅 specific for rail-replacement 

services). Besides, these services transport passengers who are familiar with rail-bound 

services. From literature it is known that when a bus service is transformed into a tram line, 

travel time is perceived less negatively compared to bus travelling (Bunschoten et al., 2013). 

Therefore, it can be hypothesised that the replacement of a tram line by buses will be perceived 

more negatively by passengers familiar with rail-bound travelling. Therefore, the value of 

parameter 𝑎1 related to in-vehicle time perception in rail-replacement busses 𝐼𝑉𝑇𝑅 might be 

more negative compared to regular trams or buses. Rail-replacement buses usually operate with 

higher frequencies than the original tram line, to compensate for the lower capacity of a bus 

compared to a tram. However, it is unclear to what extent passengers really perceive and 
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incorporate this theoretical benefit in their route and mode choice. It is therefore questionable 

whether modelling the realised frequencies of the rail-replacement services 𝑓𝑅, or the original 

frequencies of the tram line which is being replaced 𝑓𝑇, leads to more accurate predictions.  

 The remaining parameters from Eq.1 - 𝑎2 (multiplier for walking time perception), 𝑎4 

(fixed transfer penalty), 𝑎5 (marginal travel costs) and 𝑉𝑜𝑇 (value of time) - were expected to 

have no or a limited effect on the prediction accuracy. There is no rationale to assume that the 

marginal travel costs or Value of Time differ during disturbances, since the fare system applied 

during disturbances for rail-replacement bus services is exactly equal to the fare system used 

for regular tram and bus lines. Although it could be hypothesised that the walking time or a 

transfer to rail-replacement bus services can be perceived more negatively compared to regular 

tram or bus lines, a first sensitivity analysis showed only a very limited impact on the prediction 

accuracy using Eq.6 when varying parameter values for 𝑎2 and 𝑎4. Increasing / decreasing 

parameter values of 𝑎2 and 𝑎4 with 33% for ∆𝐴∈ ∆ {𝛿1, 𝛿2}, did not increase/decrease the 

prediction accuracy with more than 3% (Figure 4.1). Table 4.1 shows the remaining parameter 

values which are included in the search procedure, together with the expected direction of the 

parameter values compared to the default parameter value used for predictions for undisturbed 

network changes.  

 

 

Figure 4.1. Results sensitivity analysis to walking time perception (left) and transfer penalty 

(right) to rail-replacement bus services 

Table 4.1. Parameter selection for systematic grid-search 

Parameters Values default parameter set Search direction parameter values 

Elasticity 𝐸𝛿  -1.1 More or less negative 

𝛼3 for waiting time 𝑊𝑇𝑇𝑅 1.5 Higher 

𝛼1 for in-vehicle time 𝐼𝑉𝑇𝑅 1.0 Higher 

Frequency {𝑓𝑅, 𝑓𝑇) 𝑓𝑅 𝑓𝑇 

 

Step 2. Systematic grid-search 

In the second step, a systematic grid-search is performed to scan for the best fitting parameter 

set(s) from predefined scenarios, using the four model parameters of Table 4.1. For all four 

parameters, plausible values are a priori determined. The calibrated parameter values used for 

passenger assignment for the undisturbed base scenario 𝛿0 are used as starting point (𝐸𝛿= -

1.1, 𝑊𝑇𝑇𝑅=1.5, 𝐼𝑉𝑇𝑅=1.0, 𝑓𝑅=𝑓𝑅). These values are considered as reasonable starting point, 

since these values are calibrated and within bounds found in literature (e.g. Balcombe et al., 

2004). The direction in which each parameter value can change when predicting ridership 

during disturbances, compared to regular ridership predictions, is explained in the first part of 

this section and shown in Table 4.1. The upper and lower bound values for 𝐸𝛿, 𝑊𝑇𝑇𝑅 and 
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𝐼𝑉𝑇𝑅 are selected in such way, that they remain within literature bounds on one hand, but show 

sufficient variation to explore the solution space on the other hand. The modelling of the 

frequency of rail-replacement bus services is a binary variable, which can be equal to 𝑓𝑅 or 𝑓𝑇. 

The second row of Table 4.2 shows the resulting parameter values. All combinations between 

these predefined parameter values are systematically evaluated using the 𝑅2 measure for 

prediction accuracy from Eq.6. Using the Cartesian product of the chosen plausible values, this 

results in 24 scenario combinations of parameter values (Table 4.2). The first row of Table 4.2 

summarises the four parameters which are hypothesised to have different values when 

modelling passenger behaviour during disturbances specifically.  
Based on the results of this second step the solution space can be narrowed down further, 

so that a further in-depth search can be performed in the third step of the search procedure. In 

this second step we did not only look at the exact 𝑅2 value resulting from the 24 different 

scenarios, but we also investigated which patterns and scenarios were robust over the two 

evaluated disturbances ∆𝐴∈ ∆ {𝛿1, 𝛿2}. Since we aim to come up with one improved parameter 

set to predict impacts of different (types of) disturbances, it is important to have a robust, good 

performing parameter set rather than optimising too much for these specific two disturbances. 

We determine the most promising parameter sets from these pre-defined scenarios as result of 

this second step of the procedure. 

Table 4.2. Experimental design 

Parameters Elasticity 𝑬𝜹 Waiting time 𝑾𝑻𝑻𝑹 In-vehicle time 𝑰𝑽𝑻𝑹 Frequency 

Parameter values {-0.7, -1.1, -1.5} {1.5, 2.0} {1.0, 1.25} {𝒇𝑹, 𝒇𝑻} 

Scenario 1 (default) -1.1 1.5 1.0 f R 

Scenario 2 -1.1 1.5 1.0 min(f R; f T) 

… … … … … 

 

Step 3. Specific in-depth search 

In the third step of the calibration, the parameter set is further improved based on the boundaries 

set in the second step of the procedure, using a specific in-depth search procedure. In this step, 

parameter values are not bound to the predefined values and scenarios anymore. Within the 

boundaries set in step 2, we evaluated all combinations of parameter values (with a certain 

minimum step size applied between the candidate parameter values). Since all these candidate 

parameter sets are within bounds of the promising, robust parameter sets found in step 2, we 

investigated which parameter set resulted in the highest prediction accuracy measured by the 

𝑅2 measure and selected this parameter set as new, preferred set. Once this parameter set is 

determined, this set is validated by applying it to the investigated disturbances 𝛿 ∈ ∆𝐵. For this 

subset ∆𝐵 it is tested whether the prediction accuracy improved compared to the default 

parameter set. Note that we did not apply a full optimisation in this process of improving the 

parameter set. We used a rule-based approach to narrow down the solution space in a three-step 

procedure, meaning that not all possible combinations of parameter values are evaluated. 

Optimality can thus not be proved in this method.  

4.3 Case Study 

The methodology as described in Section 4.2 is applied in a case study. The urban public 

transport network of The Hague, the Netherlands, is used in this study. Public transport services 

on this network are operated by HTM. The network consists of 12 tram lines and 8 bus lines. 

No metro services are operated in the city of The Hague. Two of the tram lines function as light 

rail connection between The Hague and the nearby suburb of Zoetermeer. On an average 
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working day, more than 250,000 trips are made on the HTM network. 93% of the passengers 

use a smart card for travelling (HTM, 2015). The remaining 7% buys a ticket from the driver 

or at the vending machine, or uses a special ticket. When modelling the HTM network, four 

different time periods are distinguished in the frequency-based assignment and prediction 

model: morning peak (7am-9am), evening peak (4pm-6pm), off-peak (9am-4pm) and the 

evening and early morning (6pm-7am). 

Table 4.3. Overview of network changes during planned disturbances in 2015 

Disturbance 𝜹 Period 𝜹 

(# days) 

Period 𝛿0 

(# days) 

Directly affected lines 𝒍 ∈ 𝑳𝒂 Rail-replacement 

line (replaced tram) 

𝛿1 Closure 

‘Koninginnegracht’ 

November 

(20) 

March 

(20) 

Tram 1/15/16/17: rerouted 

Tram 9: shortened + bus-replacement 

 

Bus lines 69+79  (9) 

𝛿2 Closure 

‘Loosduinseweg’ 

August 

(5) 

August 

(5) 

Tram 2: shortened + bus-replacement 

Tram 4: shortened 

Tram 6: extended (to replace tram 4) 

Bus line 52 (2) 

𝛿3 Closure 

‘Westvest’ 

October 

(5) 

March 

(20) 

Tram 1: shortened + bus-replacement Bus line 71 (1) 

 

𝛿4 Closure 

‘Parallelweg+Ternoot’ 

July 

(5) 

August 

(5) 

Tram 3/4: cut into two separate parts 

Tram 9: rerouted + bus-replacement 

Tram 11/12: shortened + bus-replacement 

 

Bus line 58 (9) 

Bus line 82 (11+12) 

 

In 2015 there were several track closures on the public transport network operated by HTM. 

Given their entry-exit AFC system, in combination with relatively many case studies available, 

the HTM network is an interesting case study area to investigate the impact of planned 

disturbances on public transport ridership. As explained, in total four different disturbances 𝛿 

which occurred in 2015 on the HTM network are investigated, which are divided into two 

subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2} and ∆𝐵∈ ∆ {𝛿3, 𝛿4} used for calibration and validation purposes, 

respectively. Table 4.3 describes the impact of each disturbance on the public transport 

network, as well as the period of the year the AFC data is coming from for 𝛿0 and 𝛿. Figure 

4.2 shows the adjusted public transport network for all four disturbances. Closure 𝛿1 

‘Koninginnegracht’ resulted in detours for several tram lines in the city centre. Besides, one of 

the two important connections between Central Station and Scheveningen (tram line 9) was 

replaced by bus services of line 69 (whole day) and 79 (only peak hours). Closure 𝛿2 

‘Loosduinseweg’ resulted in the shortening of two busy tram lines 2 and 4. The shortened part 

of the route of tram line 2 was replaced by buses (line 52). Most stops of the shortened tram 

line 4 were covered by tram line 6, which route was temporarily extended over the unaffected 

part of the shortened route of tram line 4. During closure 𝛿3 ‘Westvest’, the route of tram line 

1 - connecting the city of The Hague with the city of Delft - was shortened. A rail-replacement 

bus line 71 was provided, although it could not stop near all original tram stops due to 

infrastructure constraints. Closure 𝛿4 ‘Parallelweg+Ternoot’ reflects two different disturbances 

which occurred simultaneously on the network. The Parallelweg closure affected the route of 

tram lines 9, 11 and 12 through an area with a relatively high public transport dependency. 

Lines 11 and 12 - which share the same route through this area - were shortened, whereas tram 

line 9 was rerouted. The closed track of line 9 was replaced by temporary bus line 58, whereas 

bus line 82 replaced the closed part of the route of tram lines 11 and 12. The closure Ternoot 

resulted in cutting both light rail services 3 and 4 in two separate parts. Passengers could walk 

between the short-turning terminals of both parts of these lines. 

It can be concluded that the set of disturbances ∆ can roughly be divided in closures in 

which tram lines are rerouted (𝛿1, 𝛿4), closures in which tram lines are shortened and replaced 

by bus services (𝛿1, 𝛿2, 𝛿3, 𝛿4), and closures in which tram lines are divided in two separate 

parts (𝛿4). To investigate and test that the selected parameter set is robust to perform accurate 

predictions for different types of closures, we aimed to have a mixture of different types of 
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closures in both the subset used for calibration ∆𝐴∈ ∆ {𝛿1, 𝛿2}, as well as in the subset used for 

validation ∆𝐵∈ ∆ {𝛿3, 𝛿4}. 

For the reference network 𝛿0 used for closures 𝛿1 and 𝛿3, as well as for disturbed 

network 𝛿1, 20 working days of smart card data is used in this study. Given the ≈250,000 

journeys (≈300,000 AFC transactions) on the HTM network per average working day, this 

roughly means that about 6 million smart card transactions are used as basis for these analyses. 

For the shorter lasting disturbances 𝛿2, 𝛿3, 𝛿4 and the reference network 𝛿0 used for closures 

𝛿2 and 𝛿4, within the summer holiday, about 1.5 million smart card transactions (5 working 

days) are used (Table 4.3). All raw transactions are anonymised by removing personal 

information and by aggregating the data, to guarantee confidentiality and to obey Dutch privacy 

regulations. 

 

 

Figure 4.2. Public transport network during planned disturbances 𝜹𝟏 ‘Koninginnegracht’ 

(upper left), 𝜹𝟐 ‘Loosduinseweg’ (upper right), 𝜹𝟑 ‘Westvest’ (lower left), 𝜹𝟒 ‘Parallelweg 

+Ternoot’ (lower right)  
(star: work location / orange: line rerouted / red: line shortened / blue: rail-replacement bus) 
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4.4 Results 

4.4.1 Results rule-based search procedure 

After the first selection of parameters with potentially different values during disturbances (step 

1 of the three-step search procedure as described in Section 4.2.4), this section presents results 

of the second step (systematic grid-search) and the third step (specific in-depth search) of the 

method. Table 4.4 and Figure 4.3 show the resulting prediction accuracy for the two 

disturbances 𝛿1 and 𝛿2 used for calibration for all 24 predefined scenarios (as explained in 

Section 4.2.4 and Table 4.2). In this step, we specifically search for patterns and robust 

parameter values.  

 

 

Figure 4.3. Results prediction accuracy systematic grid-search procedure 

Based on Table 4.4 and Figure 4.3, we conclude the following: 

 Regardless the value of 𝐸𝛿 and the modelled frequency 𝑓, scenarios with 𝑊𝑇𝑇𝑅 = 1.5 

and 𝐼𝑉𝑇𝑅 = 1.0 are outperformed by the other scenarios. From the resulting prediction 

accuracy for 𝛿1 we see that scenario 1+2, 9+10 and 17+18 clearly have a lower 𝑅2 than 

scenarios 3-8, 11-16 and 19-24 respectively with the same value for 𝐸𝛿. This indicates 

that this combination of values for waiting time and in-vehicle time does not put 

sufficient perceived disutility on usage of rail-replacement buses. This means that 

scenarios 1, 2, 9, 10, 17 and 18 are removed from the candidate list. 

 Scenarios with 𝐸𝛿 = -1.5 are outperformed by scenarios using 𝐸𝛿 = -1.1 or 𝐸𝛿 = -0.7. 

From the resulting prediction accuracy for 𝛿1 we can see that for each given combination 

of 𝑊𝑇𝑇𝑅, 𝐼𝑉𝑇𝑅 and 𝑓, scenarios 19-24 have a lower 𝑅2 than their corresponding 

scenarios 3-8 and 11-16 with a different value for 𝐸𝛿. This indicates that ridership loss 

due to temporal planned disturbances in general is not larger compared to the assumed 

ridership loss for structural network changes. This means that scenarios 19, 20, 21, 22, 

23 and 24 are removed from the candidate list.  

 Scenarios in which the realised frequency of rail-replacement buses 𝑓𝑅 is modelled are 

outperformed by scenarios in which the frequency of the original tram lines which is 

being replaced 𝑓𝑇 is modelled. From the resulting prediction accuracy for 𝛿2 we can see 

that for each given combination of 𝐸𝛿 , 𝑊𝑇𝑇𝑅 and 𝐼𝑉𝑇𝑅 the scenarios 4, 6, 8, 12, 14, 16 

using 𝑓𝑇 clearly outperform their corresponding scenario 3, 5, 7, 11, 13, 15 respectively 
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using 𝑓𝑅. This indicates that using the frequency of the original tram line is a better 

ridership predictor than using the realised frequency of rail-replacement buses, and that 

scenarios 3, 5, 7, 11, 13 and 15 are removed from the candidate list.  

 For the remaining scenarios 4, 6, 8, 12, 14 and 16, the prediction accuracy is ranked 

separately for the prediction performance for 𝛿1 and 𝛿2. Scenarios 4 and 6 perform very 

well for 𝛿2, but perform mediocre for 𝛿1. Scenario 8 performs medium-high for both 𝛿1 

and 𝛿2. Scenarios 12, 14 and 16 perform medium-high to high for 𝛿2, and perform 

medium-high to high for 𝛿1. Since our aim is to use a robust parameter set, scenarios 

12, 14 and 16 are used as result from this second step of the search procedure, to apply 

the specific in-depth search to in the third step of the method. 

Table 4.4. Overview of prediction accuracy for all 24 scenarios 

Parameters Elasticity  

𝑬𝜹 

Waiting time 

 𝑾𝑻𝑻𝑹 

In-vehicle time 

 𝑰𝑽𝑻𝑹 

Frequency 𝑹𝟐 

𝜹𝟏 

𝑹𝟐 

𝜹𝟐 

𝑹𝟐 

average 

Parameter values {-0.7, -1.1, -1.5} {1.5, 2.0} {1.0, 1.25} {𝒇𝑹, 𝒇𝑻)    
Scenario 1.1 (default) -1.1 1.5 1.0 f R 0.73 0.83 0.78 

Scenario 1.2 -1.1 1.5 1.0 MIN(f R; f T) 0.74 0.89 0.81 

Scenario 1.3 -1.1 1.5 1.25 f R 0.77 0.86 0.81 

Scenario 1.4 -1.1 1.5 1.25 MIN(f R; f T) 0.76 0.88 0.82 

Scenario 1.5 -1.1 2.0 1.0 f R 0.76 0.85 0.80 

Scenario 1.6 -1.1 2.0 1.0 MIN(f R; f T) 0.76 0.88 0.82 

Scenario 1.7 -1.1 2.0 1.25 f R 0.78 0.86 0.82 

Scenario 1.8 -1.1 2.0 1.25 MIN(f R; f T) 0.77 0.87 0.82 

Scenario 1.9 -0.7 1.5 1.0 f R 0.73 0.80 0.77 

Scenario 1.10 -0.7 1.5 1.0 MIN(f R; f T) 0.74 0.86 0.80 

Scenario 1.11 -0.7 1.5 1.25 f R 0.78 0.84 0.81 

Scenario 1.12 -0.7 1.5 1.25 MIN(f R; f T) 0.77 0.88 0.82 

Scenario 1.13 -0.7 2.0 1.0 f R 0.76 0.82 0.79 

Scenario 1.14 -0.7 2.0 1.0 MIN(f R; f T) 0.76 0.87 0.82 

Scenario 1.15 -0.7 2.0 1.25 f R 0.79 0.85 0.82 

Scenario 1.16 -0.7 2.0 1.25 MIN(f R; f T) 0.78 0.88 0.83 

Scenario 1.17 -1.5 1.5 1.0 f R 0.72 0.84 0.78 

Scenario 1.18 -1.5 1.5 1.0 MIN(f R; f T) 0.72 0.88 0.80 

Scenario 1.19 -1.5 1.5 1.25 f R 0.74 0.85 0.79 

Scenario 1.20 -1.5 1.5 1.25 MIN(f R; f T) 0.73 0.85 0.79 

Scenario 1.21 -1.5 2.0 1.0 f R 0.74 0.85 0.79 

Scenario 1.22 -1.5 2.0 1.0 MIN(f R; f T) 0.73 0.86 0.79 

Scenario 1.23 -1.5 2.0 1.25 f R 0.75 0.84 0.79 

Scenario 1.24 -1.5 2.0 1.25 MIN(f R; f T) 0.74 0.82 0.78 

 

Scenarios 12, 14 and 16 have the same value for 𝐸𝛿 (-0.7) and for 𝑓 (𝑓𝑇). This means we fix 

these two parameter values. These scenarios differ in the parameter values used for 𝑊𝑇𝑇𝑅 and 

𝐼𝑉𝑇𝑅, which range between 1.5-2.0 and 1.0-1.25, respectively. This means the waiting time 

perception for rail-replacement buses varies between the same value as for regular tram and bus 

lines, and a 33% higher value. The in-vehicle time perception of 1 minute in a rail-replacement 

bus varies between 0.8 and 1 minute in the original tram line. In this in-depth search we explore 

all different combinations of these parameter values, increasing parameter values with a step 

size of ≈10%. This leads to values for waiting time perception {1.5, 1.67, 1.84, 2.0} and in-

vehicle time perception in the original tram line for 1 minute travelling in the rail-replacement 

bus {0.8, 0.9, 1.0}. Inversed this leads to in-vehicle time perception in the rail-replacement bus 

for 1 minute travelling with the original tram line {1.0, 1.11, 1.25}. These 3*4 combinations are 

evaluated, of which is known from step 2 that the combination of using a waiting time 

perception of 1.5 with 1.0 minute in-vehicle time perception simultaneously (scenario 2.9) does 
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not provide a good prediction accuracy. Table 4.5 shows these 12 scenarios with the resulting 

𝑅2 averaged over 𝛿1 and 𝛿2. 

 From Table 4.5 we can conclude that the averaged prediction accuracy is highest for 

scenarios 2, 3, 4 and 8. To select a final parameter set, we applied these four parameter sets to 

the subset of disturbances used for validation ∆𝐵∈ ∆ {𝛿3, 𝛿4} as well. The aim was to investigate 

which parameter set resulted in the highest prediction accuracy for ∆𝐵, in order to select the 

most robust parameter set. This resulted in the selection of scenario 8, in which 𝑊𝑇𝑇𝑅 = 2.0 

and 𝐼𝑉𝑇𝑅=1.11. 

Table 4.5. Overview of prediction accuracy for in-depth search 

Parameters Elasticity 𝑬𝜹 Waiting time  

𝑾𝑻𝑻𝑹 

In-vehicle time  

𝑰𝑽𝑻𝑹 

Frequency 𝑹𝟐 average 

Parameter 

values 

{-0.7} {1.5, 1.67,1.84,2.0} {1.0, 1.11,1.25} { 𝒇𝑻)  

Scenario 2.1 -0.7 1.5 1.25 MIN(f R; f T) 0.82 

Scenario 2.2 -0.7 1.67 1.25 MIN(f R; f T) 0.83 

Scenario 2.3 -0.7 1.84 1.25 MIN(f R; f T) 0.83 

Scenario 2.4 -0.7 2.0 1.25 MIN(f R; f T) 0.83 

Scenario 2.5 -0.7 1.5 1.11 MIN(f R; f T) 0.81 

Scenario 2.6 -0.7 1.67 1.11 MIN(f R; f T) 0.82 

Scenario 2.7 -0.7 1.84 1.11 MIN(f R; f T) 0.82 

Scenario 2.8 -0.7 2.0 1.11 MIN(f R; f T) 0.83 

Scenario 2.9 -0.7 1.5 1.0 MIN(f R; f T) 0.80 

Scenario 2.10 -0.7 1.67 1.0 MIN(f R; f T) 0.81 

Scenario 2.11 -0.7 1.84 1.0 MIN(f R; f T) 0.81 

Scenario 2.12 -0.7 2.0 1.0 MIN(f R; f T) 0.82 

4.4.2 Resulting parameter set 

Table 4.6 shows the values for the proposed new parameter set, compared to the parameter 

values of the default set. In case of planned disturbances, an elasticity parameter value 𝐸𝛿  of -

0.7 resulted in the best fit with the raw smart card data. The hypothesis that passengers might 

perceive waiting time for a rail-replacement service more negatively compared to waiting time 

for regular tram and bus services was confirmed, since applying a higher waiting time 

coefficient did improve the prediction accuracy. Therefore, the use of a specific waiting time 

coefficient of 2.0 for rail-replacement services is proposed. Also, applying a more negative in-

vehicle time perception in bus services replacing an existing tram line did improve the 

prediction accuracy. In the used prediction model in this study, this is reflected by applying a 

certain multiplication factor to the operational speed of a rail-replacement service. Using a 

speed factor of 0.9 - which equals the inverse in-vehicle time coefficient of 1.11 - resulted in 

the best fit with the raw smart card data. The value for the in-vehicle time coefficient derived 

from realisation data is somewhat lower than the speed factor found in Bunschoten et al. (2013) 

using a stated preference experiment, but points towards the same direction. Regarding the 

frequency of rail-replacement services, study results indicate that modelling the frequency of 

the original tram line 𝑓𝑇 leads to a better fit than using 𝑓𝑅, if 𝑓𝑅 > 𝑓𝑇. This indicates that 

passengers do not incorporate the benefit of the higher frequency of the rail-replacement 

services compared to the original tram line in their route and mode choice. From a theoretical 

perspective, this can be explained because vehicle capacity is not incorporated in the prediction 

model used in this study. The higher frequency 𝑓𝑅 compared to 𝑓𝑇 is often due to the lower 

capacity of a bus compared to a tram vehicle. Since the negative effect of a lower bus capacity 

is not incorporated in the model, only incorporating the positive effect of a higher bus frequency 

aimed to compensate for this non-incorporated capacity effect would overestimate the level of 
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service provided by the rail-replacement bus service. In case 𝑓𝑅 < 𝑓𝑇 , one could apply 𝑓𝑅 in 

the prediction model. In this case it would even underestimate the negative effect of the bus 

replacement service, since only the additional waiting time (and not the lower vehicle capacity) 

is incorporated in the ridership prediction. Therefore, it is proposed to use the minimum of 

𝑓𝑅 and 𝑓𝑇 as frequency of rail-replacement bus services in ridership predictions, when vehicle 

capacity is not incorporated in the used model. 

Table 4.6. Comparison between default and new proposed parameter set 

Parameter Default parameter values New parameter values 

Elasticity 𝐸𝛿  -1.1 -0.7 

Waiting time coefficient 𝑎3 for 𝑊𝑇𝑇𝑅 1.5 2.0 

In-vehicle time coefficient 𝑎1 for 𝐼𝑉𝑇𝑅 1.0 1.11 

Frequency 𝑓𝑅 𝑓𝑅 min(𝑓𝑅; 𝑓𝑇) 

 

 

Figure 4.4. Effect of new parameter set on predicted ridership reduction (left) and on the 

average generalised travel costs per passenger (right) 

 

Figure 4.5. Absolute (left) and relative (right) effect of new parameter set on prediction accuracy 

Figure 4.4 shows for all four disturbances investigated in this study the effect of the 

default and new proposed parameter set on the predicted ridership reduction (left) and on the 

average generalised travel costs per passenger (right), respectively. It can be seen that for all 

disturbances the new parameter set predicts a lower reduction in public transport ridership 

compared to the default parameter set. For 𝛿2 this effect is limited. However, for 𝛿1, 𝛿3, 𝛿4 the 

predicted ridership reduction is 20-25% lower compared to the default parameter set. This can 

mainly be explained by the less negative elasticity value 𝐸𝛿 (-0.7 instead of -1.1). From Figure 

4.4 (right) can also be concluded that for 𝛿1, 𝛿3, 𝛿4 the average generalised travel costs increase 

is 5-20% less when applying the new parameter set, while these increase with 20% for 𝛿2 

compared to the default parameter set. In the new parameter set, the use of rail-replacement bus 
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services results in more perceived disutility compared to the default set, due to the use of a 

higher value for 𝑊𝑇𝑇𝑅, 𝐼𝑉𝑇𝑅 and the longer average waiting time due to using min(𝑓𝑅 , 𝑓𝑇) 

instead of 𝑓𝑅. This would imply an increase in average generalised costs. However, the lower 

value for 𝐸𝛿 leads to a substantial lower predicted ridership reduction for 𝛿1, 𝛿3, 𝛿4, of which 

the net effect is a decrease in average generalised costs. Since the predicted ridership hardly 

decreases for 𝛿2 when using the new parameter set, for this disturbance this effect does not fully 

compensate the increased generalised costs, therefore leading to a net increase in average 

generalised costs. 

 Figure 4.5 shows that the new parameter set results in an increased predicted accuracy 

for all four disturbances considered in this study. This shows that the new proposed parameter 

set is robust to better predict ridership effects of several (types of) planned disturbances. The 

relative improvement in prediction accuracy ranges between 3 and 13%. In the calculation of 

the 𝑅2, for 𝛿1, 𝛿2, 𝛿4 in total |𝐿𝑎| ∗ |𝑇| ∗ 2 elements are computed. However, for 𝛿3 only |𝐿𝑎| ∗
2 elements are used for the 𝑅2 computation. This is because 𝛿3 occurred during the full duration 

of the autumn holiday. During this holiday, travel patterns differ from travel patterns during 

regular working days or during summer holiday, especially regarding the distribution over the 

day. Since there is no period of the year for which 𝛿0 occurred with a similar travel pattern, the 

effects per time period cannot be compared between 𝛿0 and 𝛿3. Therefore, we only compared 

these scenarios aggregated over all time periods per working day per line 𝑙 ∈ 𝐿𝑎.  

 

 

Figure 4.6. Resulting prediction accuracy for all |𝑳𝒂| ∗ |𝑻| ∗ 𝟐 elements clustered per disturbance 

(left) and per time period (right) 

Figure 4.6 shows the differences between the predicted and empirical relative effect of 

disturbances on public transport ridership for all elements, clustered per disturbance (left) and 

per time period (right). A positive value indicates that the predicted relative effect is less 

negative / more positive compared to the empirical data: ridership loss is thus underestimated, 

whereas ridership increases are overestimated. A negative value indicates the opposite; meaning 

that ridership losses are overestimated and ridership increases are underestimated. As can be 

seen, most predictions deviate in an acceptable range of +/- 10% from the empirical data. For 

𝛿2, 𝛿4 (disturbances both occurring during summer holiday) can be observed that predictions 

tend to overestimate ridership losses, whereas for 𝛿1(a disturbance occurring during working 

period on a line with a high share of commuting and business passengers) predictions tend to 

underestimate ridership losses (Figure 4.6, left). We can hypothesise that frequent, commuting 

passengers have a higher sensitivity for network changes than average, whereas passenger 

segments with a relatively high share of leisure / shopping trip purposes have a lower sensitivity 

for network changes than average. When considering prediction accuracy for different time 

periods, we see similar patterns. Most predictions in the different time periods do not deviate 

more than +/- 15% from the empirical data. For the morning peak, a slight tendency can be 
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observed that predictions underestimate ridership losses, whereas for the evening period an 

opposite tendency can slightly be observed. Based on this we might hypothesise that passenger 

segments dominant during morning peak (mostly business and commuting passengers) have a 

relatively high sensitivity to network changes compared to passenger segments dominant during 

the evening period (mostly leisure passengers).  

4.4.3 Reflection 

In this study the accuracy of predicting the impact of temporary track closures on the number 

of passengers and passenger-distance is substantially improved by using the new proposed 

parameter set. Future research following this study can focus on four different aspects. First, in 

this study a rule-based three-step search procedure is applied to evaluate the prediction quality 

of several parameter sets. After first scanning the solution space using a systematic grid-search 

over different combinations of parameter values, an in-depth search around promising 

parameter values is performed. In order to further optimise the parameter set, it is recommended 

to perform a full optimisation evaluating all combinatorial possibilities, and/or to estimate a 

discrete choice model based on the revealed preference smart card data found for several 

disturbances to infer parameter values. This can lead to a set of parameter values which fit the 

empirical data in an optimal way and thus improving the prediction accuracy. Second, another 

interesting approach for future research is the application of machine learning approaches, 

training the prediction model based on passenger behaviour during several historical 

disturbances which occurred on the public transport network. Prediction accuracy results from 

machine learning approaches can then be compared with our developed methodology. Third, it 

is recommended to investigate whether location-specific, and/or purpose-specific parameter 

values increase the prediction accuracy. In this study only generic and mode-specific parameter 

values are applied. Distinguishing between areas where a disturbance occurs based on socio-

economic characteristics (e.g. age, income, percentage of public transport captives) might lead 

to better predictions. In addition, using different parameter values for different passenger 

segments based on their trip purpose, or based on different time periods (peak/off-peak, 

weekday/weekend) might improve the prediction accuracy, since sensitivities for different 

parameters might be different for these segments. Fourth, a path for future research could focus 

on the development of supply-side indicators to identify and categorise disturbances. Our study 

mainly focuses on demand predictions resulting from disturbances, without making a 

distinction between different types of disturbances. However, developing indicators to describe 

disturbances and categorise the type of disturbance can be valuable, since it allows for the 

development of different demand prediction parameter sets for different types of disturbances. 

This can result in a further improvement of the prediction accuracy. 

4.5 Conclusions 

The introduction of automated fare collection (AFC) systems in public transport travelling the 

last decades leads to the availability of large quantities of smart card data, which can be used to 

analyse current travel patterns and to predict the effect of structural network changes on future 

public transport usage. Predicting the impact of planned disturbances, like temporary track 

closures, on public transport ridership is however still an unexplored area. In the Netherlands, 

this area becomes increasingly important, given the many track closures public transport 

operators are being confronted with the last and upcoming years. Better predicting the impact 

of these disturbances gives more insights in passenger behaviour during disturbances, and 

supports operators in aligning the supply of rail-replacement bus services with remaining 

demand and in predicting the impact on their revenues.  
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 In this study, we investigated the passenger impact of planned disturbances by 

comparing predicted and realised public transport ridership using smart card data. Four different 

disturbances which occurred in 2015 on the public transport network operated by HTM in The 

Hague, the Netherlands, are analysed. A rule-based three-step search procedure is applied to 

find a parameter set resulting in higher prediction accuracy. The parameter set is calibrated 

using two of the four investigated disturbances, whereas the remaining two disturbances are 

used to validate the model.  

Based on the study results we found a more negative in-vehicle time perception in rail-

replacing bus services compared to in-vehicle time perception in the initial tram line. One 

minute tram travelling shows to be perceived as about 1.11 minute travelling in a rail-

replacement bus service. Besides, when modelling rail-replacement services, it is recommended 

to use the frequency of the initial tram line instead of the usually higher frequency of the rail-

replacement services. Passengers do not seem to perceive this theoretical benefit of higher 

frequencies of the rail-replacement bus, since this compensates for the lower vehicle capacity 

of a bus compared to a tram. If vehicle capacity is not incorporated in the prediction model, 

only incorporating the positive effect of a higher bus frequency aimed to compensate for this 

non-incorporated capacity effect would overestimate the level of service of the rail-replacement 

bus service. At last, also a 33% higher waiting time perception for temporary rail-replacement 

services could be found, compared to waiting time perception for regular tram and bus lines. 

The new parameter set leads up to 13% higher prediction accuracy compared to the default 

parameter set, and shows to be a robust and valuable tool for public transport operators. The 

prediction model is used by HTM in practice, in which the parameter set as recommended in 

this study is applied. Monitoring and further improving the prediction accuracy of the model 

will remain an important focus in the future. 
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Part II 

Predicting Disruptions and Disruption Impacts  
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5. Predicting Disruptions and their Passenger Delay 

Impacts for Public Transport Stops 

The objective of this chapter is the development of a methodology to predict how often different 

stops of an urban metro network are exposed to different disruption types and to predict the 

passenger delay impact of these disruptions. For this purpose, we develop supervised and 

unsupervised learning models. This chapter contributes to answering Research Question 2 (as 

defined in Section 1.3): how can disruption frequency and impact predictions be incorporated 

in a public transport vulnerability analysis for urban and multi-level public transport networks? 

In Part I of this research, the focus of Chapters 2-4 was to improve methods to measure public 

transport impacts from empirical data. Given the relatively infrequent occurrence of public 

transport disruptions, empirical data is typically not available to infer disruption impacts for 

each location of a public transport network, during each time period, for each disruption type. 

Hence, it is necessary to move from measuring disruption impacts (Part I of this research) 

towards predicting disruptions and their impacts (Part II of this research). A systematic 

prediction of disruption frequencies and disruption impacts for all locations of a public transport 

network provides insights in the contribution of each public transport stop to total network 

vulnerability, thereby identifying the most critical stops in a vulnerability analysis. It supports 

public transport service providers and authorities in the decision-making process where and 

what type of mitigation measures need to be prioritised, in order to address the locations in the 

network which contribute most to vulnerability. 

 

This chapter is based on an edited version of the following articles: 

 

Yap, M.D., Cats, O. (under review). Predicting disruptions and their passenger delay impacts 

for public transport stops. 

Yap, M.D., Cats, O. (2019). Analysis and prediction of disruptions in metro networks. 

Proceedings of the 6th International Conference on Models and Technologies for Intelligent 

Transportation Systems (MT-ITS), Krakow, Poland. (earlier version) 

© 2019 IEEE 
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5.1 Introduction 

5.1.1 Relevance 

Disruptions in public transport (PT) can have major implications for passengers and service 

providers. Disruptions can increase passengers’ nominal travel time, due to additional waiting 

time, in-vehicle time or transfers. Furthermore, passengers potentially experience higher 

crowding levels on alternative services, resulting in a more negatively perceived in-vehicle time 

(Hörcher et al., 2017; Tirachini et al., 2017; Yap et al., 2018a). Disruptions can also imply costs 

for the service provider, due to overtime payments to personnel, possible fare reimbursement 

for delayed passengers, and in the case of contractual agreements between service provider and 

authority result in fines. In the long term, disruptions can result in a loss of revenue if ridership 

levels decrease because of (perceived) unreliability of the PT system. It is thus in the interest 

of passengers and service provider to examine and assess the frequency, location and passenger 

delay impact of different disruption types occurring at each public transport station or link. An 

accurate prediction of the occurrence and impact of disruptions supports PT authorities and 

service providers in prioritising the locations and disruption types for which they should devise 

measures to reduce disruptions or their impacts. 

5.1.2 Definitions and scope 

For the remainder of this chapter, we first introduce several definitions used throughout this 

work. We apply a definition of vulnerability, which is obtained by combining definitions from 

Rodriguez-Nunes and Garcia-Palomares (2014) and Oliveira et al. (2016), with robustness 

being its antonym. Vulnerability is defined as the degree of susceptibility of a PT network to 

disruptions and the ability of the PT network to cope with these disruptions. This definition 

highlights the two components vulnerability consists of: exposure, the degree to which a PT 

system is exposed to disruptions, and the impact once a disruption occurs. Moving from a 

network level to individual elements, we define criticality as the degree to which an individual 

element of a PT system - such as a PT node or link - contributes to vulnerability. Criticality 

again refers to both disruption exposure and impact: it considers both weakness, the degree of 

disruption exposure for an individual stop or link, and importance, the impact of disruptions 

occurring at a stop or link (Cats et al., 2016b). The most critical nodes or links thus contribute 

most to PT vulnerability in terms of the product of their weakness and importance.  

We consider both recurrent and non-recurrent PT disruptions in our study. Recurrent PT 

disruptions, such as a vehicle door malfunctioning or a delayed departure from the terminal, 

occur relatively frequently whilst the impact is generally limited. To the contrary, non-recurrent 

PT disruptions - such as a faulty train, signal failure or vehicle derailment - are relatively rare, 

but often have larger impacts once they occur. We do not consider extreme events as natural 

disasters or terror attacks in this research. These events differ substantially from typical PT 

disruptions in terms of frequency, location and impact, that a bespoke research approach is 

necessary. We focus on unplanned disruptions: planned disruptions, for example related to 

scheduled track maintenance works, fall outside the scope of this work. 

5.1.3 State-of-the-art 

Empirical data can contain information about the frequency with which different disruptions 

occurred, or about the disruption impact on passenger delays. However, to be able to study 

disruption frequencies and impacts of different disruption types for individual elements of a PT 

network, only using empirical data is typically insufficient. For illustration purposes, let us 
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consider a medium-sized PT network consisting of 100 stops, where our aim for each stop is to 

predict disruption frequencies and impacts for 20 different disruption types, for five different 

time periods of the day and week, separately for each season. This would require empirically 

deriving disruption frequencies and impacts for 100*20*5*4 = 40,000 instances. 

Consequentially, this would require sufficient empirical observations for each of these 40,000 

instances to fit a probability density function for, to use empirical data reliably to predict future 

disruption frequencies or impacts. In practice, this means there will be insufficient empirical 

data available from past disruptions to use directly for future disruption occurrences and 

impacts for each of these instances. Therefore, some kind of prediction model becomes 

necessary to predict disruption frequency and impact for each individual PT network element. 

 In the field of transport vulnerability analysis, different approaches are applied to predict 

disruption impacts: full scan computation methods and methods using pre-selection indicators 

(Knoop et al., 2012). In a wider context, approaches to predict disruption impacts are broadly 

classified as scenario based, strategy based, simulation based or using mathematical modelling 

(Murray et al., 2008). For transportation networks, generally a static, dynamic or simulation 

based transport assignment model is used for this purpose. Full scan methods predict the 

disruption impact of each disruption type, at each location of a PT network. For example, in the 

context of highway networks, Jenelius (2007) uses a traffic simulation model where each link 

of the network is blocked, whilst Knoop and Hoogendoorn (2008) also incorporate dynamic 

spillback effects of blocked links. Full scan methods result in impact predictions for each 

individual network component, hence allowing all stops or links being ranked according to their 

contribution to network vulnerability. However, these methods are computationally prohibitive 

for larger networks and are typically only feasible to apply for smaller or case study networks. 

Instead, pre-selection methods apply indicators which result in a shortlist of locations where 

disruption impacts are expected to be most severe. Full disruption impacts are only modelled 

or simulated for this selection of locations. For example, Tampère et al. (2007) assess the 

expected criticality of road network links based on multiple indicators, such as the incident 

impact factor. Other road network vulnerability indicators used in literature are the Network 

Robustness Index (Scott et al., 2006) and the Modified Network Robustness Index (Sullivan et 

al., 2010), which are used as proxy for the impact of a full or partial link blockage on the 

network performance, respectively. Bell (2003) and Zhang et al. (2010) both adopt a game 

theoretical approach to quantify indicators for network vulnerability. To assess vulnerability of 

PT networks, Derrible and Kennedy (2010) propose a robustness indicator which calculates the 

number of available paths in the event of a disruption, based on a graph representation of 33 

metro networks worldwide. Cats et al. (2016b) compare a passenger betweenness centrality 

measure as proposed by Cats and Jenelius (2014) and a passenger-exposure measure as PT 

vulnerability indicator. Aforementioned studies adopt either a node-based or link-based 

vulnerability approach, whilst some studies consider the vulnerability impacts of joint node and 

link disruptions (see for example Dhin and Thai, 2014). The disadvantage of pre-selection 

approaches however is that there is no guarantee that the largest impacts occur at these selected 

locations. This means there is no certainty whether the most critical nodes or links of a network 

are correctly identified. Additionally, these approaches do not allow for a comparison of 

disruption impacts between all individual network elements, as disruption impacts are only 

quantified for selected elements. The abovementioned state-of-the-art illustrates that existing 

methods are insufficient to predict the passenger delay impacts of disruptions for each 

individual PT station or link for medium- or large-sized, real-world PT networks. 

 Several studies focus on predicting disruption impacts, once a disruption occurs. For 

example, studies quantify PT disruption impacts (Cats and Jenelius, 2015), the value of spare 

capacity in a PT network (Cats and Jenelius, 2014), or the impact of partial rather than complete 

track closures (Cats and Jenelius, 2018). Corman et al. (2014) evaluate the robustness of railway 
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timetables once a disruption occurs. However, focusing solely on disruption impacts without 

considering disruption frequencies can incorrectly put the emphasis on locations where very 

severe yet very rare disruptions occur. Predicting how often different locations in a PT network 

are exposed to different disruptions is a relatively understudied topic. There has been a vast 

amount of work towards predicting incident frequencies for road networks in the field of traffic 

safety. Whereas initial road traffic research primarily used descriptive and aggregate models to 

predict accident probabilities (e.g. Stone and Broughton, 2003; Lord et al., 2005), more recent 

research has moved towards using disaggregate, predictive models (e.g. Zou and Yue, 2017). 

For PT networks, the use of disaggregate models remains limited. An important reason is often 

a lack of good quality disruption log data, as data over a longer period of time is required given 

the relatively infrequent occurrence of disruptions. In Cats et al. (2016b) and Yap et al. (2018c), 

a database consisting of logged disruptions on a PT network for a period of 2.5 year was used 

to fit statistical models for disruption frequencies on a network level. In these studies, relatively 

simple predictors such as the number of trains or train-kilometres were used to translate the 

network-wide number of disruptions to expected disruption exposure per station or link. This 

implies that location-specific characteristics - such as the type of stock serving a station, the 

passenger load or the geographical area where a station is located - are not considered, while 

these are believed to be important when predicting disruption exposure. In Tonnelier et al. 

(2018) a data-driven method is developed to detect individual atypical events in PT networks 

using anomaly detection. However, this method does not explicitly provide what type of 

disruption at which location initiated this anomaly, making it difficult to formulate policy 

recommendations concerning how to tackle PT vulnerability. This means that currently no 

adequate disaggregate models have been developed to predict disruption frequencies for 

individual PT stops or links. 

5.1.4 Research approach and contribution 

Our study objective can be summarised as the development of a generic methodology to predict 

disruptions and their passenger delay impacts accurately for different disruption types, for 

individual stations of a real-world PT network, thereby incorporating the specific characteristics 

of the different stations. This implies we develop a disaggregate modelling approach to predict 

disruption frequencies and to predict the passenger delay impacts of each disruption. We 

propose a supervised learning approach to perform these predictions, as this allows for the 

prediction of disruptions at individual stations for each time period, without the requirement of 

having sufficient empirical disruption observations available for each location and time period. 

This approach also enables a fast prediction of disruption impacts for a large number of 

disruption instances, hence addressing the computational challenges that rise when typical PT 

assignment or simulation models would be used for real-world PT networks.  

   To improve transferability of our study results, we cluster stations based on their 

contribution to PT vulnerability using unsupervised learning. In addition to predicting 

disruptions and their impacts for a specific PT network, this provides PT authorities and service 

providers insight in the different station types that can be distinguished based on their 

contribution to network vulnerability. For example, for policy purposes train stations in the 

Netherlands are grouped into six categories based on function and passenger volumes (Geurs 

et al., 2016). Our research results in a natural clustering of stations in a similar way, specifically 

based on vulnerability. Hence, this supports PT agencies to apply the appropriate type of 

measure aimed to reduce disruptions or to mitigate disruption impacts for each station type. Our 

research contribution is therefore defined as follows. 
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Scientific contributions: 

 Development of a method to predict disruptions and their passenger delay impacts for 

individual public transport stations, incorporating the specific characteristics of each 

station. 

 Development of prediction models which predict disruptions and their impacts based on 

a non-exhaustive empirical disruption dataset within acceptable computation times.  

 

Practical contributions: 

 To provide PT agencies with predicted disruption impacts for each individual station on 

their network, for each distinguished time period and disruption type, supporting them 

to prioritise locations where to put mitigation measures in place. 

 Identification of different groups of public transport stations with different disruption 

exposure and impact characteristics, enabling PT agencies to devise appropriate 

measures to tackle vulnerability for different station types. 

 

The remainder of this chapter is structured as follows. Section 5.2 explains the methodology, 

whilst Section 5.3 introduces our case study network. We discuss results in Section 5.4, 

followed by conclusions in Section 5.5. 

5.2 Methodology 

In this section we discuss the proposed methodology to predict disruption exposure and impact 

at different PT stations, and to cluster stations accordingly. First, we introduce the proposed 

modelling framework (Section 5.2.1). In Section 5.2.2 we explain our supervised learning 

model to predict disruptions, followed by the model for disruption impact predictions (Section 

5.2.3). At last, Section 5.2.4 discusses our station clustering approach. 

5.2.1 Modelling framework 

For a given PT network, let us define each station 𝑠 ∈ 𝑆, with |𝑆| being the total number of 

stations in the considered network. Each disruption type is defined by 𝑑, with 𝐷 indicating the 

total set. Each distinguished time period is indicated by 𝑡 ∈ 𝑇. When we define the disruption 

frequency 𝑓 and the disruption impact 𝑤, the predicted station criticality �̌� in its simplest form 

is defined by Eq.1. To obtain station criticality, the predicted frequency of each disruption 

(expressed in disruptions per year) at station 𝑠 is multiplied by the predicted impact, and then 

summed over all disruption types and time periods considered per year. In our study, we predict 

the total passenger delay hours �̆�𝑑,𝑡,𝑠 as metric for disruption impact. It should be noted that 

disruption impacts are generally wider than passenger delays only. Passengers’ perceived travel 

times often increase as well, whilst PT service providers might face rescheduling costs (e.g. 

personnel overtime payment) or passenger reimbursement costs. In this study we however only 

consider the nominal travel time impact a disruption has inflicted on passengers. This means 

that station criticality is expressed in yearly passenger delay hours. PT network vulnerability 𝑉 

then equals the sum of the predicted station criticality (Eq.2), and expresses the predicted yearly 

passenger delay hours for the total PT network of interest. For the sake of simplicity, the basic 

impact calculation as shown in Eq.1 does not show interdependencies between different 

disruptions occurring simultaneously on the considered PT network, as this can result in 

interaction effects affecting the disruption impact. The integrated modelling framework to 

calculate 𝑐�̆� and �̆� is shown in Figure 5.1. It shows the supervised learning models used to 

predict disruptions and passenger delay impacts, as well as the unsupervised learning model 
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applied to categorise different stations. This modelling framework is explained further in the 

remainder of this section. 

 

𝑐�̆� = ∑ ∑ 𝑓𝑑,𝑡,𝑠 ∗ �̆�𝑑,𝑡,𝑠                                                                                                       (1)

𝑑∈𝐷𝑡∈𝑇

 

 

�̆� =  ∑ 𝑐�̆�                                                                                                                                 (2)

𝑠∈𝑆

 

 

 

Figure 5.1. Modelling framework 

For our proposed modelling framework, the following empirical data sources are required as 

input: 

 Disruption log data, containing data for each PT disruption which occurred on the PT 

network within a certain time interval. As a minimum, for each disruption the start time, 

location and line of occurrence need to be logged, as well as the disruption type or a 

disruption description. Disruption end time is desirable though not mandatory for our 

method. This type of data is usually available at the PT authority or service provider, 

based on logged incident notifications from train drivers, station operators, control room 

staff, police and the general public. 

 Individual passenger demand data from Automated Fare Collection (AFC) systems, 

which consists of the time and location of the first boarding and final alighting station of 

each individual passenger journey. This allows calculation of the realised journey time 

for each passenger. 

 Scheduled journey times between each boarding and alighting station for each 

distinguished time period or day of the week, enabling a comparison between scheduled 

and realised passenger journey times. This data can be obtained from journey planners 

or can be provided by the PT service provider. 
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 Timetable data from GTFS or Automated Vehicle Location (AVL) systems (typically 

open data), which contains the planned number of PT trips for each route, during each 

time period and day of the week. 

5.2.2 Disruption exposure prediction 

In this study we adopt a supervised learning approach to predict exposure to different disruptions 
𝑑 ∈ 𝐷 at stations 𝑠 ∈ 𝑆 during each time period 𝑡 ∈ 𝑇. This allows us to find linear and non-
linear relations between presumed disruption predictors and the exposure to disruptions with 
short computation times. As each disruption type occurs relatively infrequently at a specific 
station and in a specific time period, our study objective here implies predicting the occurrence 

of relatively rare events. For that reason we do not use 𝑓𝑑,𝑡,𝑠 as our target, as a model always 

predicting zero for 𝑓𝑑,𝑡,𝑠 would still result in a low MSE-score and a high average F1-score due 

to the overrepresentation of samples with zero disruptions, without providing any useful 
prediction for disruption exposure. Neither applying different weights for false positive and false 
negative predictions, nor applying a technique to correct the dataset imbalance such as a 
Synthetic Minority Oversampling Technique (SMOTE) did sufficiently improve the quality of 
disruption predictions. Instead, we therefore use the probability �̆�𝑑,𝑡,𝑠 of each disruption type 

occurring within each considered time period (e.g. each AM, PM, Inter Peak and Evening period 

for each day of the year) as target for the prediction. 𝑓𝑑,𝑡,𝑠 is calculated by multiplying the 

predicted probabilities by the number of time periods |𝑇|. The number of samples in our model 
thus equals |𝑆| ∗ |𝑇|. To predict disruption probabilities we apply a classification algorithm, 
which calculates disruption probabilities for each 𝑑 ∈ 𝐷 and then assigns each sample to one of 
the disruption categories 𝑑 or to the category no disruption based on the highest probability. The 
shape of the target vector therefore equals (|𝑆| ∗ |𝑇|, 1), where column values can take |𝐷| + 1 
different values. In our case, this value equals 0 if no disruption is predicted to occur in the 
considered time period, and ranges between 1 and |𝐷| depending on which disruption type is 
predicted to occur within the time period. By dummy coding this target vector, a matrix with 
dimensions (|𝑆| ∗ |𝑇|, |𝐷| + 1) results which contains the predicted probabilities for each 
disruption type.  

 We identify several general and location-specific station characteristics as predictors in 

our machine learning model (Figure 5.1, upper left). We first use the general predictors 

Weekday, Time of Day and Season. Weekday equals 1 if the time period is during a weekday, 

and 0 if during a weekend. Time of Day considers if the time period is during the peak (7-10AM 

or 3-7PM: only during weekdays), daytime off-peak (weekdays: hours outside peak until 7PM; 

weekend: all hours until 7PM) or evening (hours after 7PM). The aim of these predictors is 

particularly to capture the possible influence of differences in mixture of passenger types and 

travel purposes between peak, off-peak, evenings and weekends on disruption probabilities. The 

predictor Seasons aims to capture differences in disruption probabilities for different seasons. 

One can think of potentially more vehicle defects due to leaves in autumn, or more passenger-

related incidents due to slippery surfaces in winter. Additionally, we identify several station-

specific predictors. Lines refers to the different metro lines serving each station, as different stock 

types on different lines potentially influence especially railcar-related disruption probabilities. 

A possible difference in state and age of infrastructure between different lines can also play a 

role here. One-hot encoding is applied for the categorical predictors Time of Day, Seasons and 

Lines, resulting in separate binary predictors for each category. If a station is served by multiple 

lines, for example being part of a trunk section, the binary predictor equals 1 for each of these 

lines. Two separate binary predictors Start station and Transfer station are added, being equal 

to 1 if the station is a start/terminal or a metro-to-metro transfer station, respectively. It is 

expected that the occurrence of some disruptions is related to a station being a start/terminal, as 

problems such as a malfunctioning train or a late / absent train driver often arise here. It is 
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hypothesised that transfer stations might be more susceptible to disruptions due to more complex 

infrastructure (such as switches) and large passenger transfer volumes. Passenger volume refers 

to the number of boarding plus alighting passengers for each station and time period, based on 

Automated Fare Collection (AFC) data for an average day. This predictor is added to capture 

primarily passenger-related disruption probabilities. Train frequency equals the scheduled 

number of trains serving a stop during each time period and day of the week. This predictor is 

calculated based on timetable data, and aims to capture railcar-related disruption probabilities. 

Disruption frequency previous month is an auto regressor with respect to the number of 

disruptions that occurred during a certain time period, weekday/weekend at the considered train 

station in the previous month, for each disruption type separately. This predictor assumes 

disruption data of the previous month is available to predict disruption exposure in the next 

month. In total, |𝐷| separate predictors are used for this predictor, for each disruption type 𝑑 ∈
𝐷. Values for predictors Passenger volume, Train frequency and Disruption frequency previous 

month are all normalised between 0 and 1, so that all predictors use the same range. 

 Given our target to predict the probability of different disruption types in a certain time 

period at a certain station, we test two different machine learning algorithms suitable for this 

purpose: logistic regression and a Multilayer Perceptron (MLP) classifier, a class of feedforward 

artificial neural networks. The total dataset is split into an 80% training set and 20% testing set, 

applied in a randomised 5-fold cross validation. Applying a higher 10-fold cross validation did 

not significantly improve prediction accuracy. Log loss, or cross entropy loss, is used as 

evaluation metric (Eq.3). This function calculates the negative log-likelihood of the true label 𝑦, 

given the predicted probability that a sample equals this true label �̆�.  
 

−𝑙𝑜𝑔𝑃𝑦|�̆� = −(𝑦 ∗ 𝑙𝑜𝑔(𝑃�̆�) + (1 − 𝑦) ∗ 𝑙𝑜𝑔(1 − 𝑃�̆�))             (3) 

5.2.3 Disruption impact prediction  

For the prediction of passenger impacts of disruptions, we also apply a supervised learning 

approach. To quantify passenger delays, we compare the scheduled and realised passenger 

journey times at the considered PT network. For each journey between a given origin station 

𝑖 ∈ 𝑆 and destination station 𝑗 ∈ 𝑆, the realised journey time 𝑗𝑡𝑡,𝑖𝑗 is obtained from AFC data 

per time period 𝑡. Depending on whether a tap in only or tap in / tap out AFC system is in place, 

the destination of an AFC transaction is directly available or needs to be inferred using a 

destination inference algorithm (e.g. Munizaga and Palma, 2012). Besides, transfer inference 

might be required to connect AFC transactions to journeys, if transfers are made which require 

an intermediate AFC transaction (e.g. Gordon et al., 2013; Yap et al., 2017). The scheduled 

journey time for time 𝑡 ∈ 𝑇 is calculated from the timetable. In-vehicle times and station 

walking times are assumed to be deterministic. The maximum scheduled journey time 𝑗�̃�𝑡,𝑖𝑗
𝑚𝑎𝑥 

assumes the passenger wait time is equal to the planned headway at that time (i.e. in case a 

passenger has just missed a train), whilst the minimum scheduled journey time 𝑗�̃�𝑡,𝑖𝑗
𝑚𝑖𝑛 assumes 

a passenger can board the PT vehicle directly (no waiting time). The expected scheduled 

journey time 𝐸(𝑗�̃�𝑡,𝑖𝑗) is then calculated as the average between 𝑗�̃�𝑡,𝑖𝑗
𝑚𝑖𝑛 and 𝑗�̃�𝑡,𝑖𝑗

𝑚𝑎𝑥. Eq.5 shows 

the passenger delay calculation applied in our study, using dummy variable 𝑥1 as defined in 

Eq.4. A journey in time period 𝑡 is considered delayed if the realised journey time exceeds the 

maximum scheduled journey time. To prevent underestimating passenger delays in that case, 

the delay is calculated as the difference between realised and expected scheduled journey time 

(expressed in minutes) and multiplied by demand 𝑞𝑡,𝑖𝑗. 
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𝑥1,𝑖𝑗 = {
𝑥1,𝑖𝑗 = 1     𝑖𝑓 𝑗𝑡𝑡,𝑖𝑗 > 𝑗�̃�𝑡,𝑖𝑗

𝑚𝑎𝑥

𝑥1,𝑖𝑗 = 0      𝑖𝑓 𝑗𝑡𝑡,𝑖𝑗 ≤ 𝑗�̃�𝑡,𝑖𝑗
𝑚𝑎𝑥                       (4) 

 

𝑤𝑡 = ∑ ∑[𝑗𝑡𝑡,𝑖𝑗 − 𝐸(𝑗�̃�𝑡,𝑖𝑗)] ⋅ 𝑞𝑡,𝑖𝑗  ⋅ 𝑥1,𝑖𝑗

𝑗∈𝑆𝑖∈𝑆

                                                                       (5) 

  

The structure of the machine learning model is shown in Figure 5.1 (upper right). The 

passenger delay �̆� resulting from disruptions is used as target. It should be noted that this delay 

cannot be attributed directly to a certain disruption 𝑑, as several disruptions can occur spatially 

and/or temporally close to each other. As disruption end times are not always provided in 

disruption log data, the disruption duration cannot always be determined. Moreover, even if the 

end time of a disruption would be known, knock-on effects on passenger delays can persist for 

up to six times longer than the duration of the initial cause (Malandri et al., 2018). Once a 

disruption is resolved, there is typically recovery time required to reschedule PT trips and 

personnel before the origin timetable is restored. Hence, in any case the disruption log data does 

not provide information when the passenger delay impact for passengers ended. To mitigate 

this problem, our model is being trained using a rolling horizon where the total passenger delay 

𝑤 from time hour 𝑡 up to two hours later [𝑡, 𝑡+2] is used as target, as function of the considered 

disruption which started during 𝑡 together with all other disruptions which started during this 

time window [𝑡, 𝑡+2]. This approach implies we consider disruption impacts up to three hours 

after the moment the disruption occurred. Although this can theoretically underestimate the 

impact of large disruptions somewhat, the majority of the disruptions on a PT network are 

typically relatively minor. Therefore, this time horizon is deemed reasonable to capture the 

complete disruption impacts for the vast majority of all disruptions. If the impact of disruptions 

which started at 𝑡 would vanish before 𝑡+2, the calculated passenger delay during 𝑡+2 is 

expected to be (close to) zero as well, meaning there is no penalty for adopting a relatively long 

time horizon for smaller disruptions. If a disruption end time would be available from the log 

data, a more accurate time period could be determined in the rolling horizon. For example, the 

end of the horizon could be set equal to the logged disruption end time, plus a time period 

reflecting recovery time as function of the logged disruption duration. We apply the final trained 

model to a new test dataset where only one disruption per 𝑡 and 𝑠 occurs, to predict the pure 

impact of each disruption separately. 

As generic predictors for disruption impact, we use predictors Time of Day and Weekday 

(weekday, Saturday or Sunday). For the predictor Disruption type, we apply one-hot encoding 

for all disruption types 𝑑 ∈ 𝐷, where a disruption type is coded as 1 in case this disruption has 

occurred within the time window [𝑡, 𝑡+2]. The PT line is also used as predictor. Each line on 

which a disruption occurred in this same time window [𝑡, 𝑡+2] is coded as 1; other lines are 

coded zero. As it is expected that total passenger delay depends on the total passenger volume 

using the network at the considered time period, we also use the total demand 𝑞𝑡 starting a 

journey in this time interval as predictor. As disruption impacts can propagate over the total PT 

network, the total demand summed over all origin-destination stations is used here. We use the 

Percentage affected demand for which no (simple) path remains available in case a disruption 

blocks services to/from station 𝑠 as a station-specific predictor. In case of a higher percentage 

passengers for which no alternative routes remain available in case of a disruption, one might 

expect a larger passenger delay for the affected passengers. To quantify this predictor 𝑔𝑡, we 

first calculate the affected demand 𝑞𝑡
𝑎. We represent the total PT network as directional 

graph 𝐺(𝑉, 𝐸) with each vertex 𝑣 ∈ 𝑉 representing a stop and each edge 𝑒 ∈ 𝐸 representing a 

direct PT connection between stops. For each OD pair we calculate the length of the shortest 

path (expressed in minutes) 𝑙𝑖𝑗 and the number of simple paths (without cycles) 𝑛𝑖𝑗 for the 
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undisrupted scenario. We define the affected demand as the demand between OD pairs for 

which the shortest path length increases or for which no simple paths remain available if all 

disrupted stations 𝑠𝑑 where a disruption occurred in the time window [𝑡, 𝑡+2] are removed from 

𝐺(𝑉, 𝐸) (Eq.8). Based on this, 𝑔𝑡 can be calculated as value ranging between 0 and 1 (Eq.9). 

For all affected demand for which at least one simple path remains available, the Expected 

detour time on the network (expressed in minutes) can be used as an additional station-specific 

predictor for the full passenger delay impact. To this end, the increased length of the shortest 

path can be computed, so that the passenger-weighted average travel time extension ∆ℎ̅̅̅̅  can be 

quantified as an additional predictor for passenger delays (Eq.10). Eq.6 and Eq.7 introduce the 

required dummy variables 𝑥2,𝑖𝑗 and 𝑥3,𝑖𝑗.  

 

𝑥2,𝑖𝑗 = {
𝑥2,𝑖𝑗 = 1     𝑖𝑓  𝑙𝑖𝑗

𝑑 >  𝑙𝑖𝑗

𝑥2,𝑖𝑗 = 0      𝑖𝑓  𝑙𝑖𝑗
𝑑 ≤  𝑙𝑖𝑗

        (6) 

 

𝑥3,𝑖𝑗 = {
𝑥3,𝑖𝑗 = 1     𝑖𝑓 𝑛𝑖𝑗

𝑑 = 0

𝑥3,𝑖𝑗 = 0      𝑖𝑓 𝑛𝑖𝑗
𝑑 > 0

           (7) 

 

𝑞𝑡
𝑎 = ∑ ∑[𝑞𝑡,𝑖𝑗 ⋅ max (𝑥2,𝑖𝑗, 𝑥3,𝑖𝑗)]                                                                                   (8) 

𝑗∈𝑆𝑖∈𝑆

 

 

𝑔𝑡 =
∑ ∑ 𝑞𝑡,𝑖𝑗 ⋅ 𝑥3,𝑖𝑗𝑗∈𝑆𝑖∈𝑆

𝑞𝑡
𝑎          (9) 

 

∆ℎ𝑡
̅̅ ̅̅ ̅ =

∑ ∑ [𝑞𝑡,𝑖𝑗 ∙ (𝑙𝑖𝑗
𝑑 − 𝑙𝑖𝑗)∙ 𝑥2,𝑖𝑗] 𝑗∈𝑆𝑖∈𝑆

𝑞𝑡
𝑎 ∙ (1−𝑔𝑡)

                 (10) 

 

We test different supervised learning regression models to predict passenger delays. We 

apply a simple linear regression model as baseline, and compare these results with a K-Nearest 

Neighbours (KNN), Random Forest and Multilayer Perceptron (MLP) regressor. For all these 

regression models, we apply a randomised 5-fold cross validation and use the RMSE (root-

mean-squared error) as performance metric. The total number of samples of our models equals 

the number of disruptions in our database. 

5.2.4 Clustering station criticality  

The output of the final models which predict disruption exposure and impact is used as input to 

cluster PT stations based on their expected criticality. The final disruption exposure model is 

applied to predict disruption probabilities for each disruption type 𝑑 for one complete year, 

whilst the final disruption impact model is used to predict the impact for each disruption type at 

each station 𝑠 separately for each time period. Multiplication using Eq.1 results in the expected 

yearly criticality per disruption type, station and time period, expressed in yearly passenger delay 

hours. We apply an unsupervised learning method to cluster stations based on this expected 

criticality (Figure 5.1, lower part). This provides insight in differences in susceptibility for 

different disruption types between stations, and shows clusters of stations with similar disruption 

exposure and impact patterns. 

  As our aim is to cluster all stations 𝑠 ∈ 𝑆 without outliers, and no number of clusters 𝑘 

is known a priori, we apply hierarchical agglomerative clustering. Input for the clustering is a 
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matrix consisting of values �̆�𝑠,𝑑,𝑡 with dimensions (|𝑆|, |𝐷| ∗ |𝑇|), which results from our 

supervised learning models. The distance matrix is determined by calculating the |𝐷| ∗ |𝑇|-
dimensional Euclidean distance between all points. Ward is used as linkage criterion during the 

clustering, thereby minimising the within-cluster variance. We use the cophenetic correlation 

coefficient to assess the degree to which the clustering reflects the input data. The optimal 

number of clusters 𝑘 is determined based on visual inspection of the dendrogram and maximising 

the average silhouette coefficient. The silhouette coefficient for each sample is calculated by 

taking the difference between the Euclidean distance to the nearest cluster this sample is not part 

of, and the intra-cluster distance. This difference is then divided by the maximum value of these 

two. The average silhouette coefficient is obtained by calculating this for all |𝑆| stations. 

5.3 Case Study 

5.3.1 Case study network 

We apply our proposed methodology to the Washington D.C. metro network as case study. The 

Washington Metro, administered by WMATA, consists of six lines indicated by different 

colours: the Red line (R), Green line (G), Yellow line (Y), Blue line (B), Orange line (O) and 

Silver line (S) (Figure 5.2). The total length of the metro network is about 190 km. During AM 

and PM peak hours, the Red line runs 15 trains per hour (tph), of which every other train is a 

short-turning service to Silver Spring. The other lines run 7.5tph during peak hours. During 

daytime off-peak periods, all lines run 5tph. The Blue, Orange and Silver line share a substantial 

part of their routes between Rosslyn and Stadium-Armory. The joint frequency on this trunk 

section equals 22.5tph during peak hours. At the time of consideration, 95 different metro 

stations are operational, thus |𝑆|=95. We predict disruption probabilities for all distinguished 

time periods (peak (only for weekdays), daytime off-peak and evening) for a full year. Every 

week thus consists of 19 time periods (3 time periods for weekdays and 2 time periods for 

weekend days). Hence, for a complete year |𝑇| equals 991. For our case study network, the total 

number of samples for the disruption prediction model equals |𝑆| ∗ |𝑇| = 94,145. 
 

 

Figure 5.2. WMATA metro network 
(Map obtained from WMATA: https://www.wmata.com/schedules/maps/upload/2019-System-Map.pdf) 
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5.3.2 Input data sources 

One of the important data sources used as input for our method is incident log data. A 13-month 

incident database for the Washington metro network is provided by WMATA, which initially 

consisted of 21,868 records covering all reported incidents from August 1st 2017 to August 31st 

2018. The attributes of each record as shown in Table 5.1. This shows that each record consist 

of a start time, incident location, line, train number, disruption category and description. Besides, 

the minutes of initial train delay (delays for an individual train) and line delay (delay for the 

entire line) as a result of an incident are indicated. This reflects only the initial delay a certain 

incident had on the train or line involved, and does not contain any information about the 

possibly (wider) passenger delay impact following this initial delay due to spill-over effects. The 

column Initial incident indicates if an incident is the result of another incident. The same number 

in the Initial incident column indicates that two logged incidents are related to each other. As 

the end time of disruptions is not logged for our case study, we use the time window [𝑡, 𝑡+2] as 

rolling horizon in the disruption impact prediction, with 𝑡 being the hour when the disruption 

starts (see Section 5.2.3). We use all disruptions in the 12-month period from September 1st 

2017 to August 31st 2018 as input for our disruption exposure prediction model. Disruption data 

for August 2017 is used to quantify values for the auto regressor predictor Disruption frequency 

previous month (see Section 5.2.2) for disruption probabilities in September 2017.  

Table 5.1. Example incident log data 

ID Start Time Line Train Stop Type Description Train  
delay 

Line  
delay 

Initial 
incident 

11 16-08-17 8:30 Blue 419 C07 AIRL Air leak 5 5 11 

12 23-08-17 9:13 Red 231 A11 PUBL Sick customer 3 0 12 

 

  Incident log data of PT systems is generally not primarily intended for vulnerability 

analysis purposes or to draw policy recommendations from. Instead, this is usually filled out 

during the real-time control process in the control room when recovering train services. This also 

entails there might be only a limited degree of consistency in the description and classification 

of incident notifications, as it strongly depends on manual actions from controllers whose main 

priority is solving the incident. This was also the case for the Washington dataset provided to us. 

As a result, it is important to reassure the incident database is fit for our study purpose, for which 

we perform two data processing steps: a) deriving disruptions from incidents, and b) classifying 

disruptions. 

  First, we derive disruptions from incidents in the log file, as this database also contains 

incidents which did not result in a disruption. For example, a driver not able to perform its duty 

due to sickness is reported in the incident database, even if a stand-by driver took over the shift 

without any delays. For our case study, we define a disruption as any incident where either the 

train delay or line delay is 2 minutes or more. Incidents with both the train and line delay being 

smaller than 2 minutes are regarded as regular service variability. Additionally, when multiple 

incidents in the database are related to the same incident, only the initial incident is kept. Other 

delays can be considered a consequence of this initial incident, rather than separate incidents. 

When applying our disruption definition, 4,263 distinguishable disruptions remain in the 12-

month period from September 2017 to August 2018. 

  Second, disruptions are classified into a select number of distinctive disruption types. In 

the provided database, 114 different disruption types are logged. When considering the 

distribution over different stations 𝑠 ∈ 𝑆 and time periods 𝑡 ∈ 𝑇, there would be an insufficient 

number of observations per station and time period in the database to develop a prediction model 

for. Besides, in some cases different definitions were used for the same or very similar disruption 

types, due to differences in classification by different controllers. For example, in the used 
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database a train car motor overload is indicated by both disruption type MOLD (‘motor 

overload’) and MOLF (‘flashing motor overload’). In these cases, one consistent disruption type 

is attributed to both disruptions. In some cases, the disruption types in the database did not reflect 

the root disruption cause. As an illustration, one can find an incident registered as ONEC 

(‘operational necessity’) with the description ‘late dispatch due to door not closing’. In this case, 

the root cause is a door malfunctioning, resulting in an operational action from the control room. 

In a manual exercise, all disruptions in the database are classified based on their root cause 

following their description. Consequently, all disruptions are classified into 15 distinctive 

types 𝑑 ∈ 𝐷, which occur frequently enough to be able to develop a prediction model for. The 

distinguished disruption types are visualised by the dark-blue rectangles in Figure 5.3. As can 

be seen in the light-blue rectangles, these disruption types are classified into five main categories 

railcar related, operations related, public related, infrastructure related and other disruptions. 

The category with railcar related disruptions for example consists of door malfunctioning, brake 

malfunctioning, ATC malfunctioning, propulsion malfunctioning and other disruption types. 

Similarly, public related disruptions are categorised as left unattended item, trespassing incident 

and injured/sick/aggressive passenger.  

  

 

Figure 5.3. Disruption classification 

  Additional to disruption log data, timetable data about train frequencies and scheduled 
passenger journey times is provided by WMATA. Besides, individual AFC transactions of each 
journey made on the metro network in September, November and December 2017, as well as 
January, February and March 2018 were also available for this study. The Washington metro 
network is a closed system, where passengers are required to tap in and tap out at gate lines at 
the stations. For metro-to-metro transfers typically no intermediate tap out and subsequent tap 
in is required. This means that our case study data directly consists of the journey start time and 
end time for the metro network, so that no destination or transfer inference was required. Given 
the availability of 6 months AFC data, our disruption impact prediction model - for which AFC 
data is required as input for the predictors - is trained based on this 6-month dataset. In this 6-
month period, 2,179 disruptions can be distinguished from the dataset after applying the 
abovementioned data processing steps. This is in contrast with the disruption exposure model, 
which is trained based on a 12-month disruption log dataset. As we apply a 5-fold cross 
validation, in each of the five folds 80% of this data is used for model training, whilst the 
remaining 20% is used for model testing purposes.  
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5.3.3 Empirical disruption characteristics 

Figure 5.4 shows the spatial distribution of disruptions over the Washington metro network. The 

empirical values show that the weakest stations, being most susceptible to disruptions, can 

generally be found in the central area of the network where train frequencies and passenger 

volumes are highest, and at start/terminal stations. The least weak stations are typically 

intermediate stations (non-terminal and non-transfer stations) at the line branches, often served 

by one line only. Largo Town Center (red circle in Figure 5.4) suffered from most disruptions 

in the observed 12-month period (160 disruptions). Figure 5.5 presents the relative frequency of 

the 15 different disruption types, categorised into the five main categories as set out in Figure 

5.3. It can be seen that vehicle related disruptions contribute most to the total number of 

disruptions (45%). In total, vehicle related and passenger related disruptions are responsibe for 

more than 70% of all disruptions. Infrastructure related disruptions only have a relatively small 

share in the total number of disruptions. From the individual disruption types 𝑑, the most 

frequently occurring types are injured/sick/aggressive passengers (23%) and vehicle door 

malfunctioning (15%). 

 

 

Figure 5.4. Spatial distribution of yearly number of disruptions 

5.3.4 Model specification 

We use our developed model to predict the probability a certain disruption type occurs at each 

station during each time period (peak, daytime off-peak and evening) for one full year, applied 

to the Washington case study network. Based on the number of predictors and one-hot encoding, 

the final feature matrix for our exposure prediction model consists of (991 distinguished time 

periods per year * 95 stations) 94,145 samples and 34 columns. The dimension of the target 

vector is (94,145; 1), respectively (94,145; 16) when dummy coded into the 16 disruption classes 

(15 disruption types plus no disruption). For the logistic regression model we perform a 

multiclass regression with a maximum of 200 iterations. Sag is used as solver method, as this is 

fast for relatively large datasets. For the MLP classifier one hidden layer is used. Furthermore, 

adam is used as solver method being fast for large datasets, with the number of iterations being 
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capped at 200. A logistic sigmoid function is used as activation function for the hidden layer. 

The number of neurons of the hidden layer is determined by hyperparameter tuning: for all 

number of neurons between the number of neurons of the input layer and output layer the log 

loss score (Eq.3) is calculated, thereby selecting the number of neurons for the hidden layer 

which minimises this value. The optimal number of neurons of the hidden layer for the MLP 

classifier is therefore sought between 16 and 34 neurons. The computation time to predict 

disruption probabilities for one year for the medium-sized Washington metro network (95 

stations) is for both models less than 1 minute on a regular PC. 

  The final feature matrix of the passenger delay prediction model consists of 2,179 

samples (disruptions) and 30 columns (7 one-hot encoded predictors). In the KNN algorithm, 

we test K-values ranging between 1 and 30 during hyperparameter tuning. For the Random 

Forest model, we test the number of estimators between 100 and 1,000 with step size 100 for a 

model which uses the total number of features as maximum feature number, and for a model 

using the square-root of the number of features as maximum feature number. For the MLP 

model, we specify a maximum of 10,000 iterations, use lbfgs as solver and apply a logistic 

activation function. During the hyperparameter tuning, we test the number of neurons of the 

hidden layer between the number of neurons of the output layer (1) and input layer (30). Python 

is used to execute the machine learning models (Pedregosa et al., 2011). Computation times for 

these four models to predict disruption impacts range between 1 and 10 minutes on a regular PC. 

 

 

Figure 5.5. Relative frequency of each disruption type 

5.4. Results and Discussion 

In this section, we first discuss the model estimation and validation results (Section 5.4.1). 

Then, we discuss the prediction results in Section 5.4.2, followed by clustering results in 

Section 5.4.3. 

5.4.1 Model estimation and validation 

Table 5.2 provides an overview of the model specification and performance results for the 

developed disruption exposure and disruption impact prediction models. Regarding the two 

tested disrupted exposure prediction models, it can be seen that the log loss score is similar for 
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the logistic regression and MLP classifier. For this case study we decide to proceed with the 

results from the MLP classifier, as this model can potentially capture more complex relations 

between predictors and target. For passenger delay predictions, different machine learning 

models are compared to a simple linear regression model as baseline. One can conclude that all 

machine learning models outperform the linear regression model substantially, reducing the 

RMSE by 95-97%. This indicates the linear regression model is not suitable to capture the 

complex relation between the predictors and target. When comparing the different machine 

learning models, especially the Random Forest and KNN regression models result in lower 

RMSE scores and reasonably high R2 scores. The Random Forest model, with the total number 

of features as maximum number of features and using 200 estimators, results is the lowest 

RMSE score and highest R2 score of 0.74. We therefore use this model for our final passenger 

delay predictions. 

Table 5.2. Model estimation results 

Disruption exposure model Model specifications Log loss Improvement 

Logistic regression classifier 

(Random 5-fold cross validation) 
Max iterations = 200 

Solver = sag 

0.268  

Multilayer Perceptron classifier 

(Random 5-fold cross validation) 

Max iterations = 200 

Solver = adam 

Activation function = logistic 

Neurons hidden layer = 30 

0.268 

 

0% 

Disruption impact model Model specifications RMSE 

(R2) 

Improvement 

Simple linear regressor 

(Random 5-fold cross validation) 

With intercept 2,536,946 

(-551) 

 

Simple linear regressor  

(Random 5-fold cross validation) 

Without intercept 1,575,072 

(-292) 

37.9% 

K-Nearest Neighbours regressor 

(Random 5-fold cross validation) 
Number of neighbours = 26 81,950 

(0.57) 

96.8% 

Random Forest regressor 

(Random 5-fold cross validation) 

Number of estimators = 200 

Max number of features = features 

64,722 

(0.74) 

97.4% 

Random Forest regressor 

(Random 5-fold cross validation) 
Number of estimators = 900 

Max number of features = 

sqrt(features) 

65,533 

(0.73) 

97.4% 

Multilayer Perceptron regressor 

(Random 5-fold cross validation) 
Max iterations = 10,000 

Solver = lbfgs 

Activation function = logistic 

Neurons hidden layer = 25 

115,971 

(0.18) 

95.4% 

 

For model validation purposes of the disruption frequency prediction model, we 

compare the observed number of disruptions (based on the empirical dataset) with predicted 

numbers based on the MLP classifier. Predicted values are obtained from the 20% testing 

sample for each of the five folds in the 5-fold cross validation applied to a 12-month dataset, 

hence together providing predictions for one complete year. In Figure 5.6, a comparison is 

shown between the predicted and observed disruption frequency for each disruption category, 

aggregated over stations and time periods for a complete year. There is a high correlation 

(>0.99) between our predicted numbers and observed values. Especially predictions of 

exposure to door malfunctioning, brake malfunctioning, station overruns and infrastructure 

related disruptions are highly accurate. Notwithstanding, it can be noted that our prediction 

model tends to underestimate disruption exposure somewhat. On average the expected number 

of disruptions is underestimated by 5% using our model, indicating there is still potential for 

further model improvement. 
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Figure 5.6. Validation MLP classifier 

To validate our disruption impact prediction model, we compare the empirical passenger 

delay hours with predicted passenger delay hours using our Random Forest regression model. 

Predicted values are based on the 20% testing sample from each of the five folds used in the 5-

fold cross validation. This comparison is shown in Figure 5.7, where the observed and 

empirical disruption impacts are aggregated over all stations and all disruptions per month. We 

can conclude there is a high correlation (>0.99) between predicted and empirical delay hours. 

Per month, the predicted passenger delay deviates on average 0.6% from the empirical delay 

hours, with the maximum deviation per month being equal to 5.7% (March). The lowest 

deviation is observed for November, where the total predicted passenger delay deviates 0.5% 

from the total observed passenger delay. These results give confidence that our proposed model 

is able to predict disruptions and passenger delay impacts. Hence, we can apply our models to 

predict the passenger delay impacts for each station, disruption type and time period. As 

empirical data about disruption frequency and impact is typically not available for all possible 

combinations of disruption type, station and time period, our models provide predictions for 

instances for which no or insufficient historical empirical data is available.  
 

 

Figure 5.7. Validation Random Forest regressor 
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5.4.2 Prediction results 

Train frequency, day of the week and time of the day are shown to be the three most important 

predictors for disruption exposure. For the disruption impact prediction model, we find that day 

of the week (weekday / weekend day) is the most important feature in the Random Forest model. 

Additionally, the percentage of the affected demand for which no path in the considered PT 

network remains available in case of a disruption is also an important feature. As station-

specific predictors are among the most important predictors in both models, these results 

indicate the importance of predicting disruptions and their passenger delay impacts for 

individual stations. When combining the disruption exposure and impact prediction models, 

these models predict a yearly passenger delay of 5.9 million hours for the total metro network. 

This value is the sum of the expected station criticality of all metro stations in the network. 

Table 5.3 provides an overview of the 10 most and least critical stations with their expected 

contribution to the yearly passenger delay hours. For the most critical station Gallery Place the 

criticality equals almost 77,000 delay hours, whilst for the least critical station Stadium-Armory 

this value equals almost 43,000 delay hours per year. The 10 most critical stations are all located 

in the centre of the PT network, where train frequencies and passenger demand are highest. 

Five of all eight transfer stations in the network are positioned in this top-10 as well. The 10 

least critical stations are all located on the eastern branch of the Orange or the Blue/Silver line, 

and on the western branch of the Silver line (see Figure 5.2). None of these stops are 

start/terminal or transfer locations. Despite the limited number of route alternatives available to 

passengers when a disruption would occur at a station on one of these branches, the criticality 

of these stations is relatively low. Stations in the centre of the network are more often exposed 

to disruptions, and more passengers are affected once a disruption occurs. For stations in the 

centre section of our case study network, this suggests that the benefit of the availability of 

multiple route alternatives does not outweigh the costs, namely the more frequent disruption 

exposure and the larger passenger demand affected by these disruptions.  

Table 5.3. Station criticality ranking 

Rank Station (lines) Criticality (pass-

hours per year) 

Rank Station (lines) Criticality (pass-

hours per year) 

1 Gallery Place (R) 76,594 86 Landover (O) 52,188 

2 Metro Center (R) 74,384 87 Deanwood (O) 49,569 

3 Gallery Place (YG) 72,653 88 Benning Road (SB) 49,438 

4 Union Station (R) 72,439 89 Greensboro (S) 48,952 

5 Metro Center (SOB) 71,926 90 Potomac Ave (SOB) 48,300 

6 L’Enfant Plaza (YG) 70,314 91 Spring Hill (S) 48,095 

7 Judiciary Square (R) 70,284 92 Cheverly (O) 45,696 

8 Farragut West (SOB) 69,750 93 Capitol Heights (SB) 45,552 

9 Columbia Heights (YG) 69,683 94 Morgan Boulevard (SB) 45,224 

10 NoMa-Gallaudet U (R) 69,426 95 Stadium-Armory (SOB) 42,651 

5.4.3 Clustering results 

The station clustering results based on predicted criticality is shown in the dendrogram in 

Figure 5.8. The cophenetic correlation coefficient equals 0.70, which can be considered 

reasonable. From the dendrogram can be seen that the 95 metro stations of the Washington 

metro network are grouped into five different clusters. Figure 5.9 shows for each of these 

clusters the expected yearly number of disruptions per station (left), the average (unweighted) 

disruption impact (centre), and expected yearly passenger delay per station (right). For stations 

in cluster 2 both the disruption exposure and impact are highest, resulting in the highest 

criticality. For this cluster, particular the average disruption impact is high compared to stations 
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from other clusters. Stations from cluster 3 also have a relatively high disruption exposure, but 

the impact is smaller than for cluster 2. As a result, expected criticality for stations of cluster 3 

is also lower than for cluster 2. The expected disruption impacts for stations from clusters 1, 4 

and 5 are similar: these clusters differ primarily in their disruption exposure. Due to the 

relatively high disruption exposure in cluster 1 compared to clusters 4 and 5, the criticality of 

cluster 1 is also highest from these three clusters. Stations from cluster 4 are characterised by 

the lowest weakness, therefore resulting in lowest station criticality from all clusters.   

 

 

Figure 5.8. Dendrogram with resulting clustering of metro stations 

 

Figure 5.9. Predicted average exposure (left), impact (centre) and criticality (right) per station in 

cluster 

 
 



102 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

 

Figure 5.10. Station criticality ranking and clustering 
(Numbers refer to station criticality ranking 1-95; inset upper-left zooms into the centre part of the network) 

In Figure 5.10, we visualise the station ranking and clustering spatially. Each number 

in the figure shows the ranking of each of the 95 stations in terms of station criticality (see also 

Table 5.3), whereas the colour indicates the cluster to which each station belongs. Cluster 2 

(Figure 5.8, red) consists of five stations: four transfer stations and the main train station Union 

Station. These stations are most critical, as exposure and impact are highest. The high passenger 

delays characterising this cluster can be explained by the relatively high number of passenger 

related and railcar related disruptions, due to the high train frequency and passenger volumes 

in this central part of the metro network. These high passenger volumes also result in the highest 

disruption impacts. Cluster 3 (Figure 5.8, blue) is the largest cluster, containing 34 stations. 

The criticality of these stations is second-highest, after the stations from cluster 2. This cluster 

consists of all remaining transfer stations and the majority of the start/terminal stations. Besides, 

most other stations located in the centre area of the PT network are part of this cluster. All these 

stations are relatively heavily exposed to disruptions. For stations in the centre part of the 

network, this is mainly caused by the high train frequencies and passenger volumes. For the 

start/terminal stations, an explanation is that several disruptions often arise at the first station 

of the line: a railcar malfunctioning when testing the train, a late or sick driver not arriving on 

time, or a late movement of the train from the yard to the first station. As confirmed from the 

empirical analysis (Figure 5.4), start/terminal stations are more frequently exposed to 

disruptions than their surrounding stations. As passenger demand at the stations of cluster 3 is 

lower than for the five busy stations of cluster 2, the expected disruption impact is lower as 

well. Cluster 4 (Figure 5.8, purple) contains the 9 least critical stations. As shown in Table 5.3, 

these stations are located at the end of the western branch of the Silver line, and at the end of 

the eastern branches of the Orange and Blue/Silver lines. These stations have the lowest 

disruption exposure from all stations for all disruption types, particularly in relation to 

passenger related disruptions. One can argue that the relatively low headways combined with 

relatively low passenger volumes at the end of these lines result in lower passenger impacts, 

despite the number of available route alternatives in the network also being smaller here. 

Location-specific characteristics might also play a role here. The stations of cluster 1 (Figure 

5.8, green) and cluster 5 (Figure 5.8, gold) are mainly located between the busiest centre section 
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of the network and the outer branches of the lines. The 24 stations of cluster 1 are primarily 

stations on the northern part of the network (Red line, trunk section of the Yellow/Green lines, 

northern branch of the Green line). The 23 stations of cluster 5 are mostly located on the 

southern part of the network (trunk section of the Silver/Orange/Blue lines, trunk section of 

Blue/Yellow lines, southern branch of the Green line). In terms of exposure, these clusters can 

be positioned between clusters 2/3 on the one hand, and cluster 4 on the other hand. Especially 

stations from cluster 1 are relatively often exposed to disruptions: this might be caused by the 

relatively high frequency on the Red line, or by differences in operating stock types. Disruptions 

at stations of clusters 1 and 5 affect more passengers compared to cluster 4, but some stations 

offer more route alternatives to these affected passengers. These positive and negative effects 

seem to cancel out each other on average, as the average disruption impact is similar to stations 

from cluster 4.  

5.5 Conclusions 

In this study we propose a generic approach to predict how often different disruption types 

occur at different stations of a PT network, and to predict the impact related to these disruptions 

as measured in terms of passenger delays. The contribution of our research lies in the 

development of supervised learning models to predict disruptions and their passenger impacts 

for each individual station, disruption type and time period, as sufficient empirical disruption 

observations will not always be available for each location and time period. Besides, our models 

can predict disruption impacts for all stations and time periods for a medium-sized PT network 

(consisting of 95 metro stations) within 10 minutes. Hence, our method provides an alternative 

for existing, computationally more expensive methods to predict passenger delays for a 

complete PT network. Applied to the Washington metro network, our models predict a yearly 

passenger delay of 5.9 million hours for the total metro network. Five different types of station 

are distinguished by clustering stations according to their expected criticality. Stations with high 

train frequencies and high passenger volumes located at central trunk sections of the network 

show to be most critical, together with start / terminal and transfer stations. Intermediate stations 

located on branches of a line are least critical. The lower train frequencies and passenger 

volumes result in lower disruption exposure and impact, despite less route alternatives typically 

being available for these passengers when a disruption occurs. 

Our study results provide PT authorities and service providers insights into the 

frequency, location and passenger impact of different disruptions. It provides an overview of 

the stations which contribute most to the vulnerability of the total PT network. Categorising 

stations based on their disruption characteristics shows the different station types which can be 

distinguished based on their contribution to network vulnerability. This supports PT agencies 

in prioritising what type of disruptions at which location to focus on, to potentially achieve the 

largest improvements in network robustness. Ranking all stations according to their criticality 

directly supports decision-makers to target robustness measures at these stations which need it 

most. The explicit distinction between disruption exposure and impact helps determining what 

type of measure would be most suitable for each (type of) station. Our method can also be used 

to quantify the robustness benefits of new infrastructure, such as a new rail link. The model 

trained for the current PT network can be used to predict the new station criticality in the event 

of a network adjustment, by updating network-related predictors. This results in a fast and 

complete quantification of robustness benefits, which can be incorporated in appraisal studies. 

 

We formulate four recommendations for future research. First, we recommend further testing 

of our model sensitivity in relation to missing disruption duration information. We recommend 

to apply this method to other case study networks, where the disruption duration - possibly 
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including recovery time - is provided in the disruption log data, so that the sensitivity of the 

model performance can be investigated. This might enable a further improvement of the R2 

value of the disruption impact model, which can currently be considered reasonably high. 

Second, application of our method to a link based or joint node and link based vulnerability 

analysis is recommended. As disruptions in the dataset provided to us were allocated to stations, 

we applied a node based vulnerability analysis. Our methodology is however directly applicable 

for link based analyses using the same predictors. Testing the sensitivity of our model outcomes 

to this is therefore recommended. Third, whilst our model results in a reasonably accurate 

prediction of disruption impacts, our model slightly underestimates disruption frequency 

predictions by 5% on average. Future research is therefore recommended to further improve the 

accuracy of this prediction model. Fourth, we also recommend incorporating the availability of 

other modes in the assessment of the number of paths remaining available for passengers, as 

well as for the indication of passengers’ travel time extension, as used as predictors in our 

disruption impact prediction model. As our model only considers metro lines, robustness 

resulting from the availability of alternative modes of transport in the network is potentially 

somewhat underestimated.  
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6. Identification and Quantification of Link 

Vulnerability in Multi-level Public Transport 

Networks: A Passenger Perspective 

In the previous Chapter 5, we developed a methodology to predict disruption frequencies and 

impacts for different stops of an urban public transport network. In this chapter, we expand our 

focus from urban public transport networks towards multi-level public transport networks, 

thereby considering the (inter)regional train network, light rail / metro and urban tram and bus 

network. The scientific contribution of this chapter is the development of a methodology to 

identify links of a multi-level public transport network, which contribute most to public 

transport network vulnerability. In this research, we propose an improved method to pre-select 

the links which are expected to contribute most to vulnerability, based on both expected 

disruption frequencies and expected disruption impacts for passengers. For these selected links, 

we predict disruption impacts given the integrated multi-level network available for passengers. 

Hence, we incorporate how different network levels can potentially mitigate impacts of 

disruptions occurring on the urban public transport network. Incident log data from different 

public transport modes, together with outputs from a public transport assignment model, are 

used as input for this methodology. Chapter 5 and Chapter 6 both result in improved methods 

for performing a public transport vulnerability analysis by incorporating both disruption 

exposure and impacts for urban networks in a single-level and multi-level perspective, 

respectively, and thereby provide an answer to Research Question 2 (see Section 1.3). 

 

This chapter is based on an edited version of the following article: 

 

Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2018). Identification and quantification 

of link vulnerability in multi-level public transport networks: a passenger perspective. 

Transportation, 45, 1161-1180. 

© The Author(s) 2018 
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6.1 Introduction 

The operation of public transport services without disturbances is considered a key quality 

aspect of public transport (PT) by passengers (Golob et al., 1972; Van Oort, 2016). Disturbances 

can result in longer travel times, more transfers and more crowded vehicles, and thus increase 

both the nominal and perceived passenger travel costs. This means that during PT disturbances 

fewer locations and activities can be reached by public transport within a certain travel time, 

resulting in a decreased accessibility. This relation between network vulnerability and 

accessibility is among others addressed by Chen et al. (2007), Liao and Van Wee (2017) and 

Taylor (2017). Therefore, reducing the passenger impact of disturbances is important in order 

to limit the negative accessibility effects. To gain more insight in these negative accessibility 

effects of disturbances, it is important to get insight in the frequency with which disturbances 

occur in public transport, and the impact these disturbances have on passengers. This topic is 

generally addressed using the concepts of reliability and vulnerability. In scientific literature, 

different definitions are used to distinguish between these concepts (for example Ziha, 2000; 

Holmgren, 2007; Van Nes et al., 2007; Tahmasseby, 2009; Korteweg and Rienstra, 2010; 

Savelberg and Bakker, 2010; Snelder, 2010; Immers et al., 2011; Parbo et al., 2013; Dewilde et 

al., 2014). An extensive review of definitions and indicators for reliability and vulnerability can 

be found in Nicholson et al. (2003) and more recently in Oliveira et al. (2016). In this chapter 

we apply the distinction between reliability and vulnerability as used by Oliveira et al. (2016). 

Reliability is hereby related to the network performance in relation to recurrent, daily, stochastic 

fluctuations in supply and demand. Vulnerability, on the other hand, focuses on the network 

performance related to non-recurrent, infrequent, large events, leading to a partial or full 

unavailability of one or multiple links of the network. Robustness is inversely related to 

vulnerability: a network with 0% vulnerability yields 100% robustness, and the other way 

around (Tahmasseby, 2009; Snelder, 2010). 

 

Despite the importance attributed by passengers to robust public transport, the full passenger 

impact of public transport network vulnerability is not considered in science and practice yet. 

Reliability is extensively considered for single-level PT networks: networks on one functional 

level (e.g. the regional, agglomeration or urban level) usually operated by a single PT operator. 

Research on improvements of reliability of single-level PT networks is among others conducted 

by Hollander (2006) and Van Oort and Van Nes (2009) (Figure 6.1, upper left quadrant). 

Examples of measures to improve reliability of single-level PT networks on a strategic, tactical 

and operational level can be found in Vromans et al. (2006), Delgado et al. (2009), Furth and 

Muller (2009), Corman et al. (2010), Van Oort et al. (2010), Van Oort and Van Nes (2010) and 

Xuan et al. (2011). Besides considering reliability of single-level PT networks, research is also 

conducted to reliability of multi-level PT networks where interactions between different 

network levels are considered (for example Rietveld et al., 2001; Lee et al., 2014) (Figure 6.1, 

upper right quadrant). For example, such multi-level approach of reliability allows for the 

incorporation of the consequences of a delay on the train network for transfers to a lower-level 

tram connection. In addition, studies can be found related to vulnerability and robustness of 

road networks (e.g. Jenelius et al., 2006) and public transport networks (e.g. Derrible and 

Kennedy, 2010; Cats and Jenelius, 2014; Cats and Jenelius, 2015). There are several examples 

of studies to robustness of single-level PT networks, for example Goverde (2005), Kroon et al. 

(2008), Tahmasseby et al. (2008), Cicerone et al. (2009), Fischetti et al. (2009), Schöbel and 

Kratz (2009) and Corman et al. (2014) (Figure 6.1, lower left quadrant). These studies analyse 

robustness separately for each PT network on a certain functional network level (single-level 

perspective), or for a PT network operated by a specific operator (single-operator perspective). 

However, the interaction between different PT network levels in case of non-recurrent 
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disturbances is not explicitly considered in these vulnerability studies.  

This entails that it is not considered how a certain network level, or PT network operated 

by operator X1, can function as backup in case a disturbance occurs on another network level 

operated by operator X2. However, when aiming to quantify the full passenger impacts of non-

recurrent disturbances, it is important to consider the integrated multi-level PT network, with 

PT services on other network levels which remain available for passengers. This means that the 

PT networks on all functional network levels, operated by different operators, should be 

considered in an integrated approach. In their total door-to-door trip, passengers often use PT 

services on different network levels, often operated by different PT operators as well. For 

example, in the period 2006-2009 on average 89.8% of the trips having train as main mode in 

the Netherlands can be considered multimodal (Van Nes et al., 2014). In case each PT operator 

only optimises the part of the network it operates, it is likely that different optimised 

subnetworks lead to a suboptimal total network from a passenger perspective, since interactions 

between network levels are ignored. In case of large disturbances this leads to suboptimal 

rescheduling for passenger because network levels of other operators, which might offer 

potential to function as backup, are not considered. Possible powerful measures on network 

level X1, which can reduce the passenger impact of a large disturbance occurring on network 

level X2, might not be considered either. This means there is no full and no realistic 

quantification of passenger impacts of non-recurrent disturbances, since passengers are able to 

consider the total available multi-level PT network in case of disturbances. We therefore 

conclude that currently not the full passenger impacts are incorporated in the analysis and 

quantification of PT network vulnerability.  

 

 

Figure 6.1. Relevance of study focusing on robustness of multi-level public transport networks, 

including examples of references in other quadrants 

Our study explicitly considers public transport network vulnerability from a multi-level 

perspective (Figure 6.1, lower right quadrant). We define a multi-level PT network as an 

integrated PT network where different network levels – the (inter)regional (train) level, 

agglomeration (metro / light rail) level and urban (tram) level - are considered simultaneously. 

Contrary to studies with a multi-modal perspective, by adopting a multi-level public transport 

perspective we solely consider the public transport network and no other networks such as car 

and bicycle. We develop a methodology to identify the most vulnerable links in such multi-

level public transport network. Based on this method we are able to quantify link vulnerability 

for these identified links, given the total multi-level PT network available. This allows for the 

quantification of societal costs of link vulnerability for passengers in a more realistic way, since 

passengers also consider the multi-level network when looking for route alternatives in case of 

a disturbance. We adopt a passenger perspective, by aiming to incorporate the full and realistic 
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passenger impact of disturbances when identifying and quantifying link vulnerability. This 

methodology is applied to a case study in the Randstad Zuidvleugel area in the Netherlands. In 

this case study, we compare link vulnerability between different network levels. We use the 

integrated multi-level PT network to quantify link vulnerability and to quantify the robustness 

benefits of proposed measures. 

The added value of this study is the development of a methodology to identify the most 

vulnerable links in multi-level public transport networks, thereby incorporating both exposure 

to disturbances and the impact of disturbances, and to quantify link vulnerability for these 

identified links. The structure of this chapter is as follows. Section 6.2 discusses the 

methodology developed to identify and quantify link vulnerability in multi-level PT networks. 

In Section 6.3, we show the results after applying this methodology to a case study. We finish 

in Section 6.4 by formulating conclusions and recommendations for further research. 

6.2 Methodology 

6.2.1 Link vulnerability 

We assume a multi-level PT network represented by a digraph 𝐺(𝑉𝑛, 𝐸𝑛) with nodes 𝑣𝑛 ∈ 𝑉𝑛 

and directed links 𝑒𝑛 ∈ 𝐸𝑛 on PT network level 𝑛. Let 𝑆 represent the total set of public transport 

stops 𝑠 ∈ 𝑆 ⊆ 𝑉. The number of stops and number of links are denoted by |𝑆| and |𝐸|, 
respectively. The set of public transport lines is denoted by 𝐿. Each public transport line 𝑙 ∈ 𝐿 

is defined as ordered sequence of stops 𝑆𝑙 = (𝑠𝑙,1, 𝑠𝑙,2. . 𝑠𝑙,|𝑙|). The total node set 𝑉 consists of 

all stops 𝑆 and all junctions (intersections, switches etc.) in the network.  

Traditionally, link vulnerability 𝑐𝑒𝑛
 for public transport networks is only assessed based 

on the impact a non-recurrent disturbance 𝛿 has on the network performance. This impact is 

often expressed as the difference in societal welfare ∆𝑤𝛿 between the undisturbed scenario 𝑤𝛿0
 

and the scenario with non-recurrent disturbance 𝑤𝛿 occurring on link 𝑒𝑛 ∈ 𝐸𝑛. This means that 

exposure to disturbances is not considered explicitly when determining link vulnerability. This 

can be explained by the limited historic data available regarding the frequency with which 

different disturbance types 𝛿𝑛  occur on each PT network level 𝑛 and their related duration 𝜏𝛿𝑛
. 

Instead, a conditional vulnerability is typically applied which calculates the impact of a 

disturbance given the fact that a certain disturbance has occurred, as expressed by Eq.1. 

 

𝑐𝑒𝑛
=  ∆𝑤𝑒,𝛿𝑛,𝜏|𝛿𝑛         (1) 

 

When applying Eq.1, links where disturbances have the most negative impact ∆𝑤𝛿 on 

passengers’ travel time, costs and comfort are listed as most vulnerable, even if the frequency 

with which these disturbances occur would be very low. However, from a passenger perspective 

link vulnerability depends on both the extent to which link 𝑒𝑛 is exposed to non-recurrent 

disturbances 𝛿, and the impact of these disturbances on passengers given the total PT network 

𝑁 available. This is especially relevant when considering multi-level PT networks, where 

different modes and vehicle types are operating on the different network levels. The frequency 

and duration of disturbances can differ intrinsically on links of different network levels. These 

differences can be attributed to different vehicle types (e.g. train versus tram), different 

infrastructure (e.g. different types of switches, use of signalling systems), different interactions 

with other traffic (dedicated infrastructure vs. mixed traffic) and different exposure to external 

events (e.g. operation in tunnels or at grade level). This means that neglecting differences in 

exposure to disturbances in a link vulnerability analysis can bias the identification of the most 

vulnerable links in the multi-level PT network based on impact only, when exposure differs 
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between network levels. Therefore, we propose the incorporation of exposure to disturbances 

explicitly in link vulnerability identification and quantification: links where the product of 

exposure to disturbances and the impact of these disturbances is highest are identified as most 

vulnerable, as expressed by Eq.2.  

 

𝑐𝑒𝑛
=  ∑ 𝐸(𝑓𝑒,𝛿𝑛

) ∗𝛿𝑛
𝐸(𝜏𝑒,𝛿𝑛

) ∗ ∆𝑤𝑒,𝛿𝑛,𝜏      (2) 

 

The exposure of a link 𝑒𝑛 to large disturbances is the product of the frequency 𝑓𝑒,𝛿𝑛
 with 

which different disturbance types 𝛿 occur on that link and the duration 𝜏𝑒,𝛿𝑛
 of each disturbance. 

Both the frequency with which disturbance types occur and the duration of each disturbance are 

probabilistic variables, which are independent from each other for each disturbance type 𝛿. This 

results in the multiplication of the expected number of disturbances 𝐸(𝑓𝑒,𝛿𝑛
) occurring within 

a certain time window and the expected duration of each disturbance 𝐸(𝜏𝑒,𝛿𝑛
), with both 

𝑓𝑒,𝛿𝑛
and 𝜏𝑒,𝛿𝑛

 being random variables. ∆𝑤𝑒,𝛿𝑛,𝜏 represents the difference in total monetised 

societal costs for all passengers travelling over all OD pairs affected by that specific disturbance 

𝛿𝑛 between the specific disruption scenario and the undisturbed situation.   

 

To be able to incorporate exposure to disturbances explicitly, we use a unique dataset in this 

study which contains realisation data about the frequency and duration of different types of 

disturbances 𝛿𝑛 on different PT network levels 𝑛 (national / interregional / regional / 

agglomeration / urban level) and for different PT modes (train / metro / light rail / tram), 

operated by different PT operators in the Netherlands. Historic log-data for train network 

disturbances is gathered from the train operator Dutch Railways (NS) for the full period of 2.5 

years between January 2011 and August 2013. For the urban and agglomeration network level 

(metro, light rail and tram), realisation data is used from a period of 18 weeks between June 

and October 2013 from different PT operators. This enables the incorporation of exposure to 

disturbances on each PT network level explicitly when considering vulnerability. For both the 

frequency and duration of each disturbance type 𝛿𝑛, it is statistically tested whether the 

empirical data fits a theoretical probability density function. By distribution fitting, parameter 

values 𝑓𝛿𝑛
 and 𝜏𝛿𝑛

 are estimated for the probability density functions for each disturbance 𝛿𝑛. 

Since particularly the frequency 𝑓𝛿𝑛
 with which some disturbances occur can be influenced by 

the weather, we test whether significant seasonal differences exist in average frequency of each 

disturbance 𝛿𝑛. In that case separate parameters are estimated for different seasons. In Cats et 

al. (2016b) an extensive description of this data analysis can be found, including the distribution 

of different disturbance types on different network levels.  

All disturbances 𝛿𝑛 are categorised in two classes based on the impact a disturbance has 

on infrastructure availability. Some disturbances usually lead to a partial unavailability of a link 

(e.g. a train breakdown leading to link blockage in one direction), whereas other disturbances 

lead to a link being completely unavailable (such as a train-car collision on a level crossing). In 

the Netherlands, PT operators apply different rescheduling measures depending whether there 

is a partial or full link blockage. This also means that the passenger impacts ∆𝑤𝑒,𝛿𝑛,𝜏 are 

different in these two scenarios, depending whether PT services on a certain link are partially 

or completely cancelled. Therefore, it is necessary to distinguish different disruption scenarios 

𝑆 for disturbances leading to partial versus full link unavailability, for which the link 

vulnerability 𝑐𝑒𝑛
𝑆 can be calculated. 
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6.2.2 Identification of link vulnerability 

When aiming to improve PT network robustness, it is important to identify which links are most 

vulnerable in the multi-level PT network. In scientific literature, two different approaches are 

applied to identify the most vulnerable network links (Knoop et al., 2012). The first approach 

uses full computation methods. In these methods, disturbances are simulated on each link 𝑒 ∈
𝐸 of the network separately to evaluate its vulnerability relative to other links. These methods 

have a clear advantage in terms of their completeness, since vulnerability of the complete link 

set 𝐸 can be assessed and compared. The largest disadvantage is that these approaches can be 

very time consuming. In the second approach, criteria are specified to pre-select a smaller 

number of vulnerable links in a network. Disturbances are only simulated on these selected 

links in a second step. This approach overcomes the disadvantage of very long computation 

times of full computation methods. However, since pre-selection criteria are used to identify a 

shortlist of vulnerable links, there is no guarantee that the most vulnerable links are remaining 

after the pre-selection phase. 

Since real-world, complex multi-level PT networks as we consider in this study are 

usually represented by a large number of links, computation times become unacceptably long 

when all relevant disruption scenarios would be simulated on each link separately. Therefore, 

it is necessary to apply a method to pre-select most vulnerable links. In scientific literature 

various criteria can be found to pre-select the most vulnerable links of road networks. However, 

there is limited literature where pre-selection criteria are specified for public transport networks. 

Only some examples can be found, e.g. Cats and Jenelius (2014) using a dynamic vulnerability 

analysis, and Bell (2003) and Zhang et al. (2010) using game theory. All these methods do not 

address exposure to disturbances explicitly, which makes them not suitable to apply for multi-

level PT networks. Hence, we develop a new methodology to identify the most vulnerable links 

in multi-level PT networks, which explicitly incorporates exposure to disturbances as well. 

Input for our new developed methodology is derived from existing methodologies developed 

to identify vulnerable links for road networks (Jenelius et al., 2006; Li, 2008; Tampère et al., 

2007; Immers et al., 2011; Knoop et al., 2012) and is adjusted based on multi-level PT network 

characteristics.  

 

When analysing the suitability of road network pre-selection criteria for identification of 

vulnerable links in multi-level PT networks, we can identify four intrinsic differences. First, 

criteria which consider the probability of disturbances on road networks calculate this 

probability for each link 𝑒 ∈ 𝐸. For PT networks, we propose to calculate exposure to 

disturbances per link segment 𝑦. PT operators usually apply standard rescheduling procedures 

in case of disturbances: for each location in the network a disruption scenario specifies how PT 

services are adjusted in case of partial or complete track unavailability. Because rescheduling 

possibilities for PT services depend on the availability of switches, turning loops, station 

capacity etc., these procedures are exactly equal for adjacent links with no switches or other 

rescheduling possibilities in between them. Such procedures are therefore designed per link 

segment - a set of adjacent links 𝑦 = {𝑒1, . . , 𝑒𝑚} taken together by the PT operator for which 

one standard disruption scenario applies - instead of per link.  

Second, pre-selection criteria for road networks are usually a proxy for disturbance 

impact, whereas the probability of a disturbance is not or only implicitly or roughly considered. 

Criteria which only consider the incident impact, implicitly assume an equal probability of 

disturbances on each link. When incident probabilities are considered for road networks, often 

one generic predictor (e.g. link length) is used to distinguish incident probabilities for different 

links. However, Yap (2014) and Yap et al. (2015) show that for identified disturbances 𝛿𝑛 on a 

multi-level PT network, different predictors (such as link segment length, vehicle-kilometres 
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per link segment) should be used to distinguish between incident probabilities for different link 

segments. In addition, it is clear that probabilities of a certain disturbance type 𝛿 are different 

for different PT network levels, given the different characteristics of these network levels. This 

shows it is not sufficient to assume an equal probability of disturbances for all links in a multi-

level PT network, or to use one generic predictor. Pre-selection criteria for multi-level PT 

networks should therefore be a proxy for both the probability of disturbances (using different 

predictors for different disturbance types 𝛿 and different parameter values 𝑓𝛿𝑛
 for different 

network levels) and the passenger impact of a disturbance.  

Third, in road networks some ratio between traffic volume and capacity (such as the 

Incident Impact Factor or V/C ratio) is often used as proxy for the impact of a disturbance. 

Since the real incident impact on travel time, costs and comfort ∆𝑤𝑒,𝛿𝑛,𝜏 can usually only be 

quantified after simulation of disturbances, a proxy for this impact has to be used in the 

identification phase. In PT networks the relation between volume and capacity is less relevant 

when approximating the impact of a disturbance, as limited congestion occurs between PT 

vehicles on PT networks - even in case of disturbances - compared to congestion between 

vehicles on road networks. The impact of a disturbance in PT networks is mainly related to the 

absolute number of passengers affected, instead of the V/C ratio of PT vehicles on a certain 

link. For example, a single-track local train line can have a very high V/C ratio if there are 

limited possibilities for trains to pass each other, whereas a very busy four-track train line might 

have a lower V/C ratio. In such case, the passenger flow on affected links is a better proxy to 

represent the impact of an incident than the V/C ratio. This in fact equals the passenger 

betweenness centrality measure as proposed by Cats and Jenelius (2014).  

Fourth, some pre-selection criteria for road networks only focus on the impact of a 

disturbance on the considered link 𝑒𝑖 itself, whereas other criteria also consider spillback effects 

to adjacent links 𝑒𝑗≠𝑖. For road networks, it is clear that disturbances can have spillback effects 

to other links. However, in PT networks spillback effects of disturbances also occur, though 

differently compared to road networks. Given the limited congestion between PT vehicles, there 

are no or only limited direct spillback effects to PT vehicles on adjacent link segments in case 

of disturbances. However, PT services on other link segments 𝑦𝑗≠𝑖 in the network can certainly 

be affected by a disturbance on link segment 𝑦𝑖. As explained, PT operators apply standard 

disruption procedures. In these procedures PT lines can be divided into two parts, shortened, 

rerouted via an alternative track or cancelled. For example, assume a PT line 𝑙 {𝑠𝑙1, . . , 𝑠𝑙5} 

which is cancelled between 𝑠𝑙3 and 𝑠𝑙5 after the occurrence of a disturbance on link segment 

𝑦𝑠3−𝑠4
, because there is insufficient capacity for short-turning near 𝑠𝑙4. This means that not only 

passengers on link segment 𝑦𝑠3−𝑠4
 are affected, but also passengers only travelling over link 

segment 𝑦𝑠4−𝑠5
. This illustrates that PT services on a certain link segment 𝑦𝑖 can be affected 

because of a first-order effect - a disturbance occurring on that link segment 𝑦𝑖 itself - and 

because of a second-order effect. This second-order effect is relevant in case a disturbance 

occurs on another link segment 𝑦𝑗≠𝑖, leading to disruption measures taken by the PT operator 

or infrastructure manager which also affect PT services on the considered link segment 𝑦𝑖. 

Except during the transition phase between regular PT operations and the disruption scenario, 

this spillback effect for PT networks can be considered more static compared to the dynamic 

spillback effects occurring on road networks.  

 

Based on the differences between PT and road network characteristics, we develop an adjusted 

methodology to identify the most vulnerable links in multi-level PT networks (Figure 6.2).  
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Figure 6.2. Methodology to identify vulnerable links in multi-level PT networks 

In this methodology, pre-selection criteria 𝐼1 to 𝐼4 are specified. 𝐼𝑦𝑖𝑛

1 (Eq.3) reflects the first-

order exposure: the expected time that a certain link segment 𝑦𝑖𝑛
 is exposed to reduced/no PT 

services because of non-recurrent disturbances occurring on that link segment 𝑦𝑖𝑛
 itself. This 

equals the product of the average frequency 𝑓∗
𝛿𝑛,𝑝𝑟,𝑤

 with which disturbance type 𝛿𝑛 occurs 

per time period on network level 𝑛 in season 𝑤 and the average duration 𝜏∗
𝛿𝑛,𝑝𝑟,𝑤 of each 

disturbance 𝛿𝑛 in season 𝑤 ∈ 𝑊. For each 𝛿𝑛 a predictor 𝑝𝑟 ∈ 𝑃𝑅 is determined which enables 

the transformation of the average frequency with which 𝛿𝑛 occurs per time period on the whole 

considered network level 𝑛 (which is known from the database with disturbances we used) to 

the average frequency per link segment 𝑦𝑖𝑛
. This transformation is based on the ratio between 

the value of this predictor 𝑥𝑝𝑟,𝑦𝑖𝑛
 on link segment 𝑦𝑖 and the value 𝑥𝑝𝑟,𝑌𝑛

 summed over all link 

segments of the total network level. For this criterion only the average frequency 𝑓∗ and average 

duration 𝜏∗ are used. This prevents the need for Monte Carlo simulation to draw values from 

the identified distribution functions, resulting in reduced computation times and reduced 

complexity in this link vulnerability identification phase.  

𝐼𝑦𝑖𝑛

2  (Eq.4) reflects the second-order exposure effect: the expected time that a certain 

link segment 𝑦𝑖𝑛
 is exposed to reduced/no PT services because of non-recurrent disturbances 

occurring on any other link segment 𝑦𝑗𝑛≠𝑖𝑛
, resulting in measures taken by PT operators which 

also affect PT operations on the considered link segment 𝑦𝑖𝑛
. In this study we used the 

rescheduling procedures as taken by PT operators in the Netherlands in reality in case of 

disturbances and assumed these procedures as a given, in order to determine which other link 

segments �̌�𝑗𝑛≠𝑖𝑛
 affect PT services on link segment 𝑦𝑖𝑛

 in case of disturbances. 𝐼𝑦𝑖𝑛

3  sums the 

first-order and second-order effects, thus expressing the total expected time a link segment is 

exposed to non-recurrent disturbances (Eq.5). 

 

𝐼𝑦𝑖𝑛

1 = ∑ ∑  𝑓∗
𝛿𝑛,𝑝𝑟,𝑤𝑊 ∗

𝑥𝑝𝑟,𝑦𝑖𝑛

𝑥𝑝𝑟,𝑌𝑛

∗ 𝜏∗
𝛿𝑛,𝑝𝑟,𝑤                    ∀   𝑦 ∈ 𝑌𝛿𝑛

               (3) 

 

𝐼𝑦𝑖𝑛

2 = ∑ ∑ ∑  𝑓∗
𝛿𝑛,𝑝𝑟,𝑤𝑊 ∗

𝑥𝑝𝑟,�̆�𝑗𝑛≠𝑖𝑛

𝑥𝑝𝑟,𝑌𝑛

∗ 𝜏∗
𝛿𝑛,𝑝𝑟,𝑤         ∀   𝑦 ∈ 𝑌𝛿𝑛�̆�                (4) 

 

𝐼𝑦𝑖𝑛

3 = 𝐼𝑦𝑖𝑛

1 + 𝐼𝑦𝑖𝑛

2                                 ∀   𝑦 ∈ 𝑌                            (5) 

 

Where 𝐼𝑦𝑖𝑛

3 considers the exposure of each link segment to non-recurrent disturbances 

explicitly, 𝐼𝑒𝑛
4  uses the number of passengers 𝑞 travelling over the considered link 𝑒 ∈ 𝐸 as 
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proxy for the impact of a disturbance (Eq.6). This value can be determined based on direct 

passenger counts (e.g. using data from Automated Passenger Count (APC) or Automated Fare 

Collection (AFC) systems) or after performing an undisturbed passenger assignment using a 

PT model. This indicator shows the passenger volume travelling over a certain link 𝑒 in case no 

disturbances would occur. Because passenger volume can differ for different links 𝑒𝑖 ∈
𝑦{𝑒1, . . , 𝑒𝑚}, this value is expressed for each link 𝑒 separately. For all considered links of the 

multi-level PT network the values of 𝐼𝑦𝑖𝑛

3  and 𝐼𝑒𝑛
4  can be plotted against each other. Links with 

the highest value for 𝐼3|𝐼4, or the other way around, appear on the Pareto frontier in this plot. 

By selecting all links which are plotted on or nearby the Pareto frontier, the most vulnerable 

links can be identified based on these pre-selection criteria. Adjacent links in the network which 

all appear on the Pareto frontier can be taken together as one link segment. If one would prefer 

to further prioritise these identified most vulnerable links, an assessment of the number of 

available alternative routes in the multi-level PT network could be performed for each of these 

links based on an expert judgment. Links for which few or no route alternatives are available 

can then be prioritised.  

 

𝐼𝑒𝑖𝑛

4 = 𝑞𝑒𝑖𝑛
     ∀   𝑒 ∈ 𝐸       (6) 

6.2.3 Quantification of link vulnerability 

When the most vulnerable links of the multi-level PT network are identified, vulnerability of 

these links can be quantified. Quantification of link vulnerability from a passenger perspective 

can be done using Eq.2, which explicitly considers both exposure to disturbances and the 

impact of these disturbances given the total multi-level PT network 𝑁 available. As explained 

in Section 6.2.1, different disruption scenarios 𝑆 can be distinguished for each link based on 

the impact of a disturbance 𝛿𝑛 on partial or full infrastructure unavailability. Given a chosen 

time horizon for which link vulnerability is quantified, Monte Carlo simulation is used to 

generate disturbances 𝛿𝑛 with a certain duration 𝜏𝛿𝑛
 for each distinguished disruption scenario. 

Based on the estimated parameters for frequency and duration of 𝛿𝑛,𝑤, values are drawn from 

the identified theoretical distribution functions. In a public transport assignment model the PT 

network and PT services are adjusted according to each disruption scenario 𝑆, based on which 

a new passenger assignment can be performed. The total monetised societal costs ∆𝑤𝑒,𝛿𝑛,𝜏 for 

all passengers travelling over all OD pairs can then be compared between the undisturbed 

situation and the specific disruption scenario 𝑆. 

 

    𝑐𝑡 = ∑ ∑  𝑛
𝑑=1 (𝛼𝑎𝑡𝑎 + 𝛼𝑤 ∑ 𝑡𝑤,𝑥

𝑛𝑡+1
𝑥=1 +  𝛼𝑖𝑛 ∑ 𝑡𝑖𝑛,𝑦 + 

𝑛𝑡+1
𝑦=1 𝛼𝑛𝑡

𝑛𝑡 +  𝛼𝑡 ∑ 𝑡𝑡,𝑧 +  𝛼𝑒𝑡𝑒) ∗ 𝑉𝑜𝑇
𝑛𝑡
𝑧=1

𝑛
𝑜=1

            (7) 

 

Eq.7 expresses the calculation of the perceived, monetised travel time effects 𝐶𝑡 given 

a network modelled with 𝑛 origins 𝑂 and 𝑛 destinations 𝐷. The different travel time components 

- access time from origin to a PT stop 𝑡𝑎, waiting time 𝑡𝑤 before boarding each PT service (the 

number of waiting moments 𝑥 equals the number of transfers 𝑛𝑡 + 1), in-vehicle time 𝑡𝑖𝑛 for 

each PT service (the number of used PT services 𝑦 equals the number of transfers 𝑛𝑡 + 1), the 

number of transfers 𝑛𝑡, transfer walking time 𝑡𝑡 for each transfer walk 𝑧, and the egress time 

from the PT stop to final destination 𝑡𝑒 - are all multiplied by their corresponding weight 𝛼 as 

perceived by passengers and monetised using the Value of Time (VoT). The parameter values 

we used for the different travel time weights and VoT are derived from Bovy and Hoogendoorn-

Lanser (2005) and Warffemius (2013). In these studies, the parameter values are derived by 

discrete choice model estimation based on individual passenger preferences, resulting in 
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aggregated, average parameter values suitable for the Dutch situation. Here we used a fixed 

VoT, independent from the amount of delay on a certain OD pair. In addition to travel time 

effects, the effects of disturbances on travel costs 𝑐𝑐 are also evaluated. Incorporating 𝑐𝑐 is 

especially important when considering disturbances in the context of multi-level PT networks. 

In case of disturbances, passengers sometimes have to use longer routes of another PT operator, 

potentially increasing travel costs. Another component when quantifying link vulnerability is 

the societal costs due to reduced travel comfort for seated passengers 𝑐𝑐𝑜𝑚𝑓,𝑠𝑒𝑎𝑡 and standing 

passengers 𝑐𝑐𝑜𝑚𝑓,𝑠𝑡𝑎𝑛𝑑 , respectively. This is of relevance, since particularly during disturbances 

the crowding level on remaining alternative routes in the PT network can increase substantially, 

thereby reducing the comfort level and increasing passengers’ perceived in-vehicle time. These 

additional societal costs are quantified based on the relation between crowding and perceived 

in-vehicle time, expressed as in-vehicle time multipliers with the parameter value of this 

crowding multiplier being in line with values found by Wardman and Whelan (2011). The 

societal costs of non-facilitated demand 𝑐𝑛𝑜𝑛−𝑓 are also quantified, given the possibility that 

during a disturbance passenger volume on a link of a certain alternative route can exceed the 

total supplied link capacity (seated plus standing capacity), and passengers have to wait an 

additional headway due to denied boarding. At last, by applying the rule of half to the 

generalised travel costs for each affected OD pair, cancellation costs 𝑐𝑐𝑎𝑛𝑐𝑒𝑙 are quantified for 

the part of the travellers that have to cancel their PT trip following a disturbance (reflecting a 

change in either mode choice or trip frequency choice). For a more detailed explanation of the 

quantification of 𝑐𝑐, 𝑐𝑐𝑜𝑚𝑓,𝑠𝑒𝑎𝑡, 𝑐𝑐𝑜𝑚𝑓,𝑠𝑡𝑎𝑛𝑑 , 𝑐𝑛𝑜𝑛−𝑓 and 𝑐𝑐𝑎𝑛𝑐𝑒𝑙 we refer to Yap (2014).  

 

∆𝑤𝑦𝑛,𝛿𝑛,𝜏 =  ∆𝑐𝑡 + ∆𝑐𝑐 + ∆𝑐𝑐𝑜𝑚𝑓,𝑠𝑒𝑎𝑡 + ∆𝑐𝑐𝑜𝑚𝑓,𝑠𝑡𝑎𝑛𝑑 + ∆𝑐𝑛𝑜𝑛−𝑓 + ∆𝑐𝑐𝑎𝑛𝑐𝑒𝑙         (8) 

 

Eq.8 shows all the components based on which the total monetised societal costs 

∆𝑤𝑦,𝛿𝑛,𝜏 of a disturbance are calculated for link segment 𝑦. To incorporate the distinguished 

disruption scenarios 𝑆 specified for each link segment 𝑦, we adjust Eq.2 in our proposed 

methodology to calculate the societal costs of link segment vulnerability within a specified time 

horizon as shown by Eq.9, thereby explicitly incorporating both exposure to disturbances and 

impact of disturbances. 

 

𝑐𝑦𝑛
=  ∑ ∑ 𝐸(𝑓𝑦𝑛,𝛿𝑛

𝑆 ) ∗𝛿𝑛
𝐸(𝜏𝑦𝑛,𝛿𝑛

𝑆 ) ∗ ∆𝑆 𝑤𝑦𝑛,𝛿𝑛,𝜏
𝑆      (9) 

6.3 Results 

6.3.1 Case study network 

The developed methodology for identification and quantification of link vulnerability is applied 

in a case study to the Randstad Zuidvleugel, the southern part of the most important economic 

area of the Netherlands (≈2.2 million inhabitants). This area is composed of two main cities 

The Hague and Rotterdam, and several smaller cities and villages located between and around 

these cities. This area is selected because of its relatively high PT network density with PT 

services on different network levels. The interactions between these network levels are 

especially interesting when considering multi-level PT networks. The PT network is modelled 

as super-network in a high level of detail with the transport planning software OmniTRANS 

with 5,791 zones. By selecting the Randstad Zuidvleugel as case study area, we allow for a 

detailed modelling of PT demand and supply within acceptable computation time by the public 

transport assignment model. For PT lines 𝑙 ∈ 𝐿 the seat capacity and crush capacity are 
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specified. A frequency based network representation is applied, meaning that waiting time for 

each PT line 𝑙 ∈ 𝐿 is assumed to be half of the inter-arrival time between two PT vehicles of 

that line 𝑙, with a user-specified maximum waiting time. Although a schedule based 

representation results in a higher accuracy, this requires more detailed model input and 

increases computation times for passenger assignment substantially. Besides, because of the 

relatively high frequency of PT lines in the Randstad, differences in modelled waiting time 

between a frequency based and schedule based network representation remain limited.  

 

In our model, four different time periods are distinguished: morning peak 7-8am, morning peak 

8-9am, evening peak 4-6pm and the remaining hours of the work day. Especially during the 

morning peak, PT demand is not uniformly distributed over the two hours of the morning peak 

in the Netherlands (CBS, 2013). Because we consider societal costs of crowding and non-

facilitated demand explicitly, assuming a uniformly distributed PT demand would lead to a 

biased quantification of these costs. Therefore, the morning peak is split in two separate periods 

7–8am and 8–9am with separate OD matrices. The public transport OD matrices are resulting 

from the regional demand model of this Zuidvleugel area, based on land use input, trip 

frequencies, trip distribution and modal split. The regional Zuidvleugel demand and PT 

assignment model we used have been calibrated and validated for 2011 as base year. The Zenith 

algorithm is applied for performing the passenger assignment in the undisturbed situation and 

for distinguished disruption scenarios 𝑆 (Brands et al., 2013). Despite the mentioned importance 

of comfort and crowding effects, these aspects are not incorporated in the generalised cost 

function used in the assignment. This is because especially during unplanned disturbances 

passengers are not expected to know the crowding level of PT services on alternative routes on 

beforehand, and are therefore not expected to adjust their route choice based on this a priori. 

Therefore, we do not expect that crowding level is dominant as component of the generalised 

cost function used to predict passenger route choice during disturbances. Besides, incorporating 

the capacity of PT lines in the assignment would lead to an iterative, capacity-constrained 

assignment, which increases computation times substantially. The perceived additional 

disutility because of discomfort on the chosen route is however incorporated afterwards in the 

evaluation of link vulnerability by 𝑐𝑐𝑜𝑚𝑓,𝑠𝑒𝑎𝑡 and 𝑐𝑐𝑜𝑚𝑓,𝑠𝑡𝑎𝑛𝑑, where the difference in perceived 

in-vehicle time due to crowding between the undisrupted and disrupted scenario is quantified. 

6.3.2 Identification of link vulnerability in the Randstad Zuidvleugel network 

Vulnerable links are identified for the case study network by using the historic dataset of 

realised disturbances on the network levels of different PT operators in the Netherlands as input 

for calculating the first-order, second-order and total link segment exposure. Figure 6.3 shows 

the expected first-order, second-order and total exposure to non-recurrent disturbances per year 

for link segments on the agglomeration (metro / light rail) network level. Figure 6.4 shows the 

expected total exposure per year for link segments on the regional (train), agglomeration (metro 

/ light rail) and urban (tram) network level. The metro and light rail network level are grouped 

together, since these modes operate on the same functional network level. Several insights can 

be gained from Figure 6.3 and Figure 6.4.  

First, Figure 6.3 shows the importance to incorporate second-order spillback effects 

when calculating the expected total time a link segment is exposed to large disturbances. Figure 

6.3 clearly shows that the expected total time several link segment 𝑦𝑖 are blocked is heavily 

influenced by disturbances occurring on other link segments 𝑦𝑗≠𝑖. Not considering these 

second-order effects would lead to substantial underestimation of link segment vulnerability.  

Second, it becomes clear that the expected total link segment exposure of light rail link 

segments near The Hague (triangular dots in Figure 6.3 up to no. 283) is substantially larger 
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compared to link segments of the Rotterdam metro network (triangular dots in Figure 6.3 from 

no. 283). This can be explained by the considerably higher switch density on the Rotterdam 

metro network compared to the light rail network near The Hague. This results in disturbances 

remaining more local in Rotterdam, reducing their second-order propagation effect to other link 

segments. A network with a relatively low switch density means that PT services on more links 

adjacent to the link where the disturbance actually occurs need to be adjusted, thereby affecting 

a larger group of passengers. This also means that links will suffer more often from disturbances 

occurring on other adjacent links, thus increasing the second-order exposure time to 

disturbances. In the Rotterdam metro network, there are switches available near almost every 

metro station. This means that when a disturbance occurs on a certain metro link segment, 

thereby blocking the link in either one or both directions, the operator splits metro services in 

two separate parts up to both sides of the link segment. The second-order effect then equals the 

first-order effect, since disturbances occurring on link segment 𝑦𝑖1 in direction 1 will only affect 

services on the exact same link segment in the other direction 2 𝑦𝑖2 as second-order effect.  

 

 

Figure 6.3. Expected first-order, second-order and total exposure per link segment of the light 

rail / metro case study network 
 (link segments up to no. 283: The Hague; link segments from no. 283: Rotterdam) (blue dots can be exactly 

equal to the pink dots in some cases) 

Third, Figure 6.4 shows that train link segments are relatively robust against exposure 

to disturbances compared to metro / light rail and tram link segments. Possible explanations for 

this are the own right of way for trains, the availability of a signalling system to prevent train-

train collisions and the relatively low train intensity on train links compared to metro, light rail 

or tram links.  

Fourth, in general the link segments of the tram network of The Hague (triangular dots 

left in Figure 6.4) are more vulnerable to exposure to disturbances compared to link segments 

of the Rotterdam tram network (triangular dots right in Figure 6.4). This can partly be explained 

because in general more parallel (sometimes unused) tram tracks are available in Rotterdam, 

which can function as backup in case of disturbances and reduce second-order exposure effects. 

The triangular outlier in the middle of Figure 6.4 shows the specific link segment Ternoot - 

Laan van NOI of the tram network of The Hague. This link is located directly before/after the 

light rail route Laan van NOI – Zoetermeer / Rotterdam, without intermediate rescheduling 

possibilities. A disturbance on that part of the light rail network therefore also affects PT 
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services on this tram link segment. Therefore, second-order effects are relatively large on this 

particular link segment. 

 

 

Figure 6.4. Expected total exposure to disturbances per link segment of the multi-level case 

study network  
(yellow triangles left: tram network The Hague; yellow triangles right: tram network Rotterdam) 

 

Figure 6.5. Identification of vulnerable links of the multi-level case study network by plotting 𝑰𝟑 

against 𝑰𝟒 

In Figure 6.5, the results for pre-selection criteria 𝐼3 (expected total exposure to disturbances 

per year) and 𝐼4 (expected passenger volume) are plotted against each other for each link. Based 

on this figure we stress the importance of using pre-selection criteria in a methodology to 

identify vulnerable links in a multi-level PT network which capture both exposure to 

disturbances and the impact of each disturbance explicitly. Figure 6.5 clearly illustrates there 

are link segments on the Pareto frontier of which the impact of a disturbance is expected to be 

relatively low, but which are very vulnerable because of relatively heavy exposure to 

disturbances (see for example the most right triangular dots in Figure 6.5). If only the impact 

of a disturbance would be considered, only the busiest links of the train network would be 
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identified as most vulnerable. However, given the Pareto frontier where incident probability 

and impact are both considered, we conclude that there is no network level or mode which 

clearly contains most vulnerable links. Links on or nearby the Pareto frontier are from the train, 

metro / light rail and tram network. Train links are especially vulnerable because of the expected 

large passenger impact of disturbances, whereas metro and tram links are mainly vulnerable 

when a combination of relatively heavy exposure to disturbances and a relatively large number 

of affected passengers is expected. 

6.3.3 Quantification of link vulnerability of link segment Laan van NOI - Forepark 

The developed methodology to quantify link vulnerability is applied to the light rail segment 

Laan van NOI - Forepark. This link segment is selected from the Pareto frontier as shown in 

Figure 6.5 as example. To illustrate our methodology, link vulnerability for this segment is 

quantified in the current situation without additional measures. This is contrasted with the 

quantification of link vulnerability when a measure would be applied which potentially reduces 

the vulnerability of this segment. The results of this case study application are shown in Figure 

6.6, where monetised link vulnerability is expressed for the current situation without measures 

(left), and after testing the impact of a robustness measure (right). Public transport services on 

this link segment are operated by two different operators together: HTM and RET. Disturbances 

are generated using Monte Carlo simulation for a time horizon of 10 years. Based on this 

simulation we can conclude that during 10 years the light rail segment Laan van NOI - Forepark 

is expected to be exposed to non-recurrent disturbances for 964 hours. Assuming on average 18 

hours PT operation per day, this means that in 1.5% of the time PT services on that link segment 

are blocked due to disturbances. In case this link segment is blocked, the applied passenger 

assignment model shows which alternative routes in the multi-level PT network are used. Link 

segment vulnerability 𝑐𝑦𝑛
 is calculated using Eq.9 in the Section 6.2, by multiplying expected 

exposure to disturbances and expected disturbance impact ∆𝑤𝑦𝑛,𝛿𝑛,𝜏. ∆𝑤𝑦𝑛,𝛿𝑛,𝜏 is calculated 

using Eq.8 by summation of the monetised impact of a disturbance on passenger travel time, 

costs, crowding, non-facilitated demand and trip cancellation costs. The total monetised 

passenger travel time effects, in turn, are calculated using Eq.7, in which all travel time 

components - access time, in-vehicle time, waiting time, walking time, transfer time and 

number of transfers - are calculated and summed. In the current situation, the expected total 

societal costs of disturbances on this link segment in 10 years equal €4.3 million. This value 

expresses the societal costs of vulnerability of the analysed link segment. Figure 6.6 (left) 

shows that additional transfers and their related waiting time and transfer time are the most 

important contributors to these societal costs. During these 10 years, 787 disturbances are 

expected on this link segment according to our simulation results. This means that expected 

average societal costs per disturbance equal €5.4 thousand.  

 

To illustrate our method, we also developed a measure aiming to improve robustness of this 

link segment. We evaluated this measure using a societal cost-benefit analysis. Since many 

affected passengers use the local train connection on the more or less parallel train track 

between Zoetermeer, Ypenburg and The Hague as backup during disturbances, we propose a 

temporary increase in frequency on this connection. We investigated adding two temporary 

stops for intercity train services operating on this parallel train track at two already existing 

local train stops, Zoetermeer and The Hague Ypenburg, only in case PT operations on the light 

rail segment Laan van NOI - Forepark are disrupted. In that case, the frequency of stopping 

train services between Zoetermeer, Ypenburg and The Hague is effectively doubled during 

disturbances. This improves transfer possibilities between network levels and improves the 

backup function of the train network for the disrupted light rail network. A disadvantage 
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however is that the travel time for through travellers in the intercity service increases with ≈5 

minutes caused by the additional stops, which also results in additional operational costs. 

After generating disturbances using a pseudo-random generator, we can quantify the 

robustness effects of this measure (see Figure 6.6 right). Total societal costs of link segment 

vulnerability after 10 years now equal €3.9 million. This means that this measure reduces the 

costs of vulnerability of this link segment by 8%, therefore having a positive Net Present Value. 

The expected average societal costs per disturbance now equal €5.0 thousand. This measure 

especially reduces waiting time substantially, at cost of an increase in total in-vehicle time. 

However, monetised benefits from waiting time reduction outweigh the monetised costs of 

additional in-vehicle time.  

 

 

Figure 6.6. Societal costs of link segment vulnerability Laan van NOI - Forepark for the current 

situation (left) and for the proposed measure (right) 

We can formulate some points for discussion, regarding the quantification of the robustness 

benefits of this specific case study measure. First, for a successful implementation of measures 

using the multi-level PT network it is important to consider the distribution of financial and 

societal costs and benefits between stakeholders involved. Most costs of the proposed measure 

are for the Dutch train operator NS, because of additional timetable hours their trains have to 

run and additional travel time for train passengers, despite the disturbance occurring on the 

network operated by the HTM and RET. To implement this measure successfully, it seems 

likely that (financial) incentives have to be provided to the Dutch Railways by PT authorities 

or the PT operators HTM and RET. Second, we did not quantify the network wide effects for 

train passengers caused by the increased travel time in intercity services, for example when 

connections later on the route are missed. We however did check that sufficient buffer time 

between conflicting trains was available in the timetable on the specific train track in case 

running time of intercity trains would be extended by 5 minutes in our measure. Third, for a 

successful implementation of the proposed measure it is required that the RET and HTM 

provide passengers information about the temporary doubled frequency of train services 

stopping at the stations Zoetermeer and The Hague Ypenburg, so that passengers can 

incorporate this in their route choice accordingly.  
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6.4 Conclusions and Further Research 

Despite the importance of robust public transport networks, the full impact of public transport 

network vulnerability on passengers has not been considered in scientific literature and practice 

yet. The added value of this study is the development of a methodology to identify the most 

vulnerable links in multi-level public transport networks, and to quantify link vulnerability for 

these identified links. To our best knowledge, this study is the first which addresses full and 

realistic passenger impacts of disturbances in both the identification and quantification of link 

vulnerability. Based on our study, we formulate methodological, practical and policy-related 

conclusions.  

 In our study we propose a methodology to systematically identify the most vulnerable 

links in a multi-level public transport network. Based on the identified vulnerable links, our 

methodology allows for quantification of the full passenger impacts of disturbances on these 

vulnerable links. Contrary to single-level network perspectives, we consider the integrated, total 

multi-level PT network, including PT services on other network levels, which remains available 

after the occurrence of a certain disturbance. This results in a more realistic impact 

quantification compared to single-level approaches. In our approach, both exposure to large, 

non-recurrent disturbances and the impact of these disturbances are analysed in a systematic 

manner in link vulnerability identification and quantification. Our case study results show the 

importance of incorporating exposure to disturbances explicitly in the identification of 

vulnerable links, since only considering the impact of disturbances would result in a very 

different list of most vulnerable links. Based on our results, we also stress the relevance of 

taking into account second-order spillback effects in this methodology when calculating total 

link segment exposure to disturbances. Not considering second-order exposure to disturbances 

can lead to substantial underestimations of link vulnerability. 

Our practical case study application shows that train network links are less frequently 

exposed to disturbances, compared to links of the urban tram network or light rail / metro links 

on the agglomeration network level. The passenger impact of disturbances on the train network 

is however relatively large, due to the large passenger flows affected. Our study shows that 

therefore particularly busy links of the light rail / metro network are vulnerable, given the 

relatively high disruption exposure and relatively high number of passengers affected. From 

our case study we estimate that the monetised passenger impact of disturbances on one single, 

relatively vulnerable light rail / metro link segment equals €4.3 million over 10 years.  

Currently, only the costs of measures aiming to improve robustness are known to policy-

makers. Based on our methodology we are able to monetise the societal costs of disturbances 

as well. Besides, applying our methodology enables the quantification of the part of these 

societal costs which can be reduced by a certain robustness measure. This allows us to express 

robustness benefits of a certain measure in monetary terms and to compare these with the 

required costs of that measure, thereby quantifying the value of robustness. This enables policy-

makers to make a trade-off between costs of robustness measures and monetised robustness 

benefits of these measures. From a policy perspective, it is important to realise that the topic of 

robustness should always be considered as trade-off with other aspects. Some robustness 

measures (such as the construction of additional switches) can on the one hand reduce the 

societal costs of a disturbance, once a disturbance occurs, but on the other hand increase link 

exposure to disturbances. Other measures can reduce the impact of a disturbance for affected 

passengers, while increasing travel time for other groups of passengers. Some measures might 

be able to improve robustness substantially on the one hand, but require large investments on 

the other hand. The result of these trade-offs will be different for different locations in the 

network and depends on the frequency with which disturbances occur, the impact of 

disturbances, the number of passengers affected by the disturbance and the extent to which 
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alternative routes are available in the multi-level PT network. Applying our methodology 

allows decision-makers to get insight in these trade-offs for each specific location, where all 

aspects relevant for such trade-off are expressed in the same, monetary units. Therefore, our 

methodology helps to support and rationalise the decision-making process regarding the 

implementation of different robustness measures. It provides insights how the additional travel 

time during disturbances can be reduced by certain robustness measures. This output can be 

used to quantify the accessibility benefits of different robustness measures, for example by 

using the number of locations or activities that can be reached by public transport within a 

certain time during disturbances. This helps prioritising measures based on their contribution 

to accessibility. 

 

We formulate five recommendations for further research. First, costs for rescheduling and 

recovery of the planned timetable, vehicle and personnel circulation are not considered in our 

study. Incorporating this would further increase the financial and societal costs of disturbances. 

Therefore, the societal costs of disturbances as calculated in this research can be considered a 

lower bound. Second, we recommend a further extension of our proposed method to identify 

vulnerable links. In our study, the most vulnerable links from the Pareto frontier can be selected 

based on a qualitative assessment of the number of available alternative routes for each link. 

By quantifying this last step, our methodology can be further improved. For example, for each 

OD pair affected by a disturbance on a certain link, the number of feasible route alternatives 

and their remaining capacity could be calculated by applying route choice set criteria (see for 

example Fiorenzo-Catalano, 2007). Third, we recommend to incorporate dynamic en-route 

passenger route choice in the disrupted passenger assignment based on travel information 

available to passengers (see for example Van der Hurk et al., 2012; Cats and Jenelius, 2014). 

For all our assignments we only considered pre-trip route choice, assuming full information 

about a disturbance during the whole trip. This shows the potential of the multi-level PT 

network to function as backup in case of a disturbance. However, in reality disturbances are 

dynamic and there is not always full information available about the disturbance. It is therefore 

interesting to incorporate the dynamics of disturbances and the role of information provided to 

passengers, combined with en-route passenger route choice, in the assignment. Fourth, we 

recommend a further node-based vulnerability analysis next to our performed link-based 

vulnerability analysis. By explicitly studying which public transport stops are most vulnerable 

by executing a similar node-based vulnerability analysis, insights can be gained in different 

levels of vulnerability for different types of public transport stops. In a Dutch context, the Dutch 

Railways classify all their stations into six categories based on their function and number of 

passengers, as for example applied by Geurs et al. (2016) and La Paix Puello and Geurs (2016). 

A node-based vulnerability analysis can provide insights to policy-makers which station type 

is particularly vulnerable, thereby prioritising the type of stations where robustness measures 

have most societal value. Fifth, it should be mentioned that a multi-level approach regarding 

PT robustness is rather complex in terms of collecting revealed data about disturbances 

occurring on the networks of multiple PT operators, assignment calculation times, and 

implementation of measures which exceed the borders of the network of a certain PT operator. 

PT authorities could play a role here by developing passenger-oriented incentives for operators 

in case of disturbances, which take the total multi-level PT network into consideration. 
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Part III 

Towards Controlling Disruption Impacts 
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7. Where Shall We Sync? Clustering Passenger 

Flows to Identify Urban Public Transport Hubs and 

their Key Synchronisation Priorities 

After measuring disruptions impacts (Part I of this research) and predicting the impacts of 

future disruptions (Part II of this research), we move in the last stage of this research (Part III) 

towards developing methods to mitigate disruption impacts. This part answers the third research 

question (as defined in Section 1.3): how can we predict and control the direct and propagated 

impacts of disruptions on the urban public transport network in a multi-level network 

environment? To this end mitigation measures can be applied to the urban network itself, when 

controlling impacts of disruptions which occurred on the urban network or on another level of 

the multi-level public transport network. Besides, mitigation measures can also be applied on a 

different network level, such as the regional train network level, if this affects the disruption 

propagation to the urban network. In this chapter, we focus on measures applied to the urban 

network, whilst Chapter 8 considers measures applied to the train network level. In this 

chapter, we focus specifically on public transport synchronisation as mitigation measure applied 

to the urban network. The contribution of this work is the development of a data-driven 

clustering method to identify the most important locations and routes to prioritise for optimal 

synchronisation, when network-wide optimisation becomes computationally expensive or 

infeasible for large, real-world urban public transport networks. Once these locations and routes 

are determined, optimal synchronisation can be applied to this selection of locations and routes 

in a next step, such that disruption and delay impacts can be reduced by holding the appropriate 

public transport trips.    

 

This chapter is based on an edited version of the following article: 

 

Yap, M.D., Luo, D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2019). Where shall we sync? 

Clustering passenger flows to identify urban public transport hubs and their key synchronization 

priorities. Transportation Research Part C, 98, 433-448. 

© 2018 Elsevier Ltd. All rights reserved. 
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7.1 Introduction 

Transfers are an inevitable part of public transport (PT) journeys, since it is not economically 

viable to directly connect all origin-destination pairs in a network. Transfer locations are 

however potential weak parts of the total passenger journey experience. Empirical studies show 

that transfers are perceived as one of the most negative components in the public transport 

journey (e.g. Schakenbos et al., 2016; Van Oort et al., 2016). Improving the transfer experience 

thus offers potential to improve the attractiveness of public transport and to increase public 

transport ridership. The passenger transfer experience can be improved by objective and 

subjective means. Subjective measures focus on improving the waiting time experience at stops 

during a transfer (e.g. Van Hagen, 2011). On a strategic level, objective measures aim to reduce 

passenger waiting times by optimising PT lines (e.g. Gkiotsalitis et al., 2019) and optimising 

headways between services (e.g. Gkiotsalitis and Cats, 2018; Varga et al., 2018). On a tactical 

and operational level, objective measures relate to transfer synchronisation, thereby aiming to 

reduce transfer waiting (and possibly walking) time.  

Although minimising passengers’ transfer waiting time by PT synchronisation is 

important during tactical planning and real-time operations, there are limits for optimisation in 

terms of scalability and complexity. The Timetable Synchronisation Problem1 (TSP), aimed to 

optimise transfer synchronisation in PT networks, has been addressed earlier in many studies 

in the context of either tactical planning (timetable design) or real-time control. The latter 

results from stochasticity or disruptions affecting actual vehicle arrival and departure times. In 

these studies, solving the TSP is usually applied to a relatively small case study network. For 

example, Lee et al. (2014) consider the impact of synchronising two lines during tactical 

planning on service reliability, whereas Gavriilidou and Cats (2019) study real-time 

synchronisation of two tram lines based on passenger data, both for one specific transfer 

location. Nesheli and Ceder (2015) compare the effects of different real-time control tactics 

when solving the TSP, applied to a case study network of three bus lines with two transfer 

locations. Hadas and Ceder (2010) optimise real-time transfer synchronisation by simulation of 

different control strategies, applied to a case study network consisting of one train line, three 

bus lines and five transfer locations. The abovementioned studies are examples of mathematical 

programming or control theory approaches applied to the TSP. These studies apply their 

approach either to a selection of PT lines and transfer locations from the total PT network, or 

to PT networks constituting small- to medium-sized graphs (e.g. metro networks consisting of 

a few lines and transfer locations). In contrast, to the best of our knowledge, no studies have 

been successful in solving the TSP optimisation process for large, real-world urban PT 

networks, often consisting of tens to hundreds of PT lines and transfer locations. Hence, finding 

or even approximating an optimal solution for the TSP becomes mathematically expensive, if 

not infeasible. 

Solving the TSP is considered NP-hard due to the combinatorial nature of the problem 

(Desaulniers and Hickman, 2007). For practical problems in larger real-world PT networks, 

computation time for solving this problem can therefore rise substantially, making it infeasible 

to solve. Enumeration of all transfer possibilities for a large real-world network would result in 

a very large number of transfer possibilities, since each transfer location served by |𝑙| 
unidirectional lines provides |𝑙| ∗ (|𝑙| − 2) transfer possibilities, excluding transfers to the same 
                                                        
1 The Timetable Synchronisation Problem (TSP) aims to determine the departure times at transfer 

locations for all trips of a PT network during tactical planning (timetable design) or during real-time 

operations (i.e. holding), constrained by the headways of each line. The objective is typically to 

minimise total passenger transfer waiting time, or maximise the number of direct transfers. Decision 

variables are the departure time from the transfer location, possibly together with the dispatching time 

from the first stop of the line or the departure time from the previous holding point. 
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line. For example, enumerating all transfer possibilities for the urban PT network of The Hague, 

the Netherlands, provides 1,720 transfer possibilities in total between all lines. Solving the TSP 

for all transfer possibilities of this whole network would become infeasible within reasonable 

computation times. 

 

To address the computational challenges of solving the TSP for larger, real-world urban PT 

networks, we propose a methodology for systematically determining where in the network, and 

for which lines transfer synchronisation should be prioritised. Our study thus introduces two 

steps preceding solving the TSP: identify key priorities (a) where to synchronise, and (b) which 

lines to synchronise. These two steps are aimed at reducing the combinatorial complexity of the 

subsequent TSP, and result in a subset of transfer locations and lines where synchronisation 

should be prioritised based on passenger transfer flows. Subsequently, the optimisation process 

to solve the TSP can be applied to this subset, resulting in (an approximation of) optimal 

synchronisation at the most important locations and amongst the most important lines. The 

novelty of this study lies in problem definition and in using a combination of approaches which 

have not been used previously for addressing this key planning and operation challenge. 

The first step of our methodology is necessary to find a subset of most important 

transfer locations from the large number of transfer locations a real-world urban PT network 

consists of, and to determine the spatial demarcation of these urban transfer locations. Given 

the large number of transfer locations within a real-world urban PT network, the most important 

transfer locations - defined as hubs - are prioritised during transfer synchronisation. 

Determining the geographical boundaries of transfer locations in high-density urban PT 

networks is however far from a trivial task. In airline networks for example, the spatial 

demarcation of a hub is usually unambiguous, given the well-defined physical boundaries of 

airports and the large distance between airports. The same reasoning applies to train stations 

being part of an (inter-)regional train network as well. Conversely, the spatial demarcation of 

transfer locations is less clear for urban PT networks, since many stops are located within 

walking distance from each other. Locations in the urban network where there is a high flow of 

transferring passengers (e.g. a bus terminal, train station or shopping area) usually have a large 

number of tram and bus stops in their surroundings. It is however unclear which of these stops 

can be considered as one coherent transfer location, and which stops do not make up a part of 

this transfer location. On the one hand, PT stops which share the same public name but are 

located a bit further away from the other PT stops with this name, could constitute part of one 

large transfer location, not belong to this transfer location, or possibly form a separate, second 

transfer location, depending on the passenger transfer flows between all different PT stops. On 

the other hand, given the relatively small distance between different stops in an urban PT 

network, there can be substantial transfer flows (involving walking) between stops with 

different public names, which could mean these stops form one transfer location based on 

passenger flows. It is therefore necessary to develop a methodology to systematically identify 

the spatial demarcation of urban PT hubs, being the most important transfer locations, without 

relying only on local knowledge, geographical information or public stop names.  

The second step of our methodology uses the identified hubs with their spatial 

demarcation from the first step, to determine synchronisation priorities within each of these 

hubs. Based on the spatial demarcation, it can be determined which lines within a hub should 

be considered in the prioritising process. When the most important transfer locations for transfer 

synchronisation are determined, solving the TSP within a specific hub can still be problematic 

due to the number of transfer possibilities. For example, a hub with 15 bidirectional PT lines 

already results in 840 transfer combinations, which makes optimising coordination between all 

lines simultaneously computationally challenging. In order to make solving the TSP feasible, 

there is a need to identify which PT lines in which direction should be considered as one group 
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- in the remainder of this chapter coined as one line bundle - to be subject to synchronisation 

efforts simultaneously. 

 

We apply cluster analysis as the unsupervised learning technique to identify the hubs and line 

bundles to synchronise. Machine learning approaches have been applied in a variety of studies 

related to understanding travel patterns and predicting passenger flows. Examples of studies 

applying unsupervised learning techniques to better understand travel patterns are Agard et al. 

(2007), Ma et al. (2013), Cats et al. (2015b), El Mahrsi et al. (2017) and Luo et al. (2017). 

Studies performed by Wei and Chen (2012), Ding et al. (2016) and Li et al. (2017b) are 

exemplary for supervised machine learning applications to better predict passenger flows. The 

variety of applications of machine learning techniques in public transport demonstrates the 

potential of using machine learning. Notwithstanding, to the best of our knowledge, machine 

learning has not yet been applied to identify the spatial boundaries of hubs and to identify line 

bundles within hubs. This emphasises the need to develop a new machine learning application 

to be able to address our research statement to prioritise locations and line bundles for 

synchronisation. In this study, we develop a generic methodology which is data-driven and 

independent from local network knowledge or a specific network topology by applying 

unsupervised learning methods. We adopt a passenger perspective, thereby performing our 

clustering fully based on passenger transfer flow data, rather than using geographical 

information or incorporating operator constraints in the prioritisation. We apply our proposed 

methodology to the urban PT network of The Hague, the Netherlands as a case study.  

 The main contributions of this study are therefore (a) the development of a data-driven 

methodology to identify hubs with their spatial demarcation in urban PT networks; (b) the 

determination of line bundles within these hubs that need to be prioritised in transfer 

synchronisation, based on a graph representation of transfer patterns and a community detection 

technique adopted from the field of complex network science. Section 7.2.1 addresses our 

methodology for identifying the spatial boundaries of transfer locations and selecting hubs from 

these transfer locations. Section 7.2.2 describes the approach to identify line bundles to 

prioritise in transfer synchronisation. In Section 7.3, the case study is introduced. Section 7.4 

discusses the results of the successive steps of our methodology, followed by conclusions and 

further research recommendations in Section 7.5.  

7.2 Methodology 

For the remainder of the chapter, we introduce indices, sets and variables as presented in Table 

7.1. Furthermore, we introduce the following definitions. A transfer location 𝑡 consists of one 

or more stops 𝑠 ∈ 𝑆 which are considered one coherent cluster based on passenger transfer 

flows. Since not all stops 𝑠 ∈ 𝑆 are part of a transfer location, 𝑇 ⊆ 𝑆 applies. Hubs 𝐻 are the 

most important transfer locations amongst 𝑇 based on the passenger transfer flows between 

stops, so that 𝐻 ⊆ 𝑇 applies. Each public transport line 𝑙 ∈ 𝐿 represents a route with a unique 

public line number as communicated to passengers in a certain direction and is therefore 

unidirectional. Each cluster of unidirectional public transport lines which should be considered 

as one group simultaneously during synchronisation at a hub ℎ ∈ 𝐻 is defined as a line bundle 

𝑐 ∈ 𝐶, with 𝑐 = {𝑙1
𝑐, 𝑙2

𝑐, … , 𝑙𝑛
𝑐 }.  

 

Figure 7.1 presents a flowchart with all steps of the proposed methodology. It shows the 

methodology used to identify hubs and their spatial demarcation to prioritise for 

synchronisation (Section 7.2.1), and the methodology used to identify the line bundles to 

synchronise simultaneously within each identified hub (Section 7.2.2). 
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Table 7.1. Indices and sets, variables and parameters 

Indices and sets 

𝑣, 𝑉 index for each node of graph 𝐺, set of nodes 

𝑒, 𝐸 index for each edge of graph 𝐺, set of links 

𝑠, 𝑆 index for each public transport stop, set of stops 

𝑙, 𝐿 index for each unidirectional public transport line, set of lines 

𝑖, 𝐼 index for matrix rows representing origin nodes, set of origin nodes 

𝑗, 𝐽 index for matrix columns representing destination nodes, set of destination nodes 

𝑡, 𝑇 index for selection of stops identified as transfer location, set of transfer locations 

ℎ, 𝐻 index for selection of transfer locations identified as hub, set of hubs 

𝑐, 𝐶 line bundle, set of line bundles 

Variables 

𝑎𝑖𝑗 element of (weighted) adjacency matrix (Section 7.2.2) 

𝑑 scheduled headway 

𝑓𝑖𝑗  passenger transfer flow between 𝑖 and 𝑗 

𝑘𝑡 passenger transfer flow between all stops that belong to transfer location 𝑡 

𝑝𝑖𝑗 element of adjacency matrix of null model (Section 7.2.2) 

𝑞 modularity 

𝑤𝑖 the sum of the weights of the edges attached to node 𝑖 in the definition of modularity 

Parameters 

𝛾𝑚𝑎𝑥 maximum transfer walking distance 

𝜀 maximum distance function value to form a cluster in DBSCAN (Section 7.2.1) 

𝜃 minimum number of stops required to form a cluster in DBSCAN (Section 7.2.1) 

𝜗 walking speed 

7.2.1 Identification of transfer location priorities for synchronisation 

Infer stop-to-stop transfer flow matrix 

The first step of our methodology is to infer the stop-to-stop transfer flow matrix, as visualised 

by the first row of phase 1 in Figure 7.1. As input for our study we use passenger data from 

Automated Fare Collection (AFC) systems and PT vehicle position data obtained from 

Automated Vehicle Location (AVL) systems for urban tram and bus services. Each transaction 

from AFC systems contains at least the passenger smart card id, tap in time, tap in stop, and the 

vehicle line and trip id of the run a passenger boarded for each journey leg separately. In some 

cases - such as Seoul, Queensland and the Netherlands - the passenger tap out time and tap out 

stop are also registered. In case of entry-only AFC systems, the alighting location can be 

inferred using different destination inference algorithms, of which a trip chaining algorithm is 

most commonly applied (e.g. Trépanier et al., 2007; Zhao et al., 2007; Nunes et al., 2016; 

Munizaga and Palma, 2012). This results in AFC transactions with information about the 

passenger tap in and tap out time and location used as input for our study (see Table 7.2 as 

illustrative data format). Each row of the AVL data contains information about the scheduled 

and realised arrival time and departure time of each PT run with corresponding trip id for each 

stop (see Table 7.3 for illustration purposes). Besides, the coordinates of each PT stop of the 

considered urban PT network are used as input. Each separate platform has a unique stop id and 

unique coordinates. 
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Figure 7.1. Flow chart of the proposed methodology 
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Table 7.2. Illustration of format AFC data 

Tap in  

date and time 

Tap in  

stop id 

Tap in 

line 

Tap out  

date and time 

Tap out 

stop id 

Trip 

id 

Vehicle 

id 

Smart 

card id 

4-3-2018 

11:42:37 

35309 6 4-3-2018 

12:03:19 

34997 3423 3050 81675688 

4-3-2018 

12:15:57 

30091 18 4-3-2018 

12:23:04 

32857 6545 187 81675688 

Table 7.3. Illustration of format AVL data 

Stop 

id 

Trip 

id 

Scheduled  

arrival time 

Realised  

arrival time 

Scheduled 

departure time 

Realised  

departure time 
1119 4464 2017-01-06 19:22:35 2017-01-06 19:23:25 2017-01-06 19:22:35 2017-01-06 19:23:49 

1119 4465 2017-01-06 18:23:48 2017-01-06 18:26:26 2017-01-06 18:23:48 2017-01-06 18:26:44 

 

Since AFC data contains passenger transactions per journey leg for urban tram and bus 

services, we apply a transfer inference algorithm to determine which transactions constitute one 

passenger journey. In this study, we apply the transfer inference algorithm proposed by Yap et 

al. (2017), which elaborates on previous work by Gordon et al. (2013). This algorithm 

distinguishes transfers from final destinations using assumptions on passenger behaviour during 

both undisrupted and disrupted scenarios. Using this transfer inference algorithm has therefore 

the advantage that no a priori data cleaning or data classification as disrupted or undisrupted is 

needed, making the need to demarcate the time the passenger impact of a disruption starts and 

ends obsolete.  

To execute this algorithm, we fuse the AFC and AVL datasets based on the trip id 

variable both data systems have in common. For urban tram and bus networks with 100% smart 

card penetration rate, in-vehicle devices and registered or inferred tap out location, the stop-to-

stop vehicle occupancies for each trip id can be directly obtained from fusion of AFC and AVL 

data. In case the smart card penetration rate is not 100%, the obtained occupancies should be 

increased by the percentage non-card users obtained from alternative data sources, such as 

passenger counts. Below we shortly describe the applied transfer inference algorithm. For a 

more extensive explanation we refer the reader to Yap et al. (2017). An alighting is considered 

a transfer if it satisfies the following three conditions:  

 Temporal condition: an alighting passenger boards the first vehicle of the subsequent 

line after the first reasonable passenger arrival time at the next boarding stop - based on 

the transfer walking distance and assumed walking speed 𝜗 - where the vehicle 

occupancy does not exceed the norm capacity. 

 Spatial condition: the next boarding location does not exceed a maximum transfer 

walking distance threshold 𝛾𝑚𝑎𝑥 from the previous alighting stop. 

 Line based condition: the next boarding line is not the same line as previously alighted 

from, or the next boarding line is the first run of this same line after the alighted run, in 

order to incorporate the impact of possible rescheduling measures during disruptions, 

such as short-turning or deadheading.  

After applying this transfer inference, a stop-to-stop transfer flow matrix can be constructed 

from the alighting stop and next boarding stop for each alighting which is considered a transfer.  

 

Determine the spatial boundaries of transfer locations 

In the next step (visualised by the second row of phase 1 in Figure 7.1), we determine the 

spatial demarcation of transfer locations by applying a clustering algorithm. This entails 

determining which urban PT stop id’s form a coherent cluster of stops between which passenger 

transfer flows occur. To this end, we apply a density based clustering technique. This data-
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driven approach for determining the spatial boundaries of transfer locations implies that the 

number of stops each cluster is composed of is not known a priori. The total number of clusters 

is thus also not pre-determined, making k-means / k-medoid clustering not suitable for this 

purpose. Moreover, our clustering should also not be collectively exhaustive: the considered 

PT network includes transfer locations consisting of one stop id only based on passenger 

transfer flows, such as one platform being served my multiple PT lines with transferring 

passengers between these lines. Consequently, clustering only needs to be applied for locations 

where transfers occur between multiple PT stops (multiple platforms). This requirement makes 

hierarchical agglomerative clustering, a collectively exhaustive clustering technique, not 

suitable for purpose. A density based clustering technique, which allows for partial clustering 

without a pre-defined number of clusters (e.g. DBSCAN, OPTICS) fulfils all of the 

aforementioned requirements (Tan et al., 2004). We apply DBSCAN, the most commonly 

applied density based clustering technique. For an in-depth explanation of the algorithm of 

DBSCAN we refer to Ester et al. (1996). 

 In traditional geographical applications of DBSCAN, a geographical measure - such as 

the Euclidean or geodesic distance between nodes - is applied as distance measure for 

clustering. This means that the closer two nodes are geographically positioned to each other, 

the more likely that these nodes are being grouped into the same cluster. A larger distance value 

thus indicates a lower clustering likelihood. However, to identify synchronisation priorities 

based on passenger demand, in our study we cluster purely based on passenger flows rather 

than geographical distances. We define 𝑓𝑠𝑖𝑠𝑗
 as the obtained transfer flow between origin PT 

stop 𝑖 and destination PT stop 𝑗, where each urban PT stop 𝑠 ∈ 𝑆 indicates a unique stop code 

in the considered urban PT network and |𝑆| indicates the number of stops (see Table 7.1). To 

create a symmetrical distance matrix, we first sum transfer flows 𝑓𝑠𝑖𝑠𝑗
 and 𝑓𝑠𝑗𝑠𝑖

 to 𝑔𝑠𝑖𝑠𝑗
 (Eq.1). 

In this context, contrary to traditional geographical distance measures in DBSCAN, a higher 

transfer flow between stops thus increases the likelihood of these stops being clustered together. 

This means that in our case the regular distance measure cannot be applied for DBSCAN. 

Values 𝑔𝑠𝑖𝑠𝑗
 are therefore transformed into 𝑔′𝑠𝑖𝑠𝑗

, such that a higher value decreases the 

clustering likelihood. By subtracting 𝑔𝑠𝑖𝑠𝑗
 from the maximum value max

𝑠𝑖𝑠𝑗∈𝑆
𝑔𝑠𝑖𝑠𝑗

, all values 

remain non-negative (Eq.2). Clustering based on distance measure 𝑔′𝑠𝑖𝑠𝑗
 entails stops being 

clustered if there are strong transfer flows between them. This implies that stops which are 

geographically close to each other do not necessarily have to be clustered together, if there is 

no substantial transfer flow between these stops. 

 

 𝑔𝑠𝑖𝑠𝑗
= 𝑓𝑠𝑖𝑠𝑗

+ 𝑓𝑠𝑗𝑠𝑖
                   ∀ 𝑠𝑖, 𝑠𝑗 ∈ 𝑆     (1)

    

 𝑔′𝑠𝑖𝑠𝑗
= max

𝑠𝑖𝑠𝑗∈𝑆
𝑔𝑠𝑖𝑠𝑗

− 𝑔𝑠𝑖𝑠𝑗
                ∀ 𝑠𝑖, 𝑠𝑗 ∈ 𝑆     (2)

  

Two parameters 𝜃 and 𝜀 need to be specified in the DBSCAN algorithm. 𝜃 indicates the 

minimum number of stops required to form a cluster. We set this value to one, meaning that the 

inclusion of at least one other stop (two stops in total) is required for the minimum cluster size. 

Since we perform a partial clustering where not all stops need to be clustered, each cluster is 

composed of at least two stops. 𝜀 indicates the maximum distance function value required when 

forming a cluster. For our formulated distance measure 𝑔′𝑠𝑖𝑠𝑗
, this means setting a minimum 

requirement for the transfer flow between stops that form a cluster. In line with the 

recommendation by Ester et al. (1996), we plot the 𝜃-distance graph for different values of 𝜀 to 

determine the knee in the plot to identify a suitable parameter value. This total distance measure 
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is calculated by averaging the minimum distance value of all identified clusters for a given 

value of 𝜀 (Eq.3), where 𝑡 ∈ 𝑇 is a transfer location resulting from DBSCAN and 𝑇 is the set 

of all identified transfer locations (see Table 7.1). After applying DBSCAN it can be 

determined which PT stops constitute a certain transfer location, which shows the spatial 

boundaries of each transfer location.  

 

𝑑𝑖𝑠𝑡 =
∑ min𝑠𝑖𝑠𝑗∈𝑡𝑔′𝑠𝑖𝑠𝑗

 𝑡∈𝑇

|𝑇|
        (3) 

 

Select subset of hubs from all transfer locations 

Not all identified transfer locations are considered a hub, given substantial differences in 

magnitude of transfer flows within each transfer location. The aim of this step is to identify the 

set of hubs 𝐻, which is a subset of all transfer locations 𝐻 ⊆ 𝑇. The transfer locations with the 

largest transfer flows between stops are considered a hub (as visualised in the third row of phase 

1 in Figure 7.1). We apply a method used to determine hubs in airline networks based on Costa 

et al. (2010), since no comparable method has yet been applied to identify hubs in urban PT 

networks. First, the total intra-transfer location transfer flow 𝑘𝑡 between all stops is calculated 

for each identified transfer location 𝑡 (Eq.4). Based on the work of Costa et al. (2010), we apply 

the Herfindahl- Hirschman Index (HHI) to calculate the market concentration based on the 

market share of each transfer location 𝑡 ∈ 𝑇 in terms of passenger transfer flow as a share of 

the total transfer flow in the considered PT network. The integer number of hubs |𝐻| can then 

be determined based on 𝑛, which equals the inverse of the HHI (Eq.5). In Eq.5, 𝑛 can be an 

integer or a decimal value. When all transfer locations are ranked in decreasing order based on 

𝑘𝑡, only the top |𝑇| < 𝑛 clusters are considered hubs, based on which the set of hubs 𝐻 is 

determined. The steps of phase 1 of our proposed methodology for identifying hubs are 

illustrated in Figure 7.2. 

 

𝑘𝑡 = ∑ ∑ 𝑓𝑠𝑖𝑠𝑗
        ∀ 𝑡 ∈ 𝑇𝑠𝑗∈𝑆𝑡𝑠𝑖∈𝑆𝑡

        (4) 

 

 𝑛 =
1

∑ [(
𝑘𝑡

∑ 𝑘𝑡𝑡∈𝑇
)2]𝑡∈𝑇

         (5) 

 

 

Figure 7.2. Illustration of phase 1 of our methodology for a single hypothetical PT network  
Nodes reflect stops; the width of the edge represents the strength of passenger transfer flow. Based on the 

transfer flows between stops (a), DBSCAN identifies which stops form a cluster of transfer stops (indicated in (b) 

by the same shape). Applying the HHI identifies hubs as most important transfer locations in (c) (marked green). 
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7.2.2 Identification of line bundle priorities for synchronisation 

A complex-network theoretic approach is developed to identify line bundles - in literature 

sometimes referred to as cliques or communities - within a hub to prioritise simultaneously for 

synchronisation. The proposed approach consists of two steps: (1) establishing the topological 

representation of the transfer pattern among unidirectional lines within the identified hubs from 

phase 1; (2) identifying the line bundles within each hub using a community detection 

technique. This approach provides a data-driven solution that is automated, intuitive and 

scalable. The details of these two components are presented in the following sections. 

 

Topological representation of the transfer pattern within hubs 

In this step of our methodology (as visualised in the first row of phase 2 in Figure 7.1) the 

transfer topology within an identified hub is represented as a directed graph 𝐺 = (𝑉, 𝐸). This 

representation is inspired by the C-space topological representation of PT networks where 

individual lines are represented as nodes and are connected via an edge only if they share 

common transfer stops (see von Ferber et al. (2009) for a detailed description of the C-space 

representation of PT networks). In our case, each node 𝑣 ∈ 𝑉 corresponds to a PT line in a 

certain direction 𝑙 ∈ 𝐿, whereas each edge 𝑒 ∈ 𝐸 represents the observed transfer activity 

between two lines in certain directions within an identified hub. An illustration of such 

topological representation is sketched in Figure 7.3. Furthermore, the graph 𝐺 is represented 

by a weighted adjacency matrix 𝐴 where 𝑎𝑖𝑗 denotes the weight of the edge between 𝑖 and 𝑗. 

We consider two different types of weights in this study, namely the passenger transfer flow 

(Eq.6) and the passenger transfer waiting time (Eq.7). The objective of applying two different 

link weights is to compare clustering results between the case where only passenger transfer 

flows are considered, and the case when the expected transfer time is incorporated as well.  

The first type of link weight corresponds to the number of passengers transferring 

between two lines in a certain direction at hub ℎ ∈ 𝐻, which is defined using Eq.6. In this 

equation 𝑓𝑙𝑖𝑙𝑗

ℎ  denotes the observed transfer flow from unidirectional line 𝑙𝑖 to line 𝑙𝑗 within a 

hub. Values for 𝑓𝑙𝑖𝑙𝑗

ℎ  are derived from the stop-to-stop transfer flow matrix obtained by fusion 

of AFC and AVL data (as explained in Section 7.2.1), for which transfer flows between stops 

which are part of the same hub between lines 𝑙𝑖 and 𝑙𝑗 are summed. The second type of link 

weight relates to the total expected transfer waiting time between two unidirectional lines, 

which is calculated using Eq.7. Variables 𝑓𝑙𝑖𝑙𝑗

ℎ  and 𝑑𝑙𝑗

ℎ , respectively, denote the observed 

transfer flow between line 𝑖 and 𝑗 as calculated using Eq.6, and the planned headway of line 𝑙𝑗 

at hub ℎ. Given our focus on high-frequent urban PT networks, the assumption of random 

passenger arrivals at the stop can be justified. In future work a more advanced passenger arrival 

and waiting time distribution, as proposed by Ingvardson et al. (2018), can potentially be 

applied to our method. 

 

𝑎𝑖𝑗
ℎ = 𝑓𝑙𝑖𝑙𝑗

ℎ           (6) 

 

𝑎𝑖𝑗
ℎ =

𝑑𝑙𝑗
ℎ ∗𝑓𝑙𝑖𝑙𝑗

ℎ

2
           (7) 
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Figure 7.3. Illustration of the topological representation for the hub transfer pattern  
The original layout of the identified hub (shaded area) is presented on the left with four directed lines marked, 

i.e. 1-E, 1-W, 2-S and 2-N. The transfer pattern is then represented as a graph (middle). The weighted adjacency 

matrix is displayed on the right. 

Determine hub line bundles for synchronisation 

Based on the graph representation with the link weighted by transfer flow or expected transfer 

waiting time, a community detection technique from the field of complex network science is 

applied to identify line bundles within a hub (see the second row of phase 2 in Figure 7.1). In 

essence, the problem that community detection intends to address is to partition a network into 

communities of densely connected nodes, with the nodes belonging to different communities 

being only sparsely connected. Such technique is for example applied by Yildirimoglu and Kim 

(2018) to identify a community structure in urban mobility networks. In our application, line 

bundles will thus become the partitioning result based on passenger transfer flows or transfer 

waiting time used as the link weight, in which intra-community transfer connections are 

maximised while inter-community values are minimised  

Given our aforementioned objective, an optimisation-based method called the Louvain 

method is adopted to identify hub line bundles. Proposed by Blondel et al. (2008), the Louvain 

method is a heuristic method based on modularity optimisation. As a class of community 

detection methods that has received the greatest attention from researchers, the optimisation 

technique aims at finding an extremum - usually the maximum - of a function indicating the 

quality of a clustering, over the space of all clustering possibilities (Fortunato and Hric, 2016). 

The most popular quality function is the modularity proposed by Newman and Girvan (2004), 

which estimates the quality of a partition of the network in communities. The essential idea of 

this measure is to reveal how non-random the network structure is by comparing the actual 

structure and its randomisation where network communities are destroyed. The value of 

modularity 𝑞 varies between −1 and 1, which measures the density of links inside communities 

as opposed to links between communities. Its general expression is formulated by Eq.8. 

 

𝑞 =
1

2|𝐸|
∑ (𝑎𝑖𝑗 − 𝑝𝑖𝑗)𝛿𝑐𝑖,𝑐𝑗𝑖𝑗         (8) 

 

In this equation, |E| represents the number of edges of the graph. The summation runs over all 

pairs of nodes 𝑖 and 𝑗, in which 𝑎𝑖𝑗 and 𝑝𝑖𝑗 denote the element of the adjacency matrix and the 

randomised null model term, respectively. Derived by randomising the original graph, the term 

𝑝𝑖𝑗 indicates the average adjacency matrix of an ensemble of networks to preserve some of its 

features. 𝑐𝑖 indicates the community to which node 𝑖 is assigned. The Kronecker delta function 

𝛿𝑐𝑖,𝑐𝑗
 is defined using Eq.9. 

 

𝛿𝑐𝑖,𝑐𝑗
= {

1, 𝑖𝑓 𝑐𝑖 = 𝑐𝑗     

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
        (9) 
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The regular modularity function of the Louvain method only uses the adjacency matrix to 

perform the community detection. However, for our study purpose we consider not only the 

question whether two nodes are connected in the graph or not, but also how many passengers 

are transferring between these two nodes. To incorporate passenger transfer flows or transfer 

waiting time in the community detection, 𝑎𝑖𝑗 reflects the weighted element of the adjacency 

matrix as computed by Eq.6 and Eq.7. The modularity function is adjusted using these 

weighted links as shown by Eq.10, where 𝑤𝑖 = ∑ 𝑎𝑖𝑗𝑗  denotes the sum of the weights of the 

edges attached to node 𝑖 (Newman, 2004). 

 

𝑞 =
1

2|𝐸|
∑ (𝑎𝑖𝑗 −

𝑤𝑖𝑤𝑗

2|𝐸|
)𝛿𝑐𝑖,𝑐𝑗𝑖𝑗                    (10) 

 

The modularity measures essentially how different the original graph is from a 

randomised graph. The Louvain method is adopted because it has been recognised as one of the 

best-performing clustering algorithms after a comparative evaluation (Lancichinetti and 

Fortunato, 2009). The Louvain method has several advantages. First, the algorithm is intuitive 

and easy to implement. Second, the outcome is unsupervised and computationally light, which 

requires the link label matrix as the only input. The essence of this method is a greedy 

optimisation of 𝑞 in a hierarchical manner. It assigns each node to the community of their 

neighbours that can yield the largest 𝑞, and thus creates a smaller weighted super-network 

whose nodes are the clusters already found. Therefore, partitions found on this super-network 

consist of clusters that contain previous ones as well, resulting in a higher hierarchical level of 

clustering. This procedure is not stopped until the largest possible modularity value is reached. 

A visualisation of the steps of this algorithm is presented in Figure 7.4. 

 

 

Figure 7.4. Visualisation of the steps of the Louvain method 
Each pass consists of two phases. In the first phase, the modularity is optimised by allowing only local changes 

of communities; in the second one, the communities found are aggregated in order to build a new network of 

communities. The passes are repeated iteratively until no increase in modularity is possible (Blondel et al., 

2008). 
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7.3 Case Study 

We apply our methodology to the urban PT network of the city of The Hague, the Netherlands, 

operated by HTM (Figure 7.5). The Hague has more than 500,000 inhabitants and is one of the 

main cities of the so-called Randstad, the most important economic area in the western part of 

the Netherlands. The urban PT network of The Hague consists of 12 tram lines and 10 urban 

bus lines at the time of consideration (November 2015). We only consider the urban PT 

network, meaning that services on the (inter)regional train network level and regional bus 

services are not incorporated. On an average working day, there are more than 300,000 AFC 

transactions within the case study network. 

 

 

Figure 7.5. Overview of urban tram and bus services of the case study network in The Hague 

As initial input, we use all AFC transactions on the case study network for all 20 

working days between November 2nd and November 29th, 2015, together with all AVL 

transactions for this period. For identification of both hubs and line bundles within hubs, we 

only incorporated AFC data for the AM peak and PM peak of working days in which no large 

disruptions occurred during these time periods. Since disruptions can result in adjusted 

passenger route choice including transfer line choice, this can introduce bias when determining 

the key hubs and line bundles. Based on disruption log-data provided by the operator of this 

network, we removed data from 10 working days. Our resulting dataset thus contains AFC data 

from 10 working days of the abovementioned period (2 Mondays, 1 Tuesday, 3 Wednesdays, 

2 Thursdays and 2 Fridays). No destination inference is needed for our case study, given that 

passengers are required to tap in and tap out using devices located within urban trams and buses 

in The Hague. Incomplete AFC records (1.3%) and AFC records where system errors occurred 

(<0.4%) have been removed. The resulting dataset contains a total of 3.04 million AFC 

transactions to which we applied our transfer inference algorithm. Since we only focus on AM 

and PM peak journeys, transactions part of journeys with a starting time outside the interval 

07:00-09:00 or 16:00-18:00 have been removed after this step from our dataset. This resulted 

in 1.1 million AFC transactions remaining for our analysis. The steps we applied in the data 

cleaning process are summarised in Table 7.4. 
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Table 7.4. Data cleaning process 

Data cleaning process transactions % transactions 

Initial AFC transactions for 10 working days 3,086,453 100% 

Incomplete AFC transactions (missing tap out) -40,195 -1.30% 

System error transactions -11,162 -0.36% 

AFC transactions part of journey started outside AM or PM -1,930,711 -62.6% 

Complete AFC transactions part of journey started in AM or PM 1,104,385 35.8% 

 

In phase 1 of our proposed methodology, we identify the set of hubs 𝐻 and their spatial 

demarcation for our case study network. For this phase, we use the combined AM and PM 

transfer flows over the 10 working days, since the definition of a hub is considered independent 

from the period of the day. In phase 2 of our methodology, we determine line bundles to 

prioritise in synchronisation for each identified hub. Since passenger (transfer) flows can differ 

substantially over the day, synchronisation priorities might differ as well. Therefore, we apply 

the second phase of our methodology for each time period separately. We compare the 

clustering results in phase 2 when using transfer flow or transfer waiting time as link weights, 

which results in four cases per hub. Table 7.5 shows an overview of all cases considered in 

phase 2 of our study. 

Table 7.5. Overview of cases in study phase 2 for line bundle identification  

 Link weight: passenger transfer flow Link weight: passenger transfer waiting time 

Hub AM PM AM PM 

ℎ1 Case 1A Case 1B Case 1C Case 1D 

ℎ2 Case 2A Case 2B Case 2C Case 2D 

ℎ|𝑛| Case 𝑛A Case 𝑛B Case 𝑛C Case 𝑛D 

7.4 Results and Discussion 

This section discusses the results and implications of the hub identification phase (Section 

7.4.1) and line bundle identification phase (Section 7.4.2) of our proposed methodology. 

7.4.1 Hub identification 

We applied the proposed transfer inference algorithm to all 1,104,385 AFC transactions using 

the Euclidean distance between stops to compute transfer walking distances, the 2.5th percentile 

walking speed 𝜗 from a normal distributed walking speed function 𝑁(1.34,0.34) based on 

Hänseler et al. (2016), and 𝛾𝑚𝑎𝑥 of 400 Euclidean metres. The value for the maximum transfer 

walking distance threshold 𝛾𝑚𝑎𝑥 is obtained from Yap et al. (2017), where this showed to be 

the optimal value when validating the destination inference algorithm applied in that study. This 

results in 150,792 alighting transactions which are considered a transfer. The sum of the 

obtained stop-to-stop transfer flow matrix for the AM and PM period together for the considered 

10 working days thus equals 150,792. We performed a sensitivity analysis with respect to 𝛾𝑚𝑎𝑥. 

Increasing this value by 50% (600 Euclidean metres) and 100% (800 Euclidean metres) reduces 

the number of identified separate journeys by merely 1% and 2%, respectively. We thus 

conclude that our results are robust to different values of 𝛾𝑚𝑎𝑥. While using on-street distances 

rather than Euclidean distances can further improve the accuracy of the transfer inference 

algorithm, it might require use of data sources and software which are not always easily 

accessible. Using on-street distances might be particularly relevant if the methodology would 

be applied to a network with large variations in street lay-out, such as an application which 

considers both urban and inter-urban PT networks rather than urban PT networks only. 
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All 150,792 classified transfers occur between 754 different stop id’s, resulting in a 

754 × 754 transfer flow matrix. We performed DBSCAN to identify the geographical 

boundaries of clusters of transfer locations and set 𝜃 equal to 1 (see Section 7.2.1). The 𝜃-

distance plot is shown as function of average distance 𝑑𝑖𝑠𝑡 (Figure 7.6) and as function of the 

number of identified clusters (Figure 7.7). These functions are used to determine the optimal 

parameter value of 𝜀, which reflects a minimum requirement for the transfer flow between stops 

that form a cluster. Since data from 10 working days are included, we use a step size of 50 for 

values of 𝜀 in the 1-distance plot to maintain a meaningful interpretation of this value (using 

daily integer transfer flows with step size 5, starting with 𝜀 = max
𝑠𝑖𝑠𝑗∈𝑆

𝑔𝑠𝑖𝑠𝑗
= 5516). As can be 

observed from Figure 7.6, the shape of the graphs is opposite of the regular shape of the 𝜃-

distance plot when applying DBSCAN. This is because in our application a higher transfer flow 

between stops increases the probability of being clustered together, in contrast to traditional 

distance measures where a larger value entails a smaller clustering probability. In both Figure 

7.6 and Figure 7.7, the knee in the graph can be observed for 𝜀 = 5166 and 23 identified 

clusters of transfer locations. From all 754 transfer stops in the case study network, 11% (81 

stops) is part of a cluster of at least two stops. The average cluster size equals 3.54; the median 

cluster size is 3. The largest cluster consists of 11 stops. The other 673 transfer stops are not 

clustered by DBSCAN and form a transfer location consisting of one stop only. This means that 

a total of 696 transfer locations with their geographical boundaries are identified for the case 

study network. Figure 7.8 presents all identified transfer locations, highlighting the 23 clusters. 

 

 

Figure 7.6. 1-distance plot as function of 𝜺 

 

Figure 7.7. 1-distance plot as function of the number of identified clusters 
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After applying the HHI, six transfer locations with the highest number of intra-cluster 

transfer flows are identified as hub: Central Station (hub 1), Centre (hub 2), Station Hollands 

Spoor (hub 3), Leidschenveen (hub 4), Leyenburg hospital (hub 5) and Brouwersgracht (hub 

6). The identified hubs 1, 2, 3 and 5 are locations where a large number of tram and bus lines 

intersect near a train station (1 and 3), the city centre (2) and a hospital (5). Hubs 4 and 6 are 

served by fewer lines: these hubs are mainly characterised by large transfer flows between a 

corridor of high-frequency tram lines and one intersecting tram line (4) or bus line (6). The 

stops constituting these hubs are shown in Figure 7.8. In the box of Figure 7.8, hub 3 (Station 

Hollands Spoor) is shown in greater detail. This hub illustrates a key difference between the 

stops which would be considered as one hub purely based on the geographical location or public 

name of the stop, and the stops found to constitute a hub based on passenger flows. At the north-

side of this station, there are several tram stops located relatively close to each other (star-

shaped blue nodes indicated by ‘A’), whereas a few bus stops of this station are located at the 

south-side of the station, about 3 minutes walking from each other (star-shaped blue nodes 

indicated by ‘B’). Besides, there are stops belonging to another public stop name 

‘Rijswijkseplein’, about 5 minutes walking from the tram stops of the station itself. Our 

clustering results show that - from a passenger perspective - some of the stops of 

Rijswijkseplein are part of one large hub (star-shaped blue nodes indicated by ‘C’), whereas 

they would be considered a separate transfer location if clustered based on geographical 

location or public stop name. Some other stops of Rijswijkseplein form a separate transfer 

location but are not part of hub 3 (circular red nodes indicated by ‘D’). 

 

 

Figure 7.8. Identified transfer locations with 23 transfer clusters (all groups of coloured stops) 

and the six identified hubs (coloured stops indicated by numbers 1-6) 
The box on the right-hand side of the figure zooms into the stops around hub 3 (station Hollands Spoor): blue 

stops form one hub; red stops (with public name ‘Rijswijkseplein’) form another transfer location and are not 

part of the hub. 

Figure 7.9 (left) shows the cumulative distribution function (CDF) of all transferring 

passengers 𝑘𝑡 for the 696 transfer locations of the case study network. In Figure 7.9 (right) the 

Lorenz curve is plotted, where the realised transfer flow distribution over the transfer locations 

is contrasted with the hypothetical scenario if transfers would be equally distributed over all 
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transfer locations. It can clearly be observed that transfer patterns are not uniformly distributed 

over all locations. In contrast, a sharp concentration of transfers at a few locations can be 

observed. The calculated Gini-coefficient of 95.7% from Figure 7.9 (right) confirms the 

unequal spatial distribution of passenger transfers over the urban PT network. The total intra-

hub transfer flows, summed over the six identified hubs, represent 70.1% of the transfers 𝑘𝑡 

within all transfer locations, whereas 78.4% of all network transfers are within one of the 696 

transfer locations. Our results thus show that more than 70% of the transfers within all transfer 

locations can be captured in the optimisation, while only 6 out of 696 (0.9%) identified transfer 

locations need to be incorporated. Given our aim not to be exhaustive, these results show that 

the complexity of solving the TSP can be reduced substantially, against relatively limited costs. 

As can be seen from Figure 7.9 (left), considering the top-6 transfer locations is an effective 

means to capture a large part of the total network transfer flow. Given the unequal spatial 

transfer distribution, the efficiency of each additional transfer location added to the optimisation 

problem will decrease: the complexity of the TSP increases, whereas the number of additional 

captured transfers only decreases compared to the previous ranked transfer location. 

 

 

Figure 7.9. CDF (left) and Lorenz curve (right) for transfer flow distribution over the identified 

transfer locations 
100% equals the total within-cluster transfer flow; the figure does not consider between-cluster transfer flows. 

7.4.2 Line bundle identification 

Table 7.6 summarises the statistics for the line bundle identification phase of our methodology. 

Given that six hubs were identified, we performed the line bundle identification for 6*4 cases 

in total: for the AM and PM peak, using transfer flow and transfer waiting as link weight (see 

Table 7.5). Table 7.6 shows the number of unidirectional lines, the modularity value 𝑞 resulting 

from this community detection technique (Eq.10), the number of line bundles (communities) 

identified, and for each hub the within-community transfer flow as share of the total hub transfer 

flow. The latter is used as additional indicator for the clustering performance.  

The modularity value remains at a similar level for the hubs Central Station (1), Centre 

(2) and Leidschenveen (4), regardless the time period or link weight used. For the hubs Hollands 

Spoor (3), Leyenburg (5) and Brouwersgracht (6), the modularity is relatively insensitive to the 

link weight used (transfer flow or transfer waiting time). This can be explained by the relatively 

high and similar frequency of most urban PT services for the considered hubs. This makes the 

use of transfer waiting time less distinctive from the use of transfer flow as link weight. 

However, for these hubs 3, 5 and 6, substantial differences in modularity can be observed 

between AM and PM, indicating different transfer patterns between these time periods. For the 

majority of the scenarios two different line bundles are identified. Only for the hub Centre (AM, 

based on transfer waiting time link weight) and Leyenburg (PM), three line bundles are 

identified. The percentage within-community transfer flow ranges between 54% and 95% over 
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all scenarios. For most hubs, this percentage is rather stable when a different time period or link 

weight is used. Similar to the modularity value, this percentage shows to be more sensitive to 

the time period than the assigned link weight, particularly for hub 5 (Leyenburg). 

Table 7.6. Summary statistics community detection technique 

Hub Central 

Station (1) 

Centre 

 (2) 

Station Hollands 

Spoor (3) 

Leidschenveen 

(4) 

Leyenburg 

(5) 

Brouwersgracht 

(6) 

#  lines 28 21 16 6 10 8 

Modularity       

Flow AM 0.28 0.27 0.13 0.04 0.17 0.12 

Flow PM 0.29 0.22 0.28 0.04 0.25 0.40 

Waiting AM 0.29 0.25 0.13 0.06 0.13 0.16 

Waiting PM 0.28 0.21 0.30 0.06 0.26 0.38 

       

# line bundles       

Flow AM 2 2 2 2 2 2 

Flow PM 2 2 2 2 3 2 

Waiting AM 2 3 2 2 2 2 

Waiting PM 2 2 2 2 3 2 

       

share within-community transfer flow / total hub transfer flow 

Flow AM 0.85 0.77 0.83 0.59 0.75 0.95 

Flow PM 0.82 0.77 0.79 0.54 0.59 0.93 

Waiting AM 0.86 0.61 0.82 0.58 0.75 0.95 

Waiting PM 0.82 0.75 0.80 0.57 0.60 0.94 

  

In Figure 7.10, the results of the community detection algorithm are visualised for all 

24 cases. Each plot shows the lines with their corresponding direction (north-, south-, east- or 

westbound) which are grouped together as one line bundle (indicated by the same colour). The 

link width represents the magnitude in terms of transfer flow or transfer waiting time. These 

case study results display which bundles of lines should be prioritised simultaneously when 

devising tactical and real-time synchronisation measures. Generally, the results show to be 

intuitive with lines heading in the same direction(s) being grouped together, while producing 

clusters that could not be formed merely based on grouping each direction. Also in line with 

expected travel patterns, lines heading in opposite directions (e.g. west- and eastbound lines, or 

north- and southbound lines) are generally not grouped together. For Central Station (hub 1), 

one line bundle clearly reflects south-/west-bound passenger journeys, whereas the other bundle 

reflects north/east-bound journeys. For hubs Centre and Station Hollands Spoor (2 and 3), there 

is a dominance of northbound and westbound lines being grouped together, and southbound 

and eastbound lines grouped together. For Leyenburg (hub 5) in the AM, two separate line 

bundles with eastbound and westbound lines can be detected. During the PM, it can be seen 

that the westbound lines are grouped into two separate clusters. Probably due to a different 

mixture of passengers and their corresponding trip purpose and travel patterns, a separate line 

bundle can be detected between bus lines 23 and 26 in the westbound direction during the PM. 

At Leidschenveen (hub 4), there is a dominant transfer flow between intersecting tram line 19 

southbound and particularly tram line 4 westbound in the AM. However, during the PM a large 

transfer flow can also be observed between line 19 southbound and line 4 eastbound. At 

Brouwersgracht (hub 6) is a clear transfer flow between eastbound bus line 25 - from a 

residential area headed for the city centre - and the tram corridor served by lines 2, 3 and 4 

towards the main train station. During the PM an opposite pattern can be observed, with a clear 

line bundle consisting of tram lines 2, 3 and 4 and westbound bus line 25 bound for a residential 

area of the city. 
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Figure 7.10. Results line bundle identification for six identified hubs 
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7.5 Conclusions 

In this research, we developed a data-driven, generic and passenger-oriented methodology for 

systematically determining where in the network, and for which lines transfer synchronisation 

should be prioritised in the TSP, so that the TSP becomes solvable for larger, real-world urban 

PT networks. Our study thus introduces two steps preceding solving the TSP: identify key 

priorities (a) where to synchronise, and (b) which lines to synchronise. To this end, our method 

identifies hubs and their spatial boundaries in urban public transport networks, and determines 

line bundles within these hubs to be prioritised simultaneously when devising transfer 

synchronisation measures at either tactical or operational planning phases. The proposed non-

supervised learning techniques enable the identification of hubs and line bundles based on 

passenger transfer flows, independent from local knowledge or the geographic location of the 

urban public transport stops. Our results show that hubs can be composed of a different set of 

stops when applying DBSCAN clustering, compared to the set which would result when 

clustered purely based on geographical information or public stop name. Our clustering results 

shape the spatial boundaries of public transport transfer locations as used and experienced by 

passengers. The application of a modularity based community detection technique shows 

intuitive lines being grouped together to prioritise during transfer synchronisation. Our results 

illustrate the necessity of synchronising different line bundles during different periods of the 

day, depending on the travel patterns prevailing during the relevant time period. The clustering 

results for our case study show to be relatively insensitive to the use of passenger transfer flows 

or transfer waiting times as link weight, which can be explained by the relatively similar 

headways associated with all urban PT lines serving a certain hub. If lines with more varying 

headways would be clustered, a higher sensitivity of clustering results to the used link weight 

can be expected. Our methodology and study results support public transport operators in 

timetable design and real-time control, such as holding, by determining where and which lines 

to synchronise. Moreover, public transport agencies can use these study results to determine 

where to invest in measures for improving the design of a seamless transfer experience (e.g. 

amenities, physical environment, island vs. side platforms). Contrary to simply prioritising pairs 

of lines with the largest transfer flow between them in the synchronisation process, our 

partitioning approach yields different bundles of lines which should be synchronised 

simultaneously. 

Our approach is able to capture more than 70% of all transfers within identified transfer 

locations, while only requiring 0.9% of these transfer locations, thus reducing the complexity 

of solving the TSP substantially at a relatively low cost. In a next step, the optimisation process 

to solve the TSP can be applied to this subset of transfer locations and lines from the total 

considered real-world PT network. As input for the TSP at the tactical planning phase, our 

method ranks the transfer locations and the lines at these locations to be prioritised based on 

passenger flow data. Depending on the network characteristics, the number of lines serving the 

different transfer locations, the used optimisation method and accepted computation time, a PT 

operator can select the |𝑇| most important transfer locations with corresponding line bundles to 

incorporate in the TSP, so that the TSP becomes solvable within acceptable computation time. 

The number of transfer locations which can be considered simultaneously may have to be 

constrained in the TSP in order to make the TSP solvable depending on the approach used. 

When adopting an approach which relaxes the synchronisation to allow for a pre-defined time 

window (Ibarra-Rojas and Rios-Solis, 2012) or minimises the total passenger transfer time 

without pre-setting synchronisation requirements (Knoppers and Muller, 1995), the number of 

transfer locations of interest does not have to be constrained for mid-size urban networks. In 

case of real-time transfer synchronisation decisions in response to an early or late arrival of a 

PT service of line 𝑙𝑖 at a certain transfer location 𝑡𝑖, our method proposes for which lines - 
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clustered within the same line bundle - transfer synchronisation should be considered. In a next 

stage, the optimal holding time decision for different lines can be taken by minimising the 

predicted additional travel time for all affected passenger segments, such as transferring 

passenger, downstream waiting passengers, and downstream transferring passengers (see 

Gavriilidou and Cats, 2019). In this control framework, the predicted impact of synchronisation 

at considered transfer location 𝑡𝑖 on potentially missed transfers at downstream transfer 

locations 𝑡𝑗≠𝑖 can be incorporated.  

 We formulate four recommendations for further research. First, we recommend 

coupling the optimisation process to an assignment model or variable demand model, 

particularly for networks with relatively many low-frequent services. Since passenger demand 

depends on the quality of the public transport supply, the results from the transfer 

synchronisation following the identified synchronisation priorities may influence passenger 

route choice and, possibly, mode choice. This can result in changes in passenger transfer flows, 

which in turn can re-set the synchronisation priorities. Especially if PT frequencies are 

relatively low, substantial changes in transfer flows may result from the synchronisation 

process. In particular for PT networks with lower frequencies, it is therefore recommended to 

couple an assignment model or variable demand model to the optimisation process into an 

iterative supply setting - demand forecasting approach. Second, we recommend experimenting 

with different clustering techniques in the hub identification phase of our proposed 

methodology. We used DBSCAN as a density based, partial clustering technique without a pre-

defined number of clusters, which requires two different input parameters, namely 𝜀 and 𝜃. 

Contrary to 𝜃, which can be obtained from the context of the application, 𝜀 needs to be 

determined from the 𝜃-distance plot by applying DBSCAN for a large number of instances. 

Therefore, we recommend testing and comparing the use of other techniques such as OPTICS, 

in which no distance parameter 𝜀 needs to be specified explicitly, thus potentially attaining 

computational gains (Tan et al., 2004). Third, we recommend extending the line bundle 

identification phase in our study by applying a link based clustering technique rather than node 

based clustering. In our modularity based community detection technique, the nodes - i.e. lines 

in a certain direction - are clustered. However, when the transfer links between nodes would be 

clustered, one would be able to distinguish between transfer flows from line 𝑙𝑖 in direction 𝑎 to 

𝑙𝑗 in direction 𝑏, and flows from 𝑙𝑗 in direction 𝑏 to 𝑙𝑖 in direction 𝑎. Incorporating the transfer 

direction between two lines, next to the lines itself, enables deriving further recommendations 

for timetable planning and real-time coordination by specifying the desired sequence of arrivals. 

Fourth, further developments may examine how properties of the optimisation process, such as 

choices related to the type of optimisation method and type of graph representation, can assist 

the settings of our methodology. 
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8. Quantification and Control of Disruption 

Propagation in Multi-level Public Transport 

Networks 

This chapter forms the second component of Part III of this research, aiming to reduce 

disruption impacts for passengers on the urban public transport network level. In the previous 

Chapter 7, our objective was to enable synchronisation being applied to urban public transport 

services, to mitigate urban network disruption impacts. In this chapter, we move from an urban 

network level perspective towards a multi-level network perspective. This chapter puts the 

emphasis on the urban network impacts of disruptions originating at another level of the multi-

level public transport network. We develop a methodology to predict how the impact of a train 

network disruption propagates to the urban network, using a combination of a railway 

optimisation model and a simulation-based public transport assignment model. We study how 

we can develop and evaluate different real-time control strategies applied at the train network 

level, where the disruption originates, which reduce disruption impact propagation to the urban 

network level. This contributes to answering Research Question 3 as defined in Section 1.3: 

how can we predict and control the direct and propagated impacts of disruptions on the urban 

public transport network in a multi-level network environment? 

 

This chapter is based on an edited version of the following articles: 

 

Yap, M.D., Cats, O., Törnquist Krasemann, J., Van Oort, N., Hoogendoorn, S.P. (under review). 

Quantification and control of disruption propagation in multi-level public transport networks.  

Yap, M.D., Cats, O., Törnquist Krasemann, J., Van Oort, N., Hoogendoorn, S.P. (2020). 

Quantification and control of disruption propagation in multi-level public transport networks. 

Presented at the 99th Annual Meeting of the Transportation Research Board (TRB), 

Washington, DC. 
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8.1 Introduction 

8.1.1 Study relevance 

Quantifying and minimising the impacts of public transport (PT) disruptions is important from 

the perspectives of both service users and service providers. PT disruptions can negatively 

affect passengers’ nominal and perceived journey time as a result of longer in-vehicle times, 

additional transfers, and longer waiting times in case of missed connections. More severe 

crowding levels on remaining services also increase perceived in-vehicle times and can 

potentially result in an increase in the number of passengers being denied boarding (see for 

example Hörcher et al., 2017, Tirachini et al., 2017 and Yap et al., 2018a). Over a longer time 

horizon PT disruptions can influence the mode choice of travellers, reducing the PT share in 

the modal split and reducing revenues for the PT service provider (Yap et al., 2018b). For a PT 

operator to provide an attractive and a competitive public transport service to passengers, it is 

thus of utmost importance to understand and limit the impacts of PT disruptions. 

 The integrated PT network consists of different functional network levels - such as the 

(inter)national train network level, the regional train network level, and the urban tram and bus 

network level - which are hierarchically connected to each other. In this study, we use the term 

multi-level network to refer to the entire PT network consisting of these different network levels. 

As disruption impacts can spill-over from one network level to another network level, it is 

important to quantify and mitigate the disruption impacts for the total multi-level PT network, 

instead of limiting the considerations to the disruption impact for the PT network level where 

this particular disruption occurs. The impact of a PT disruption on a certain network level can 

propagate to another network level in two different ways: via primary and secondary effects. 

First, a primary effect relates to the direct impact of a disruption on journeys of passengers who 

travel over the different network levels during one journey. For example, a passenger travelling 

on the regional train network level might miss the scheduled connection to the urban tram 

network level, due to a delayed train arrival at the transfer stop following a disruption on this 

train network level. Second, a secondary effect is experienced by passengers travelling on a 

lower PT network level who are affected indirectly by a disruption on a higher network level. 

For example, a disruption on the regional train network level might result in several delayed 

trains arriving almost simultaneously at the transfer stop. Consequently, this results in a sudden 

increase in transfer volume from the regional train network towards the urban network level, 

thus increasing crowding levels in the first urban trips serving this transfer location. Passengers 

making a journey only on the urban network level using one of these trips will experience higher 

levels of discomfort due to crowding, caused by a disruption on another network level. Such 

secondary effects have been found by Malandri et al. (2018), where impacts of simulated 

disruptions were observed at segments more than 10-15 km away from the disruption location.  

The abovementioned examples illustrate that disruption impacts do not stop at the 

border of the network level on which the disruption occurs, as often assumed, but can propagate 

to another network level as well. For a full understanding of the impact of a disruption and how 

to potentially mitigate its impact, one should therefore consider the impact a disruption has on 

the multi-level PT network as a whole, including its propagation. Meanwhile, it is also 

important to consider the role other PT network levels can play in mitigating disruption impacts 

by increasing network robustness (as studied by Jenelius and Cats, 2015; Yap et al., 2018c). 

8.1.2 State-of-the-art and problem definition 

Studies focusing on predicting and mitigating PT disruption impacts can broadly be classified 

as optimisation-based or simulation-based approaches. Several optimisation-based approaches 
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propose a mathematical programming framework to determine the optimal vehicle holding time 

to regulate PT services or to synchronise services for transferring passengers. For example, 

Delgado et al. (2009) and Delgado et al. (2012) test vehicle holding, potentially combined with 

setting boarding limits, to regulate bus services on a PT corridor with a deterministic 

mathematical programming model. Sanchez-Martinez et al. (2016) formulate a deterministic 

holding control model which incorporates dynamic running times and demand. Hadas and 

Ceder (2010) develop a dynamic programming model which minimises passengers’ total travel 

time to synchronise PT services in an optimal way. Optimisation-based approaches are also 

commonly used to solve the railway traffic rescheduling problem, in case disruptions occur on 

the railway network. Selected examples of the extensive research performed in this area are 

Törnquist Krasemann (2012) proposing a greedy algorithm for train-rescheduling, D’Ariano et 

al. (2007) using a branch-and-bound algorithm, Corman et al. (2010) testing a tabu search 

algorithm and Dollevoet et al. (2014) proposing an iterative optimisation framework for delay 

management and train rescheduling. Binder et al. (2017) propose an integer linear program to 

solve the multi-objective railway rescheduling problem. For a comprehensive literature 

overview of algorithms proposed for real-time railway rescheduling, we refer the reader to 

Cacchiani et al. (2014).  

Simulation-based approaches on the other hand are used for disruption impact 

prediction and for testing rule-based strategies for disruption management. For example, Cats 

and Jenelius use the dynamic agent-based PT assignment model BusMezzo to quantify the 

robustness value of spare capacity (Cats and Jenelius, 2015), the value of real-time information 

provision (Cats and Jenelius, 2014), and the impact of partial link closures (Cats and Jenelius, 

2018) for high frequent urban PT networks. Leng et al. (2018) and Paulsen et al. (2018) use 

MATsim as agent-based simulation software to predict passenger delay impacts from rail 

disruptions in the metropolitan areas of Zürich and Copenhagen, respectively. Younan and 

Wilson (2010) develop a rule-based controller to support a real-time holding decision between 

two connecting bus routes based on expected impact on passengers’ net travel time. Daganzo 

and Anderson (2016) use simulation to test a rule-based holding control strategy for transfer 

synchronisation between metro and bus, whilst Laskaris et al. (2018) use a simulation-based 

dynamic PT assignment model to test a multiline holding control strategy for transit corridors, 

applied to a selection of bus lines in Stockholm, Sweden. Gavriilidou and Cats (2019) propose 

a rule-based holding controller for urban PT services which considers capacity constraints and 

on-board crowding levels using a dynamic PT assignment model. For an extensive literature 

review of holding control strategies we refer to Gavriilidou and Cats (2019). 

Few studies have combined the aforementioned approaches using a simulation-based 

optimisation approach. For example, Shakibayifar et al. (2017) use a simulation-based 

optimisation model with the objective of minimising total train delay times during train 

disruptions. Schmaranzer et al. (2019) combine a discrete event simulation model and 

metaheuristic optimisation model to optimise headways for urban PT systems.  

 

The abovementioned literature review illustrates that optimisation-based approaches are 

typically applied for disruption management on the train network level; whereas simulation-

based approaches are primarily used for predicting disruption impacts and testing disruption 

management strategies for the urban PT network level or for metropolitan PT networks where 

it is important to account for passenger flow re-distribution. Optimisation-based approaches, 

often using microscopic or mesoscopic models, result in (an approximation of) optimal 

rescheduling, retiming and rerouting of train services in response to a disruption. As the PT 

rescheduling problem for larger, real-world PT networks is considered NP-hard (Desaulniers 

and Hickman, 2007), these optimisation-based approaches typically account only for limited 

stochasticity in PT demand and supply. These studies predominantly employ deterministic 
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mathematical programming models and generally do not consider stochastic passenger route 

choice over the PT network, stochastic demand patterns, or stochasticity related to vehicle 

running times or dwell times. Dynamic interactions between demand and supply, such as 

bunching, are typically not considered. Simulation-based methods, often using agent-based 

mesoscopic PT models, are able to capture dynamics in PT demand and supply and their 

interactions. For example, these models can consider stochastic running times, flow-dependent 

dwell times and stochastic and dynamic passenger route choice when being confronted with a 

disruption. These methods allow for testing rule-based control strategies or for testing the 

impact of several disruption scenarios, albeit without resulting in optimal disruption control 

strategies.  

Railway networks do experience less stochasticity than urban PT networks on average, 

as train running times are not influenced by mixed traffic operation. Furthermore, the lower 

network density of train networks reduces the route choice alternatives passengers realistically 

have. This results in deterministic route choice assumptions being less problematic for train 

networks, compared to relatively high-density urban PT networks which offer more route 

redundancy. Moreover, the typically lower train frequencies combined with the prevention of 

early departures from most train stations do reduce the dynamic interaction between demand 

and supply which can result in bunching, as often observed for urban PT services. Due to the 

more complex interaction between PT demand and supply on the urban PT level, simulation-

based dynamic assignment models are often necessary for sufficiently realistic predictions of 

the impact of disruptions and disruption management strategies when considering larger, real-

world urban PT networks.  

 Quantifying and controlling the effects of a train network disruption beyond merely the 

train network poses two methodological challenges. First, a disruption on the train network 

level is typically solved by an optimisation-based train rescheduling model resulting in an 

updated train timetable. The extent to which a train disruption propagates to the urban network 

is thus a function of the train rescheduling optimisation model. This entails that the train 

optimisation model needs to be considered, when quantifying propagated disruption impacts to 

the urban network - typically using a simulation model - adequately. Second, this train 

rescheduling is based on the characteristics of the train network level only, and does not 

consider the impact of this rescheduling strategy on disruption propagation to the urban PT 

network. Passenger trips on the urban level can be subject to control strategies in response to 

this updated train timetable afterwards. This however implies that urban network control 

strategies in response to a train network disruption are performed in a sequential way, where 

first services on the train network level are optimised for this network level only, after which 

services on the urban network level can only be controlled taken the train network rescheduling 

as a given. This sequential approach may yield sub-optimal rescheduling solutions, as the 

disruption impacts are not considered for the integrated multi-level PT network simultaneously. 

Incorporating the impact of train network disruption management on the urban PT network 

level however requires considering the stochasticity and dynamics of the urban PT network. 

These dynamics are difficult to incorporate in an optimisation-based rescheduling model while 

still maintaining acceptable computation times. 

8.1.3 Research contribution 

In this study, we develop an integrated methodology to predict the impact of a disruption 

occurring on the train network for the PT network as a whole by accounting for delay 

propagation, i.e. cross-network spill-over effects. Our objective is to assess the delay impact 

alternative train rescheduling strategies have for train passengers on the disrupted network 

level, along with the disruption propagation impacts to the urban network level (see Figure 
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8.1). Given our research objective, it is necessary to test optimal train rescheduling strategies 

obtained from an optimisation-based method, and to assess the impact of each strategy on the 

integrated PT network including the urban level, calling for a simulation-based evaluation 

approach. We therefore propose a simulation-based optimisation framework to predict 

disruption impact propagation from the train network to the urban network level. Using our 

proposed methodology, we test how different train rescheduling strategies can be used to 

mitigate disruption propagation to the urban network level. In our study, we only control train 

trips to mitigate disruption propagation: controlling urban PT trips subsequently (e.g. by 

applying holding control strategies tailored for the disruption conditions) falls outside our 

research scope. Our study contribution is threefold: 

 Development of a methodology to predict disruption impact propagation from train 

network to urban PT network level. 

 Integration of a simulation-based and an optimisation-based approach into one 

modelling framework to predict disruption propagation impacts. 

 Test the impact of different train rescheduling strategies on controlling disruption 

impacts for the total multi-level PT network. 

 

 

Figure 8.1. Illustration of propagation of train network disruption to urban network 

The remainder of this paper is structured as follows. Section 8.2 discusses our proposed 

modelling methodology to quantify and control disruption propagation. We apply this 

methodology to a real-world case study in The Hague, the Netherlands, which is introduced in 

Section 8.3. Results of this case study application are discussed in Section 8.4. Section 8.5 

provides conclusions and recommendations for future research directions.  

8.2 Methodology 

This section discusses our proposed methodology to quantify and control disruption impact 

propagation over the multi-level PT network. Section 8.2.1 introduces our proposed modelling 

framework. Section 8.2.2 and Section 8.2.3 provide more details of the dynamic PT assignment 

model and the train rescheduling model, respectively, that we employ in this modelling 

framework. Table 8.1 introduces the notations used in the dynamic PT assignment model, 

whilst Table 8.2 lists the notations used in the train rescheduling model. 
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Table 8.1. List with sets, indices, variables and parameters for the dynamic PT assignment model 

Sets and indices 

𝑠, 𝑆 public transport stop as node of graph 𝐺, set of stops 

𝑎, 𝐴 edge of graph 𝐺, set of links 

𝑙, 𝐿 unidirectional public transport line, set of lines 

𝑘, 𝐾 public transport trip, set of trips 

𝑜, 𝑂 public transport stop representing origin node of 𝐺, set of origin nodes 

𝑑, 𝐷 public transport stop representing destination node of 𝐺, set of destination nodes 

𝑔, 𝐺 passenger route choice action, set of actions 

𝑑𝑤 index for dwell time 

𝑟 index for running time 

𝑠 index for scenario 

𝑡 index for regional train network level 

𝑢 index for urban public transport network level 

𝑖𝑣𝑡 index for in-vehicle time 

𝑤𝑘𝑡 index for walking time 

𝑤𝑡𝑡 index for waiting time 

𝑤𝑡𝑡 − 𝑑 index for waiting time due to denied boarding 

𝑜𝑛 − 𝑏𝑜𝑎𝑟𝑑 index for passengers on-board a public transport trip 

𝑎𝑙𝑖𝑔ℎ𝑡 index for alighting passengers 

𝑏𝑜𝑎𝑟𝑑 index for boarding passengers 

𝑡𝑓 index for transferring passengers 

𝑎𝑟𝑟 index for trip arrival 

𝑑𝑒𝑝 index for trip departure 

Variables 

ℎ̃ scheduled headway of a public transport line 

𝑛 number of passengers 

𝑡 time 

𝑣 generalised passenger journey cost  

Parameters 

𝛿 dwell time coefficient  

𝜀 weights for passenger perception coefficients of travel time components 

𝜁 threshold convergence criterion 1 

𝜂 threshold convergence criterion 2 

8.2.1 Modelling framework 

The main contribution of this study is the development of a simulation-based optimisation 

modelling framework as a methodology for predicting the propagation of a train network 

disruption to the urban PT network. This modelling framework combines two different models: 

a simulation-based dynamic PT assignment model and an optimisation-based train rescheduling 

model. Using a dynamic PT assignment model which represents the entire multi-level PT 

network enables the quantification of the impact of a train network disruption for the PT 

network as a whole, thereby incorporating the dynamic and stochastic demand and supply 

characteristics particularly relevant for the urban network level (as mentioned in Section 8.1.2). 

The train rescheduling model is required, as the total disruption impact depends on the train 

rescheduling strategy applied to train services in response to a disruption, typically derived from 

an optimisation-based rescheduling model.  

We represent the PT network using a directed graph 𝐺(𝑆, 𝐴) with 𝑆 being the set of all 

stops and train stations and 𝐴 the set of links. The train network level and urban network level 

are represented by subgraphs 𝐺𝑡(𝑆𝑡, 𝐴𝑡) and 𝐺𝑢(𝑆𝑢, 𝐴𝑢) respectively, with 𝐺𝑡 ∈ 𝐺 and 𝐺𝑢 ∈
𝐺. Passenger demand 𝑛𝑜𝑑 is defined from each origin stop 𝑜 ∈ 𝑆 to each destination stop 𝑑 ∈
𝑆. The integrated modelling framework we propose in this study is shown in Figure 8.2. This 

framework consists of three modelling steps, which needs to be performed to adequately 

quantify the disruption propagation impact subject to different train rescheduling strategies.  
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Table 8.2. List with sets and indices, variables and parameters for the train rescheduling model 

Sets and indices 

𝑖, 𝑇 index for train trip, set of all train trips 

𝑗, 𝐵 index for rail infrastructure segment of train network, set of segments 

𝑘, 𝐸 index for time slot request event by train for a rail infrastructure segment, set of events 

𝑝, 𝑃 index for track for each train infrastructure segment, set 

𝑎𝑙𝑖𝑔ℎ𝑡 index for alighting passengers 

𝑡𝑓 index for transferring passengers 

𝑏𝑒𝑔𝑖𝑛 arrival at segment 

𝑒𝑛𝑑 departure from segment 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 scheduled event time 

𝑠𝑡𝑎𝑡𝑖𝑐 event time during disruption 

Variables 

𝑏 start time of event 

𝑑 minimum segment running time 

𝑒 end time of event 

ℎ̃ scheduled headway of a public transport line 

𝑛 number of passengers 

𝑜 point of origin of event 

𝑞 binary variable indicating if an event uses a certain track 

𝑟 binary variable indicating if an event occurs before another event 

𝑠 binary variable indicating if an event is rescheduled to occur after another event 

𝑤 train arrival time deviation  

𝑥 time at segment 

𝑧 train delay 

Parameters 

𝛼 weight for penalising track changes 

𝛽 weight for alighting passengers in transfer-alighting based delay minimisation strategy 

𝛾 weight for transferring passengers in transfer-alighting based delay minimisation strategy 

𝛿𝑚 minimum time between two trains driving in opposite direction 

𝛿𝑓 minimum time between two trains driving in the same direction 

𝜇 track or platform initially intended to be used by an event 

 

 

Figure 8.2. Integrated modelling framework 
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The first step is the model initialisation, where the dynamic PT assignment model (more details 

are provided in Section 8.2.2) is used to assign the total PT passenger demand 𝑛 (for train and 

urban network level) over the multi-level PT network for a scenario without disruption 𝑠0. This 

results in passenger route choice over the total multi-level PT network in case there would be 

no disruption, yet subject to recurrent service variations. Based on this, passengers’ generalised 

travel costs 𝑣𝑠0
 in the steady-state condition can be computed by summation of the different 

travel time components (walking time 𝑡𝑤𝑘𝑡, waiting time 𝑡𝑤𝑡𝑡, in-vehicle time 𝑡𝑖𝑣𝑡, waiting 

time due to denied boarding 𝑡𝑤𝑡𝑡−𝑑, number of transfers 𝑛𝑡𝑓) multiplied by their corresponding 

weights 𝜀 and value of time (𝑉𝑜𝑇) (Eq.1). 

 

𝑣𝑠
𝑜𝑑 = (𝜀𝑖𝑣𝑡 ∙ 𝑡𝑖𝑣𝑡,𝑜𝑑 + 𝜀𝑤𝑘𝑡 ∙ 𝑡𝑤𝑘𝑡,𝑜𝑑 + 𝜀𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡,𝑜𝑑 + 𝜀𝑤𝑡𝑡−𝑑 ∙ 𝑡𝑤𝑡𝑡−𝑑,𝑜𝑑 + 𝜀𝑡𝑓 ∙ 𝑛𝑡𝑓,𝑜𝑑) ∗ 𝑉𝑜𝑇  (1) 

 

Second, the train rescheduling model (more details are provided in Section 8.2.3) is 

applied to perform an optimal train rescheduling for a given train network disruption 𝑠𝑖. The 

train rescheduling model requires the number of alighting passengers from each train trip at 

each train station 𝑛𝑖,𝑘
𝑎𝑙𝑖𝑔ℎ𝑡,𝑡

 as input, as well as the number of transferring passengers 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

 

from the train network level to the urban network level. Depending on the rescheduling strategy 

applied in this model, the scheduled headway of each urban PT line ℎ𝑙
�̃� where passengers 

transfer to is also required as input. These three variables are outputs from the assignment 

process of the dynamic PT assignment model and are fed into the train rescheduling model as 

input for the objective function of a certain train rescheduling strategy. A train network 

disruption is coded as input for the train rescheduling model, after which the train rescheduling 

problem is solved for a certain rescheduling strategy. As output, the train rescheduling model 

provides an updated train timetable with rescheduled train departure times �̃�𝑠𝑙,𝑘

𝑑𝑒𝑝
. The scheduled 

train departure times for each station in the undisrupted case are equal for the train trips 

modelled in the train rescheduling model and in the dynamic PT assignment model. Due to the 

difference in granularity between the two models, only updated departure times from 

commercial train stations are fed back into the dynamic PT assignment model, i.e. updated 

departure times from other timetable time points such as movable bridges are not fed back from 

the train rescheduling model to the PT assignment model.  

Third, the dynamic PT assignment model is applied again for each rescheduling 

strategy applied in the train rescheduling model. The updated train departure times from the 

train rescheduling model in response to the modelled disruption on the train network are used 

as input. Using this updated train timetable, the total PT demand is re-assigned over the multi-

level PT network, based upon which the generalised travel costs 𝑣𝑠𝑖
 can be computed (Eq.1). 

Due to the stochastic nature of the dynamic PT assignment model, multiple replications of this 

model are required in both step 1 and step 3 of the model sequence. The generalised travel costs 

are then averaged over the number of replications.  

Next, step 2 and step 3 are repeated iteratively. This is of relevance as the reassigned 

train passenger flows in the dynamic assignment model can update the number of alighting and 

transferring train passengers, which can affect the rescheduling results in the optimisation 

model as a consequence. This iterative process between step 2 and step 3 terminates when 

convergence is reached. We define two different convergence criteria in this study, of which at 

least one needs to be satisfied to consider results as converged. The first criterion compares the 

generalised journey costs 𝑣𝑠𝑖
 for the total multi-level network between two iterations, as can be 

computed from the outputs of the PT assignment model (Eq.2). When the difference of 𝑣𝑠𝑖
 - as 

average over the multiple replications within each iteration - between two subsequent iterations 

𝑗 and 𝑗 − 1 is smaller than a predefined threshold 𝜁, convergence is reached after 𝑗 iterations. 
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The second criterion compares the passenger volume assigned for each train trip 𝑖 ∈ 𝑇 on each 

track segment between two iterations. If at least 95% of the train segment passenger volumes 

in the model differ by less than a predefined threshold 𝜂 from the volumes in the previous 

iteration, convergence is reached (Eq.3). We use two convergence criteria in this study, as this 

relates to the two models used. If the total assignment results between two iterations do not 

differ more than 𝜁, the PT assignment model results can be considered stable (first convergence 

criterion). If the train passenger volume used as input for the train rescheduling model does not 

differ more than 𝜂 from the previous iteration, it indicates that the updated train departure times 

resulting from the train rescheduling model will be stable. As these are used to update the PT 

assignment model, consequently the results of the assignment model will be stable as well 

(second convergence criterion). Hence, satisfying one of these criteria is sufficient to consider 

the model results as converged.  

 

Δ𝑣𝑠𝑖
= ∑ ∑(𝑣𝑠𝑖

𝑜𝑑,𝑗
− 𝑣𝑠𝑖

𝑜𝑑,𝑗−1

𝑑∈𝑆𝑜∈𝑆

) / ∑ ∑(𝑣𝑠𝑖

𝑜𝑑,𝑗−1

𝑑∈𝑆𝑜∈𝑆

)                                                      (2) 

 

Δ𝑛𝑖,𝑘
𝑜𝑛−𝑏𝑜𝑎𝑟𝑑,𝑡 = (𝑛𝑖,𝑘

𝑜𝑛−𝑏𝑜𝑎𝑟𝑑,𝑡,𝑗
− 𝑛𝑖,𝑘

𝑜𝑛−𝑏𝑜𝑎𝑟𝑑,𝑡,𝑗−1
) / 𝑛𝑖,𝑘

𝑜𝑛−𝑏𝑜𝑎𝑟𝑑,𝑡,𝑗−1
      ∀ 𝑖 ∈ 𝑇, 𝑘 ∈ 𝐸 (3) 

 

Eq.4 quantifies the total passenger disruption impact ∆𝑣, expressed as generalised passenger 

delay costs. The generalised journey costs resulting from disruption 𝑠𝑖 after convergence 𝑣𝑠𝑖
 are 

compared with these costs when there is no disruption 𝑣𝑠0
. We distinguish between journeys 

with their origin and destination at the train network level or urban network level, which results 

in four different passenger segments. This enables the quantification of the impact of a train 

network disruption on this disrupted network level, as well as the spill-over impacts due to 

propagation to the urban PT network level. The disruption impact of a train network disruption 

on the disrupted train network level ∆𝑣𝑡 relates to the increase in generalised travel costs for 

passengers starting and terminating their journey at the train network level 𝐺𝑡. The disruption 

propagation to the urban network level ∆𝑣𝑢 relates to the additional generalised journey costs 

for passengers with their journey starting and/or terminating at the urban network level 𝐺𝑢.  

 

∆𝑣 = ∑ ∑ (𝑣𝑠𝑖

𝑜𝑑 − 𝑣𝑠0
𝑜𝑑

𝑑∈𝑡,𝑢𝑜∈𝑡,𝑢

)                                                                                                  (4) 

8.2.2 Dynamic PT assignment model 

This section discusses the properties of the dynamic PT assignment model employed in this 

study in more detail. We use a mesoscopic, simulation-based dynamic PT assignment model to 

represent the multi-level PT network. The train network level, as well as the urban tram and bus 

network level are represented in this model. In terms of granularity each node corresponds to a 

PT stop, and each link is the direct connection between two stops 𝑠 ∈ 𝑆. These links typically 

represent a PT connection between two adjacent stops, whereas they represent a walk 

connection between stops located close to each other, for example within a single PT hub. We 

use an agent-based simulation model to mimic the emerging order from interactions among 

numerous vehicles and passengers. To be able to reflect stochastic demand patterns due to day-

to-day variation, the arrival rate of passengers at the origin stop for each OD pair is assumed to 

follow a Poisson distribution. The arrival rate parameter of the Poisson distribution can typically 

be estimated from Automated Fare Collection (AFC) data.  
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PT supply dynamics 

The set of PT lines is denoted by 𝐿, with |𝐿| representing the total number of lines. Each line 

𝑙 ∈ 𝐿 is defined by a sequence of stops 𝑙 = {𝑠𝑙,1, 𝑠𝑙,2. . 𝑠𝑙,𝑗} with 𝐾𝑙 = {𝑘𝑙,1, 𝑘𝑙,2. . 𝑘𝑙,𝑗} denoting 

the set of scheduled trips on line 𝑙 ∈ 𝐿. The scheduled headway of a line is denoted by ℎ̃𝑙, which 

can be time-dependent. The total time 𝑡𝑙,𝑘 it takes a vehicle to complete trip 𝑘 of line 𝑙 equals 

the summation of all running times 𝑡𝑠𝑙
𝑟  from stop 𝑠𝑙 to stop 𝑠𝑙+1 and dwell times 𝑡𝑠𝑙

𝑑𝑤 at each 

stop 𝑠𝑙, as expressed by Eq.5. 

 

𝑡𝑙,𝑘 = ∑ 𝑡𝑠𝑙,𝑘
𝑟

𝑠−1

𝑠=1

+ ∑ 𝑡𝑠𝑙,𝑘
𝑑𝑤

𝑠−1

𝑠=1

        ∀ 𝑘𝑙 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿                                                                   (5) 

             

Running times 𝑡𝑠𝑙,𝑘
𝑟  can be assumed deterministic, using the scheduled times obtained from the 

timetable, or can be stochastic. In the latter case, typically a lognormal or log-logistic 

distribution function is best fitted to characterise the empirical running times obtained from 

Automated Vehicle Location (AVL) data. In our study, we use deterministic running times for 

the train network, as these running times are relatively stable given the limited interactions with 

other traffic. For urban tram and bus lines, we fit a lognormal or log-logistic distribution to the 

empirical AVL data, to capture the predominantly stochastic running times within an urban 

environment.   

The dwell times 𝑡𝑠𝑙,𝑘
𝑑𝑤 for each trip 𝑘𝑙 ∈ 𝐾𝑙 at each stop 𝑠 ∈ 𝑆 are dependent on the 

number of boarding and alighting passengers 𝑛𝑠𝑙,𝑘
𝑏𝑜𝑎𝑟𝑑 and 𝑛𝑠𝑙,𝑘

𝑎𝑙𝑖𝑔ℎ𝑡
. The flow-dependent dwell 

time function used in this study assumes a linear relation between the number of boarding and 

alighting passengers and the required dwell time, whilst the model also allows for adding a non-

linear effect of on-board crowding on dwell times based on Weidman (1994). As crowding 

levels for our case study network (see Section 8.3) are relatively low, even when subject to the 

disruption types we consider, we deem using a simple linear function sufficient and beneficial 

in terms of computation times. For PT networks or disruption types where severe crowding 

occurs, the use of a dwell time function with non-linear crowding effect is however 

recommended. In case separate doors of a vehicle are used for boarding and alighting, the dwell 

time depends on the maximum of the number of boarding and alighting passengers, multiplied 

by the related dwell time coefficient 𝛿 which reflects the required boarding or alighting time 

per passenger (Eq.6). When all doors are used for both boarding and alighting, the dwell time 

is calculated using Eq.7. The dwell time function is calibrated for different vehicle types (e.g. 

high-floor trams, low-floor trams and buses) by executing a regression analysis predicting the 

realised dwell times based on the boarding and alighting volumes obtained from AFC and AVL 

data. A separate dwell time function is calibrated for each vehicle type. If different bus vehicle 

types (e.g. buses with a different number of doors or with different boarding regimes) would be 

used for different lines, different coefficients need to be calibrated. Similarly, if a tram line 

would be operated by longer trams (for example, two coupled tram carriages), separate 

coefficients need to be estimated for this line due to the different number of total doors available 

for boarding and alighting. 

 

𝑡𝑠𝑙,𝑘
𝑑𝑤 = 𝛿0 + max (𝛿1 ∙ 𝑛𝑠𝑙,𝑘

𝑏𝑜𝑎𝑟𝑑, 𝛿2 ∙ 𝑛𝑠𝑙,𝑘

𝑎𝑙𝑖𝑔ℎ𝑡
 )      ∀ 𝑘𝑙 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                      (6) 

 

𝑡𝑠𝑙,𝑘
𝑑𝑤 = 𝛿0 + 𝛿1 ∙ 𝑛𝑠𝑙,𝑘

𝑏𝑜𝑎𝑟𝑑 + 𝛿2 ∙ 𝑛𝑠𝑙,𝑘

𝑎𝑙𝑖𝑔ℎ𝑡
                 ∀ 𝑘𝑙 ∈ 𝐾𝑙, 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                      (7) 
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The departure time of a trip 𝑡𝑠𝑙,𝑘

𝑑𝑒𝑝
 depends on the arrival time at that stop 𝑡𝑠𝑙,𝑘

𝑎𝑟𝑟  and the 

required dwell time 𝑡𝑠𝑙,𝑘
𝑑𝑤. In case a stop is a holding point and a schedule-based holding control 

regime is employed, the departure time can never be earlier than the scheduled departure time 

from that specific stop �̃�𝑠𝑙,𝑘

𝑑𝑒𝑝
. For urban PT networks, a select number of stops are usually 

holding points, whereas all train network stations are holding points as trains are generally not 

able to depart ahead of schedule from a station. Eq.8 shows the departure time calculation for 

a stop which is not a holding point; Eq.9 shows the calculation for a holding point stop. 

 

𝑡𝑠𝑙,𝑘

𝑑𝑒𝑝 = 𝑡𝑠𝑙,𝑘
𝑎𝑟𝑟 + 𝑡𝑠𝑙,𝑘

𝑑𝑤                                  ∀ 𝑘𝑙 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                                        (8)  

 

𝑡𝑠𝑙,𝑘

𝑑𝑒𝑝 = max (𝑡𝑠𝑙,𝑘
𝑎𝑟𝑟 + 𝑡𝑠𝑙,𝑘

𝑑𝑤 , �̃�𝑠𝑙,𝑘

𝑑𝑒𝑝)         ∀ 𝑘𝑙 ∈ 𝐾𝑙 , 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆                                        (9) 

 

PT demand dynamics 

The number of boarding and alighting passengers is obtained from a successive number of 

choices each individual passenger makes during the journey. At each stop a passenger can make 

a boarding decision to board a certain trip or to wait, or make a connection decision to walk to 

another PT stop. When boarded a certain trip, a passenger can make an alighting decision at 

each downstream stop whether to alight from this vehicle or to stay on-board. These decisions 

can be made en-route and in a dynamic way if the expected utility of a certain choice changes 

during a journey, for example in response to high crowding levels or to information provided 

about a downstream disruption. These successive decisions are based on the expected utility of 

a path 𝑣𝑔 corresponding to a certain action 𝑔 as logsum over the path set 𝐴𝑔 ∈ 𝐴𝑜𝑑 associated 

with this action (Eq.10). The probability of passenger 𝑛 choosing this action 𝑔 is calculated 

using a multinomial logit (MNL) model (Eq.11), which results in stochastic route choice over 

the network. The structural part of the utility function is calculated based on the sum product of 

the expected values of the different travel time attributes and the weights of the corresponding 

coefficients. The model considers in-vehicle time (nominal and perceived in-vehicle time 

caused by crowding), walking time, waiting time (regular waiting time as well as waiting time 

caused by denied boarding in case of crowding) and the number of transfers. For different travel 

time components, different coefficients are used reflecting the perceived time by passengers, as 

well as a fixed transfer penalty for each transfer. To alleviate potential violations of the IIA 

assumption of the MNL model, common stops and lines are merged into hyper-paths. A single 

non-equilibrium assignment procedure without day-to-day learning is applied. A more 

extensive description of the dynamic PT assignment model proposed for this study is provided 

by Cats et al. (2016a). 

 

𝑣𝑛,𝑔 = 𝑙𝑛 ∑ 𝑒𝑣𝑛,𝑎  

𝑎∈𝐴𝑔

                                     ∀ 𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺                                           (10) 

 

𝑝𝑛,𝑔 =
𝑒𝑣𝑛,𝑔

∑ 𝑒𝑣𝑛,𝑔
𝑔∈𝐺

                                         ∀ 𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺                                           (11) 

8.2.3 Train rescheduling model 

Model formulation 

We use a mesoscopic optimisation model for train rescheduling in response to a train network 

disruption. The model is a modified version of the model proposed by Törnquist and Persson 
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(2007). This model only represents the train network level 𝐺𝑡 ∈ 𝐺, which is a subset of the total 

multi-level PT network 𝐺 considered in this study. In this model, individual train trips are 

represented. Each node corresponds to a train station or infrastructure junction, such as a 

movable bridge or track merging; each separate track between two nodes is represented by an 

individual link. In this train rescheduling model 𝐺𝑡 is represented with a higher granularity than 

in the dynamic PT assignment model, to allow for optimal rescheduling of each individual train 

trip in case of a disruption.  

Let 𝑇 represent the set of all train trips in the selected train network level and let 𝐵 

denote the set of segments that defines the rail infrastructure for the train network level. 𝐸 

denotes the set of events, where an event can be seen as a time slot request by a train for a 

specific network segment. The index 𝑖 is associated with a specific transport service in the set 

𝑇 (i.e. 𝑖 ∈ 𝑇), while the index 𝑗 is associated with a specific network segment (𝑗 ∈ 𝐵), and index 

𝑘 is associated with an event (𝑘 ∈ 𝐸). An event is associated with a combination of a network 

segment and a transport service. The set 𝐾𝑖 ⊆ 𝐸 is an ordered set of events for each transport 

service 𝑖, while 𝐿𝑗 ⊆ 𝐸 is an ordered set of events for each network segment 𝑗. Each segment 𝑗 

in 𝐵 has a number of parallel tracks, with each track indicated by 𝑝𝑗 ∈ 𝑃𝑗. Each track requires 

a separation in time between subsequent events (i.e. the minimum time required between one 

train leaving the track and the next train entering the same track). The latter is reflected by δ𝑗
𝑚 

for the minimum time between trains driving in the opposite direction, and by δ𝑗
𝑓
 for trains 

following each other in the same direction. 

This train rescheduling model focuses primarily on train delay minimisation but allows 

for weighting the delay of different trains based on the number of passengers on-board the 

trains, in order to adopt a more passenger-oriented approach in the train delay minimisation. It 

should however be noted that passengers and their dynamic route choice are not explicitly 

modelled here, since incorporating demand- and supply-related stochastics and dynamics of 

both network levels of a real-world PT network is computationally expensive (as addressed in 

Section 8.1). The objective function of this model in its most basic form is therefore the 

minimisation of the sum of all delays for all train trips (Eq.12). The optimisation is formulated 

as mixed integer linear programming (MILP) problem. The decision variables reflecting the 

decisions to be made during the train rescheduling are reflected by Eq.13-15. 

             

  𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ 𝑧𝑖,𝑘𝑘∈𝐾𝑖𝑖∈𝑇                                                                                                     (12)  

 

𝑞𝑖,𝑘,𝑝 =  {
 1, if event 𝑘 uses track 𝑝, 𝑘 ∈ 𝐾𝑖, 𝑘 ∈ 𝐿𝑗 , 𝑖 ∈ 𝑇, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵 

 0, otherwise
            (13) 

 

𝑟𝑘,�̂� =  {
 1, if event 𝑘 occurs before event �̂�, 𝑘 ∈ 𝐿𝑗 , 𝑗 ∈ 𝐵: k < �̂� 

 0, otherwise
            (14) 

 

𝑠𝑘,�̂� =  {
 1, if event 𝑘 is rescheduled to occur after event �̂�, 𝑘 ∈ 𝐿𝑗 , 𝑗 ∈ 𝐵: k < �̂� 

 0, otherwise
                      (15) 
 

Constraints 

The optimisation is subject to several constraints related to the timing and sequence of events 

and the capacity and safety limitations of the infrastructure. We introduce the following 

notations specifically related to the model constraints. The variables 𝑥𝑘
𝑏𝑒𝑔𝑖𝑛

 and 𝑥𝑘
𝑒𝑛𝑑 reflect the 

arrival time at a segment for a specific train, and the departure time from this segment, 
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respectively. The scheduled start and end time of each event are reflected by 𝑏𝑘
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝑒𝑘

𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 

whilst a disruption is modelled by changing the start and end time of selected events to 𝑏𝑘
𝑠𝑡𝑎𝑡𝑖𝑐 

and 𝑒𝑘
𝑠𝑡𝑎𝑡𝑖𝑐. The minimum running time of each trip for each segment 𝑑𝑖,𝑘 is provided as model 

input. The constraints reflected by Eq.16-21 are related to train restrictions. Each event of a 

specific train trip needs to be followed directly by the next event of this trip (Eq.16). Events 

which started before the disruption starts, but are not finished yet when the disruption start, 

should start as planned (Eq.17-18). The duration of each event for a certain segment should at 

least be equal to the minimum running time required for this segment (Eq.19), whilst events 

are not allowed to start before their original scheduled departure time (Eq.20). In Eq.21, the 

train delay exceeding threshold 𝜏 minutes is calculated for each event.  

 

𝑥𝑖,𝑘
𝑒𝑛𝑑 = 𝑥𝑖,𝑘+1

𝑏𝑒𝑔𝑖𝑛
, 𝑘 ∈ 𝐾𝑖, 𝑖 ∈ 𝑇: 𝑘 ≠ |𝐾𝑖|      (16) 

𝑥𝑖,𝑘
𝑏𝑒𝑔𝑖𝑛

= 𝑏𝑖,𝑘
𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑘 ∈ 𝐾𝑖, 𝑖 ∈ 𝑇: 𝑏𝑘

𝑠𝑡𝑎𝑡𝑖𝑐 > 0       (17) 

𝑥𝑖,𝑘
𝑒𝑛𝑑 = 𝑒𝑖,𝑘

𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑘 ∈ 𝐾𝑖, 𝑖 ∈ 𝑇 ∶ 𝑒𝑘
𝑠𝑡𝑎𝑡𝑖𝑐 > 0      (18) 

𝑥𝑖,𝑘
𝑒𝑛𝑑 ≥ 𝑥𝑖,𝑘

𝑏𝑒𝑔𝑖𝑛
+ 𝑑𝑖,𝑘, 𝑘 ∈ 𝐾𝑖 , 𝑖 ∈ 𝑇       (19) 

𝑥𝑖,𝑘
𝑏𝑒𝑔𝑖𝑛

≥ 𝑏𝑖,𝑘
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑘 ∈ 𝐾𝑖, 𝑖 ∈ 𝑇        (20) 

𝑥𝑖,𝑘
𝑒𝑛𝑑 − 𝑒𝑖,𝑘

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜏 ≤ 𝑧𝑖,𝑘
+𝜏, 𝑘 ∈ 𝐾𝑖, 𝑖 ∈ 𝑇       (21) 

 

 The constraints as formulated in Eq.22-28 concern the permitted interactions between 

trains, given the capacity limitations of the infrastructure (including safety restrictions). First, 

each event must use exactly one track per segment (Eq.22). Eq.23-27 make sure that if two 

events using the same track within a segment, this can only occur if the first event has finished 

and the minimum required time δ𝑗
𝑚 or δ𝑗

𝑓
 has passed (depending whether these subsequent 

trains are running in the same or opposite direction). 𝑜𝑘 refers here to the point of origin of 

event 𝑘, which enables determining whether two subsequent events are using a segment in the 

same or in opposite direction. 𝑀 is a large positive constant. Eq.28 guarantees that an event 𝑘 

cannot be scheduled both before and after event �̂�. As a last set of constraints, the train 

rescheduling model allows for the incorporation of preferences of the PT service provider, such 

as guaranteed connections between specific trips or giving different weights to connections with 

different levels of importance. 

 

∑ 𝑞𝑖,𝑘,𝑝 = 1, 𝑘 ∈ 𝐾𝑖 , 𝑘 ∈ 𝐿𝑗 , 𝑖 ∈ 𝑇, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵 𝑝∈𝑃𝑗
     (22) 

              𝑞𝑖,𝑘,𝑝 + 𝑞𝑖,�̂�,𝑝 − 1 ≤ 𝑟𝑘,�̂� + 𝑠𝑘,�̂�, 

𝑘, �̂� ∈ 𝐿𝑗 , 𝑘 ∈ 𝐾𝑖,, �̂� ∈ 𝐾�̂�, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵, 𝑖, 𝑖 ̂ ∈ 𝑇: 𝑘 < �̂�     (23) 

     𝑥
𝑖,�̂�

𝑏𝑒𝑔𝑖𝑛
− 𝑥𝑖,𝑘

𝑒𝑛𝑑 ≥ δ𝑗
𝑚𝑟𝑘,�̂� − 𝑀(1 − 𝑟𝑘,�̂�), 

𝑘, �̂� ∈ 𝐿𝑗 , 𝑘 ∈ 𝐾𝑖,, �̂� ∈ 𝐾�̂�, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵, 𝑖, 𝑖 ̂ ∈ 𝑇: 𝑘 < �̂�, 𝑜�̂� ≠ 𝑜𝑘       (24) 

     𝑥
𝑖,�̂�

𝑏𝑒𝑔𝑖𝑛
− 𝑥𝑖,𝑘

𝑒𝑛𝑑 ≥ δ𝑗
𝑓

𝑟𝑘,�̂� − 𝑀(1 − 𝑟𝑘,�̂�),  

𝑘, �̂� ∈ 𝐿𝑗 , 𝑘 ∈ 𝐾𝑖,, �̂� ∈ 𝐾�̂�, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵, 𝑖, 𝑖 ̂ ∈ 𝑇: 𝑘 < �̂�, 𝑜�̂� = 𝑜𝑘     (25) 

     𝑥𝑖,𝑘
𝑏𝑒𝑔𝑖𝑛

− 𝑥𝑖,�̂�
𝑒𝑛𝑑 ≥ δ𝑗

𝑚𝑠𝑘,�̂� − 𝑀(1 − 𝑠𝑘,�̂�),  

𝑘, �̂� ∈ 𝐿𝑗 , 𝑘 ∈ 𝐾𝑖,, �̂� ∈ 𝐾�̂�, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵, 𝑖, 𝑖 ̂ ∈ 𝑇: 𝑘 < �̂�, 𝑜�̂� ≠ 𝑜𝑘      (26) 

   𝑥𝑖,𝑘
𝑏𝑒𝑔𝑖𝑛

− 𝑥𝑖,�̂�
𝑒𝑛𝑑 ≥ δ𝑗

𝑓
𝑠𝑘,�̂� − 𝑀(1 − 𝑠𝑘,�̂�), 

𝑘, �̂� ∈ 𝐿𝑗 , 𝑘 ∈ 𝐾𝑖,, �̂� ∈ 𝐾�̂�, 𝑝 ∈ 𝑃𝑗 , 𝑗 ∈ 𝐵, 𝑖, 𝑖 ̂ ∈ 𝑇: 𝑘 < �̂�, 𝑜�̂� = 𝑜𝑘                  (27) 

𝑟𝑘,�̂� + 𝑠𝑘,�̂� ≤ 1, 𝑘, �̂� ∈ 𝐿𝑗 , 𝑗 ∈ 𝐵: 𝑘 < �̂�        (28) 
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Rescheduling strategies 

Although passengers are not explicitly modelled within the train rescheduling model, it is 

possible to add different weights to the delays of different trains in the objective function based 

on the number of passengers in each train. This gives, for example, a heavier penalty to a delay 

of a busy train compared to a delayed train which is less busy. In our study, we test four different 

train weightings, which are aimed to control the propagation of train disruption impacts to the 

urban PT network. These four different weights result in four different objective functions 

applied to the train rescheduling model, taking the objective function as introduced by Eq.12 

as base. We tested the following train rescheduling strategies:   

 Passenger based delay minimisation (Eq.29) (default): minimise train delays larger than 

two minutes 𝑧𝑖,𝑘
+2, where each train is weighted by the expected number of passengers 

leaving each train 𝑛𝑖,𝑘
𝑎𝑙𝑖𝑔ℎ𝑡,𝑡

+ 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

 (both alighting and transferring passengers). 

 Transfer based delay minimisation (Eq.30): minimise train delays larger than two 

minutes 𝑧𝑖,𝑘
+2, where each train is weighted by the expected number of transferring 

passengers from the train network level to the urban PT network level 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

. This 

implies that trains are only weighted according to the number of transferring passengers 

to the urban level. 

 Transfer-time based delay minimisation (Eq.31): minimise train delays larger than two 

minutes 𝑧𝑖,𝑘
+2, where each train is weighted by the number of transferring passengers to 

the urban PT network level multiplied with the headway of the urban PT service where 

is transferred to 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

∙ ℎ𝑙
�̃�. This reflects the expected passenger waiting time for 

transferring passengers in case a scheduled transfer from train to urban network level 

would be missed due to a delayed train arrival at the transfer stop. 

 Weighted transfer-alighting based delay minimisation (Eq.32): minimise train delays 

larger than two minutes 𝑧𝑖,𝑘
+2, where each train is weighted based on the number of 

alighting passengers 𝑛𝑖,𝑘
𝑎𝑙𝑖𝑔ℎ𝑡,𝑡

 and the number of transferring passengers from train to 

urban PT network level 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

, with different weights 𝛽 and 𝛾 respectively being 

applied to the two passenger segments. This reflects that the impact of a delayed train 

arrival can potentially be more severe for transferring passengers, when a connection to 

the urban network level would be missed, than for alighting passengers reaching their 

final destination. This typically results in a higher weight 𝛾 > 𝛽 being applied to the 

number of transferring passengers. 

 

The objective functions corresponding to the different train rescheduling strategies are shown 

in Eq. 29-32. 𝑞𝑖,𝑘,𝑝 is a binary variable related to the use of rail infrastructure by an event 𝑘 and 

is defined in Eq.13.  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ [(𝑛𝑖,𝑘
𝑎𝑙𝑖𝑔ℎ𝑡,𝑡

+ 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

) ∙ 𝑧𝑖,𝑘
+2

𝑘∈𝐾𝑖𝑖∈𝑇

+  𝑤𝑖,𝑘]    +  ∑ ∑ ∑ 𝛼 ∙ 𝑞𝑖,𝑘,𝑝
𝑝∈𝑃𝑗:𝑝≠ 𝜇𝑖,𝑘

𝑡𝑟𝑎𝑖𝑛

𝑘∈𝐾𝑖𝑖∈𝑇

              (29) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ [𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

∙ 𝑧𝑖,𝑘
+2

𝑘∈𝐾𝑖𝑖∈𝑇

+  𝑤𝑖,𝑘]    +  ∑ ∑ ∑ 𝛼 ∙ 𝑞𝑖,𝑘,𝑝
𝑝∈𝑃𝑗:𝑝≠ 𝜇𝑖,𝑘

𝑡𝑟𝑎𝑖𝑛

𝑘∈𝐾𝑖𝑖∈𝑇

                                      (30) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ [(𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

∙ ℎ𝑙
�̃�) ∙ 𝑧𝑖,𝑘

+2

𝑘∈𝐾𝑖𝑖∈𝑇

+  𝑤𝑖,𝑘]    +  ∑ ∑ ∑ 𝛼 ∙ 𝑞𝑖,𝑘,𝑝
𝑝∈𝑃𝑗:𝑝≠ 𝜇𝑖,𝑘

𝑡𝑟𝑎𝑖𝑛

𝑘∈𝐾𝑖𝑖∈𝑇

                          (31) 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ [(𝛽 ∙ 𝑛𝑖,𝑘
𝑎𝑙𝑖𝑔ℎ𝑡,𝑡

+ 𝛾 ∙ 𝑛𝑖,𝑘
𝑡𝑓,𝑡→𝑢

) ∙ 𝑧𝑖,𝑘
+2

𝑘∈𝐾𝑖𝑖∈𝑇

+  𝑤𝑖,𝑘]    +  ∑ ∑ ∑ 𝛼 ∙ 𝑞𝑖,𝑘,𝑝
𝑝∈𝑃𝑗:𝑝≠ 𝜇𝑖,𝑘

𝑡𝑟𝑎𝑖𝑛

𝑘∈𝐾𝑖𝑖∈𝑇

   (32) 

 

The following train rescheduling actions are permitted in this model: 

 Retiming: changing the departure and arrival times, while respecting the initial earliest 

departure time and minimum dwell times at commercial stops and running times of the 

trains. 

 Reordering: permitting shift of train order and overtaking to neighbouring stations, 

while respecting the safety constraints in the network. 

 Local rerouting: allowing change of track and platform assignment at a train station. 

 

The model permits for example trains to run faster than scheduled and to run ahead of schedule 

at certain stretches (i.e. arriving before the scheduled arrival time) in order to enable trains to 

catch-up from delays and make way for other trains quicker. The model also permits trains to 

change tracks and platforms at stations as well as to overtake and meet at other locations than 

initially planned, if that leads to a reduction of knock-on delays. Hence, in order to ensure that 

only such beneficial ‘delay-reducing’ re-scheduling decisions are adopted, those need to be 

associated with a smaller penalty corresponding to e.g. one minute delay. Therefore, in addition 

to delay minimisation, the objective function also minimises other arrival and departure time 

deviations and track changes. The objective is to minimise train delays larger than two 

minutes 𝑧𝑖,𝑘
+2, weighted by a passenger component depending on the rescheduling strategy, 

arrival time deviations 𝑤𝑖,𝑘 and track changes 𝑞𝑖,𝑘,𝑝. The parameter 𝜇𝑖,𝑘
𝑡𝑟𝑎𝑖𝑛 specifies the track or 

platform that was initially intended to be used by event k belonging to train 𝑖. The parameter 𝛼 

specifies the weight used for penalising track changes. If the time-related variable values are 

given in e.g. seconds, the value of 𝛼 needs to be set quite high in order to balance the trade-off 

between reducing train delays and keeping the timetable intact as much as possible with respect 

to the planned routes of the trains through/within the stations.  

As our model does not incorporate (full or partial) train cancellations, global rerouting 

(i.e. rerouting trains via a completely different route) or the supply of rail-replacement bus 

services in the optimisation, this has implications for the type and magnitude of disruptions this 

model can be applied for. This specific study focuses on disruptions which do not result in the 

blockage of certain rail infrastructure. For example, one can think of vehicle or infrastructure 

related disruptions (e.g. a signal failure, a faulty train) which result in delays, but which do not 

result in the complete unavailability of a certain infrastructure segment. When infrastructure 

becomes unavailable, train cancellations, short-turning or rerouting trains are measures 

commonly applied. Additionally, our method focuses primarily on unplanned disruptions with 

a short to medium-long duration (up to a couple of hours). For planned disruptions and for long-

lasting unplanned disruptions - for example a disruption which lasts for multiple days - supply 

of rail-replacement buses can be expected. In these cases, a wider demand response than only 

rerouting can be expected as well, as passengers might also change their mode choice, 

destination choice or trip frequency choice. 

8.3 Case Study 

This section discusses the case study for which our methodology is applied. Section 8.3.1 

introduces the case study network of The Hague, the Netherlands. Subsequently, Section 8.3.2 

describes the tested disruption scenario. 
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8.3.1 Case study network 

We apply our methodology to the multi-level public transport network of The Hague, the 

Netherlands. The Hague is the third largest city in the Netherlands, located in the main 

economic area of the Netherlands called the Randstad in the western part of the country. The 

population size of the city is over 500,000 inhabitants. The urban agglomeration of The Hague 

including its surrounding cities covers an area of 405 sq.km with more than 1 million 

inhabitants.  

The case study multi-level PT network encompasses the complete urban PT network 

of The Hague consisting of 12 tram lines and 8 bus lines, and all train services calling at The 

Hague as depicted in Figure 8.3. The tram and bus lines are operated by HTM, the urban public 

transport operator of The Hague. Two tram lines are light rail lines connecting the main city of 

The Hague with the satellite city of Zoetermeer. The other 10 tram lines function on the urban 

network level providing connections between different areas within The Hague and 

neighbouring municipalities. The eight considered bus lines all belong to the urban concession 

area of HTM in The Hague. The case study network consists of 498 bus, tram and light rail 

stops. All train services from/to the directions Leiden, Gouda and Delft starting at, terminating 

at, or serving one of the train stations of The Hague are incorporated in our case study. Both 

intercity train services, serving only larger cities, and local train services stopping at all stations 

are simulated. The train network is cordoned at the stations Leiden, Gouda and Delft Zuid, 

meaning that these stations are modelled as gate nodes for the parts of train services extending 

beyond the boundaries of the case study network. The cordoned train network consists of 16 

stations, of which 10 stations allow passengers to transfer between the (inter)regional train 

network level and the urban tram and bus network of The Hague. 

 

 

Figure 8.3. Case study public transport network  
(yellow: train services / green: tram and light rail services / red: bus services) 

Passenger demand is obtained from Automated Fare Collection (AFC) data from 20 working 

days between 5 March and 30 March 2018. For the urban tram and bus network in The Hague, 
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a distance based fare system applies where passengers are required to tap in and tap out at in-

vehicle devices for each journey leg. This means that each complete AFC transaction consists 

of a tap in time, stop, line and vehicle ID, as well as a tap out time and stop (see also Van Oort 

et al., 2017). The dataset consists of 6.48 million AFC transactions solely for the urban tram 

and bus network, equating ≈325,000 AFC transactions per average working day made on the 

urban PT network. 29,271 AFC transactions (0.5%) were incomplete due to an error in the AFC 

system and removed from the dataset. Due to the on-board tap in and tap out devices, destination 

inference is not required for complete AFC transactions. In case of an incomplete AFC 

transaction where a passenger (un)deliberately did not tap out, a trip chaining algorithm is 

applied to infer the most plausible tap out stop (Munizaga and Palma, 2012). If there is only 

one AFC transaction made by a certain card ID on the day of the incomplete transaction, or if 

no candidate alighting stop is found within a plausible walking distance of 400 Euclidean meter 

from the next registered boarding stop, no destination inference is performed. Consequently, 

another 43,427 (0.7%) AFC transactions were removed from the dataset. For all remaining 6.39 

million AFC transactions on the urban PT network, a transfer inference algorithm is applied to 

construct stop-to-stop journeys based on Gordon et al. (2013) and Yap et al. (2017), thereby 

using both the AFC and AVL (open) data corresponding to this 20 working days period.  

To construct a multi-level stop-to-stop OD matrix, the OD matrix generated solely for 

the urban PT network is amended based on information about transfers between the train and 

urban PT network. As the train and urban PT network are operated by different PT operators, 

AFC systems of these network levels are generally not linked together. Therefore, no direct 

multi-level OD matrix is available. However, the relative distribution of transferring passengers 

between the three case study train corridors (directions Leiden, Gouda or Delft) and between 

intercity and local train services, and the urban PT network was provided to us for each multi-

level transfer location in The Hague. These transfer flows are distributed proportionally over 

the different urban PT stops as origins and destinations, thereby replacing the multi-level 

transfer location as origin/destination for the original urban PT journey. This results in an OD 

matrix for the total multi-level PT network. It should be noted that this complete OD matrix 

could alternatively be obtained from a strategic transport model rather than using direct 

empirical data, depending on data availability for the considered case study area. 

In our case study, we focus on the disruption impacts for AM peak journeys with 

starting time between 7-9AM. Alongside simulating PT demand and supply between 7-9 AM, 

demand and supply are also simulated between 6-7AM and 9-10AM as warm-up and cooling-

down period. This is necessary to make sure all passengers starting their journey between 7-

9AM have PT supply available at all locations to start and finish their journey. It is also 

necessary to reflect crowding levels in PT services adequately by incorporating passengers 

starting their journey outside the AM peak, who affect crowding levels of passengers who 

started their journey within the AM peak. After applying the abovementioned transfer inference 

algorithm, there are about 104,000 journeys simulated for the multi-level PT network starting 

between 7-9AM. About 49,000 journeys start and/or end at the urban PT network level and can 

potentially benefit from our integrated approach, whilst approximately 55,000 journeys are only 

using the train network level. 

8.3.2 Disruption scenario 

We illustrate our proposed modelling framework by applying it to a disruption scenario. For 

this scenario we quantify how the impact of a train network disruption propagates to the urban 

PT network level, after applying optimised rescheduling and control strategies to train services 

on the disrupted (inter)regional train network. We simulate an infrastructure failure - such as a 

signal failure or switch failure - at a certain (fixed) location, resulting in lower speeds and thus 
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delays for all passing trains. The disruption is simulated just before Leiden for all inbound trains 

towards The Hague coming from Schiphol Airport (see Figure 8.4). In this figure, the four most 

important transfer stations between the train network and the urban PT network are indicated 

(The Hague Central, The Hague HS, The Hague Laan van NOI and Delft). Potential disruption 

propagation from train to urban network occurs mainly via these stations. The disruption is 

simulated to last from 6AM to 9AM during the simulation period. The simulation hour from 

9AM to 10AM is used for service recovery. It is assumed that all trains passing this disruption 

location between 6-9AM obtain a random delay drawn from a distribution function with an 

average of 15 minutes. 

In our experiments we use BusMezzo as dynamic PT assignment model (Cats et al., 

2010). The number of replications required given the stochastic nature of this model is 

calculated based on Burghout (2004), such that the allowable percentage error does not exceed 

5%. The optimisation model for train rescheduling is built in Java and solved using Gurobi. The 

exchange of inputs and outputs between the two models is performed automatically using a 

model integration tool built in Java (Obrenovic, 2019). We test the four different train 

rescheduling strategies as outlined in Section 8.2.3. Table 8.3 provides an overview of the 

parameter values used for our case study. The coefficients of the travel time components of the 

generalised cost function (Eq.1) are obtained from a Revealed Preference study performed by 

Yap et al. (2018a) utilising smart card data records. The Value of Time is in line with values 

typically applied in the Netherlands. We use 𝜁=|0.005| and 𝜂=|0.10| as thresholds for our 

convergence criteria. This entails that convergence is reached if the passenger journey costs for 

the total network do not change more than 0.5% between two iterations, or if for at least 95% 

of all train segments the passenger load does not change more than 10% between two iterations. 

 

 

Figure 8.4. PT network with train disruption before Leiden from direction Schiphol Airport 
The yellow lines in the figure left correspond to the train network as shown in the figure right. 
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Table 8.3. Parameter values for case study 

Parameter Parameter function 

𝛼=60 Weight for penalising track changes 

𝛽=1 Weight for alighting passengers 

𝛾=3 Weight for transferring passengers 

𝛿0=20.4 / 16.2 / 19.8 Dwell time constant high floor tram /  low floor tram / bus 

𝛿1=0.188 / 0.178 / 0.313 Boarding coefficient high floor tram /  low floor tram / bus 

𝛿2=0.218 / 0.119 / 0.177 Alighting coefficient high floor tram /  low floor tram / bus 

𝜀𝑖𝑣𝑡=1 / 𝜀𝑤𝑘𝑡=1.58 / 𝜀𝑤𝑡𝑡=1.58 / 𝜀𝑤𝑡𝑡−𝑑=3.5 / 

𝜀𝑡𝑓=4.8 

Coefficients in generalised travel cost function 

𝜁=|0.005| Threshold for first convergence criterion 

𝜂=|0.10| Threshold for second convergence criterion 

VoT=€9 / hour Value of Time 

8.4 Results and Discussion 

This section discusses the train rescheduling results (Section 8.4.1) and the disruption impact 

results (Section 8.4.2). For discussion of our case study results, we refer to the four different 

train rescheduling strategies as follows: S1 refers to total passenger based train delay 

minimisation (the default strategy), S2 to transferring passenger based train delay minimisation, 

S3 to transfer-time based train delay minimisation, and S4 to weighted alighting-transferring 

passenger based train delay minimisation.    

8.4.1 Train rescheduling results 

Based on the convergence criteria we adopted in this study, scenarios S1, S2, S3 and S4 require 

7, 3, 5 and 5 iterations, respectively, to reach convergence. For each iteration of the dynamic 

PT assignment model, 15 replications were required to capture the stochasticity in PT demand 

and supply for this case study. One replication of the dynamic PT assignment model takes about 

3 minutes on a regular PC, whilst solving the train rescheduling problem requires roughly 10 

minutes. Therefore, one complete iteration of both the train rescheduling model and PT 

assignment model requires ≈55 minutes.  

The results of the train rescheduling model show different updated timetables in 

response to the disruption, when different control strategies are applied. Figure 8.5 provides 

the arrival delay of the affected train trips which arrive at The Hague Central, which is a terminal 

station for all train services and the most important transfer location between train and urban 

network level for our case study. It can be seen that the most severe delayed trains suffer from 

≈22 minutes delay when arriving at the destination. For a couple of train trips the different 

rescheduling strategies result in the same arrival delay at The Hague Central. Overall, we see 

that control strategies which incorporate the number of alighting (non-transferring) passengers 

result in a more similar train rescheduling: the results of strategy S1 (passenger based control) 

and strategy S4 (weighted alighting-transfer based) are similar for most trains. On the other 

hand, control strategies which are only based on the number of transferring passengers 

(strategies S2 and S3) result in comparable rescheduling decisions as well. In case relatively 

large passenger volumes transfer from a certain train to an urban tram or bus with a relatively 

low frequency, this train gets prioritised in strategy S3 compared to strategy S2, as can be seen 

for trains 2246001 and 2118001. Compared to strategy S2, strategy S3 results in higher train 

arrival delays for trains with fewer passengers interchanging to urban lines with relatively low 

frequencies (e.g. trains 2446001 and 2263001). When comparing strategies S1 and S4 on the 

one hand, and strategies S2 and S3 on the other hand, we conclude that the transfer(-time) based 
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strategies S2 and S3 result in fewer trains arriving late at The Hague Central, with the average 

arrival delay being slightly smaller than for strategies S1 and S4. The (weighted) passenger 

based strategies S1 and S4 tend to distribute the delays over more trains, resulting in delays for 

a larger number of trains. This confirms that strategies which only incorporate transferring 

passenger volumes in the weighted train delay minimisation, tend to result in fewer trains 

arriving delayed at the important transfer stations.  

 

 

Figure 8.5. Train arrival delay at The Hague Central for different train rescheduling strategies 

8.4.2 Disruption impact results 

The results from the dynamic PT assignment model allow for quantifying the disruption impact 

on the disrupted train network level ∆𝑣𝑡 and the spilled-over disruption propagation to the urban 

PT network level ∆𝑣𝑢. Table 8.4 provides the monetised disruption impact in Euros (left), and 

the relative impact compared to the default passenger based delay minimisation strategy S1 

(right). Depending on the rescheduling strategy applied, the propagated disruption costs make 

up 6-8% of the total passenger disruption costs. For this case study, our results thus show that 

neglecting disruption propagation to the urban network results in an underestimation of 6-8% 

of the total disruption costs for passengers. The delayed train arrivals caused by this disruption 

influence journeys starting at the train network and terminating at the urban network (and in the 

opposite direction) due to potential missed connections or prolonged waiting times. In addition, 

the shifted train arrival trains can result in less uniform transfer volumes to the urban PT trips, 

thereby resulting in higher average crowding levels for urban PT trips. This can have a negative 

impact on journeys entirely made on the urban network as well.  

When comparing the different control strategies, one can see that disruption 

propagation costs differ substantially between the strategies. When the default rescheduling 

strategy S1 is applied, the forecast propagated disruption costs are €6,900. However, 

rescheduling strategies S2-S4 which explicitly account for transferring passengers to the urban 

network in the prioritisation of trains during the rescheduling, are all able to reduce the spilled-

over disruption impact to the urban network. Strategies S3 and S4 result in spilled-over 

disruption impacts of €5,800-€5,900, whilst a further reduction in disruption propagation is 

predicted for strategy S2 (€5,000). This means that strategies S2-S4 are able to reduce 

disruption propagation to the urban network by up to 27%. The total passenger disruption 
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impact from strategies S2-S4 is reduced by up to 3.3%. The direct passenger disruption costs 

for journeys entirely made on the train network do however remain stable for all strategies S1-

S4 (~€79,000-€80,000). This suggests that it is possible to reduce disruption impact 

propagation to the urban network, without increasing disruption costs for the train network, 

indicating that strategy S1 may yield suboptimal rescheduling results from a total network 

perspective.  

Table 8.4. Disruption impact for different train rescheduling strategies 

 Disruption impact (Euro)  Relative disruption impact  
Disrupted 

level 

(train) 

Spilled-

over level 

(urban) 

Total 
 

Disrupted 

level 

(train) 

Spilled-

over level 

(urban) 

Total 

Strategy S1 – passenger  80,353 6,857 87,210 
 

100% 100% 100% 

Strategy S2 - transfer 79,353 5,001 84,354 
 

-1.2% -27.1% -3.3% 

Strategy S3 - transfer time 80,435 5,755 86,190 
 

0.1% -16.1% -1.2% 

Strategy S4 - alighting-transfer 79,941 5,884 85,825 
 

-0.5% -14.2% -1.6% 

 

 

    

Figure 8.6. Disruption impact propagation to urban PT network expressed in nominal and 

perceived passenger delays 

Figure 8.6 separates the total (left) and propagated (right) disruption impacts for the 

four passenger segments we distinguish in this research, depending on whether the passenger 

journey starts and/or ends at the train network or urban network level. From the left side of this 

figure, we can confirm that the majority of the disruption impact applies to journeys made 

exclusively using the train network (dark blue). On the right side of the figure, we zoom in to 

journeys which start and/or end at the urban network. The propagated disruption impact 
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primarily affects journeys entirely made on the urban network, and journeys from urban to train 

network. Strategy S2 - which weights train delays based on the number of transferring 

passengers to the urban network only - results in the largest decrease in additional nominal 

journey time, waiting time and waiting time due to denied boarding, and therefore results in the 

largest total journey cost reduction compared to default strategy S1. Whilst the total spilled-

over disruption costs of S3 and S4 are comparable, it can be seen that strategy S3 influences 

both urban-urban and urban-train journeys. Strategy S4 on the other hand, which attaches 3 

times more weight to transferring passengers than to alighting passengers in the rescheduling, 

almost only affects urban-train journeys. This implies that strategy S4 distributes the disruption 

impacts over a smaller number of passengers, for which the average disruption impact is larger 

than for affected passengers by strategies S2 or S3. 

8.5 Conclusions 

In this research we propose a methodology to predict the propagation of the impact of a train 

network disruption to the urban PT network level, subject to different train rescheduling control 

strategies. We propose an integrated modelling framework where we combine a dynamic PT 

assignment model and an optimisation-based train rescheduling model in an iterative process. 

We incorporate the number of transferring passengers to the urban network level in the 

optimisation process by weighting train delays accordingly. This allows the train rescheduling 

model to incorporate potential disruption propagation to the urban PT network level in the 

decision which trains to prioritise for retiming, reordering or rerouting.  

We applied our developed modelling framework to a case study in the Netherlands. 

The case study application illustrates the relevance of quantifying the propagation of disruption 

impacts to other network levels: the modelling results show that neglecting disruption 

propagation to the urban network results in 6-8% underestimation of the total disruption costs 

for passengers. This can potentially influence the outcomes of appraisal studies when evaluating 

measures to improve PT robustness. For this specific case study disruption, our findings 

illustrate that incorporating the number of transferring passengers to the urban network level in 

the objective function of the train rescheduling model can reduce propagation of passenger 

delays to the urban network level by 14-27%, without increasing passenger delays on the train 

network level. This demonstrates that train rescheduling strategies which do not consider 

disruption propagation impacts can result in suboptimal rescheduling from a total passenger 

perspective.  

Based on our findings we recommend train network managers to consider how control 

decisions can result in train disruption impacts propagating to the urban PT network with which 

they interface. Whilst operators in practice often only consider the trips and passengers on the 

part of the network they are assigned to monitor and control, our research offers evidence that 

it can be made beneficial for all passenger groups to consider the wider PT network in control 

decisions. This can potentially reduce the disruption impact for passengers on the network level 

where the disruption occurs, as well as for passengers travelling on another PT network level.  

The main purpose of our case study application is illustrating that our modelling 

framework can be applied to large, real-world public transport networks and that it provides 

plausible results within reasonable computation times. For future research we recommend 

testing the disruption (propagation) impacts for more disruptions, locations and time periods, 

and exploring the use of different weights for control strategy S4 using our proposed modelling 

framework. This can provide a more systematic insight into the relation between different train 

control strategies and their impact on controlling disruption propagation, and hence provide 

more generalizable conclusions based on the case study outcomes. In this research only the 

passenger costs that are associated with a disruption are quantified. Other disruption costs for 
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the service provider, such as crew-related costs, rescheduling costs or reduced revenues, are not 

calculated in this study as our focus is on the passenger disruption impacts. Notwithstanding, 

calculating the disruption costs for the PT service provider is a relevant topic we recommend 

to incorporate in future research. At last, in our study we only consider train trips to be subject 

to control interventions to mitigate disruption propagation. It should however be mentioned that 

additional control can be applied to urban PT trips to further alleviate disruption propagation 

impacts. Therefore, for future research we recommend exploring how control to train trips and 

urban PT trips can be applied simultaneously to further control disruption propagation. 
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9. Conclusions 

9.1 Main Findings 

The main objective of this research is to improve methods to measure, predict and control 

disruption impacts for urban public transport (PT) networks. Based on the previous chapters, 

we provide answers to the three research questions as formulated in Section 1.3 and summarise 

the scientific contribution of our work. 

 

1. How can we measure and characterise the behavioural and demand response of 

passengers during planned and unplanned urban public transport disruptions? 

As PT disruptions can have severe impacts for passengers, PT service providers and authorities, 

it is important to be able to measure the impact of PT disruptions. Empirical data from passive 

data systems is an important source to measure these disruption impacts. For a passenger-

oriented impact measurement, passengers’ generalised journey costs need to be inferred and 

compared between a disrupted and an undisrupted journey. As a first step for this, we develop 

a robust transfer inference algorithm with the ability to infer passenger journeys from individual 

smart card transactions during disrupted and undisrupted circumstances (Chapter 2). This 

algorithm uses data from Automated Vehicle Location (AVL) and Automated Fare Collection 

(AFC) systems (such as smart card data) of the urban network as input. It relaxes existing state-

of-the-art transfer inference algorithms to incorporate the atypical passenger behaviour that can 

be observed during a PT disruption. An alighting is considered a transfer if it satisfies the 

following temporal, spatial and binary criteria. The temporal criterion states that an alighting is 

a transfer if a passenger boards the first reasonable vehicle arriving at a transfer location, 

thereby incorporating required transfer walking time, crowding levels and potential denied 

boarding for the consecutive vehicle. The spatial criterion indicates that the maximum transfer 

walking distance should not exceed a threshold of 400 Euclidean metres, which was calibrated 

for our case study network of The Hague, the Netherlands, unless a passenger uses PT services 

of another network level (where no AFC data is available for) as intermediate journey stage 

during a disruption. The binary criterion states that a transfer to the same line is only possible 

when made to the next vehicle of this same line, to incorporate the effect of operational 
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measures as short-turning or deadheading possibly being applied. The relaxation increases the 

average number of trips per journey from 1.18 to 1.21, when applied to our case study public 

transport network. A partial validation shows that our algorithm improves inference during 

disruptions, without compromising inference results during undisrupted circumstances. Our 

results confirm that the atypical passenger behaviour during disruptions can be incorporated in 

the transfer inference algorithm, whilst there are no journeys resulting for which it is obvious 

that the inference would have been incorrect (based on the ratio between travelled and 

Euclidean distance between origin and destination). 

 A second step when measuring disruption impacts is to infer how passengers perceive 

the different journey components, especially in relation to crowding (Chapter 3). Compared to 

previous studies on crowding valuation in public transport, our study results are entirely based 

on Revealed Preference (RP) route choice observations. Observed routes are obtained from 

AFC data, whilst the route attributes are derived from AVL data (in-vehicle time, transfer time), 

and by fusion of both data sources (crowding). Based on the estimated discrete choice model 

with panel effects, we find that the average in-vehicle time crowding multiplier for urban trams 

and buses equals 1.16 when all seats are occupied and no passengers are standing. This implies 

that passengers perceive one minute travelling as 1.16 minute, when the vehicle occupancy 

equals the seat capacity. In case occupancies increase to an average standing density of 3 

passengers per m2, this in-vehicle time multiplier equals 1.34. For frequent passengers, these 

two values equal 1.31 and 1.75, respectively. Hence, on average this passenger segment 

perceives 12 minutes travelling in a PT vehicle with on average 3 passengers standing per m2 

as 21 minutes. Infrequent passengers do not incorporate crowding in their route choice, due to 

the lack of prior knowledge about crowding levels. Our estimated crowding multipliers are 

lower than values found in previous Stated Preference (SP) experiments. For example, previous 

SP studies found in-vehicle time multipliers ranging between 1.6-1.9 when the occupancy 

equals the seat capacity (e.g. MVA Consultancy, 2008), whereas our study suggests values up 

to 1.31 under these circumstances. This gives evidence for the tendency of SP experiments to 

overestimate values of coefficients, compared to RP based studies. 

 A third step is to infer passengers’ demand response in the event of planned disruptions 

such as maintenance work, as demand suppression can be expected for communicated service 

disruptions (Chapter 4). This demand suppression indicates that passengers temporarily accept 

an alternative for their affected PT journey, for example by changing their mode choice, 

destination choice or trip frequency choice. For this study purpose, we calibrate route and mode 

choice parameters of a PT ridership prediction model based on empirical data from two planned 

disruptions. A three-step rule-based procedure is developed for this. The calibrated parameter 

set is validated using two different planned disruptions. In our approach, we compare the 

predicted and empirical relative impacts of a planned disruption on the number of passengers 

and passenger-kilometres for affected PT lines and time periods, thereby correcting for 

seasonality effects. Our results suggest that passengers perceive in-vehicle time in replacement 

buses about 11% more negatively compared to the tram line being replaced. Waiting time 

perception for rail-replacement buses is ≈30% higher than for regular trams or buses, 

potentially caused by limited facilities at temporal bus stops and by uncertainty about service 

headways and reliability. Besides, when modelling replacement bus services, it is recommended 

to use the frequency of the initial tram line if the frequency of rail-replacement services is higher 

and crowding is not incorporated in the assignment process, as passengers do not seem to 

perceive this theoretical benefit of higher frequencies. The new parameter set improves 

prediction accuracy up to 13% compared to the default parameter set, and shows to be a robust 

and valuable tool for public transport operators.   
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2. How can we incorporate disruption frequency and impact predictions in a public 

transport vulnerability analysis for urban and multi-level public transport networks? 

To identify the components of a PT network which contribute most to its vulnerability, it is 

necessary to consider both the expected exposure to disruptions of each component, as well as 

the disruption impact once a disruption occurs. Focusing solely on vulnerability in relation to 

disruption impacts can incorrectly put the emphasis on locations where very severe yet very 

rare disruptions occur, and therefore result in an incorrect identification of the most vulnerable 

locations in a PT network. We develop a full scan method (Chapter 5) and a pre-selection 

method (Chapter 6) for PT vulnerability analyses, which both incorporate disruption frequency 

and impact. 

 For the pre-selection method (Chapter 6), we develop four criteria as proxy for the 

contribution of each link to PT network vulnerability: the expected direct disruption exposure 

(I), the expected indirect disruption exposure in case disruptions elsewhere on the network 

result in service adjustments for the considered link segment (II), the total expected disruption 

exposure (III: I+II) and the expected number of affected passengers as proxy for disruption 

impact (IV). We use disruption log data as input to fit statistical functions to predict the 

frequency with which different disruption types occur on the considered network. We translate 

network-wide disruption expose to individual links via simple predictors, such as the number 

of train-kilometres or the number of switches per link. The multi-level PT network is explicitly 

considered, by comparing how links of different network levels contribute to total network 

vulnerability. We apply this method to the multi-level PT network of the southern part of the 

Randstad in the Netherlands as case study. The results indicate that links of the metro / light 

rail and tram network are relatively often exposed to disruptions, possibly caused by the 

influence of mixed traffic. On the other hand, the impact of train network disruptions is expected 

to be relatively high due to the larger passenger volumes affected, once a disruption occurs. 

Therefore, busy links of the metro / light rail network generally have the largest contribution to 

vulnerability of the multi-level PT network, as both exposure and the number of affected 

passengers are relatively high. Our study results show the relevance of incorporating disruption 

frequencies in vulnerability analyses, as the list of most critical links differs substantially from 

a list based only on expected disruption impacts. 

 We also develop a data-driven full scan methodology to identify the most critical 

stations of a PT network within reasonable computation times (Chapter 5). A supervised 

learning approach is developed to predict the probability of each disruption type for each 

individual station. We use spatial variables (lines serving each station), temporal variables (day 

of the week, time of the day, season), network characteristics (whether a station is a terminal or 

transfer location), demand (passenger volume obtained from AFC data) and an auto regressor 

(disruption exposure in the previous month obtained from disruption log data) as predictors. A 

supervised learning model is also developed to predict passenger delay impact of each 

disruption type for each station, based on demand predictors, temporal predictors and network 

topology predictors. In a last step, stations are clustered using unsupervised learning based on 

their expected contribution to network vulnerability. This improves the transferability of our 

case study results, as this indicates which types of stations contribute most to PT vulnerability. 

We apply our methodology to the Washington, D.C. metro network. Case study results show 

that stations with high train frequencies and high passenger volumes on central trunk sections 

are most critical, together with transfer stations and terminals (where disruptions often arise). 

Intermediate stations located on branches of a line are least critical. The lower train frequencies 

and passenger volumes result in lower disruption exposure and impact, despite less route 

alternatives typically being available for these passengers once a disruption occurs. 

 Our proposed pre-selection method and full scan method can be used separately or 

simultaneously during PT vulnerability analyses. If the study purpose is to predict passenger 
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delay impacts for a large number of disruptions, our data-driven full scan methodology is 

appropriate as this enables a fast calculation of delay impacts for many disruption instances. 

The pre-selection method can provide more detailed insights in the spatial impacts of 

disruptions. Identifying a select number of critical links for which a PT assignment model is 

used to predict disruption impacts allows for a detailed assessment of the spatial distribution of 

disruption impacts over the network. It provides more insights in passenger rerouting strategies 

and indicates routes and stations where more crowding might be expected. Besides, using pre-

selection criteria combined with a PT assignment model allows using more complex metrics 

for disruption impacts than only the nominal passenger delay impact, for example by 

incorporating impacts from increased crowding and denied boarding. Both methods could also 

be used simultaneously. A PT assignment model could be used to provide a more detailed 

insight in the spatial impacts of disruptions and the impacts for individual PT routes, by 

simulating disruptions for the stations or links which show to be most critical in our data-driven 

full scan methodology. 

 

3. How can we predict and control the direct and propagated impact of disruptions on the 

urban public transport network in a multi-level network environment? 

To control disruption impacts for the urban PT network, one can apply control to urban PT 

services (Chapter 7), or apply control to train services to mitigate disruption propagation to the 

urban network level (Chapter 8) or to mitigate the impact of urban network disruptions 

(Chapter 6). 

 In relation to applying control to urban PT services, our research focuses on enabling 

synchronisation for large PT networks. Optimal PT synchronisation is currently applied to 

relatively small case study networks, as the problem becomes difficult to solve within 

reasonable times for larger networks. Our contribution is therefore not the development of an 

improved synchronisation strategy as such, but the development of a generic, preparatory 

method to reduce dimensionality by identifying key locations and routes to prioritise for 

synchronisation (Chapter 7). First, using the transfer flow matrix derived from AFC data as 

input, we apply a density based clustering technique to determine the subset of PT hubs where 

synchronisation needs to be prioritised. Second, we represent the transfer patterns within each 

hub using a C-space inspired topological network representation. By using a community 

detection algorithm, groups of lines are identified for which it is recommended to synchronise 

them simultaneously. When applied to the urban PT network of The Hague as case study, results 

show that 70% of all transfers occurring within identified transfer locations would be captured 

by considering less than 1% of all transfer locations for synchronisation, thus substantially 

reducing the complexity of solving the optimal synchronisation problem.  

 When considering the multi-level network environment of the urban PT network, we 

can conclude there can be a substantial propagation of disruption impacts from a train network 

disruption to the urban PT network level. Testing a disruption scenario for the multi-level PT 

network of The Hague as case study illustrates that disruption propagation costs are responsible 

for up to 8% of the total passenger disruption costs. We develop a simulation-based 

optimisation framework to control this disruption propagation from the train to the urban 

network level (Chapter 8). In this approach, we combine a train rescheduling optimisation 

model - in which only the train network is represented - and a dynamic PT assignment model 

where the total multi-level network is represented. We incorporate the number of transferring 

passengers from the train to the urban network level in the objective function of the train 

rescheduling model, and test the impact of a control strategy using the dynamic assignment 

model based on updated train timetables from the optimisation process. The train rescheduling 

model is then iteratively updated based on train passenger volumes resulting from the PT 

assignment model. This allows the train rescheduling model to incorporate potential disruption 
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propagation to the urban PT network level in the decisions which trains to prioritise for 

retiming, reordering or rerouting. In our case study, the propagation of passenger delays to the 

urban network could be reduced by up to 14-27% by incorporating transferring passengers to 

the urban network in the train rescheduling optimisation process, without increasing delays for 

passengers on the train network.  

We also illustrate how the train network level can be used as means to reduce the impact 

of disruptions occurring on the urban level, using the multi-level PT network of the southern 

part of the Randstad (the Netherlands) as case study (Chapter 6). We test the impact of 

temporarily stopping intercity services at two local train stations in the event of a disruption on 

the parallel light rail route, to provide a better alternative for affected passengers. A societal 

cost-benefit analysis framework is established to predict the impact for the different passenger 

segments. This case study confirms that this measure can reduce the total disruption impacts by 

8%, the longer train running times included, thus illustrating the potential of the multi-level 

network to mitigate disruption impacts. As we used a static assignment model for the latter case 

study, these case study results mainly apply for planned or longer-lasting disruptions for which 

passenger awareness can be assumed. 

9.2 Implications for Practice 

Based on the results of this research, we formulate several implications for the public transport 

industry. 

 

Improved passenger predictions during disruptions 

This research allows public transport authorities and service providers to improve the accuracy 

of their passenger predictions during planned and unplanned disruptions. For many 

metropolitan PT systems, each year there are many planned and unplanned disruptions. When 

predicting passengers’ route and mode choice response can be improved during these 

disruptions, this can result in a better product for the passenger and lead to higher customer 

satisfaction. Our study results in an updated crowding in-vehicle time multiplier and calibrated 

coefficients reflecting the passenger perception of rail-replacement buses and the demand 

suppression during planned disruptions. These values, for example if applied within transport 

planning software, support PT authorities and service providers to predict more accurately how 

passengers will react during disruptions, and what the implications on service quality might be. 

It can provide better insights whether additional capacity needs to be provided on alternative 

routes, or if excessive station or vehicle crowding can be expected. These values also help to 

improve ridership predictions for rail-replacement buses, so that PT operators can better align 

their bus supply with the expected demand. Additionally, this improves the revenue predictions 

for agency or operator during a disruption and thus supports their business plan development.  

 

Improved quantification of disruption impacts 

In practice, many PT authorities and service providers still apply vehicle-oriented or simplified 

passenger-oriented metrics as measure to quantify disruption impacts on a PT network. 

Methods developed in this research can result in an improved quantification of disruption 

impacts based on empirical data. Our research improves and eases the calculation of a 

comprehensive passenger-oriented reliability metric, which compares nominal and perceived 

journey costs for passengers between scheduled and realised circumstances using empirical 

data. The improved transfer inference algorithm, which can infer journeys for both disrupted 

and undisrupted scenarios, enables journey inference without the need to explicitly demarcate 

the disrupted and undisrupted periods. This implies that journey inference can be automated 

and applied to large empirical AFC and AVL datasets. The updated perception coefficients for 
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the different journey time components (e.g. (crowded) in-vehicle time, waiting time and transfer 

time for trams, buses and rail-placement services), derived from realised route and mode 

choices, enable a more accurate quantification of such performance metric. 

 

Prioritisation of robustness measures 

Our study supports transport policy makers in prioritising the locations and disruption types for 

which to develop and implement robustness measures. Our developed methods identify the 

nodes or links contributing most to PT network vulnerability. This provides decision-makers 

the locations where measures aimed to reduce disruption frequencies and/or disruption impacts 

should be prioritised. Our research also helps policy makers to devise appropriate measures. 

Depending on the type of station (for example: a transfer or terminal station), the location on 

the network (e.g. a station located on a trunk section or branch), the network level (regional 

train or urban tram and bus level) and the predicted disruption exposure and impact, one can 

decide whether measures should be focused on reducing the number of disruptions (of certain 

disruption types), or on reducing disruption impacts and improving PT network resilience. Our 

cost-benefit analysis framework helps quantifying the robustness benefits of potential measures 

and compare these with expected costs. This enables decision-makers to evaluate different 

robustness measures and prioritise measures with the highest expected (societal) benefit-cost 

ratio for implementation, thereby rationalising the decision-making process. 

 

Improved control to mitigate disruption impacts 

Our research results can improve the real-time control decisions taken by controllers to mitigate 

disruption impacts, hence reducing the passenger impact of disruptions. An important insight 

from our study is the value a multi-level PT network can provide when devising real-time 

control measures to mitigate disruption impacts for the urban network. Our research shows that 

incorporating the number of transferring passengers from train to urban network in the train 

rescheduling strategies can substantially reduce disruption propagation, without increasing the 

impact for train passengers. Other results show how control applied to the train network can 

mitigate the impact of an urban disruption, where the net impact for passengers shows to be 

positive. Whilst PT controllers traditionally only consider the part of the PT network they are 

responsible for, our study shows the value of developing overarching, integrated control 

strategies which consider the total multi-level PT network which is available and used by 

passengers. Our methods can help predicting the impact of different integrated control 

strategies, and therefore support controllers in their decision-making during disruptions. 

Additionally, our research supports controllers to identify the locations and routes for which 

transfer synchronisation and holding control can be prioritised. For larger networks with many 

possible locations for synchronisation, our research gives controllers an overview where their 

actions are expected to benefit most transferring passengers, thereby rationalising the decision-

making process under difficult circumstances. The latter could also be applied in the tactical 

planning phase when designing timetables, by prioritising synchronisation at the identified 

locations and between the identified routes. 

 

In summary, the objective of the developed methods in this research is to strengthen the 

passenger perspective when measuring, predicting or controlling disruption impacts. We 

develop methods which ease the measurement and prediction of passenger impacts of 

disruptions rather than vehicle impacts, and methods which incorporate more accurately how 

passengers perceive the different journey components during disruptions. In addition, we 

propose methods to prioritise locations where to apply robustness measures, such that the 

contribution to network vulnerability is largest for passengers. Furthermore, our methods enable 

the application of control strategies during disruptions which can further mitigate disruption 
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impacts for affected passengers. The application of our methods to different case study 

networks confirms our methods can be applied in practice. Although results might differ from 

case to case, our case study results suggest that passenger benefits can be realised when 

applying our approaches. Our research provides generic methods and tools for the public 

transport industry to apply to their specific public transport network. We recommend a close 

cooperation between science and the public transport industry, to implement methods and 

results from this research in the daily business of the public transport sector. This has the 

potential to improve the public transport product delivered to passengers.   

9.3 Recommendations for Future Research 

In this section, we formulate several recommendations for directions of future research resulting 

from our work. 

 

A detailed study towards passengers’ demand response during planned disruptions 

In Chapter 4, we developed a rule-based approach to calibrate route and mode choice 

parameters which reflect passengers’ behavioural and demand response during planned 

disruptions. A limitation of this method is that coefficients are not obtained via an optimal 

fitting procedure, such as maximum likelihood, but were obtained rule-based instead. In our 

case, this was caused by the lack of individual AFC transactions available for the different 

planned disruptions we considered. Although these individual transactions were used as input 

for our method, these were already processed and aggregated by the PT operator when provided. 

This meant that a maximum likelihood procedure - comparable to the method we adopted to 

infer crowding valuation in Chapter 3 - was not possible. Estimation of a RP based discrete 

choice model with different observed route choice alternatives, together with a base alternative 

of not using public transport during a disruption, could improve the estimation of these 

coefficients. Incorporating segmentation between passengers with different trip purposes or 

during different time periods (e.g. peak versus off-peak, or weekday versus weekend day) is 

also recommended. Our study can therefore be considered a first exploratory approach to find 

better fitting - yet not optimal - coefficients. 

 Besides, we recommend a detailed study towards the demand response of passengers 

during planned disruptions. In our study, we calibrated a generalised cost elasticity coefficient 

to reflect the decrease in PT ridership during planned disruptions. However, it is recommended 

to investigate what this ridership reduction implies. Based on long-term ticketing data, mobile 

phone data and data from ride-hailing services or bicycle providers, one could investigate to 

which extent passengers change their departure time choice, destination choice or mode choice. 

It provides insights in the willingness of passengers to use alternative transport services, such 

as ride-hailing services or bicycle-sharing schemes, in different parts of the network, for 

different passenger segments (e.g. for different trip purposes or different ages), or during 

different times of the day (e.g. daytime vs. evenings). Availability of data from different 

transport modes also enables studying how passengers react once the planned disruption has 

been resolved. For example, one could quantify at what pace public transport demand recovers 

after the planned disruption is terminated, or which percentage of passengers keeps using 

alternative modes of transport. 

 

Investigate passenger behaviour during unplanned disruptions 

We recommend a more thorough investigation how the modelling of passenger behaviour 

during unplanned disruptions can be improved. Due to the dynamic nature of disruptions, the 

use of static PT assignment models is not recommended for unplanned disruptions. Our results 

from Chapter 6, where we test how control to the train network can contribute to reducing 
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urban disruption impacts, are therefore primarily applicable for planned or longer-lasting 

disruptions. The simulation-based optimisation approach as proposed in Chapter 8 uses an 

agent-based simulation-based dynamic PT assignment model, and is therefore suitable to reflect 

en-route passenger route choice decisions during unplanned disruptions. The limitation of our 

study is that dynamic en-route passenger route choice parameters are not calibrated and 

validated against empirical data. Hence, we recommend such calibration and validation exercise 

to investigate how to model passengers’ dynamic route choice decisions. For example, route 

choice parameters in this dynamic PT assignment model could be calibrated based on observed 

behaviour for a specific case study, or segmented for different passenger groups. Another 

direction for future research is investigating the impact of real-time information and flexible 

working arrangements on passengers’ route and mode choice. The availability of real-time 

information during unplanned disruptions might result in passenger behaviour which resembles 

behaviour during planned disruptions. An increased acceptance of flexible working 

arrangements, such as working from home, can also affect passengers’ demand response during 

unplanned disruptions. The traditional assumption of fixed demand during unplanned 

disruptions can be questioned in countries where flexible working is commonly accepted, as 

passengers might decide to work from home or from a different location in the event of a 

disruption (Shires et al., 2018). More research to this topic - for example using ticketing data, 

mobile phone data and surveys - is therefore recommended.  

 

Investigate the role of information provision during disruptions 

For future research, we recommend explicitly incorporating the role of information provision 

to passengers before and during disruptions in relation to the prediction and control of 

disruption impacts. In the PT assignment model used in Chapter 4, passenger route choice is 

based on prior expectations of the disutility of different route alternatives. In Chapter 8, the PT 

assignment model used to predict propagated disruption impacts does allow for dynamic route 

choice during a journey based on updated expectations of the disutility of different routes, for 

example as function of real-time information provision or passenger observations (e.g. 

observing an overcrowded train or platform). In these studies we did however not explicitly 

account for the extent to which information about a disruption was provided and received by 

different passenger segments, and how this influenced their mode or route choice. Incorporating 

information provision in route and mode choice models (as for example proposed by Chorus et 

al., 2013) can potentially improve the accuracy of predictions of passenger behaviour during 

disruptions. Information provision can also play a role in disruption mitigation. As passengers 

attach a certain value to travel information (e.g. Chorus et al., 2006; Lu et al., 2017), information 

provision can help reducing perceived disruption impacts. Additionally, information provision 

can result in a better distribution of passengers over the available alternative routes during 

disruptions, hence reducing disruption impacts as well. Integrating the role of information 

provision in frameworks to quantify and control disruption impacts is therefore recommended.  

 

Improved method to decouple disruptions and connect disruptions and delays 

In Chapter 5, we developed a method to predict the passenger delay impact caused by different 

disruptions. One of the challenges here is to attribute observed passenger delays (from AFC 

systems) to individual disruptions. For typical metropolitan PT systems, it is common that many 

(often smaller) disruptions occur simultaneously, such as different train delays or cancellations. 

Besides, the impact of one disruption can propagate over the PT network, such that it might 

interfere with another disruption occurring at another network location or at a later moment in 

time (Malandri et al., 2018). The main limitation in this part of our research is the time horizon 

we imposed for which we predicted delay impacts. In our research, we only considered the 

delay impact of a disruption up to two hours after the hour the disruption started, to limit the 
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potential interaction between disruption impacts of different disruptions. However, a more 

advanced method to decouple disruptions and to connect delays to individual disruptions is 

recommended. For example, a machine learning approach as proposed by Marra and Corman 

(2019) to link delays to disruptions could be used as a starting point.  

 

Compare synchronisation priorities with network-wide synchronisation 

In Chapter 7, we developed a method to identify key locations and routes in urban PT networks 

to prioritise for synchronisation. This reduces the dimensionality of the transfer synchronisation 

problem and therefore enables performing optimal synchronisation for this selection of 

locations and routes in a next step. The main limitation of this two-step approach is that no 

network-wide optimisation is applied, as optimal synchronisation is only applied for the 

selected locations and routes. Recently, Gkiotsalitis et al. (2019) proposed an approach to solve 

the network-wide bus synchronisation problem by relaxation of the original minimax problem. 

Although a relaxation of the original problem is applied, this approach performs network-wide 

bus synchronisation in one step, rather than our proposed two-step approach. It is therefore 

recommended to compare the performance and required computation time of our two-step 

approach with results from this recent study. For example, both methods could be applied to 

one case study public transport network. Once both methods generate the timetables for all PT 

trips, the generalised journey time for all passengers can be calculated and compared. This 

enables a comparison between the performance of the different methods, and might highlight 

how different methods propose different synchronisation priorities for different parts of the 

public transport network.  
  



180 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

 



 

181 

References 

Abenoza, R.F., Cats, O., Susilo, Y.O. (2017). Travel satisfaction with public transport: 

Determinants, user classes, regional disparities and their evolution. Transportation Research 

Part A, 95, 64-84. 

Abenoza, R.F., Cats, O., Susilo, Y.O. (2019). Determinants of traveler satisfaction: Evidence 

for non-linear and asymmetric effects. Transportation Research Part F, 66, 339-356. 

Agard, B., Morency, C., Trépanier, M. (2007). Mining public transport user behaviour from 

smart card data. Montréal, Canada: CIRRELT-2007-42. 

Alsger, A., Assemi, B., Mesbah, M., Ferreira, L. (2016). Validating and improving public 

transport origin-destination estimation algorithm using smart card fare data. Transportation 

Research Part C, 68, 490-506. 

Andersson, E.V., Peterson, A., Törnquist Krasemann, J. (2015). Reduced railway traffic delays 

using a MILP approach to increase robustness in critical points. Journal of Rail Transport 

Planning & Management, 5, 110-127. 

Arentze, T.A., Molin, E.J.E. (2013). Travelers’ preferences in multimodal networks: Design 

and results of a comprehensive series of choice experiments. Transportation Research Part A, 

58, 15-28. 

Balcombe, R., Mackett, R., Paulley, N., Preston, J., Shires, J., Titheridge, H., Wardman, M., 

White, P. (2004). The demand for public transport: a practical guide. TRL Report TRL 593, 

Crowthorne, UK. 

Batarce, M., Munoz, J.C., Ortuzar, J. (2016). Valuing crowding in public transport: Implications 

for cost-benefit analysis. Transportation Research Part A, 91, 358-378.  

Batarce, M., Munoz, J.C., Ortuzar, J., Raveau, S., Mojica, C., Rios, R.A. (2015). Valuing 

crowding in public transport systems using mixed stated/revealed preference data: the case of 

Santiago. Transportation Research Record, 2535, 73-78.   



182 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Bates J., Polak J., Jones P., Cook A. (2001). The valuation of reliability for personal travel. 

Transportation Research Part E, 37, 191–229. 

Bell, M.G.H. (2003). The use of game theory to measure the vulnerability of stochastic 

networks. IEEE Transactions on Reliability, 52, 63-68. 

Bierlaire, M. (2003). BIOGEME: A free package for the estimation of discrete choice models. 

Proceedings of the 3rd Swiss Transportation Research Conference, Ascona, Switzerland.  

Binder, S., Maknoon, Y., Bierlaire, M. (2017). The multi-objective railway timetable 

rescheduling problem. Transportation Research Part C, 78, 78-94. 

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E. (2008). Fast unfolding of 

communities in large networks. Journal of Statistical Mechanics, 2008, P10008. 

Bovy, P.H.L., Hoogendoorn-Lanser, S. (2005). Modelling route choice behaviour in multi-

modal transport networks. Transportation, 32, 341-368. 

Brands, T., De Romph, E., Veitch, T., Cook, J. (2013). Modelling public transport route choice 

with multiple access and egress modes. European Transport Conference, Frankfurt, Germany. 

Briand, S.A., Come, E., Trépanier, M., Oukhellou, L. (2017). Smart card clustering to extract 

typical temporal passenger habits in transit network. Two case studies: Rennes in France and 

Gatineau in Canada. 3rd International Workshop and Symposium: Research and applications 

on the use of passive data from public transport (TransitData), Santiago, Chile. 

Bunschoten, T., Molin, E.J.E., Van Nes, R. (2013). Tram or bus; does the tram bonus exist? 

European Transport Conference, Frankfurt, Germany. 

Burghout, W. (2004). A note on the number of replication runs in stochastic traffic simulation 

models. Unpublished. 

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., Wagenaar, J. (2014). 

An overview of recovery models and algorithms for real-time railway rescheduling. 

Transportation Research Part B, 63, 15-37. 

Cats, O., Abenoza, R.F., Liu, C., Susilo, Y.O. (2015a). Identifying priority areas based on a 

thirteen years evolution of satisfaction with public transport and its determinants. 

Transportation Research Record, 2323, 99-109. 

Cats, O., Burghout, W., Toledo, T., Koutsopoulos, H.N. (2010). Mesoscopic modelling of bus 

transportation. Transportation Research Record, 2188, 9-18. 

Cats, O., Jenelius, E. (2014). Dynamic vulnerability analysis of public transport networks: 

Mitigation effects of real-time information. Networks and Spatial Economics, 14, 435-463. 

Cats, O., Jenelius, E. (2015). Planning for the unexpected: The value of reserve capacity for 

public transport network robustness. Transportation Research Part A, 81, 47-61. 

Cats, O., Jenelius, E. (2018). Beyond a complete failure: The impact of partial capacity 

degradation on public transport network vulnerability. Transportmetrica B, 6, 77-96. 

Cats, O., Wang, Q., Zhao, Y. (2015b). Identification and classification of public transport 

activity centers in Stockholm using passenger flow data. Journal of Transport Geography, 48, 

10-22. 

Cats, O., West, J., Eliasson, J. (2016a). A dynamic stochastic model for evaluating congestion 

and crowding effects in transit systems. Transportation Research Part B, 89, 43–57. 



References  183 

 

Cats, O., Yap, M.D., Van Oort, N. (2016b). Exposing the role of exposure: Public transport 

network risk analysis. Transportation Research Part A, 88, 1-14. 

CBS (2013, Oct. 23). Mobiliteit in Nederland; mobiliteitskenmerken en motieven, regio’s. 

Verplaatsingen per persoon per dag (in Dutch). Retrieved from http://statline.cbs.nl/StatWeb/ 

publication/?VW=T&DM=SLNL&PA=81123NED&D1=0&D2=0&D3=a&D4=0,25-

37&D5=0&D6=l&HD=130830-1202&HDR=T,G4,G1,G5,G2&STB=G3. 

Chen, A., Yang, C., Kongsomsaksakul, S., Lee, M. (2007). Network-based accessibility 

measures for vulnerability analysis of degradable transportation networks. Networks and 

Spatial Economics, 7, 241-256. 

Chorus, C.G., Arentze, T.A., Molin, E.J.E., Timmermans, H.J.P., Van Wee, B. (2006). The 

value of travel information: Decision strategy-specific conceptualizations and numerical 

examples. Transportation Research Part B, 40, 504-519. 

Chorus, C.G., Walker, J.L., Ben-Akiva, M. (2013). A joint model of travel information 

acquisition and response to received messages. Transportation Research Part C, 26, 61-77. 

Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Navarra, A., Schachtebeck, M., 

Schöbel, A. (2009). Recoverable robustness in shunting and timetabling. In R.K. Ahuja, R.H. 

Möhring and C.D. Zaroliagis (eds.), Robust and online large-scale optimization: Models and 

techniques for transportation systems. Lecture notes in computer science (pp. 28-60). Berlin 

Heidelberg, Germany: Springer. 

Corman, F., D’Ariano, A., Hansen, I.A. (2014). Evaluating disturbance robustness of railway 

schedules. Journal of Intelligent Transport Systems, 18, 106-120. 

Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2010). A tabu search algorithm for 

rerouting trains during rail operations. Transportation Research Part B, 44, 175-192. 

D’Ariano, A., Pacciarelli, D., Pranzo, M. (2007). A branch and bound algorithm for scheduling 

trains in a railway network. European Journal of Operational Research, 183, 643–657. 

Daganzo, C. F., Anderson, P. (2016). Coordinating Transit Transfers in Real Time. Institute of 

Transportation Studies, UC Berkeley. https://escholarship.org/uc/item/25h4r974. 

De Jonge, B., Scarf, P.A. (2019). A review on maintenance optimization. European Journal of 

Operational Research, in press. 

De Souza, F., Verbas, O., Auld, J. (2019). Mesocopic traffic flow model for agent-based 

simulation. Procedia Computer Science, 151, 858-863.  

Delgado, F., Munoz, J.C., Giesen, R. (2012). How much can holding and/or limiting boarding 

improve transit performance? Transportation Research Part B, 46, 1202-1217. 

Delgado, F., Munoz, J.C., Giesen, R., Cipriano, A. (2009). Real-time control of buses in a transit 

corridor based on vehicle holding and boarding limits. Transportation Research Record, 2090, 

59-67. 

Derrible, S., Kennedy, C. (2010). The complexity and robustness of metro networks. Physica 

A, 389, 3678-3691. 

Desaulniers, G., Hickman, M.D. (2007). Public Transit. In C. Barnhart and G. Laporte (eds.), 

Handbook in OR & MS (pp. 69-127). Amsterdam, the Netherlands: Elsevier. 

Dewilde, T., Sels, P., Cattrysse, D., Vansteenwegen, P. (2009). Improving the robustness in 

railway station areas. European Journal of Operational Research, 235, 276-286. 



184 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Ding, C., Wang, D., Ma, X., Li, H. (2016). Predicting short-term subway ridership and 

prioritizing its influential factors using gradient boosting decision trees. Sustainability, 8, 1-16. 

Dinh, T.N., Thai, M.T. (2014). Network under joint node and link attacks: Vulnerability 

assessment methods and analysis. IEEE/ACM Transactions on Networking, 23, 1001-1011.  

Dollevoet, T., Corman, F., D’Ariano, A., Huisman, D. (2014). An iterative optimization 

framework for delay management and train rescheduling. Flexible Services and Manufacturing 

Journal, 26, 490-515. 

Douglas, N., Karpouzis, G. (2005). Estimating the cost to passengers of station crowding. 

Proceedings of the 28th Australasian Transport Research Forum, Sydney, Australia.  

El Mahrsi, M.K., Come, E., Oukhellou, L., Verleysen, M. (2017). Clustering smart card data 

for urban mobility analysis. IEEE Transactions on Intelligent Transportation Systems, 18, 712-

728. 

Engelson, L., Fosgerau, M. (2011). Additive measures of travel time variability. Transportation 

Research Part B, 45, 1560–1571. 

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering 

clusters in large spatial databases with noise. University of Munich, Munich, Germany. 

Fiorenzo-Catalano, M.S. (2007). Choice set generation in multi-modal transportation networks 

(Ph.D. Thesis). Delft University of Technology, Delft, the Netherlands. 

Fischetti, M., Salvagnin, D., Zanette, A. (2009). Fast approaches to improve the robustness of 

a railway timetable. Transportation Science, 43, 321-335. 

Fortunato, S., Hric, D. (2016). Community detection in networks: A user guide. Physics 

Reports, 659, 1-44. 

Furth, P.G., Muller, T.H.J. (2009). Optimality conditions for public transport schedules with 

timepoint holding. Public Transport, 1, 87-102.  

Gavriilidou, A., Cats, O. (2019). Reconciling transfer synchronization and service regularity: 

Real-time control strategies using passenger data. Transportmetrica A, 15, 215–243. 

Gentile, G., Florian, M., Hamdouch, Y., Cats, O., Nuzzolo, A. (2016). The theory of transit 

assignment: Basic modelling frameworks. In G. Gentile and K. Noekel (eds.), Modelling public 

transport passenger flows in the era of intelligent transport systems (pp. 287-386). Cham, 

Switzerland: Springer International Publishing. 

Geurs, K.T., La Paix, L., Van Weperen, S. (2016). A multi-modal network approach to model 

public transport accessibility impacts of bicycle-train integration policies. European Transport 

Research Review, 8, 1-15.  

Gkiotsalitis, K., Cats, O. (2018). Reliable frequency determination: Incorporating information 

on service uncertainty when setting dispatching headways. Transportation Research Part C, 88, 

187-207. 

Gkiotsalitis, K., Eikenbroek, O.A.L., Cats, O. (2019). Robust network-wide bus scheduling 

with transfer synchronizations. IEEE Transactions on Intelligent Transportation Systems. DOI: 

10.1109/TITS.2019.2941847. 

Golob, T.F., Canty, E.T., Gustafson, R.L., Vitt, J.E. (1972). An analysis of consumer 

preferences for a public transportation system. Transportation Research, 6, 81-102. 

Gordon, J.B., Koutsopoulos, H.N., Wilson, N.H.M., Attanucci, J.P. (2013). Automated 

inference of linked transit journeys in London using fare-transaction and vehicle location data. 



References  185 

 

Transportation Research Record, 2343, 17-24. 

Goverde, R.M.P. (2005). Punctuality of railway operations and timetable stability analysis 

(Ph.D. Thesis). Delft University of Technology, Delft, the Netherlands.  

GVB Holding NV (2019, Nov. 8). Jaarverslag 2018 (in Dutch). Retrieved from 

https://jaarverslag.gvb.nl/. 

Hadas, Y., Ceder, A. (2010). Optimal coordination of public transit vehicles using operational 

tactics examined by simulation. Transportation Research Part C, 18, 879-895. 

Hamdouch, Y., Ho, H.W., Sumalee, A., Wang, G. (2011). Schedule-based transit assignment 

model with vehicle capacity and seat availability. Transportation Research Part B, 45, 1805-

1830. 

Hänseler, F.S., Bierlaire, M., Scarinci, R. (2016). Assessing the usage and level-of-service of 

pedestrian facilities in train stations: A Swiss case study. Transportation Research Part A, 89, 

106-123. 

Haywood, L., Koning, M. (2015). The distribution of crowding costs in public transport: new 

evidence from Paris. Transportation Research Part A, 77, 182–201. 

Hendren, P., Antos, J., Carney, Y., Harcum, R. (2015). Transit travel time reliability: Shifting 

the focus from vehicles to customers. Transportation Research Record, 2535, 35-44. 

Hofmann, M., O’Mahony, M. (2005). Transfer journey identification and analyses from 

electronic fare collection data. Proceedings of the 8th IEEE International Conference on 

Intelligent Transportation Systems, Vienna, Austria. 

Hollander, Y. (2006). Direct versus indirect models for the effects of unreliability. 

Transportation Research Part A, 40, 699-711. 

Holmgren, Ǻ.J. (2007). A framework for vulnerability assessment of electric power systems. In 

A.T. Murray and T.H. Grubesic (eds.), Critical infrastructure: Reliability and vulnerability (pp. 

31-55). Berlin Heidelberg, Germany: Springer-Verlag. 

Hörcher, D., Graham, D.J., Anderson, R.J. (2017). Crowding cost estimation with large scale 

smart card and vehicle location data. Transportation Research Part B, 95, 105-125. 

HTM Personenvervoer N.V. (2016, July 21). Jaarverslag 2015 (in Dutch). Retrieved from 

https://www.htm.nl/media/364324/jaarverslag-2015.pdf. 

Ibarra-Rojas, O.J., Rios-Solis, Y.A. (2012). Synchronization of bus timetabling. Transportation 

Research Part B, 46, 599-614. 

Idris, A., Habib, K., Shalaby, A. (2015). An investigation on the performances of mode shift 

models in transit ridership forecasting. Transportation Research Part A, 78, 551-565. 

Immers, B., Egeter, B., Snelder, M., Tampère, C. (2011). Reliability of travel times and 

robustness of transport networks. In M. Kutz (ed.), Handbook of transportation engineering (pp. 

3.1-3.30). New York City, NY: McGraw-Hill. 

Ingvardson, J.B., Nielsen, O.A., Raveau, S., Nielsen, B.F. (2018). Passenger arrival and waiting 

time distributions dependent on train service frequency and station characteristics: A smart card 

data analysis. Transportation Research Part C, 90, 292-306. 

Jang, W. (2010). Travel time and transfer analysis using transit smart card data. Transportation 

Research Record, 2144, 142-149. 



186 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Jenelius, E. (2007). Incorporating dynamics and information in a consequence model for road 

network vulnerability analysis. Proceedings of the 3rd International Symposium on Transport 

Network Reliability (INSTR), The Hague, the Netherlands. 

Jenelius, E., Cats, O. (2015). The value of new public transport links for network robustness 

and redundancy. Transportmetrica A, 11, 819-835. 

Jenelius, E., Petersen, T., Mattsson, L.-G. (2006). Importance and exposure in road network 

vulnerability analysis. Transportation Research Part A, 40, 537-560.  

Killeen, P., Ding, B., Kiringa, I., Yeap, T. (2019). IoT-based predictive maintenance for fleet 

management. Procedia Computer Science, 151, 607-613. 

Knoop, V.L., Hoogendoorn, S.P., Van Zuylen, H.J. (2008). The influence of spillback modelling 

when assessing consequences of blockings in a road network. European Journal of 

Transportation and Infrastructure Research, 8, 287–300. 

Knoop, V.L., Snelder, M., Van Zuylen, H.J., Hoogendoorn, S.P. (2012). Link-level vulnerability 

indicators for real-world networks. Transportation Research Part A, 46, 843-854. 

Knoppers, P., Muller, T. (1995). Optimized transfer opportunities in public transport. 

Transportation Science, 29, 101-105. 

Korteweg, J.A., Rienstra, S. (2010) De betekenis van robuustheid. Robuustheid in kosten-

batenanalyses van weginfrastructuur (in Dutch). The Hague, the Netherlands: Kennisinstituut 

voor Mobiliteitsbeleid. 

Kroes, E., Kouwenhoven, M., Debrincat, L., Pauget, N. (2014). On the value of crowding in 

public transport for Ile-de-France. Transport Research Arena, Paris, France.  

Kroon, L., Maroti, G., Retel Helmrich, M., Vromans, M.J.C.M., Dekker, R. (2008). Stochastic 

improvement of cyclic railway timetables. Transportation Research Part B, 42, 553-570. 

La Paix Puello, L., Geurs, K.T. (2016). Integration of unobserved effects in generalised 

transport access costs of cycling to railway stations. European Journal of Transport 

Infrastructure Research, 16, 385-405.  

Lancichinetti, A., Fortunato, S. (2009). Community detection algorithms: A comparative 

analysis. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80, 56117. 

Laskaris, G., Cats, O., Jenelius, E., Rinaldi, M., Viti, F. (2018). Multiline holding based control 

for lines merging to a shared corridor. Transportmetrica B, 7, 1062-1095. 

Lee, A., Van Oort, N., Van Nes, R. (2014). Service reliability in a network context: impact of 

synchronizing schedules in long headway services. Transportation Research Record, 2417, 18-

26. 

Leng, N., De Martinis, V., Corman, F. (2018). Agent-based simulation approach for disruption 

management in rail schedule. Proceedings of the 14th Conference on Advanced Systems in 

Public Transport (CASPT), Brisbane, Australia 

Li, M. (2008). Combining DTA approaches for studying road network robustness (Ph.D. 

Thesis). Delft University of Technology, Delft, the Netherlands. 

Li, H., Gao, K., Tu, H. (2017a). Variations in mode-specific valuations of travel time reliability 

and in-vehicle crowding: Implications for demand estimation. Transportation Research Part A, 

103, 250-263.  

Li, Z., Hensher, D. (2011). Crowding and public transport: A review of willingness to pay 

evidence and its relevance in project appraisal. Transport Policy, 18, 880-887. 



References  187 

 

Li, Y., Wang, X., Sun, S., Ma, X. (2017b). Forecasting short-term subway passenger flow under 

special events scenarios using multiscale radial basis function networks. Transportation 

Research Part C, 77, 306-328. 

Liao, F., Van Wee, B. (2017). Accessibility measures for robustness of the transport system. 

Transportation, 44, 1213-1233. 

Liu, R., Sinha, S. (2007). Modelling urban bus service and passenger reliability. Proceedings 

of the 3rd International Symposium on Transport Network Reliability (INSTR), The Hague, the 

Netherlands. 

Lord, D., Washington, S.P., Ivan, J.N. (2005). Poisson, Poisson-gamma and zero-inflated 

regression models of motor vehicle crashes: Balancing statistical fit and theory. Accident 

Analysis & Prevention, 37, 35-46. 

Lu, H., Burge, P., Heywood, C., Sheldon, R., Lee, P., Barber, K., Phillips, A. (2017). The impact 

of real-time information on passengers’ value of bus waiting time. Transportation Research 

Procedia, 31, 18-34. 

Lu, H., Fowkes, A.S., Wardman, M. (2008). Amending the incentive for strategic bias in stated 

preference studies: a case study in users’ valuation of rolling stock. Transportation Research 

Record, 2049, 128-135. 

Luo, D., Bonnetain, L., Cats, O., Van Lint, J.W.C. (2018). Constructing spatiotemporal load 

profiles of transit vehicles with multiple data sources. Transportation Research Record, 2672, 

175-186. 

Luo, D., Cats, O., Van Lint, J.W.C. (2017). Constructing transit origin-destination matrices 

with spatial clustering. Transportation Research Record, 2652, 39-49. 

Ma, X., Wu, Y., Wang, Y., Chen, F., Liu, J. (2013). Mining smart card data for transit riders' 

travel patterns. Transportation Research Part C, 36, 1-12. 

Malandri, C., Fonzone, A., Cats, O. (2018). Recovery time and propagation effects of passenger 

transport disruptions. Physica A: Statistical Mechanics and its Applications, 505, 7-17. 

Markolf, S.A., Hoehne, C., Fraser, A., Chester, M.V., Shane Underwood, B. (2019). 

Transportation resilience to climate change and extreme weather events - Beyond risk and 

robustness. Transport Policy, 74, 174-186. 

Marra, A.D., Corman, F. (2019). From delay to disruption: the impact of service degradation 

on public transport network. Proceedings of the 8th Symposium of the European Association 

for Research in Transportation (hEART), Budapest, Hungary. 

Maslow, A.H. (1948). ‘Higher’ and ‘lower’ needs. Journal of Psychology, 25, 433-436. 

McDaniels, T., Chang, S., Cole, D., Mikawoz, J., Longstaff, H. (2008). Fostering resilience to 

extreme events within infrastructure systems: Characterizing decision contexts for mitigation 

and adaptation. Global Environmental Change, 18, 310-318. 

Metropoolregio Rotterdam Den Haag (MRDH) (2016, July 12). Openbaar vervoer (in Dutch). 

Retrieved from http://mrdh.nl/project/openbaar-vervoer. 

Munizaga, M.A., Devillaine, F., Navarrete, C., Silva, D. (2014). Validating travel behaviour 

estimated from smart card data. Transportation Research Part C, 44, 70-79. 

Munizaga, M.A., Palma, C. (2012). Estimation of a disaggregate multimodal public transport 

origin-destination matrix from passive smartcard data from Santiago, Chile. Transportation 

Research Part C, 24, 9-18. 



188 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Murray, A.T., Matisziw, T.C., Grubesic, T.H. (2008). A methodological overview of network 

vulnerability analysis. Growth and change: A journal of urban and regional policy, 39, 573-592. 

MVA Consultancy (2008). Valuation of overcrowding on rail services. Report prepared for the 

UK Department of Transport.  

Nash, A., Huerlimann, D. (2004). Railroad simulation using Open Track. Advances in 

Transport, 15, 45-54. 

Nazem, M., Trépanier, M., Morency, C. (2011). Demographic analysis of route choice for 

public transit. Transportation Research Record, 2214, 71-78. 

Nederlandse Spoorwegen (2019, Nov. 8). Geld terug bij vertraging (in Dutch). Retrieved from 

https://www.ns.nl/klantenservice/geld-terug/geld-terug-reguliere-reizen.html. 

Nesheli, M.M., Ceder, A. (2015). A robust, tactic-based, real-time framework for public 

transport transfer synchronization. Transportation Research Part C, 60, 105-123. 

Newman, M.E.J. (2004). Analysis of weighted networks. Physical Review E - Statistical 

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 70, 9. 

Newman, M.E.J., Girvan, M. (2004). Finding and evaluating community structure in networks. 

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69, 26113. 

Nicholson, A., Schmöcker, J.-D., Bell, M.G.H., Lida, Y. (2003). Assessing transport reliability: 

Malevolence and user knowledge. Proceedings of the 1st International Symposium on 

Transport Network Reliability (INSTR), Kyoto, Japan. 

Nijënstein, S., Bussink, B. (2015). Combining multimodal smart card data: exploring quality 

improvements between multiple public transport systems. European Transport Conference, 

Frankfurt, Germany. 

Nunes, A.A., Dias, T.G., eCunha, J.F. (2016). Passenger journey destination estimation from 

automated fare collection system data using spatial validation. IEEE Transactions on Intelligent 

Transportation Systems, 17, 133-142. 

Nuzzolo, A., Crisalli, U., Rosati, L. (2012). A schedule-based assignment model with explicit 

capacity constraints for congested transit networks. Transportation Research Part C, 20, 16-33. 

Obrenovic, N. (2019). TRANS-FORM D3.3: Tool for evaluating real-time strategies. TRANS-

FORM project report. Lausanne: Switzerland. 

Oliveira, E.L., Portugal, L.S., Junior, W.P. (2016). Indicators of reliability and vulnerability: 

Similarities and differences in ranking links of a complex road system. Transportation Research 

Part A, 88, 195-208. 

Olsson, L.E., Friman, M., Pareigis, J., Edvardsson, B. (2012). Measuring service experience: 

Applying the satisfaction with travel scale in public transport. Journal of Retailing and 

Consumer Services, 19, 413-418. 

Parbo, J., Nielsen, O.A., Landex, A., Prato, C.G. (2013). Measuring robustness, reliability and 

punctuality within passenger railway transportation - a literature review. KGS Lyngby, 

Denmark: Technical University of Denmark. 

Paulsen, M., Rasmussen, T.K., Anker Nielsen, O. (2018). Modelling railway-induced passenger 

delays in multi-modal public transport networks. Proceedings of the 14th Conference on 

Advanced Systems in Public Transport (CASPT), Brisbane, Australia. 

Pedregoas, F., Varoquaux, G., Gramfort, A., Michel, V. (2011). Scikit-learn: Machine learning 

in Python. Journal of Machine Learning Research, 12, 2825-2830. 



References  189 

 

Pel, A., Bel, N., Pieters, M. (2014). Including passengers’ response to crowding in the Dutch 

national train passenger assignment model. Transportation Research Part A, 66, 111-126. 

Pelletier, M.P., Trépanier, M., Morency, C. (2011). Smart card data use in public transit: A 

literature review. Transportation Research Part C, 19, 557-568. 

Pimm, S.L. (1984). The complexity and stability of ecosystems. Nature, 307, 321-326. 

Prud’homme, R., Koning, M., Lenormand, L., Fehr, A. (2012). Public transport congestion 

costs: the case of the Paris subway. Transport Policy, 21, 101-109. 

Rietveld, P., Bruinsma, F.R., Van Vuuren, D.J. (2001). Coping with unreliability in public 

transport chains: a case study for Netherlands. Transportation Research Part A, 35, 539-559. 

Rodriguez-Nunez, E., Garcia-Palomares, J.C. (2014). Measuring the vulnerability of public 

transport networks. Journal of Transport Geography, 35, 50-63. 

Roelofsen, D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2018). Assessing disruption 

management strategies in rail-bound urban public transport systems from a passenger 

perspective. Proceedings of the 14th Conference on Advanced Systems in Public Transport 

(CASPT), Brisbane, Australia. 

Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary 

origins and contextual dimensions. Environmental Hazards, 7, 383-398. 

Saberi, M., Ghamami, M., Gu, Y., Shojaei, M.H., Fishman, E. (2018). Understanding the 

impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike 

in London. Journal of Transport Geography, 66, 154-166. 

Sánchez-Martinez, G.E. (2017). Inference of public transportation trip destinations by using 

fare transaction and vehicle location data: Dynamic programming approach. Transportation 

Research Record, 2652, 1-7. 

Sanchez-Martinez, G.E., Koutsopoulos, H.N., Wilson, N.H.M. (2016). Real-time holding 

control for high-frequency transit with dynamics. Transportation Research Part B, 83, 1-19. 

Savelberg, F., Bakker, P. (2010). Betrouwbaarheid en robuustheid op het spoor (in Dutch). The 

Hague, the Netherlands: Kennisinstituut voor Mobiliteitsbeleid. 

Schakenbos, R., La Paix, L., Nijënstein, S., Geurs, K. (2016). Valuation of a transfer in a 

multimodal public transport trip. Transport Policy, 46, 72-81. 

Schmaranzer, D., Braune, R., Doerner, K.F. (2019). Population-based simulation optimization 

for urban mass rapid transit networks. Flexible Services and Manufacturing Journal. DOI: 

10.1007/s10696-019-09352-9. 

Schmöcker, J.-D., Bell, M.G.H. (2002). The PFE as a tool for robust multi-modal network 

planning. Traffic Engineering Control, 44, 10-14. 

Schmöcker, J.-D., Fonzone, A., Shimamoto, H., Kurauchi, F., Bell, M.G.H. (2011). Frequency-

based transit assignment considering seat capacities. Transportation Research Part B, 45, 392-

408. 

Schöbel, A., Kratz, A. (2009). A bicriteria approach for robust timetabling. In R.K. Ahuja, R.H. 

Möhring and C.D. Zaroliagis (eds.), Robust and online large-scale optimization: Models and 

techniques for transportation systems. Lecture notes in computer science (pp. 119-144). Berlin 

Heidelberg, Germany: Springer. 



190 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Scott, D.M., Novak, D.C., Aultman-Hall, L., Guo, F. (2006). Network  Robustness  Index:  A  

new  method  for  identifying  critical  links  and  evaluating the performance of transportation 

networks. Journal of Transport Geography, 14, 215-227. 

Seaborn, C., Attanucci, J., Wilson, N.H.M. (2009). Analyzing multimodal public transport 

journeys in London with smart card fare payment data. Transportation Research Record, 2121, 

55-62. 

Shakibayifar, M., Sheikholeslami, A., Corman, F. (2017). A simulation-based optimization 

approach to reschedule train traffic in uncertain conditions during disruptions. Scientia Iranica: 

International Journal of Science & Technology, 25, 646-662. 

Shires, J.D., Ojeda-Cabral, M., Wardman, M. (2018). The impact of planned disruptions on rail 

passenger demand. Transportation. DOI: 10.1007/s11116-018-9889-0. 

Significance, VU University, John Bates Services, TNO, NEA, TNS NIPO, PanelClix 

(2013). Values of time and reliability in passenger and freight transport in the 

Netherlands (Project No. 08064). The Hague, the Netherlands: Significance. 

Snelder, M. (2010). Designing robust road networks. A general design method applied to the 

Netherlands (Ph.D. Thesis). Delft University of Technology, Delft, the Netherlands. 

Stone, M., Broughton, J. (2003). Getting off your bike: Cycling accidents in Great Britain in 

1990–1999. Accident Analysis Prevention, 35, 549-556. 

Straits Times (2017, Aug. 7). Hong Kong's MTR faces $3.5m fine for 10-hour train delay. 

Retrieved from https://www.straitstimes.com/asia/east-asia/hks-mtr-faces-35m-fine-for-10-

hour-train-delay. 

Sullivan, J.L., Novak, D.C., Aultman-Hall, L., Scott, D.M. (2010). Identifying critical road 

segments and measuring system-wide robustness in transportation networks with isolating 

links: A link-based capacity-reduction approach. Transportation Research Part A, 44, 323-336. 

Susilo, Y.O., Cats, O. (2014). Exploring key determinants of travel satisfaction for multi-modal 

trips by different traveller groups. Transportation Research Part A, 67, 366-380. 

Tahmassby, S. (2009). Reliability in urban public transport network assessment and design 

(Ph.D. Thesis). Delft University of Technology, Delft, the Netherlands. 

Tahmasseby, S., Van Oort, N., Van Nes, R. (2008) The role of infrastructures on public transport 

service reliability. Proceedings of the First International IEEE Conference on Infrastructure 

Systems and Services: Building Networks for a Brighter Future (INFRA), Rotterdam, the 

Netherlands. 

Tampère, C.M.J., Stada, J., Immers, B., Peetermans, E., Organe, K. (2007). Methodology for 

identifying vulnerable sections in a national road network. Transportation Research Record, 

2012, 1-10. 

Tan, P.N., Steinbach, M., Kumar, V. (2004). Cluster analysis: Basic concepts and algorithms. 

In M. Kantardzic (ed.), Data mining: Concepts, models, methods, and algorithms (pp. 487-568). 

Hoboken, NJ: Wiley Press. 

Taylor, M. (2017). Vulnerability analysis for transportation networks. Amsterdam, the 

Netherlands: Elsevier. 

Tirachini, A., Hurtubia, R., Dekker, T., Daziano, R.A. (2017). Estimation of crowding 

discomfort in public transport: Results from Santiago de Chile. Transportation Research Part 

A, 103, 311-326.  



References  191 

 

Tirachini, A., Sun, L., Erath, A., Chakirov, A. (2016). Valuation of sitting and standing in metro 

trains using revealed preferences. Transport Policy, 47, 94-104. 

Tonnelier, E., Baskiotis, N., Guigue, V., Gallinari, P. (2018). Anomaly detection in smart card 

logs and distant evaluation with Twitter: a robust framework. Neurocomputing, 298, 109-121. 

Törnquist Krasemann, J. (2012). Design of an effective algorithm for fast response to the re-

scheduling of railway traffic during disturbances. Transportation Research Part C, 20, 62-78. 

Törnquist, J., Persson, J.A. (2007). N-tracked railway traffic re-scheduling during disturbances. 

Transportation Research Part B, 41, 342-362. 

TRANS-FORM (2019, Nov. 15). Smart transfers through unravelling urban form and travel 

flow dynamics. Retrieved from http://www.trans-form-project.org/. 

Transport for London (2019a, Oct. 17). Tube and DLR delays. Retrieved from 

https://tfl.gov.uk/fares/refunds-and-replacements/tube-and-dlr-delays. 

Transport for London (2019b, Oct. 17). Underground service performance. Retrieved from 

https://tfl.gov.uk/corporate/publications-and-reports/underground-services-performance. 

Trépanier, M., Tranchant, N., Chapleau, R. (2007). Individual trip destination estimation in a 

transit smart card automated fare collection system. Journal of Intelligent Transportation 

Systems, 11, 1-14. 

Trépanier, M., Yamamoto, T. (2015). Workshop synthesis: System based passive data streams 

systems; Smart cards, phone data, GPS. Transportation Research Procedia, 11, 340-349. 

Tu, W., Cao, R., Yue, Y., Zhou, B., Li, Q., Li, Q. (2018). Spatial variations in urban public 

ridership derived from GPS trajectories and smart card data. Journal of Transport Geography, 

69, 45-57. 

Turnquist, M.A., Bowman, L.A. (1980). The effects of network structure on reliability of transit 

service. Transportation Research Part B, 14, 79-86. 

Van Exel, N.J.A., Rietveld, P. (2001). Public transport strikes and traveller behaviour. Transport 

Policy, 8, 237-246.  

Van Hagen, M. (2011). Waiting experience at train stations (Ph.D. Thesis). University of 

Twente, Enschede, the Netherlands. 

Van der Hurk, E., Kroon, L.G., Maróti, G. (2018). Passenger advice and rolling stock 

rescheduling under uncertainty for disruption management. Transportation Science, 52, 1391-

1411. 

Van der Hurk, E., Kroon, L.G., Maroti, G., Vervest, P.H.M. (2012). Dynamic forecasting model 

of time dependent passenger flows for disruption management. Proceedings of the 12th 

Conference on Advanced Systems in Public Transport (CASPT), Santiago, Chile.  

Van Nes, R., Hansen, I.A., Winnips, C. (2014). Potentie multimodaal vervoer in stedelijke 

regio’s (in Dutch). Delft, the Netherlands: DBR. 

Van Nes, R., Marchau, V., Van Wee, G.P., Hansen, I.A. (2007). Reliability and robustness of 

multimodal transport network analysis and planning: towards a new research agenda. 

Proceedings of the 3rd International Symposium on Transport Network Reliability (INSTR), 

The Hague, the Netherlands.  

Van Oort, N. (2011). Service reliability and urban public transport design (Ph.D. Thesis). 

TRAIL PhD Thesis Series, Delft, the Netherlands. 



192 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Van Oort, N. (2016). Incorporating enhanced service reliability of public transport in cost-

benefit analyses. Public Transport, 8, 143-160. 

Van Oort, N., Boterman, J.W., Van Nes, R. (2012). The impact of scheduling on service 

reliability: trip-time determination and holding points in long-headway services. Public 

Transport, 4, 39-56. 

Van Oort, N., Brands, T., De Romph, E. (2015a). Short-term prediction of ridership on public 

transport with smart card data. Transportation Research Record, 2535, 105-111. 

Van Oort, N., Brands, T., De Romph, E., Yap, M.D. (2016). Ridership evaluation and prediction 

in public transport by processing smart card data: A Dutch approach and example. In F. 

Kurauchi and J.-D. Schmöcker (eds.), Public Transport Planning with Smart Card Data (pp. 

197-224). Boca Raton, FL: CRC Press. 

Van Oort, N., Drost, M., Brands, T., Yap, M.D. (2015b). Data-driven public transport ridership 

prediction approach including comfort aspects. Proceedings of the 13th Conference on 

Advanced Systems in Public Transport (CASPT), Rotterdam, the Netherlands. 

Van Oort, N., Van Nes, R. (2009). Regularity analysis for optimizing urban transit network 

design. Public transport, 1, 155-168. 

Van Oort, N., Van Nes. R. (2010). Impact of rail terminal design on transit service reliability. 

Transportation Research Record, 2146, 109-118. 

Van Oort, N., Wilson, N.H.M., Van Nes, R. (2010). Reliability improvement in short headway 

transit services: schedule-based and headway-based holding strategies. Transportation 

Research Record, 2143, 67-76. 

Varga, B., Tettamanti, T., Kulcsár, B. (2018). Optimally combined headway and timetable 

reliable public transport system. Transportation Research Part C, 92, 1-26. 

Von Ferber, C., Holovatch, T., Holovatch, Y., Palchykov, V. (2009). Public transport networks: 

Empirical analysis and modeling. The European Physical Journal B, 68, 261-275. 

Vromans, M.J.C.M. (2005). Reliability of railway systems (Ph.D. Thesis). Erasmus University, 

Rotterdam, the Netherlands. 

Vromans, M.J.C.M., Dekker, R., Kroon, L.G. (2006). Reliability and heterogeneity of railway 

services. European Journal of Operational Research, 172, 647-655. 

Wang, W., Attanucci, J.P., Wilson, N.H.M. (2011). Bus passenger origin-destination estimation 

and related analyses using automated data collection systems. Journal of Public Transportation, 

14, 131-150. 

Wardman, M. (2004). Public transport values of time. Transport Policy, 11, 363-377. 

Wardman, M., Whelan, G. (2011). Twenty years of rail crowding valuation studies: evidence 

and lessons from British experience. Transport Reviews, 31, 379-398. 

Warffemius, P. (2013). De maatschappelijke waarde van kortere en betrouwbare reistijden (in 

Dutch). The Hague, the Netherlands: Kennisinstituut voor Mobiliteitsbeleid. 

Washington Metropolitan Area Transit Authority (WMATA) (2019, Oct. 17). Rush Hour 

Promise. Retrieved from https://www.wmata.com/fares/smartrip/rush-hour-promise.cfm.  

Wei, Y., Chen, M. (2012). Forecasting the short-term metro passenger flow with empirical 

mode decomposition and neural networks. Transportation Research Part C, 21, 148-162. 



References  193 

 

Weidmann, U. (1994). Der Fahrgastwechsel im öffentlichen Personenverkehr (in German). IVT 

no. 99. Zürich: Switzerland. 

Whelan, G., Crockett, J. (2009). An investigation of the willingness to pay to reduce rail 

overcrowding. Proceedings of the 1st International Conference on Choice Modelling, Harrogate, 

England. 

Xuan, Y., Argote, J., Daganzo, C.F. (2011). Dynamic bus holding strategies for schedule 

reliability: Optimal linear control and performance analysis. Transportation Research Part B, 

45, 1831-1845. 

Yap, M.D. (2014). Robust public transport from a passenger perspective: A study to evaluate 

and improve the robustness of multi-level public transport networks (M.Sc. Thesis). Delft 

University of Technology, Delft, the Netherlands. 

Yap, M.D., Cats, O. (2019). Analysis and prediction of disruptions in metro networks. 

Proceedings of the 6th International Conference on Models and Technologies for Intelligent 

Transportation Systems (MT-ITS), Krakow, Poland. 

Yap, M.D., Cats, O., Törnquist Krasemann, J., Van Oort, N., Hoogendoorn, S.P. (2020). 

Quantification and control of disruption propagation in multi-level public transport networks. 

Presented at the 99th Annual Meeting of the Transportation Research Board (TRB), 

Washington, DC. 

Yap, M.D., Cats, O., Van Arem, B. (2018a). Crowding valuation in urban tram and bus 

transportation based on smart card data. Transportmetrica A. 

DOI: 10.1080/23249935.2018.1537319. 

Yap, M.D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2017). A robust transfer inference 

algorithm for public transport journeys during disruptions. Transportation Research Procedia, 

27, 1042-1049.  

Yap, M.D., Luo, D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2019). Where shall we sync? 

Clustering passenger flows to identify urban public transport hubs and their key synchronization 

priorities. Transportation Research Part C, 98, 433-448. 

Yap, M.D., Nijënstein, S., Van Oort, N. (2018b). Improving predictions of public transport 

usage during disturbances based on smart card data. Transport Policy, 61, 84-95. 

Yap, M.D., Van Oort, N. (2018). Driver schedule efficiency vs. public transport robustness: A 

framework to quantify this trade-off based on passive data. Proceedings of the 14th Conference 

on Advanced Systems in Public Transport (CASPT), Brisbane, Australia. 

Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2015). Robustness of multi-level public 

transport networks: A methodology to quantify robustness from a passenger perspective. 

Proceedings of the 6th International Symposium on Transportation Network Reliability 

(INSTR), Nara, Japan. 

Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2018c). Identification and quantification 

of link vulnerability in multi-level public transport networks: a passenger perspective. 

Transportation, 45, 1161-1180. 

Yildirimoglu, M., Kim, J. (2018). Identification of communities in urban mobility networks 

using multi-layer graphs of network traffic. Transportation Research Part C, 89, 254-267. 

Younan, B., Wilson, N.H.M. (2010). Improving transit service connectivity: The application of 

operations planning and control strategies. 12th World Conference on Transport Research 

Society (WCTRS), Lisbon, Portugal. 



194 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Zhang, X., Guo, C., Wang, L. (2010). Using game theory to reveal vulnerability for complex 

networks. Proceedings of the 10th IEEE International Conference on Computer and Information 

Technology, Bradford, UK. 

Zhang, F., Zhao, J., Tian, C., Xu, C., Liu, X., Rao, L. (2016). Spatiotemporal segmentation of 

metro trips using smart card data. IEEE Transactions on Vehicular Technology, 65, 1137-1149. 

Zhao, J., Frumin, M., Wilson, N.H.M., Zhao, Z. (2013). Unified estimator for excess journey 

time under heterogeneous passenger incidence behavior using smartcard data. Transportation 

Research Part C, 34, 70-88. 

Zhao, J., Rahbee, A., Wilson, N.H.M. (2007). Estimating a rail passenger trip origin-destination 

matrix using automatic data collection systems. Computer-Aided Civil and Infrastructure 

Engineering, 24, 376-387. 

Zhu, Y., Koutsopoulos, H.N., Wilson, N.H.M. (2017). A probabilistic Passenger-to-Train 

Assignment Model based on automated data. Transportation Research Part B, 104, 522-542. 

Ziha, K. (2000). Redundancy and robustness of systems of events. Probabilistic Engineering 

Mechanics, 15, 347-357. 

Zou, X., Yue, W.L. (2017). A Bayesian network approach to causation analysis of road accidents 

using Netica. Journal of Advanced Transportation, 2017.  

https://doi.org/10.1155 /2017/2525481. 

  



 

195 

About the Author 

Menno Yap (1989) is born in The Hague, the Netherlands. In 2008, 

he started his Bachelor study Systems Engineering, Policy Analysis 

and Management at the Delft University of Technology, faculty of 

Technology, Policy and Management. He obtained his B.Sc. degree 

in 2011 cum laude. In 2014, he received his M.Sc. degree (cum laude) 

in Transport, Infrastructure & Logistics from the Delft University of 

Technology, where he specialised in the design of public transport 

networks. Menno also completed a Minor programme in Social and 

Organisational Psychology at the Leiden University. Besides, he 

completed his Propaedeutic exam in Medicine at the Leiden 

University in 2008. In 2013, he spent two months in Guangzhou, 

China, working on an interdisciplinary research project towards the sustainability of the Port of 

Guangzhou. 

 

Menno is passionate about public transport. His aim is to understand the challenges the public 

transport industry faces, develop scientific methods to contribute solving these, and to make 

sure solutions can be implemented back in the industry. In his professional life, Menno is active 

in both academia and the public transport industry. After finishing his studies, he worked as 

public transport consultant for Goudappel Coffeng B.V. from 2014 to 2017. In this role, he was 

involved in many projects for different public transport operators in the Netherlands. In April 

2016 he started his Ph.D. research at the Delft University of Technology, which he fulfilled in 

a 0.5 FTE part-time appointment. In 2017 he moved to London, where he worked for Atkins 

Ltd as public transport modelling consultant. He joined Transport for London (TfL) in 2018 as 

public transport planner and modeller in the Transport Modelling team, whilst still doing his 

Ph.D. research in the Netherlands. He completed his Ph.D. research in February 2020. 

 

In his spare time, Menno is active as volunteer at The Hague’s public transport museum. In this 

role, he was responsible for the realisation and implementation of a historic hop-on hop-off 

tram in The Hague. He is also a qualified tram driver for historical trams in The Hague, thereby 

maintaining a close connection with the operational side of public transport. 



196 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

 



 

197 

List of Publications 

Book Chapters 

 

 Van Oort, N., Brands, T., De Romph, E., Yap, M.D. (2016). Ridership evaluation and 

prediction in public transport by processing smart card data: A Dutch approach and 

example. In F. Kurauchi and J.-D. Schmöcker (eds.), Public Transport Planning with 

Smart Card Data (pp. 197-224). Boca Raton, FL: CRC Press. 

 

 

Journal Articles 

 

 Yap, M.D., Luo, D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2019). Where shall we 

sync? Clustering passenger flows to identify urban public transport hubs and their key 

synchronization priorities. Transportation Research Part C, 98, 433-448. 

 Yap, M.D., Munizaga, M. (2019). Workshop report 8: Big data in the digital age and 

how it can benefit public transport users. Research in Transport Economics, 69, 615-

620. 

 Yap, M.D., Cats, O., Van Arem, B. (2018). Crowding valuation in urban tram and bus 

transportation based on smart card data. Transportmetrica A. DOI: 10.1080/23249935. 

2018.1537319. 

 Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2018). Identification and 

quantification of link vulnerability in multi-level public transport networks: a passenger 

perspective. Transportation, 45, 1161-1180. 

 Yap, M.D., Nijënstein, S., Van Oort, N. (2018). Improving predictions of public 

transport usage during disturbances based on smart card data. Transport Policy, 61, 84-

95.  

 Scheltes, A.F., Yap, M.D., Van Oort, N. (2017). Reizigerspotentie en -voorkeuren ten 

aanzien van zelfrijdende voertuigen op de last-mile in een openbaar vervoer reis (in 

Dutch). Tijdschrift Vervoerwetenschap, 53, 3-8.  



198 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

 Lee, A., Yap, M.D., Van Oort, N. (2017). Overstappen en onbetrouwbaarheid in het 

OV: Een methode voor kwantificering van reizigerseffecten in een netwerkcontext (in 

Dutch). Tijdschrift Vervoerwetenschap, 53, 36-53. 

 Yap, M.D., Correia, G., Van Arem, B. (2016). Preferences of travellers for using 

automated vehicles as last mile public transport of multimodal train trips. 

Transportation Research Part A, 94, 1-16. 

 Cats, O., Yap, M.D., Van Oort, N. (2016). Exposing the role of exposure: Public 

transport network risk analysis. Transportation Research Part A, 88, 1-14. 

 Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2015). Robuustheid van multi-

level openbaar vervoer netwerken: Een methodologie om (on)robuustheid te 

kwantificeren vanuit een reizigersperspectief (in Dutch). Tijdschrift 

Vervoerwetenschap, 51, 82-99. 

 

 

Under Review 

 

 Yap, M.D., Cats, O. (under review). Predicting disruptions and their passenger delay 

impacts for public transport stops. 

 Yap, M.D., Cats, O., Törnquist Krasemann, J., Van Oort, N., Hoogendoorn, S.P. (under 

review). Quantification and control of disruption propagation in multi-level public 

transport networks.  

 

 

Peer-reviewed Conference Contributions 

 

 Yap, M.D., Cats, O. (2020). Predicting disruption exposure and impact to assess station 

criticality in a public transport vulnerability analysis. Presented at the 99th Annual 

Meeting of the Transportation Research Board (TRB), Washington, DC. 

 Yap, M.D., Cats, O., Törnquist Krasemann, J., Van Oort, N., Hoogendoorn, S.P. (2020). 

Quantification and control of disruption propagation in multi-level public transport 

networks. Presented at the 99th Annual Meeting of the Transportation Research Board 

(TRB), Washington, DC. 

 Yap, M.D., Cats, O. (2019). Analysis and prediction of disruptions in metro networks. 

Proceedings of the 6th International Conference on Models and Technologies for 

Intelligent Transport Systems (MT-ITS), Krakow, Poland. 

 Yap, M.D., Cats, O. (2019). Predicting and clustering station vulnerability in urban 

networks. Presented at the 5th International Workshop and Symposium of TransitData, 

Paris, France. 

 Yap M.D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2018). Controlling the 

propagation of passenger disruption impacts in multi-level public transport networks. 

Presented at the International Conference on Operations Research (OR2018), Brussels, 

Belgium. 

 Yap M.D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2018). Controlling the 

propagation of passenger disruption impacts in multi-level public transport networks. 

Presented at the 7th European Symposium on Quantitative Methods in Transportation 

Systems (hEART), Athens, Greece. 

 Yap, M.D., Van Oort, N. (2018). Driver schedule efficiency vs. public transport 

robustness: A framework to quantify this trade-off based on passive data. Proceedings 

of the 14th Conference on Advanced Systems in Public Transport (CASPT), Brisbane, 

Australia. 



List of Publications 199 

 

 Yap, M.D., Luo, D., Cats, O. (2018). Using passenger flows to determine key 

interchange connections for public transport synchronization. Proceedings of the 14th 

Conference on Advanced Systems in Public Transport (CASPT), Brisbane, Australia. 

 Brands, T., Van Oort, N., Yap, M.D. (2018). Automatic bottleneck detection using AVL 

data: A case study in Amsterdam. Proceedings of the 14th Conference on Advanced 

Systems in Public Transport (CASPT), Brisbane, Australia. 

 Yap, M.D., Cats, O., Van Oort, N., Hoogendoorn, S.P. (2017). Robust transfer 

inference: a transfer inference algorithm for public transport journeys during 

disruptions. Transportation Research Procedia, 27, 1042-1049. 

 Yap, M.D., Cats, O., Yu, S., Van Arem, B. (2017). Crowding valuation in urban tram 

and bus transportation based on smart card data. Presented at the 15th International 

Conference on Competition and Ownership in Land Passenger Transport (Thredbo 15), 

Stockholm, Sweden. 

 Yap, M.D., Nijënstein, S., Van Oort, N. (2017). Improving predictions of the impact of 

disturbances on public transport usage based on smart card data. Proceedings of the 96th 

Annual Meeting of the Transportation Research Board (TRB), Washington, DC. 

 Yap, M.D., Correia, G., Van Arem, B. (2015). Valuation of travel attributes for using 

automated vehicles as egress transport of multimodal train trips. Transportation 

Research Procedia, 10, 462-471. 

 Van Oort, N., Drost, M., Brands, T., Yap, M.D. (2015). Data-driven public transport 

ridership prediction approach including comfort aspects. Proceedings of the 13th 

Conference on Advanced Systems in Public Transport (CASPT), Rotterdam, the 

Netherlands. 

 Yap, M.D., Van Oort, N., Van Nes, R., Van Arem, B. (2015). Robustness of multi-level 

public transport networks: A methodology to quantify robustness from a passenger 

perspective. Proceedings of the 6th International Symposium on Transportation 

Network Reliability (INSTR), Nara, Japan. 

 Cats, O., Yap, M.D., Van Oort, N. (2015). Exposing the role of exposure: Identifying 

and evaluating critical links in public transport networks. Proceedings of the 6th 

International Symposium on Transportation Network Reliability (INSTR), Nara, Japan.  

 

 

Professional Magazines and Newspapers 

 

 Yap, M.D. (2018). OV-reis lijkt fors langer bij drukte (in Dutch). OVPro.nl 

 Yap, M.D. (2018). Wat kost een OV-storing de reiziger en maatschappij werkelijk? (in 

Dutch) OVPro.nl 

 Van Oort, N., Yap, M.D. (2018). AI-technieken winnen terrein (in Dutch). OV 

Magazine. 

 Yap, M.D. (2018). Wachten op de cijfers van Menno (in Dutch). AD Newspaper. 

 Van Oort, N., Cats, O., Yap, M.D. (2017). Vervoer op afroep is niet meer te stuiten (in 

Dutch). OV Magazine. 

 Yap, M.D., Van Oort, N. (2014). Robuust OV, uitgedrukt in euro’s (in Dutch). OV 

Magazine. 

 

 

 

 

 

 



200 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Awards, Nominations and Recognitions 

 

 Honourable Mention Michael Beesley Award: Best workshop paper presented by a 

young researcher. Awarded at the 5th International Conference on Competition and 

Ownership in Land Passenger Transport (Thredbo15, 2017), Stockholm, Sweden.  

Awarded paper: Yap, M.D., Cats, O., Yu, S., Van Arem, B. (2017). Crowding valuation 

in urban tram and bus transportation based on smart card data. 

 1st price for best paper CVS 2016. Awarded at the Colloquium Vervoersplanologisch 

Speurwerk 2016: Hoe slim is smart nu eigenlijk (in Dutch)? (CVS, 2016), Zwolle, the 

Netherlands. 

Awarded paper: Scheltes, A.F., Yap, M.D., Van Oort, N. (2017). Het verbeteren van de 

last-mile in een OV reis met automatische voertuigen: Een Delftse case studie en stated 

preference onderzoek gecombineerd (in Dutch). 

 Runner-up Cuperusprijs for best Master Thesis in the field of transport planning. 

Awarded at the Nationaal Verkeerskunde Congres (NVC, 2016), Zwolle, the 

Netherlands. 

Awarded work: Yap, M.D. (2014). Robust public transport from a passenger 

perspective: A study to evaluate and improve the robustness of multi-level public 

transport networks. 



 

201 

TRAIL Thesis Series 

The following list contains the most recent dissertations in the TRAIL Thesis Series. For a 

complete overview of more than 250 titles see the TRAIL website: www.rsTRAIL.nl. 

 

The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on transport, 

infrastructure and logistics. 

 

 

Yap, M.D., Measuring, Predicting and Controlling Disruption Impacts for Urban Public 

Transport, T2020/3, February 2020, TRAIL Thesis Series, the Netherlands 

 

Luo, D., Data-driven Analysis and Modeling of Passenger Flows and Service Networks for 

Public Transport Systems, T2020/2, February 2020, TRAIL Thesis Series, the Netherlands 

 

Erp, P.B.C. van, Relative Flow Data: New opportunities for traffic state estimation, T2020/1, 

February 2020, TRAIL Thesis Series, the Netherlands 

 

Zhu, Y., Passenger-Oriented Timetable Rescheduling in Railway Disruption Management, 

T2019/16, December 2019, TRAIL Thesis Series, the Netherlands 

 

Chen, L., Cooperative Multi-Vessel Systems for Waterborne Transport, T2019/15, November 

2019, TRAIL Thesis Series, the Netherlands 

 

Kerkman, K.E., Spatial Dependence in Travel Demand Models: Causes, implications, and 

solutions, T2019/14, October 2019, TRAIL Thesis Series, the Netherlands 

 

Liang, X., Planning and Operation of Automated Taxi Systems, T2019/13, September 2019, 

TRAIL Thesis Series, the Netherlands 

 



202 Measuring, Predicting and Controlling Disruption Impacts for Urban Public Transport 

 

Ton, D., Unravelling Mode and Route Choice Behaviour of Active Mode Users, T2019/12, 

September 2019, TRAIL Thesis Series, the Netherlands 
 

Shu, Y., Vessel Route Choice Model and Operational Model Based on Optimal Control, 

T2019/11, September 2019, TRAIL Thesis Series, the Netherlands 

 

Luan, X., Traffic Management Optimization of Railway Networks, T2019/10, July 2019, 

TRAIL Thesis Series, the Netherlands 

 

Hu, Q., Container Transport inside the Port Area and to the Hinterland, T2019/9, July 2019, 

TRAIL Thesis Series, the Netherlands 

 

Andani, I.G.A., Toll Roads in Indonesia: transport system, accessibility, spatial and equity 

impacts, T2019/8, June 2019, TRAIL Thesis Series, the Netherlands 

 

Ma, W., Sustainability of Deep Sea Mining Transport Plans, T2019/7, June 2019, TRAIL 

Thesis Series, the Netherlands 

 

Alemi, A., Railway Wheel Defect Identification, T2019/6, January 2019, TRAIL Thesis Series, 

the Netherlands 

 

Liao, F., Consumers, Business Models and Electric Vehicles, T2019/5, May 2019, TRAIL 

Thesis Series, the Netherlands 

 

Tamminga, G., A Novel Design of the Transport Infrastructure for Traffic Simulation Models, 

T2019/4, March 2019, TRAIL Thesis Series, the Netherlands 

 

Lin, X., Controlled Perishable Goods Logistics: Real-time coordination for fresher products, 

T2019/3, January 2019, TRAIL Thesis Series, the Netherlands 

 

Dafnomilis, I., Green Bulk Terminals: A strategic level approach to solid biomass terminal 

design, T2019/2, January 2019, TRAIL Thesis Series, the Netherlands 

 

Feng, F., Information Integration and Intelligent Control of Port Logistics System, T2019/1, 

January 2019, TRAIL Thesis Series, the Netherlands 

 

Beinum, A.S. van, Turbulence in Traffic at Motorway Ramps and its Impact on Traffic 

Operations and Safety, T2018/12, December 2018, TRAIL Thesis Series, the Netherlands 

 

Bellsolà Olba, X., Assessment of Capacity and Risk: A Framework for Vessel Traffic in Ports, 

T2018/11, December 2018, TRAIL Thesis Series, the Netherlands 

 

Knapper, A.S., The Effects of using Mobile Phones and Navigation Systems during Driving, 

T2018/10, December 2018, TRAIL Thesis Series, the Netherlands 

 

Varotto, S.F., Driver Behaviour during Control Transitions between Adaptive Cruise Control 

and Manual Driving: empirics and models, T2018/9, December 2018, TRAIL Thesis Series, 

the Netherlands 


