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We investigate the stability of streaks in the buffer layer of turbulent channel flows
with temperature-dependent density and viscosity by means of linear theory. The adopted
framework consists of an extended set of the Orr-Sommerfeld-Squire equations that
accounts for density and viscosity nonuniformity in the direction normal to the walls. The
base flow profiles for density, viscosity, and velocity are averaged from direct numerical
simulations (DNSs) of fully developed turbulent channel flows. We find that the inner scaling
based on semilocal quantities provides an effective parametrization of the effect of variable
properties on the linearized flow. The spanwise spacing of optimal buffer layer streaks scales
to λ�

z,opt ≈ 90 for all cases considered and the maximum energy amplification decreases,
compared to the one for a flow with constant properties, if the semilocal Reynolds number
Re�

τ increases away from the walls, consistently with less energetic streaks observed in
DNSs of turbulent channels. A secondary stability analysis of the two-dimensional velocity
profile formed by the mean turbulent velocity and the nonlinearly saturated optimal streaks
predicts a streamwise instability mode with wavelength λ�

x,cr ≈ 230 in semilocal units,
regardless of the fluid property distribution across the channel. The threshold for the onset
of the secondary instability is reduced, compared to a constant property flow, if Re�

τ increases
away from the walls, which explains the more intense ejection events reported in DNSs.
The opposite behavior is predicted by the linear theory for decreasing Re�

τ , in accord with
DNS observations. We finally show that the phase velocity of the critical mode of secondary
instability agrees well with the convection velocity calculated by DNSs in the near-wall
region for both constant and variable viscosity flows.

DOI: 10.1103/PhysRevFluids.2.113903

I. INTRODUCTION

Streamwise velocity streaks are fundamental flow structures in wall bounded shear flows. They
play a key role in subcritical transition, where their instability leads to a breakup and to the eventual
onset of turbulent motions [1]. Streaks are also important in the fully turbulent regime, where their
instability mechanism is crucial to sustain the near-wall regeneration cycle [2,3]. The latter can
be subdivided into three main steps, namely, (i) the formation of streamwise low- and high-speed
streaks, (ii) the streaks’ instability and breakup, and (iii) the formation of quasistreamwise vortices
responsible for generating new streaks. The first two processes are predominantly linear mechanisms;
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the generation and amplification of streaks occurs by means of the lift-up effect [4] and the streaks’
streamwise instability is triggered by a linearly unstable mode.

The linearized Navier-Stokes equations have been proven in the past to provide an effective
framework to study the characteristics of streaks in turbulent flows. The operator resulting from
the linearization around a mean turbulent velocity profile, which is linearly stable, is non-normal,
hence it supports transient amplification of perturbations in a similar fashion to what is predicted for
stable laminar base flows [5–7]. Butler and Farrell [8] showed that the optimization of the energy
growth function constrained to a characteristic turbulent time scale yields to optimal flow structures
that are streamwise-independent streaks. Their spanwise spacing in viscous wall units is λ+

z ≈ 100,
in close analogy to the streak spacing observed in experiments [9]. del Álamo and Jiménez [10],
and subsequently Pujals et al. [11], introduced in the Orr-Sommerfeld-Squire equations a spatially
dependent effective viscosity coefficient that accounts for the contribution of the molecular viscosity
of the fluid (constant) and of the eddy viscosity [variable in the wall-normal direction (see [12,13])],
in which the nonlinearity of the turbulent flow is lumped. Their unconstrained linear growth analysis
resulted in two optimal streaks, as opposed to the single optimal observed for laminar flows and
in Ref. [8]. The two optimal wavelengths correspond to (i) large structures in the crossflow plane
spaced by λz = 4h, with h the half-channel height, for which the maximum energy growth Gmax

increases with the Reynolds number, and (ii) small-scale buffer layer streaks spaced by λ+
z = 92,

with Gmax ≈ 2.6, which does not depend on the Reynolds number. A larger maximum growth can
be achieved in the case in which the energy norm adopted in the optimization is not calculated across
the whole domain, as in the referenced works, but is constrained to the near-wall region [14].

Linearized equations were used by Schoppa and Hussain [15] to investigate the secondary
instability of streaks in turbulent channels and to calculate their critical amplitude. They found
that only 20% of the streaks simulated in direct numerical simulations (DNSs) meet the instability
threshold calculated from linear theory, thus highlighting the limitations of using the normal mode
instability to explain the vortex regeneration mechanism. Nevertheless, linear theory can be invoked
to describe, at least partly, the dynamics of bursting events. Jiménez [16] argued that an Orr-like
transient process is responsible for the amplification of the disturbance energy generated by the
streaks’ breakdown in turbulent channels and subsequently demonstrated that linearized models can
predict strong bursts of the large scales in up to 70% of the total time [17]. Large-scale structures in
the crossflow plane were investigated by Cossu et al. [18] and by Park et al. [19], who found larger
critical thresholds for secondary instabilities with respect to the laminar case. Alizard [20] studied
streaks in the logarithmic region and found that the size of the crossflow structures is proportional to
the wall distance, which is in agreement with the attached eddy hypothesis [21]. Turbulent channel
flows with adverse pressure gradients were studied by Marquillie et al. [22] and an extension to
compressible flows was presented by Alizard et al. [23]. A linear model was successfully used to
explain large-scale recurrent burst in rotating turbulent channel flows in cases where the predicted
unstable wave is not altered excessively by the surrounding turbulence [24,25].

While the majority of the literature is concerned with turbulent flows of constant property fluids,
variable property flows play a relevant role in many engineering applications. The fluid temperature
can be nonuniform as the result of heat transfer or compressibility effects in high-speed flows. As a
consequence, fluid properties such as density and viscosity are also nonuniform and directly affect
turbulence as they appear in the equations governing the fluid motion. Most of the research on
turbulence with near-wall property gradients has been performed for heated or cooled high-speed
compressible flows. Several researchers observed a modulation of the spatial structure of streaks,
which become more elongated in a supersonic channel flow with cold isothermal walls [26–28], while
the opposite effect was documented in the case of heated walls in the same flow configuration [28].
The modified spatial coherence of streaks disappears if semilocal units are used [29,30], despite
a modulating effect of variable properties remaining on turbulence statistics and flow anisotropy
[31]. Recently, Patel et al. [32] provided rigorous mathematical support for the semilocal scaling
and showed that the dominating parameter in characterizing fluid flows with different property
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distributions is the semilocal Reynolds number

Re�
τ =

√
ρ/ρw

μ/μw

Reτ , (1)

with the overbar indicating Reynolds averages and the subscript w averaged wall properties. Here
Reτ = ρwhuτ/μw is the Reynolds number based on the friction velocity uτ = √

τw/ρw. Flows with
similar Re�

τ distributions exhibit similar statistics and turbulence features, irrespective of individual
density or viscosity profiles. For cases where Re�

τ decreases away from the walls, streaks in the buffer
layer are strengthened and ejection events linked to their instability are less intense. The opposite
occurs for increasing Re�

τ . Gradients in Re�
τ influence the van Driest transformed mean velocity

profiles, which affects the inclination and tilting angles of the streamwise vortices, thus providing a
physical interpretation for the above-mentioned turbulence modulations [33].

In this paper we address the modulating effect of variable density and viscosity on buffer layer
streaks within the linearized Navier-Stokes framework. We use a modified set of Orr-Sommerfeld-
Squire equations that includes nonuniform density and viscosity profiles in the direction normal to
the walls, which are extracted from DNSs from Ref. [32]. We seek a theoretical justification for
previous observations of strengthening and stabilization of streaks in the case of decreasing semilocal
Reynolds number away from the walls (the effect is opposite if Re�

τ increases). Furthermore, we
want to assess whether the effectiveness of the semilocal scaling in parametrizing the effect of
variable properties additionally applies to the geometrical characteristics of calculated linear optimal
structures and their secondary instability mode.

The paper is structured as follows. The data set used and the most important features of the
considered variable property flows are discussed in Sec. II. In Sec. III we present the procedure
adopted to define the base flow conditions for the linearization starting from the DNS data. A linear
growth analysis of the mean turbulent profiles is performed in Sec. IV and the secondary stability of
the calculated optimal streaks is investigated in Sec. V. A summary and conclusions are presented
in Sec. VI.

II. TURBULENT FLOW CONFIGURATIONS

The turbulent flow cases studied in this paper are taken from Ref. [32], where DNSs of the
low-Mach-number approximation of the Navier-Stokes equations are performed using different
constitutive relations for density and viscosity as a function of temperature. The flow is driven by
a constant pressure gradient in channels with isothermal walls and heated by a constant volumetric
heat source. The latter results in symmetric averaged temperature profiles in the direction normal to
the walls, whose maximum value is located at the centerline yc. All simulations are performed at the
same Reynolds number based on the friction velocity at the walls, namely, Reτ = 395. The reader
is referred to the original paper for further details on the flow configuration, the numerical scheme,
and its validation.

The considered cases and the respective flow conditions are summarized in Table I. The
constitutive relations of density and viscosity as functions of temperature are given in columns
2 and 3, respectively. Depending on those, Re�

τ remains constant, decreases, or increases along the
half-channel height and is representative of the qualitative behavior of a constant property fluid, a gas,
or a liquid that is cooled from the walls. The last column gives the value of the semilocal Reynolds
number at the channel center, h� = Re�

τ (yc). Other transport properties, i.e., thermal conductivity
and specific heat, are constant in all simulations. Figure 1 displays Re�

τ across the half-channel height
for each flow case studied and Fig. 2 depicts the corresponding distributions of averaged density and
viscosity. The cases are grouped into four pairs of similar Re�

τ distributions. The first pair consists
of a constant property case CP and a variable property case CRe�

τ , for which Re�
τ is constant across

the channel. The second pair is characterized by a Re�
τ that decreases away from the walls and

consists of case GL, which exhibits gaslike property variations, and case SRe�
τ GL, for which only

viscosity is a function of temperature and density is constant. The third pair consists of a variable
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TABLE I. Flow cases studied, taken from Ref. [32]: constant property case (CP), constant Re�
τ case

(CRe�
τ ), case with gaslike property variations (GL) and with similar distribution of semilocal Reynolds number

(SRe�
τ GL), case with constant kinematic viscosity (Cν) and with similar distribution of semilocal Reynolds

number (SRe�
τ Cν), and case with liquidlike property variations (LL) and with similar distribution of semilocal

Reynolds number (SRe�
τ LL). The semilocal Reynolds number at the centerline is indicated by h� = Re�

τ (yc).
For all cases Reτ = Re�

τ,w = 395.

Case ρ/ρw μ/μw h�

CP 1 1 395
CRe�

τ (T/Tw)−1 (T/Tw)−0.5 395
GL (T/Tw)−1 (T/Tw)0.7 142
SRe�

τ GL 1 (T/Tw)1.2 152
Cν (T/Tw)−1 (T/Tw)−1 538
SRe�

τ Cν 1 (T/Tw)−0.5 532
LL 1 (T/Tw)−1 703
SRe�

τ LL (T/Tw)−1 (T/Tw)−1.5 719

property case with constant kinematic viscosity Cν that results in an increase of Re�
τ away from the

walls and of case SRe�
τ Cν , which has constant density but variable viscosity. For the fourth pair Re�

τ

increases with a stronger gradient away from the wall. This pair consists of case LL, which exhibits
liquidlike property variations, and case SRe�

τ LL, for which both density and viscosity are functions
of temperature.

A detailed discussion of the modulating effect of flow properties on turbulence characteristics
and of the effectiveness of semilocal scaling in characterizing variable property flows is presented in
Refs. [32,33] and will not be repeated here for the sake of brevity. Our present discussion is limited
to the main conclusions of the referenced papers, which serve as a motivation for this work. Flow
structures in turbulent flows with variable properties show similar spatial characteristics if semilocal
scaling is adopted, i.e., if the local value of Re�

τ is used instead of Reτ . Semilocal coordinates are
defined as x�

i = (xi/h)Re�
τ , in analogy with the standard definition of viscous units x+

i = (xi/h)Reτ .
Here xi = (x,y,z) indicate the streamwise, wall-normal, and spanwise directions. Semilocal scaling

0 0.2 0.4 0.6 0.8 1
100

200

300

400

500

600

700

800

FIG. 1. Distribution of the semilocal Reynolds number Re�
τ for the flow cases of Table I. Lines indicate

constant density flows and symbols are ©, CRe�
τ ; �, Cν ; �, GL; and �, SRe�

τ LL. The wall is located at y/h = 0
and the centerline at y/h = 1. Only the half channel is shown.
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FIG. 2. Reynolds-averaged distributions of (a) viscosity and (b) density for the flow cases of Table I. The
wall is located at y/h = 0 and the centerline at y/h = 1. Only the half channel is shown.

is able to account for some of the differences seen between variable and constant property flows
and to provide a universal scaling law for the turbulent mean profile [33,34], however this does
not extend to higher-order turbulent statistics. The reason is a modification of near-wall vortical
structures by gradients of Re�

τ . Flows with different property distributions but similar Re�
τ profiles

display similar turbulence characteristics. Relevant for the present paper is the modulation of the
intensity of buffer layer streaks in flows with Re�

τ gradients in the near-wall region. Additionally, the
streaks’ stability is affected, which results in altered ejection events near the walls originated from
their burst. In support of this statement we report in Fig. 3 the joint probability density functions
(PDFs) of the streamwise and wall-normal velocity fluctuations (denoted by u and v, respectively)
with respect to the Favre-averaged velocity profile and the probability-weighted Reynolds shear
stress ρuv/τwP (

√
ρu/

√
τw,

√
ρv/

√
τw) for cases CP, GL, and LL at the vertical location y� = 12.

This location is chosen as it corresponds to the peak of turbulent kinetic energy production and
therefore indicates where physically relevant phenomena occur. Furthermore, streak spacing in
semilocal units is universal above y� ≈ 12 [33]. Contours show that the flow case CRe�

τ , for which
properties change across the channel in such a way that the semilocal Reynolds number is constant
(Re�

τ = Reτ ), has the same statistics as the constant property case (CP). On the other hand, ejection
events are weaker for the GL case and the intensity of the low-speed streaks strengthens. The opposite
occurs for the LL case that corresponds to increasing Re�

τ away from the walls. In the following
sections we will seek a justification for the discussed effect of variable density and viscosity on the
streak characteristics using linear theory.

III. BASE FLOW PROFILES

In order to obtain base profiles to be used as reference conditions for the linearization of the
Navier-Stokes equations, we perform a piecewise polynomial fitting of mean DNS data. Smoothness
of the functions and their derivatives is imposed between adjacent polynomials, whose order is
manually adapted to ensure a good approximation of the data in both the near-wall region and
centerline of the channel. The knowledge of polynomial coefficients allows us to calculate smooth
derivatives of the properties of interest. In contrast to constant property cases, the interpolation
procedure is here necessary as no models are available for the mean temperature and eddy viscosity
distributions in turbulent channels with variable density and viscosity. Following Refs. [10,11,13],
we define an effective viscosity of the reference flow as the sum of the molecular viscosity of the
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FIG. 3. Joint PDFs of the streamwise and wall-normal Favre-averaged velocity fluctuations. Values are
nondimensionalized by the instantaneous density and wall shear stress. Contours indicate the probability-
weighted Reynolds shear stress ρuv/τwP (

√
ρu/

√
τw,

√
ρv/

√
τw). Dotted lines refer to case CP in each image;

solid lines indicate (a) CRe�
τ , (b) GL, and (c) LL. For each case displayed, lines are spaced by 0.02 and range

from −0.02 (most outer) to −0.12.

fluid and of an eddy viscosity contribution in which the effect of turbulence is lumped

μe(y) = μ(T ) + μt (y)

μw

. (2)

The molecular viscosity is calculated using the Reynolds-averaged temperature from DNSs, T =
T (y), and the constitutive relations from Table I. The physical condition T ′

w = φ is imposed at the
solid walls, in which the prime indicates the derivative with respect to y and φ is the volumetric heat
source used in the DNS. The interpolated temperature is also used to calculate the reference density,
as ρ = ρ(T ), and its derivatives. Note that for a generic thermophysical property ψ(T ) �= ψ(T ).
These two values can significantly differ in the case of strong temperature fluctuations or in the case
in which the constitutive relation for ψ is highly sensitive to the value of its argument, as is the case
for turbulent flows at supercritical pressures [35]. In all flow cases considered here, this inconsistency
in fluid property evaluations is limited and does not affect the results and our discussion. The eddy
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FIG. 4. Effective viscosity profiles μe = μ + μt interpolated from the data set described in Sec. II and
summarized in Table I. Results are organized into (a) constant and (b) temperature-dependent density cases.
The molecular viscosity is a function of temperature for both.

viscosity is defined as

μt (y) = − ρ̃uv

dU/dy
, (3)

with ρ the instantaneous turbulent density field and the tilde indicating Favre averaging. The physical
constraints imposed on the interpolation of the eddy viscosity are

μt,w = 0, μ′
t,w = 0, μ′′

t,w = 0, (4)

where the prime replaces d/dy. The resulting effective viscosity profiles for the cases reported in
Table I are displayed in Fig. 4. Note that for cases Cν , SRe�

τ Cν , LL, and SRe�
τ LL the effective

viscosity falls below the value at the wall due to the predominant contribution of the decreasing
molecular viscosity in the viscous sublayer.

The base velocity profile is calculated from the one-dimensional momentum balance in the
streamwise direction, which reads

dU+

d(y/h)
= −(y/h)

Reτ

μe

, (5)

with y/h ∈ [−1,1]. The effective viscosity coefficient is given by Eq. (2) and the plus superscript
indicates normalization by the friction velocity uτ = √

τw/ρw. The result is a velocity profile that (i)
is consistent with the constitutive relations for the mean flow properties reported in Table I and used
to solve the Orr-Sommerfeld-Squire system (10) and (11) and (ii) has smooth derivatives across the
channel height. For these reasons, the described approach is preferred over a direct interpolation
of DNS data for velocity and its derivatives. The comparison between the base velocity profiles
calculated from Eq. (5) and the mean DNS profiles, respectively indicated by lines and symbols, for
all cases considered, is reported in Fig. 5 and shows satisfactory agreement. Appreciable deviations
are limited to the cases GL and SRe�

τ GL only and are located in the center of the channel. Here the
eddy viscosity coefficient calculated from the DNS displays large oscillations due to the vanishing
denominator in Eq. (3) and its smoothed profile locally deviates from the DNS data. This discrepancy
is the reason for the differences observed in Fig. 5. In order to rule out that these affect our results,
we have verified that the influence of using a calculated or interpolated base velocity profile is indeed
negligible by performing a limited set of calculations using both, which is not reported here.
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FIG. 5. Base velocity profiles calculated using Eq. (5) and the interpolated viscosity of Fig. 4. Results are
organized into (a) constant and (b) temperature-dependent density cases. Mean velocity profiles extracted from
DNSs are also reported for comparison and are indicated by symbols that correspond to ©, CP and CRe�

τ ; �,
Cν and SRe�

τ Cν ; �, GL and SRe�
τ GL; and �, LL and SRe�

τ LL.

IV. ALGEBRAIC GROWTH OF OPTIMAL STREAKS

The dynamics of a small-amplitude velocity u = (u,v,w) and pressure p perturbations to a base
flow U = (U (y),0,0) with nonuniform viscosity and density in the direction normal to the walls,
namely, μ = μ(y) and ρ = ρ(y), is governed by the linearized Navier-Stokes equations

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= −ρ ′

ρ
v, (6)

ρ
∂u

∂t
+ ρU

∂u

∂x
+ ρU ′v = −∂p

∂x
+ 1

Reτ

[
μ∇2u + μ′

(
∂u

∂y
+ ∂v

∂x

)
− 1

3

μρ ′

ρ

∂v

∂x

]
, (7)

ρ
∂v

∂t
+ ρU

∂v

∂x
= −∂p

∂y
+ 1

Reτ

[
μ∇2v + 2μ′ ∂v

∂y
− 1

3

μρ ′′

ρ
v − 1

3

μρ ′

ρ

∂v

∂y

+ 1

3

μ(ρ ′)2

ρ2
v + 2

3

μ′ρ ′

ρ
v

]
, (8)

ρ
∂w

∂t
+ ρU

∂w

∂x
= −∂p

∂z
+ 1

Reτ

[
μ∇2w + μ′

(
∂v

∂z
+ ∂w

∂y

)
− 1

3

μρ ′

ρ

∂v

∂z

]
. (9)

Quantities are nondimensionalized by the half-channel height h, the friction velocity uτ , wall density
ρw, and viscosity μw and the + superscript is dropped. Fluctuations of density and viscosity are not
accounted for in the present linearized model, i.e., the energy equation is passive and the ρ and μ

profiles are frozen. The above system of equations can be recast in the wall-normal velocity v and vor-
ticity η formulation, in which the continuity constraint is automatically satisfied and the pressure does
not appear explicitly. This gives extended versions of the Orr-Sommerfeld-Squire equations that read

∂

∂t

(
ρ ′′ + 2ρ ′ ∂

∂y
+ ρ∇2

)
v +

(
ρU∇2 + ρ ′′U + 2ρ ′U

∂

∂y
− ρU ′′

)
∂v

∂x

= 1

Reτ

{
μe∇4v + 2μ′

e∇2 ∂v

∂y
+ μ′′

e

[
∂2

∂y2
−

(
∂2

∂x2
+ ∂2

∂z2

)]
v + μe

(
∂2

∂x2
+ ∂2

∂z2

)
∂

∂y

(
ρ ′v
ρ

)
+μe

∂3

∂y3

(
ρ ′v
ρ

)
+ 2μ′

e

(
∂2

∂x2
+ ∂2

∂z2

)
ρ ′v
ρ

+ 2μ′
e

∂2

∂y2

(
ρ ′v
ρ

)
+ μ′′

e

∂

∂y

(
ρ ′v
ρ

)}
, (10)
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ρ
∂η

∂t
+ ρU

∂η

∂x
+ ρU ′ ∂v

∂z
= 1

Reτ

[
μe∇2η + μ′

e

∂η

∂y

]
, (11)

in which we have replaced the viscosity of the fluid with the effective viscosity defined in Eq. (2).
The boundary conditions at the solid walls are

vw = 0, v′
w = 0, ηw = 0. (12)

In the following, we assume perturbations of the form

u(x,y,z,t) = û(y,t)eiαx+iβz, (13)

with α and β the streamwise and spanwise wave numbers. Equations (10) and (11) are numerically
discretized using a standard approach based on Chebyshev polynomials (N = 151) collocated on
Gauss-Lobatto nodes [1].

Mean turbulent velocity profiles are known to be linearly stable [13], which applies also to the
ones reported in Fig. 5. Any given perturbation whose evolution is governed by Eqs. (10) and
(11) decays for long enough times. However, the non-normality of the Orr-Sommerfeld-Squire
operator transiently amplifies perturbations over short times [1]. We define an optimal growth
function as the maximum amplification of perturbation kinetic energy over all possible initial
conditions û0,

Ĝ(α,β,t) = max
û0

‖û(t)‖2
E

‖û0‖2
E

, (14)

with ‖ · ‖E denoting the energy norm [36]. The maximum optimal growth is

Gmax(α,β) = max
t>0

Ĝ(α,β,t). (15)

Similarly to the laminar case and in accord with previous studies, which used turbulent base
velocity profiles (see, e.g., [10,11]), we find that the highest maximum optimal growth is obtained
with streamwise-independent (α = 0) velocity streaks and rolls. Curves of Gmax(0,β) for the
complete set of variable property flows considered here are displayed in Fig. 6. Since the focus of this
paper is on buffer layer streaks and on the scaling of the inner peak of Gmax, we chose to normalize
the spanwise wavelength in semilocal units λ�

z = 2πRe�
τ /β, with Re�

τ = Re�
τ (y� = 12). The choice

of the wall-normal location y� = 12 as reference was discussed in Sec. II. Note that λ� ≡ λ+ for
a constant property flow or a flow with a constant semilocal Reynolds-number distribution. The
figure also includes results for constant density and viscosity turbulent channels at higher Reynolds
numbers Reτ = 550,950. Numerical data for Reτ = 950 are taken from the available data set of
Hoyas and Jiménez [37]. Results show the typical double-peak structure, i.e., large- and small-scale
optimal streaks. The outer layer peaks for the constant property cases show the known dependence
on Reτ (the higher the Reτ , the higher the peak), while the inner peak is only marginally affected
by the Reynolds number [11]. The main results in terms of maximum optimal growth and optimal
spanwise wavelength of small-scale streaks are summarized in Table II.

Lines corresponding to cases with similar Re�
τ profiles collapse at the small scales, up to λ�

z ≈
300, thus extending the effectiveness of the parametrization based on semilocal quantities to the
study of turbulent flows with variable properties by means of linear theory. The reason behind
the observed behavior is that, as the wave number β increases, ρU ′∂v/∂z dominates in Eq. (11).
This term represents the coupling between Eqs. (10) and (11) and can be rewritten as ρU ′∂v/∂z =√

ρU ′∂
√

ρv/∂z = U ′
vD∂

√
ρv/∂z. Here UvD is the mean van Driest velocity, which is similar for flow

cases with similar Re�
τ profiles. The same applies for

√
ρv, which is consistent with the semilocal

scaling for the velocity. The optimal spanwise wavelength of the streaks corresponding to the inner
peak of Gmax also scales in semilocal units and is approximately constant to λ�

z,opt ≈ 80–93 for
all cases, regardless of the specific property distributions across the channel. In terms of classical
viscous units, the optimal values are scattered on a significantly larger range, λ+

z,opt ≈ 70–160. The
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FIG. 6. Maximum optimal growth function for the flow cases of Table I. Results for constant property
flow at Reτ = 550,950 are also included. Data for Reτ = 950 are taken from the available database by
Hoyas and Jiménez [37]. Lines and symbols (same as in Fig. 1) correspond to constant and variable density
cases, respectively. The spanwise wavelength is scaled in semilocal units as λ�

z = 2πRe�
τ /β. The shaded area

demarcates the range of maximum and minimum values of λ�
z,opt for the investigated flow cases. Panels on the

right magnify the regions near the peaks of Gmax and show the difference between semilocal (top two) and
classical inner scaling (bottom two).

cases GL and SRe�
τ GL display the largest discrepancies in terms of similar Gmax profiles at small

wavelengths of λ�
z,opt, if compared to the other three pairs of flow cases. This is due to the low

semilocal Reynolds number reached at the centerline, h� = 142 and h� = 152, respectively, that is
at the limit of the applicability of the adopted linearized framework, which was originally proposed
for moderate to high friction Reynolds numbers [10,11]. The low values of h� attained by the cases
GL and SRe�

τ GL also result in a scale separation that is not as large as for the other cases considered.
The consequence is that the inner peak of Gmax can emerge only on a limited range of scales (or
wave numbers) and is influenced by the large scales. A linear growth analysis of a constant property
flow at Reτ = 150 using the customary eddy viscosity model of Cess [12] (see, e.g., [10,11,13]) does

TABLE II. Characteristics of the inner peak of the maximum optimal growth functions in Fig. 6.

Case Gmax βopt λ�
z,opt λ+

z,opt

CP 3.393 28.41 87.36 87.36
CRe�

τ 3.388 28.03 88.56 88.56
550CP 3.247 41.02 84.24 84.24
950CP 3.308 74.17 80.48 80.48
Cν 2.936 32.74 87.41 75.79
SRe�

τ Cν 2.977 31.77 90.85 78.13
LL 2.689 35.30 92.60 70.31
SRe�

τ LL 2.655 34.76 92.44 71.40
GL 6.582 15.21 81.54 158.00
SRe�

τ GL 6.413 15.71 81.39 163.18

113903-10



LINEAR STABILITY OF BUFFER LAYER STREAKS IN . . .

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

(b)

FIG. 7. Optimal initial velocity profiles calculated for λ�
z,opt. Profiles are normalized by their peak values.

not show the inner peak of Gmax at all (not shown here) due to the low value of the eddy viscosity.
The fact that Re�

τ approaches 140–150 only in the central part of the domain is the reason why a
“turbulent” effect, which manifests itself in terms of an inner peak of Gmax, is still visible near the
walls, however not entirely distinct from the the peak at λz = 4h.

A further remarkable feature of the results in Fig. 6 and Table II is that variable flows with
Re�

τ gradients modulate the maximum optimal growth of the small-scale streaks, which does not
depend on Reτ for constant property flows. While Gmax(0,λ�

z,opt) for the case CRe�
τ is similar

to the value for a constant property flow, Gmax(0,λ�
z,opt) decreases if Re�

τ increases away from
the walls and the effect is proportional to the Re�

τ gradients. The opposite occurs for decreasing
Re�

τ . In this case, the significantly higher maximum optimal growth for cases GL and SRe�
τ GL

is a combination of the variable Re�
τ and low-Reynolds-number effect. As previously discussed,

the small-scale separation prevents the emergence of an inner peak that is independent from the
outer one, hence its value is strongly influenced by the optimal growth sustained at the large
scales. The qualitative effect inferred from Fig. 6 provides a justification for the strengthening of
streaks for gaslike distributions of Re�

τ and weakening for liquidlike cases previously reported in the
literature [32].

The optimal initial streamwise and wall-normal velocity profiles corresponding to the inner peak
of the optimal growth function are shown in Fig. 7. Results are weighted by the local square root of
the density in order to be consistent with the semilocal scaling framework and normalized by their
maxima. Overall, cases with similar Re�

τ have similar optimal velocity profiles
√

ρuopt and
√

ρvopt.
The wall-normal location of the maximum velocity peaks only weakly depends on properties and
occurs at y� ≈ 8–10 for u and at y� ≈ 12–14 for v, similar to observations by Pujals et al. [11].

V. CRITICAL CONDITIONS FOR SECONDARY INSTABILITY

In this section we aim to explain the modified stability of buffer layer streaks in the case of a
nonconstant semilocal Reynolds number across the channel, which was assessed in Sec. II in terms
of the modulated intensity of ejection events (see Fig. 3). Hence, we investigate thresholds for the
onset of secondary instabilities of the linear optimal streaks. Motivated by the similar characteristics
displayed by optimal streaks for cases with similar semilocal Reynolds number discussed in Sec. IV,
we now restrict our analysis to constant density flows only, namely, to the cases CP, LL, and SRe�

τ GL
(see Table I).
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The equations governing the evolution of small perturbations to a streamwise-independent two-
dimensional base flow U = U(y,z) are

−iω∇2v + U∇2vx + Uzzvx + 2Uzvxz − Uyyvx − 2Uzwxy − 2Uyzwx

= 1

Re
[μe∇4v + 2μ′

e∇2vy + μ′′
e (vyy − vxx − vzz)], (16)

− iωη + Uηx − Uzvy + Uyzv + Uyvz + Uzzw = 1

Re
[μe∇2η + μ′

eηy], (17)

where the centerline velocity has been used as the reference and the subscripts indicate partial
derivatives with respect to the spatial coordinates. Note that the left-hand sides of Eqs. (16) and
(17) are the same as for a constant property flow [1] and that the right-hand sides are the same
as Eqs. (10) and (11). The viscosity is given by Eq. (2). The reference base flow is the sum of
the turbulent mean velocity profile and the nonlinearly saturated optimal streaks. Linear optimal
perturbations at βopt with finite amplitudes were advanced in time using a fully nonlinear DNS code
until the flow reached the maximum perturbation kinetic energy. We performed simulations using
the spectral code SIMSON [38], keeping a fixed base flow (the mean turbulent velocity profile) and
advancing the perturbation field only with an imposed eddy viscosity profile on a π × 2 × 2π/βopt

box discretized with 48 × 151 × 48 Fourier-Chebyshev-Fourier modes (see [39] for further details
on the DNS setup). The two-dimensional flow field corresponding to the time at which the energy
amplification of the initial perturbation is largest is used as the condition about which Eqs. (16) and
(17) are linearized. The base flow is decomposed into its Fourier modes as

U(y,z) = Re

{
U0 + 2

24∑
k=1

Uk(y)eikβz

}
. (18)

The wall-normal velocity and vorticity have the general form

v(x,y,z) =
m∑

k1=−m

ṽk1 (y,t)e(ik1β+γ )z+iαx−iωt , (19)

η(x,y,z) =
m∑

k1=−m

η̃k1 (y,t)e(ik1β+γ )z+iαx−iωt , (20)

with γ the Floquet detuning constant, ω = ωr + ωii the complex eigenvalue, and the spanwise wave
number taken as the one corresponding to the optimal streaks calculated in Sec. IV, β = βopt. We
used Nmod = 151 Chebyshev modes in the wall-normal direction and m = 8 for the expansion of
the secondary modes. The effect of increasing this number is negligible on the results. We restrict
our attention to the fundamental mode of instability, γ = 0. We have numerically verified that, for a
given set of parameters (Re�

τ , α, and β), increasing γ dampens the critical eigenvalue, hence γ = 0
provides the most relevant threshold for secondary instability.

In Table III we report the critical parameters for the onset of the secondary instability, namely,
the streak amplitude A = [max(u) − min(u)]/[2 max(U )], the maximum wall-normal vorticity in
semilocal units ��

y = maxy,z(∂u+/∂z�), the streamwise wave number α, the streamwise wavelength
in semilocal and wall units λ�

x (using Re�
τ at y� = 12) and λ+

x , and the phase velocity of the critical
mode of instability c+ = (ωr,cr/αcr)/uτ . Figure 8 depicts the imaginary part of the eigenvalue that is
first destabilized as a function of the streamwise wavelength. Results are shown for the CP, 550CP,
950CP, LL, and SRe�

τ GL cases.
Inspection of Table III reveals that the critical streak amplitude for secondary instability is not

significantly affected by property gradients across the channel. Differences with respect to the
constant property case at the same friction Reynolds number are small, −1.35% for SRe�

τ GL and
+1.87% for SRe�

τ LL, while the critical streak amplitude for 550CP and 950CP drops by −3.8%
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TABLE III. Critical quantities for the secondary instability: streaks amplitude A, maximum local wall-
normal vorticity ��

y , streamwise wave number α, streamwise wavelength in semilocal and wall units λ�
x and

λ+
x , and phase velocity c+

cr = (ωr,cr/αcr)/uτ .

Case Acr ��
y,cr αcr λ�

x,cr λ+
x,cr c+

cr

CP 28.91 0.5359 10.91 228 228 9.49
550CP 27.81 0.5365 15.24 227 227 9.46
950CP 25.77 0.5435 27.14 220 220 9.41
SRe�

τ GL 28.52 0.6027 5.61 221 443 12.17
LL 29.45 0.4938 13.78 237 180 8.75

and −10.9%, respectively. On the other hand, the maximum value of local wall-normal vorticity
��

y changes considerably for the variable property cases with Re�
τ gradients. This quantity is an

indication of the spanwise shear and deformation of the two-dimensional base flow. At a comparable
streak amplitude, less wall-normal vorticity is needed to destabilize the streaks if Re�

τ increases
away from the walls. The opposite occurs in the case in which Re�

τ decreases. Compared to case
CP, ��

y,cr reduces by −7.9% for the case LL and increases by +12.5% for the case SRe�
τ GL, while

it is nearly unchanged for constant property flows at higher Reynolds number (differences are less
than 1.5%). The mechanism responsible for changes in the wall-normal vorticity can be discussed
in light of the results presented in Sec. IV. The analysis of the growth function showed that the
streamwise spacing of optimal streaks λ�

z is approximately the same, while streaks exhibit a smaller
perturbation kinetic energy amplification if Re�

τ increases away from the walls. The result is a
weaker streamwise perturbation velocity component for saturated streaks that naturally reduces the
spanwise shear ∂u+/∂z�, and in turn the wall-normal vorticity, of the inflectional two-dimensional
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FIG. 8. Streamwise wavelength dependence of the imaginary part of the critical mode of secondary
instability. Lengths are expressed in semilocal units using the reference Re�

τ at y� = 12 (top) and in classical
inner units (bottom). The critical conditions reported in Table III correspond to the maximum of each curve.
The shaded area indicates the range of values encompassing λ�

x,cr for all cases considered.
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FIG. 9. Wall-normal profiles of mean turbulent velocity U+ (solid) and of streamwise convection velocity
C+

u (dashed) in wall units. Here C+
u is defined as in [43]. The horizontal dotted lines indicate the phase velocity

of the critical mode.

velocity profile U(y,z) that undergoes the instability. Similar reasoning can be used to analyze the
cases with decreasing Re�

τ away from the walls. This modulating effect can be interpreted in relation
to the discussion of the modified ejection events of Sec. II (see Fig. 3), which become stronger for
the turbulent flow cases LL and SRe�

τ LL compared to CP and weaker for GL and SRe�
τ GL. Patel

et al.[33] showed that the root-mean-square vorticity fluctuations in turbulent channels with variable
properties scale in semilocal units, (ω̂�

y)rms, such that flows with constant, liquidlike, and gaslike
behavior of Re�

τ are characterized by similar profiles of (ω̂�
y)rms between y� = 9 and y� = 100.

The consequence of having similar levels of wall-normal vorticity and a lower critical threshold
for the case LL, compared to CP, is the occurrence of stronger bursts of the streaks. The opposite
mechanism motivates the weaker ejections observed for GL and SRe�

τ GL.
The critical wavelength of the secondary mode scales in semilocal units and attains values λ�

x,cr ≈
220–237 for all cases considered. This critical value is consistent with relevant characteristic lengths
previously found by other authors studying fully turbulent flows. From a physical point of view,
secondary instabilities of streaks are strongly connected to the generation of wall-normal velocity
fluctuations and to quasistreamwise vortices that modulate the streaks streamwise oscillations.
Jiménez et al. [40] showed that in the near-wall region most of the spectrum of the vertical velocity
is concentrated into structures of length λ+

x ≈ 300. Further investigation of vortex clustering in the
logarithmic region of turbulent channels [41] provided a lower limit for the centerline of the attached
clusters to y+ ≈ 25, whose streamwise extent is λ+

x ≈ 200. The value of λ�
x,cr calculated here is

closely related to the minimum box size needed for instabilities to develop and to have sustained
turbulence, L+

x,min ≈ 250–350 [42].
Interestingly, we find that the critical mode of secondary instability provides a reasonably good

estimate of the convection speed of the flow in the near-wall region. Figure 9 shows the mean
streamwise velocity profiles for cases CP, LL, and SRe�

τ GL together with their convection speeds
calculated following the procedure of del Álamo and Jiménez [43]. Horizontal lines indicate the
phase velocity of the critical mode calculated by the linearized theory, whose values are summarized
in Table III. In the logarithmic region, the convection velocity follows the mean velocity, while its
profile departs from the latter and flattens out near the wall (y� < 10). The constant value approached
in this region is closely approximated by the phase velocity of the critical mode, suggesting that most
of the coherent streamwise propagation of information is captured by the instability mode. Notably,
our linearized approach additionally captures the modulating effect of variable viscosity that result
in respectively higher and lower convection speed if Re�

τ decreases or increases away from the walls.
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VI. CONCLUSION

We have used the framework of the linearized Navier-Stokes equations to investigate the stability
of turbulent flows in channels with temperature-dependent density and viscosity. Mean profiles of
fluid properties and eddy viscosity were taken from DNSs [32] and used to calculate the effective
viscosity coefficient and the base velocity profile from the one-dimensional momentum balance,
adopting the same methodology as previous studies, e.g., [10,11]. We have shown that the semilocal
scaling not only applies to the analysis of fully turbulent flows, but additionally provides an effective
parametrization of the effect of variable properties on optimal streaks and their critical mode of
secondary instability calculated using the linear theory. We also presented linear stability results
that serve as arguments to explain the modulating effect of temperature-dependent properties on the
intensity and stability of buffer layer streaks observed in DNSs.

A transient growth analysis on the mean turbulent profiles has shown that optimal streaks
corresponding to the inner peak of the growth function scale in semilocal units to an approximately
constant wavelength λ�

z,opt ≈ 90 for both constant and variable property cases. Furthermore, flow
cases with different property distributions, but similar semilocal Reynolds number Re�

τ , display a
collapse of their growth function at small scales λ�

z < 300 and of their optimal velocity profiles
expressed in semilocal distance from the wall. The modulating effect of increasing or decreasing
Re�

τ across the channel appears in a modification of the maximum growth attained by the optimal
streaks. In contrast to flows with constant Re�

τ profiles, for which the value of the growth function
corresponding to the inner peak is independent of Reτ , the energy amplification is reduced if Re�

τ

increases away from the wall, while it increases if Re�
τ decreases away from the wall. This is

consistent with the modulation of the strength of buffer layer streaks observed in DNSs.
An investigation of the stability of a two-dimensional base flow consisting of the turbulent

mean velocity profile and the perturbation field of nonlinearly saturated optimal streaks of finite
amplitude has revealed that the critical wavelength of streamwise instability scales in semilocal
units to λ�

x ≈ 230 for all cases considered. We quantified the effect of nonuniform Re�
τ caused by

variable viscosity on the critical threshold of base flow deformation in order to trigger secondary
instability. If Re�

τ increases away from the walls, the threshold of spanwise shear deformation is
significantly lower than the value for constant property flows in the range Reτ = 395–950, which
is approximately constant. In view of this modified threshold, buffer layer streaks in a turbulent
channel with increasing semilocal Reynolds number towards the centerline can be regarded as less
stable, thus explaining the more intense ejection events observed in DNSs of such flows. Opposite
conclusions are drawn for a decreasing distribution of Re�

τ . Finally, we have shown that the phase
velocity of the critical mode of secondary instability provides a good estimate of the convection
velocity in the near-wall region for both constant and variable viscosity cases.
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