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Preface

This document represents the culmination of our Bachelor Graduation Thesis project, undertaken at the
Faculty of Electrical Engineering, Mathematics, and Computer Science (EEMCS) at Delft University of
Technology. The primary objective of this project was to develop a comprehensive software system to
manage the deployment of the Lunar Zebro rover on the lunar surface. Throughout this project, we
faced numerous technical challenges, from understanding the complexities of communication protocols
to designing a system capable of operating autonomously through a space mission.

Our work was greatly supported by the guidance and expertise of Prof. Dr. Ir. C.J.M. Verhoeven and Prof.
Dr. Ir. G.N. Gaydadjiev, whose insights were invaluable in navigating this project’s technical intricacies.
We also extend our gratitude to the Lunar Zebro team for their collaborative spirit and the opportunity to
contribute to this pioneering mission.

This thesis is structured to provide a detailed account of the design process, technical challenges, and
testing methodologies employed to ensure the success of the RDSS. We hope that the findings and
methodologies presented here will not only contribute to the success of the Lunar Zebro mission but
also provide a foundation for future developments in the field of space deployment systems.

H. Vanhuynegem
D.Y. Aris

Delft, June 2024
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Abstract

The Rover Deployment Software System (RDSS) is a critical component designed to ensure the suc-
cessful deployment of the Lunar Zebro rover onto the lunar surface. This thesis presents the design,
implementation, and testing of the RDSS, which consists of three primary subsystems: a communica-
tion system between the lander and the RDSS, an electronic control system, and an integration with
an existing rover communication system. Moreover, the existing rover communication system will not
be covered in this thesis due to the implementation being done by the Lunar Zebro team in the future.
The RDSS is tasked with managing the deployment sequence, providing power during transit, and fa-
cilitating communication between the rover and the lander. Key challenges addressed include handling
the harsh lunar environment, ensuring reliable communication, and adhering to strict weight constraints.
Extensive testing, including unit, integration, system, and performance tests, validated the system’s ro-
bustness and reliability. The insights and methodologies developed are intended to support the Lunar
Zebro mission and inform future projects involving space deployment systems.
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1
Introduction

Lunar Zebro is ”World’s smallest and lightest rover yet, built by TU Delft students” [10], a rover that
is being designed for space missions. For the current iteration, the focus of the Lunar Zebro team is
sending the rover to the moon as a piggyback payload, which is attached to a larger lander. After the
lander makes contact with the lunar surface, it will send a signal indicating that the Rover Deployment
System (RDS) should release the rover onto the lunar surface. Thus, the primary goal of the RDS is to
release the rover onto the lunar surface upon receiving a deployment signal. The rover should not be
released at any other moment.

Figure 1.1: Rover Deployment System

The mechanical part of the RDS which will physically de-
ploy the rover has mostly been designed by the Lunar Zebro
team. During the development, the need arose for an elec-
tronic control system that controls the mechanical system,
allows the rover to communicate with the lander, and that
provides power from the lander to the rover. Therefore, the
RDS is a crucial system that aids in the rover’s survival.

State-of-the-Art Analysis
Space exploration started in 1957 and has since grown into
a 630 billion dollar industry [24]. Large agencies such as
NASA, ESA, andmanymore are developing various projects
to extend human knowledge about extraterrestrial life. A
nanosatellite is the most similar product available on the
market compared to the Lunar Zebro rover since it weighs
between 1-10 kg and operates in the same harsh environ-
ments[15]. These nanosatellites are deployed into space to
orbit in the Low Earth Orbit zone, which lies between 200 to
2,000 kilometres above Earth. The deployment system used
for these nanosatellites is the product most similar to the
Rover deployment system, as it functions likewise in similar
environments. An example would be the ISIPOD CubeSat
Deployer, created by ISISPACE [7]. However, no informa-
tion about how the control system is designed can be found
online. Many scientific papers are available about the devel-
opment of mechanical deployment techniques, such as the
paper by Wang [23]. Many space agencies maintain a lot of proprietary information, which makes it
difficult to find information about the electrical control systems used in such deployers. For this reason,
the Rover Deployment System was designed. This system has 3 objectives:
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2

1. Deploy the Lunar Zebro rover on the surface of the moon.
2. Provide power from the lander to the rover during transit when needed.
3. Function as an intermediary for communication between the rover and the lander.

Figure 1.2: Lunar surface temperature throughout the lunar
cycle.

The Lunar Zebro Rover Deployment System is
thus a first-of-its-kind system designed specifi-
cally to transport a nano rover to themoon or other
extraterrestrial planets.

Many limitations are posed on the design of the
RDS. The harsh environments, with temperatures
ranging from -173.15 to 126.85 degrees Celsius
and solar flares occurring [11]. Every gram costs
approximately 1000 dollars to be transported to
the lunar surface. Weight is thus of significant
importance when designing the RDS. The Lunar
Zebro team aims to produce a lightweight/cost-
effective rover that could be used for swarming
in the future. Thus, it is important to consider the
cost of the components used.

This study is meaningful for the immediate objec-
tive of supporting the Lunar Zebro mission and its
broader implications. By developing a high-level design that will be decomposed into various subsys-
tems and collaboratively refining design choices with the Lunar Zebro team, this research aims to create
a high-quality, functional, and adjustable system. The insights and methodologies developed here could
inform future projects and contribute to the broader field of electronic systems for space deployment con-
traptions. This research will help the Lunar Zebro team build an electronic system for their RDS and
potentially aid future teams in developing comparable systems for their deployment mechanisms.

Thesis synopsis

Figure 1.3: System overview

This thesis focuses on building the software sys-
tem required to deploy the LZ rover on the Lu-
nar surface successfully. The Rover Deployment
Software System (RDSS) consists of three main
subsystems, two of which will be discussed in this
thesis: a communication system for the RDS and
the lander, and an electronic component control
system. Additionally, a communication system for
the RDS and the rover is needed. However, since
the Lunar Zebro team has already designed their
functioning communication system, they will im-
plement it into the RDSS. The interaction between
multiple subsystems of the RDS can be seen be-
low in Figure 1.3. The highlighted section con-
tains an overview of the interaction between the RDSS and other subsystems. The design of the voltage
rails and sensing and actuating subsystems lie outside the scope of this thesis, as these elements are
designed by different sub-groups [8] [19]. The code of the RDSS can be found on GitHub using the
following URL: https://github.com/Hvanhuynegem/BAP-Rover-Deployment-Software-System [5].



2
Programme of requirements

2.1. Introduction
Good requirements must be set to build any reliable and qualitative system. The RDS system has mul-
tiple requirements which need to be satisfied. These requirements are essential for a successful Lunar
Zebro mission. The RDS requirements can be split into functional and non-functional requirements.
These, together, are the requirements that should be satisfied by the designed system for the system to
be qualified as fully functioning.

The RDS department at Lunar Zebro is a relatively new department. Currently, it officially only consists
of a mechanical department, without a control unit. The current RDS’s mechanical department has
designed a pod that will be attached to the rocket and a mechanism that lowers the Rover onto the
Lunar surface. The addition of the RDCS will provide multiple capabilities. RDCS will supply power, do
checkups on the Rover (while in transit), facilitate communication between Lander and Rover, and will
be in charge of triggering the deployment. The RDCS will handle everything in regards to deployment up
until the latch of the pod opens up and the lowering mechanism lowers the Rover onto the lunar surface.

The RDCSwill be formed by three subsystems that, when working in unison, ensure the system functions
properly. The subsystems are the software system, the Power system, and the actuation and sensing
system.

2.2. Requirements for the entire system
Functional requirements
[1.1] The system should be able to actuate 4 Non-Explosive Actuators (NEA)
[1.2] An umbilical cord must be used to connect the electronic RDS to the Rover
[1.3] The system should make all unconsumed power available to the rover
[1.4] The rover must remain fixed to the RDS pod unless it deploys
[1.5] There should be a thermal control system on the RDS
[1.6] The system should release the rover by actuating four NEAs
[1.7] Fail-safe backups should be implemented to prevent single points of failure
[1.8] The system must relay data from the Rover to the Lander and vice versa

3



2.3. Requirements for the Rover Deployment Software System 4

Non-functional requirements
[2.1] The system should be able to actuate two types of NEA, the NEA® Model 9040 Miniature Hold

Down & Release Mechanism (HDRM) and NEA® Model 1120-05 Pin Puller
[2.2] The system should be able to operate in an environment with temperatures between -120 and

+120◦C
[2.3] The system should be able to withstand vibrations experienced during launch, transit, and landing
[2.4] It can be assumed that the system operates in a Faraday cage. Therefore, no radiation will influ-

ence the system.
[2.5] The electronic RDS has a mass budget of 200 grams
[2.6] The electronic RDS must be smaller than 20cmx20cmx10cm
[2.7] The system should be able to operate on a 3W, 28V DC supply rail
[2.8] The system must achieve 99.9% reliability to release the rover and the pod-latch

2.3. Requirements for the Rover Deployment Software System
Functional requirements
Functional requirements specify what the system should do. They define the functionalities or services
that the system must provide.

[A.1] The RDSS should be an autonomous system that is able to recover from a power failure.
[A.2] The system should act on every single incoming message from the lander.
[A.3] The system should provide a reliable way of deploying the LZ rover onto the Lunar surface.
[A.4] The RDSS should provide an algorithm for temperature control to survive the harsh environment

of space.
[A.5] The RDSS should be a control loop system that is able to recover from every error, therefore

operating autonomously.
[A.6] The system should never deploy the rover unless it gets a deployment signal from the lander.
[A.7] The RDSS should function as a data relay system between the Rover and Lander.

Non-functional requirements
Non-functional requirements specify how the system performs a function. They define the quality at-
tributes, performance metrics, and constraints of the system.

[B.1] The software must be able to operate in extreme space conditions.
[B.2] The RDSS should prioritize reliability over performance.
[B.3] The Misra C 2012 guidelines must be followed for software design.
[B.4] The code must be compiled and tested using Code Composer Studio from Texas Instruments.
[B.5] Code should be tested using Google Unit Tests.
[B.6] Each algorithm needs to have 100% branch/line coverage on its unit tests.
[B.7] Software should be programmed in a modular manner.
[B.8] The UART output/input pins 2.5 and 2.6 should be used for the RDS-lander communication proto-

col.
[B.9] The UART output/input pins 2.0 and 2.1 should be used for the RDS-rover communication protocol.
[B.10] MSP430FR5969SP MCU must be used.
[B.11] The msp-exp430fr5969 development board must be used for testing.
[B.12] The software must be written in either C or C++.



3
System Design

3.1. Integrated System
The whole integrated system must be capable of fulfilling all the requirements. Because it involves a
large system, it is naturally subdivided into smaller sections. This section aims to provide an overview of
how all the different sections and functions are bundled together to create this large RDSS. It won’t go
into much detail about the created functions and the right implementations but rather sets out the design
decisions made to create a coherent system. First, the system architecture of the whole integrated
system will be explained. Then, it goes into more detail about the different transit modes.

3.1.1. System Architecture
For the RDS, the MCU is expected to perform three different kinds of tasks:

• Send and receive different kinds of messages to and from the lander
• Check the status of the different electrical components of the RDS
• Actuate different components of the RDS

The first task is described in much more detail in section 3.2 and the last two tasks in section 3.3. How-
ever, these sections only provide an explanation of their respective tasks. Therefore, this chapter pro-
vides an explanation of where these two subsystems belong in the full system.

The RDSS starts with an initialization of all the pins used in the MCU. This involves defining if they are
used as input or output and selecting the right pin mode. Furthermore, the sub-main clock, the ADC
module, and the different timers used by the MCU are initialized. With this initialization, it is important
to note that it is done in such a manner that all the electrical components are in the default mode. This
would mean that an active low pin to turn on a temperature sensor is initialized as high, for instance. The
whole mission is subdivided into different transit modes, ranging from the moment the rover is attached
to the lander to the moment the rover is released on the moon. These transit modes coincide with large
external changes during the mission. The RDSS must behave differently during the different transit
modes. The transit modes can be seen in Figure 3.1.

Figure 3.1: Different stages of the mission

These different transit modes are implemented in the code via a switch statement. The lander communi-
cates the correct mode to the RDSS. Besides these transit modes, there is one extra mode. This mode
is called the general startup. Every time the MCU turns on again (right before or during the mission), it
defaults to the general startup mode. It stays in this mode until it receives the correct mode from the
lander. The implementation of the different transit modes is elaborated further in the next subsection.

5
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3.1.2. Transit modes
A separate functional flow diagram is made for each transit mode, including the general startup. These
diagrams can be found in appendix B.1. The colours used in these diagrams are defined as follows: The
white blocks represent sequential actions. The orange blocks represent actions that are part of a loop.
This loop can be broken at any time by an interrupt caused by the lander’s new transit mode message.
The purple blocks represent actions that are not implemented in this project. These actions are related
to a data connection with the rover. However, due to time constraints, this implementation has not been
made. It is possible to implement these actions in the future.

General Startup
Figure B.1 shows the functional flow diagram of the general startup mode. Important to keep in mind, is
that the MCU switches to this state whenever it starts, This could also happen during the mission after
a system outage. The connection with the lander is crucial, as the lander is the only thing that can send
the MCU the transit mode and especially the green light to deploy. However, since the general startup
can happen during the mission when nothing can be manually changed, the system will move on after
it fails to connect with the lander three times. Even if the initialisation sequence fails, it moves on to
the RDS electronics status check in the hope that it may still receive a transit mode message from the
lander, although the lander failed to send an acknowledgement back. It keeps checking the status of all
the electrical components until a message with the correct transit mode is received from the lander. The
results of these checks are always sent back to the lander.

Launch mode
Launch mode is pretty similar to general startup mode. Figure B.2 shows the functional flow diagram for
the launch mode. The only difference is in the possibility to manually change things. Since this transit
mode happens before launch, it is assumed that it is still feasible to plug cables back in. Therefore,
it will keep trying to connect with the lander. The cables could be checked manually if the connection
isn’t made. The same holds for the umbilical cord connection with the rover. If the umbilical cord is
not connected, an error message will be sent to the lander until it is restored manually. Although it is
not implemented in this project, the same holds for the communication connection with the rover. After
these checks, the RDSS will check the status of all the electrical components until a message with the
correct transit mode is received from the lander.

Travel mode
In travel mode, the system has to operate independently and is not allowed to stall. Figure B.3 shows
the functional flow diagram for the travel mode. All the actions during this stage can be interrupted by the
lander’s message of a new transit mode. It is important to note that after the temperature sensors are
checked, the RDSSwill control the heater of the RDS. This is to ensure an optimal operating temperature
even under harsh space conditions. A timer has also been added to this mode. The actual travel from
the Earth to the moon will take three months, as the lander will first orbit the moon before it lands. For this
reason, during this travel, you don’t want the RDSS to continuously give a status update of the check-up
of all the electronic components. A message with a status check every hour could be sufficient. The
length of this timer can be changed later.

Pre-deployment Mode
The pre-deployment mode happens when the lander has already landed on the moon. This is a period
of time in which the rover is waiting to be deployed. It is unclear when the LZ rover will deploy [1]. It is not
smart or necessary to start actuating components in this stage of the mission. Therefore, the functional
flow diagram of the pre-deployment modeB.4 is identical to that of the travel mode. The only difference
in implementation is the timer. It is desirable to send a status update of the electrical components of
RDS more frequently, as the deployment can start at any time.

Deployment Mode
The deployment mode is the largest transit mode and the most important. Diagram B.5 shows the full
deployment process, and design choices will be explained.

When the lander sends a message containing the deployment signal, the RDS should immediately be
redirected to the deployment transit mode. To begin, as much current as possible should be diverted
to the supercapacitors to be charged as fast as possible. Therefore, the heaters are first switched
off, and the supercapacitors are checked to ensure that they are not shorted. Each individual NEA is
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checked again to report back to the ground station that the NEAs are still ready to be actuated. Next, the
rover should be notified about the deployment signal to prepare for deployment. As mentioned before,
this thesis will not cover communication with the rover. Subsequently, power to the rover is switched
off before disconnecting the umbilical cord. Once the umbilical cord is disconnected, a check can be
performed. This is done three times in case of failure, and then the deployment sequence continues,
even if the umbilical does not want to disconnect.

The actual deployment of the rover can commence once all the previous steps are performed. The
second part of Figure B.5 is shown below in Figure 3.2. This image shows the functionality of the actual
deployment. Firstly, it is checked whether the NEA can still be deployed. In both cases, the supercapac-
itors will be charged, and the NEA will be activated regardless of whether the system measures whether
it has already been deployed. The reason for this is that if a false value is read and the NEA has not
been deployed, then the system will always try three times, increasing the odds of success. Once the
supercapacitors are charged and the NEA has been activated, the system performs a second check on
the status of the NEA; if it is actuated, the system continues to the next. It performs this algorithm for all
four NEAs, and after all four have been actuated, or at least tried to be actuated, then the system has to
wait for the rover to send a message back to base since it is unable to communicate or know whether
the rover has actually landed on the surface of the moon.

Figure 3.2: Deployment mode NEA activation

Together, these states will create a functioning RDS system that is able to aid the rover during transport
and deployment. Comprehending these different transit states will help understand the design of the
two subsystems explained in chapter 3.2 and 3.3.
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3.2. Lander - RDS Communication System
This section presents the system design for the lander and RDS communication system through a step-
by-step structure decomposition. First and foremost, the system architecture will be presented, providing
a good overview of how the system works. Secondly, the different communication protocols that will
be used shall be explained to provide a clear understanding of the message structure. Additionally, the
software design shall be explained using functional flow diagrams so that there is no need to understand
C++. Furthermore, the message handler will be elucidated. Additionally, a test plan will be presented in
chapter 4 to guarantee that the different functions are working properly.

3.2.1. System Architecture
The system’s architecture can be divided into hardware and software. The hardware architecture has
been specified by the various lander manuals provided by the Lunar Zebro team [1] [3] [12] [17]. These
specified that an RS-422 full-duplex connection is required for the hardware. Furthermore, the software
architecture shall be designed using the Serial Line Internet Protocol (SLIP) and a self-made communi-
cation protocol.

The hardware architecture can be viewed below in Figure 3.3. A simplified diagram of the hardware
interaction between the lander and RDS is shown. The RDS requires an output and an input pin for a
UART connection to an RS-422 transceiver. This can be achieved by either using pin 2.0 and 2.1 or
pin 2.5 and 2.6 on the MSP430FR5969. The subgroup Sensing and Actuation found an RS-422 and
Rs-485 transceiver that will be used. More information can be found in their thesis [8]. Therefore, the
lander-RDS communication system will focus on designing the software and leaving the hardware to
others.

Figure 3.3: System architecture of hardware

Below in Figure 3.4, an overview of the higher-level software architecture can be observed. The graph
can be read as two separate processes. The first process is the transmission process. It serializes the
message to be sent using the self-made communication protocol. Furthermore, it encodes the message
using SLIP. Finally, it adds character-per-character into the transmit buffer of the UART pin 2.5. The
second process is the receiving process, which receives character per character into the receiving buffer
of the MCU and stores it into a local RX_buffer array, which can then be processed when the MCU has
time. The same process applies to transmitting. However, it is reversed, and the message is handled
using a handler after deserialising and decoding. These two processes will be decomposed into multiple
flow diagrams to show the step-by-step functionality throughout the upcoming sections.

Figure 3.4: System architecture of software
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3.2.2. Communication Protocols
The software architecture uses three different communication protocols, which will be explained in detail:
Universal asynchronous receiver-transmitter, serial line internet protocol, and a self-made protocol that
allows for better handling of incoming messages.

Universal asynchronous receiver-transmitter
The Universal asynchronous receiver-transmitter (UART) protocol is a well-known and often-used pro-
tocol for serial communication. The protocol requires a baud rate and transmits one or multiple bytes at
this specified baud rate [18].

Furthermore, there are multiple different options for choosing a clock that can supply a correct baud rate
for the UART module USCI_A1; there is the auxiliary clock, the sub-main clock and a baud rate clock. At
first, it seemed logical to use the Auxiliary clock since it is much more stable and able to operate for years
without any sign of degradation due to using a low-frequency crystal. However, the UART parameters
were chosen based on the LZ team’s implementation of their internal communication system. They use
a sub-main clock frequency of 16MHz for all their processes, and thus, their communication system
has been made to work around this frequency. This needs to be taken into consideration when building
the RDSS since their communication protocol will also be added in the future. Therefore, the lander-
RDS communication system is designed to operate using the sub-main clock frequency of 16MHz and a
baud rate of 115200 baud/second. Furthermore, due to the conditions in space, oversampling has been
activated so that incoming signals are sampled multiple times per bit period. For the MSP430FR5969,
there is only one option: oversampling the signal 16 times. Additionally, the UART pins for the lander-
RDS communication system are chosen to be pin 2.5 and pin 2.6 since the LZ team uses pins 2.0 and
2.1 for their communication system. Therefore, if the pin assignment is consistent, implementing their
own protocol on the RDS system will be easier. After initialising these parameters using the proposed
values, the UART RX and TX buffers can be used to communicate 8-bit strings.

Serial Line Internet Protocol
The Serial Line Internet Protocol or the User Datagram Protocol are both accepted as communication
protocols by the Astrobotics lander [1]. When comparing both, the overhead of SLIP proved to be the
more simplistic version [22] [16]. Therefore, fewer possibilities of failure exist, and more time can be
spent on performing tests. The UDP protocol is also problematic since the UDP packets can get lost in
the network [4]. However, UDP is more scalable and allows for the possibility of adding more addresses,
while this is not possible with the SLIP protocol. Due to SLIP not having an address structure in its
overhead, it must be used as a one-to-one serial communication protocol, resulting in a more reliable
solution. Finally, the Lunar Zebro team approved the implementation of SLIP.

A theoretical decomposition of the protocol will be done to gain a better understanding of the structure of
SLIP. According to C. M. Kozierok, four constants are used to encode/decode a message into the SLIP
format [9]. The constants used in the SLIP encoding and decoding process are defined as follows:

• END (0xC0)
• ESC (0xDB)
• ESC_END (0xDC)
• ESC_ESC (0xDD)

SLIP works by sending the ”END” byte as the last character of the message. However, Kozierok also
mentions that it is better also to start a message using the ”END” character, such that the receiving buffer
is flushed. Moreover, whenever the character 0xC0 (”END”) is transmitted, it must be replaced by 0xDB
and 0xDC. The same applies to the character 0xDB (”ESC”). However, it must be replaced by 0xDB
and 0xDD. In Figure B.6, the SLIP encoding algorithm is shown to present the workings of the encoding
process of a message. The pseudocode of the SLIP encoding and decoding algorithm can be found in
appendix A, as algorithm 1, and algorithm 2, respectively.

The slip encoding algorithm converts an array of 8-bit characters into the SLIP format by applying the
abovementioned techniques. Furthermore, it considers the possibility of an overflow occurring. This is
achieved by tracking the index of the encoded message, and if the next encoded character being added
results in a buffer overflow, then false is returned. This allows the overflow to be handled accordingly by
the wrapper function. If the encoding process is successful, then true is returned. The same principle
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is applied to the decoding algorithm 2. However, this will not be explained in detail to avoid repetition of
the structure.

Self-made communication protocol
A message structure was created to handle incoming messages from the lander so different types of
messages can quickly be handled and responded to. There is very little information about which kinds
of message structures the different Landers use. This allows for some freedom in optimizing the design
and limits the freedom to choose a very complex and specific protocol. Below in table 3.1, the basic
structure is shown.

Field Description Size
Start Byte Indicates the start of a message 1 byte
Message Type Indicates the type of message. Possible values:

(INIT), (ACK), (NACK), (REQUEST), (DATA),
(RESPONSE), (DEPLOY), (TRANSIT_MODE),
(ERROR).

1 byte

Length Indicates the length of the payload. 1 byte
Payload The data being transmitted.
Checksum A calculated value to ensure data integrity during

transmission.
1 byte

End Byte Indicates the end of a message. 1 byte

Table 3.1: SLIP Message Format

The message structure consists of a start byte, a message type which allows for a very quick handler, a
length byte, the payload array, the checksum to check for errors, and an end byte. Using the message
type byte, a case statement can be created to handle each individual type of message. Furthermore, the
payload size is modifiable, with a maximum size of 249 bytes. To achieve this, serialisation and deserial-
isation are used to convert a payload array to a message structure. This allows for faster communication
because there is no constant message size. The payload array is stored in the message structure as
a pointer. Additionally, the length is stored so that only the message can be retrieved from the static
array. There was also the possibility of using vectors. However, the Miscra C 2012 guidelines forbid
dynamic memory allocation [14]. Thus, this option was removed. The serialisation algorithm will now be
covered to provide enough information to recreate the system. Both the serialisation and deserialization
algorithms can be found in appendix A, as algorithm 3, and algorithm 4, respectively.

The serialisation algorithm converts a message structure into an array that can be sent via the UART
protocol. Figure 3.5 shows the serialisation and deserialisation processes. The method copies each
member of the message structure into the correct location of the provided array. An if-statement also
ensures that if the length byte is larger than the maximum payload size, then it updates the length to
MAX_PAYLOAD_SIZE. Such that no memory issues can occur or the transmission buffer overflows.

The deserialisation algorithm converts an array into a message structure. First, it checks whether the
array is of adequate length to be converted. Furthermore, it extracts each member from the array and
stores it in the correct location of the message structure. The same checkup of the payload length is
done to ensure that the message can be handled using other methods.
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Figure 3.5: Functional flow diagram of serialisation and deserialisation algorithm

3.2.3. Software Design
The software design of the communication system can be split into transmission and receiving. These
two features are crucial for a functioning communication system and shall be explained separately since
they are independent of each other.

Transmission
Asmentioned before, the transmission process can only be run if the UART TX pin is correctly configured
and a clock is selected in combination with a baud rate. The pin used for transmission is PIN 2.5 from
the module USCI_A1 [21]. The baud rate is 115200 baud/s. The clock used for the UART module is
the sub-main clock with a frequency equal to 16MHz, and oversampling is switched to ensure reliable
transmission. Below in Figure 3.6, the transmission process is shown using a functional block diagram.

Figure 3.6: Transmission process

A message is created using the message structure to transmit an array of bytes. Furthermore, the
message is serialised and thus converted to an array. Lastly, the message is encoded using SLIP. This
message is loaded character per character into the TX buffer of the module USCI_A1 and transmitted.
This process combines all the previously explained processes into one function called send_message().

1 /* Funct ion to send a message * /
2 vo id send_message ( u i n t 8_ t msg_type , const u i n t 8_ t *payload , u i n t 8_ t leng th ) ;

Listing 3.1: Send message function signature
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Receiving

Figure 3.7: Receiving states

The receiving process is split up into two parts. It
is partly handled by interrupts and partly handled
when the MCU has time to read the RX_buffer.
Figure 3.7 shows a higher-level functional flow di-
agram of the states where the receiving process
can operate. Whenever the MCU is not receiving
a message, it operates in the IDLE state. When
an interrupt is triggered, the MCU checks whether
the first character received equals the SLIP en-
coding character ”END (0xC0)”. If this holds,
then the receiving state is changed to RECEIV-
ING. Subsequently, the character is stored in the
RX_buffer, and the timer is started to check for
timeouts. While the MCU runs in the RECEIVING
state, there is the possibility of having a full buffer,
a timeout and an error. A timeout is achieved if
the interrupt of the timer goes off. The timer is
currently set at 1 ms. This is approximately 10
times the time it takes to send one byte. Since one byte is sent at a rate of 1

115200 ∗ 10 bits per byte
= 86.8µs. two extra bits are needed to send a byte due to the start and stop byte. Whenever the MCU
goes into the TIMEOUT state, it sends a NACK message and resets the RX_buffer indices to 0 and the
receiving state to IDLE. Furthermore, it waits for a retransmission. The BUFFER_FULL state is entered
if the message being sent is larger than the size of the UART_BUFFER_SIZE. Next, it sends an error
message that tells the lander that the message is too large. Finally, it also returns to the IDLE state and
resets the RX_buffer indices. In case of an error that is not recognised, the MCU defaults to sending
an empty error message. For a more in-depth decomposition of every single step, the functional flow
diagram of the interrupt handler can be found in appendix B.2.2. The way the MCU handles the received
message will be explained in subsection 3.2.4

3.2.4. Data Handling and Processing
Message handling begins with checking the integrity of the received message. The first step is to verify
that the first and last bytes of the message match the designated start and end bytes, respectively. This
verification ensures that the message is neither corrupted nor incomplete. If the bytes do not match, a
type ERROR message is sent with a payload containing the sentence ”INVALID_MESSAGE”.

Next, the checksum of the incoming message is verified. The handler calculates the checksum of the
receivedmessage and compares it with the checksum provided within themessage. If the checksums do
not match, indicating possible data corruption during transmission, the handler initiates the transmission
of an ERROR message with a payload containing the sentence ”INVALID_CHECKSUM”.

Upon passing these integrity checks, the handler determines the type of message received. The protocol
defines several message types, each requiring specific handling:

• MSG_TYPE_INIT: Sends an ACK message
• MSG_TYPE_ACK: Does nothing
• MSG_TYPE_REQUEST: TBD handling of requests
• MSG_TYPE_RESPONSE: TBD handling of responses
• MSG_TYPE_DEPLOY: Goes to the deploy transit mode
• MSG_TYPE_TRANSIT_MODE: goes to the sent transit mode

The REQUEST and RESPONSE message types are added for future adaptability. However, this has
not been implemented since there is no information about what the lander sends. A more in-depth flow
diagram of the handler can be found in appendix B.2.2, Figure B.8.
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3.3. Electronic Components Control System
This section will present the design of the electronic component control system. The control system con-
sists of checks and eventual actions after these checks. This section starts with the system architecture
of this part of the software. Since there are multiple electronic components, with their own functionality,
the control consists of a sequence of individual checks with eventual actions after every check. These
individual checks and actions will be subdivided into three different sections: Connections, temperature
sensors and NEA activation. In each subsection, the importance of the check will be elaborated fur-
ther, the possible actions depending on the result of the check will be explained, and a flow diagram
will be presented to illustrate the functionality. Additionally, a test plan will be presented in chapter 4 to
guarantee that the different functions are working properly.

3.3.1. System Architecture
It is desirable to do a full checkup of all the electronics of the RDS during different stages of the mission.
The checkup will be a sequential process. This checkup has the following requirements:

• The process cannot stall if a sensor or connection is broken
• The result of every check is sent to the lander
• If an error occurs, an error message needs to be sent to the lander, and the process must continue

The RDSS is expected to check the following components. The connection with the umbilical cord to
the rover, The power flow from RDS to the rover, the temperature sensors, the supercapacitors and the
NEAs. Depending on the results, each check can lead to possible actions. This is illustrated in diagram
3.8.

Figure 3.8: System architecture of the electronics components control system

This diagram also shows the subdivision of the different checks and possible actions into three separate
sections.

The course of each check and the possible action may differ depending on the stage of the mission. You
could imagine that, more intense and frequent checks are required right before the deployment of the
rover compared to during transit. All these different forms of checks and possible actions are elaborated
further in the following three subsections.

3.3.2. Connections
The connections check consists of two individual checks which are intertwined. The first one is to check
the umbilical cord connection. The umbilical cord is a cable connection between RDS and the rover,
which can be detached, preferably right before the deployment of the rover. The umbilical cord houses
different smaller cables with functionalities like data and power transfer. During the mission up until right
before deployment it is of great importance for the umbilical cord to be connected with the rover. All the
involved pins for the connections section of the ECCS are summarized in the following table3.2.
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Name Pin Direction Active / Mode
Read12VFromRover Pin 2.2 Input General I/O mode

DetachUmb Pin 4.6 Output Active high
BusCurrentSense Pin 4.3 Input ADC mode

BusFlag Pin 4.2 Output Active low

Table 3.2: Connections pins

The pin ”Read12VFromRover” is actually used to sense the status of the umbilical cord connected to
the rover. The pin is named ”Read12VFromRover” by the other subgroup of the project sensing and
actuation[8] due to a different functionality in the beginning. To prevent confusion and to retain consis-
tency, in this thesis the same pin names will be used as in that of the sensing and actuation subgroup [8].
The Read12VFromRover is low when the umbilical cord is disconnected, and high when the umbilical
cord is still connected. A low of a pin is seen as a 0 in the corresponding input register of the MCU.
Subsequently, a high pin is seen as a 1. For the Read12VFromRover pin, this means that BIT 2 of input
register 2 is a 1 if the umbilical cord is still connected. This status of the corresponding bit is converted
to a Boolean. See code A.1. This makes it possible to put the status of the pin in an if-else statement
and program a sequential action based on the status of the pin.

After a message with the status of the umbilical cord connection is send, a possible action is to detach
the umbilical cord. This is done with the DetachUmb pin. The problem is that the actuator and sensing
subgroup didn’t have time to implement a whole analogue system that ensures a correct umbilical cord
detachment. Therefore, until LZ decides to use this signal, DetachUmbwon’t actuate anything. However,
since it is likely LZ will use this signal in the future, it has already been implemented and documented in
the code. By setting the pin high the umbilical cord can be detached.

The second check senses whether current and power flow from RDS to the rover’s power bus. This
signal is measured right after the 28-to-12 V stepdown converters. A voltage divider further reduces this
12V signal to reach a maximum voltage of 3.2V. This is well below the maximum voltage that can be
applied to any pin of Vcc + 0.3V (with an absolute maximum of 4.1V) [21]. It is desirable to sense the
bus as an accurate voltage instead of a simple Boolean. It is possible to calculate the current flow with
this measured voltage using a formula that is not provided yet by the sensing and actuating subgroup
[8].

ADC Voltage Conversion
Analog to digital conversion is necessary to read the voltage on a pin. ADC is also necessary for other
checks described in section 3.3.4. So, a modular function for this process will be made to save time and
reuse code. Luckily, the MSP430FR5969SP features a dedicated ADC function for almost all its pins.
To make use of the ADC function, it is important to understand the different initializations necessary:

• The whole ADC module of the MCU: The dedicated ADC sampling timer is chosen. The sampling
takes 16 clock cycles, the conversion result is set to a 12-bit value, interrupts for overflow are
enabled, and the ADC module is activated.

• The relevant pin: The pin is set as an input pin, and its ADC mode is selected by setting both
selection bits to high.

• The ADC for the relevant pin: The pin’s conversion result is coupled to a memory register, and the
ADC conversion complete interrupt is set high.

So the first initialization is done at the startup of the whole RDSS, the other two are pin specific. The last
one is done within the ADC voltage function. The whole ADC voltage function is shown in diagram 3.9.
The conversion works with polling. Whenever the interrupt flag for the memory register is high, the while
loop will be exited, and the conversion result will be saved. Because polling is used, a timeout must be
implemented to prevent stalling if the conversion fails. An interrupt handler is used for this timeout. For
this project, it is sufficient to handle only the interrupt that occurs if the conversion time overflows. This
happens when the conversion fails, resulting in an exit from the while loop. Due to the implementation of
the interrupt handler, it is possible for the current project to be developed further using other interrupts.
Currently, more interrupts do not seem suitable. This would only require extra enables and extra cases
in the handler. If the conversion is successful, the voltage will be calculated with the following formula:
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V oltage =

(
measuredADCV alue

MaxADCV alue

)
·MaxV oltage (3.1)

measuredADCV alue = value ranging from 0− 4095 (12-bit resolution)

MaxADCV alue = 212 − 1 = 4095 (12-bit resolution)

MaxV oltage ≈ 3.6V (Vcc + 0.3V )

The function will return this voltage. If the conversion fails, the interrupt will be triggered and the function
will return an error voltage of 99V.

Figure 3.9: Flow diagram of the ADC voltage function

In addition to a message containing the measure-
ment of the voltage on the BusCurrentSense pin,
it is possible to activate or deactivate the rover’s
charging with the BusFlag pin.

To conclude the connection section, the electron-
ics control consists of two checks with possible
actions. Now, for the actual implementation of the
above-mentioned checks and actions, a differenti-
ation can be made between the deployment stage
and every other stage of the mission.

No Deployment
In every stage apart from the deployment, the con-
trol of the connections can be seen as a checkup,
which reports to the lander and, therefore, to
Earth. First, the umbilical cord connection is veri-
fied. If it is connected properly, a validation mes-
sage will be sent. If the pin is low, either because
the umbilical cord is not connected or the pin is
defective, an error message will be sent. Before
launch, this could be useful information and may
result in a manual check of the umbilical cord con-
nection. However, during the mission, not much
can be done about this error message. The pro-
cess must go on. Only the ”detachUmb” signal
would be put low again to ensure that this is not
the problem.

The process continues with the voltage sensing
on the bus. It will always send a message contain-
ing this voltage back to the lander, and if a timeout
occurs, it will send an error message. Whatever
the result of this measurement is, the charging is
always activated. Only during deployment will a
situation occur where you don’t want to charge the
rover. After this, the process continues to the tem-
perature sensor and heater section.

Deployment
Most of the connection control during deployment
is already covered in section 3.1.2. As mentioned,
during the deployment also the possible actions
of the connections control are utilized. First, the
power to the rover is turned off by setting the Busflag pin to high. It could be checked if the rover actually
stopped charging by sensing the voltage on the BusCurrentSense pin. However, since the umbilical
cord can detach anyway, it is chosen not to do this and just to continue. This extra data could, however,
be used in future implementations. Then, the umbilical cord to the rover will be disconnected with the
”detachUmb” signal. If this had success, the ”Read12VFromRover” pin would be low, and the process
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would move on to the next section. If the disconnection didn’t work and the ”Read12VFromRover” pin
would still be high, the detachment would be tried two more times. If there is still no success, the process
will move on to the next section anyway.

3.3.3. Temperature sensors and Heater
For the temperature sensor and heater section of the control system, the involved pins are summarized
in the following table 3.3.

Name Pin Direction Active / Mode
TempOn1 Pin 3.5 Output Active low
TempOn2 Pin 1.3 Output Active low
Temp1Out Pin 3.4 Input Capture mode
Temp2Out Pin 1.4 Input Capture mode

MCUHeaterOn Pin 3.6 Output Active High
MCUHeaterOff Pin 1.6 Output Active High

ReadHeaterActive Pin 3.7 Input Active Low

Table 3.3: Temperature Sensors and Heater Pins

First, it is important to understand the temperature sensors. Two temperature sensors are used for the
RDS. The function written to measure the temperature with one of these sensors is modular, so it is
possible to implement more temperature sensors for the RDS if needed. The temperature sensors work
via oscillation: the higher the temperature, the lower the frequency. To read the value of the temperature
sensor, one has to measure the frequency. Due to the design of the temperature sensors by the actuator
and sensing subgroup [8], the operating range is between 400 and 700 Hz to represent a temperature
of -55 up to 80 degrees Celsius.

Frequency measurement
Frequency measurement is less straightforward than ADC conversion due to constraints by the chosen
MCU: it lacks a dedicated frequency measurement module. Instead, the MCU is capable of storing the
value of a timer with the rising edge on a pin. This is called the capture mode. To use the rising edge of
the correct pin, caution is necessary when initialising the pins and connected timer:

• Relevant input pins (e.g. Temp1Out): The pin needs to be set in the timer function by setting the
first selection bit to a 1 and the second to a 0.

• Relevant timer: The input clock is set to the sub main clock, it is in continuous mode, the input
clock is divided by 4 and the timer is cleared.

• The timer capture/compare control of the pin: Capture on the rising edge, capture mode, and
connection with the pin.

The relevant timer depends on the pins. In this project, the relevant timer is chosen to be the same
for both temperature input pins: Timer B0. Furthermore, it is necessary to initialize the pins used with
the right timer capture control register. This is pin-specific and can be determined with the use of the
msp430fr5969 data sheet [21].

A modular function is made to determine the temperature of the different temperature sensors. This can
be seen in 3.2 Now it is possible to implement this function even if pins with different registers are used.
Only the registers that match the pin have to be known from the data.

1 /*
2 * Reads out the temperature sensor measurements .
3 *
4 * Parameters :
5 * v o l a t i l e unsigned i n t * TxxCCTLx : po i n t e r to Timer con t r o l r e g i s t e r
6 * v o l a t i l e unsigned i n t * TxxCCRx : po i n t e r to Timer capture / compare r e g i s t e r
7 *
8 * Returns :
9 * f l o a t temperature : the measured temperature
10 * /
11 f l o a t readout_temperature_sensor_n ( v o l a t i l e unsigned i n t * TxxCCTLx , v o l a t i l e unsigned i n t *

TxxCCRx) ;

Listing 3.2: read temperature sensor N function signature
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The whole frequency measurement process is displayed with a functional flow diagram in Figure B.9 in
appendix B. The actual measurement uses polling. It waits for a capture event. It stores the value of the
capture register if the capture flag is high (at the rising edge of the measured pin). The capture flag is
turned off. It waits for a capture event a second time. It stores the value of the capture register in another
variable if the capture flag is high again. This way, the amount of clock cycles of timer B0 between two
rising edges of the pin is measured. The problem is that timer B0 is only 16 bits large. This means
that it can only count up to a value of 216 = 65536. It is desirable to measure a minimal frequency of
150 Hz. For simplicity, you don’t want to keep track of the amount of times timer B0 overflows between
two captures. So, the number of clock cycles measured at the lowest frequency must be lower than
65536. This means that timer B0 must run on a clock frequency lower than 150Hz · 65536 = 9830400Hz.
The problem is that the whole RDSS works with a sub-main clock of 16 MHz. So, to ensure that the
measurement works, the sub-main clock is divided by four as the input of timer B0. So timer B0 runs on
4 MHz.

Since polling is used twice for this measurement, a timeout is necessary for the system to continue even
if the measurement fails or takes too long. For this timeout, a new timer (timer A2) is initialized. This
timer has a maximum of 60000 clock cycles and works with the same pre-divided 4 MHz clock. This
means that the interrupt handler will be triggered, and the process will exit the while loop if the measured
frequency is below 4000000Hz/600000 ≈ 66.67Hz or the measurement failed.

Because timer B0 is in continuous mode, the timer is able to overflow. If this happens, the counter will
start counting again at 0. This means that if an overflow happens between the first capture and the
second capture of the measurement, it would be possible for the second measurement to be smaller
than the first. Larger is impossible since the timeout timer is chosen to be smaller than one full cycle (0
- 65536) of timer B0, and the smallest frequency of interest (150 Hz) results in a difference between the
capture events of at most 4000000Hz/150Hz = 26666.67 clock cycles. The following simplified diagram
illustrates this example 3.10.

Figure 3.10: Finding the period of the measurement when overflow of timer B0 occurs

Now, it is always possible to calculate the period of one measurement. If the first capture value is smaller
than the second capture value, the whole capture event happened in one full cycle of timer B0, and the
period is calculated with the second capture value - the first capture value. If the first capture value is
larger than the second capture value, the period is calculated as follows: The maximum value of timer
B0 (65536) is added to the second capture value. Then, the first capture value is subtracted from this
addition. This results in the period between the two capture events, even when timer B0 overflows.
Once again, diagram 3.10 clarifies this calculation.

Tomake themeasurement more accurate, the period is measured nine times. The nine results are saved
in an array. The median will be taken as the most accurate period of the measurement. Whenever a
timeout occurs, the frequency is set to one. This means that it should not be an issue if one or two
periods were recorded wrongfully.

With the period between the two capture events (two consecutive rising edges on the pin), it is easy to
calculate the signal’s frequency on the pin. This is done with the following formula:

Frequency =
Clk

period
(3.2)

Clk = 4MHz



3.3. Electronic Components Control System 18

If the calculated frequency falls within the predefined range of 150 Hz - 800 Hz, the temperature will be
calculated in degrees of Celsius with the following formula:

This formula is based on the hardware implementation of the temperature sensors by the subgroup
sensors and actuation [8].

x =
1.0

0.4055 · 2.0 · C · Frequency
(3.3)

Temperature =
x− 1000.0

3.85
(3.4)

C = Capacitance = 2.2µF

If the frequency is outside the range, the function will produce an error temperature of -99. If a timeout
occurs during at least half of the measurements, the result will equal a frequency of 4000000 Hz.

To summarize, to check the temperature of both temperature sensors, the following few steps are per-
formed:

• Both temperature sensors are put on
• A short delay is implemented for the temperature sensors to reboot
• The period is measured for the first sensor
• This period is converted to a frequency and again to a temperature
• The period is measured for the first sensor
• This period is converted to a frequency and again to a temperature
• The temperature of both sensors is communicated to the lander
• Both temperature sensors are turned off again

Heater Control
The temperature on different parts of the RDS is needed to control the heater present on the RDS
PCB. This heater is used to keep the temperature above the minimum temperature of -55◦C (minimum
operating temperature of the MCU [21]) at all costs. It is important to keep in mind that the sensing
subgroup also made an analogue control system for the heater [8]. However, this system functions as
a backup for extreme temperatures in which the MCU might fail. With the precise control options of the
MCU, it is possible to use the heater in a much smaller range. To control the heater, a range is taken
between 20◦C and 40◦C by the RDSS. For the two control pins, a truth table can be made:

MCUHeaterOn MCUHeaterOff Mode
0 0 Backup
0 1 Heater is off
1 0 Heater is on
1 1 Heater is on

Table 3.4: Truth table heater control pins

Backup mode means that the control of the heater is left to the analogue system. The heater control
is displayed with the flow diagram in Figure B.10 in appendix B B.3.2. If only one of the temperature
sensors works, only the readout of this sensor will be taken into consideration when determining if limits
are exceeded. This is done via a switch statement with three cases:

• Both temperature sensors are working
• Only sensor 1 is working
• Only sensor 2 is working

If more temperature sensors are needed in future projects, the heater control algorithm can be expanded
by adding more cases.
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3.3.4. NEA Activation
The last section of the electronics components control system concerns the NEA activation. As can be
seen in Figure 3.8, the NEA activation consists of the check-up of two different types of electrical com-
ponents with their respective possible actions: the supercapacitors and the NEAs. The non-explosive
actuators need a large amount of power to release. The lander cannot provide this amount of power at
once, so supercapacitors are needed for the NEA activation. For the NEA activation section, there is a
large difference between all the other stages of the mission and the deployment stage. If no deployment
signal is received, it is necessary that none of the NEAs are activated. It is a short checkup to ensure
that none of the NEAs were actuated. During deployment, a whole check-up will be done on every single
component to ensure the correct activation of every single NEA. Once again, all the involved pins for
this section are summarised in the following table3.5:

Name Pin Direction Active/Mode
ChargeCapFlag1 Pin 2.7 Output Active high
ChargeCapFlag2 Pin 2.3 Output Active high
ChargeCapFlag3 Pin 3.4 Output Active high
CapDischarge Pin J.4 Output Active high
CapReady Pin 2.4 Input ADC mode
NEAReady1 Pin 3.1 Input General I/O mode
NEAReady2 Pin 3.2 Input General I/O mode
NEAReady3 Pin 3.3 Input General I/O mode
NEAReady4 Pin 4.7 Input General I/O mode
NEAFLAG1 Pin 1.0 Output Active High
NEAFLAG2 Pin 1.1 Output Active High
NEAFLAG3 Pin 1.2 Output Active High
NEAFLAG4 Pin 3.0 Output Active High

Table 3.5: All NEA activation pins

No Deployment
When the rover is not being deployed, no actions are required. After every single check, a message with
the outcome is sent to the rover. The check-up starts with voltage sensing on the CapReady pin. This
should be 0V during no deployment stages. If it were to be different from 0V, the only thing RDSS can
do is set all the ChargeCapFlags and the CapDischarge to low once again. The check-up continues by
checking the status of every single NEA. If the NEAReady pin is high, the NEA is still in place and not
activated yet. So, all the NEAReady pins should be high during every stage except deployment. Once
again, if this isn’t the case, there is not much RDSS can do about it.

Deployment
The general deployment process is already covered in section 3.1.2. However, there is one process
in the functional flow diagram of the deployment mode (B.5) that deserves a broader explanation. The
”Check functionality of each supercapacitor” is done with a certain algorithm. This algorithm was nec-
essary because the RDS has three supercapacitors, which can act together as one voltage source.
The problem with capacitors is that they can create a short in your circuit if they break. Therefore, an
individual check is necessary for every supercapacitor right before the actuation of every NEA.

A functional flow diagram of this check is shown in Figure B.11 in section B.3.3 of appendix B. It is
important to keep in mind that in the real implementation, timers are involved, as supercapacitors take
time to charge. The subgroup power flow designs the integrated circuit of the supercapacitors, and the
design can be found in their thesis. [19]. Figure B.12, shows the architecture of the electronic capacitor
checkup system. All three capacitors can be charged individually, yet they are all connected to the same
bus. The current through this bus can be restricted with the CapDischarge signal. If this signal is set to
high, current can flow to the NEAs. The Capready flag is read behind the switch on the bus, actuated
by the CapDischarge signal. Therefore, sensing the current on the entire bus is only possible after the
CapDischarge signal is set high. So, to read the voltage provided by every individual supercapacitor,
the algorithm depicted in Figure B.11 is needed.

After this supercapacitor check, only the capacitors that are still working properly will be used to activate
the NEAs (Only the ChargeCapFlag signals will be set high before the CapDischarged is activated).



4
Testing Methodologies

4.1. Introduction
Multiple methodologies are used to test whether the RDSS works as expected. Different hardware
setups are needed to measure results, and various software configurations are required to ensure proper
initialization and correct integration of these subsystems. The hardware setup for different subsystems
will be introduced. Secondly, the software needed to test these will be explained. Subsequently, the
performance tests of these subsystems will be presented.

Continuous Improvement
The testing process is iterative. Issues identified during testing are addressed, and the tests are updated
accordingly. This ensures that the system remains reliable even as new features are added, or existing
ones are modified.

Following this structured testing approach will build a robust and reliable RDSS. Each method will be
rigorously tested to ensure it meets the required functionality and reliability standards.

4.2. Hardware Setup and Configuration

Figure 4.1: Logic analyzer connected
to lander TX pin and RDS TX pin

With the aim of obtaining results which satisfy the requirements of the
RDSS, a hardware setup is required for various tests. These different
setups will be shown below.

Lander-RDS communication
Both parties’ incoming and outgoing signals must be observed to en-
sure correct communication between the RDS and the lander. Since
the UART protocol is used for transmitting data, a logic analyzer is
suitable for viewing the messages transmitted on a computer. For all
the communication tests, an eight-channel 24 MHz logic analyser was
used in conjunction with the software Logic2 from Saleae [20]. In Fig-
ure 4.1, it can be seen that a white wire is used to connect the logic
analyzer to GND. Two purple wires are used to read out the TX pins
of the lander and the RDS. A green and red wire sends data from the
lander MCU to the RDS MCU.

Electronic Components Control System
Most of the attention and work for the ECCS has gone into designing
and testing the two main functions: the ADC voltage conversion function and the frequency measure-
ment function. The rest of the software concerns the bundling of the different check-up functions and
setting pins high or low accordingly to actuate the right components. Although just as important this
can only be tested through software testing. The workings of this will be explained in section 4.3. The
two main functions of ECCS are tested with two different hardware setups. For the ADC testing, a test
pin was connected to a DC voltage source 4.2. This way, different voltages can be measured. For the
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Figure 4.2: ADC testing with a DC voltage source Figure 4.3: Frequency testing with a function generator

frequency measurement, a test pin was connected to a function generator 4.3. This function generator
had the following settings to replicate the real temperature sensors:

• 3 V peak to peak voltage
• Square wave
• 1.5 V DC offset

This way, different frequencies can be measured.

4.3. Software Testing
In the interest of improving reliability, it is important to profoundly test software to mitigate errors. This can
be done by testing each component separately using Google Unit Testing. These different components
are also integrated into one system and tested to ensure correct interaction. Finally, system testing is
applied to ensure the full system can operate as required.

4.3.1. Unit Testing
Unit testing is done using the Google Unit Testing library [6]. This has been proposed by the Lunar
Zebro team and has proven to be effective in finding errors in their algorithms. A unit test consists of an
assertion between an algorithm’s expected value and the output value. Thus, some value is entered into
the algorithm. Some value is expected from the algorithm, and this is compared with the actual output.
This way, many cases can be tested to ensure the algorithm behaves as expected. Below is listing 4.1,
an example of a Google Unit test is shown for the slip encoding algorithm.

1 TEST( s l i p_encod ing_ tes tsSu i te , NormalDataTest ) {
2 / / i npu t bu f f e r w i th data
3 u i n t 8_ t i npu t _bu f f e r [UART_BUFFER_SIZE ] = ” Hi ” ;
4 u in t16_ t i npu t_ leng th = 2;
5 / / ou tput bu f f e r a f t e r encoding
6 u i n t 8_ t ou tpu t_bu f f e r [UART_BUFFER_SIZE ] ;
7 u in t16_ t ou tpu t_ leng th ;
8 bool r e s u l t ;
9

10 / / expected bu f f e r
11 u i n t 8_ t expected_buf fer [UART_BUFFER_SIZE ] = {0 xc0 , 0x48 , 0x69 , 0xc0 } ;
12 u in t16_ t expected_length = 4;
13 bool expec ted_resu l t = t rue ;
14

15 / / encoding
16 r e s u l t = s l ip_encode ( i npu t_bu f f e r , inpu t_ leng th , ou tpu t_bu f fe r , &ou tpu t_ leng th ) ;
17

18 / / Asser t ions
19 EXPECT_EQ( resu l t , expec ted_resu l t ) ;
20 EXPECT_EQ( output_ length , 4) ;



4.4. Performance Testing 22

21 f o r ( i n t i = 0 ; i < expected_length ; i ++) {
22 EXPECT_EQ( ou tpu t_bu f f e r [ i ] , expected_buf fer [ i ] ) ;
23 }
24 }

Listing 4.1: Google Test Example for SLIP Encoding

The unit tests for the slip_encoding() method cover a wide range of scenarios to ensure its reliability and
correctness. These scenarios include:

• Normal Operation: Ensuring that regular data bytes are decoded correctly.
• Edge Cases: Testing the handling of empty buffers, maximum buffer sizes, and sequential special
characters.

• Special Characters: Verifying that themethod correctly processes SLIP-specific escape sequences.
• Error Conditions: Checking the response to invalid inputs, such as buffer lengths smaller than
expected or invalid start and end bytes.

4.3.2. Integration Testing
After individual algorithms are validated through unit tests, integration testing will be performed to ensure
that the combined system functions correctly. This involves:

• System Integration: Combining the tested components into the complete communication system
and verifying overall functionality.

• Interoperability Testing: Ensuring that different parts of the system communicate correctly with
each other.

• End-to-End Testing: Simulating real-world scenarios to verify that the entire communication system
works as intended from start to finish.

Integration testing consists of three different parts: the lander-RDS communication system will be tested
as a whole. Furthermore, the NEA activation will be tested to ensure correct analogue voltage measure-
ments on a pin. Finally, the temperature sensors will be tested to ensure a correct frequency measure-
ment and proper conversion to a temperature.

4.3.3. System Testing
After successful integration testing, full system testing can be done to ensure a correct control loop
design. This will be done in multiple different phases, where each transit mode is tested separately.
Moreover, the transition from different transit modes also needs to be tested. Finally, a staged mission
can be done where the different transit modes are being covered sequentially, and finally, the deployment
needs to be tested very thoroughly by checking individual processes.

4.4. Performance Testing
Performance testing is used to determine the system’s boundaries. It should help find data to better
understand the system’s limits. For example, the highest and lowest frequencies of the temperature
sensors need to be determined through thorough testing. It might also help determine the minimum
time needed for the system to process incoming data. Either load testing or stress testing will simulate
these critical situations.

4.4.1. Load Testing
Load testing is used to Figure out how the system behaves under expected load conditions and to find
the maximum operating capacity of a subsystem.

4.4.2. Stress Testing
Stress testing is used to determine how the system behaves under extreme load conditions and to find
out where and how it fails.
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Results

5.1. Introduction
The results will be used to find out whether the RDSS met all of its requirements. These requirements
are needed to ensure that the RDS achieves its requirements. As mentioned before, the RDS has three
main objectives: deploy the lunar Zebro rover on the surface of the moon, function as an intermediary
for communication between the rover and the lander, and provide power from the lander to the rover
during transit when needed. Firstly, the software testing results will be presented. Furthermore, the
performance testing results will be shown. These results will be discussed in chapter 6.

5.2. Software Testing Results
A lot of software waswritten to create the RDSS. This software needs to be tested to ensure it is functional
and reliable for the Lunar Zebro mission. The way this will be done has been explained in chapter 4.
Now, the results of these various testing strategies will be shown. Unit testing results, integration testing
results, and system testing results will be presented, respectively.

5.2.1. Unit Testing Results
As discussed in subsection 4.3.1, unit testing allows one algorithm to be tested thoroughly by injecting
different inputs and comparing the outputs with the expected results.

lander-RDS communication
Four different algorithms were tested using Google Unit Testing for the lander-RDS communication:
slip_encoding, slip_decoding, convert_message_to_array, and convert_array_to_message. A list of the
tests can be found in appendix C.1 for each individual algorithm. The pseudocode of each algorithm
can also be found in appendix A.1. Below in Figure 5.1, the tests’ coverage is presented. The lan-
der_communication.cpp file contains all four algorithms and has 100% line coverage and 100% branch
coverage. The other values are unimportant since they cover functions that cannot be tested with unit
testing due to using pins on the MCU. These can thus be disregarded.

During unit testing, several errors were identified and resolved. For instance, the slip_decoding algorithm
initially did not return any value, leading to a failure in error handling. This issue was corrected by
modifying the method to ensure it returns appropriate error codes, thereby enabling proper decoding.
Furthermore, an error was spotted that would occur if a message was received with an ESC character
but nothing following it. This is an error in the encoding software of the opposite party, or a bit flip could
have occurred during transmission. This error now returns a false and can be dealt with. As well, there
was no check for a minimum or maximum size of messages; this had to be implemented and has been
tested to work. Slip_encoding also had this issue, which had to be solved and tested.

Both the convert_message_to_array and the convert_array_to_messagemethod were changedmultiple
times throughout the development phase since the self-made communication protocol was first devel-
oped using a static buffer size for sending messages and subsequently converted to using a variable
buffer size. Figure D.1 of such a transmission can be found in appendix D. Using a fixed payload size
wasted a lot of time and carried useless data. This was thus converted to a variable payload size that
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can be seen in Figure D.2. The first implementation contained vectors. However, these use dynamic
memory allocation, which is not allowed according to the MISRA C 2012 guidelines [14].

Figure 5.1: Google Unit Tests Coverage

Electronics Components Control System
The electronics components control system consists of multiple different subsystems. These subsys-
tems work with many assigned pins, hindering the code from being unit-tested. However, three algo-
rithmswere usedwhich could be unit-tested. These include: convert_adc_to_voltage, calculate_frequency,
and frequency_to_temperature. Figure 5.1 shows the line and branch coverage of the three algorithms
by their respective files. Through unit testing, an error was spotted where a frequency of zero degrees
could result in a 1 by 0 division. This was removed by inserting a frequency boundary check at the start
of the method. It now returns a value of -99 degrees Celsius since this is a temperature that the sensor
cannot measure, and it is a temperature at which the MCU cannot operate [21].

5.2.2. Integration Testing Results
After testing multiple algorithms, it is important to integrate these different functions together and test
each subsystem independently from each others. This will be done during the integration testing results.
After successful integration testing results, system testing can be started.

lander-RDS communication
The lander-RDS communication subsystem started with sending one character via the UART output pin
2.5 and was developed into a rather large communication system with multiple functionalities. Figures
D.12, D.13, D.14, and D.15 show the evolution of the lander-RDS communication protocol. Image D.12
shows the first character being sent. Figure D.13 displays the first retransmitted message; here, the
receiving interrupt handler was correctly configured and could store a message and retransmit it. Figure
D.14 shows the first variable payload message sent. However, this was done using vectors and later
had to be converted from vectors to static memory as explained in chapter 3.2.2. Figure D.15 shows an
error detected in the receiving mechanism, resulting in only transmitting one acknowledgement every
two messages. This was solved by implementing the receiving protocol explained in chapter 3.2.3.

Electronic Components Control System
The two main functions of the electronic components control system are the ADC voltage conversion
function and the frequency measurement function. However, the LED light was sometimes used during
testing to ensure the function worked. Most of the time, the debug mode of the Code Composer Studio
was used [2]. With this debug mode, the values of certain internal variables could be seen. This enabled
an exact frequency readout without depending on a light within a certain range.

In the end, the ECCS function was made (as shown in Figure 3.8). It was tested and proved to work.
However, the main two functions for executing these checks require additional attention.

ADC voltage conversion
As mentioned in 4.2 the ADC function is tested by connecting a test pin to a DC voltage source. After
multiple tests and different iterations, a function was created to read the voltage of a chosen pin. Figure
5.2 shows the ADC value that is read out by the software in debug mode while a certain voltage is
applied to the tested pin.
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Figure 5.2: ADC conversion function results in debug mode

Given the chosen resolution of 12-bits and a maximum sensible voltage of 3.6V. It would follow that
the function should be able to measure the voltage on a pin with a resolution of: 3.6V

4095 ≈ 8.9 · 10−4V .
However, in reality, the achieved resolution of the function is only 0.02V . It also turned out that the
maximum voltage, which coincides with an ADC value of 4095, is actually 3.64V. This was taken into
account in the final ADC conversion function.

Frequency Measurement
The Frequency measurement function is tested by connecting a test pin to a function generator, as
mentioned in 4.2. First, a system which worked on an interrupt of the capture flag was tried to be
implemented. The handler would be activated every time a capture event happened (a rising edge of
the measured pin). After two capture events the interrupt would be disabled. The problem with this
implementation of measuring the period was in the handler. It took the MCU way too much time to
handle the capture events and set the flag low. This resulted in a mismatch between the second capture
event and the actual consecutive rising edge on the pin. This caused a too-large measured period and
a too-small measured frequency.

For this reason, the implementation was made using polling as described in much more detail in section
3.3.3. After multiple tests, a final function was made, which can accurately determine a pin’s frequency.
Figure 5.3 shows the determined frequency and the multiple measured periods in debug mode when a
certain frequency is applied to the test pin.

Figure 5.3: Frequency measurement function results in debug mode

During testing, one more noticeable change to the function was made. It was originally made to take
the average of the 9 measurements instead of the median. However, it was discovered that occasional
misreads of the period happened less than half of the time, yet they happened frequently enough and
were large enough to weigh heavily on the average. Therefore, the median of the 9 measurements was
chosen as the true period for calculating the frequency. This proved to be accurate a 100% of the time
within the right range during testing.

After testing, there were a few interesting results: With the described initialization of timer B0 in 3.3.3, the
range between which the measurement was accurate was between 70 Hz and 2.2 kHz. The lower bound
can be explained by the fact that the function was designed so that it would not work if the measured
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period was larger than the full register of timer B0. The lower bound can, however, be modified by
changing the divider for the input clock of timer B0. If the frequency of timer B0 was changed in this
way to 2 MHz, it would be possible to measure frequencies below 50 Hz. The upper bound deserves
more research but can probably be explained by processing time. Exiting the while loop, saving the
value of the register and resetting the capture flag takes time. If the frequency on the pin is too high,
the consecutive rising edge could already have happened before the MCU had time for the next capture
event. Resulting in a longer and false period. This effect could be observed if a frequency of just over
2.2 kHz was chosen. A frequency of 3 kHz on the pin gave a readout of 1.5 kHz because the MCU
missed one rising edge between the first and second capture.

The last result was rather strange. The measurement always failed if the frequency on the pin was
between 100Hz and 130Hz. More research is needed to explain this phenomena.

To counter these problems with the frequency measurement, an operational range was chosen between
150 Hz and 800 Hz. Converted to temperature with the formula 3.3, this means a range between -
77.77◦C and 710.78◦C. This is already far beyond the operating range of the MCU. However, it is im-
portant to know the possible range for future work.

5.2.3. System Testing Results
To meet the system requirements, the full system needs to be tested, and this can be done by test-
ing individual stages and a full sequence of multiple stages. This subsection will focus on each stage
individually and then run multiple sequences after each other.

General startup stage
The general startup sequence is the stage that is always started whenever the MCU boots up. It then
requests which stage it needs to go to and then continues running in the replied stage. Below in Figure
5.4, the startup process can be observed and works as intended. First, the transit stage is sent by
the microcontroller upon booting, then it tries to initialise and sets a timer; once the timer is done, it
checks for an acknowledgement; there is one received, and thus it requests the transit mode through a
TRANSIT_MODE request message. It continues without checking for an acknowledgement and checks
if the umbilical cord is connected; due to us testing it on the development board, we did not connect
a power source to the umbilical cord pin, and thus, as expected, it returned a message saying that
the umbilical cord is not connected. It then continues and performs the Electronic component checkup.
Furthermore, it received an interrupt from the acknowledgement and thus changed the state from general
startup to transit. However, for this test, the interrupt was not enabled to check if the full electronic
components checkup would run correctly. A zoomed-in picture of the first part can be found in appendix
D, Figure D.5. Likewise, Figure D.6 displays the second part of the image, and the last part can be found
in Figure D.7, D.8, D.9, D.10, and D.11.

Figure 5.4: General startup sequence test

5.3. Performance Testing Results
5.3.1. Load Testing Results
lander-RDS communication
As mentioned in chapter 4, load testing will be done to see how the system behaves under normal
load conditions. The following tests were done to test this: sending the largest possible message and
checking the overhead bytes. Finding the accuracy of acknowledgements send on incoming initialisation
messages. Test different message types and make sure the messages are handled as expected.

As shown in Figure 5.5, it can be seen that a message is transmitted with 256 characters. The image
depicts this as ”256 results” since it found 256 characters. The first four bytes are the overhead from the
message and are correct. The first byte corresponds to the END encoding bit from the SLIP protocol
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as mentioned in chapter 3.2.2. The second byte corresponds to the correct start byte of the self-made
communication protocol and the third and fourth byte corresponds to the correct message type and
length of the payload. Which shows that a message can be sent using the maximum payload size.

Figure 5.5: Maximum message size of 256 bytes with correct overhead

To test the reliability of message responses sent, a test was made to send a message with a payload
containing its message number. Subsequently, if the other microcontroller is able to respond, it sends
an acknowledgement with the acknowledgement number. This shows at the end of 256 transmissions
how many acknowledgements were made. This resulted in a 100% pass rate.

Figure 5.6: 256 acknowledgements on 256 incoming initialisation messages

5.3.2. Stress Testing Results
Stress testing is used to find the limits of the system. Different methods were used to determine whether
the system performs well and what different boundaries are, such as frequencies for recording a correct
temperature and the time the CPU needs to process incoming messages.

Lander-RDS communication
Multiple tests were performed to find the boundaries of the lander-RDS communication system, ranging
from finding the speed limit to system recovery and determining what happens when the system is
flooded with messages.

Below in image 5.7, an interrupt overflow is shown. This happened when the transmission rate was set
to the maximum. A time of 141.8 µ seconds was observed between each message, and this can be
seen in Figure D.3 in appendix D. The system is able to process four acknowledgements consistently.
However, after multiple resets, four acknowledgements were always maintained. This could be due to
interrupt nesting. Since so many interrupts are triggered, the system can only operate until too many
interrupts are called and the MCU gets stuck.

Figure 5.7: Interrupt overflow occurring when sending messages without any delay

Figure 5.8 shows the minimum time needed for correctly handling messages. Once the time between
messages exceeded 238.125 µ seconds, the MCU could always respond. This is an important mea-
surement to share with the lander organisation to ensure reliable communication. A 20% buffer could
be added to prevent the boundary from being crossed.
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Figure 5.8: The minimum time needed between messages to ensure correct handling

During testing, an exciting result occurred. The software was able to consistently recover from receiving
a message without a start byte until it the receiving buffer was fully filled, then it started processing
information normally again. Figure 5.9 shows this, after approximately 50 milliseconds, the system
responded only with acknowledgements and removed all the invalid messages from the receiving buffer.
In appendix D, Figure D.4 shows a zoomed-in picture, where it is clear that the software finds one invalid
message and one good where it acknowledges it. it continues doing this until all invalid messages are
removed from the receiving buffer, and it does not have to notify about its existence anymore.

Figure 5.9: System recovery when starting to receive messages halfway



6
Discussion of the results

The discussion will cover the presented results from chapter 5 and reflect on how they can be used to
improve the system further. It will also give insight into how future development of similar systems can
be done more efficiently and result in better designs. It is important to reflect on the design choices
and determine whether better solutions exist. This chapter will first discuss the results. Secondly, it will
look at whether the requirements have been met and what could possibly be improved to satisfy the
requirements that have not been met. Using all this information, future work can be determined.

6.1. Analysis of Findings
The results of the electronic components checkup system, the lander-RDS communication and the full
system will be discussed. Problems will be addressed, and possible solutions will be provided. Also,
good implementations will be highlighted and shown to be reliable.

6.1.1. Integrated System
Only the general startup mode has been implemented until now, and there have not been a lot of tests
regarding its functionality. One test was done where the startup sequence was run, and as mentioned
in chapter 5.2.3, it proved to work. However, none of the sensors were connected; thus, everything
resulted in an error message. But the code performed as required. Further testing will be done, and
more transit modes will be implemented later this week.

6.1.2. ECCS
The different functions of the ECCS worked, and it was possible to make a function for the full check-up.
This function was able to perform all the different checks sequentially and send a status update to the
lander after every check. However, due to time constraints, the whole ECCS is not yet tested for possible
errors.

The problem with these checks is that they don’t differentiate between the different types of errors that
may occur. This is enough for the RDS in its current form, where the analogue system around the MCU
is designed in such a way that the MCU can’t be the single point of failure when actuating the electronic
components. However, for future projects it could be interesting to know the type of error. As of now, the
temperature readout function only provides an error temperature of -99, if the frequency measurement
fails. However the reason can be a timeout or a measured frequency out of range.

The same holds for the ADC voltage conversion function. If the conversion takes too long, it will put
out an error voltage of 99V. This is only one of the flags that can be handled by the dedicated interrupt
handler for the ADC Module. It is also possible to enable an interrupt that senses an overflow of the
ADC conversion register. This would happen if the voltage on a pin is higher than 3.64V. An extra case
in the handler can be written to deal with this kind of error.

6.1.3. Lander-RDS communication
In chapter 5, multiple different tests were executed to ensure that the lander-RDS system worked as
needed. Some of these tests showed the reliability qualities of the communication system. However,
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not enough tests have been done to state that the RDS system is ready for a space mission.

Chapter 5.3.2 showed some stress tests, and the minimum time between received messages was found.
This ended up being 238.125 µ seconds. This is extremely important to note since the lander software
needs to take this into consideration. The Astrobotics lander uses a 32-bit high-performance dual-core
LEON 3 FT microprocessor, which is rated for a clock frequency up to 125MHz [1] [13]. This means the
lander could send messages faster than 238.125 µ seconds.

When looking at the reliability of the lander communication system, it performed quite well. It could
reliably acknowledge 100 % of the incoming messages if the time between transmissions was larger
than 240 µ seconds. However, this has not been tested thoroughly enough. More tests should be done
for a longer period of time, and maybe longer and shorter messages should be sent, or messages every
hour. This will result in a much better understanding of whether the system will be reliable enough for a
space mission.

Another issue found while testing the lander communication was the receiving strategy. The MCU now
handles interrupts and saves the incoming messages in a buffer. This buffer can hold a maximum of
256 bytes. While the electronic component control system is doing a temperature measurement, too
many messages can be received and thus not handled, resulting in unanswered messages. Moreover,
the receiving buffer is currently processed using a function that checks whether the uart state is equal
to the received and the end and start index are not equal. However, if multiple messages are received.
then this could lead to problems. Thus, more testing is needed to verify if the system can handle this
and further improve the receiving strategy.

The messages are currently processed by running the process_RX_buffer() method after each elec-
tronic checkup process. This, however, is not a good implementation since it could result in further
development not applying this strategy correctly. A possible solution for this problem could be sequen-
tial threading since the MCU only has one core. Additionally, cooperative multi-tasking could also serve
as a solution. This way, a case statement is used during a certain transit mode to run each sub function.
Every time a case is completed, a flag is raised, and the RX buffer is checked. After all the cases are
completed. It resets this process and reiterates.

Currently, there is no implementation for all the message types. This is because there is little information
about the Lander communication protocol. They have been created because they seem suitable for
future development.

More planning and designing had to be done to improve the efficiency of this design and build a more
robust system. There was a basic layout of how the system would be built, and edge cases were thought
of. However, there were many more mistakes that were not foreseen and could have been found before
starting the coding process.

Finally, the lander-RDS communication system still needs considerable improvement in terms of relia-
bility. Many tests are still needed, and more information about the lander is needed.

To finalise, the system design consists of too many edge cases to be tested within 9 weeks. This should
have been observed faster. However, a lot has been learned about system design and understanding
the time needed to implement and test a simple system. A small system needs to be created and tested
using software and subsequently tested using a real MCU for all of its edge cases. This can be very
time-consuming and should not be underestimated.

6.2. Comparison with Requirements
To compare the requirements with the actual capabilities of the system, a table was constructed to show
which requirements were met and which were not. Table 6.1, shows the functional and non-functional
requirements of the RDSS. Each requirement that was not met will be discussed, and the ones that were
and are quite important shall also be briefly discussed.
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Functional requirements Non-functional Requirements
The RDSS should be an autonomous system that is able
to recover from a power failure

✓ The software must be able to operate in extreme space
conditions

7

The system should act on every single incoming message
from the lander

✓ The RDSS should prioritize reliability over performance ✓

The system should provide a reliable way of deploying the
LZ rover onto the Lunar surface

✓ The Misra C 2012 guidelines must be followed for software
design

✓

The RDSS should provide an algorithm for temperature
control to survive the harsh environment of space

✓ The code must be compiled and tested using Code Com-
poser Studio from Texas Instruments

✓

TheRDSS should be a control loop system that is able to re-
cover from every error, therefore operating autonomously

7 Code should be tested using Google Unit Tests ✓

The system should never deploy the rover unless it gets a
deployment signal from the lander

7 Each algorithm needs to have 100% branch/line coverage
on its unit tests

✓

The RDSS should function as a data relay system between
the Rover and Lander

7 Software should be programmed in a modular manner ✓

The UART output/input pins 2.5 and 2.6 should be used for
the RDS-lander communication protocol

✓

The UART output/input pins 2.0 and 2.1 should be used for
the RDS-rover communication protocol

✓

MSP430FR5969SP MCU must be used ✓
The msp-exp430fr5969 development board must be used
for testing

✓

The software must be written in either C or C++ ✓

Table 6.1: Comparison of Full System Requirements and RDSS System Requirements

The RDSS should be a control loop system that is able to recover from every error is a requirement that
has not been met. The reason for marking this one as not met is due to the fact that not enough tests
have been done. It cannot be assured that the system is able to recover from every error. In theory, this
should be the case. However, when it comes to an embedded system, many more factors play a role
in determining whether the system is able to recover. The same holds for the requirement, ”The system
should never deploy the rover unless it gets a deployment signal from the lander”. This can also not be
assured since not enough testing has been done.

The last functional requirement that has not been met is that the RDS should be able to relay data from
the rover to the lander and vice versa. This is, in theory, worked out. However, the implementation
was much more complex than predicted and more work than expected. An agreement with the LZ team
has been made that it would be wiser for their embedded system engineers to implement this since
they already have the code ready, and they also need to update their code to add the RDS as a new
subsystem (slave) to their bus.

A requirement that has been met is the reliable way of deploying the LZ rover onto the lunar surface.
The theoretical description of the procedure has no loopholes and uses every single feature that the
MCU can use to try and deploy the rover. The implementation could be tested better, however, many
other factors apart from the software implementation play a role in its reliability.

The RDSS acts on every single incoming message using an interrupt handler; it then handles the mes-
sage when it has time. This, in theory, fulfils this requirement. However, the RDSS’s receiving strategy
could still be improved.

Almost all non-functional requirements have been met except ”the software must be able to operate in
extreme space conditions”. This has not been tested and can thus not be assured. Various environmen-
tal tests could be performed. However, due to time constraints, this was not possible during the time
given for making this project.

6.3. Future Work
The RDSS works, but it has not met all of its requirements and still needs improvements in certain
subsystems. First, the Lunar Zebro team still needs to implement the rover communication subsystem.
Second, as mentioned earlier in the lander communication discussion, the receiving strategy could be
improved by either using single-core threading or cooperative multitasking. This would significantly
improve the reliability of the communication system.

Furthermore, many more tests must be done to determine whether the RDSS is reliable enough for the
LZ mission. These tests consist of integration, system, and performance testing. It is also important to
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perform environmental tests on the MCU and find out how the radiation affects the transmission of bytes
through the differential RS-485 and RS-422 hardware protocols.

The electronic component control system still needs to be tested more thoroughly to find out whether
the maximum sensible frequency of the temperature sensors (2 kHz) can be increased. This increase
in range makes it possible for a lighter capacitor to be used on the PCB. This could reduce the cost of
sending the rover to space. A few grams could decrease the cost by a few thousand dollars. Additionally,
the analogue-to-digital conversion function should also be tested more since it sometimes has readings
of voltages fluctuating around 1.0V on the development board without being connected. Lastly, better
error handling could be implemented, to differentiate between the possible errors.



7
Conclusion

The Rover Deployment Software System (RDSS) developed in this project serves as a pivotal compo-
nent for the Lunar Zebromission. Through detailed design, rigorous testing, and extensive validation, the
RDSS has been developed to meet the strict requirements of space deployment. The system success-
fully integrates three primary subsystems: lander-RDS communication, electronic components control
system, and support for the rover communication system.

Key achievements of the RDSS include its communication capabilities between the lander and the
rover, validated through unit and integration tests under various conditions, ensuring reliable deploy-
ment and operations on the lunar surface. The electronic components control system effectively man-
ages power supply and environmental monitoring via precise ADC voltage conversions and frequency
measurements, guaranteeing accurate execution of the deployment sequence in harsh space condi-
tions. Designed for autonomous operation, the RDSS can recover from power failures and handle most
unexpected errors without human intervention, a crucial feature for the rover’s remote lunar mission.
Additionally, load and stress testing confirmed that the RDSS can manage expected operational loads
and system boundaries, instilling confidence in its reliability. However, this could still be improved by
conducting more tests.

Several areas require further improvement and testing: the RDSS has not yet undergone comprehen-
sive testing under extreme space conditions due to time constraints, necessitating future work focused
on environmental tests to ensure reliability in the lunar environment. Additionally, the communication
system’s receiving strategy could be enhanced through single-core threading or cooperative multitasking
for improved reliability. The complete implementation of the rover communication subsystem, pending
and to be carried out by the Lunar Zebro team, is also critical for relaying data between the rover and
the lander and will finalize the RDSS functionality.

This study has been crucial for the immediate goal of supporting the Lunar Zebro mission and holds
broader implications for future space missions. By developing a high-level design decomposed into
various subsystems and refining design choices in collaboration with the Lunar Zebro team, we have
created a high-quality, functional, and adaptable system. The insights and methodologies developed in
this research are expected to benefit future projects and significantly contribute to the broader field of
embedded systems for space deployment devices. This work not only assists the Lunar Zebro team in
building an electronic system for their Rover Deployment System (RDS) but also provides a valuable
foundation for future teams developing similar deployment mechanisms.

In conclusion, the RDSS has made significant strides in ensuring the successful deployment of the
Lunar Zebro rover. While some aspects require additional development and testing, the current system
provides a solid foundation for future enhancements and mission success 

To find the code of this project, use the following url: https://github.com/Hvanhuynegem/BAP-Rover-
Deployment-Software-System [5].
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A
Source Code

A.1. Lander - RDS communication
Algorithm 1 SLIP Encoding
1: Input: buffer, length, UART_BUFFER_SIZE
2: Output: output_buffer, received_length
3: Constants: END = 0xC0, ESC = 0xDB, ESC_END = 0xDC, ESC_ESC = 0xDD
4: index← 0
5: output_buffer[index]← END
6: index← index + 1
7: for i← 0 to length - 1 do
8: if buffer[i] = END then
9: if index + 2 ≥ UART_BUFFER_SIZE then
10: return false
11: end if
12: output_buffer[index]← ESC
13: index← index + 1
14: output_buffer[index]← ESC_END
15: index← index + 1
16: else if buffer[i] = ESC then
17: if index + 2 ≥ UART_BUFFER_SIZE then
18: return false
19: end if
20: output_buffer[index]← ESC
21: index← index + 1
22: output_buffer[index]← ESC_ESC
23: index← index + 1
24: else
25: if index ≥ UART_BUFFER_SIZE - 1 then
26: return false
27: end if
28: output_buffer[index]← buffer[i]
29: index← index + 1
30: end if
31: end for
32: if index ≥ UART_BUFFER_SIZE then
33: return false
34: end if
35: output_buffer[index]← END
36: index← index + 1
37: received_length← index
38: return true
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Algorithm 2 SLIP Decoding
1: Input: input_buffer, input_length, UART_BUFFER_SIZE
2: Output: output_buffer, output_length
3: Constants: END = 0xC0, ESC = 0xDB, ESC_END = 0xDC, ESC_ESC = 0xDD
4: Check: if input_length < 2 or input_buffer[0] ̸= END or input_buffer[input_length - 1] ̸= END return
false

5: Check: if input_length > UART_BUFFER_SIZE return false
6: is_escaped← false
7: output_length← 0
8: for i← 1 to input_length - 2 do
9: c← input_buffer[i]
10: if is_escaped then
11: if c = ESC_END then
12: c← END
13: else if c = ESC_ESC then
14: c← ESC
15: end if
16: is_escaped← false
17: else if c = ESC then
18: is_escaped← true
19: continue
20: end if
21: output_buffer[output_length]← c
22: output_length← output_length + 1
23: end for
24: return true

Algorithm 3 Convert Message to Array (Serialisation)
1: Input: msg, MAX_PAYLOAD_SIZE
2: Output: buffer, length
3: index← 0
4: Copy start_byte to buffer[index]
5: index← index + 1
6: Copy msg_type to buffer[index]
7: index← index + 1
8: if msg.length > MAX_PAYLOAD_SIZE then
9: Set buffer[index]← MAX_PAYLOAD_SIZE
10: index← index + 1
11: Copy msg.payload (up to MAX_PAYLOAD_SIZE) to buffer starting from buffer[index]
12: index← index + MAX_PAYLOAD_SIZE
13: else
14: Set buffer[index]← msg.length
15: index← index + 1
16: Copy msg.payload (up to msg.length) to buffer starting from buffer[index]
17: index← index + msg.length
18: end if
19: Copy checksum to buffer[index]
20: index← index + 1
21: Copy end_byte to buffer[index]
22: index← index + 1
23: Set length← index
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Algorithm 4 Convert Array to Message (Deserialisation)
1: Input: buffer, length, MAX_PAYLOAD_SIZE
2: Output: msg
3: if length < 5 then
4: return false
5: end if
6: index← 0
7: Extract start_byte from buffer[index]
8: msg.start_byte← buffer[index]
9: index← index + 1
10: Extract msg_type from buffer[index]
11: msg.msg_type← buffer[index]
12: index← index + 1
13: Extract temp_length from buffer[index]
14: temp_length← buffer[index]
15: index← index + 1
16: if temp_length > MAX_PAYLOAD_SIZE then
17: temp_length← buffer[index]
18: index← index + 1
19: msg.length← MAX_PAYLOAD_SIZE
20: Extract payload from buffer starting from buffer[index] (up to MAX_PAYLOAD_SIZE)
21: Copy buffer[index] to msg.payload (up to MAX_PAYLOAD_SIZE)
22: index← index + temp_length
23: else
24: msg.length← temp_length
25: Extract payload from buffer starting from buffer[index] (up to msg.length)
26: Copy buffer[index] to msg.payload (up to msg.length)
27: index← index + msg.length
28: end if
29: Extract checksum from buffer[index]
30: msg.checksum← buffer[index]
31: index← index + 1
32: Extract end_byte from buffer[index]
33: msg.end_byte← buffer[index]
34: index← index + 1
35: return true

1 / / Funct ion to read the s ta tus o f P2.2 ( umb i l i c a l cord rover )
2 bool umbi l i ca lcord_rover_connected ( vo id ) {
3 r e t u rn ( P2IN & BIT2 ) != 0 ; / / Return the s ta tus o f P2.2
4 }

Listing A.1: check whether umbilical cord is disconnected



B
Functional Flow Diagrams

B.1. Transit modes
B.1.1. General Startup

Figure B.1: Functional flow diagram of the general startup

B.1.2. Launch Mode

Figure B.2: Functional flow diagram of the launch mode
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B.1.3. Travel Mode

Figure B.3: Functional flow diagram of the travel mode

B.1.4. Pre-deployment Mode

Figure B.4: Functional flow diagram of the pre-deployment mode



B.1. Transit modes 42

B.1.5. Deployment Mode

Figure B.5: Functional flow diagram of the deployment mode
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B.2. Lander - RDS communication
B.2.1. Slip encoding

Figure B.6: Functional flow diagram of slip encoding algorithm
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B.2.2. Receiving

Figure B.7: Receiving process
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Figure B.8: Receiving handler
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B.3. Electronics Components Control System
B.3.1. Frequency measurement

Figure B.9: Frequency measurement process
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B.3.2. Heater Control

Figure B.10: Flow diagram of the heater control
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B.3.3. NEA Activation

Figure B.11: Flow diagram of the supercap check
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B.3.4. Capacitor Check Architecture

Figure B.12: architecture of capacitor check



C
List of Google Unit Tests

C.1. Lander-RDS communication
slip_encoding()
1. Normal data test: Ensure regular data bytes are passed through unchanged.
2. Start byte test: Verify the output starts with the END byte.
3. End byte test: Verify the output ends with the END byte.
4. Empty buffer test: Handle encoding when the input buffer is empty.
5. Buffer larger than UART buffer test: Handle encoding when the input buffer exceeds the UART

buffer size.
6. Buffer smaller than UART buffer but after encoding, it is larger: Handle encoding when input

buffer expands and exceeds UART buffer size after encoding.
7. END replacement test: Replace END bytes in the input buffer with ESC + ESC_END.
8. ESC replacement test: Replace ESC bytes in the input buffer with ESC + ESC_ESC.
9. Sequential END bytes test: Handle sequential END bytes correctly.
10. Sequential ESC bytes test: Handle sequential ESC bytes correctly.
11. Mixed END and ESC bytes test: Handle a mixture of END and ESC bytes correctly.
12. Maximum payload size test: Verify encoding with the maximum allowable input buffer size.
13. Buffer overflow test: Check for buffer overflow when encoding.
14. ESC overflow test: Check for not enough space for the ESC and ESC_ESC sequence.
15. Maximum encodable data test: Handle encoding expansion up to UART buffer size.
16. Mixed special characters test: Check encoding of a mixture of special characters.

slip_decoding()
1. Normal data test: Ensure regular data bytes are passed through unchanged after decoding.
2. Start byte removed test: Verify the payload has the start byte removed.
3. End byte removed test: Verify the payload has the end byte removed.
4. Empty buffer test: Handle decoding when the input buffer is empty.
5. Empty payload test: Handle decoding when the payload is empty.
6. Input length larger than UART buffer test: Handle decoding when the input length exceeds the

UART buffer size.
7. ESC + ESC_END replacement test: Replace ESC + ESC_END bytes in the input buffer with

END.
8. ESC + ESC_ESC replacement test: Replace ESC + ESC_ESC bytes in the input buffer with

ESC.
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9. Sequential END bytes test: Handle sequential END bytes correctly.
10. Sequential ESC bytes test: Handle sequential ESC bytes correctly.
11. Mixed ESC + ESC_END and ESC + ESC_ESC bytes test: Handle a mixture of ESC + ESC_END

and ESC + ESC_ESC bytes correctly.
12. Maximum buffer size test: Verify decoding with the maximum allowable input buffer size.
13. Check all four different characters for decoding: Verify decoding for all special character se-

quences.
14. Length zero test: Correctly return false if the input length is smaller than 2 or if the start or end

byte is not equal to END.
15. No first slip encoding character: returns false if there is no slip encoding character in the first

position of the array
16. No last slip encoding character: returns false if there is no slip encoding character in the last

position of the array
17. First ESC character and then no ESC_ESC OR ESC_END: ensure this returns false since this

is invalid encoding.

convert_message_to_array()
1. Convert normal message to array test: Verify a normal message is correctly converted to an

array.
2. Start byte test: Ensure the start byte is correctly placed in the output array.
3. Message type test: Verify the message type is correctly placed in the output array.
4. Message length test: Ensure the message length is correctly placed in the output array.
5. Empty payload test: Handle conversion when the payload is empty.
6. Payload longer than UART buffer test: Handle conversion when the payload length exceeds

the UART buffer size.
7. Checksum test: Verify the checksum is correctly calculated and placed in the output array.
8. End byte test: Ensure the end byte is correctly placed in the output array.
9. Buffer check test: Verify the entire buffer is correctly populated with expected values.
10. Length check test: Ensure the output length is correctly calculated and returned.

convert_array_to_message()
1. Normal test: Verify a normal array is correctly converted to a message.
2. Length smaller than five: Handle an array that is smaller than length 5.
3. Start byte test: Ensure the start byte is correctly placed in the message.
4. Message type test: Verify the message type is correctly placed in the message.
5. Message length test: Ensure the message length is correctly placed in the message.
6. Message length longer than max payload size: Ensure that the message length longer than

payload size is handled.
7. Message length smaller than zero: Handle the case where the message length is smaller than

zero.
8. Empty payload test: Handle conversion when the payload is empty.
9. Checksum test: Verify the checksum is correctly placed in the message.
10. End byte test: Ensure the end byte is correctly placed in the message.
11. Checksum verification test: Check whether the checksum is correct.
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calculate_frequency()
1. Zero period test: This test checks whether the function returns zero if the period is zero.
2. Positive period test: This test checks whether the function correctly calculates the frequency for

a given positive period.
3. Small period test: This test verifies the function with a non-zero, small period.

frequency_to_temperature()
1. Zero frequency test: This test ensures that a default error value is returned if the frequency is

zero.
2. Positive frequency test: This test verifies the temperature conversion for a given positive fre-

quency.
3. Small frequency test: This test verifies the function with a small frequency.
4. Frequency in range test: This test checks the temperature conversion for a frequency within the

expected range.
5. Frequency in range test 2: This test checks the temperature conversion for another frequency

within the expected range.
6. Frequency in range test 3: This test checks the temperature conversion for yet another frequency

within the expected range.

convert_adc_to_voltage()
1. Zero value test: This test checks whether the function correctly converts an ADC value of 0 to

0.0 V.
2. Max value test: This test checks whether the function correctly converts the maximum ADC value

(4095) to the maximum voltage (3.64 V).
3. Mid value test: This test verifies the conversion when the ADC value is half of the maximum value.
4. Quarter value test: This test verifies the conversion when the ADC value is a quarter of the

maximum value.
5. Three-quarters value test: This test verifies the conversion when the ADC value is three-quarters

of the maximum value.
6. Arbitrary value test: This test verifies the conversion for an arbitrary ADC value (2048).
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