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Executive summary

The thesis, ”Towards Smart Maintenance: The Implementation of Predictive Maintenance in the Rail-

way Industry,” examines the integration of predictive maintenance (PdM) technologies within railway

operations, with a particular focus on freight rail. PdM leverages data analytics, machine learning, and

advanced sensors to transition maintenance strategies from reactive or scheduled routines to a proactive,

data-driven approach. This allows for predicting equipment failures before they occur, reducing unplanned

downtime and optimizing maintenance schedules. However, despite its significant potential, the adoption

of PdM in the railway sector remains limited due to technical, financial, and organizational barriers.

By employing advanced algorithms and continuous monitoring systems, PdM predicts component failure

or degradation likelihood. Key technologies, including IoT-enabled sensors, machine learning, and big

data analytics, facilitate real-time asset health assessment. Unlike traditional methods, which rely on

fixed schedules or respond to failures after they happen, PdM prioritizes the actual condition of equipment.

This approach minimizes resource waste, extends the lifespan of assets, and improves overall system

reliability.

The literature review highlighted the disproportionate focus on technical advancements within PdM

research for railways, with 58% of studies emphasizing data analytics, condition monitoring, and algo-

rithm development. Comparatively, managerial aspects, such as cost-effectiveness and organizational

readiness, received less attention, accounting for only 18% of research. This large proportion of technical

research gives a preliminary insight into the technological readiness of PdM technology for the railway

industry. Common challenges identified include issues with data standardization, the immaturity of

predictive algorithms, and real-time data processing limitations.

The railway industry struggles with barriers that impede PdM’s implementation. A statistical look at

academic literature finds that technical issues such as integrating diverse data sources, the immaturity of

predictive algorithms, and challenges with real-time data processing are seen as major hurdles. High initial

costs for infrastructure upgrades, sensor deployment, and workforce training add financial hurdles, while

organizational inertia and resistance to change exacerbate adoption difficulties. The lack of standardized

regulatory frameworks further complicates large-scale deployment.

Drawing lessons from sectors like aviation, which has successfully employed standardized data protocols

and advanced analytics, this research underscores the importance of clear frameworks and stakeholder

collaboration. As seen in public infrastructure projects, a phased implementation approach highlights

how incremental deployment can mitigate risks and build stakeholder confidence. These insights are

critical to tailoring PdM strategies to the unique dynamics of the railway sector.

Analytical tools such as Interpretive Structural Modeling (ISM) and Fuzzy MICMAC analysis were em-

ployed in this study to map interdependencies among barriers and identify root causes. Economic viability,

regulatory compliance, and alignment between business goals and technical capabilities emerged as

pivotal factors for overcoming challenges. Cost-benefit analysis using Monte Carlo intervals revealed that

PdM could reduce long-term maintenance costs between 31.3% and 47.8% with a median cost reduction

of 39.5% over two decades, leaving room for a e 0.6 billion investment in PdM technology for freight rail.

Given this cost-reducing opportunity for train operators, the indirect benefits of PdM technology remain to

be explored. Only when there is a full picture of who benefits and to what proportion can a sustainable

investment consortium be initiated.

Addressing these challenges requires more than technical innovation. Establishing data standardization

protocols and fostering collaboration among operators, manufacturers, and policymakers are critical.

Additionally, workforce development programs must equip employees to interpret PdM data and integrate

it into decision-making processes. This thesis emphasizes that adopting PdM in railways demands a

phased, systematic approach informed by lessons from other industries. By prioritizing stakeholder

alignment, regulatory clarity, and organizational transformation, the railway sector can unlock PdM’s full

potential, creating safer, more reliable, and cost-effective maintenance practices for the future.
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1
Introduction

This chapter introduces the critical role of the railway industry in global transportation and the growing

importance of robust maintenance practices to ensure safety and efficiency. It highlights the transformative

potential of predictive maintenance (PdM) technology, which leverages advancements in data analytics,

machine learning, and sensor technologies to predict equipment failures and optimize maintenance

schedules. Despite these benefits, adopting PdM in the railway sector faces significant technical, financial,

and organizational barriers. The chapter outlines the research problem, objectives, and questions, setting

the foundation for exploring the feasibility of implementing PdM within the railway industry, specifically

freight rail.

1.1. Introduction
The railway industry is a cornerstone of global transportation, ensuring the movement of people and

goods efficiently across vast distances. Robust maintenance practices are essential to maintain such a

critical infrastructure’s safety, reliability, and operational efficiency. Traditionally, maintenance strategies

in railways have relied on corrective or preventive approaches. While effective, these methods often

result in unplanned downtime, higher operational costs, and inefficiencies in resource utilization [8, 13].

PdM has emerged as a transformative approach, leveraging advancements in data analytics, machine

learning, and sensor technologies. PdM enables the prediction of equipment failures before they occur,

optimizing maintenance schedules and minimizing disruptions. This innovation has the potential to

revolutionize railway maintenance, reducing costs and enhancing reliability [44]. Integrating sensor

technologies and energy harvesting methods further paves the way for more sustainable and cost-

effective strategies [29, 74]. By enabling continuous monitoring of critical train components, PdM allows

for the early detection of potential failures, facilitating timely interventions and improving overall operational

efficiency.

Despite its transformative potential, the widespread adoption of PdM in the railway industry remains

constrained by several challenges. These include technological limitations, significant initial investments,

and the complexities of integrating PdM solutions into existing infrastructure while maintaining stringent

safety standards [28, 68]. Addressing these barriers requires a comprehensive understanding of the

technical, organizational, and economic factors that influence the adoption of PdM.

This thesis explores the fundamental barriers to implementing PdM in the railway industry, drawing insights

from successful applications in comparable sectors such as aviation and infrastructure management. By

identifying the key challenges and contextualizing them within the unique dynamics of railway operations,

this study seeks to provide key action points for overcoming these obstacles. Ultimately, the research

aims to streamline PdM adoption, fostering more resilient and efficient railway systems.

1.1.1. Background and significance
To establish a foundation for this research, an initial review of the current state of PdM technologies

in the railway industry will be conducted alongside a comparative analysis of their implementation in

other industries, notably aviation and public infrastructure. This contextual understanding will inform the

problem statement and delineate the knowledge gap this thesis seeks to address.

1



1.2. Research question 2

The current state of predictive maintenance in railways
The global railway sector is transforming digitally, with PdM technologies at the forefront. These systems

analyze data from train subsystems, enabling real-time monitoring and proactive maintenance. By doing

so, they promise to improve fleet reliability, reduce the total cost of ownership (TCO), and enhance

operational efficiency [44]. Condition-basedmaintenance has already demonstrated success in preventing

equipment failures and optimizing maintenance schedules within the railway sector [28].

Nevertheless, the adoption of PdM in railways is still in its infancy. Key challenges include the need for

more accurate predictive models, integrating disparate data sources, and deploying real-time monitoring

capabilities across extensive and often aging railway networks [68]. Additionally, the high initial investment

in technology and workforce training poses a significant barrier for many operators. The fragmented

nature of railway operations, involving multiple stakeholders such as operators, equipment manufacturers,

and regulators, further complicates PdM implementation.

While some countries, such as Japan, France, and Germany, have initiated strategies for PdM adoption

under broader digitalization programs, these efforts are largely in pilot or early-stage deployment phases

and focus on passenger rail [62, 64, 18]. This leaves a development gap for freight rail. Combined with

the complexity of railway systems and the uneven pace of adoption, it highlights the need for a more

structured approach to scaling PdM technologies.

Lessons from other industries
Other sectors, such as aviation and public infrastructure management, offer valuable insights into overcom-

ing challenges related to PdM implementation. In aviation, PdM has optimized maintenance schedules,

reduced aircraft downtime, and improved fault detection accuracy [65, 47]. Similarly, organizations like

Rijkswaterstaat in the Netherlands have applied PdM to manage critical infrastructure assets such as

bridges and tunnels, addressing challenges of standardization and stakeholder coordination [69, 39].

These examples underscore the potential of PdM to deliver significant benefits while also highlighting the

importance of addressing technical, organizational, and financial barriers. Lessons from these sectors

can inform strategies for the railway industry, particularly in overcoming fragmentation and achieving

scalable implementation.

Problem statement and knowledge gap
Despite the demonstrated potential of PdM technologies, their adoption in freight rail is slow and uneven.

This is primarily due to technical challenges, such as integrating diverse data sources and the immaturity

of predictive models, organizational issues, including coordinating multiple stakeholders, and financial

constraints related to high initial investments. Moreover, a lack of comprehensive cost-benefit analyses

creates uncertainty around large-scale PdM implementation’s return on investment (ROI) [72, 54].

The knowledge gap lies in identifying how these barriers interconnect and influence the adoption process

and determining effective strategies to overcome them. By addressing these issues, this thesis aims to

advance the understanding of PdM implementation in railways, contributing to developing more efficient

and sustainable maintenance practices.

1.2. Research question
Given this background, the central research question of this thesis is:

What critical actions can enable the effective implementation of predictive maintenance technology in the

freight rail industry?

Given the infant stage of digitization in the freight railway industry and the potential advantages of PdM

technology, examining the barriers, opportunities, and steps needed for successful implementation is

crucial. The railway industry, known for its complexity, asset diversity, and extensive stakeholder involve-

ment, lags behind other sectors like aviation and infrastructure management, where PdM technologies

are more advanced. This thesis aims to uncover the current state of PdM technology in the railway

industry as a whole and how lessons from other industries can be tailored to overcome the specific

challenges of railway systems. Additionally, input from the industry will be used to evaluate the current

entrance barriers and economic feasibility of PdM technology in the freight rail sector.

Subquestions
1. What is the current state of predictive maintenance technology in the railway industry?



1.3. Research proposal 3

This question establishes the foundation by clearly understanding the existing technologies and

their implementation levels in the railway industry as a whole. Understanding the state of PdM in

the railway industry involves analyzing the specific applications within train subsystems, such as

wheels, engines, and braking systems, to understand the possibilities for the freight rail sector. By

assessing the progress made thus far, this subquestion will reveal the scope of PdM’s adoption,

providing insights into the most significant technological advancements and the limitations faced by

the industry.

2. What were the main entrance barriers for PdM technologies in similar industries, and how were

these mitigated?

By investigating barriers in other industries, such as aviation and infrastructure management, this

question identifies key factors and best practices that can be adapted to the railway sector. These

industries share commonalities with railways, particularly in managing large, complex systems

and ensuring safety through regular maintenance. Lessons from the aviation industry, which uses

advanced sensor technology and machine learning for real-time fault detection and has to comply

with rigorous safety requirements, or Rijkswaterstaat’s infrastructure management framework,

which involves coordinating among diverse stakeholders, offer valuable insights.

Understanding how other industries overcame critical barriers to implement PdM provides actionable

strategies for the railway sector’s approach.

3. What are the driving entrance barriers to implementing predictive maintenance technology on trains

for freight rail operators?

Numerous challenges hinder the implementation of PdM in the railway industry. This subquestion

explores these barriers, which may include technological issues (e.g., integration of real-time

monitoring across multiple subsystems), financial constraints (e.g., high upfront investments in

infrastructure and training), and organizational complexities (e.g., coordination among OEMs, rail

operators, and regulators) and aims to find the driving barriers.

Driving barriers refer to the key obstacles that slow or prevent the adoption of new technologies

or processes and influence the state of other ”dependent” barriers. Identifying these barriers is

crucial for developing strategies to not only these driving barriers but also indirectly other barriers,

thus paving the way for more streamlined implementation processes. By understanding these

driving barriers, stakeholders can prioritize resources, tailor solutions to industry-specific needs,

and accelerate the adoption of PdM technologies.

4. What costs and benefits are associated with implementing predictive maintenance technology for

wheel maintenance on trains for freight rail operators?

This subquestion aims to assess the economic implications of PdM adoption. It will delve into the

immediate costs for cargo rail operators, such as maintenance costs, sensor installations, and

workforce training, and the long-term benefits, including reduced downtime, lower operational costs,

improved safety, and enhanced reliability. Given the limited time available for this research, certain

assumptions will have to be made. Therefore, this model will incorporate confidence intervals using

Monte Carlo Simulations.

Understanding the financial impact of PdM technology will provide stakeholders with a clearer

picture of its economic feasibility. It will also help justify the significant investments required for

its implementation by showcasing the potential for long-term savings and improved operational

efficiency.

1.3. Research proposal
1.3.1. Research objective
This research aims to find critical actions to facilitate the successful implementation of PdM technology

in the freight rail industry. The study will examine the current state of PdM adoption across various

subsystems, identify key advancements and limitations, and analyze best practices from similar sectors

such as aviation and infrastructure management.

The research aims to find the contextual relations between the barriers to PdM deployment in railways

by addressing technical, financial, and organizational barriers withholding the implementation of PdM

technology. A cost-benefit analysis will further evaluate the economic feasibility of PdM, offering insights
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into the long-term gains in efficiency, safety, and reliability. Ultimately, the study will synthesize these

findings into practical recommended actions for guiding operators, OEMs, and policymakers in adopting

PdM technology.

1.3.2. Research design
For this research on facilitating the implementation of PdM technology in the freight rail industry, a

mixed-methods research approach would be suitable [61]. This methodology combines qualitative and

quantitative research, allowing for a comprehensive topic exploration.

Qualitative research
• Case studies: Case studies of PdM implementations in railways and similar industries (e.g.,

aviation, infrastructure) can provide valuable insights into best practices, challenges, and critical

success factors.

• Expert input: Generating input from experts, policymakers, maintenance staff, and literature

can uncover the nuanced challenges and perceptions of implementing PdM technology in the

railway sector. Analyzing these results will highlight where the driving entrance barriers are for

PdM technology.

Quantitative research
• Statistical mapping of literature: The statistics on the main topics and challenges found in

academic literature will be used to identify the current development state of PdM technology for the

railway industry and create an initial barrier list.

• Cost-benefit analysis: Quantitative analysis will be central to evaluating the economic impact of

PdM adoption. This can include collecting and analyzing maintenance costs, downtime, failure

rates, and overall ROI data to provide evidence-based recommendations for PdM implementation.
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Figure 1.1: Proposed research design framework demonstrating the individual steps of this thesis.

1.4. Research framework
In Figure 1.1 of the proposal, the research steps are structured to guide studying PdM in the railway

industry. The steps are laid out as follows:

1. Preliminary literature review: This initial step involves gathering information about the industry

background and identifying the knowledge gaps related to PdM in the railway sector. It sets the

foundation for the subsequent research by contextualizing the current state of the PdM technology.
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2. Structured literature review: Building on the preliminary review, this step delves deeper into

specific sources. It aims to establish an understanding of the current state of PdM and develop an

initial entrance barrier list, analyze the implementation of PdM in other industries, and identify best

practices that could be relevant to the railway sector.

3. Analyze barriers: After gathering data from the literature and interviews, this step analyzes

the identified barriers to implementing PdM. This includes looking at organizational readiness,

technological challenges, and economic factors impacting PdM adoption.

4. Create cost-benefit model: A detailed cost-benefit analysis model is developed to assess the

financial viability of PdM technology in the railway industry. This model will be informed by the data

collected in the previous steps.

5. Evaluation: This final step involves evaluating all the findings, including the barriers and cost-benefit

analysis. It aims to draw conclusions and offer recommendations for a streamlined implementation

of PdM technology based on the research results.

Each step is designed to feed into the next, ensuring a comprehensive exploration of the problem and

the development of actionable recommendations for implementing PdM in the railway industry.

1.5. Research methods
A mixed-methods approach will be employed to achieve the objectives of this study on implementing PdM

in the railway industry. This methodology allows for comprehensively exploring the topic by integrating

qualitative and quantitative data.

1. Literature review: The literature review will focus on the implementation of PdM technologies

across industries such as aviation, public infrastructure, and the current state of the railway in-

dustry. A structured review of academic and industry sources will identify fundamental success

factors, challenges, and timelines. This will lay the groundwork for understanding the barriers and

opportunities in the railway sector.

2. Expert input: Input from railway operators, technical experts, maintenance staff, and policymakers

will be incorporated into the barrier analysis. The goal is to uncover the barriers faced in adopting

PdM, such as technological, organizational, and financial barriers.

3. Barrier analysis: This analysis will focus on identifying and understanding the key barriers to PdM

implementation in the railway industry. These barriers include technical integration challenges,

financial constraints, and organizational complexities. Data collected through industry experts and

academic literature will be used to map these barriers, which will then be analyzed using Interpretive

Structural Modeling (ISM) and Fuzzy MICMAC to visualize the most significant factors impeding

PdM adoption.

4. Cost-benefit analysis: A quantitative analysis will be conducted to evaluate the economic impact

of PdM technology. This will compare the operating costs with and without PdM over a time span

of 20 years and provide input on the bandwidth available for investing in PdM technology.

Link between the thesis and the Management of Technology (MOT)
Program
The subject of this thesis, “Towards Smart Maintenance: The Implementation of Predictive Maintenance

in the Railway Industry”, closely aligns with the objectives and themes of the MSc in Management of

Technology (MOT) program at TU Delft. The program educates technology managers, market analysts,

and entrepreneurs in technologically driven, competitive, and international environments. It focuses on

the intersection of technological innovation, organizational strategy, and societal impact elements integral

to this thesis.

Connection with the program's focus areas
Technology Analysis

• The thesis employs advanced analytical tools, such as Interpretive Structural Modeling and Fuzzy

MICMAC analysis, to assess technological barriers and opportunities. This reflects the MOT

program’s emphasis on equipping students with the ability to analyze technological trends and

evaluate their viability.
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• By exploring PdM, the thesis evaluates how advanced technologies like data analytics, machine

learning, and IoT can transform railway maintenance. This mirrors the program’s focus on leveraging

technological opportunities to align with organizational goals and market needs.

Strategic decision-making in technological environments
• The research addresses strategic questions central to the MOT program, such as how and when to

adopt new technologies and whether to build or acquire them. The comprehensive cost-benefit

analysis in the thesis supports strategic decision-making by quantifying the economic impact of

PdM implementation.

• The thesis explores challenges such as regulatory compliance, economic viability, and stake-

holder alignment, providing insights into how organizations can navigate complex technological

ecosystems.

Societal trends and technological integration
• The thesis underscores the societal benefits of PdM, such as enhancing railway safety, efficiency,

and sustainability. Identifying these benefits aligns with the program’s goal of preparing students to

anticipate and adapt to societal trends influencing technological adoption.

Organizational context and innovation management
• The research investigates organizational resistance to change and the need for workforce develop-

ment to enable PdM adoption, reflecting the MOT curriculum’s focus on managing technological

innovation within organizational structures.

• The recommendations for phased implementation and stakeholder collaboration illustrate the

practical application of management theories taught in the program.

In summary, this thesis embodies the interdisciplinary and strategic approach central to the MOT program,

integrating technical expertise with managerial insights to address real-world challenges in the railway

industry. By bridging technological potential with organizational and societal considerations, this research

highlights the transformative role of technology management.



2
Literature Review

This chapter examines the state of PdM technology’s application in the railway industry, focusing on

the technical, managerial, and combined implementation challenges. It identifies gaps in adopting PdM,

including issues with data integration, sensor scalability, and organizational alignment. Drawing compar-

isons with successful implementations in aviation and infrastructure sectors, the chapter highlights key

lessons, such as the importance of data standardization, phased deployment strategies, and stakeholder

collaboration. These insights form the basis for identifying fundamental barriers and opportunities for

PdM adoption in railways, offering a comprehensive foundation for the subsequent analysis in this thesis.

2.1. Introduction
PdM transforms asset management by shifting from traditional reactive and scheduled maintenance

strategies to a proactive, data-driven approach. This paradigm leverages advanced analytics, machine

learning (ML), and Internet of Things (IoT) technologies to anticipate equipment failures before they occur.

By doing so, PdM minimizes unplanned downtime, optimizes maintenance schedules, and reduces

operational costs.

PdM implementation in the railway industry as a whole is currently mostly focused on passenger rail and

leverages sensor technologies and analytical techniques to maintain the integrity of critical components.

Onboard and trackside sensors, as depicted in Figure 2.1, are integral to PdM systems, each catering

to distinct yet complementary monitoring needs. Onboard sensors, mounted directly on rolling stock,

provide real-time, high-resolution data about components such as wheels, bearings, brakes, and bogies.

Accelerometers enable continuous monitoring of rolling stock, identifying issues such as wheel flatness

or bearing overheating in real time. Recent advancements, such as the deployment of wireless sensor

networks, have made onboard systems more accessible and efficient, particularly for vehicles like freight

trains that often lack consistent onboard power [7, 31].

The placement of sensors on rolling stock can be categorized based on the number of sensors, resulting

in three main classes: locomotives, carriages, and freight wagons. Among these, locomotives generally

have the highest number of sensors due to their numerous moving and critical components and easier

access to power. Carriages have fewer sensors, reflecting their simpler design and reduced power

accessibility [37]. Their primary function of carrying passengers requires less intensive monitoring

compared to locomotives. Freight wagons have the fewest sensors, largely because powering them

requires batteries or energy-harvesting mechanisms, adding complexity [52, 9]. Despite these challenges,

freight wagons present the greatest potential for improvement and demand the highest investment due to

the complexities involved in implementing sensor technology. This makes them a particularly intriguing

area for further exploration.

Trackside sensors, positioned strategically along railway infrastructure, complement onboard systems

by monitoring multiple trains simultaneously. Infrared thermography, LIDAR, and acoustic monitoring

assess rolling stock and infrastructure health, detecting issues like track, wheel, or bearing defects [3, 7].

Emerging technologies, such as energy-harvesting sensors and IoT-enabled condition monitoring systems

[48, 49, 71], could further enhance PdM capabilities by enabling low-maintenance, real-time monitoring

7
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of both rolling stock and track infrastructure. The use of PdM technology helps detect existing faults and

predict future failures, allowing operators to optimize maintenance schedules. This proactive approach

could extend component lifespans, reduce operational costs, and enhance safety and reliability [31, 7].

By combining the strengths of onboard and trackside monitoring, modern PdM systems offer a compre-

hensive solution for managing rail assets, aligning with industry trends toward sustainable and efficient

operations. These advancements underscore the transformative potential of predictive maintenance in

reducing unplanned downtime, minimizing infrastructure wear, and preventing catastrophic failures [8,

30, 60, 7, 31, 3].

Predictive
maintenance for
railway industry

Wheel defects

Switch monitoring

Track monitoring

Bogie monitoring

Bearing defects

Brake defects

Trackside sensor

Onboard sensor

Figure 2.1: Overview of applications for predictive maintenance in the railway industry.

This chapter explores these challenges and compares them with other sectors, such as aviation and

infrastructure, to identify strategies for overcoming barriers to successfully implementing PdM technology

in the railway industry. The chapter is structured as follows: The first qualitative part analyzes the

current state of PdM technology within the railway industry and compares the implementation of PdM

across similar industries, including aviation and infrastructure, identifying lessons and best practices. In

the second part, a quantitative analysis is conducted, identifying the current relevant subjects for PdM

in the railway industry and finding the most prudent challenges identified in academic literature. The

chapter concludes by discussing the common barriers to PdM adoption in the railway sector and outlining

strategies that can help overcome these obstacles based on the successes of other industries. Finally,

an initial entrance barrier list based on literature is presented.

2.2. Qualitative analysis
This section explores the qualitative dimensions of PdM technology, emphasizing its commercial applica-

tions and implementation across industries. By reviewing case studies from the railway sector and similar

fields like aviation and public infrastructure, the analysis identifies key players, strategies, and challenges

in PdM deployment. The insights highlight technological advancements while discussing the persistent

barriers to large-scale adoption. This section provides a comparative foundation for understanding how

lessons from other industries can guide and optimize PdM integration in the railway context.
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2.2.1. Commercial implementation of predictive maintenance technology
A few key players lead the commercial adoption of PdM in the railway sector, although it remains

fragmented and primarily in the pilot phase. All major initiatives mainly focus on passenger rail, leaving

a large gap in freight rail monitoring. These major initiatives include Siemens’ Railigent X Service [21],

which utilizes cloud computing and big data analytics to offer PdM services for rail operators. The system

collects sensor data and employs AI algorithms to predict maintenance needs, though challenges like

hardware deployment, data integration, and standardization have limited its full potential.

Similarly, Hitachi’s Lumada platform [24] applies digital twin technology to create virtual replicas of

physical assets, enabling precise predictions of component failures. These digital twins help visualize

asset health and optimize maintenance schedules, although the platform’s efficacy in railway applications

still requires broader validation.

Despite these technological advancements, large-scale commercial deployment of PdM in the railway

industry faces significant hurdles, especially in freight rail. These include high implementation costs,

technological complexities, and regulatory barriers. Additionally, resistance to change within the industry

has slowed the adoption process. While industries like aviation and public infrastructure have seen

more rapid adoption of PdM, the railway sector faces unique challenges due to its complex regulatory

environment and legacy infrastructure.

2.2.2. Implementation of predictive maintenance technology in similar industries
PdM technologies have been widely explored in various industries, particularly critical operational effi-

ciency and safety sectors. Aviation and infrastructure sectors offer valuable case studies for the railway

industry due to their complex asset management, high safety standards, and extended asset life cycles.

Analyzing these sectors can extract actionable insights for successfully adopting PdM in railways.

Aviation Sector
The aviation industry has a pioneering role in adopting predictive maintenance strategies due to its

emphasis on safety and cost-efficiency. Airlines such as Delta Airlines and Lufthansa Technik have

demonstrated the potential of PdM to reduce downtime and operational costs by leveraging advanced

data analytics and machine learning.

Delta Airlines implemented a comprehensive PdM system in collaboration with Airbus, which processes

real-time data from aircraft sensors to predict potential failures. This real-time data processing is most

interesting for the railway industry, as airplanes generate many sensors in generating a substantial data

flow [20]. This system allowed Delta to reduce maintenance-related cancellations by 99% and achieve

substantial operational efficiency improvements [45, 14]. This collaboration between Delta and Airbus is

critical as the wiring and placement of sensors require spec certifications.

Key takeaways for the railway industry include the importance of robust data infrastructure and integrating

PdM systems into broader operational frameworks. Delta’s success also underscores the need for a

cultural shift towards data-driven decision-making and continuous improvement, which could be critical

for rail operators aiming to adopt similar technologies.

Lufthansa Technik further emphasizes the advantages of PdM with its AVIATAR platform, which reduces

unscheduled maintenance by up to 30% for aircraft like the Boeing 737. This demonstrates that PdM

can optimize maintenance processes and reduce downtime in highly regulated industries [15, 41]. A

similar focus on digital twin technologies and real-time data monitoring could transform maintenance

practices in the railway sector.

Infrastructure Sector
The infrastructure sector, mainly through the initiatives of Rijkswaterstaat, the Dutch agency responsible

for national infrastructure, has made significant strides in PdM adoption. Rijkswaterstaat’s Data-Driven

Asset Management (DGAM) [57] program focuses on monitoring the health of critical infrastructure assets,

such as bridges, tunnels, and highways. The complexity of these assets, coupled with their decentralized

maintenance processes, mirrors many of the railway industry’s challenges.

A key aspect of Rijkswaterstaat’s success is its focus on standardization across contractors and regions.

By laying out a roadmap for gradually implementing a unified data collection and analysis system,

Rijkswaterstaat managed to harmonize disparate systems and create a more cohesive maintenance

strategy. The railway sector, which involves many stakeholders and asset types, could benefit from

adopting similar standards to ensure consistency in PdM implementation [69].
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2.3. Quantitative analysis
This section delves into the quantitative aspects of PdM research within the railway industry. By analyzing

a curated dataset of 141 academic articles, the study categorizes insights into managerial, technical,

and combined focus areas. Key trends, challenges, and thematic distributions are identified, offering a

statistical overview of the field’s current state. The analysis highlights predominant technical advance-

ments, such as machine learning applications and data monitoring techniques, alongside managerial

considerations like cost optimization and strategic decision-making. This section provides a data-driven

foundation to assess the barriers and opportunities for PdM adoption in railways.

2.3.1. Methodology for quantitative analysis
The quantitative analysis aims to understand the railway industry’s current entrance barriers for PdM from

a technical and managerial focus. To visualize these trends, a dataset of articles is created using Scopus.

Scopus is selected as it is among the largest curated scientific databases. The dataset combines search

terms, filter criteria, and a set timeframe. Combined with manual curation, these selections create a

dataset of 141 articles at the time of writing.

Table 2.1 provides an overview of the search criteria used to compile the dataset for the trend analysis in

this paper. Several notable findings during the process necessitated the introduction of specific search

criteria. Key points about the search criteria are explained below:

• Interchangeable Terminology: There are a lot of different terms for the word ”train” in literature,

hence why these synonyms were adopted into the creation of the dataset. Notably, most results,

including the word ”train,” are not relevant for trains but for the training of models, making it

impractical to include this word in the search query. The same goes for the search term ”predictive”.

• Language Limitation: Articles in the dataset were limited to those published in English. This

decision was made due to the authors’ inability to interpret articles in languages other than English,

such as German and Japanese, making collecting data from these articles impractical.

• Timeframe: Given the rapid advances in PdM technology, only articles from 2018 and newer were

adopted into the dataset. This results in a more accurate overview of which barriers are relevant to

the current state of technology.

Criterium Input Total dataset

Search items ”predictive maintenance” OR PdM OR ”preventive maintenance”

OR ”prescriptive maintenance”

639 articles

rail OR railway OR rolling stock

Applied filters Published articles only 268 articles

English language only

Timeframe 2018-2024 159 articles

Manual curation Remove irrelevant literature and duplicates 141 articles

Table 2.1: Steps of search criteria followed to obtain a final dataset of 141 articles

2.3.2. Data acquisition from individual articles
The dataset consisted of 141 academic papers on predictive maintenance in the railway industry. A full

reference list for the final 141 articles can be found in Appendix A. Note that the total number of articles

depends on the availability of articles in the TU Delft library. The dataset is categorized into three focus

areas:

• Managerial focus: Papers primarily discussed strategic, organizational, and business-related

aspects of predictive maintenance.

• Technical focus: Papers focused on developing and implementing machine learning models,

condition monitoring techniques, and predictive technologies.

• Combined focus: Papers that covered both managerial and technical aspects.

The articles were further classified into main topics within each focus area, and the challenges listed

in each paper were identified. A statistical breakdown of the dataset was made, and the proportion of

articles under each focus area was quantified. The frequency of key topics and challenges highlighted in

the papers for each focus group was calculated. This breakdown was performed as follows:
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• Managerial focus: Strategic decision-making, cost optimization, adoption barriers, compliance

issues, and human factors.

• Technical focus: Machine learning techniques, data collection methods, digital twin technologies,

and predictive model integration.

• Combined focus: Integration of technical frameworks with managerial decision-making, risk

management, cost-benefit analysis, and adoption barriers.

To enhance the clarity of the data presentation, the following visualization techniques were used:

• Pie charts: used to visually represent the overall distribution of the papers across Managerial,

Technical, and Combined focus areas. Pie charts were chosen to provide a clear, high-level view

of the dataset’s distribution.

• Bar charts: represents each focus area’s main topics and challenges. These visualizations allow

for an easy comparison of the different topics and challenges, showing the percentage distribution

within each category.

2.3.3. Results quantitative analysis
This section presents the key findings derived from quantitative PdM literature analysis, focusing on

its applications, challenges, and barriers within the railway industry. Three primary focus areas are

identified by categorizing 141 academic articles into managerial, technical, and combined approaches.

This analysis explores the predominant themes and obstacles associated with PdM, highlighting the

distribution of research emphasis across these areas and identifying the primary technical challenges

and managerial considerations required for effective implementation. The findings in this section offer a

foundation for understanding the current landscape of PdM research in railways, setting the stage for

targeted discussions on overcoming identified barriers to implementation.

2.3.4. Focus area distribution
The dataset of 141 academic papers was categorized into three main focus areas: Managerial, Technical,

and Combined. As shown in Figure 2.2, most of the papers (58%) focused on Technical aspects, covering

the development and implementation of machine learning models and condition monitoring techniques

for predictive maintenance. Papers categorized as having a Managerial Focus constituted 18% of the

total, discussing strategic and organizational aspects of implementing predictive maintenance. The

remaining 24% were classified under Combined Focus, where managerial and technical considerations

were addressed.

Managerial Focus

Technical Focus

Combined Focus

Distribution by Focus Area

Figure 2.2: Distribution of papers by focus area

This breakdown indicates that most academic literature emphasizes technical advancements, with

managerial perspectives and the integration of technical and strategic aspects receiving comparatively
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less attention.

2.3.5. Main topics in each focus area
The key topics within each focus area were consequently explored. The Managerial Focus papers

primarily covered Strategic Decision-Making (40%), followed by Cost-Effectiveness & Budgeting (30%)

and Adoption Barriers (15%). Regulatory Compliance and Human Factors were less frequently discussed,

accounting for 10% and 5% of the papers, respectively (Figure 2.3).
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Figure 2.3: Main topics in managerial focus papers

For papers with a Technical Focus (Figure 2.4), the most prominent topics were AI & Machine Learning

(50%) and Data Collection & Condition Monitoring (30%). Papers addressing Digital Twins & IoT and

Predictive Model Integration comprised 10% and 10%, respectively.
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Figure 2.4: Main topics in technical focus papers

In the Combined Focus category (Figure 2.5), Framework Integration (40%) and Cost Optimization (30%)

were the most frequently discussed topics, followed by Risk Management (20%) and Adoption Barriers

(10%).
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Figure 2.5: Main topics in combined focus papers

2.3.6. Challenges identified in each focus area
The challenges discussed in the articles were evaluated and were found to vary depending on the focus

area. In the Managerial Focus papers, Data Availability (30%) and Organizational and Cultural Barriers

(25%) were the most frequently cited challenges, followed by Budget Constraints (20%) and Regulatory

Compliance (15%). A small percentage of papers (10%) discussed the challenges related to Human

Expertise (Figure 2.6).
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Figure 2.6: Challenges in managerial focus papers

In the Technical Focus papers (Figure 2.7), the primary challenges were related to Real-Time Data

handling (30%) and Data Integration (25%). Issues surrounding the Scalability of Predictive Models

and the need for Model Interpretability are 17% and 12% of the papers, respectively. At the same time,

challenges involving Cybersecurity Risks also emerged in 11% of the documents.



2.3. Quantitative analysis 14

0 5 10 15 20 25 30
Percentage

Real-Time Data

Data Integration

Scalability

Model Interpretability

Cybersecurity Risks

C
at

eg
or

ie
s

Challenges in Technical Focus

Figure 2.7: Challenges in technical focus papers

In the Combined Focus category (Figure 2.8), Business-Technical Alignment (35%) and Organizational

and Technological Readiness (25%) were the most frequently mentioned challenges. Additional chal-

lenges included the need for a Skilled Workforce (17%), Infrastructure Complexity (12%), Data Ownership

& Privacy (11%).
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Figure 2.8: Challenges in combined focus papers

The results highlight a predominant focus on technical aspects of predictive maintenance in railway

systems, particularly in developing machine learning models and condition monitoring techniques. Man-

agerial and combined approaches, while less prevalent, emphasize the importance of strategic alignment,

cost-effectiveness, and overcoming organizational barriers. Common challenges identified across all

focus areas include data availability, model interpretability, and the alignment of technical and managerial

strategies for effective implementation of predictive maintenance.
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2.4. Discussion
This section discusses the results, and subquestions 1 and 2 are answered.

Subquestion 1: What is the current state of predictive maintenance technology in the railway industry?

The current state of PdM in the railway industry is characterized by promising technological potential

with limited real-world application. Despite the demonstrated benefits of PdM in optimizing maintenance

schedules and minimizing operational disruptions, the railway industry has not embraced PdM as readily

as other sectors, such as aviation or infrastructure management. This section discusses the observed

barriers to PdM adoption, drawing from both technical and managerial perspectives presented in this

chapter.

Limited deployment and focus on technical research

An analysis of recent literature reveals that approximately 58% of PdM research in the railway industry over

the past six years has been devoted to technical aspects, including data analytics, algorithm development,

and condition monitoring techniques (Figure 2.2). By contrast, only 18% of studies emphasize managerial

concerns, while 24% consider a combined focus that integrates both technical and managerial elements.

This heavy technical emphasis suggests that PdM technology may still be in a development phase where

technical bottlenecks dominate research efforts, limiting the industry’s ability to shift toward deployment.

If PdM were closer to operational maturity, a more balanced research focus would likely emerge, with

greater attention given to management, integration, and implementation strategies. The current focus on

technical challenges points to ongoing algorithm accuracy, data processing, and sensor reliability issues.

For instance, studies on condition monitoring frequently highlight the difficulty in achieving reliable and

real-time data collection across railway assets such as wheels, tracks, and signaling systems, which

are fundamental to effective PdM (Figure 2.7). These limitations underscore that PdM technology, in its

current form, may not yet provide the consistent and actionable insights needed for full-scale deployment.

Technical Bottlenecks in Algorithms and Data Processing

One of the most critical barriers identified in this chapter is the challenge of processing and interpreting

the massive volumes of data generated by PdM systems. Railway networks generate complex datasets

through onboard and trackside sensors monitoring various components. However, the quality and

integration of this data vary significantly, often leading to incomplete or inconsistent inputs for PdM

algorithms. This lack of standardized, high-quality data complicates the development of accurate

predictive models.

Further, real-time data processing remains an area where current PdM solutions fall short. As described in

Figure 2.4, many algorithms used for predictive maintenance require substantial computational resources

to analyze incoming data streams quickly enough to prevent component failures. However, most PdM

systems are still limited in delivering real-time alerts with sufficient accuracy. For example, certain studies

indicate that predictive algorithms for wheel and track degradation have yet to achieve the reliability

needed to consistently forecast maintenance needs without generating false positives or missing critical

faults.

Managerial and Economic Uncertainties

In addition to technical challenges, the chapter identifies significant managerial and economic concerns

that hinder PdM adoption. On a management level, there is ongoing uncertainty about the financial

feasibility of large-scale PdM implementation. While predictive maintenance promises reduced operational

costs and improved asset longevity, its economic benefits are often speculative at this stage due to

limited long-term studies and ROI analyses specific to railway applications.

A particular concern involves allocating responsibility for maintenance decisions based on PdM data.

The decision-making authority in railways typically spans multiple stakeholders, including operators,

original equipment manufacturers (OEMs), and regulatory bodies, all of whommay have differing priorities

and risk tolerances. This fragmentation creates ambiguity regarding who will be accountable if PdM

recommendations lead to unforeseen issues or failures.

Conclusion

In conclusion, PdM for railways remains a vibrant and growing research area, as demonstrated by

the high level of technical innovation. However, the combined effects of technological immaturity and

organizational uncertainty obstruct its broader adoption. This is especially true for the freight rail part

of this industry. Until railway companies can resolve these issues, the industry will likely continue to
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approach PdM cautiously. As such, the following steps should involve collaborative efforts between

technical researchers and industry stakeholders to address the technical and managerial barriers that

have hindered PdM implementation. Because the biggest hurdles are observed for freight rail, the

following chapters will focus on this part of the railway industry.

Subquestion 2: What were the main entrance barriers for PdM technologies in similar industries, and

how were these mitigated?

The barriers to implementing PdM in other sectors, such as aviation and infrastructure, offer valuable

insights into potential obstacles for the railway industry. These industries have encountered similar

challenges with high-stakes maintenance requirements, complex regulatory environments, and diverse

stakeholders.

In the aviation sector, safety protocols are often stricter than those in the railway industry, influencing

how PdM technology is integrated. Aviation benefits from placing sensors during production, bypassing

additional certifications required for retrofitted components. This integration strategy reduces regulatory

hurdles but is less applicable to railways, where retrofitting is more common.

Another critical barrier in aviation is the need for data standardization and frameworks, which are essential

for managing the vast quantities and varied data sources generated by numerous sensors. Without

standardization, data integration becomes challenging, leading to inefficiencies. While the aviation

industry continues to address this need for uniformity, the railway sector could proactively adopt similar

data standards to streamline PdM technology implementation.

Moreover, the aviation industry’s closed nature, with restricted access to detailed information about

specific barriers and mitigation outcomes, presents a challenge to identifying clear solutions. This opacity

makes it difficult to grasp the complete picture of what is happening in the aviation sector. It introduces

the question of whether there is more to learn from this industry.

The structure of Rijkswaterstaat in the infrastructure sector aligns closely with the fragmented nature of

the railway industry. Rijkswaterstaat, a public entity responsible for Dutch national infrastructure, faces

challenges such as fragmented maintenance practices due to the involvement of multiple subcontractors

and regional divisions. This fragmentation leads to a viscous framework for introducing innovations like

PdM, a constraint likely mirrored in the railway industry due to its similarly distributed structure across

contractors and international borders in Europe. Rijkswaterstaat has focused on standardization and

gradual PdM implementation with room for constant stakeholder feedback to mitigate this fragmentation.

A phased approach, prioritizing data standardization alongside incremental technology deployment, has

proven effective.

Conclusion

Overall, the experiences of the aviation and infrastructure sectors underscore the importance of data

standardization and frameworks, phased implementation, and stakeholder involvement. For the railway

industry, adopting these strategies will be essential for overcoming the technical and organizational

barriers to PdM technology.

2.4.1. Initial entrance barrier list
Based on the quantitative analysis of challenges in the railway industry and the most stringent barriers

in the aviation and infrastructure industries. Table 2.2 presents this barrier list, including each barrier’s

description. This initial list will form the foundation of the research conducted in Chapter 3.

Table 2.2: Barriers to the implementation of predictive maintenance technology in the railway industry

Barrier Description

Scalability of IoT Sensors Deploying IoT sensors across the railway network presents

challenges related to their ongoing maintenance. Ensuring that

these sensors consistently function requires additional sensor

monitoring and maintenance efforts.
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Regulatory Compliance The absence of well-established legal frameworks and

standardized government safety certification protocols

complicates regulatory compliance. There is a need for a unified,

clear, and easy-to-follow process for ensuring the technology

meets safety requirements.

Economic Viability Predictive maintenance requires a significant initial investment,

and the return on investment (ROI) is often unclear. The

long-term financial benefits, such as cost savings and risk

reductions, must be demonstrated to justify the upfront costs.

In-House Expertise Successful implementation of predictive maintenance technology

requires training and developing in-house expertise. The

workforce must be skilled in interpreting data from predictive

models and making informed decisions based on that data.

Technological Maturity Effective predictive maintenance relies on high-quality data from

sensors, sufficient computational resources for real-time analysis,

and the development of accurate predictive algorithms. The

technology is still evolving, and achieving the necessary level of

maturity remains challenging.

Data Standardization Due to the variety of data sources (e.g., tracks, wheels, switches)

and the fragmented nature of the maintenance industry, there is a

need to standardize data formats. Without this, integrating data

from multiple sources remains difficult and inefficient.

Data Responsibility and

Security

As predictive maintenance depends on connected sensors, the

risks of cybersecurity breaches increase. Clarifying data

ownership and ensuring secure data handling protocols to protect

sensitive information is essential.

Organizational Resistance Resistance to change within organizations can slow the adoption

of new technologies like predictive maintenance. Overcoming this

inertia requires addressing concerns and fostering a culture of

innovation.

Integration with Current

Maintenance Flow

The current structure of contractors and subcontractors in railway

maintenance may need to be restructured. Seamless integration

of predictive maintenance technology will require adjustments to

existing workflows, responsibilities, and contracts.

2.5. Conclusion
This chapter has provided an in-depth review of the literature on PdM technology’s current state, chal-

lenges, and potential strategies relevant to the railway industry. The research identified a significant

emphasis on technical challenges within PdM implementation, such as real-time data integration, scala-

bility of sensors, and model interpretability. However, managerial and organizational issues, including

regulatory compliance, economic viability, and data standardization, also pose considerable barriers.

The largest gains in PdM adoption are observed specifically in freight rail, so the remainder of this thesis

will focus on this area.

By examining implementations in similar sectors like aviation and infrastructure, this review highlights

several critical lessons for the railway industry. In aviation, strategies such as robust data infrastructure,

integration of PdM systems with operational frameworks, and standardized data protocols were instru-

mental in advancing PdM. Similarly, the infrastructure sector, exemplified by Rijkswaterstaat, emphasizes

the importance of phased implementation and stakeholder alignment to overcome fragmented operational

structures. These approaches provide a framework for addressing the unique challenges of PdM in

railways.

The findings suggest that while PdM holds substantial promise for enhancing railway maintenance
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practices, its implementation requires systematically addressing both technical and managerial hurdles.

The next chapter will delve into the contextual relationships between these identified barriers, providing a

structured approach to prioritize and manage the challenges that currently limit the deployment of PdM in

freight rail.



3
Contextual relations between barriers

This chapter explores the complex interdependencies among the barriers to implementing PdM in

the railway industry. Using Interpretive Structural Modeling (ISM) and Fuzzy MICMAC analysis, this

chapter identifies the contextual relations between barriers, categorizing them based on their driving and

dependency powers. The study reveals foundational challenges such as economic viability, regulatory

compliance, and business-technical alignment that significantly influence other barriers.

3.1. Introduction
This chapter delves into the intricate web of contextual relationships that underpin the barriers to im-

plementing PdM within the railway sector. Understanding these relationships is crucial as it allows us

to identify and prioritize the core factors that hinder PdM deployment. To accomplish this, Interpretive

Structural Modeling (ISM) is utilized as a methodological framework, providing a systematic means of

uncovering interdependencies among the barriers. ISM simplifies the complexity of these relationships,

revealing which barriers are most influential and how they interact with and reinforce each other.

Further enhancing this analysis, fuzzy MICMAC (Matrix of Cross-Impact Multiplications Applied to

Classification) is employed. This approach enables a nuanced categorization of barriers based on their

driving and dependence power. By incorporating fuzzy logic, fuzzy MICMAC accounts for the inherent

uncertainty and variability in expert assessments, thereby allowing a more precise identification of root

causes. The combination of ISM and fuzzy MICMAC offers a comprehensive lens through which the

underlying structure of these barriers is exposed, facilitating the identification of pivotal challenges that, if

addressed, could accelerate the successful integration of PdM.

This analysis aims to identify the driving barriers that, if mitigated, could alleviate other related challenges,

thus streamlining PdM adoption across the freight rail part of the railway industry. This chapter lays

the groundwork for developing targeted strategies that address these root causes by identifying them,

ultimately paving the way for a more resilient and efficient railway maintenance paradigm.

3.2. Methodology
This section details the methodological framework employed to identify, analyze, and prioritize the

contextual relationships among barriers to implementing PdM in the railway industry. The study leverages

ISM to explore interdependencies among barriers, enabling a structured visualization of their influence

hierarchy. Complementing ISM, fuzzy MICMAC Analysis is applied to classify these barriers based on

their driving and dependency powers. These approaches offer a robust approach for uncovering the

critical obstacles to PdM adoption.

3.2.1. Interpretive structural modeling
ISM maps the relationship between different variables introduced during the literature and desk research.

ISM is selected to determine the interrelation between variables holistically. The strengths of this model

are found in the presentation of a complex system in a simplified way, thereby helping in answering what

and how in theory building [66]. The method consists of the following steps [70, 66]:

19
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Variable identification
• Determining contextual relationships

• Structural self-interaction matrix

• Reachability matrix

• Partitions on the reachability matrix

• Digraph for ISM

3.2.2. Variable identification
The barriers were identified through an extensive literature review as presented in chapter 2, policy

documents, and relevant reports. This process aimed to gather a comprehensive list of variables

associated with potential barriers. Initially, variables were drawn from diverse sources, broadly capturing

relevant factors. Each variable underwent a frequency assessment to determine its relevance and

consistency across sources.

Following the literature review, the flowchart in Figure 3.1 provided a structured approach for validating the

identified variables. According to the flowchart, only frequently occurring variables proceeded to the initial

list. This list was then refined through expert approval. If experts found the list lacking, improvements

were made, and the process was repeated until a final approved list of barriers was established. This

systematic approach ensured that each barrier was validated, contributing to the robustness of the final

selection.

Variables from
literature

Variables from reports
and policy documents

Yes

No Does the variable occur frequently?

Create initial variable
list

Do not place on
variable list

NoIs the list approved by an expert? Improve variable list

Final approved
variable list

Figure 3.1: Method for gathering entrance barriers.
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3.2.3. Determining contextual relationships
The contextual relationship between any two barriers (i and j) is ascertained using experts’ opinions.

The literature describes several methods of obtaining these opinions. These methods include individual

interviews, questionnaires, focus group sessions, and literature syntheses [51].

A main advantage of group discussions is the interaction among participants, leading to new ideas and

perspectives that might not surface in one-on-one interviews [51]. A significant weakness of group

discussions is that group dynamics can introduce biases, such as conformity or dominance by certain

individuals, which may distort the data. Strategic group biases and expectations influence the results,

especially if participants know the researcher’s objectives [51]. The reduced bias and dependence on

group dynamics is one of the key advantages of individual interviews [6]. On the other hand, individual

interviews introduce a loss of context and detail. Individual interviews may lack the richness of context

and detail that can emerge from group interactions. Important nuances and insights from group dynamics,

such as consensus-building and the expression of diverse perspectives, might be missed in individual

settings [6].

A combination of existing research and expert opinion was chosen for this research to reduce bias created

within group discussions. Additionally, the complexity of arranging a group discussion with relevant

experts and the limited time available during this master’s thesis made this combination the most realistic.

3.2.4. Structural self-interaction matrix (SSIM)
To determine the relationship between the variables, the parameters i and j have been associated with

four symbols, as follows [4]:

• V: variable i will influence variable j, but variable j is not influenced by variable I.

• A: variable j will influence variable i, but variable i is not influenced by variable j.

• X: variables i and j will influence each other.

• 0: variables i and j are unrelated.

Amrina and Oktora (2020) considered the SSIM matrix and adhered to two guidelines [4]: For the

aggregated SSIM, the symbol (V, A, X, or O) with the highest frequency of occurrence was chosen first.

Second, precedence was assigned in the following order: V, A, X, and O if the frequency of a certain

relation was equal for two or more symbols.

3.2.5. Reachability matrix
By converting the data in each SSIM entry into 1s and 0s in the reachability matrix, the SSIM format is

converted into the reachability matrix format. This leads to the following four situations [42]:

• If the (i, j) entry in the SSIM is a V, the (i, j) entry in the reachability matrix becomes 1, and the (j, i)

entry becomes 0.

• If the (i, j) entry in the SSIM is an A, the (i, j) entry in the reachability matrix becomes 0, and the (j, i)

entry becomes 1.

• If the (i, j) entry in the SSIM is an X, both the (i, j) entry and the (j, i) entry of the reachability matrix

becomes 1.

• If the (i, j) entry of the SSIM is 0, then both the (i, j) and (j, i) entries of the reachability matrix become

0.

3.2.6. Level partitions on the reachability matrix
After constructing the reachability matrix, the next step involves partitioning it into levels to understand

the hierarchy and interactions between elements. This level of partitioning helps identify the layers within

the structure by categorizing elements based on their reachability and dependability [70]. In ISM, each

element’s reachability and antecedent sets determine its level.

The reachability set and antecedent sets were obtained from the final reachability matrix. Variable i and

every other variable that variable i would affect made up the reachability set. The variables that influenced

variable i were included in the antecedent set, which also contained variable i. A differentiation between

several levels was formed based on the intersection of these reachability and antecedent sets. Each

variable’s reachability, antecedent, and intersection sets were determined before the levels were created.

After that, the top level is occupied by the variables for whom the antecedent and reachability sets were
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identical. The variables that have no variables ”above” them that have an impact on them occupy the

top level. After removing these top-level variables from every other set of reachability, antecedent, and

intersection variables, the procedure was repeated until every variable was assigned a level.

Assume, for instance, that BR5 has an antecedent set (1, 2, 5, 7, 11), which indicates that barriers 1, 2, 7,

and 11 have an impact on BR5, and a reachability set (4, 5, 6, 12), which indicates that BR5 influences

obstacles 4, 6, and 12. It is now possible to establish that BR5 does not affect any new variables; rather,

it only affects those that it is influenced by.

The variables on the same level are arranged horizontally adjacent to one another in the diagram, and

arrows are added between them to indicate the direction of the relationship.

3.2.7. Fuzzy MICMAC analysis
Fuzzy MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée à un Classement) is an advanced

method used to classify barriers based on their driving and dependency powers, incorporating fuzziness

to manage the uncertainty inherent in expert judgments. This approach refines the analysis by converting

influence levels into a continuous scale, allowing a more nuanced understanding of relationships within

complex systems. The methodology involves several key steps, as outlined below.

Steps in fuzzy MICMAC
1. Normalization of influence (fuzzification): Influence levels between barriers, provided in a tally

matrix, are transformed into a fuzzy influence matrix. This process involves converting linguistic

terms to corresponding numerical values, as detailed in Table 3.1. If the influence score meets or

exceeds the set threshold of 60%, it is divided by the highest score in the matrix. Scores below the

threshold are zero, indicating minimal or no influence.

2. Multiplication of fuzzy influence matrix and calculating driving power and dependency: There

are three different compositions to ascertain the strength of the indirect relation from variable i to

variable j: max-min, max-product, and max-average [73]. Since the maximum of all potential minimal

influences from variable i to variable j indicates the minimal intensity of the indirect relationship

between the two, the max-min option was used for this study [34]. Following the procedures outlined

in Khan & Haleem (2012) [35], which were modified from Kandasamy et al. (2007) [34], the matrix

is multiplied using the max-min approach using the function that follows:

C = A,B = max k [(min (aik, bkj))] , A = [aik] andB = [bkj ] (3.1)

According to Equation 3.1, the matrix is multiplied recursively, beginning with the Fuzzy Direct

Reachability Matrix (FDRM), until the driving and dependent powers stabilize. The sum of the

power of the variables influencing variable i, or the sum of all entries for row i, is the driving power

of variable i. The total of all the variables affected by variable i, or the sum of all the entries in

column i, yields the depending power [23]. The matrix is stable if, for every variable, the hierarchy

of driving power and dependent power stays constant across the many multiplication steps [59].

The numpy package was used in Python to carry out these computations.

3. Clustering of barriers: Based on the median values of fuzzy driving power and dependency,

barriers are classified into four key clusters:

• Autonomous Variables: Barriers with low driving power and low dependency, generally

peripheral to the system.

• Dependent Variables: Barriers with low driving power but high dependency are heavily

influenced by others.

• Linkage Variables: Barriers with high driving power and high dependency, showing significant

reciprocal influence within the system.

• Independent Variables: Barriers with high driving power but low dependency, critical drivers

with minimal external influence.

The boundaries of these barriers are determined by taking themedian driving power and dependency

power of the barriers.

4. Visualization of fuzzy MICMAC clusters: A 2D scatter plot is created to display the distribution of

barriers based on their fuzzy driving power and dependency. The plot is divided into four quadrants
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by the median values, separating barriers into four clusters. Each barrier is color-coded to represent

its classification.

Linguistic and numerical values for strength of relationships
In fuzzy MICMAC, linguistic terms represent the strength of relationships between barriers. Each term

corresponds to a numerical value on a normalized scale, allowing experts to express varying degrees

of influence, as shown in Table 3.1. The FDRM was produced by calculating each relation’s ”strength”

value and superimposing it on the total BDRM. In earlier studies that used fuzzy MICMAC, these data

were aggregated in two ways: the strength with the highest frequency was used to estimate the strength

of the association [33, 63] or just one fuzzy matrix was offered, which was produced by consensus

among the experts by asking them for their input a second time following the development of the BDRM

[35, 42, 53] if any explanation was given at all [23, 16]. Time restrictions led to the decision to limit the

number of interactions with the experts and the fuzzy connection was selected as the initial approach to

assess strength. Furthermore, the ISM section already included the percentage of experts who stated a

relationship using a 60% criterion.

Table 3.1: Linguistic and numerical values for strength of relationships

Linguistic Term Description Numerical Value

No Influence Indicates no significant influence 0.0

Very Low Very minimal influence 0.1

Low Weak influence 0.3

Medium Moderate influence 0.5

High Strong influence 0.7

Very High Very strong influence 0.9

Full Influence Maximum possible influence 1.0

Relationship influence classification
Fuzzy MICMAC enables the classification of barriers based on driving and dependency power, helping to

identify key drivers and reactive barriers in complex systems. Table 3.2 summarizes the characteristics

of each relationship type.

Table 3.2: Relationship influence types in fuzzy MICMAC

Relationship Influence

Type

Description Driving Power Dependency

Autonomous Minimal influence and mini-

mally influenced; peripheral

Low Low

Dependent Heavily influenced by others,

with limited influence itself

Low High

Linkage High influence both exerted

and received; reciprocal in-

teractions

High High

Independent Strong influence on others,

with minimal external influ-

ence

High Low

Advantages of fuzzy MICMAC
The fuzzy MICMAC method enhances traditional analysis of driving power and dependency by capturing

varying intensities of influence and accommodating uncertainties in expert judgments. Using linguistic

terms and corresponding numerical values, fuzzy MICMAC provides a detailed, flexible analysis of

relationships within complex systems. This method supports strategic decision-making by identifying key
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drivers within the system and clarifying influence dynamics visually and intuitively, making it invaluable

for prioritizing resources and interventions.

3.3. Results
The results section begins by presenting the variables and their contextual relationships identified using

ISM. The ISM process organizes these barriers into levels, illustrating their hierarchical influence and

the interdependencies among them. Next, the fuzzy MICMAC analysis is applied to categorize barriers

based on their driving and dependence power, providing a nuanced understanding of each barrier’s

impact on PdM adoption. Through these analyses, this section identifies driving barriers that play a

critical role in shaping the freight rail’s readiness for PdM implementation.

3.3.1. Variables
The selection of barriers listed in Table 3.3 emerged from an approach combining the literature research

of chapter 2 with expert input and validation. Reviewing existing studies and industry reports initially

provided a foundation for identifying common challenges in IoT adoption and analytics-driven decision-

making. This research allowed the mapping of recurring barriers, such as data integration issues, model

interpretability challenges, and infrastructure complexity, ensuring the list encompassed well-documented

and relevant concerns.

Following this literature review, domain experts were approached to refine and validate the list. Through

conversations with these experts, insights into practical challenges were obtained that were not always

captured in existing research. For instance, it became evident that the absence of a robust, working

product product is another relevant barrier. This barrier can be brought back entirely on technological

challenges, so it was not included in the final barrier list.

Code Barrier

BR1 Scalability of IoT sensors

BR2 Data integration and standardization

BR3 Model interpretability

BR4 Real-time data processing

BR5 Organizational and cultural barriers

BR6 Regulatory compliance

BR7 Economic viability

BR8 Data availability

BR9 Business-technical alignment

BR10 Data ownership and privacy

BR11 Infrastructure complexity

BR12 Skilled workforce

Table 3.3: List of barriers used for the ISM analysis.

3.3.2. Determining contextual relationships and SSIM
The contextual relationships were determined by examining the direction of influence between each

pair of variables. Table 3.4 presents the aggregated SSIM barriers. As laid out in subsection 3.2.4, the

following rules were followed to construct the SSIM from the collected data:

• V: variable i will influence variable j, but variable j is not influenced by variable I.

• A: variable j will influence variable i, but variable i is not influenced by variable j.

• X: variables i and j will influence each other.

• 0: variables i and j are unrelated.
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In table 3.4, only the relationship (V, A, X, or O) with the highest frequency is presented.

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9 BR10 BR11 BR12

BR1 - A A A A A X O A O A O

BR2 - X O X X V A X X A V

BR3 - A O O V X V O A A

BR4 - A X X O A O A O

BR5 - X X X X O O A

BR6 - V V O V O V

BR7 - O V O O A

BR8 - A A A A

BR9 - O O O

BR10 - A O

BR11 - O

BR12 -

Table 3.4: Aggregated SSID Matrix

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9 BR10 BR11 BR12

BR1 - 13 9 15 7 5 11 14 8 6 10 12

BR2 - 16 18 14 13 17 20 11 19 10 7

BR3 - 13 8 5 9 15 6 7 12 14

BR4 - 7 5 11 14 8 6 10 12

BR5 - 13 11 12 10 9 11 8

BR6 - 17 10 10 15 6 9

BR7 - 12 15 8 7 9

BR8 - 16 9 10 11

BR9 - 14 8 10

BR10 - 11 10

BR11 - 12

BR12 -

Table 3.5: Tally Matrix with the number of times an SSIM relation was identified.

3.3.3. Developing reachability matrix
The SSIM is transformed to the initial Binary Direct Reachability Matrix (BDRM) by substituting V, A, X,

and O by either 0 or 1, as described in subsection 3.2.5. Only the association with the highest frequency

for each pair of variables is shown in the previous section.

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9 BR10 BR11 BR12

22 30 27 35 19 18 18 26 15 23 20 20

Table 3.6: Number of times a barrier is mentioned in any contextual relationship.

The interviews for this study were conducted in an unstructured format. Due to time limitations, experts

were asked to describe the relationships between six specific barriers and other barriers based on their

area of expertise. A total of 47 experts contributed to the study. However, because certain fields were

disproportionately represented among the experts, some barriers received more input than others. The

frequency of expert input for each barrier is summarized in Table 3.6.

In this study, the choice was made for a threshold of 60%; i.e., if 60% of the experts say the relationship
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holds, the relationship is included in the aggregated matrix. Each barrier’s total number of experts is

presented in Table 3.6. Table 3.5 tracks how often a barrier relation is mentioned. Consequently, if for

BR1 (22/100x60 = 15.4), the number in the tally matrix has a value of 15 or higher and a value of 1 on

place (i, j) in their individual BDRM, a value of 1 is assumed on place (i, j) in the aggregated BDRM. If the

corresponding value on the tally matrix is lower than the threshold and there is a value of 1 at place (i, j),

the aggregated BDRM has a value of 0 at place (i, j).

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9 BR10 BR11 BR12

BR1 0 0 0 0 0 0 0 0 0 0 0 0

BR2 0 0 0 0 0 0 1 0 0 1 0 0

BR3 0 0 0 0 0 0 0 0 0 0 0 0

BR4 1 0 0 0 0 0 0 0 0 0 0 0

BR5 0 1 0 0 0 1 0 1 0 0 0 0

BR6 0 1 0 0 1 0 1 0 0 1 0 0

BR7 1 0 0 1 1 0 0 0 1 0 0 0

BR8 0 1 0 0 0 0 0 0 0 0 0 0

BR9 0 1 0 0 1 0 0 1 0 0 0 0

BR10 0 1 0 0 0 0 0 0 0 0 0 0

BR11 0 0 1 0 0 0 0 0 0 0 0 0

BR12 0 0 1 0 0 0 0 0 0 0 0 0

Table 3.7: The final binary direct reachability matrix using thresholds.

3.3.4. Level partition
The intersection of the antecedent set (= set of other variables that reach that specific variable) and the

reachability set (= set of different variables that that variable reaches) determines the level that a given

variable occupies. These sets are represented in Table 3.8 for the barriers. The variable in question

won’t reach any ”new” variables if the intersection set equals the reachability set. Table 3.8 shows that

BR1 has reachability set (1), which indicates that it does not affect other barriers, and antecedent set (1,

4, 7), which suggests that BR1 is influenced by barriers 1, 4, and 7. BR1 is, therefore, categorized as

level 1 and does not reach any additional variables. The same principle applies to BR2, BR3, BR10, and

BR12. As a result, we eliminate BR1, BR2, BR3, BR10, and BR12 from every set and begin the process

over. With level 1 eliminated, the reachability set equals the intersection of the reachability set and the

antecedent set in the second iteration for BR4, BR8, and BR11. As a result, these are assigned to level

2 and do not reach any additional variables in the system without them. Until the last variable, in this

case, BR6 is assigned, the process is repeated.
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Variable Reachability Set Antecedent Set Intersection Set Level

BR1 {1} {1, 4, 7} {1} 1

BR2 {2, 10} {2, 5, 6, 8, 9, 10} {2, 10} 1

BR3 {3} {3, 11} {3} 1

BR4 {1, 4} {4, 7} {4} 2

BR5 {2, 5, 6, 8} {5, 6, 7, 9} {5, 6} 3

BR6 {2, 5, 6, 7, 10} {5, 6} {5, 6} 5

BR7 {1, 4, 5, 7, 9} {6, 7} {7} 4

BR8 {2, 8} {5, 8, 9} {8} 2

BR9 {2, 5, 8, 9} {7, 9} {9} 3

BR10 {2, 10} {2, 6, 10} {2, 10} 1

BR11 {3, 11} {11} {11} 2

BR12 {3, 12} {12} {12} 1

Table 3.8: Summary of level partitions of barriers.

3.3.5. Visualization
The variables are arranged using the level partition from the previous phase to get the final graph. Arrows

are positioned per their directional relationship based on the binary direct relations after the variables

have been structured hierarchically (table 3.7). Figure 3.2 displays the results for the barriers.

BR1 - Scalability of
IoT sensors

BR2 - Data
integration and
standardization

BR3 - Model
interpretability

BR10 - Data
ownership and

privacy

BR12 - Infrastructure
complexity

BR4 - Real-time data
processing

BR8 - Data
availability

BR11 - Infrastructure
complexity

BR5 - Organizational
and cultural barriers

BR9 - Business-
technical alignment

BR7 - Economic
viability

BR6 - Regulatory
compliance

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3.2: Final directed graph barriers.
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3.3.6. Fuzzy MICMAC
The fuzzy direct reachability matrix was calculated by overlaying the numerical representation of strength,

presented in Table 3.1, onto the BDRM presented in Table 3.7. The relationship with the highest frequency

is then used to generate the aggregated multiplied fuzzy direct reachability matrix. Therefore, it was

calculated by taking the strength factor of each particular fuzzy direct reachability matrix recognized by

the greatest number of experts presented in Table 3.6. Table 3.9 displays the multiplied fuzzy matrix

aggregate. As discussed in Kamble et al. (2018) [33] and Khatwani et al. (2015) [36], the diagonal is set

to 1.

Table 3.9: Aggregated multiplied fuzzy direct reachability matrix barriers with driving power and dependency.

BR1 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9 BR10 BR11 BR12 Driving Power

BR1 1.00 0.00 0.00 0.75 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 2.45

BR2 0.00 1.00 0.00 0.90 0.00 0.00 0.00 1.00 0.00 0.95 0.00 0.00 3.85

BR3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

BR4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

BR5 0.00 0.70 0.00 0.00 1.00 0.65 0.00 0.60 0.00 0.00 0.00 0.00 2.95

BR6 0.00 0.65 0.00 0.00 0.65 1.00 0.85 0.00 0.00 0.75 0.00 0.00 3.90

BR7 0.55 0.00 0.00 0.55 0.55 0.85 1.00 0.60 0.75 0.00 0.00 0.00 4.85

BR8 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.80 0.00 0.00 0.00 2.80

BR9 0.00 0.55 0.00 0.00 0.50 0.75 0.75 0.80 1.00 0.70 0.00 0.50 5.55

BR10 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.70 1.00 0.00 0.00 2.65

BR11 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.60 2.20

BR12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Dependency 1.55 4.85 1.60 3.20 2.70 3.25 2.60 4.70 3.25 3.40 1.00 2.10

Cluster classification
The factors are grouped into four clusters according to their driver-dependence power after generating

the fuzzy MICMAC stabilized matrix.

The outcomes for the barriers were:

• The autonomous cluster, or the driving forces and factors with little reliance. Variables BR1, BR3,

BR11, and BR12 are prevalent in this cluster. As a result, other variables do not significantly impact

these barriers and do not generally have much capacity to affect other variables.

• The dependent cluster, which consists of variables with great dependence power but poor driving.

BR4 and BR10 are the variables that make up this cluster. As a result, these barriers have a shallow

ability to influence other factors within the system; other variables have a relatively high capacity to

influence them.

• The linkage cluster, which contains variables with a high degree of reliance and driving force. A

network of interdependencies is created by the components in this cluster, which both influence and

are influenced by several other variables in the system. This cluster contains the variables BR2,

BR6, BR8, and BR9. Since modifications to these variables have the potential to have repercussions

across the entire network of barriers, they are essential to the system. These factors are crucial for

system stability and control because of their significant driving force and reciprocal dependence,

which means that changes in one could drastically change the behavior of other clusters. Variables

in the Linkage Cluster indicate areas that require close observation and management to preserve

system equilibrium.

• The independent cluster, which consists of variables with solid driving and weak dependent power.

Variables BR5 and BR7 fill this cluster. These factors have a powerful ability to impact others, but

they are the ones least affected by them. The system’s strongest motivator is BR7, representing

the economic viability of predictive maintenance technology.
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Figure 3.3: Driving and dependence power of the barriers

3.4. Discussion
In this section, the key findings from the analyses in Chapter 3 are discussed, aiming to identify and

categorize the barriers to implementing PdM technology in the cargo rail industry based on their driving

power and dependency. These findings are discussed in the context of answering subquestion 3:

”What are the driving entrance barriers to implementing predictive maintenance technology on trains for

freight rail operators?”

A combination of ISM and fuzzy MICMAC analyses classified the entrance barriers into several categories

based on their driving and dependence power, providing a structured view of the obstacles that inhibit

PdM adoption in railways. The driving barriers identified include economic viability, regulatory compliance,

and business-technical alignment, each with substantial implications for the PdM adoption process.

Economic viability
The analysis underscored economic viability as a high-driving power and independent barrier. This barrier

reflects the substantial initial investments required for PdM technology, particularly in sensor installation,

data integration, and workforce training. The economic feasibility of PdM hinges on demonstrating long-

term cost savings, such as reduced downtime and optimized maintenance schedules, which can justify

the upfront costs. The freight rail sector must, therefore, quantify these benefits to build a compelling

business case for PdM. Such an approach is essential to gain stakeholder commitment and overcome

financial resistance, a critical barrier to PdM adoption.

Regulatory compliance
Regulatory compliance emerged as another significant barrier, reflecting the railway sector’s stringent

safety and operational standards. The lack of standardized legal frameworks and safety certification

processes for predictive technologies complicates PdM’s deployment at scale. This regulatory uncertainty

discourages investment in PdM, as operators may face delays or financial risks associated with non-

compliance. Addressing this barrier requires collaborative efforts between industry stakeholders and

regulatory bodies to establish consistent standards that facilitate PdM’s safe and effective implementation.

Business-technical alignment
The findings highlight the importance of aligning PdM technology with the broader business objectives of

railway operators, a barrier with both high dependence and driving power. Effective PdM implementation

requires integration with existing maintenance workflows, cross-departmental collaboration, and a clear

understanding among stakeholders of PdM’s value in enhancing operational efficiency and safety. Without

such alignment, PdM may be perceived as a costly technical add-on rather than a strategic asset, limiting

its acceptance and impact. This barrier’s significance emphasizes the need for a holistic implementation

strategy that includes technical, managerial, and cultural considerations.
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Distinction fundamental and non-fundamental barriers
This chapter aims to identify the driving barriers to implementing PdM technology on freight trains. These

barriers are of particular interest because they drive or influence other obstacles. To fully understand the

challenges to adoption, it is essential to differentiate between fundamental and non-fundamental barriers.

Fundamental barriers are those that make the implementation of PdM technology entirely unfeasible. In

contrast, non-fundamental barriers do not directly prevent the technology from being introduced. Looking

at these identified driving barriers, economic viability and regulatory compliance are fundamental barriers

because PdM technology cannot reach the market without them. Other relevant fundamental barriers in

this study include real-time data processing and a skilled workforce, data availability, data integration

and standardization, and data ownership and privacy are identified as potential fundamental barriers.

These are critical to the functionality and feasibility of PdM systems because unresolved challenges in

these areas could entirely prevent their operation or deployment.

On the other hand, barriers such as business-technical alignment, scalability of IoT sensors, model

interpretability, organizational and cultural barriers, and infrastructure complexity are considered non-

fundamental barriers. These barriers, while impactful, do not make the implementation infeasible but

instead influence its optimization and adoption.

The goal should be strategically addressing these driving barriers to resolve the fundamental challenges

first, paving the way for successful implementation while also minimizing the impact of non-fundamental

barriers to enhance effectiveness and efficiency.

Implications for PdM implementation
These barriers collectively highlight that successful PdM adoption in the railway sector requires more

than just technological advancement. A multi-faceted approach addressing economic, regulatory, and

organizational challenges is critical. The railway industry can create a favorable environment for PdM’s

sustainable deployment by prioritizing a straightforward economic analysis and advocating for regulatory

support. Additionally, fostering alignment between technical innovations and strategic business goals

will ensure that PdM technology is integrated as a core component of railway operations rather than an

isolated initiative.

Future research should focus on developing frameworks to quantify PdM’s financial and operational

benefits, establishing industry-wide standards, and exploring ways to foster organizational acceptance.

Collaborative efforts between technology providers, operators, and regulators will be essential to overcome

these barriers and achieve PdM’s full potential in the railway industry.

3.5. Conclusion
This chapter presents a comprehensive analysis of the barriers to implementing PdM in the railway

sector, utilizing ISM and fuzzy MICMAC to unravel their interdependencies. The analysis highlights the

interconnected nature of these barriers, emphasizing their roles in shaping the feasibility and success of

PdM deployment.

Economic viability stands out as a central challenge, as the significant upfront investments in technology,

infrastructure, and workforce require a compelling financial case to secure stakeholder commitment.

Demonstrating tangible benefits, such as reduced maintenance costs and minimized downtime, is crucial

for justifying these expenditures and overcoming resistance.

Regulatory compliance further complicates the adoption process due to the railway industry’s stringent

safety standards and the lack of clear certification protocols for predictive technologies. This regulatory

ambiguity creates uncertainty and risks for operators, underscoring the need for collaborative efforts

between industry players and regulatory bodies to establish consistent and supportive frameworks.

The integration of PdM into existing business and technical systems is another critical barrier. Misalign-

ment between predictive technologies and organizational objectives can hinder acceptance, reducing

PdM’s impact on operational efficiency and safety. Effective implementation requires a holistic approach

that bridges technical innovation with strategic business goals, ensuring cross-departmental collaboration

and shared understanding of PdM’s value.

Addressing these barriers requires a multifaceted strategy that prioritizes fundamental challenges while

fostering organizational readiness. Economic and regulatory issues must be resolved to create a viable
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foundation for implementation, enabling the railway sector to realize PdM’s potential for transforming main-

tenance practices. By fostering alignment across technical, regulatory, and organizational dimensions,

stakeholders can pave the way for sustainable and impactful adoption of PdM technologies.



4
Cost-benefit analysis

The introduction of this chapter focuses on assessing the economic viability of PdM implementation

within the railway industry. Building on insights from previous chapters, it emphasizes the critical role

of economic factors as key determinants for the adoption and long-term success of PdM. The analysis

highlights that understanding and demonstrating PdM’s financial benefits, such as cost reduction and

improved reliability, are crucial for gaining stakeholder buy-in. Additionally, the introduction notes that

the inherent uncertainties in data, including variable costs and equipment life spans, require careful

consideration. A Monte Carlo simulation approach is introduced to account for these uncertainties,

making the cost-benefit analysis more robust and adaptable to real-world variability.

4.1. Introduction
Building on the findings from chapter 3, it is clear that the barrier of economic viability stands as a

significant independent variable that shapes the feasibility and success of predictive maintenance

implementation in the railway sector. In this context, economic viability dictates the pace of technological

adoption and indicates long-term sustainability and profitability for railway operators. Understanding this

viability, therefore, is essential for informed decision-making and the effective deployment of predictive

maintenance technologies.

Given the restricted timeframe of this study, it is essential to acknowledge the uncertainties inherent in the

data gathered. Variability in costs, equipment longevity, and external factors such as market conditions

introduce a degree of unpredictability that could impact financial outcomes. To manage these uncer-

tainties, this analysis employs Monte Carlo simulations, which offer a probabilistic approach to estimate

outcomes across a range of potential scenarios. The analysis becomes more robust by incorporating

uncertainty intervals, allowing stakeholders to anticipate and plan for variability in implementation costs

and benefits.

This cost-benefit analysis focuses explicitly on Deutsche Bahn Cargo as a case study. As a public entity,

Deutsche Bahn provides ample data for analysis, and its large-scale operations make it an ideal example

for understanding predictive maintenance in freight rail. The study further narrows its focus to wheel

monitoring, with sensors positioned on bogies to capture critical performance data. Monitoring wheels is

integral to maintaining safety and efficiency in freight operations.

By assessing the cost implications and potential gains from predictive maintenance, this chapter provides

a practical framework to support railway operators, policymakers, and stakeholders in making data-

informed decisions.

4.2. Methodology
This section focuses on the cost-benefit analysis framework used to evaluate PdM for cargo rail wheel

maintenance compared to traditional maintenance. It includes an in-depth examination of various cost

components, such as implementation, operational, and maintenance costs, alongside revenue benefits

from PdM improvements. The analysis incorporates Monte Carlo simulations to address uncertainty

in cost estimations, which provides probabilistic insights into potential financial outcomes. Additionally,

32
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inflation correction is applied over the 20-year analysis period to reflect future costs accurately.

4.2.1. Cost-benefit analysis
This cost-benefit analysis evaluates the financial impact of implementing PdM technology for cargo rail

wheel maintenance compared to traditional maintenance (TM). The study incorporates wheel maintenance

and replacement costs, operational downtime, increased revenue from reduced downtime, sensor and

cybersecurity expenses, and improved safety and energy efficiency benefits. Monte Carlo simulations

account for uncertainty, and inflation adjustments are applied over a 20-year period.

Predictive maintenance vs. traditional maintenance
Costs for the PdM scenario are compared to traditional maintenance costs, which are also simulated

using Monte Carlo methods. Traditional maintenance involves higher material loss, frequent maintenance

events, and operational disruption costs. By contrast, the PdM scenario benefits from reduced material

loss and less frequent maintenance but incurs additional costs from implementing and maintaining the

predictive sensors.

4.2.2. Cost components
The analysis considers several cost components, as Figure 4.1 illustrates. This diagram highlights

the implementation costs associated with PdM technology in gray, covering aspects like education for

maintenance crews and installation expenses. The yearly costs and benefits—depicted in beige—in-

clude significant factors such as wheel lifecycle costs, downtime impacts, sensor upkeep, and potential

efficiency improvements. Furthermore, individual cost or benefit components linked to these categories

are detailed in taupe, specifying elements like corrective maintenance, energy efficiency gains, cyberse-

curity expenses, and accident risks. The following section will delve into the primary cost and benefit

components, explaining how they are integrated into the cost-benefit analysis model.

Total 
maintenance 

cost

Wheel lifecycle 
costs

Wheel 
treatment

Pre-inspection

Corrective 
maintenance

General 
maintenance

Wheel 
replacement

Replacement 
cost

Mileage PM vs 
no PM

Downtime

Downtime cost

Downtime 
probability

Downtime cost 
per hour

False positive 
sensor

Additional cargo 
movement with 

PM

Cargo moved 
per hour per 

train

Cargo price per 
ton

Downtime 
duration

Downtime 
probability

Sensor upkeep

Cybersecurity 
cost

Personnel

Data breach risk

Sensor 
maintenance 

cost

Backend cost

Maintenance 
personnel

Efficiency gains

Reduced 
derailment risk

Derailment 
probability

Accident cost

Improved energy 
efficiency

Energy 
consumption

Energy 
efficiency gain

Customer 
satisfaction

Revenue 
increase

Development 
cost PM 

technology

PM algorithm 
development

Sensor 
development

Implementation 
cost

Education 
maintenance 

crews
Installation cost

Figure 4.1: Overview of the cost and benefit components for PdM in wheel maintenance.

Wheel lifecycle costs
The lifecycle costs of a wheel can be categorized into two main components: wheel treatment costs and

wheel replacement costs. Both play a significant role in determining the overall cost of maintaining a rail

fleet and are highly dependent on whether PdM or conventional maintenance (no-PdM) is used. The

following sections explain these costs in detail.

Wheel treatment costs

Wheel treatment costs encompass the regular maintenance actions required to keep the wheels in optimal
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condition. These actions are split into three main components: pre-inspection, corrective maintenance,

and scheduled maintenance.

Pre-inspection

Pre-inspection is the first step in conventional wheel maintenance. It involves manually inspecting the

wheelset during scheduled maintenance to determine whether further treatment is necessary. With PdM,

this component is entirely automated by sensors, removing the need for manual pre-inspections. The

yearly pre-inspection costs are calculated as follows:

Cpi,PdM = 0, Cpi,no-PdM = Cpi ×∆TM × ntrains

Where Cpi represents the pre-inspection cost, ∆TM is the maintenance interval, and ntrains is the number
of trains.

Corrective maintenance

Corrective maintenance refers to unscheduled repairs after a field inspection reveals a fault. PdM systems

reduce the likelihood of such events by detecting potential issues early. The probability of requiring

corrective maintenance differs between PdM and no-PdM systems, and the associated yearly costs are

as follows:

Ccm,PdM = Pc, PdM × Ccm × ntrains, Ccm,no-PdM = Pc, no-PdM × Ccm × ntrains

Here, Pc, PdM and Pc, no-PdM are the probabilities of corrective maintenance with and without PdM, respec-

tively. Ccm is the corrective maintenance cost per event.

Scheduled maintenance

Scheduled maintenance is the periodic servicing of the wheelset based on pre-inspection results or

PdM recommendations. With PdM, maintenance is performed as determined by the sensors, meaning it

cannot be postponed. In contrast, conventional maintenance may result in fewer interventions, as not

every pre-inspection results in immediate action. The costs for scheduled maintenance are composed of

labor and wheelset treatment, as shown in the following equations:

Cwm,PdM = (Cwm, labor PdM + Cp,wheel)× Pmaintenance, PdM × (1−∆ηmaintenance)×∆TM × nwheels × nwagon

Cwm,no-PdM = (Cwm, labor no-PdM + Cp,wheel)× Pmaintenance, no-PdM ×∆TM × nwheels × nwagon

Where:

• Cwm, labor PdM and Cwm, labor no-PdM are the labor costs for wheel treatment with and without PdM,

respectively,

• Cp,wheel is the price of wheel placement,

• Pmaintenance, PdM and Pmaintenance, no-PdM are the probabilities of requiring scheduled maintenance with

and without PdM,

• ∆ηmaintenance is the improvement in maintenance efficiency with PdM.

The total yearly treatment costs for PdM and no-PdM are calculated as:

TCtreatment, PdM = (Cpi,PdM + Ccm,PdM + Cwm, PdM)

TCtreatment, no-PdM = (Cpi,no-PdM + Ccm,no-PdM + Cwm, no-PdM)

Wheel replacement costs

Wheel replacement occurs after the wheels reach a certain mileage, which varies depending on the

maintenance strategy employed. With PdM, wheel defects are generally detected earlier and are
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less severe, leading to a longer lifespan than conventional maintenance strategies. The yearly wheel

replacement costs are calculated as follows:

RCwheels, PdM =
dyear
LPdM

× nwheels × Cwr, RCwheels, no-PdM =
dyear

Lno-PdM

× nwheels × Cwr

Where:

• dyear is the yearly mileage of the fleet,

• LPdM is the lifespan of the wheels under predictive maintenance (PdM),

• Lno-PdM is the lifespan of the wheels under conventional maintenance (no PdM),

• nwheels is the total number of wheels in the fleet.

• Cwr is the price to for replacing a wheel.

Downtime events
Wheel flats account for 31.8% of total downtime in European railways [25], causing major operational

disruptions. Maintenance activities like re-profiling are crucial to avoid further damage to both rolling

stock and infrastructure [2]. PdM aims to reduce the frequency and severity of downtime by detecting

wheel defects early, leading to quicker and less costly repairs.

Downtime costs include storage fees for out-of-service trains and personnel costs as maintenance teams

remain on standby. During downtime, trains are unable to transport cargo, leading to direct revenue loss.

By reducing and shortening downtime events, PdM enables trains to stay operational longer, generating

more revenue.

The probability of downtime with PdM can be modeled as:

Pdowntime, PdM = Pdowntime, no-PdM × (1−∆ηPdM)

The downtime costs for both scenarios, with and without PdM, are:

Cdowntime, PdM = Pdowntime, PdM × ntrains × Cdowntime_event × (Tdowntime − Tdowntime_saved)

Cdowntime, no-PdM = Pdowntime, no-PdM × ntrains × Cdowntime_event × Tdowntime

Where:

• Pdowntime, PdM and Pdowntime, no-PdM are the probabilities of downtime with and without PdM,

• ∆ηPdM is the efficiency gain from PdM,

• ntrains is the number of trains,

• Cdowntime_event is the cost per hour of downtime,

• Tdowntime is the downtime duration,

• Tdowntime_saved is the downtime saved with PdM.

False positives in predictive maintenance

Predictive maintenance can also result in false positives, where defects are wrongly identified, causing

unnecessary maintenance and downtime costs. These are calculated as:

Cfalse_positive_maintenance = Pfalse_positive × PPdM, corrective × Ccm × ntrains

Cfalse_positive_downtime = Pfalse_positive × Cdowntime_event × Tdowntime × ntrains

Where:
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• Pfalse_positive is the false positive rate,

• PPdM, corrective is the probability of corrective maintenance under PdM,

• Ccorrective_maintenance is the cost of corrective maintenance,

• Cdowntime_event is the downtime cost per hour,

• Tdowntime is the downtime duration,

• ntrains is the number of trains.

The total cost for both scenarios, including false positives, is:

CPdM,falsepositive = Cfalse_positive_maintenance + Cfalse_positive_downtime

Cno-PdM,falsepositive = 0

Revenue increase from reduced downtime

The increase in revenue due to reduced downtime through PdM can be calculated by first determining

the total downtime hours saved:

Hdowntime, saved = (Pdowntime, no-PdM−Pdowntime, PdM)×Tdowntime+Tdowntime_saved×Pdowntime, PdM−Tdowntime∗Pfalse_positive

Where:

• Pdowntime, PdM is the annual downtime probability with predictive maintenance,

• Pdowntime, no-PdM is the annual downtime probability without predictive maintenance,

• Tdowntime is the total downtime duration per event,

• Tdowntime_saved is the downtime saved per event under PdM,

• Pfalse_positive is the false positive rate of the PdM sensors.

Next, the additional cargo that can be transported due to the saved downtime is computed as:

Cadditional_cargo = Hdowntime, saved × Ccargo_capacity × ntrains

Finally, the additional revenue generated from transporting this extra cargo is:

Radditional, PdM = Cadditional_cargo ×Rrevenue_per_ton

Where:

• Ccargo_capacity is the cargo capacity transported per hour per train,

• Rrevenue_per_ton is the revenue generated per ton of cargo transported,

• ntrains is the number of trains in the fleet.

Operational costs
In this section, the operational costs associated with cybersecurity and sensor maintenance, as well as

two critical components of maintaining the integrity and functionality of predictive maintenance systems,

are detailed. Each cost component is divided into its constituent parts, and formulas for calculating total

expenses are provided.

Cybersecurity costs

Maintaining cybersecurity for predictive maintenance systems is essential to protect data and systems.

Cybersecurity costs can be divided into two main categories: personnel costs for cybersecurity-specific

maintenance and the costs of maintaining cybersecurity systems. The total cybersecurity costs are

calculated as follows:
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Ccyber = Cmaintenance, personnel, cyber + Ccybersecurity, maintenance

Where:

• Ccyber is the total cybersecurity cost,

• Cmaintenance, personnel, cyber is the cost of personnel dedicated to maintaining cybersecurity,

• Ccybersecurity, maintenance is the cost associated with maintaining the cybersecurity systems themselves

(e.g., software updates and infrastructure maintenance).

This ensures that both human and system resources are accounted for in protecting the predictive

maintenance framework from potential cyber threats.

Sensor maintenance costs

Another significant operational cost comes from maintaining the sensor infrastructure. These sensors

are critical for the functioning of the predictive maintenance system as they collect the necessary data.

The cost of sensor maintenance is broken down into service costs and backend maintenance costs.

The total service cost for the sensors is calculated based on the number of wagons and wheels, the

service interval, and the cost per service:

Cservice =
Cper_service × nwagon × nwheels

Sinterval
/4

Where:

• Cservice is the total service cost for maintaining the sensors,

• Cper_service is the cost of servicing each sensor,

• nwagon is the number of wagons in the trainset,

• nwheels is the number of wheels in each wagon (with one sensor assumed per bogie, i.e., 4 wheels
per bogie),

• Sinterval is the service interval, indicating the frequency of sensor servicing (per year).

In addition to the sensor service costs, backend maintenance costs include system maintenance and

data analysis. These costs are calculated as follows:

Cbackend = Cbackend_maintenance +
Canalyst

5000
× nwagon × nwheels/4

Where:

• Cbackend is the total backend maintenance cost,

• Cbackend_maintenance is the cost associated with maintaining the backend systems (e.g., data servers,

software infrastructure),

• Canalyst is the cost of hiring analysts to process and interpret sensor data, with an assumption of 1

analyst per 5000 sensors.

Finally, the total maintenance cost for the sensors is the sum of the service and backend costs:

Cmaintenance = Cservice + Cbackend

By accounting for both the direct service costs and the backend infrastructure, this formula ensures a

comprehensive understanding of the total operational costs for sensor maintenance.
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Improved efficiency
In this section, we discuss the potential improvements in operational efficiency due to predictive main-

tenance (PdM), focusing on accident risk reduction and energy efficiency improvement. Each area is

analyzed with respect to its cost impact, both in the scenario where PdM is implemented and when it is

not.

Accident risk reduction

One key area of improvement with PdM is the reduction in accident risk. Predictive maintenance helps

identify potential failures before they lead to accidents, thus lowering the probability of accidents. The

expected annual costs of accidents are calculated for both scenarios: with and without PdM.

Without PdM, the expected annual cost of accidents is given by:

Ca, no-PdM = Paccident, no-PdM × Cper_accident × ntrains

With PdM, the expected annual cost of accidents is reduced:

Ca, PdM = Paccident, PdM × Cper_accident × ntrains

Where:

• Ca, no-PdM is the expected annual cost of accidents without predictive maintenance,

• Ca, PdM is the expected annual cost of accidents with predictive maintenance,

• Paccident, no-PdM is the annual accident probability when no predictive maintenance is performed,

• Paccident, PdM is the annual accident probability when predictive maintenance is performed,

• Cper_accident is the cost incurred per accident (including damage to rolling stock, infrastructure, and

potential legal and medical expenses),

• ntrains is the number of trains in the fleet.

By comparing these two values, the cost savings from reducing accident risks due to PdM can be

calculated, providing a clear financial justification for implementing PdM.

Energy efficiency improvement

Predictive maintenance can also improve energy efficiency by optimizing train operations and reducing

energy wastage due to mechanical faults or inefficiencies in the system. The total energy costs, which

include electricity and other energy sources, are calculated as follows:

Cenergy = Econsumption, electricity × nwagon + Econsumption, other × nwagon

Where:

• Cenergy is the total energy cost for operating the fleet,

• Econsumption, electricity is the energy consumption cost from electricity per wagon,

• Econsumption, other is the energy consumption cost from other sources (e.g., fuel) per wagon,

• nwagon is the number of wagons in the fleet.

Predictive maintenance leads to more efficient train operations, which reduces energy consumption. The

savings from reduced energy consumption due to PdM are calculated as follows:

CE, reduced = Cenergy ×∆ηE

Where:

• CE, reduced is the reduced energy cost per train due to improved efficiency,

• ∆ηE is the percentage of efficiency improvement in energy consumption from implementing predic-

tive maintenance.
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By implementing PdM, the fleet can operate with lower energy costs, contributing to overall savings and

a reduced environmental impact.

Customer satisfaction The reduced downtime and increased safety due to PdM technology directly

leads to higher customer service, directly impacting revenue. The following formula calculates the

additional revenue generated from enhancing service standards. It assumes that the improvement in

customer service leads to a proportional increase in revenue based on the baseline:

Radditional = Rbaseline × CSI

where:

• Radditional is the additional revenue from service improvement,

• Rbaseline is the baseline revenue per wagon per year,

• CSI is the customer service improvement.

Implementation costs
Implementing predictive maintenance systems incurs crew education and sensor installation costs.

These costs are not one-time expenditures; sensors must be replaced every few years, and crews must

continually update their knowledge to keep pace with technological advancements. Therefore, these

costs recur periodically over the lifetime of the system.

Crew costs

To ensure the effective implementation and operation of the predictive maintenance system, the crews

must be properly trained. This training cost depends on the number of crews involved and the number of

wagons in the fleet. The total crew cost is calculated as follows:

Ccrew = Ceducation × ncrews × nwagon

Where:

• Ccrew is the total cost of educating the crew,

• Ceducation is the cost of education per crew member,

• ncrews is the number of crews involved in the system’s implementation,

• nwagon is the number of wagons in the fleet.

Since crew knowledge must stay current with the latest technology and practices, these education costs

will recur every few years to ensure the teams remain up to date.

Sensor installation costs

The sensor installation cost accounts for both the physical sensors and the labor required to install them.

Each wagon in the fleet is equipped with sensors, typically one per bogie (four wheels per bogie). The

total sensor installation cost is calculated as follows:

Cinstallation = (Csensor, installation + Csensor)× nwagon × nwheels/4

Where:

• Cinstallation is the total cost of installing the sensors,

• Csensor, installation is the installation cost per sensor,

• Csensor is the cost of each sensor,

• nwagon is the number of wagons in the fleet,

• nwheels is the number of wheels per wagon (with one sensor assumed per bogie, i.e., four wheels
per bogie).
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Since sensors must be replaced every few years due to wear or technological advancements, this cost

also recurs periodically.

Total implementation costs

The total implementation cost is the sum of the crew education and sensor installation costs:

Cimplementation = Ccrew + Cinstallation

This formula provides a comprehensive view of the initial and recurring costs of implementing and

maintaining a predictive maintenance system. It ensures that both the human and hardware elements of

the system are accounted for and highlights the need for periodic reinvestment in sensor replacement

and crew training to ensure long-term efficiency. The variable list can be found in Appendix E.

4.2.3. Inflation correction
The model accounts for the impact of inflation over time. A 3% annual inflation rate is assumed, and

costs are adjusted accordingly for the 20-year analysis period. The inflation correction is applied to both

recurring and one-time costs. Recurring costs, such as sensor replacements, are adjusted regularly,

reflecting their projected future costs.

4.2.4. Monte Carlo simulation
Monte Carlo simulation is a statistical technique that uses random sampling and probabilistic modeling to

understand the behavior of systems influenced by uncertainty. In this cost-benefit analysis, Monte Carlo

simulation is essential for capturing the inherent variability in the inputs (such as maintenance costs,

downtime, and energy efficiency improvements) and for generating a range of possible outcomes rather

than a single deterministic result.

Fundamentals of Monte Carlo simulation
Monte Carlo simulations rely on repeated random sampling from probability distributions of uncertain

variables. By simulating many possible outcomes, the method quantifies the range of possible results

and the probability of different outcomes.

The key steps in a Monte Carlo simulation are:

• Define the input variables and their distributions: Each uncertain variable (e.g., cost per

maintenance event, downtime duration, sensor replacement costs) is modeled using an appropriate

probability distribution, such as normal, uniform, or triangular.

• Random sampling: For each simulation, random samples are drawn from the defined probability

distributions. Each sample represents one possible realization of the variable.

• Repetition of simulations: This process is repeated for a large number of iterations (40,000 in

this analysis), and in each iteration, a set of input samples is used to calculate the outputs, such as

total costs, net benefits, or savings.

• Analysis of results: The simulated results are aggregated to estimate the output variables’ mean,

variance, and confidence intervals. This gives a probabilistic view of the expected outcomes and

helps understand the risks and uncertainties involved.

Relevance of Monte Carlo Simulation
Monte Carlo simulations are used in this cost-benefit analysis for two main reasons:

• Uncertainty Management: Since many input variables (e.g., maintenance costs, downtime costs,

and accident risk reduction) are uncertain, Monte Carlo simulation helps capture this uncertainty. It

provides a more robust analysis compared to a single deterministic scenario [22].

• Decision-Making Support: By simulating multiple possible future outcomes, the simulation offers

insights into the probability of different cost and benefit scenarios. This helps decision-makers

understand the likelihood of achieving a positive net benefit from predictive maintenance and assess

the associated financial risks [22, 43].
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Figure 4.2: Probability distribution of net benefits with a 95% confidence interval.

Monte Carlo Simulation Implementation
A Monte Carlo simulation was conducted to account for uncertainty in the variables affecting the costs

and benefits of PdM versus TM. This method incorporated randomness to simulate a wide range of

scenarios, providing robust estimates of the expected outcomes under varying conditions [43, 55, 22].

The simulation framework incorporates a diverse set of variables to capture the complexity of the decision-

making process [58]:

Decision variables represent the strategic choices to be evaluated within the simulation. These include

whether to adopt PdM or continue with TM and the frequency of scheduled maintenance interventions.

These variables reflect the potential levers that stakeholders can adjust to optimize costs and benefits.

State variables describe the current and evolving conditions of the system being analyzed. Key state

variables include the lifespan of wheelsets under both PdM and TM, the current probability of downtime

events disrupting operations for TM, and the likelihood of accidents occurring for TM. These variables

dynamically influence the performance of maintenance strategies and serve as inputs to other parts of

the model.

Objective variables define the outcomes that the simulation seeks to measure and optimize. In the case

of this study, these are the total maintenance costs. This variable provides the key criteria for evaluating

the financial success of PdM compared to TM.

Stochastic variables capture uncertainties inherent in the system. Examples include the cost variability

of maintenance events (e.g., corrective and replacement costs), the duration and costs associated with

downtime events, and the probability of false positives in PdM systems. Stochastic variables are modeled

using probabilistic distributions, such as normal distributions, to reflect their variability and provide a

realistic basis for the simulation. A summary of the state and stochastic variables used in this model can

be found in Appendix E.

The simulation is conducted over 40,000 iterations to ensure a comprehensive exploration of possible

outcomes. Confidence intervals for the cost differences are constructed to illustrate the range of likely

outcomes, capturing the variability inherent in the stochastic variables. The cost intervals follow a normal

distribution as illustrated in Figure 4.2.

The results of the Monte Carlo simulation highlight several critical aspects of the PdM implementation.

The analysis provides an estimate of the likelihood of PdM achieving cost savings over TM, along with

evaluating the risks associated with different cost components. This probabilistic approach provides a

robust framework for decision-making, enabling stakeholders to evaluate the trade-offs between PdM

and TM under uncertainty.
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4.2.5. Financial bandwidth for predictive maintenance development
In this cost-benefit model, the costs associated with developing the predictive maintenance technology

have been excluded. This choice allows for an analysis of the financial bandwidth available for the

investment in the development phase, providing insight into the maximum allowable budget for technology

advancement. To assess this, the financial gains resulting from the predictive maintenance system will

be examined to determine the potential ROI over a time horizon of 20 years.

For each iteration of the Monte Carlo simulation, random samples are drawn from these probability

distributions to compute the total costs and benefits associated with PdM and TM. These calculations

incorporate cost components discussed in subsection 4.2.2. The difference in total costs between PdM

and TM (∆C) is calculated for each iteration as:

∆C = Ctotal,PdM − Ctotal,TM ,

where positive values (∆C > 0) indicated that PdM was more expensive, while negative values (∆C < 0)
suggested cost savings. The aggregated results provide insights into the likelihood of PdM being more

cost-effective than TM, quantified by the probability P (∆C > 0).

Discount rate investment
The analysis assumes that any initial development costs must be recovered within this 20-year period.

To account for the time value of money, a discount rate will be applied based on the weighted average

cost of capital (WACC) [27]. The WACC is calculated as follows:

WACC =
E

V
× Ce +

D

V
× Cd × (1− T ) (4.1)

where:

• E is the value of equity,

• D is the value of debt,

• Ce is the cost of equity,

• Cd is the cost of debt,

• V represents the total value, calculated as V = D + E,

• T is the corporate tax rate.

The WACC reflects the minimum return required by investors and creditors to fund the project, considering

both equity and debt financing options. By applying this discount rate, the analysis will identify the level of

development investment that can be supported by the anticipated returns from the predictive maintenance

system, ensuring financial feasibility over the specified time frame. A discount rate of 7.39% is found

using data from NYU (2024) [50].

Furthermore, by using the Monte Carlo intervals, the model allows for an assessment of the probability

that predictive maintenance technology may end up being more costly than traditional maintenance

methods across a range of development costs. This probabilistic approach provides insights into the

risks associated with different investment levels, helping to define an optimal investment threshold that

maximizes the likelihood of cost-effectiveness in implementing predictive maintenance.

4.3. Results
This section presents a detailed comparison between implementing PdM and continuing with traditional

wheel maintenance practices on cargo trains. The analysis focuses on total maintenance costs over time

and a detailed breakdown of key cost components.

4.3.1. Total maintenance costs over time
As shown in Figure 4.3, the analysis of total maintenance costs over a 20-year period, adjusted for

inflation, reveals significant cost savings with the adoption of PdM compared to TM. The PdM scenario

exhibits a more controlled and predictable cost growth with a flatter cumulative cost curve. In contrast,

the TM scenario shows a steeper increase, indicating higher and accelerating costs over time.
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To quantify the cost-effectiveness of PdM, a Monte Carlo simulation was conducted, running 40,000

iterations to capture a wide range of potential cost scenarios. The simulation estimates that PdM results in

a cost reduction of approximately 39.5% on average over TM, with a 95% confidence interval suggesting

savings between 31.3% and 47.8%. This high confidence level supports the reliability of PdM as a

cost-saving strategy over the long term.

The probability that PdM is more cost-effective than TM was calculated across various scenarios. In

100% of the simulations, PdM yielded lower cumulative costs than TM, underscoring the high likelihood

that PdM is a financially beneficial choice for maintenance.

The model excludes the initial development costs of PdM technology, focusing on operational cost

differences over time. The consistent reduction in maintenance costs with PdM is attributed to proactive

interventions, which prevent the escalation of issues that lead to more costly repairs and unplanned

downtime in TM.
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Figure 4.3: Total maintenance costs over time (inflation-adjusted): with and without predictive Maintenance

4.3.2. Detailed financial metrics
Figure 4.4 presents a comparative view of the mean annual operating costs across multiple categories for

both maintenance strategies. Key cost areas—such as accident-related expenses, downtime, and wheel

treatments—are markedly lower under PdM due to its proactive, data-driven approach. However, PdM

also introduces additional costs, notably for sensor implementation and cybersecurity, which are integral

to establishing a reliable predictive framework. This distribution of costs highlights PdM’s potential to

shift expenses from reactive repairs toward investments in technology and preventive measures.

Table 4.1 quantifies these financial changes, presenting the exact values associated with each cost

category. Notably, PdM achieves significant savings by reducing accident-related costs from €47.4

million to €1.88 million and downtime expenses from €59.4 million to €23.8 million. These savings

underscore PdM’s effectiveness in minimizing disruptions and enhancing operational safety. Conversely,

new expenses associated with PdM—such as sensor installation (€83 million) and ongoing service costs

(€9.6 million)—represent an upfront investment in infrastructure and technology. Despite these added

costs, the total annual expenses with PdM amount to €197 million, compared to €386 million without

PdM, thereby demonstrating a notable 49% reduction in yearly overall operating costs. Because the

sensor replacements do not happen yearly but every 6 years, the 20-year cost reduction is less.
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Figure 4.4: Mean yearly operating costs split over the different categories.

Table 4.1: Cost comparison: with and without predictive maintenance

Metric With Predictive Mainte-

nance

Without Predictive

Maintenance

Energy Operating Savings e 8.84× 107 e 0.00

Cost for Accidents e 1.88× 106 e 4.74× 107

Implementation Costs for Sensors e 8.3× 107 e 0.00

Service Costs for Sensors e 9.60× 106 e 0.00

Cybersecurity Costs e 1.10× 105 e 0.00

Additional Revenue from Cargo e 4.27× 107 e 0.00

Replacement Costs for Wheels per Year e 1.59× 108 e 1.90× 108

Downtime Costs per Year e 2.38× 107 e 5.94× 107

Cost for Wheel Treatments per Year e 1.15× 108 e 8.89× 107

Total Annual Cost e 1.97× 108 e 3.86× 108

4.3.3. Probability of predictive maintenance cost-effectiveness based on develop-
ment cost

The results of the cost-benefit analysis model, as shown in Figure 4.5, indicate the probability that

PdM technology will be more expensive than traditional maintenance methods across a range of initial

development costs. The Monte Carlo simulation reveals a clear trend: as the initial development cost for

PdM increases, the probability that PdM will surpass the cost of traditional maintenance also rises.

For development costs below e 0.8 billion, the probability that PdM is more expensive remains under 10%,

suggesting a relatively high likelihood of achieving cost savings with PdM. However, as development

costs approach e 1.0 billion, this probability begins to exceed 50%, indicating a substantial risk that PdM

could become cost-prohibitive at higher investment levels. When the development cost reaches e1.4
billion, the probability of PdM being more costly approaches 100%, making it almost certain that PdM
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would not be cost-effective compared to traditional maintenance at this level of investment.

This analysis underscores the importance of controlling initial development costs to ensure the financial

viability of the PdM technology. By setting a target investment threshold, such as below e1.0 billion,
stakeholders can maximize the probability of achieving cost-effective outcomes with PdM over the 20-year

analysis period.
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Figure 4.5: Development costs of PdM technology plotted against the probability of the case with PdM being more expensive over

a 20-year time period than the case without PdM.

4.4. Discussion
This section assesses the financial and operational impacts of implementing PdM technology on trains, fo-

cusing on the costs and benefits of PdM for wheel monitoring. The discussion also addresses subquestion

4.

Subquestion 4: What costs and benefits are associated with implementing predictive maintenance

technology for wheel maintenance on trains for freight rail operators?

Implementing PdM offers a substantial reduction in cargo rail operators’ average operating costs, decreas-

ing by 39.5% over a 20-year period (from €1.1 billion without PdM to €0.7 billion with PdM). This reduction

underscores PdM’s economic appeal, particularly for operators like DB Cargo, whose discounted financial

capacity for PdM investment stands at €0.6 billion (see Figure 4.5). Given these figures, PdM investment

is a financially sound choice for train operators.

The findings in Table 4.1 highlight the nuanced impact of different cost components in a predictive

maintenance PdM versus TM setup. An observation is that while PdM implementation incurs substantial

service costs, these costs are relatively negligible compared to the broader financial savings achieved.

The cybersecurity costs, while necessary to support PdM, are an order of magnitude lower than other

components and contribute minimally to the total annual cost, emphasizing that investments in these

areas are minor compared to the broader cost reductions enabled by PdM.

One key area where PdM presents an apparent disadvantage is in wheel treatment costs. PdM’s proactive

approach brings trains in for wheel servicing earlier, increasing the frequency of wheel treatments and

costs. Consequently, when isolating wheel treatment costs, TM may appear more economical due to

less frequent interventions. However, the increased cost from more frequent wheel treatments in PdM is

offset by the overall reduction in replacement costs and the broader cost savings.

Furthermore, while components such as energy operating savings, accident-related costs, additional

cargo revenue, wheel replacement costs, and downtime costs contribute incrementally when evaluated

separately, their combined impact drives a substantial reduction in the total annual cost. The cumulative

effect of these marginal savings reveals the economic advantage of PdM, leading to a nearly 50%

reduction in total annual costs compared to TM. Thus, while PdM involves additional investments in
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certain areas, the overall cost savings justify the approach, with benefits that extend across energy,

safety, and operational downtime dimensions.

Indirect benefits from PdM technology
• Impact on bearing wear

PdM implementation for wheel monitoring indirectly influences wheel bearing costs by minimizing

wear on the wheel bearing. By enabling early detection of wheel damage, PdM reduces shocks

transferred to bearings, thereby decreasing bearing degradation. This preventative effect on

bearing wear represents one of the major indirect benefits of PdM, although the precise extent of

this impact remains unclear. Future research could investigate these effects further to provide a

more comprehensive cost-benefit analysis.

• Reduction in track damage

The use of PdM is anticipated to reduce indirect damage to rail tracks by diminishing the shock impact

of damaged wheels. Although this benefit positively affects both train operators and infrastructure

owners, accurately quantifying track damage reduction proves challenging and has not been

fully addressed here. To enhance the understanding of PdM’s full value, additional studies are

recommended to establish metrics for track damage reduction, which could support broader

motivation for PdM implementation across railway networks.

• Indirect benefits for infrastructure owners and maintenance contractors

PdM technology also yields significant indirect benefits for infrastructure owners and maintenance

contractors. Reduced track wear and lowered derailment probabilities mean fewer track mainte-

nance requirements, benefiting infrastructure owners. For maintenance contractors, PdM creates

a more consistent workload by scheduling most maintenance tasks in advance, reducing the

occurrence of emergency repairs. Additionally, track maintenance contractors, often paid per track

kilometer under their care, benefit financially from lower track damage, which in turn reduces their

operating costs.

• Investment responsibility and benefit distribution

While PdM provides economic advantages across different stakeholders, it also raises questions

regarding the distribution of investment responsibility. The financial benefits from PdM vary among

maintenance contractors, infrastructure owners, and train operators. Determining an equitable

investment strategy may require assessing the relative gains of each stakeholder to foster collabo-

rative funding and development of PdM.

In summary, this analysis provides a preliminary understanding of the financial and operational benefits

associated with PdM for cargo train maintenance. To better quantify PdM’s impact, further research into

unmeasured benefits, such as reduced bearing and track wear, is recommended. A clearer picture of each

stakeholder’s financial gains from PdM will help identify those best positioned to invest in its development

and deployment, potentially leading to a shared investment model that supports the widespread adoption

of PdM technology.

4.5. Conclusion
This chapter establishes the financial viability of PdM in the railway sector, supported by a detailed cost-

benefit analysis. PdM offers clear, long-term financial and operational advantages over TM, especially

in reducing expenses linked to unscheduled repairs, accidents, and operational downtime. While the

initial costs of implementing PdM—including sensor deployment and infrastructure investments—are

considerable, Monte Carlo simulations reveal that projected annual savings offset these upfront expenses.

This results in an estimated 39.5% reduction in total maintenance costs over a 20-year period, creating

a substantial opportunity for continued development of PdM technologies specifically suited to wheel

monitoring on freight trains.

Moreover, the indirect benefits of PdM, such as enhanced wheel monitoring, are valuable to various

stakeholders, which can play a pivotal role in facilitating PdM’s broader adoption. If all stakeholders

realize tangible benefits from PdM, the technology’s implementation across the railway sector could

accelerate significantly. However, if certain stakeholders perceive PdM as a cost-only investment without

clear returns, this could delay its widespread adoption.



5
Discussion and recommendations

This chapter centers on synthesizing the findings from previous chapters to guide the railway industry’s

adoption of PdM technologies. It addresses key challenges, such as regulatory compliance and sector-

specific barriers, and suggests that lessons from sectors like aviation and infrastructure could help

overcome these obstacles. The chapter also emphasizes the importance of aligning business and

technical strategies, noting that a cohesive approach can strengthen PdM’s role in advancing digital

transformation within the railway sector.

5.1. Discussion
This section focuses on discussing and providing recommendations based on the analysis conducted in

the preceding chapters. This chapter highlights regulatory compliance as both a barrier and a potential

opportunity, especially considering the railway sector’s complex safety and regulatory standards. Addi-

tionally, it explores industry-specific challenges and potential cross-industry learning, underscoring how

insights from sectors like aviation and infrastructure could benefit the railway industry. The chapter further

examines the alignment of business and technical strategies, suggesting that a coherent approach could

enhance the impact of PdM on digital transformation efforts in the railway industry.

5.1.1. Regulatory compliance as a barrier and opportunity
Regulatory compliance remains one of the primary barriers to PdM implementation, with government

agencies often focused more on societal benefits than on the operational gains PdM offers railway

operators. Current regulations may be cautious or slow in accommodating new technologies, partly due

to limited evidence of their broader societal impact and the challenges of updating regulatory frameworks

to support such advancements. This regulatory conservatism, while protecting public interests, can

inadvertently slow the adoption of PdM. Therefore, framing PdM’s value in terms that align with public

policy objectives can help shift regulatory perspectives. Specifically, by highlighting PdM’s environmental,

workforce, and safety benefits, stakeholders can encourage regulatory bodies to view PdM as an

investment in societal progress rather than a mere operational enhancement.

Environmental benefits of PdM
Environmental sustainability is a top priority in public policy, especially with the EU’s current nitrogen

emission limits and heightened environmental regulations. PdM offers several clear environmental

advantages that align with these priorities:

1. Energy conservation through optimized components: chapter 4 discusses how PdM contributes

to reduced energy consumption, mainly bymaintaining rounder wheels, which create less friction and

thus require less energy to operate. By ensuring components are maintained before deterioration

impacts energy efficiency, PdM reduces the railway’s carbon footprint—a significant consideration

for environmentally focused regulators.

2. Reduction in emergency maintenance interventions: PdM decreases the need for unplanned or

emergency repairs, which often require additional resources, personnel, and logistics that increase

fuel use and emissions. Fewer unscheduled interventions mean a more predictable maintenance

schedule that minimizes these environmental impacts.

47
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3. Extended lifecycle of components: By detecting and addressing wheel damage early, PdM

helps prolong the lifecycle of wheels and other components. This reduces the frequency of

replacements, conserving resources and limiting the environmental impact associated with the

production, transportation, and disposal of replacement parts. Such lifecycle extension aligns

with circular economy principles and could resonate strongly with environmental agencies and

policymakers.

Workforce efficiency and the current labor market
The shortage of skilled labor in the job market, particularly in technical and industrial sectors, poses

challenges for the railway industry and public transportation infrastructure planning. PdM can contribute

to addressing this shortage by optimizing workforce deployment:

1. Elimination of redundant pre-inspections: Traditional maintenance often includes regular visual

inspections to determine whether a train needs repair. PdM bypasses this preliminary inspection

step by providing real-time data on component health, ensuring that maintenance personnel are

engaged only when repairs are required. This increases efficiency and reduces the strain on the

workforce.

2. Streamlining maintenance resources: The ability of PdM to detect issues early reduces the

need for emergency repair teams, freeing up these skilled personnel for other essential tasks.

This redistribution of workforce resources helps alleviate the pressure on a limited workforce and

enables personnel to focus on more impactful projects within the railway system.

3. Indirect reduction of maintenance on rail tracks: By reducing damage to train wheels through

proactive intervention, PdM also lowers the likelihood of wear and tear on rail tracks. This enhances

train performance and indirectly reduces the need for track maintenance, further relieving work-

force demands and aligning with government goals of minimizing resource constraints in public

infrastructure.

Enhanced safety and public confidence
Safety remains one of the strongest arguments for PdM adoption, particularly from a regulatory perspective.

PdM technology enhances railway safety by continuously monitoring key train components, notably

wheelsets. This proactive approach supports early detection of faults that could potentially lead to

accidents:

1. Real-time condition monitoring: PdM systems offer nearly live insights into the status of essential

components like wheels, allowing maintenance teams to intervene as soon as signs of damage

appear. By addressing issues at the earliest stage, PdM helps prevent severe problems such as

extensive wheel flats, which can lead to unsafe operating conditions. This preemptive maintenance

is essential to reducing risks and preventing disruptions to service.

2. Reduction of safety-related incidents: Implementing PdM could lead to fewer safety-related

incidents and reduced risk of service delays caused by component failures. Improved safety records

align with public transportation goals, as government bodies aim to uphold and enhance public

confidence in the safety and reliability of railway systems.

3. Support for regulatory safety goals: As safety is often a key focus in regulatory frameworks

for public transportation, PdM’s safety benefits align well with governmental goals. Real-time

monitoring and early fault detection demonstrate a proactive maintenance approach that enhances

operational efficiency and directly supports regulatory objectives to ensure public safety.

Convincing governmental bodies to support PdM
To encourage regulatory bodies to prioritize PdM, stakeholders must comprehensively view its societal

benefits. Environmental, workforce, and safety benefits provide a narrative beyond operational efficiency

to underscore PdM as a responsible, sustainable, and forward-looking solution for the railway sector.

By building coalitions with environmental, labor, and safety advocacy groups, the railway industry can

further support a case for regulatory support. Additionally, providing clear metrics on reduced energy use,

workforce efficiency, and safety improvements can demonstrate PdM’s value as a public good, paving

the way for regulatory frameworks that actively encourage its adoption.

In conclusion, the alignment of PdM with public policy priorities makes it a promising candidate for

regulatory support. While regulatory compliance presents challenges, these can be mitigated by em-

phasizing PdM’s alignment with societal goals in environmental sustainability, workforce optimization,
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and safety—three areas that resonate strongly with government bodies and the public alike. By framing

PdM within these values, industry advocates can make a compelling case for its wider adoption and the

regulatory adaptations needed to facilitate its integration into the railway sector.

5.1.2. Sector-specific barriers and cross-industry learning
Data integration and standardization
Data integration and standardization are barriers to high driving power in the railway industry. Similar

challenges are evident in the infrastructure and aviation sectors. In aviation, data standardization enables

PdM by harmonizing the vast datasets from various sensors and subsystems, which supports real-time

fault prediction and maintenance scheduling. Similarly, infrastructure sectors, like Rijkswaterstaat in the

Netherlands, face data integration issues due to decentralized asset management, where consistent

data formats and quality across regions are crucial for effective PdM.

In both sectors, overcoming data integration and standardization barriers required substantial investments

in data infrastructure and adopting uniform data standards. For the railway industry, a similar approach

could be beneficial. Implementing PdM effectively would involve establishing consistent data formats

across all assets and systems, facilitating the integration of predictive analytics and real-time monitoring

capabilities.

Organizational and cultural barriers
The barrier of organizational and cultural resistance is another independent challenge in PdM implemen-

tation, notably affecting the railway and infrastructure sectors. Organizational reluctance often stems

from resistance to change, concerns over job displacement, and the need for substantial training. In in-

frastructure, Rijkswaterstaat’s experience showed that fostering a culture of data-driven decision-making

and incremental PdM adoption helped mitigate this resistance. Involving stakeholders early and providing

clear communication about the benefits of PdM was key to a successful rollout.

Learning from sector-specific challenges
The railway industry can draw valuable lessons from the challenges faced by other sectors, particularly

by emphasizing strategies that foster cultural readiness for PdM adoption. Key practices include im-

plementing structured training programs, adopting phased rollouts, and engaging stakeholders early to

mitigate resistance. By leveraging these experiences, the railway sector can proactively address issues

such as data standardization and cultivate an organizational culture that supports the adoption of PdM

and its sustainable long-term use.

These cross-sector insights underscore that, while each industry has unique challenges, the strategies

employed by aviation and infrastructure sectors to overcome barriers offer a robust foundation for

PdM implementation in railways. Future research could explore additional industries with comparable

dynamics, such as the maritime sector, which shares a heavy-duty operational environment and stringent

safety requirements, or the energy distribution sector, characterized by capital-intensive infrastructure,

regulatory frameworks, and complex maintenance subcontracting.

5.1.3. Business-technical alignment and its impact on digital transformation
Importance of business-technical alignment as a linkage barrier
The alignment between business strategy and technical capabilities emerges as a critical linkage barrier

in the digital transformation landscape. Despite business-technical alignment not being identified as

a fundamental barrier, this barrier has even higher driving power than economic viability, highlighting

the essential role of business-technical alignment in successful digital transitions. Organizations may

experience resource allocation, priority-setting, and expectation management gaps when business

objectives are not closely aligned with technical capabilities. In the railway industry, where PdM technology

depends on such alignment, misaligned priorities can significantly hinder PdM’s implementation and

effectiveness.

Challenges of transitioning to digital services
One of the most prevalent challenges when transitioning to digital services is the misalignment of

business and technical expectations. Often, business leaders may not fully understand the technical

aspects of the associated risks of PdM, leading to oversights in budgeting, unrealistic performance

expectations, and underestimated maintenance requirements [10]. In high-tech industries, achieving

alignment requires a balance between understanding technical risks and leveraging business opportunities
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[1]. The infrastructure and aviation sectors have demonstrated that digital projects risk overestimating

technical capabilities and underestimating the support needed for a smooth transition without precise

alignment.

Strategies to overcome alignment barriers
To overcome alignment challenges, it is recommended that organizations adopt strategies such as:

• Increasing technical literacy for business leaders: Training initiatives can help business leaders

gain a foundational understanding of PdM technologies, reducing misalignment risks [1, 11].

• Implementing enhanced communication channels: Establishing consistent communication

between business and technical teams can set realistic goals and align priorities for digital transfor-

mation efforts [1, 11].

• Developing joint key performance indicators (KPIs): Shared KPIs, which reflect both business

objectives and technical achievements, effectively maintain focus on mutual goals, helping ensure

long-term PdM success in railway operations [1, 11].

When managed effectively, business-technical alignment is a non-fundamental linkage barrier that

accelerates PdM adoption by influencing other fundamental barriers and contributing to a more sustainable

and efficient railway maintenance system.

5.1.4. Equitable investment strategy
An equitable investment strategy for PdM in the railway sector should center on distributing costs

according to the benefits each stakeholder receives. PdM offers clear advantages to train operators,

infrastructure owners, and maintenance contractors; however, these benefits’ direct and indirect nature

varies significantly across each group. This complexity necessitates a nuanced approach to investment

responsibility, ensuring fair contribution by aligning investment levels with the degree of benefit each

stakeholder derives. Relevant principles and potential structures for equitable investment in PdM can be

drawn from multi-stakeholder partnership (MSP) frameworks and collaborative models in other sectors.

Principles of an equitable investment strategy
1. Proportional contribution based on benefits: A core principle for equitable investment is the

alignment of financial contributions with the degree of benefit each stakeholder gains. Train

operators who experience substantial direct savings—such as a 37% reduction in operating costs

over 20 years—would logically carry a larger share of the PdM investment. On the other hand,

infrastructure owners and maintenance contractors benefit indirectly through reduced track wear and

lower emergency repair costs, might contribute proportionally less but still meaningfully participate

in funding the technology.

2. Incentivizing indirect beneficiaries: For stakeholders like infrastructure owners and maintenance

contractors, whose benefits are substantial yet indirect, incentives can play a critical role in securing

investment. Governments or industry regulators could offer incentives or subsidies to encourage

infrastructure owners to support PdM deployment, given its societal benefits, such as increased

safety and reduced derailment risks. This approach can balance the financial load and reduce

barriers for stakeholders who are less immediately motivated by direct economic gains.

3. Long-term, sustainable partnership frameworks: Drawing on insights from MSP literature,

effective long-term collaborations are often achieved by creating partnership frameworks that

balance accountability, shared governance, and flexibility [26, 5, 67]. These frameworks encourage

transparency in roles, responsibilities, and benefits while ensuring adaptability to changing circum-

stances. For PdM, this might mean establishing a consortium or public-private partnership (PPP)

where contributions are revisited periodically based on evolving benefit metrics and technological

advancements.

Implementing an equitable investment model: strategies and structures
Building on the principles above, various models from different sectors can offer guidance on implementing

an equitable investment approach. Viable structures include:

Consortium-based investment model - In the telecom industry, companies invested in 5G technology

through consortiums, which allowed them to pool resources and share risks for the common benefit of

accessing next-generation networks. A similar consortium could be created for PdM investment, involving

train operators, infrastructure owners, and maintenance contractors as stakeholders.
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Each stakeholder would contribute based on an initial assessment of expected benefits, with regular

reassessments to reflect updated performance and cost savings data [5]. Such a model would foster

collective accountability, encourage collaboration on technology improvements, and ensure all parties

have a stake in PdM’s success [67]. This approach requires an accurate cost-benefit analysis across all

stakeholders. Key metrics could include reductions in bearing wear, track damage, and maintenance

workload distribution. A recurring evaluation period, such as every five years, could adjust each stake-

holder’s investment proportion based on realized benefits, ensuring ongoing equity as the technology

matures and benefits evolve.

Public-Private Partnership (PPP) model - Given PdM’s societal benefits—such as improved safety,

reliability, and efficiency in public transport infrastructure—a PPP could be an ideal model. In PPPs,

the public sector typically offers initial funding or incentives to lower the investment threshold for private

stakeholders, especially for infrastructure improvements benefiting the public.

For PdM, governments or rail authorities could subsidize initial technology adoption for track monitoring

systems, while train operators and contractors are responsible for implementing and maintaining the

systems. This model would spread initial investment risks while motivating private stakeholders to invest

further as they realize cost savings.

Challenges and considerations
1. Accurate measurement of indirect benefits: One of the main challenges is quantifying the

indirect benefits, such as reduced track wear and bearing degradation. While train operators can

measure their savings more directly, infrastructure owners and maintenance contractors need more

comprehensive data on PdM’s impact on their assets. Further studies to develop reliable metrics

for indirect benefits, such as reduced track damage and maintenance consistency, would help

justify proportional contributions.

2. Governance and accountability: For a consortium or PPP to succeed, it must include clear

governance structures that define each stakeholder’s role, responsibilities, and financial commit-

ments. Drawing from MSP frameworks, incorporating regular reviews, transparent decision-making

processes, and accountability mechanisms (such as independent audits) can strengthen trust and

collaboration [5].

3. Adjusting to evolving technology and benefits: The value of PdM may increase over time as

technology improves and additional benefits emerge. To accommodate these shifts, an equitable

investment model should include provisions for periodically revising contributions, potentially based

on new performance indicators or cost savings. This flexibility would ensure that investment

responsibilities remain fair as the PdM technology evolves and the benefits become more universally

measurable.

An equitable investment strategy for PdM in railways requires a collaborative approach that aligns each

stakeholder’s financial responsibility with the specific benefits they gain. Consortium-based models,

public-private partnerships, and benefit-proportional investments offer viable frameworks tailored to the

unique benefit distribution among train operators, infrastructure owners, and maintenance contractors.

By adopting an MSP approach with transparent, flexible, and accountable structures, stakeholders can

collectively fund PdM that optimizes investment equity, maximizes returns, and supports the widespread

adoption of this technology.

5.2. Strengths and weaknesses
Strengths
1. Comprehensive scope of analysis: The thesis thoroughly examines the challenges and opportu-

nities associated with implementing PdM in the railway industry. It effectively identifies technical,

organizational, and financial barriers while considering cross-industry best practices for overcoming

them. This multifaceted approach ensures a well-rounded understanding of the subject.

2. Application of methodologies: ISM and Fuzzy MICMAC demonstrate a solid commitment to

methodological rigor. These tools help clarify the complex relationships between barriers and offer

a systematic way to prioritize interventions, making the findings valuable for academic and practical

applications.

3. Cross-industry comparisons: Drawing lessons from aviation and public infrastructure sectors

enhances the thesis’s relevance by incorporating proven strategies from industries with similar
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challenges. This comparative lens adds depth to the analysis and strengthens the credibility of the

proposed recommendations.

4. Economic insight: The inclusion of a cost-benefit analysis provides a quantitative dimension to

the study, offering compelling evidence of the financial feasibility of PdM. By calculating potential

long-term savings (up to 39.5% over two decades), the thesis equips stakeholders with a persuasive

case for investment.

5. Structured recommendations: The study offers well-defined and actionable recommendations,

such as phased implementation strategies, stakeholder alignment, regulatory clarity, and workforce

training. These insights directly address identified barriers and provide a practical roadmap for

implementation.

6. Integration of stakeholder perspectives: By recognizing the roles of operators, manufacturers,

regulators, and policymakers, the thesis acknowledges the complex, multi-stakeholder environment

of the railway sector, which is crucial for a successful PdM rollout

Weaknesses
1. Limited empirical validation: While the thesis employs robust analytical frameworks, its reliance

on secondary data and theoretical insights limits real-world applicability. Future research could

address this by incorporating empirical validation through case studies, pilot programs, or field

experiments within the railway sector. This would provide evidence of PdM’s impact and enhance

the study’s credibility.

2. Focus on freight trains: The narrow focus on freight trains reduces the generalizability of the

findings. Further studies could explore the applicability of PdM in passenger and high-speed rail

systems to provide a more comprehensive understanding of its potential across diverse railway

operations. Expanding the scope would also uncover unique challenges faced by these segments.

3. Regulatory framework analysis: While the thesis highlights the importance of regulatory com-

pliance, it could benefit from a deeper exploration of specific national and international standards

affecting PdM adoption. Future research should conduct detailed analyses of regulatory frameworks

to identify enablers and constraints, offering actionable guidance for policymakers and industry

stakeholders.

4. Stakeholder diversity: The current study underrepresents the perspectives of frontline mainte-

nance workers and smaller operators, who are integral to the practical implementation of PdM.

Future research could involve a more diverse range of stakeholders through structured surveys

or focus groups, capturing insights from all levels of the industry to ensure a more inclusive

understanding of challenges and solutions.

5. Dynamic nature of PdM technology: Rapid advancements in PdM technologies, such as machine

learning and IoT, might render some findings outdated. To address this, future research could

adopt a dynamic modeling approach incorporating scenario planning to account for technological

evolution and emerging trends. Regular updates to cost-benefit analyses could also ensure their

continued relevance.

6. Implementation challenges in fragmented systems: The thesis highlights stakeholder collab-

oration but does not fully address the technical and operational complexities of integrating PdM

across fragmented railway networks. Further research should delve into standardization efforts,

interoperability challenges, and change management strategies to facilitate smoother adoption.

7. Dependence on unstructured interviews: The reliance on unstructured interviews introduces

variability in data collection and potential biases, impacting the consistency of insights. Future

studies could use semi-structured or structured interviews with predefined questions to ensure

systematic coverage of key topics.

By addressing these limitations, future research can build on the strengths of this thesis while improving

the empirical foundation, stakeholder inclusivity, and methodological robustness. This will ensure that

findings remain relevant and actionable in the rapidly evolving context of PdM adoption in the railway

industry.
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Conclusions and reflection

This chapter summarizes the thesis conclusions and reflections on the study’s findings. This chapter

provides key recommendations for stakeholders in the railway industry and outlines directions for fu-

ture research. It emphasizes the importance of aligning PdM efforts with business goals, regulatory

requirements, and operational frameworks to ensure PdM’s effective integration. Additionally, the chapter

discusses lessons learned and the strategic implications of PdM adoption, especially in addressing

industry-specific challenges and fostering organizational change. The focus is creating a sustainable

roadmap for PdM implementation that supports the industry’s long-term digital transformation goals.

6.1. Conclusion
This thesis explores PdM in the railway sector, identifying and analyzing barriers to its implementation

and assessing its financial feasibility. The findings show that economic viability, regulatory compliance,

and business-technical alignment are the critical barriers. Economic viability is a primary factor, as

stakeholders need assurance of cost-effectiveness through demonstrated long-term savings. Regulatory

compliance presents another challenge due to stringent safety standards and limited legal frameworks

for predictive technologies. Business-technical alignment, crucial for integrating PdM seamlessly into

operations, emphasizes the need for multi-stakeholder commitment and strategic alignment.

A cost-benefit analysis validates PdM’s potential to reduce long-term maintenance costs by 39.5% over

20 years for DB Cargo. This includes direct savings from optimized maintenance and indirect benefits

like extended component life and reduced emergency repairs. The analysis indicates that while PdM

implementation might incur significant initial costs, future operational efficiencies offset these.

The study concludes that a collaborative, industry-wide approach is essential for successful PdM adoption,

addressing economic, regulatory, and organizational alignment. Recommendations include industry

collaboration to create supportive regulatory frameworks, further research on unmeasured benefits like

reduced track damage, and equitable investment models for stakeholders. Embracing these strategies

can help drive PdM’s widespread adoption, benefiting both railway operators and the industry.

6.2. Recommendations for the stakeholders
The research question of this study is:

What critical actions can enable the effective implementation of predictive maintenance technology in the

freight rail industry?

The answer to this question can be broken down into several concrete recommendations to the stake-

holders of PdM technology in the freight rail industry. These consist of:

• Regulatory collaboration and compliance: Work with regulatory bodies to develop a framework

that aligns PdM technology with safety and environmental standards. Present the societal benefits

of PdM, such as enhanced safety and reduced emissions, to gain regulatory support and enable a

smoother compliance process.

53
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– Quantify environmental and societal benefits to gain regulatory support: Frame PdM as

a technology aligned with societal priorities like sustainability, public safety, and workforce

efficiency enhancements. For example, emphasize PdM’s potential to reduce emissions and

optimize energy usage, which can make a compelling case for regulatory bodies to provide

the necessary policy adjustments and incentives.

• Develop industry standards for data management: Implement standardized data management

protocols across the railway industry to enable seamless data sharing, integration, and predictive

analysis. By learning from sectors like aviation, which rely heavily on standardized data, the railway

sector can improve data interoperability, reduce redundant processes, and simplify PdM model

deployment.

• Invest in workforce training and development: Address organizational and cultural barriers by

training maintenance staff and management on PdM’s benefits and operational processes. Not

only is a skilled workforce earmarked as a fundamental barrier, but building a skilled workforce also

can improve adoption rates and ensure long-term success.

– Foster a culture of data-driven decision-making: To address cultural resistance, invest

in programs that promote a data-informed approach within the workforce. Training sessions,

incentives, and case studies demonstrating PdM’s success in other industries can encourage

railway personnel to adopt and integrate PdM processes with greater enthusiasm.

– Pilot testing and gradual scaling: Start with pilot PdM projects on specific components

or infrastructure areas, such as wheelset or track monitoring. Gradually scale up based on

results to manage risks and ensure the technology’s reliability before broader adoption. This

phased approach can increase stakeholder confidence and provide valuable data to refine

PdM strategies.

• Explore multi-stakeholder investment models: Given the high initial costs, consider collaborative

investment strategies where costs and benefits are shared across stakeholders. This approach

can help mitigate financial barriers and make PdM a viable option for all parties involved.

– Regularly update investment contributions based on performance: PdM technologies

will improve over time, as will their cost savings and operational impact. Stakeholders should

periodically re-evaluate their financial contributions to ensure fair distribution aligned with

evolving benefits and cost savings.

– Develop metrics for unquantified benefits: Create measurable indicators for indirect PdM

benefits, like reduced track damage and improved reliability, to provide a complete picture of

its financial and operational value. This can further justify investments and encourage adoption

among stakeholders.

• Leverage cross-industry insights: Adapt best practices from sectors like aviation and public

infrastructure, which have successfully implemented PdM. Learning from these industries can

provide insights into overcoming similar barriers, such as high upfront costs and complex data

integration challenges.

6.3. Recommendations for further research
This section outlines directions for future studies to build on the findings of this thesis, enhancing the

understanding and implementation of PdM in the railway industry:

1. Empirical validation of barriers and benefits

Future studies should include pilot programs or real-world case studies within railway systems to

validate the identified technological barriers and quantified benefits empirically. This would provide

stronger evidence for the economic, technical, and operational feasibility of PdM, addressing current

limitations in data reliability and contextual variability.

2. Extension to passenger and high-speed rail

Expanding the scope of research to include passenger and high-speed rail systems could offer

a broader perspective on the unique challenges and benefits of PdM in diverse railway contexts.

This would enhance the generalizability of findings and reveal opportunities for cross-segment

innovations.
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3. Dynamic modeling approaches

Given the rapid evolution of PdM technologies, such as machine learning and IoT, future re-

search should adopt dynamic modeling techniques. Scenario planning could be used to anticipate

technological advancements, operational trends, and changing cost-benefit landscapes.

4. Stakeholder diversity and inclusivity

Engaging a more diverse range of stakeholders, including track owners, OEMs, and smaller railway

operators, through structured surveys or focus groups can provide richer insights into practical

challenges and solutions. This inclusivity will improve the practical applicability of PdM strategies.

5. Development of new metrics for indirect benefits

Establishing standardized, measurable indicators for currently unquantified benefits, such as

reduced track damage or improved reliability, is necessary. These metrics would help assess

PdM’s impact comprehensively and provide stronger investment justifications.

6. Enhanced regulatory analysis

Further studies could provide in-depth analyses of national and international regulatory frameworks

to identify specific enablers and constraints for PdM adoption. This would inform policy-making and

guide railway operators in aligning with legal requirements.

7. Explore other similar industries

While this thesis has focused on the airline and infrastructure sectors, further exploration of other

industries, such as energy transport and maritime, could yield additional valuable insights. These

industries face unique challenges and employ distinct strategies that may provide innovative

solutions and complementary perspectives for addressing barriers in the railway industry.

By pursuing these avenues, future research can address existing knowledge gaps and contribute to a

more robust and actionable understanding of PdM technology in railways, supporting its sustainable

adoption and operational success.
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A
Reference list quantitative part of

literature review

This appendix provides a comprehensive list of the 100 academic articles referenced in the quantitative

analysis of PdM implementation within the railway industry. These sources span a range of topics,

including technical advancements, managerial strategies, and combined approaches, and form the

foundation for the study’s exploration of barriers, challenges, and opportunities in PdM adoption. The

curated selection includes peer-reviewed papers, industry reports, and case studies published between

2018 and 2024, ensuring relevance to the current state of PdM technology and practices. This reference

list supports the findings discussed in the thesis and offers a resource for further exploration into PdM

applications across various sectors.
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B
Driving power analysis

B.1. Standard driving power plot
Driving power analysis is critical for identifying the most influential barriers to implementing Predictive

Maintenance (PdM) in the railway industry. By examining the extent to which each barrier impacts others

within the system, driving power analysis provides a structured understanding of which obstacles hold

the greatest potential to drive change if addressed effectively. Barriers with high driving power often

serve as root causes, influencing multiple dependent barriers. Addressing these high-impact barriers

can create cascading improvements, reducing the complexity of implementing PdM by simultaneously

mitigating related challenges.

For example, in Figure B.1, barriers like ”economic viability” or ”data standardization” emerge as key

drivers due to their foundational role in shaping the feasibility and scalability of PdM systems. Recognizing

their significance enables policymakers, operators, and other stakeholders to prioritize resources and

efforts strategically, focusing on resolving these root barriers to maximize impact.
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Figure B.1: Elbow method identifying 3 cluster groups.

B.1.1. Using the elbow method to group barriers
The elbow method is a statistical technique used in clustering analysis to determine the optimal number

of groups or clusters within a dataset. In the context of driving power analysis, it can be applied to

group barriers based on their influence levels, helping to categorize them into distinct clusters such as

high-impact, moderate-impact, and low-impact barriers.

To apply the elbow method:

70
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1. Calculate Driving Powers: For each barrier, calculate its driving power as the sum of its direct

and indirect impacts on other barriers, as derived from the structural reachability matrix.

2. Run Clustering Analysis: Use a clustering algorithm (e.g., k-means) to assign each barrier to

a cluster based on its driving power score. Run this analysis iteratively for different numbers of

clusters (e.g., 2 to 10).

3. Determine Total Within-Cluster Variance (WCV): Measure the WCV for each clustering iteration.

Figure B.2 presents a plot of the WCV. WCV decreases as the number of clusters increases but

diminishes significantly after a certain point.

4. Identify the Elbow Point: Plot the WCV against the number of clusters. The ”elbow point” is the

inflection point where adding more clusters results in minimal additional variance reduction. This

point indicates the optimal number of groups for classifying the barriers.

5. Interpret the Clusters: Based on the clustering results, categorize the barriers. For example,

barriers in the highest-driving-power cluster represent primary targets for strategic interventions.

By leveraging the elbow method, stakeholders can efficiently group barriers and focus on clusters

representing the most significant obstacles to PdM adoption, ensuring a systematic and impactful

approach to overcoming these challenges.
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Figure B.2: Standard driving power using the ISM method.

B.2. Fuzzy MICMAC plot after one multiplication and the importance
of multiple multiplications

The Fuzzy MICMAC plot after one multiplication provides an initial view of the distribution of barriers

based on their driving and dependence power. In this stage, each barrier’s influence and dependency

are calculated using the direct relationships derived from the reachability matrix. These values are

then normalized to create a two-dimensional scatter plot that categorizes barriers into four quadrants:

autonomous, dependent, linkage, and independent variables.

After the first multiplication, the plot reveals the barriers’ immediate or direct impacts as presented

in Figure B.3. For instance, barriers with high driving power but low dependence are placed in the

independent quadrant, identifying them as key drivers. Conversely, barriers with high dependence but

low driving power are categorized as dependent, reflecting their reliance on other factors for resolution.

The linkage and autonomous quadrants represent barriers with mixed or negligible influence patterns.

B.2.1. Importance of multiple multiplications
While the plot after one multiplication highlights the direct relationships among barriers, it does not

account for indirect or cascading influences that emerge over time. These indirect effects are crucial for

understanding the system’s complexity and effectively prioritizing interventions. Multiple multiplications
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of the reachability matrix allow the analysis to incorporate these secondary and tertiary relationships,

progressively refining each barrier’s driving and dependence powers.

As multiplications continue, the influence of higher-order interactions becomes apparent, and the positions

of barriers in the MICMAC plot stabilize. This iterative process helps identify systemic barriers that exert

significant indirect influence across the system and distinguishes them from localized challenges. For

example, a barrier like economic viability may initially appear moderately influential. Still, it could emerge

as a key driver after considering its cascading effects on other barriers, such as data standardization or

regulatory compliance.

Without multiple multiplications, the analysis risks oversimplifying the interdependencies, leading to

suboptimal prioritization of barriers. Therefore, iterative multiplications are essential for a comprehensive

understanding of the systemic dynamics that underpin the successful implementation of Predictive

Maintenance (PdM) in the railway industry.
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C
Fuzzy MICMAC code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Fuzzy MICMAC Analysis
5 """
6

7 import numpy as np
8 import matplotlib.pyplot as plt
9 from adjustText import adjust_text
10

11 # Define the barriers and data
12 barriers = [
13 "Scalability of IoT Sensors", "Data Integration and Standardization", "Model 

Interpretability",
14 "Real-Time Data Processing", "Organizational and Cultural Barriers", "Regulatory 

Compliance",
15 "Economic Viability", "Data Availability", "Business-Technical Alignment",
16 "Data Ownership and Privacy", "Infrastructure Complexity", "Skilled Workforce"
17 ]
18

19 # Tally Matrix as a list of lists
20 tally_matrix = [
21 ["-", 13, 9, 15, 7, 5, 11, 14, 8, 6, 10, 12],
22 [13, "-", 16, 18, 14, 13, 17, 20, 11, 19, 10, 7],
23 [9, 16, "-", 13, 8, 5, 9, 15, 6, 7, 12, 14],
24 [15, 18, 13, "-", 7, 5, 11, 14, 8, 6, 10, 12],
25 [7, 14, 8, 7, "-", 13, 11, 12, 10, 9, 11, 8],
26 [5, 13, 5, 5, 13, "-", 17, 10, 10, 15, 6, 9],
27 [11, 10, 9, 11, 11, 17, "-", 12, 15, 8, 7, 9],
28 [14, 20, 15, 14, 12, 10, 12, "-", 16, 9, 10, 11],
29 [8, 11, 6, 8, 10, 15, 15, 16, "-", 14, 8, 10],
30 [6, 19, 7, 6, 9, 8, 7, 9, 14, "-", 11, 10],
31 [10, 10, 12, 10, 11, 6, 7, 10, 8, 11, "-", 12],
32 [12, 7, 14, 12, 8, 9, 9, 11, 10, 10, 12, "-"]
33 ]
34

35 literature_mentions = [22, 30, 27, 35, 19, 18, 18, 26, 15, 23, 20, 24]
36 individual_thresholds = [0.6 * mentions for mentions in literature_mentions]
37

38 # Step 1: Normalize tally_matrix to create fuzzy influence matrix
39 max_value = max([val for row in tally_matrix for val in row if val != "-"])
40 fuzzy_matrix = np.zeros((len(barriers), len(barriers)))
41

42 for i in range(len(barriers)):
43 for j in range(len(barriers)):
44 if i != j and tally_matrix[i][j] != "-":
45 if tally_matrix[i][j] >= individual_thresholds[i]: # Apply threshold
46 fuzzy_matrix[i][j] = tally_matrix[i][j] / max_value
47 else:
48 fuzzy_matrix[i][j] = 0 # Below threshold
49

50 # Add identity matrix (self-influence is assumed)
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51 fuzzy_matrix += np.identity(len(barriers))
52

53 # Max-Min Composition Function
54 def max_min_composition(matrix1, matrix2):
55 """
56 Perform max-min composition of two matrices.
57 """
58 size = matrix1.shape[0]
59 result = np.zeros_like(matrix1)
60 for i in range(size):
61 for j in range(size):
62 result[i, j] = np.max(np.minimum(matrix1[i, :], matrix2[:, j]))
63 return result
64

65 # Step 2: Iterative max-min matrix multiplication to account for indirect influences
66 stabilized = False
67 indirect_matrix = fuzzy_matrix.copy()
68 max_iterations = 1000 # Set a limit for maximum iterations
69

70 for iteration in range(max_iterations):
71 new_matrix = max_min_composition(indirect_matrix, fuzzy_matrix)
72

73 # Check for stabilization
74 if np.allclose(new_matrix, indirect_matrix, atol=1):
75 stabilized = True
76 break
77 indirect_matrix = new_matrix
78

79 if not stabilized:
80 print("Warning: The matrix did not converge after maximum iterations.")
81

82 # Results
83 print(f"Converged in {iteration + 1} iterations.")
84

85

86 # Step 3: Calculate fuzzy driving power and fuzzy dependency
87 fuzzy_driving_power = indirect_matrix.sum(axis=1)
88 fuzzy_dependency = indirect_matrix.sum(axis=0)
89

90 # Step 4: Clustering and visualization
91 median_driving_power = np.median(fuzzy_driving_power)
92 median_dependency = np.median(fuzzy_dependency)
93

94 # Define cluster colors
95 cluster_colors = {
96 "Autonomous": "#B9B7A7",
97 "Dependent": "#B5AA9D",
98 "Linkage": "#7C90A0",
99 "Independent": "#4E5166"
100 }
101

102 # Assign colors to barriers
103 colors = []
104 for i in range(len(barriers)):
105 if fuzzy_driving_power[i] < median_driving_power and fuzzy_dependency[i] <

median_dependency:
106 colors.append(cluster_colors["Autonomous"])
107 elif fuzzy_driving_power[i] < median_driving_power and fuzzy_dependency[i] >=

median_dependency:
108 colors.append(cluster_colors["Dependent"])
109 elif fuzzy_driving_power[i] >= median_driving_power and fuzzy_dependency[i] >=

median_dependency:
110 colors.append(cluster_colors["Linkage"])
111 else:
112 colors.append(cluster_colors["Independent"])
113

114 # Plot Fuzzy MICMAC Clusters in 2D plot with numbered barriers and colored clusters
115 plt.figure(figsize=(12, 8)) # Increase the figure size
116 scatter = plt.scatter(fuzzy_driving_power, fuzzy_dependency, color=colors)
117

118 # Annotate each point with its barrier index, starting from 1
119 texts = []
120 for i in range(len(barriers)):
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121 texts.append(plt.text(fuzzy_driving_power[i], fuzzy_dependency[i], str(i + 1), ha='center'
, va='center', fontsize=18))

122

123 # Adjust text to avoid overlap
124 adjust_text(texts, arrowprops=dict(arrowstyle='->', color='gray', lw=0.5))
125

126 # Add quadrant dividers at the median driving power and dependency
127 plt.axhline(y=median_dependency, color='red', linestyle='--')
128 plt.axvline(x=median_driving_power , color='red', linestyle='--')
129

130 # Labels and title with larger font size
131 plt.xlabel('Fuzzy Driving Power', fontsize=18)
132 plt.ylabel('Fuzzy Dependency', fontsize=18)
133 plt.title('Fuzzy MICMAC Analysis: Driving Power vs Dependency (Clustered Barriers)', fontsize

=20)
134 plt.grid(True)
135 # Increase font size for tick numbers on both axes
136 plt.tick_params(axis='both', labelsize=16) # Increase font size for both x and y axis tick

numbers
137

138

139 # Custom legend for numbered barriers on the side, starting from 1
140 legend_labels = [f"{i + 1}: {barrier}" for i, barrier in enumerate(barriers)]
141 legend_text = "\n".join(legend_labels)
142 plt.figtext(1.02, 0.5, legend_text, ha="left", va="center", fontsize=18, bbox=dict(facecolor="

lightgrey", edgecolor="black", boxstyle="round,pad=0.5"))
143

144 # Cluster legend closer to the plot
145 for cluster, color in cluster_colors.items():
146 plt.scatter([], [], color=color, label=cluster)
147 plt.legend(title="Clusters", loc="upper right", bbox_to_anchor=(1.15, 1), borderaxespad=0.2,

fontsize=18, title_fontsize=18)
148

149 plt.tight_layout(rect=[0, 0, 1.0, 1.0]) # Adjust layout to fit the legend on the side
150 plt.savefig('Fuzzy_MICMAC2.pdf', bbox_inches='tight')
151 plt.show()



D
Cost-benefit analysis code

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Thu Dec 5 11:36:51 2024
5

6 @author: kietfoeken
7 """
8

9 import numpy as np
10 import matplotlib.pyplot as plt
11

12 #%%
13 # Number of Monte Carlo simulations
14 num_simulations = 40000
15 timepath = 20 #years
16 inflation_rate = 0.03 # Assuming a 3% annual inflation rate
17 initial_cost_interval = 6 #lifetime sensors
18

19 # Constants
20 wagon = 80000
21 wheels_trainset = 4
22 years = 1 # for calculation costs per year
23 num_trains = wagon/40 # Number of trains
24 baseline_revenue = 4.177e9*1.03**6/80000*wagon
25

26 def clip_negative(arr, min_value=0):
27 return np.clip(arr, a_min=min_value, a_max=None)
28

29 cost_per_treatment_pm = 2216 # Cost per treatment (mean=5000, std=200)
30 downtime_event_cost_pm = 10000 # average downtime event cost
31 PM_efficiency_gain = clip_negative(np.random.normal(loc=0.3, scale=0.03, size=num_simulations)

)
32 PM_efficiency_gain_m = clip_negative(np.random.normal(loc=0.5, scale=0.03, size=

num_simulations))
33 lifespan_with_PM = clip_negative(np.random.normal(loc=1440000, scale=100000, size=

num_simulations))
34 yearly_maintenance_cost_cyber = clip_negative(np.random.normal(loc=50000, scale=3000, size=

num_simulations)) # Existing cost of maintenance
35 cybersecurity_maintenance_cost = 10000 # Yearly cost for cybersecurity
36 maintenance_personnel_cost_cyber = 100000 # Yearly cost for maintenance personnel
37 downtime_saved_per_event = clip_negative(np.random.normal(loc=12, scale=2, size=

num_simulations)) # hours saved per downtime event
38 annual_accident_probability_pm = clip_negative(np.random.normal(loc=0.001, scale=0.001, size=

num_simulations))
39 false_positive_rate = clip_negative(np.random.normal(loc=0.05, scale=0.01, size=

num_simulations)) # Assuming a 5% false positive rate with a small variation
40 customer_service_improvement = clip_negative(np.random.normal(loc=0.005, scale=0.005, size=

num_simulations))
41 lifespan_no_PM = 1200000
42 annual_accident_probability_no_pm = clip_negative(np.random.normal(loc=0.0252, scale=0.002,

size=num_simulations)) # 10% chance of an accident without predictive maintenance
43 downtime_event_cost_hour = 1667
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44 wheel_replacement_cost = 4000 # Cost of replacing a single wheel in Euros
45 yearly_mileage = 178500 # km per year
46 cargo_capacity_per_hour = 90.3 # tons of cargo transported per hour
47 revenue_per_ton = 16.5 # revenue in Euros per ton of cargo
48 downtime_time = 60 #hours needed for wheel treatment
49 cost_per_service = clip_negative(np.random.normal(loc=300, scale=100, size=num_simulations))#

average costs in euros of servicing/replacing a single sensor
50 service_interval = 5 #years
51 sensor_installation_cost = 100 #installation personnel cost per sensor
52 sensor_cost = 200 #manufacturing cost per sensor
53 education_cost = clip_negative(np.random.normal(loc=1000000, scale=100000, size=

num_simulations))#cost for reschooling one maintenance crews
54 crews = 1/2300 #one crew for every 20 wagon
55 backend_cost = 100 # cost per sensor per year for cloud services etc
56 analyst_cost = 100000 # cost per analyst. assume 1 analyst for every 5000 sensors
57 cost_per_accident = 940092 # Cost per accident in euros
58 efficiency_improvement = clip_negative(np.random.normal(loc=0.02,scale=0.02, size=

num_simulations))
59 energy_consumption_electricity = 2680191281
60 energy_consumption_other = 1742124333
61 annual_downtime_probability_nopm = clip_negative(np.random.normal(loc=0.297,scale=0.05, size=

num_simulations))
62 pre_inspection_cost = clip_negative(np.random.normal(loc=100,scale=10, size=num_simulations))
63 maintenance_interval = 115/30
64 PM_corrective_odds = clip_negative(np.random.normal(loc=0.07,scale=0.03, size=num_simulations)

)
65 NoPM_corrective_odds = clip_negative(np.random.normal(loc=0.15,scale=0.05, size=

num_simulations))
66 corrective_maintenance_price = 2000
67 PM_maintenance_labor = 70
68 NoPM_maintenance_labor =100
69 PM_placement_wheel = 140
70 NoPM_placement_wheel = 140
71 PM_maint_odds = 1
72 NoPM_maint_odds = clip_negative(np.random.normal(loc=0.4,scale=0.05, size=num_simulations))
73

74 #%% Wheel treatment costs
75 # Total material loss in 1 year for both scenarios
76 PM_pre_inspection = 0
77 NoPM_pre_inspection = pre_inspection_cost * maintenance_interval * num_trains
78

79 PM_corrective_maintenance = PM_corrective_odds * corrective_maintenance_price * num_trains
80 NoPM_corrective_maintenance = NoPM_corrective_odds * corrective_maintenance_price * num_trains
81

82 PMmaintenance = (PM_maintenance_labor+PM_placement_wheel) * PM_maint_odds * (1-
PM_efficiency_gain_m) * maintenance_interval * wheels_trainset * wagon

83 NoPMmaintenance = (NoPM_maintenance_labor+NoPM_placement_wheel) * NoPM_maint_odds *
maintenance_interval * wheels_trainset * wagon

84

85 # Define the costs of handling a false positive
86 false_positive_maintenance_cost = false_positive_rate * (PM_corrective_odds *

corrective_maintenance_price * num_trains)
87 false_positive_downtime_cost = false_positive_rate * (downtime_event_cost_hour * downtime_time

* num_trains)
88

89 # Total cost for both scenarios
90 PM_treatment_cost_samples = PM_pre_inspection + PM_corrective_maintenance + PMmaintenance +

false_positive_maintenance_cost + false_positive_downtime_cost
91 No_PM_treatment_cost_samples = NoPM_pre_inspection + NoPM_corrective_maintenance +

NoPMmaintenance
92

93 #%% Downtime costs
94 # Calculate total downtime costs for both scenarios
95 annual_downtime_probability_pm = annual_downtime_probability_nopm * (1-PM_efficiency_gain)
96 PM_downtime_cost = annual_downtime_probability_pm * num_trains * downtime_event_cost_hour * (

downtime_time - downtime_saved_per_event)
97 No_PM_downtime_cost = annual_downtime_probability_nopm * num_trains * downtime_event_cost_hour

* downtime_time
98

99 #%% Replacement costs
100 total_mileage = yearly_mileage
101

102 # Calculate the number of replacements over n years for both scenarios
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103 replacements_with_PM = total_mileage / lifespan_with_PM
104 replacements_without_PM = total_mileage / lifespan_no_PM
105

106 # Calculate total replacement costs for both scenarios over time
107 total_replacement_cost_with_PM = replacements_with_PM * wheel_replacement_cost * wagon *

wheels_trainset
108 total_replacement_cost_without_PM = replacements_without_PM * wheel_replacement_cost * wagon *

wheels_trainset
109

110 #%% Increased revenue PM with lower downtime
111 downtime_events_PM = annual_downtime_probability_pm
112 downtime_events_no_PM = annual_downtime_probability_nopm
113

114 # Calculate downtime caused by false positives
115 false_positive_downtime_hours = false_positive_rate * downtime_time
116

117 downtime_hours_saved = (downtime_events_no_PM - downtime_events_PM) * downtime_time +
downtime_saved_per_event * downtime_events_PM - false_positive_downtime_hours

118 # Calculate the additional tons of cargo transported due to saved downtime
119 additional_cargo_tons = downtime_hours_saved * cargo_capacity_per_hour * num_trains
120 # Calculate the additional revenue generated from transporting more cargo
121 additional_revenue_PM = additional_cargo_tons * revenue_per_ton
122 #%% Costs cybersecurity
123 cyber_cost = (maintenance_personnel_cost_cyber + cybersecurity_maintenance_cost)
124

125 #%% Sensor maintenance -> assuming 1 sensor per wheelset
126 service_cost = cost_per_service * wagon * wheels_trainset / service_interval
127 backend_cost = (backend_cost + analyst_cost/5000) * wagon * wheels_trainset / 2
128 maintenance_cost = service_cost + backend_cost
129

130 #%% Implementation cost
131 crew_cost = education_cost * crews * wagon
132

133 installation_cost = (sensor_installation_cost + sensor_cost) * wagon * wheels_trainset / 2 #
total installation cost of sensors on fleet

134

135 implementation_cost = crew_cost + installation_cost
136

137 #%% Accident risk reduction
138 # Calculate the expected annual cost of accidents without predictive maintenance (no_pm)
139 expected_cost_no_pm = annual_accident_probability_no_pm * cost_per_accident * num_trains
140

141 # Calculate the expected annual cost of accidents with predictive maintenance (pm)
142 expected_cost_pm = annual_accident_probability_pm * cost_per_accident * num_trains
143

144 #%% Improved efficiency
145 energy_cost = energy_consumption_electricity/80000* wagon + energy_consumption_other/80000*

wagon
146

147 # Calculate the reduced energy consumption per train due to efficiency improvement
148 reduced_energy_consumption = energy_cost * (efficiency_improvement)
149 saved_energy = reduced_energy_consumption
150

151 #%% customer satisfaction
152 # Calculate the additional revenue due to higher service standards
153 additional_revenue_service_improvement = baseline_revenue * customer_service_improvement
154

155 #%% yearly cost
156 yearly_cost_samples_pm = PM_treatment_cost_samples + PM_downtime_cost +

total_replacement_cost_with_PM - additional_revenue_PM + cyber_cost + maintenance_cost +
expected_cost_pm - saved_energy - additional_revenue_service_improvement

157 yearly_cost_samples_no_pm = No_PM_treatment_cost_samples + No_PM_downtime_cost +
total_replacement_cost_without_PM + expected_cost_no_pm

158

159 #%% Initial costs
160 initial_cost = implementation_cost
161

162 #%% total cost PM
163 initial_development_costs = 0
164 inflation_factors = (1 + inflation_rate) ** np.arange(timepath)
165 discount_rate = 0.0739
166 discount_factors = (1 / (1 + discount_rate)) ** np.arange(timepath)
167
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168 def total_cost_pm(yearly_cost_samples_pm ,initial_cost,initial_development_cost):
169 yearly_costs_matrix_pm = np.random.choice(yearly_cost_samples_pm , (num_simulations,

timepath))
170 inflation_adjusted_costs_pm = yearly_costs_matrix_pm * inflation_factors
171 recurring_cost_matrix = np.zeros((num_simulations, timepath))
172

173 # Apply inflation and discounting
174 inflation_adjusted_costs_pm = yearly_costs_matrix_pm * inflation_factors
175 recurring_cost_matrix = np.zeros((num_simulations, timepath))
176

177 for i in range(initial_cost_interval - 1, timepath, initial_cost_interval):
178 recurring_cost_matrix[:, i] = initial_cost * inflation_factors[i]
179 # Calculate the total cost matrix
180 total_cost_matrix = inflation_adjusted_costs_pm + recurring_cost_matrix
181

182 # Discount initial development cost
183 cumulative_cost_matrix_pm_initial = np.zeros((total_cost_matrix.shape[0], timepath + 1))
184 cumulative_cost_matrix_pm_initial[:, 0] += initial_development_cost / discount_factors[19]

+ initial_cost
185 cumulative_cost_matrix_pm_initial[:, 1:] = total_cost_matrix
186 cumulative_cost_matrix_pm = np.cumsum(cumulative_cost_matrix_pm_initial , axis=1)
187

188 return cumulative_cost_matrix_pm
189

190 #%% total cost noPM
191

192 def total_cost_no_pm(yearly_cost_samples_no_pm):
193 yearly_costs_matrix_no_pm = np.random.choice(yearly_cost_samples_no_pm , (num_simulations,

timepath))
194 inflation_adjusted_costs_no_pm = yearly_costs_matrix_no_pm * inflation_factors
195

196 cumulative_cost_matrix_no_pm_initial = np.zeros((inflation_adjusted_costs_no_pm.shape[0],
timepath + 1))

197 cumulative_cost_matrix_no_pm_initial[:, 0] += 0
198 cumulative_cost_matrix_no_pm_initial[:, 1:] = inflation_adjusted_costs_no_pm
199 cumulative_cost_matrix_no_pm = np.cumsum(cumulative_cost_matrix_no_pm_initial , axis=1)
200

201 return cumulative_cost_matrix_no_pm
202

203 #%% analytics
204 cumulative_cost_matrix_pm_initial = total_cost_pm(yearly_cost_samples_pm ,initial_cost,

initial_development_costs)
205 total_cost_pm_20_years = cumulative_cost_matrix_pm_initial[:, 20]
206

207 cumulative_cost_matrix_no_pm_initial = total_cost_no_pm(yearly_cost_samples_no_pm)
208 total_cost_no_pm_20_years = cumulative_cost_matrix_no_pm_initial[:, 20]
209

210 probability_pm_higher = np.mean(total_cost_pm_20_years > total_cost_no_pm_20_years)
211

212 print(f"Probability that cost with PdM is higher than cost without PdM after 20 years: {
probability_pm_higher:.4f}")

213

214 development_costs = np.linspace(0.4e9, 0.16e10, 100)
215 probabilities = []
216

217 for dev_cost in development_costs:
218 costs_pm = total_cost_pm(yearly_cost_samples_pm ,initial_cost,dev_cost)
219 costs_no_pm = total_cost_no_pm(yearly_cost_samples_no_pm)
220 probabilities.append(np.mean(costs_pm[:, 20] > costs_no_pm[:, 20]))
221

222 # Plot the results
223 plt.figure(figsize=(10, 6))
224 plt.plot(development_costs, probabilities, label='Probability PdM more expensive', color='#4

E5166')
225 plt.xlabel('Initial Development Cost for PdM €()', fontsize=18)
226 plt.ylabel('Probability PdM is more expensive', fontsize=18)
227 plt.title('Probability of PdM being more expensive vs Initial Development Cost', fontsize=18)
228 plt.xticks(fontsize=16)
229 plt.yticks(fontsize=16)
230 plt.grid(True)
231 plt.legend(fontsize=18)
232 plt.savefig('CBA-developmentcost.pdf')
233 plt.show()
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234

235 #%% visualization
236 n_years = cumulative_cost_matrix_pm_initial.shape[1]
237

238 # Initialize arrays to store the mean, lower bound, and upper bound for each year
239 mean_pm = np.zeros(n_years)
240 lower_bound_pm = np.zeros(n_years)
241 upper_bound_pm = np.zeros(n_years)
242

243 mean_no_pm = np.zeros(n_years)
244 lower_bound_no_pm = np.zeros(n_years)
245 upper_bound_no_pm = np.zeros(n_years)
246

247 # Compute statistics for each year
248 for year in range(n_years):
249 mean_pm[year] = np.mean(cumulative_cost_matrix_pm_initial[:, year])
250 lower_bound_pm[year] = np.percentile(cumulative_cost_matrix_pm_initial[:, year], 5) # 5th

percentile
251 upper_bound_pm[year] = np.percentile(cumulative_cost_matrix_pm_initial[:, year], 95) # 95

th percentile
252

253 mean_no_pm[year] = np.mean(cumulative_cost_matrix_no_pm_initial[:, year])
254 lower_bound_no_pm[year] = np.percentile(cumulative_cost_matrix_no_pm_initial[:, year], 5)

# 5th percentile
255 upper_bound_no_pm[year] = np.percentile(cumulative_cost_matrix_no_pm_initial[:, year], 95)

# 95th percentile
256

257 years = np.arange(0, n_years) # Year indices (1 to n_years)
258

259 # Plotting PM costs
260 plt.figure(figsize=(12, 6))
261 plt.plot(years, mean_pm, label='Mean PdM Cost', color='#4E5166')
262 plt.fill_between(years, lower_bound_pm, upper_bound_pm, color='#4E5166', alpha=0.2, label='PdM

 Cost 5th-95th Percentile')
263

264 # Plotting No PM costs
265 plt.plot(years, mean_no_pm, label='Mean no PdM Cost', color='#B9B7A7')
266 plt.fill_between(years, lower_bound_no_pm, upper_bound_no_pm, color='#B9B7A7', alpha=0.2,

label='No PdM Cost 5th-95th Percentile')
267

268 # Formatting the plot
269 plt.title('Cumulative Costs with and without PdM Over Time', fontsize=18)
270 plt.xlabel('Year', fontsize=18)
271 plt.ylabel('Cumulative Cost €()', fontsize=18)
272 plt.legend(fontsize=16)
273 plt.xticks(years, fontsize=16)
274 plt.grid(True)
275 plt.yticks(fontsize=16) # Show each year on the x-axis
276 plt.savefig('CBA.pdf')
277 plt.show()
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Cost-benefit analysis variable list

Table E.1: Overview of variables, their values/distributions, and references

Variable Value/Distribution References

Canalyst ∼ N(µ = 100000, σ = 10000) internal

Cbackend ∼ N(µ = 100, σ = 50) internal

Ccargo_capacity ∼ N(µ = 90.3, σ = 10) [17]

Ccm ∼ N(µ = 2000, σ = 200) [12]

Ccybersecurity, maintenance ∼ N(µ = 10000, σ = 1000) internal

Cdpm ∼ N(µ = 10, 000, σ = 1, 000) [12]

Cdowntime_event ∼ N(µ = 1667, σ = 100) [40]

Ceducation ∼ N(µ = 100000, σ = 10000) estimate

Cmaintenance, personnel, cyber ∼ N(µ = 100000, σ = 10000) internal

Cper_accident ∼ N(µ = 940092, σ = 100000) [32]

Cper_service ∼ N(µ = 300, σ = 30) estimate

Cpi ∼ N(µ = 100, σ = 10) [12]

Csensor, installation ∼ N(µ = 100, σ = 10) internal

Csensor ∼ N(µ = 200, σ = 20) internal

Ctpm ∼ N(µ = 2216, σ = 500) [12]

Cwm, labor no-PM ∼ N(µ = 100, σ = 10) internal

Cwm, labor PM ∼ N(µ = 100, σ = 10) internal

CSI ∼ N(µ = 0.005, σ = 0.001) estimate

∆ηmaintenance ∼ N(µ = 100, σ = 10) estimate

∆ηPM ∼ N(µ = 0.3, σ = 0.03) [44]

∆TM ∼ N(µ = 3.8, σ = 0.3) [12]

dyear ∼ N(µ = 178500, σ = 10000) [46]

Econsumption, electricity ∼ N(µ = 33502, σ = 3000) [17]

Continued on next page
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Variable Value/Distribution References

Econsumption, other ∼ N(µ = 21776, σ = 2000) [17]

Lno-PM ∼ N(µ = 1200000, σ = 100000) [46]

LPM ∼ N(µ = 1440000, σ = 100000) [46, 44]

ncrews ∼ N(µ = 1/2300, σ = 1/20000) [19]

ntrains 2000 [17]

nwheels 4 per wagon [56]

Paccident, no-PM ∼ N(µ = 0.0252, σ = 0.001) [38]

Paccident, PM ∼ N(µ = 0.001, σ = 0.001) [38]

Pc, no-PM ∼ N(µ = 0.15, σ = 0.05) [12]

Pc, PM ∼ N(µ = 0.07, σ = 0.03) [12]

Pdowntime, no-PM ∼ N(µ = 0.297, σ = 0.05) [12]

Pfalse_positive ∼ N(µ = 0.05, σ = 0.01) estimate

Pmaintenance, no-PM ∼ N(µ = 100, σ = 10) internal

Pmaintenance, PM ∼ N(µ = 100, σ = 10) internal

Rbaseline 63000 [17]

Rrevenue_per_ton ∼ N(µ = 16.5, σ = 2) [17, 46]

Sinterval ∼ N(µ = 5, σ = 0.5) internal

Tdowntime ∼ N(µ = 60, σ = 40) [40]

Tdowntime_saved ∼ N(µ = 12, σ = 2) estimate

TFpm ∼ N(µ = 4.49, σ = 0.5) [12]
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Table E.2: Overview of variables, their values/distributions, references, and descriptions

Variable Value/Distribution References Description

Canalyst 100000 internal Cost of hiring an analyst to

process and interpret sensor

data.

Cbackend 100 internal Backend maintenance costs

for systems supporting predic-

tive maintenance.

Ccargo_capacity 90.3 [17] Cargo capacity transported

per hour per train.

Ccm 2000 [12] Cost per corrective mainte-

nance event.

Ccybersecurity, maintenance 10000 internal Costs associated with

maintaining cybersecurity

systems.

Cdpm 10, 000 [12] Cost per downtime event.

Cdowntime_event 1667 [40] Cost incurred per hour of

downtime.

Ceducation ∼ N(µ = 100000, σ = 10000) estimate Education costs for training

crews on predictive mainte-

nance technologies.

Cmaintenance, personnel, cyber 100000 internal Cost for personnel specifi-

cally involved in cybersecurity

maintenance.

Cper_accident 940092 [32] Average cost incurred per ac-

cident.

Cper_service ∼ N(µ = 300, σ = 100) estimate Cost of servicing each sensor.

Cp,wheel 140 [12] Cost for placement wheel.

Csensor, installation 100 internal Labor cost associated with

sensor installation.

Csensor 200 internal Cost of each individual sen-

sor.

Ctpm 2216 [12] Cost per treatment under pre-

dictive maintenance.

Cwm, labor no-PM 100 internal Labor costs for wheel mainte-

nance under traditional main-

tenance.

Cwm, labor PM 70 internal Labor costs for wheel mainte-

nance under predictive main-

tenance.

Cwr 4000 [12] Replacement costs per

wheel.

CSI ∼ N(µ = 0.005, σ = 0.001) estimate Customer service improve-

ment factor, proportional to

revenue increase.

Continued on next page
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Variable Value/Distribution References Description

∆ηmaintenance ∼ N(µ = 100, σ = 10) estimate Efficiency improvement in

maintenance activities.

∆ηPM ∼ N(µ = 0.3, σ = 0.03) [44] Efficiency improvement from

predictive maintenance.

∆TM 3.8 [12] Averagemaintenance interval

in years.

dyear 178500 [46] Total yearly mileage of the

fleet.

Econsumption, electricity 33502 [17] Energy consumption cost

(electricity) per wagon.

Econsumption, other 21776 [17] Energy consumption cost

(other sources, e.g., fuel) per

wagon.

Lno-PM 1200000 [46] Lifespan of wheels under tra-

ditional maintenance (in km).

LPM ∼ N(µ = 1440000, σ =
100000)

[46, 44] Lifespan of wheels under pre-

dictive maintenance (in km).

ncrews 1/2300 [19] Number of maintenance

crews required per wagon.

ntrains 2000 [17] Total number of trains in the

fleet.

nwheels 4 per wagon [56] Number of wheels per wagon.

Paccident, no-PM ∼ N(µ = 0.0252, σ = 0.001) [38] Probability of an accident un-

der traditional maintenance.

Paccident, PM ∼ N(µ = 0.001, σ = 0.001) [38] Probability of an accident un-

der predictive maintenance.

Pc, no-PM ∼ N(µ = 0.15, σ = 0.05) [12] Probability of corrective main-

tenance under traditional

maintenance.

Pc, PM ∼ N(µ = 0.07, σ = 0.03) [12] Probability of corrective

maintenance under predictive

maintenance.

Pdowntime, no-PM ∼ N(µ = 0.297, σ = 0.05) [12] Probability of downtime under

traditional maintenance.

Pfalse_positive ∼ N(µ = 0.05, σ = 0.01) estimate Probability of false-positive

maintenance events under

predictive maintenance.

Pmaintenance, no-PM ∼ N(µ = 100, σ = 10) internal Maintenance probability un-

der traditional maintenance.

Pmaintenance, PM ∼ N(µ = 100, σ = 10) internal Maintenance probability un-

der predictive maintenance.

Rbaseline 63000 [17] Baseline revenue per wagon

per year.

Continued on next page
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Variable Value/Distribution References Description

Rrevenue_per_ton 16.5 [17, 46] Revenue generated per ton of

cargo transported.

Sinterval 5 internal Service interval for sensor

maintenance (in years).

Tdowntime 60 [40] Duration of downtime per

event.

Tdowntime_saved ∼ N(µ = 12, σ = 2) estimate Downtime saved per event

with predictive maintenance.
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