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Abstract: Methods for testing and analyzing agent-basedmodels have drawn increasing attention in the litera-
ture, in thecontextof e�orts toestablish standard frameworks for thedevelopmentanddocumentationofmod-
els. This process can benefit from the use of established so�ware environments for data analysis and visualiza-
tion. For instance, the popular NetLogo agent-based modelling so�ware can be interfaced with Mathematica
and R, letting modellers use the advanced analysis capabilities available in these programming languages. To
extend these capabilities to anadditional user base, this paper presents thepyNetLogo connector, which allows
NetLogo to be controlled from the Python general-purpose programming language. Given Python’s increasing
popularity for scientific computing, this provides additional flexibility for modellers and analysts. PyNetLogo’s
features are demonstrated by controlling one of NetLogo’s example models from an interactive Python envi-
ronment, then performing a global sensitivity analysis with parallel processing.

Keywords: Agent-Based Modelling, NetLogo, Python

Introduction

1.1 Agent-basedmodels (ABMs) are awell-establishedmethod for the study of complex adaptive systems, in which
the interactions of heterogeneous entities yield emergent large-scale behaviors. As such, this approach has
been applied across a wide variety of fields such as economics, ecology, or socio-technical systems (e.g. Tesfat-
sion & Judd 2006; Grimm & Railsback 2012; Nikolic et al. 2013).

1.2 However, the computational nature of ABMs can make them more di�icult to understand and communicate
than analytical models (Grimm et al. 2006). Without the use of standard frameworks to structure their analysis
and documentation, ABMs may yield ad hoc, poorly reproducible results (Thiele 2015). Di�erent initiatives are
attempting to address this gap, such as the ODD and TRACE protocols for documentation (Grimm et al. 2006;
Schmolke et al. 2010).

1.3 In practice, these documentation protocols are easier to applywhen supportedby suitable computational tools
– for instance to generate experimental designs for uncertain inputs, visualize output data, or apply standard
statistical methods. While many agent-based modelling platforms include basic analysis tools, these are typ-
ically not su�icient to meet the requirements of a comprehensive analysis and documentation process. Con-
versely, using standalone analysis so�ware to process input and output data files can quickly becomeunwieldy
for complex models – making the analysis workflowmore di�icult to reproduce.

1.4 The literature therefore presents di�erent connectors to directly interface agent-basedmodelling so�warewith
analysis environments. In particular, the popular open-source NetLogo modelling so�ware can be linked at
runtime with Mathematica (Bakshy & Wilensky 2007) and R (Thiele et al. 2012), which allows modellers to use
the comprehensive analysis and visualization functionalities available in these programming languages.

1.5 As a complement to these connectors, thiswork introduces the pyNetLogo library, which can be used to control
NetLogo through the Python programming language. Python is a general-purpose language which is consis-
tently ranked as one of the five most popular languages on the TIOBE Programming Community index (TIOBE
2017); it is increasingly used for scientific computing, and o�ers a variety of libraries which can support ABM
development and testing. It should be emphasized that pyNetLogo is not intended as a replacement for the
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existing R and Mathematica connectors, or as a comment on the suitability of these various environments for
ABM analysis. However, given the popularity of the Python language, pyNetLogo extends the benefits of a spe-
cialized analysis environment to a broader audience.

1.6 The following section of this paper describes the di�erent so�ware platforms used in this work. A so�ware
implementation section then introduces pyNetLogo and its key features, and illustrates these mechanisms for
a simple predator-prey model. As an example of the analysis workflow which is enabled by pyNetLogo, this
model is controlled interactively from a Python environment, then tested using a global sensitivity analysis.

So�ware Description

NetLogo

2.1 NetLogo (Wilensky 1999) is an open-source environment for the design and testing of agent-based models.
While NetLogowas initially intended as an educational tool, its ease of use, robust performance and active user
community have made it a pragmatic choice for a wide range of research applications (Kravari & Bassiliades
2015; Railsback et al. 2006). It has therefore established itself as a leading platform for agent-based modelling
(Thiele 2015).

2.2 NetLogo is primarily implemented in Java and Scala, and includes a range of functions andmethods to support
the rapiddevelopmentof spatially-explicit agent-basedmodels. Railsbacket al. (2017) furtherdiscuss strategies
and techniques to improve the performance of more complex NetLogo models. In addition to connectors for
Mathematica and R, di�erent extension modules are available, for instance to interface NetLogo models with
GIS datasets. In particular, an extension for Python (Head 2017) o�ers a converse functionality to the pyNetLogo
connector, by allowing Python code to be executed from a NetLogomodel.

Python

2.3 Python is a widely used high-level, general-purpose open source programming language that supports various
programming paradigms. Python places a strong emphasis on code readability and code expressiveness. A
large collection of libraries formany typical programming tasks is readily available. Python is increasingly pop-
ular for scientific computing purposes due to the rapidly expanding scientific computing ecosystem available
for Python.

2.4 This ecosystem includes NumPy (Walt et al. 2011) and pandas (McKinney 2010) for data manipulation, SciPy
(Jones et al. 2001) for general numerical tasks, Matplotlib (Hunter 2007) for plotting and visualization, as well
as Jupyter and IPython (Pérez & Granger 2007) for interactive analysis. These libraries are pre-packaged in
several scientific distributions for Python, such as Continuum Anaconda. Additional libraries can be installed
through standard package managers such as pip and conda.

2.5 Python is o�en used as a “glue”Ãĺ language, meaning that it connects pieces of so�ware written in di�erent
languages together into abigger application. For instance, the JPype library (Menard&Nell 2014) canbeused to
access Java class libraries through interfacing the Python interpreter and the Java Virtual Machine. PyNetLogo
therefore relies on JPype for interacting with NetLogo.

So�ware Implementation

3.1 This section first describes basic interactions between the Python environment and aNetLogomodel, using the
pyNetLogo connector. These interactions are demonstrated using the simple wolf-sheep predation example
which is available in NetLogo’s model library. This functionality is then extended to illustrate a typical model
analysisworkflow, using theSALibPython library (Herman&Usher2017) toperformaglobal sensitivity analysis.

3.2 Themodel files used for theseexamples areavailable fromthepyNetLogo repository athttps://github.com/
quaquel/pyNetLogo, alongwith interactive Jupyter notebookswhich replicate the analysis and visualizations
presented in this paper. Detailed documentation and installation notes for pyNetLogo are provided at http:
//pynetlogo.readthedocs.io. The pyNetLogo connector can be installed using the pip package manager,
using the following command from a terminal or command prompt:
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pip i n s t a l l pyNetLogo

3.3 The pyNetLogo connector has been tested with NetLogo 5.2, 5.3 and 6.0 using the 64-bit Continuum Anaconda
2.7 and 3.6 Python distributions. Using these distributions, pyNetLogo requires the additional installation of
JPype (available through the conda package manager). The pyNetLogo connector is currently also included
in the Exploratory Modeling Workbench Python package (Kwakkel 2017), which o�ers support for experiment
design and exploratory modeling and analysis.

Controlling NetLogo through Python with pyNetLogo

3.4 The pyNetLogo package is composed of a Python module (core.py) and a Java JAR file (netlogolink.jar). The
Python module defines a NetLogoLink class; an instance of this class is used to handle interactions on the
Python side. The Python and Java environments are linked with the JPype package through the Java Native
Interface (JNI). On the Java side, the JAR file provides a corresponding NetLogoLink Java class in two versions,
for NetLogo 5.x and 6.0. An instance of the appropriate Java class in turn communicates with the NetLogo API.
This allows for bidirectional data exchanges between a Python environment (which can for instance be an in-
teractive Jupyter notebook) and a NetLogomodel at runtime, with appropriate data type conversions between
the two environments.

Figure 1: Interactions between Python and NetLogo.

3.5 Table 1 summarizes the basic methods available through the NetLogoLink Python class. These are intended
to provide “building blocks” for the interactive analysis of NetLogo models with Python, and largely replicate
the basic capabilities of the RNetLogo connector for the R environment (Thiele et al. 2012). Further details are
provided at http://pynetlogo.readthedocs.io.
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Name Description Arguments Returns

load_model() Load a NetLogo
model file

Model path (string) -

kill_workspace() Close the NetLogo in-
stance

- -

command() Execute a given com-
mand in the NetLogo
environment

Valid NetLogo com-
mand (string)

-

report() Return the value of a
NetLogo reporter

Valid NetLogo re-
porter (string)

Reported value, con-
verted to appropriate
Python data type

patch_report() Return values for an
attribute of the NetL-
ogo patches

Valid NetLogo patch
attribute (string)

pandas DataFrame
of patch attribute
values, with col-
umn labels and
row indices follow-
ing NetLogo patch
coordinates

patch_set() Set NetLogo patch at-
tributes from a pan-
das DataFrame

- Valid NetLogo patch
attribute (string)

-

- pandas DataFrame
with same dimen-
sions as the NetLogo
world, containing
attribute values to be
set

repeat_command() Execute a given com-
mand a number of
times in the NetLogo
environment

- Valid NetLogo com-
mand (string) - Num-
ber of repetitions (in-
teger)

-

repeat_report() Return the values of
one or multiple NetL-
ogo reporters over a
given number of ticks

- Valid NetLogo re-
porter (string or list of
strings)

pandas DataFrame of
reported values with
columns for each
reporter, indexed by
NetLogo ticks

- Number of repeti-
tions (integer)
- NetLogo command
used to execute the
model (string, ‘go’ by
default)

write_NetLogo_attriblist() Update a set of
NetLogo agents of
the same type with
multiple attributes

- pandas DataFrame
containing attribute
values to be set,
indexed by agent

-

- Valid NetLogo agent
breed (string)

Table 1: Basic methods for the NetLogoLink Python class.

3.6 To illustrate the functionality of pyNetLogo, a simple example follows below, using the wolf-sheep predation
model which is included in the NetLogo 6.0 example library. The Jupyter notebook available from the pyNetL-
ogo repository replicates this example and demonstrates the keymethods of the pyNetLogo connector inmore
detail, using a slightly modified version of the model to test a broader range of data types.

3.7 First, a link to NetLogo is instantiated. This involves starting a Java VM, followed by starting NetLogo. All inter-
actions with NetLogo are handled by an instance of the NetLogoLink class. Note that when using Linux, the
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NetLogoLink class requires the netlogo_home and netlogo_versionparameters to be setmanually. If these
parameters are not set on Mac or Windows, the class will attempt to identify and use the most recent NetLogo
version found in the default program directory.

3.8 Next, we can loadamodel using theload_modelmethod, followedbybasic commands to set up themodel and
run it for 100 ticks. The report method is then used to return NumPy arrays to Python, containing the NetLogo
coordinates of the “sheep” agents, and the energy attribute of the “sheep” and “wolf” agents. These arrays
can then for instance be used with conventional Python functions to plot the coordinates of the agents, or the
distribution of energy across agents (Figure 2).

import pyNetLogo

net logo = pyNetLogo . NetLogoLink ( gu i = True ) #Show NetLogo GUI
net logo . load_model ( r ’ Wol f Sheep Predat ion . nlogo ’ )
ne t logo . command ( ’ setup ’ )

ne t logo . repeat_command ( ’ go ’ , 100 )

x = net logo . r epo r t ( ’map [ s −> [ xcor ] o f s ] s o r t sheep ’ )
y = net logo . r epo r t ( ’map [ s −> [ ycor ] o f s ] s o r t sheep ’ )
energy_sheep = net logo . r epo r t ( ’map [ s −> [ energy ] o f s ] s o r t sheep ’ )
energy_wolves = net logo . r epo r t ( ’map [w −> [ energy ] o f w] s o r t wolves ’ )

Figure 2: Basic plots generated inPython: agent coordinates (le�); distributionof energy attribute across agents
(right).

3.9 Building on this functionality, the repeat_report method returns a pandas DataFrame containing reported
values over a given number of ticks, for one or multiple NetLogo reporters. The DataFrame is structured using
columns for each reporter, and indexed by NetLogo ticks. By default, this assumes the model is executed with
the NetLogo go command; this command can be changed by specifying an optional go argument when calling
the method.

3.10 In this case, we can first track the count of both agent types over 200 ticks. The outcomes are first plotted as a
function of time on the le� panel of Figure 3. On the right panel, the number of sheep agents is then plotted as
a function of the number of wolf agents, to approximate a phase-space plot.

3.11 The repeat_reportmethod can also be usedwith reporters that return a NetLogo list. In this case, the list will
be converted into a NumPy array, which is formatted according to the data type returned by the reporter (i.e.
numerical or string data).

counts = net logo . r epea t _ r epo r t ( [ ’ count wolves ’ , ’ count sheep ’ ] , 200 , go = ’ go ’ )
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Figure 3: Python plots using repeat_report method: number of agents as a function of time (le�); number of
sheep agents as a function of wolf agents (right).

3.12 In addition to these reporting methods, the patch_reportmethod can be used to return a DataFrame which
contains a given patch attribute (in this case, the countdown attribute):

patch_df = net logo . pa tch_ repor t ( ’ countdown ’ )

3.13 This DataFrame (visualized in Figure 4) essentially replicates the NetLogo environment, with column labels cor-
responding to the pxcor patch coordinates, row indices following the pycor coordinates, and values from the
specified patch attribute. The DataFrames can bemanipulatedwith any of the existing pandas functions, for in-
stancebyexporting toanExcel file. Thepatch_setmethodprovides the inverse functionality topatch_report,
and updates the NetLogo environment from a DataFrame.

Figure 4: Python plot using patch_report method: distribution of the countdown patch attribute across the
NetLogo environment.

Using Python for global sensitivity analysis on a NetLogomodel

3.14 The Python environment enables access to a wide variety of packages to support the development and anal-
ysis of NetLogo models. As an example, this subsection uses the SALib Python library for a global sensitivity
analysis (GSA) on the wolf-sheep predation model presented earlier. The full code used for the analysis and
visualizations can be found in the Jupyter notebook available from the pyNetLogo repository.

3.15 By contrast to “one-at-a-time” sensitivity analysis, which evaluates the response of a model to changes in indi-
vidual parameters, GSA aims to capture the behavior of the model across the full domain of uncertain inputs
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(see e.g. Saltelli et al. 2008 for a comprehensive overview). This is especially useful for models in which inter-
actions between parameters can be expected to be significant. A simple example of GSA would be generating
a Monte Carlo sample of all uncertain inputs, then applying a multiple linear regression to the model output.

3.16 For more complex, non-linear models, variance-based approaches such as Sobol indices (Sobol’ 1993) can ac-
curately capture each parameter’s contribution to the variance of model output. Sobol indices are computed
using variance decomposition; first-order and total indices respectively estimate the fractional contribution of
each input to output variance on its own, and inclusive of interactions with other inputs. Second-order indices
can also be computed to estimate the contribution of pairwise variable interactions towards output variance.
However, this type of variance-based analysis requires specific techniques for input sampling and output anal-
ysis.

3.17 In this context, the SALib library provides sampling and analysis modules for methods including Sobol indices,
Morris elementary e�ects (Campolongo et al. 2007; Morris 1991), and derivative-based global sensitivity mea-
sures (Sobol’ & Kucherenko 2009). Integrating these methods within a NetLogo workflow significantly extends
the functionality of NetLogo’s BehaviorSpace tool, which has limited sampling options. This example will use
SALib to estimate Sobol indices; although these indices accurately represent input importance, their calcula-
tion may require a large input sample size to yield stable results. For complex models which may be too time-
consuming to simulate over such an ensemble of experiments, the Morris elementary e�ects technique can
instead be used from SALib to “screen” non-influential variables at a smaller sample size, while still account-
ing for parameter interactions and non-linearities which may bemissed by a “one-at-a-time” approach. Ayllón
et al. (2016) describe an application of this method for a complex NetLogomodel.

3.18 SALib relies on a problem definition dictionary (i.e., a key-value map), which contains the number of input pa-
rameters to sample, their names (which shouldhere correspond toaNetLogoglobal variable), and the sampling
bounds:

problem = {
’ num_vars ’ : 6 ,
’ names ’ : [ ’ random−seed ’ , ’ g rass−regrowth−time ’ , ’ sheep−gain−from−food ’ ,

’ wolf−gain−from−food ’ , ’ sheep−reproduce ’ , ’ wolf−reproduce ’ ] ,
’ bounds ’ : [ [ 1 , 100000] , [ 2 0 . , 4 0 . ] , [ 2 . , 8 . ] ,

[ 1 6 . , 3 2 . ] , [ 2 . , 8 . ] , [ 2 . , 8 . ] ]
}

3.19 The SALib sampler will then generate an appropriate experimental design based on the analysis technique to
be used. To calculate first-order, second-order and total Sobol sensitivity indices, this gives a sample size of
n(2p + 2), where p is the number of input parameters, and n is a baseline sample size which should be large
enough to stabilize the estimation of the indices.

3.20 For this example, we use n = 1000, for a total of 14000 experiments. The next subsection will demonstrate the
use of ipyparallel to parallelize the simulations and reduce runtime.

from SALib . sample import s a l t e l l i
from SALib . ana lyze import sobol

n = 1000
# Generates an input a r r a y o f shape ( n ∗ ( 2 p +2 ) , p ) wi th rows f o r each
# exper iment and columns f o r each input
param_values = s a l t e l l i . sample ( problem , n , ca l c_second_order =True )

3.21 Assuming we are interested in the mean number of sheep and wolf agents over a timeframe of 100 ticks, we
first create an empty DataFrame to store the results. We then simulate the model over the 14000 experiments,
by reading input parameters from the param_values array generated by SALib and using the repeat_report
method to track the outcomes of interest over time.

r e s u l t s = pd . DataFrame ( columns = [ ’ Avg . sheep ’ , ’ Avg . wolves ’ ] )

f o r run in range ( param_values . shape [ 0 ] ) :
# Set the input parameters
f o r i , name in enumerate ( problem [ ’ names ’ ] ) :

i f name == ’ random−seed ’ :
# The NetLogo random seed r equ i r e s a d i f f e r e n t syn tax
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net logo . command ( ’ random−seed { } ’ . format ( param_values [
run , i ] ) )

e l s e :
# Otherwise , assume the input parameters
# are g l oba l v a r i a b l e s
net logo . command ( ’ s e t { 0 } { 1 } ’ . format
( name , param_values [ run , i ] ) )

ne t logo . command ( ’ setup ’ )
# Run f o r 100 t i c k s and re tu rn the number o f sheep and wol f agents at
# each time step
counts = net logo . r epea t _ r epo r t ( [ ’ count sheep ’ , ’ count wolves ’ ] , 1 00 )

# For each run , save the mean va lue o f the agent counts over t ime
r e s u l t s . l o c [ run , ’ Avg . sheep ’ ] = counts [ ’ count sheep ’ ] . va lues . mean ( )
r e s u l t s . l o c [ run , ’ Avg . wolves ’ ] = counts [ ’ count wolves ’ ] . va lues . mean ( )

3.22 Wecan thenproceedwith theanalysis, first usingahistogramtovisualizeoutputdistributions for eachoutcome
as shown in Figure 5.

Figure 5: Output distributions for the average number of sheep agents (le�) and wolf agents (right) over 100
ticks.

3.23 Bivariate scatter plots can be useful to visualize relationships between each input parameter and the outputs.
Taking the outcome for the average sheep count as an example, we obtain Figure 6, using SciPy to calculate the
Pearson correlation coe�icient (r) for each parameter. This indicates a positive correlation between the sheep-
gain-from-foodparameter and themean sheepcount, andnegative correlations for thewolf-gain-from-food and
wolf-reproduce parameters.
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Figure 6: Scatter plots with linear trendlines for the average number of sheep agents as a function of each input
parameter.

3.24 We can use SALib to calculate first-order (S1), second-order (S2) and total (ST) Sobol indices, to estimate each
input’s contribution to the variance of the average sheep count. By default, 95% confidence intervals are also
estimated for each index. The analysis function returns a Python dictionary.

S i = sobol . ana lyze ( problem , r e s u l t s [ ’ Avg . sheep ’ ] . va lues , ca l c_second_order =True )

3.25 As a simple example, Figure 7 visualizes the first-order and total indices and their confidence bounds (shown
as error bars) using the default pandas plotting functions, a�er converting the dictionary returned by SALib to
a DataFrame:

Figure 7: First-order and total Sobol indices with confidence bounds, for the average number of sheep agents.
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3.26 The sheep-gain-from-food parameter has the highest S1 and ST indices, indicating that it contributes roughly
40%ofoutput varianceon its own, andover 50%whenaccounting for interactionswithotherparameters. How-
ever, the first-order confidence bounds are overly broad due to the relatively small n value used for sampling
(i.e. 1000), so that a larger sample would be required for reliable results.

3.27 We can use a more sophisticated visualization to include the second-order pairwise interactions between in-
puts, shown in Figure 8. The size of the ST and S1 circles correspond to the normalized total and first-order
indices, and thewidth of connecting lines between variables indicates the relative importance of their pairwise
interactions on output variance.

Figure 8: First-order, second-order and total Sobol indices for the average number of sheep agents.

3.28 In this case, the sheep-gain-from-food variable has strong interactions with the wolf-gain-from-food and wolf-
reproduce inputs in particular, as indicated by their thicker connecting lines.

Using ipyparallel for parallel simulation

3.29 ipyparallel is a standalone package (available through the conda package manager) which can be used to in-
teractively run parallel tasks from IPython on a single PC, but also on multiple computers. On machines with
multiple cores, this can significantly improve performance: for instance, the multiple simulations required for
a sensitivity analysis are easy to run in parallel. This subsection will repeat the global sensitivity analysis pre-
sented in the previous subsection, this timeusing ipyparallel to distribute the simulations acrossmultiple cores
on a single computer. The code fragments assume the analysis is executed from a Jupyter notebook; as with
the previous examples, the full notebook is available from the pyNetLogo repository.

3.30 ipyparallel first requires starting a controller andmultiple engines, which can be done from a terminal or com-
mand prompt with the following:

i p c l u s t e r s t a r t −n 4

3.31 The optional−n argument specifies the number of processes to start (4 in this case). By default, the number of
logical processor cores will be used.

3.32 Next, we can connect the interactive notebook to the cluster by instantiating a client (within a notebook), and
checking that client.ids returns a list of 4 available engines.

import i p y p a r a l l e l

c l i e n t = i p y p a r a l l e l . C l i e n t ( )
p r i n t ( c l i e n t . i d s )
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3.33 A�er defining the SALib problemdictionary and input sample as in the previous subsection, we can then set up
the engines so that they can run the simulations, using a “direct view” that accesses all engines. We first need
to ensure the engines can access the currentworking directory in order to find theNetLogomodel. We can then
also pass the SALib problem definition dictionary to the engines.

d i r e c t _ v i ew = c l i e n t [ : ]
import os

# Push the cu r r en t working d i r e c t o r y o f the notebook to a
# "cwd" v a r i a b l e on the eng ines tha t can be accessed l a t e r
d i r e c t _ v i ew . push ( d i c t ( cwd=os . getcwd ( ) ) )

# Push the " problem " v a r i a b l e from the notebook to a
# cor respond ing v a r i a b l e on the eng ines
d i r e c t _ v i ew . push ( d i c t ( problem=problem ) )

3.34 The%%px command can be added to a notebook cell to run it in parallel on each of the engines. Here the code
first involves some imports and a change of theworking directory. We then start a link to NetLogo, and load the
example model (assumed to be in the working directory) on each of the engines.

%%px

import os
os . chd i r ( cwd )

import pyNetLogo
import pandas as pd

net logo = pyNetLogo . NetLogoLink ( gu i = Fa l s e )
net logo . load_model ( r ’ Wol f Sheep Predat ion_v6 . nlogo ’ )

3.35 We can then use ipyparallel’s map functionality to run the sampled experiments, now using a “load balanced”
view to automatically handle the scheduling and distribution of the simulations across the engines. This is
useful when simulations may take di�erent amounts of time.

3.36 We first slightlymodify the simulation code used previously, setting up a simulation function that takes a single
experiment (i.e. a vector of input parameters) as an argument, and returns the outcomes of interest in a pandas
Series.

de f run_s imu la t i on ( exper iment ) :

# Set the input parameters
f o r i , name in enumerate ( problem [ ’ names ’ ] ) :

i f name == ’ random−seed ’ :
# The NetLogo random seed r equ i r e s a d i f f e r e n t syn tax
net logo . command ( ’ random−seed { } ’ . format ( exper iment [ i ] ) )

e l s e :
# Otherwise , assume the input parameters are
g l oba l v a r i a b l e s

net logo . command ( ’ s e t { 0 } { 1 } ’ . format ( name ,
exper iment [ i ] ) )

ne t logo . command ( ’ setup ’ )
# Run f o r 100 t i c k s and re tu rn the number o f sheep and wol f agents
at each time

# step
counts = net logo . r epea t _ r epo r t ( [ ’ count sheep ’ , ’ count wolves ’ ] , 1 00 )

r e s u l t s = pd . S e r i e s ( [ counts [ ’ count sheep ’ ] . va lues . mean ( ) ,
counts [ ’ count wolves ’ ] . va lues . mean ( ) ] ,
index = [ ’ Avg . sheep ’ , ’ Avg . wolves ’ ] )
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r e t u rn r e s u l t s

3.37 We then create a load balanced view, and run the simulationwith the view’s map_sync()method. Thismethod
takes a function and a Python sequence as arguments, applies the function to each element of the sequence,
and returns results once all computations are finished. In this case, we pass the simulation function and the
array of experiments (param_values), so that the function will be executed for each row of the array.

3.38 The DataFrame constructor is used to immediately build a DataFrame from the results (which are returned as a
list of Series).

l v i ew = c l i e n t . load_balanced_v iew ( )
r e s u l t s = pd . DataFrame ( l v i ew . map_sync ( s imu la t ion , param_values ) )

3.39 We can then proceedwith the analysis as in the previous subsection. Figure 9 compares the runtimes obtained
with ipyparallel anda sequential simulation (using an Intel i7-6700HQCPU) for 14000experiments. The elapsed
parallel runtime is approximately one-third of the sequential runtime; given that we were using 4 engines, this
is slightly more than could be expected from a perfectly parallel computation, due to the overhead involved in
data exchanges, etc.

Figure 9: Comparison of runtimes for sensitivity analysis (14000 total experiments), using sequential and par-
allel simulations.

Conclusions

4.1 The analysis and communication of agent-basedmodels can benefit from the comprehensive analysis features
which are available in specialized so�ware environments. To this end, this paper first introduced the pyNetL-
ogo connector, which interfaces the NetLogo agent-basedmodelling so�warewith a Python environment. This
connector provides basic command and reporting functionalities similar to the RNetLogo package in R. These
features were illustrated using one of NetLogo’s sample models. As an example of the more complex analyses
which are enabled by a Python interface, the SALib Python library was then used for a Sobol variance-based
global sensitivity analysis of the model. This analysis was performed using sequential simulations, then paral-
lelized for improved performance using the ipyparallel library.

4.2 The current implementation of pyNetLogo relies on a Java Native Interface (JNI) through the JPype library,
which allows Java classes (and thus NetLogo) to be called from Python. However, this does not support a bidi-
rectional linkage through which a NetLogo model could also directly execute Python code. For applications in
which this functionality would be helpful (for instance by using more advanced statistical or geospatial func-
tions in NetLogo models), the Python extension for NetLogo can instead be used to execute Python code from
NetLogo through a JSON interface. As a complement to existing interfaces which link NetLogo with R or Math-
ematica, the combination of these tools thus allows modellers to extend NetLogo’s capabilities with Python’s
extensive ecosystem for scientific computing.
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