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Abstract

Managing traceability data is an important aspect of the
software development process. In this paper we investigate
to what extent latent semantic indexing (LSI), an informa-
tion retrieval technique, can help recovering the informa-
tion needed for automatically reconstructing traceability
during the development process. We experimented with two
different link selection strategies and applied LSI in multi-
ple case studies varying in size and context. We discuss the
results of a small lab study, a larger case study and a large
industrial case study.

1. Introduction

For many organisations the purpose of requirements
management is to provide and maintain clear agreements
between the different parties involved in developing the
product, while still allowing requirements evolution. Man-
aging requirements in such a way that useful informa-
tion can be extracted from this requirements set, is very
hard in practice [13]. This extracted information can be
used for many applications such as generating requirements
views [16] or impact analysis [8]. Examples of require-
ments views are coverage views, which include whether or
not a requirement is covered by an acceptance test, by a
design artifact, by a system test, and so on.

Up-to-date information retrieval requires that an up-to-
date traceability matrix is maintained, establishing links
between, for example, requirements and test cases. Keep-
ing the traceability links consistent during development of
the product is a time consuming, error-prone, and labor-
intensive process demanding disciplined developers [6, 12,
17]. Currently available tool do not support the feature of
automatically recovering traceability links [2].

In this paper we seek to investigate to what extent
relevant traceability links can be reconstructed automati-
cally from available documents using latent semantic in-
dexing (LSI). LSI is a promising information retrieval
method assuming there is a latent semantic structure for
every document set [9]. For this reason, our approach as-

sumes a document-oriented requirements engineering pro-
cess, which can identify semantic similarities between dif-
ferent documents produced during the development of the
product.

The long term objective of our research is to determine
how much industry can benefit from using LSI to track and
trace requirements and eventually generate various require-
ments views. In this paper we describe three exploratory
case studies, aimed at answering the following questions:

1. Can LSI help in reconstructing meaningful
requirements—design and requirements—test
case traceability relations?

2. What is the most suitable strategy for mapping LSI
document similarities to reconstruction links?

3. What are the most important open issues that need to
be resolved before LSI can be applied successfully in
an industrial context?

The three case studies we applied LSI to vary in size and
context. The first is a lab study, Pacman, used in a testing
course at Delft University of Technology. Available docu-
mentation includes use cases, design decisions, acceptance
test cases, as well as a Java implementation with Java unit
tests. The second case study is part of a software engineer-
ing course at Eindhoven University of Technology. In this
course a group of students need to develop a complete new
software system from scratch. The last case study is an
industrial case study carried out at Philips Applied Tech-
nology. In this study requirements, design decisions, and
corresponding test suite for a Philips DVD recorder were
analyzed.

The remainder of this paper is organized as follows. In
Section 2 we give an overview of background information
and discuss related work, followed by a brief survey of la-
tent semantic indexing in Section 3. In Section 4 we de-
scribe the link reconstruction method we used as well as
the tools we developed to support our process. The three
cases studies are presented in Section 5. In Section 6 we
compare and discuss the results of the case studies. We
conclude the paper by summarizing the key contributions
and offering suggestions for future research.



2. Background and Related Work

2.1. Requirements Views and Traceability

The different perspectives on requirements are often
represented using views. Views capture a subset of the
whole system in order to reduce the complexity from a
certain perspective. For example, Nuseibeh et al. discuss
the relationships between multiple views of a requirements
specification [23]. This work is based on the viewpoints
framework presented by Finkelstein et al. in [11]. Nissen
et al. show that metamodels help managing these different
requirements perspectives [22].

An important area of research in the area of traceability
is developing these metamodels. These so called reference
models discussed in [20,26,34] define the development ar-
tifacts including their attributes, and the traceability rela-
tions that are allowed to be set between these artifacts.

Von Knethen for example proposes (conceptual) trace-
ability models for managing changes on embedded sys-
tems [32]. These models help estimating the impact of a
change to the system or help to determine the links neces-
sary for correct reuse of requirements. According to Von
Knethen defining a workable traceability model is a ne-
glected activity in many approaches.

Our earlier research confirms the importance of defin-
ing a traceability model [17]. The initial experiments con-
cerned a static traceability model. New insights suggest a
dynamic model, in which new types of links can be added
as the way of working evolves during the project. The need
for information as well as the level of detail changes [10].

2.2. Link Reconstruction

To reconstruct coverage views from project documen-
tation we need some traceability support. Several trace-
ability recovery techniques already exist each covering dif-
ferent traceability issues. Some discuss the relations be-
tween source code and documentation, others the relations
between requirements on different levels of abstraction.

Antoniol et al. use information retrieval (IR) methods to
recover the traceability relations from C++ code onto man-
ual pages and from Java code to requirements [3]. Marcus
and Maletic use latent semantic indexing for recovering the
traceability relations between source code and documenta-
tion [21]. The IR methods in these cases are mostly applied
for reverse engineering traceability links between source
code and documentation in legacy systems.

IR methods can also be used for recovering traceabil-
ity links between the requirements themselves [14, 24]. In
these cases traceability recovery is mainly used for manag-
ing the requirements after development when all the docu-
mentation needs to be finalized and released.

De Lucia et al. present an artifact management sys-
tem, which has been extended with traceability recovery
features [18, 19]. This system manages all different arte-
facts produced during development such as requirements,
designs, test cases, and source code modules. De Lucia et
al. also use LSI for recovering the traceability links.

Finally, IR techniques are also used for improving the
quality of the requirements set. Park et al. use the calcu-
lated similarity measures for improving the quality of the
requirements specifications [25].

3. Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an information re-
trieval technique based on the vector space model and as-
sumes that there is an underlying or latent structure in
word usage for every document set [9]. This is particu-
larly caused by classical IR issues as synonymy and poly-
semy. LSI uses statistical techniques to estimate this latent
structure. A description of terms and documents based on
the underlying latent semantic structure is used for repre-
senting and retrieving information. This way LSI partially
overcomes some of the deficiencies of assuming indepen-
dence of words, and provides a way of dealing with syn-
onymy automatically.

LSI starts with a matrix of terms by documents. Sub-
sequently, it uses Singular Value Decomposition (SVD) to
derive a particular latent semantic structure model from the
term-by-document matrix [4, 29]. Any rectangular matrix,
for example a t x d matrix of terms and documents, X, can
be decomposed into the product of three other matrices:

X = T0S0D′
0

such that T0 and D0 have orthonormal columns and S0
is diagonal. This is called the singular value decomposition
of X. T0 and D0 are the matrices of left and right singular
vectors and S0 is the diagonal matrix of singular values.

SVD allows a simple strategy for optimal approximate
fit using smaller matrices. If the singular values in S0 are
ordered by size, the first k largest values may be kept and
the remaining smaller ones set to zero. The product of the
resulting matrices is a matrix X′ which is only approxi-
mately equal to X, and is of rank k. Since zeros were in-
troduced into S0, the representation can be simplified by
deleting the zero rows and columns of S0 to obtain a new
diagonal matrix S, and deleting the corresponding columns
of T0 and D0 to obtain T and D respectively. The result is
a reduced model:

X′
= TSD′ ≈ X

which is the rank-k model with the best possible least
square fit to X [9].
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Note that the choice of k is critical: ideally, we want a
value of k that is large enough to fit all the real structure in
the data, but small enough so we do not also fit the sampling
error or unimportant details. Choosing k properly is still an
open issue in the factor analytic literature [9]. Our choice
will be discussed when we apply LSI in our case study.

Once all documents have been represented in the LSI
subspace, we can compute the similarities between the doc-
uments. We take the cosine between their corresponding
vector representations for calculating this similarity met-
ric. This metric has a value between [-1, 1]. A value of 1
indicates that two document are (almost) identical.

These measures can be used to cluster similar docu-
ments, or for identifying traceability links between the doc-
uments. We can also define new queries and map these into
the LSI subspace. In this case we can identify which exist-
ing documents are relevant to the query. This can be useful
for identifying requirements in the existing document set.

Finally, LSI does not rely on a predefined vocabulary
or grammar for the documentation (or source code). This
allows the method to be applied without large amounts of
preprocessing or manipulation of the input, which drasti-
cally reduces the costs of traceability link recovery [18,20].

4. Approach

In order to answer the questions raised in the introduc-
tion, we conducted three case studies, which are described
in Section 5. In the present section we discuss 1) the ap-
proach we used to reconstruct the traceability links 2) the
approach we used to assess the reconstructed links, and 3)
the tools that we developed in order to carry out these steps.

4.1. Link Reconstruction Steps

In [16] we have proposed an approach for reconstruct-
ing these requirements coverage views. In this particular
case we experimented with LSI. This resulted in reason-
ably good traceability recovery results. The steps are [16]:

1. Defining the underlying traceability model;

2. Identifying the concepts from the traceability model
in the available set of documents;

3. Preprocessing the documents for automated analysis;

4. Reconstructing the traceability links;

5. Selecting the relevant links;

6. Generating coverage views.

In this paper we will focus on step 4 and 5 handling
the traceability recovery and selection of correct links. Of

Design
Artifact

System
TestRequirement

Figure 1. Traceability Model

course, step 1 and 2 are of major importance for execut-
ing step 4 and 5 successfully. We will discuss these steps
shortly and then focus on the other steps.

4.1.1. Traceability Model and Concept Identification

In our case studies we will focus mainly on two types of
traceability links; links between requirements and design,
and requirements and test. This means we have to deal
with three concepts, namely requirements, design artifacts
and test cases. In Figure 1, the traceability model, these
concepts are captured including their traceability links. The
traceability links that need to be captured in this traceability
model depend on project specific information needs [10],
but also on factors such as schedule and budget [27].

In general, identifying the requirements and test case in
the documentation is relatively easy compared to the design
artifacts. Requirements and test cases in most development
approaches are tagged with a unique identifier. For design
decisions it is often not so clear how they should be docu-
mented and identified. Key decisions are often captured in
diagrams, e.g. UML. Here, we encounter the well known
problem of establishing traceability relations between re-
quirements and design [30]. For this reason we added the
dashed line in Figure 1. We hope to improve the require-
ments to design relation indirectly via the test cases.

4.1.2. LSI and Link Selection

Once LSI created the similarity matrix a choice has to be
made if the similarity number is indeed a traceability link
or not. In their application of LSI De Lucia et al. present
several strategies for selecting traceability links. The fol-
lowing are discussed [18]:

• cut point; In this strategy we select the top k links
regardless of the actual value of the similarity mea-
sure [3, 21].

• cut percentage; In this strategy we select a percentage
of the ranked list to be considered as links regardless
of the actual value of the similarity measure.
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• constant threshold; In this strategy we select those
links that have a similarity measure greater than c,
where c is a constant (a commonly used threshold is
0.7).

• variable threshold; In this strategy we select those
links that have a similarity measure greater than ε ,
where ε is calculated according to a percentage of the
total similarity measures, e.g. the best 20%.

• scale threshold; In this strategy the links are selected
according to ε = c ∗MaxSimilarity, where 0 ≤ c ≤ 1
[3].

All strategies have their shortcomings. Except for strat-
egy constant threshold all strategies return at least one or
more traceability links as correct links, while in our case
studies situations exist where no links should be found.

Furthermore, the first two strategies do not take the sim-
ilarity measure into account and make a selection indepen-
dent of the calculated result. They simply select the k best
or n% best similarity measures as traceability links.

The last two strategies define an interval containing the
selection of similarity measures that are correct traceability
links. Both strategies are very vulnerable for extremes. For
example, if the minimal similarity measure is very low with
respect to the other measures, it is possible that the top 20%
contains almost all measures.

For this reason we defined two new strategies for link
selection:

1. a one dimensional filter on the similarity matrix com-
bining constant threshold and variable threshold, and

2. a two dimensional filter on the similarity matrix com-
bining constant threshold and variable threshold.

The first approach defines a constant threshold c and a
variable threshold ε depending on the minimum and max-
imum similarity measure of every requirements vector in
the matrix. First all the measurements are compared with
the constant threshold to indicate if there is any similarity
(and thus traceability links). If all measures are smaller
than c there are no links at all. This way we can guarantee
a certain level of quality.

If there are measures greater than the constant threshold
we take the variable threshold ε for selecting the traceabil-
ity links. With the variable threshold a similarity interval
is defined by the minimum and maximum similarity mea-
sures of the requirements vector making it possible to take,
e.g., the best 20% of all similarity measures in that vector
representation and select them as traceability links. Note
that this strategy focuses on the requirements vectors of the
similarity matrix. In most cases this strategy is sufficient,

but there is one problem with this strategy: it does not con-
sider the other dimension of the similarity matrix (in our
case the design vectors and test vectors).

Why is this a problem? Imagine the situation that a de-
sign vector has relatively high values for the similarity mea-
sures compared to the other design vectors in the matrix. In
this case this design artifact returns many traceability links
using the first strategy; the similarity measures are higher
than the constant threshold c and are also belonging to the
interval defined by ε . This is an undesirable situation as
one design artifact (or one test case) should not cover all
(or most of the) requirements.

This problem is solved using the second strategy. This
strategy is basically the same as the first strategy except for
the fact it is executed on both dimensions of the similarity
matrix. This way it also filters the relatively weak mea-
sures of the design and test vectors. In general this should
improve the quality of the reconstructed traceability links.

4.2. Assessment Approach

In order to assess the suitability of the reconstructed
links, we conduct a qualitative as well as a quantative anal-
ysis of the quality of the links obtained.

The qualitative assessment of the links is primarily done
by experts exploring the documents. The structure of the
documents set is of major influence on this process. It helps
significantly if the documents are structured according to
an (international) standard or template such as IEEE stan-
dard 830-1998, IEEE standard 1233-1998, ESA [1] or Vol-
ere [28]. Beforehand, such a structure helps choosing the
concepts and preprocessing the documents. Afterwards it
helps in assessing the reconstructed traceability links as it is
easier to browse through the documents. A tool for explor-
ing the links in order to support the qualitative assessment
is discussed in Section 4.3.3.

The quantitative assessment consists of measuring two
well-known IR metrics: recall and precision [18]:

recalli =

|correcti ∩ retrievedi|

|correcti|

precisioni =

|correcti ∩ retrievedi|

|retrievedi|

The number of correct traceability links are specified in
a traceability matrix or known by the experts developing
the system. The number of retrieved traceability links is
derived from the LSI analysis.

Both metrics have values between [0, 1]. A recall of
1 means that all correct links were reconstructed, however
the total set of links can contain incorrect links. A precision
of 1 indicates that all reconstructed links are correct, but
there can be correct links that were not reconstructed. Both
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parameters k, c and ε influence the performance indicators
recall and precision as will be shown in the case studies.

4.3. Tool Support

4.3.1. Text to Matrix Generator Toolbox

In our case studies we use a Text to Matrix Generator
(TMG) toolbox for generating the term-by-document ma-
trix [33]. This toolbox can be used for generating and incre-
mentally modifying term-by-document matrices from text
collections.

TMG is designed to perform the preprocessing and fil-
tering of the provided text. The typical IR steps TMG pro-
vides are: lexical analysis, stop word elimination, stem-
ming, index-term selection, and index construction.

4.3.2. Trace Reconstructor

We extended the TMG toolbox with a tool named Trace
Reconstructor (TR) tool. TR can do the LSI analysis di-
rectly after TMG generated the term-by-document matrix.
TR supports multiple strategies for selecting traceability
links and can directly compare the results of the LSI anal-
ysis with the traceability matrix provided by the experts.
Furthermore the TR tool calculates the quantitative met-
rics, recall and precision, from the comparison. The result
of the TR tool is emitted as a series of text files containing
the relevant traceability matrices.

4.3.3. Trace Explorer

The original documents as well as the recovered trace-
ability links are subsequently input for the Trace Explorer
(TE) tool. This tool builds on our earlier work on documen-
tation generation [31], generating a HTML representation
of the documents that includes forward and backward links
between the documents based on the traceability matrices
provided.

Trace Explorer was designed to help us and other re-
searchers in assessing the validity of the reconstructed
links. For that reason, it offers support for displaying and
comparing the matrix provided by an expert (if available),
and the reconstructed one. False positives and false nega-
tives are explicitly marked. Any cell in any matrix is click-
able, and leads to a page containing the two documents that
are connected through the link. This particularly helped
us in seeing which links were (not) reconstructed, and in
experimenting with different configurations of our tool set
(for example, the LSI parameters) in order to optimize the
reconstruction results. This way the TE tool supports the
qualitative assessment of the results.

5. Case Studies

In this section we will discuss three case studies where
we applied the LSI analysis. The case studies vary in size
and context. The first case study, Pacman, is a small case
we development within our university. This case study
gives us the opportunity to explore all the possibilities of
the techniques in a controlled environment. We varied the
different parameters of our analysis to come to a setting
giving the best results. The second case study is developed
by another university as part of an assignment from an ex-
ternal client. The size of that case study is bigger. The last
case study is an industrial case study carried out at Philips
Applied Technologies. This case study represents a real
life project for commercial purposes. In all case studies we
will focus on the links between requirements and design,
and requirements and test cases.

5.1. Case Study I: Pacman 2.0

In this section we will discuss the results from a lab ex-
periment executed at Delft University of Technology. This
experiment is used by students in a lab course for test-
ing object oriented software following Binder’s testing ap-
proach [5]. The system at hand is a simple version of the
well-known Pacman game. An initial implementation for
the system is given, and students are expected to extend the
test suite according to Binder’s patterns, and enhance the
system with additional features (which they should test as
well). In [16] we already discussed Pacman 1.0. In Pacman
2.0 we primarily changed the content of the text.

5.1.1. Case Configuration

In this case study three main documents are provided:
a requirements specification, a design document and a test
specification. Along with these documents a traceability
matrix is provided, which captures the correct traceability
links. These specifications were in plain text already and
could be passed directly as input to the TMG toolbox. For
the requirements specification the use cases are chosen as
requirements entities. The design is event-oriented so the
design artifacts are specified according to the events in the
system. Finally, every test case is copied as test case entity
for our analysis. In total there are 10 requirement entities
(use cases), 19 design artifacts and 17 test cases.

As corpus, the collection of all documents was used, in-
cluding the implementation. This resulted in a corpus of al-
most 1300 terms (1100 terms without code). Furthermore,
for c we took the value 0.7. The other two values k and ε we
varied to get an impression of the impact of these values.
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UC7 Suspend
Actor player
1. Entry condition: The player is alive and playing
2. The player presses the quit button in order to suspend playing the game
3. During suspension, no moves are possible, neither from the player nor from the monsters
4. Pressing the start button re-activates the game

Table 1. UC7 description

5.1.2. Case Results

The recall (R) and precision (P) for this case study are
shown in Table 2 for both strategies discussed in Sec-
tion 4.1.2. The results show a relatively low precision of the
links between the requirements and design. This is mainly
caused by the many false positives in design artifacts D3.0
and D3.2.1 and use case UC7. Using the second strategy
we filter many of these false positives: D3.0 contained 7
false positives using the first strategy and only 2 using the
second strategy. For D3.2.1 we realised the same reduction,
the 7 false positives where reduced to only 2 using the sec-
ond strategy, while the correct links remained in the result.
Unfortunately, the second strategy did not have any effect
on the 10 false positives in use case UC7.

Looking at the links between the requirements and test
cases we observed the same result: UC3 and UC7 returned
many false positives using the first strategy. The second
strategy reduced many (6 out of 7) false positives in UC3.
Again, in UC7 none of the 6 false positives were filtered.

The quantitative analysis did not help us to understand
this phenomenon so we needed to explore the text. We used
the TE tool for this. We investigated the text of the correct
links and the returned links with the best score. We manip-
ulated the text to improve our understanding of these links.
Improving the similarity measure of the correct links was
not that difficult, but understanding why the other links had
such a high similarity score was not always that obvious.

To improve the correct similarity measure of UC7 (See
Table 1) the state conditions were made more explicit in
the design text. So documenting that a state has changed,
e.g. to “playing state” again, is not sufficient. Explicitly
documenting that the player is “alive and playing” helps to
link the design artifact to the use case.

Furthermore, in the design artifact the term “pause” was
used for indicating a suspension. So we also introduce the
term “pause” in the use case description. The last step
of the use case description was changed in: “4. Pressing
the start button ends the pause, and re-activates the game”.
These changes in the text increased the similarity measure
of the correct link. However, this did not influence the total
result of use case UC7. UC7 still returned 10 false pos-
itives. The other similarity measures did not sufficiently

Strategy 1 Strategy 2
Link type ε R P R P
Use case 20% 0.74 0.21 0.63 0.25
to design 30% 0.79 0.18 0.79 0.22

40% 0.84 0.13 0.84 0.16
50% 0.84 0.10 0.84 0.14
60% 1.00 0.10 0.89 0.13

Use case 20% 0.82 0.34 0.82 0.41
to test 30% 0.94 0.30 0.94 0.37

40% 0.94 0.23 0.94 0.28
50% 1.00 0.21 1.00 0.24

Table 2. Recall and precision for the reconstructed
traceability matrices of Pacman 2.0 with rank-k sub-
space of 20% and c = 0.7

decrease for the link selection strategy to filtered them.
In this case the constant threshold c did not have any

influence on the result. All selected links had a similarity
measure above 0.7.

5.2. Case Study II: Calisto

In this section we discuss our results from the second
case study. This case study was executed by students from
Eindhoven University of Technology in a software engi-
neering project where the students needed to carry out a
complete development life-cycle.

In this project a Interface Specification Tool is con-
structed. This tool is designed to support the ISpec ap-
proach; a specification method in the context of component
technology [15]. The purpose of the tool is to create In-
terface Specification Documents as well as exporting these
documents to other software components.

5.2.1. Case Configuration

In this case study we again focused on three main doc-
uments: a user requirements specification (URD), a soft-
ware requirements specification (SRS) and an acceptance
test plan (ATP). The documents all comply with the equally
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Strategy 1 Strategy 2
Link type ε R P R P
Use case 20% 0.27 0.28 0.22 0.43
to design 30% 0.42 0.21 0.32 0.30

40% 0.59 0.18 0.49 0.29
50% 0.63 0.13 0.54 0.19

Use case 20% 0.51 0.41 0.45 0.69
to test 30% 0.71 0.28 0.61 0.50

40% 0.84 0.20 0.75 0.37
50% 0.89 0.15 0.81 0.25

Table 3. Recall and precision for the reconstructed
traceability matrices of Calisto with rank-k subspace
of 20% and c = 0.4

named specifications from the Software Engineering Stan-
dard, as set by the European Space Agency (ESA) [1].
However we consider the SRS as a design document as it
specifies classes and interfaces.

All requirements have a unique identifier; the user re-
quirements comply to URCARxx and the software require-
ments to SRFURxx were xx is a unique number. The test
cases are directly related to the user requirements as they
have the same unique identifier, namely URCARxx.

In this case study we did the analysis including the code
and excluding the code. In the first case the corpus con-
sisted of almost 5500 terms, in the second case the corpus
consisted of almost 2300 terms. We started with the same
values for k, c and ε as in the Pacman case.

5.2.2. Case Results

We again investigated the results of both link selection
strategies in Figure 3. We observed that the improvement in
precision was even higher than in the Pacman case. How-
ever, the recall was consequently lower with respect to the
first strategy using similar parameters. This can be ex-
plained as follows. First, again we have certain design arti-
facts containing many false positives. For example, one has
7 and another has 5 false positives. The second strategy re-
duced the number of false positives to 0 for the first case
(causing the increase in precision). For the second case 4
false positives are filtered, but in this case also 2 correct
links are filtered. This causes the recall to decrease.

In this case study we also observed that the constant
threshold has a major impact on the results. When using
the commonly accepted threshold of c = 0.7 LSI returns
only few links. Using a threshold of c = 0.4 makes that the
constant threshold has almost no influence on the results,
but gives the best results. Filtering only on the constant
threshold (c = 0.4) will cause the recall of design never to
exceed 0.63 and the recall of test never to exceed 0.94.

5.3. Case Study III: Philips Applied Technologies

For most products Philips Applied Technologies devel-
ops almost 80 – 90 % is reused from previous projects. The
majority of new products has only limited new functional-
ity that needs to be developed from scratch. The existing
functionality is delivered by various Philips units.

In this case study the document set of an extension of
a DVD+RW recorder is analyzed for requirements cover-
age. We want to know if all the requirements agreed in the
contract are covered in the product. That is, we trace the
requirements in the rest of the work products.

During product development a large number of require-
ments initially identified cannot be traced back to test cases
or design documents: in a way they ’get lost’. This gets
even worse when the system evolves over time. First ad-
hoc attempts in two case studies showed that less than 10%
of the total requirements can be recovered from the design
and test documents. Furthermore, as the system evolves,
new requirements are introduced in the system that cannot
be traced back to the original requirements specifications.

5.3.1. Case Configuration

In this case the total set of documentation consists of one
general document, which describes the document structure
for this component. Furthermore there is one requirements
document, which describes the requirements of the com-
ponent, and an architecture document, which describes the
delta that is introduced due to the new functionality. Fi-
nally, there are 5 interface specifications, 11 component
specifications, which together form the design of the com-
ponent and one test specification containing all the test sce-
narios and test cases.

In total, 20 documents are analyzed in this case study.
These documents are all Microsoft Word documents and
are based on the IEEE-1233-1998 standard for system re-
quirements specifications. Furthermore, they are not ex-
plicitly related. Thus, no traceability matrix is provided or
anything comparable.

In this case it was not very obvious to identify the con-
cepts in the documentation. The requirements all have a
unique identifier, but one of the problems is that the re-
quirements specification consists of a requirements hierar-
chy. We need to choose the right granularity for our re-
quirement concept. In this case study we took the highest
level of requirements including their sub-levels as docu-
ments in the LSI analysis. This resulted in 7 high-level
requirements as input for the LSI analysis.

For design artifact’s our choice was not very obvious
as well. Every document contains the design of one com-
ponent or interface in the system. Taking a component as
design artifact makes most sense as the internal structure
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of the design documents is not really suitable for subdivid-
ing into smaller parts. So each design document will be a
design artifact for the LSI analysis. In total this makes 16
design artifact’s.

The identification of concepts in the test specification
was not really difficult. Test scenarios and test cases were
easily recognizable in the test specification and therefore
very suitable as input for the LSI analysis. In total we have
326 test cases. After preprocessing the documents this re-
sulted in a corpus of more than 2300 terms representing the
engineering domain. Before we executed the LSI analy-
sis on the document set we carried out an simple exploring
analysis on the documents.

5.3.2. Preliminary Analysis of Documents

In practice often simple search facilities are used to
reconstruct links, for example, when a new requirement
is agreed and needs to be processed in the documenta-
tion [24]. In a first analysis we transformed the Microsoft
Word documents to XML format and did some searching
on the document set using Xpath expressions [7]. This
analysis showed no direct links between the requirements
documents and any other document. The unique identifiers
were not traceable in the rest of the documents. Querying
with the labels of a requirement identified only few links .

5.3.3. Case Results

Executing the LSI analysis resulted in more informative
results. The first remarkable result is that the similarity
measures between the requirements and the design were
much better than the similarity measures between the re-
quirements and the test cases. The first two case studies
showed the opposite results. A reason for this is the choice
of the granularity of the concepts for analysis; high-level
requirements and complete design components in combi-
nation with the structure of these documents. Every design
component starts with a general description of the com-
ponent. Part of that general description includes its func-
tionality. This functionality matches the functionality de-
scribed in the requirements description.

The similarity measures between requirements and test
cases showed considerably less good results. In this case
there is a mismatch in the granularity of the documents
used for analysis. The requirements were the same high-
level requirements, but the test cases can be considered
more as unit tests. These unit tests are written according
to the designs and not the requirements.

Finally, in this case we were not able to compare the
results with a provided traceability matrix, so we had to
consult experts knowing the system. Disappointing is the
fact that it is hard to validate that the reconstructed links

are indeed correct. We found several links that are correct,
but we did not come to an agreement for all links. For this
reason we did not calculate the recall and precision.

6. Discussion

Link Selection With respect to the link selection strate-
gies we first of all can say that the second strategy performs
better than the first strategy.

We have also seen that the strategies cannot always re-
duce the number of false positives successfully. Best exam-
ple is use case UC7 in the Pacman case. The 11 returned
links were all quite similar (between 0.91 and 0.96). The
infinity of possible links in our strategies can be a disadvan-
tage. In this case the cut point and cut percentage strategy
will be more successfull. They will, regardless of the ac-
tual value, simply select only the best x similarity measures
(where x is a integer value).

Another point of attention is the constant threshold. In
some cases it can be a disadvantage as well. The constant
threshold protects you from losing to much quality in your
similarity measures. Every link should at least have a sim-
ilarity measure ≥ c. In some cases a correct link will be
filtered only because of the constant threshold. Changing
the values for the variable threshold will not help to recover
this links. In this case a recall of 100% can never be reached
as can be seen in the Calisto case and in the Philips Applied
Technologies case concerning the requirements coverage in
the test cases. In this case all similarity measures are sim-
ply lower than the constant threshold. The opposite is also
possible, in the Pacman case the constant threshold was of
no influence.

A solution can be to make the constant threshold depen-
dent on the minimal and maximal similarity measures or
the mean of the entire matrix. This way it is more related
to the actual output and not chosen randomly. It also repre-
sents the quality of the data. If for example the maximum
similarity measure of the matrix is 0.67 and the constant
threshold is 0.7 no links will be found with both strategies.
Taking the mean of the total data set as constant threshold
insures links will be found. Note that this does not mean
that for every requirement a link will be found, so for indi-
vidual requirements the idea behind the constant threshold
is kept. The analist together with the expert should decide
on the quality of the data set.

Link Types Futhermore we observe a consequent differ-
ence in the performance of LSI for the different link types;
requirements in design and requirements in test cases. The
links between requirements and test case in general pre-
formed better. The Philips Applied Technologies case was
an exception, which can be explained by the wrong choice
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of granularity of the test cases. In general, the reason why
test cases perform better is unclear. This is still an open
issue that remains to be answered.

Research Issues On the basis of our case studies we can
identify the following research issues that need to be ad-
dressed before LSI can be applied for the purpose of link
reconstruction in an industrial context:

• How can we take advantage of the (few) cross refer-
ences that are typically included already in the docu-
ments? For example, does it make sense to give re-
quirement identifiers used in design documents a high
weight in the term-by-document matrix?

• How should the hierarchical structure of for exam-
ple design or requirements documents be dealt with
in link reconstruction? In our present experiments we
created a flat set of documents. How can LSI be ad-
justed so that if possible links in the most detailed doc-
uments are taken into account, moving up higher in
the hierarchy (aggregating the paragraphs) when this
does not lead to sufficiently many results?

• What documents should be included in the corpus?
For example, do we get better requirements–design
links when we also include the test documents in the
corpus? Why (not)?

• Can we come up with link reconstruction techniques
tailored towards specific types of links? For exam-
ple, do we need different strategies for reconstructing
requirements–design and for requiements–test links?

• Are the recall and precision that are achieved suffi-
cient for practical purposes? Can we make sufficiently
accurate predictions of certain coverage views based
on the (incomplete) links we can reconstruct?

7. Concluding Remarks

The objective of the paper is to investigate the role latent
semantic indexing can play in order to reconstruct trace-
ability links. From the previous discussion we can con-
clude that LSI can indeed help increasing the insight in a
system by means of reconstructing the traceability links
between the different work products produced during de-
velopment. We consider following to be our main contri-
butions:

• We defined a new strategy for selecting traceability
links from an LSI similarity matrix.

• We provided a tool set for reconstructing traceability
links including support for quantitative (TR tool) and
qualitative (TE tool) assessment of the results.

• We applied our approach in three case studies of
which one was an industrial strength case in the con-
sumer electronics domain.

• For each of the case studies, we offered an analysis
of factors contributing to success and failure of recon-
structing traceability links.

• We identified the most important open research issues
pertaining to the adoption of LSI for link reconstruc-
tion purposes in industry.

Our future work will be concerned with the open issues
listed in the discussion section. Furthermore, we would
like to extend our work along two lines. First, we want to
study other links than those between requirements on the
one hand and testcases and design decisions on the other,
such as those listed in [16]. Furthermore, we are in the
process of extending our experimental basis. In particular,
we are starting up two new case studies in the area of space
engineering and traffic monitoring systems.
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