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Estimation of energy models from data is an important part of advanced fault detection and diagnosis
tools for smart energy purposes. Estimated energy models can be used for a large variety of management
and control tasks, spanning from model predictive building control to estimation of energy consumption
and user behavior. In practical implementation, problems to be considered are the fact that some mea-
surements of relevance are missing and must be estimated, and the fact that other measurements, col-
lected at low sampling rate to save memory, make discretization of physics-based models critical.
These problems make classical estimation tools inadequate and call for appropriate dual estimation
schemes where states and parameters of a system are estimated simultaneously. In this work we develop
dual estimation schemes based on Extended Kalman Filtering (EKF) and Unscented Kalman Filtering
(UKF) for constructing building energy models from data: in order to cope with the low sampling rate
of data (with sampling time 15 min), an implicit discretization (Euler backward method) is adopted to
discretize the continuous-time heat transfer dynamics. It is shown that explicit discretization methods
like the Euler forward method, combined with 15 min sampling time, are ineffective for building reliable
energy models (the discrete-time dynamics do not match the continuous-time ones): even explicit meth-
ods of higher order like the Runge-Kutta method fail to provide a good approximation of the continuous-
time dynamics which such large sampling time. Either smaller time steps or alternative discretization
methods are required. We verify that the implicit Euler backward method provides good approximation
of the continuous-time dynamics and can be easily implemented for our dual estimation purposes. The
applicability of the proposed method in terms of estimation of both states and parameters is demon-
strated via simulations and using historical data from a real-life building.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is a growing interest in research and industry to extract in
real-time additional insights from data collected by building
automation systems (BAS). Examples of the additional value
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include real-time fault detection and diagnostics [ 1], energy saving
supervisory control [2-5], real-time performance validation and
energy usage analysis [6], real-time estimation of energy consump-
tion in connection with user behavior [7-9], real-time estimation
of the user behavior for improved control decisions [10-13], real-
time estimation of thermal comfort models [14]. These real-time
applications share the common goal of checking correct evolution
of energy dynamics and/or thermal comfort, and detecting

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

T, zone temperature

Th neighbor zone temperature

To outside temperature

Tm building mass (envelope) temperature
Ca thermal capacitance of zone air

(o thermal capacitance of building mass
Oam conductance zone air/mass

Olom conductance outside air/mass

e predicted (augmented) state estimate
Py predicted covariance estimate

Vi innovation residual

Sk innovation covariance

K near-optimal Kalman gain

P updated covariance estimate

Lk updated (augmented) state estimate
X state of the system

u input to the system

w parameters of the system

y output of the system

v process noise of the system

n observation noise of the system
f,F state transition maps

h,H output maps

Ts sample time

Lk augmented state (state and parameters)
Qi covariance of process noise

Ry covariance of observation noise
X(klk — 1) matrix of sigma vectors

L}‘h Lie-derivative of order k

dG (nonlinear) observability matrix

anomalies and their causes [15]. To this purpose it is necessary to
develop appropriate estimation tools that can detect, online from
real-time collected data, whether the system is running according
to a nominal model, or it is deviating from it.

In building applications the practical aspect and constraints are
particularly important, since the majority of customers (building
owners, landlords and tenants, as well as facility managers and
energy service companies) are not willing to substantially invest
in the solutions, at least until a short payback period is guaranteed.
As a result, there is an opportunity for analytic engines capable of
operation on legacy BAS systems which log only limited number of
data points with limited sampling rate and resolution. While in
industry there exists a variety of rule-based solutions for the indi-
vidual BAS application listed above (e.g. Attune by Honeywell [16],
SmartStruxure Lite solution by Schneider Electric [17], envisage*
Energy Management System by General Electrics [18] and many
others), researches have shown that a model-based approach is
expected to provide a common basis to be shared by most of the
advanced features and outperform rule-based methods [19-22].
The model-based approach requires the development of an
appropriate model for the system dynamics, and the use of data
to interpret in real-time the model parameters and their possible
variations.

A model is a product that represents a system of interest, and
quoting George Box “all models are wrong, but some are useful”:
in the following we will elaborate on which models are useful to
our real-time purposes. Several building energy models and related
software are available, which can be categorized as steady-state
building energy simulation models and dynamic building energy
simulation models. Models like the ISO 13790 [23] fall in the first
category, because of the steady-state assumption that the building
is heated or cooled for the thermal comfort of people. Models like
EnergyPlus, TRNSYS, Modelica and RC models [24,25] fall in the
second category, because they take into account (to different
extent depending on the specific software) the dynamic behavior
of heat and mass transfer. Steady-state building energy simulation
models are used for long-term simulations and predictions, espe-
cially given the fact that in many buildings energy use is collected
on monthly or weekly basis. However, they cannot be adopted for
real-time energy monitoring and control. For real-time purposes
we need to use dynamic building energy simulation models, well
suited for buildings equipped with automated meter reading,
where data are collected at a rate typically in the range from units
of minutes to one hour. Taking into account hourly or per minute
thermal dynamics allows using these models not only for

long-term simulations and predictions, but also for real-time man-
agement and control purposes. Collection of data on a weekly or
monthly basis makes not only real-time monitoring and control
impossible, but it has been also identified as one of the main rea-
sons for having huge gaps between the estimated and the actual
building energy consumption [26].

Summarizing, we are interested in dynamic building energy
simulation models. Using the classification of Lawrence Berkeley
National Laboratory [27], when can further distinguish dynamic
building energy simulation models into:

e Procedural energy modeling (like EnergyPlus and TRNSYS).
e Equation-based energy modeling (like Modelica and RC
models).

Procedural modeling is usually more complex, because it is
based on partial differential equations. For this reason modeling
the physics is mixed with the implementation of numerical solu-
tion algorithms, and these building simulation programs typically
do not allow specifying initial conditions for all state variables,
which makes it impossible to use these models for model predic-
tive control purposes or anti windup of control action or other
optimization and monitoring tasks. Equation-based modeling is
usually simpler, because based on ordinary differential equations
with lumped parameters: this simplifying assumption allows
defining state variables, specifying their initial conditions and con-
trolling their evolution. Within the scopes of this paper, estimation
of energy models from equation-based modeling is to be preferred
over procedural modeling, because they allow easier real-time
interpretation of the (lumped) model parameters [28].

Estimation of equation-based energy models is equivalent to
estimating the parameters of the heat transfer equations (thermal
resistance, conductance etc.) and/or some variables that cannot be
measured (e.g. envelope temperatures). Estimation of equation-
based energy models from data becomes challenging when com-
bined with the following two issues:

(1) In most practical cases, many measurements are missing,
due to the expensive sensors that would be required to
acquire these measurements. For example, in building ther-
mal dynamics, it is easy to get zone temperatures, but more
difficult to get envelope temperatures. Envelope tempera-
tures can be as important as zone temperatures in under-
standing the state of the building, so it is relevant to
estimate them.
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(2) The measurements are logged at low sampling rate to save
memory. In most practical cases, and in particular for
buildings running legacy BAS systems, the logging rate is
low compared to the thermal response of the respective
subsystem of the building. The thermal dynamics of the
walls of many conventional buildings is of the order of
one hour [29]. Recall the Nyquist-Shannon sampling theo-
rem and classical recommendation to set the logging rate
approx. 10-times faster than the fastest dynamics of inter-
est [30]. Thus, we consider - for real-time purposes -
15 min to be a low sampling rate. Since the sampling rate
usually cannot be significantly increased, the low rate
makes it difficult to construct reliable discrete-time models
out of continuous-time equation-based dynamics. By relia-
bility we intend that the dynamics of the discretized energy
model (with estimated states and parameters) should
match the actual continuous-time dynamics of the
building. Unfortunately, large discretization steps put this
reliability at stake.

These two issues reveal the need for developing methods that
can estimate missing measurements, estimate relevant parame-
ters, and cope with low sampling rate. In this work we focus on
estimation of building heat transfer dynamics, and we tackle the
aforementioned challenges via a dual estimation scheme where
states and parameters of the thermal system are estimated simul-
taneously. The estimated variables can be consequently used to
extract aforementioned insights from the logged data. For example,
faults can be detected and diagnosed from the fact that changes in
the building thermal parameters and/or anomalous behavior of
estimated variables can be related to degradation of materials,
changes in building usage, or faults.

We develop two dual estimation schemes, based on Extended
Kalman Filtering (EKF) and Unscented Kalman Filtering (UKF),
respectively: in order to cope with the low sampling rate of data
(15min sampling time), an implicit discretization (Euler
backward method) is adopted to discretize the continuous-time
thermal dynamics. Typically, estimated building thermal models
are constructed based on explicit discretization methods like
the Euler forward method. In this work it is shown that explicit
discretization methods, combined with 15 min sampling time,
are ineffective for reliable building heat transfer models: the
discrete-time dynamics do not match the continuous-time ones,
and even explicit methods of high order (Runge Kutta and
Multistep) fail to provide a good approximation of the continuous
dynamics with such long time step. Either smaller time steps or
alternative discretization methods are required. We verify that
the implicit Euler backward discretization method provides good
approximation of the continuous-time dynamics and can be also
easily implemented for our dual estimation purposes. Further-
more, we provide a rigorous observability analysis to check a
priori when the dual estimation problem is well posed, or when
the model to be estimated must be redesigned because it leads
to an unobservable model. The applicability of the proposed
method in terms of estimation of both states and parameters is
demonstrated via simulations and using historical data from a
real-life building.

1.1. Related work

Estimation problems are ubiquitous in smart energy
applications, and in building thermal dynamics in particular. Auto
regressive models with exogenous inputs are widely used for
parameters estimation: in [31] statistical models for solar
radiation and outdoor air temperature are used to calculate room
temperatures and heating load in office buildings; the authors of

[32] obtain the physical meaning of wall parameters by estima-
tion and deduction from a thermal network model; convective
and radiative heat interchanges for photovoltaic integrated
facades and roofs are estimated in [33]. The work in [34] develops
methods for estimating thermal conductivity and resistance,
related to heat exchanger design. Most of the methods based on
auto regressive models, including the aforementioned ones, are
not dual estimation methods: in fact, they use a prediction error
setting, where parameters are estimated, but no state estimation
is performed. Other estimation methods from literature worth
mentioning are the temperature-based approach to detect per-
sisting small increase or decrease in the normal building energy
consumption in [35]: this method identifies an abnormal energy
consumption fault according to the deviation between the mea-
sured and simulated consumption. In [36], a simplified thermal
network model is combined with parameter estimation tech-
niques, for determining the most representative parameter set
for thermal load estimation. Worth mentioning are also machine
learning techniques for building energy management: their adop-
tion had been increasing during the years, with applications in
fault detection and diagnosis of HVAC systems [37], building load
prediction [38,39], forecasting of energy consumption [40,41].
Machine learning approaches are complementary to the proposed
physic-based approach, since they build models from example
inputs (rather than from first principles), and they are completely
data-driven.

Despite the good results of the aforementioned approaches,
most of them rely on ad-hoc methods, that cannot be easily gen-
eralized to other settings, like the dual estimation setting. Estima-
tion methods based on Kalman filtering [42], which would allow
for this generalization, are to a large extent not adopted in smart
energy applications. Some exceptions are the following: in [43]
recursive estimation (i.e. parameter estimation) is proposed in
conjunction with adaptive control. In [44] several lumped-
parameter building thermal models are compared to evaluate
the model complexity needed to capture the basic thermal behav-
ior of the entire building: an extended Kalman filter is used to
estimate the missing states, but no parameter estimation is per-
formed. In [45] a combination of Kalman filter and real-time least
squares is used to estimate the unknown heat flux on the inner
wall of a tube from measured temperature on the outer wall. In
[46] a Kalman Filtering approach is used to estimate the indoor
thermal sensation: again, these are state estimation problems,
where no parametric estimation is performed. On the other hand
Kalman filtering methods are becoming largely adopted in speci-
fic fields complementary to energy efficient buildings, namely
wind speed prediction [47,48], battery state of charge estimation
[49-51], parameter estimation of solar cells [52,53]. Notice, how-
ever, that none of these fields deals with dual estimation prob-
lems for joint estimation of states and parameters. A notable
exception is represented by Maasoumy et al. [54], where a dual
estimation scheme is introduced, but the problem of low sam-
pling rate is not addressed, as well an observability analysis is
not performed. To the best of the authors’ knowledge, this is
the first smart energy study that deals with dual estimation with
low sampling rate.

The rest of the paper is organized as follows: Section 2 pre-
sents the (continuous-time) building thermal model under con-
sideration. Section 3 introduces the dual estimation problem
and the EKF and UKF to solve it. Section 4 discusses issues
related to discretization with low sampling rate. Section 5 per-
forms an observability analysis to verify that the dual estimation
problem is well-posed. Section 6 shows the performance of the
resulting dual estimation scheme in simulation, while Section 7
using data from a real-life building. Section VIII concludes the
paper.
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Fig. 1. Heat exchange under consideration.

2. A building heat transfer model

The building heat transfer model under consideration com-
prises a thermal zone exchanging heat with the outside ambient
and a neighborhood zone. The model has been derived using the
lumped parameter approach leading to the RC model, as described
e.g. in [55-57]. The diagram of Fig. 1 represents the heat exchange
situation. It is the result of the tradeoff between model descriptive-
ness and its observability from the available measurements, as
elaborated in Section 5. The heat transfer equations are as follows:

dT,  Oam
@ ¢, In—T2)
dT, 1
= [aﬂm(Tz - Tm) + a(am(Tn - Tm) + aom(To - Tm)] (1)
dt Cp

where C, is the thermal capacitance of the zone air and C,, is the
thermal capacitance of the building mass (envelope). The other
coefficients in (1) are the conductances between zone air and mass
(0tqm) and between outside air and mass (o). The variables
T,,T,, T, and T,, are the temperature of the zone under considera-
tion, of the neighborhood zone, of the outside air, and of the build-
ing mass. In (1) no external solar radiation or internal heating gains
are assumed, in order to keep the presentation as simple as possi-
ble. These terms can be easily included without jeopardizing the
correctness of the proposed approach.

It is now convenient to introduce the following concepts for the
dynamic model of a system:

e State: is a collection of variables that include what is needed to
give a complete description of the system. In (1) the state is
given by T, and T,, which describe the (thermal) state of zone
and envelope.

Input: is a collection of exogenous variables that are fed to the
system and influence its evolution. In (1) the input is given by
T, and T, which come from outside the system and influence
the evolution of the (thermal) state of zone and envelope.
Parameters: is a collection of constants whose values character-
ize the model. In (1) the parameters are given by the thermal
capacitance C, and C,, and by the conductances g, and op.
Notice that in our case the parameters can slowly vary during
the evolution of the system.

After grouping some terms together, (1) can be equivalently
written as

dT,

W = ﬁmZa(Tm - TZ)

dT,,

7 = BaZm(TZ - Tm) + ﬁaZm(Tn - Tm) + ﬂoZm (TO - Tm) (2)

where the coefficients represent the thermal exchange coefficients
air-to-mass (B, ), Mass-to-air (B,,,,), outside-to-mass (f,,,,). The
representation (2) is typically more convenient than (1) because

all coefficients appear linearly. Notice that the temperature of the
zone under consideration, of the neighborhood zone, of the outside
air can be easily measured, while the temperature of the building
mass requires expensive intrawall sensors, whose measurements
are not always reliable. In most practical application it is thus
impossible to measure T,, and such variable must be estimated.
Furthermore, the coefficients B, Bmaa, Boam depend on the envelop
materials and they can even change with building usage: it is thus
of interest to estimate them. Given these considerations, we formu-
late the problem as follows:

Problem formulation: Develop an algorithm that can, from mea-
surements of the temperature of the zone under consideration, of
the neighborhood zone and of the outside air, derive estimates of
the temperature of the building mass T, and of the heat transfer
coefficients Buym, Bmza> Bozm 1N (2). Furthermore, in case the heat
transfer coefficients change with time, the algorithm should be
able to detect such changes.

The stated problem can be solved within the framework of dual
estimation, which consider the problem of jointly estimating the
state and the parameters of a dynamical system.

3. Dual estimation

We consider the problem of estimating both the (unmeasur-
able) states x(k) € R" and parameters w € R® of a discrete-time
(nonlinear) dynamic system

x(k+ 1) = F(x(k),u(k), v(k),w)
y(k) = H(x(k), u(k), n(k), w) 3)

where the first equation is the state transition function and the sec-
ond equation is the measurement function. In (3) u(k) € R™ is an
exogenous input to the system, y(k) € R” is the output of the sys-
tem, while »(k) and n(k) are the process and observation noise,
respectively. The functions F(-) and H(:) are the state transition
and output maps of appropriate dimension. Notice that the building
heat transfer model (2) is linear in the states and in the parameters,
but since the dual estimation formulation is general enough, we will
explain the nonlinear case (which can be handled both by the EKF
and the UKF). Furthermore, we will concentrate on the discrete-
time case because of the way the data are saved and consequently
the way Kalman filters are implemented. Let T; be the sampling
time. Section 4 explains more in details how to obtain a discrete-
time model out of the continuous-time dynamics. In order to sim-
plify the presentation, we introduce the notation x, = x(k) and
rewrite

Xkr1 = F(xlc7 Uy, Uk, W)
Y = H(Xp, ug, mi, w) (4)

In the joint Kalman filtering dual estimation, the state and
model parameters are concatenated within a combined state vec-
tor, and a single EKF or UKF is used to estimate both quantities
simultaneously. Let us call y, = [x, w;]’ € R"" and rewrite (4) as

A1 =F O 20)
Ve = h(%lwuk’nk) (5)

In (5) the state is augmented in such a way that the uncertain
parameters w are represented as additional state variables. The
original state vector is augmented with these new state variables
which we may denote the augmentative states. As a consequence,
the functions f(-) and h(-) are the state transition and output maps
of the augmented system of appropriate dimension. A Kalman filter
must then be used to estimate the augmented state vector.
To set up an augmentative model an assumption must be made
about the behavior of the augmentative state. The most common
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assumption is that the augmentative state is (almost) constant or
slowly varying. The corresponding differential equation is

W1 = Wi+ V. (6)

which is often referred to as random walk. In (6) v is a white process
noise that models slow variations. The (almost) constant assump-
tion is not the only one: an (almost) constant rate can be used to
model parameter drifts (e.g. to estimate degradations). Once the
augmented model has been defined, a Kalman filter can be designed
and implemented in the usual way, to estimate both the original
states and the augmentative states. In the following, define
L=n+s, and Q, and R, the covariance matrices of the extended
process and observation noise, possibly depending on time. We
briefly recall how to implement an Extended Kalman Filter and an
Unscented Kalman Filter for the augmented model.

3.1. Extended Kalman Filter

The classical Kalman filter calculates the optimal prediction and
optimal gain term exactly in the linear case. For nonlinear models,
however, the classical Kalman filter is not optimal anymore: the
Extended KF approximates the optimal prediction and optimal gain
term as:

Tie =F G-, k1)

P = A 1Pr1Ap + Qi

Vi =Y —h(, ter)

Sk = CkP];Ck + Rk
Ki = P, C,S, "'
Py = (I — Ky Cy)Py,

T = T + Kk

where }, is the predicted (augmented) state estimate, P, the pre-
dicted covariance estimate, y, the innovation residual, S, the inno-
vation covariance, K the near-optimal Kalman gain, P, the updated
covariance estimate, and j, updated (augmented) state estimate.
The covariances are determined by linearizing the dynamic
equations

Yk = Ak—l Y1+ Bk—l Ug_1 + Ll/k
Y = Gty + Dty + i
with A1 = L Bir1 = o , G = oh and

0, ou ay
(y/kl“kl Xkl“kl [y/ U1

Dy =2 . As such, the EKF can be viewed as providing “first-

ouly ug
order” approximations to the optimal terms (in the sense that
expressions are approximated using a first-order Taylor series
expansion of the nonlinear terms around the mean values).

3.2. Unscented Kalman Filter

The Unscented Kalman Filter is based on the unscented trans-
formation [58]. The unscented transformation is a method for cal-
culating the statistics of a random variable which undergoes a
nonlinear transformation. Consider propagating the random vari-
able 7, (of dimension L) through a nonlinear function given by
the system dynamics. To calculate the statistics of the propagated
variable, we form a matrix X(k|k — 1) of 2L + 1 sigma vectors

X(kk — 1) = [Xo(klk — 1) - X1 (k|k — 1)]

The unscented filter (UF) propagates the estimates as follows

K 1 1 .
Womitro  Wimpp i=lo2L
2L
7o =S WiXi(kik - 1)
i=0
Pk—ZW i(klk = 1) = ) Xi(klk = 1) = )’
(k|k—l): (X(klk — 1), u(k — 1), P}?)
ZW, (klk —1)
Py, = ZW i(klk = 1) = 3 (Yi(klk = 1) =30 )'
Py, = Zw iklk = 1) = Z)(Yiklk = 1) = 77)'

Te=Tue +kaykpykJ’k(yk Vi)
Py =P, — kaykP P,

iV Xk

Remark 1. Notice that even if (2) is linear in the states and in the
parameters, the augmentation in (6) makes the augmented model
bilinear. For this reason nonlinear estimation techniques are
required for dual estimation.

4. Discretization issues in building heat transfer models

Consider the model in (2). If the model were linear, one could
use exact discretization methods based on zero-order hold, namely

x(t) = Ax(t) + Bu(t) = X1

(k+1)Ts
Ag= el By = /k eAt-9Bdt (7)

= AgXy + Byuy

However, there are two reasons why this method cannot be used in
the dual estimation case at hand. The first is the fact that the coef-
ficients in (2) appear in a bilinear fashion in the augmented model
and can be even slowly time-varying. Another reason for not con-
sidering the exact discretization (7) is that it might become intract-
able in large buildings with many states due to the heavy matrix
exponential and integral operations involved. Based on these con-
siderations, it is convenient to calculate an approximate discrete-
time model. Starting from a general continuous-time (nonlinear)
model

X(t) = fx(t), u(t))

the most commonly used approximation method is the Euler For-
ward Method, i.e.

X1 = X+ Tof (X, Uy)

where T is the sampling time. The Euler forward method is said to
be explicit, since the solution x,., is an explicit function of x;,i < k.
The method increments the solution through an interval T while
using derivative information from only the beginning of the inter-
val. As suggested by intuition, the Euler forward method is more
accurate if the step size Ts is smaller. The Euler forward method
can also be considered as the Taylor expansion of the function f
truncated to the first order. This consideration allows us to state
that since the quadratic and higher-order terms are ignored, the
local truncation error is of order O(T?).

It is well known that the Euler forward method can be numer-
ically unstable, especially for stiff equations: however, we will
show numerically that the Euler forward method can be numeri-
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cally unstable also for non-stiff building heat transfer model (2).
Let us assume that the model parameters in (2) are perfectly
known, so that no parameter estimation is necessary. Fig. 2 shows
the evolution of the zone temperature coming from the
continuous-time model (2) versus the evolution of the zone tem-
perature coming from the model discretized with the Euler for-
ward method. It is evident that after already few steps the Euler
forward method has an oscillatory unstable behavior. Furthermore,
we will show that higher-order discretization techniques can be
similarly inaccurate.

4.1. Higher order explicit methods

In order to increase the accuracy of the discretization method,
more complex methods can be adopted e.g. by using more function
evaluations. The most common is the midpoint method (also called
second order Runge-Kutta method) which uses two function eval-
uations in the following way:

1
X1 = X + Tof (Xk + iTsf(st Uy), Uk+%>~

The name of the method comes from the fact that the function f giv-
ing the slope of the solution is evaluated at t = kT, +  T;, which is
the midpoint between kT, at which the value of x(t) is known and
(k + 1)T, at which the value of x(t) needs to be found. The midpoint
method can be demonstrated to have local truncation error of the
order of O(T?) (more precise than the Euler forward method).

The other possibility for increasing accuracy of discretization is
to use more past values, for example as in the two-step Adams-
Bashforth method:

3 1
X1 = X + stf(Xk-, ) — jT&f(xk—l JUpq).

which has also local truncation error of the order of O(T?) (more
precise than the Euler forward method). Fig. 3 shows the evolution
of the zone temperature coming from the continuous-model (2)
versus the evolution of the zone temperature coming from the
model discretized with the midpoint method and the two-step
Adams-Bashforth. It is evident that also these higher-order dis-
cretization methods fail to catch the continuous-time behavior after
already few steps. Notice that the two methods would work per-
fectly if a smaller sampling time were adopted, as revealed by
Fig. 4, which is obtained for T; = 2 min. We conclude that explicit
discretization methods are not suitable for low sampling rate. Either
smaller time steps or alternative discretization methods are
required. Implicit methods are investigated, and we will consider
the simplest implicit discretization method, namely the Euler back-
ward method.

4.2. Euler backward method

A modification of the Euler forward method which eliminates
the stability problems noted in the previous section is the back-
ward Euler method:

X1 = Xk + Tsf(xk+l s k1 )

This differs from the forward Euler method in that the function fis
evaluated at the end point of the step, instead of the starting point
(see Fig. 5). The backward Euler method is an implicit method,
meaning that the formula for the backward Euler method has x.
on both sides, so when applying the backward Euler method we
have to solve an equation. This makes the implementation more
costly. However, unlike the Euler forward method, the backward
method is unconditionally stable and so allows large time steps to
be taken. Unconditional stability can be shown with this toy

example: assume we want to discretize the (stable) differential
equation x = ax, with a < 0. The Euler forward method would lead
to

X1 = X + Tsax, = (14 Tsa)xy

which becomes unstable for |1 + Tsa| > 1, i.e. Ty > —2/a. The Euler
backward method would lead to

L X
1-Ta™*
which is always stable no matter what a is.

The rationale behind the backward Euler method is similar to
the forward Euler method, with the difference that in the forward
Euler method the derivative at the end of the interval is used (cf.
Fig. 5).

For the model (2) the backward Euler method becomes:

To(k + 1) = T,(k) + Ts[Bua(k + 1)(Tm(k + 1) = To(k + 1))]

X1 = X + TsXpeyq =

Tk +1) = T (k) + Ts[Boam (k + 1)(Tz(k + 1) = T (k + 1))
+Boom(k + 1)(To(k + 1) — Tn(k + 1))
+Paom(k+ 1)(Tu(k + 1) = Trn(k + 1))]

which can be written as

{ T,(k+1) }

Tinass(k + 1) (8)

Il
69

1 T, (k)
|:Tm(k) + TS[ﬁaZm(k + 1)T0(k + 1) + ﬁaZm(k)Tn(k + ])} :|
with

_ {1 + TSﬂmZa(k + 1)

7Tsﬁm2a(k+ 1) :|
_T5ﬁﬂ2m(k + 1)

1 + ZTSﬁaZm(k + l) + TSﬁoZm (k + 1)
9)
The inverse of the 2 x 2 matrix can be easily calculated to be

=1 _ l |:] + ZTSﬂHZm(k + 1) + TSﬁoZm(k + 1) TS/nga(k + 1) :|
- TsBaom(k +1) 14 TsPmaa(k+1)

=

A4

with 4 = (1 + TeBpa(k + 1) (1 + 2TsBaam(k + 1) + TsBopm(k + 1))—
T2 Baom (K + 1) Bmaa(k + 1). Fig. 6 reveals that the Euler backward dis-
cretization is perfectly able to catch the continuous-time profile,
even for low sampling rate.

Remark 2. Notice that the matrix = is always invertible, because
the determinant is positive

4=1 + ZTSﬂaZm(k + 1) + TSﬂoZm(k + 1) + TSﬁmZa(k + 1)
+ T?ﬁaZm(k + ‘l)ﬁnﬂa (k + 1) + T?ﬁmZa(k + 1)ﬁ02m(k + 1)
>0 (10)
This comes from the fact that sample time and heat transfer
coefficients are always positive.

We conclude the section by defining the following measure of
discrepancy

Tcont k) — Tdisc k 2
e mOJ X ((T(C)""t(k;)Z( ’ .

which represents, over the simulation horizon [0, T], the deviation of
the zone temperature of the discretized model with respect to the
zone temperature of the continuous-time model. The discrepancy
is calculated for all discretization methods (and different time
steps) and shown in Table 1. The result is that the backward Euler
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Fig. 2. Zone temperature: continuous-time model (solid), Euler forward discretiza-
tion (dash-dot). Sample time t; = 15 min.

method with sampling rate T; = 15 min can represent the continu-
ous time dynamics to a good accuracy (1.04%).

5. Observability analysis

What is often missing in dual estimation problems is an appro-
priate observability analysis: in other words before proceeding
with the augmented state estimation, it is important to check
whether the joint estimation of states and parameters is well-
posed, i.e. states and parameters are observable.

It is well-known that the intuitive notion of observability is:
from observing the sensor(s) for a finite period of time, can I find the
state at previous times?

Since observability is a structural property of the real
(continuous-time) system and not of its discretized model, the
observability analysis is carried out in continuous time. In order
to explain observability we will use a toy example.

5.1. Toy example

In the following we will consider the simple system
X=ax
where we assume to estimate both x and a as in the dual estimation
formulation. Notice that (12) is at the same time representative of
some building dynamics (increase/decrease temperature) and sim-

ple enough to allow a simple analysis.
We augment the dynamics as follows:

X=ax
a=0

Since the augmented system is nonlinear, the observability
analysis must be carried out via a local approach relying on the
Lie derivative [59]. It is crucial to underline that observability for
nonlinear systems is more complex than looking at the observabil-
ity of the linearized model (the linearized augmented model would
result unobservable, but this does not mean that the augmented
model is unobservable). In fact, nonlinear observability is inti-
mately tied to the Lie derivative. The Lie derivative is the derivative
of a scalar function along a vector field. The augmented model in
(12) can be written as

=0
x=h(y)

(12)
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Fig. 3. Zone temperature: continuous-time model (solid), midpoint discretization

(dash-dot), two-step Adams-Bashforth discretization (dot). Sample time
Ts = 15 min.
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Fig. 4. Zone temperature: continuous-time model (solid), midpoint discretization
(dash-dot), two-step Adams-Bashforth discretization (dot). Sample time
Ts = 2 min.

where y =[x a], and f and h are defined accordingly. Notice that
the x can be measured, but a not. The Lie derivative of h with respect
to fis:

dh
L =7 (13)
We can also define higher-order Lie derivatives:
K d
Lh = {@Lf ' (14)

where L?h = h by definition. Define

0
Leh
1
Leh

-1
L'
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Fig. 5. Representation of the Euler backward method.
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Fig. 6. Zone temperature: continuous-time model (solid), Euler backward dis-
cretization (dash-dot). Sample time t; = 15 min.

We have that in order to have observability, the rank of the gradient
operator

0
dLoh

dLsh
G= (15)

n.—l
dy'h

must be full. Summarizing, the observability of a nonlinear system
is given by the following theorem.

Theorem [59]. Let G denote the set of all finite linear combinations
of the Lie derivatives of h1, . .., h, with respect to f for various values of
u = constant. Let dG denote the set of all their gradients. If we can find
n linearly independent vectors within dG, then the system is locally
observable.

Please notice that the gradient operator becomes the observ-
ability matrix in the linear case. In our case we have that

LPh=x

Lih = ax a*x (16)
i.e. we take the Lie derivative up to order 1. The gradient of (16) is
dLfh =11 0]

dL;h = [al ax]

which has rank 2 if a is different than 0. So the system is locally
observable.!

5.2. Observability of the heat transfer model

Let us then verify the observability of the building heat transfer
model (2) using the aforementioned nonlinear observability analy-
sis. We find that the corresponding dG has rank 5, which means
that the two temperatures and three heat transfer coefficients
are (locally) observable. The observability analysis has been carried
out via the Matlab symbolic toolbox, and it is not shown in details
due to the length of the resulting Lie derivatives.

Furthermore, notice that alternative building heat transfer
models lead to unobservable systems. The following RC model, also
arising from the lumped parameter approach [55-57] but with dif-
ferent constants

dr,

E - ﬁmza(Tm - TZ)

dTy,

W:ﬁaZm(TZ_Tm)+ﬁn2m(Tn _Tm)+ﬁ02m(T0 _Tm) (17)

assumes that the mass interacts differently with the neighborhood
zones, due to f,,,,.- However, (17) has a dG of rank 5, which means
that not all 4 coefficients are observable. The following alternative
RC model

dT,

E = ﬁmZa(Tm - TZ) + ﬁola (TD - TZ)

dT,

F:ﬂGZm(Tlme)+ﬂ02m(Tn 7Tm)+ﬁ02m(T0 7Tm) (18)

where an extra term is adopted to model the direct exchange
between zone and outside air, has also a has a dG of rank 5, thus
resulting unobservable. However, if a “window” term is added, in
the following way

dT,

a Bm2a(Tm — T2) + WP (To — T2)

dT,

W:ﬁGZm(TZ_Tm)J"ﬂaZm(TH _Tm)+ﬁ02m(T0 _Tm) (19)

where w,, € [0, 1] is a known input representing the window open-
ing, then the system would become observable (at least for some
non degenerate inputs).

Remark 3. Notice that, differently than linear systems, the system
input affects the observability of nonlinear systems. For example,
(19) with window always closed (w,, =0) or always open
(ww = 1), would make fy,, unobservable. This coefficient would
become observable only with some window opening strategy that
‘excites’ the system. To the best of the authors’ knowledge, there
are no general results explaining which kind of input makes the
coefficient observable, and which do not: in these complex cases,
observability can only be demonstrated a posteriori with extensive
simulations. The analysis of this section has the merit to show a
priori when a dual estimation problem is not well posed (e.g. (17)
or (18)), so that different models must be adopted.

6. Results
6.1. Simulation results

In this part we aim at showing the performance of EKF- and
UKF-based dual estimators via simulations. The continuous time

! The system is locally observable, that is distinguishable at a point x, if there exists
a neighborhood of xy such that in this neighborhood, y, # x; = h(y,) # h();) [55].
Intuitively, if the sensor readings are different, the states are different.
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Discrepancy continuous/discrete time model.

89

Forward Euler Midpoint Midpoint Two-step Two-step Backward Euler
(Ts = 15 min) (Ts = 15 min) (Ts = 2 min) (Ts = 15 min) (Ts = 2 min) (Ts = 15 min)
D% 99.12% 99.99% 0.24 % 99.99% 0.26 % 1.04 %
Table 2
Root mean square errors averaged over 100 simulations.
EKF UKF
RMS T, 1.684-1078 1.541-1078
RMS T, 1.732.10°% 1.588-107%
RMS Biq 1.354.10°* 1.310-10°*
RMS Boom 0.740-1078 0.721-1078
RMS Boom 38.542-10°% 38.224-10°%
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Fig. 7. EKF-based dual estimator: zone and mass temperatures (upper plot), heat
transfer coefficients (lower plow). In dash-dotted line the real evolution, in solid
line their estimates.
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Fig. 10. Real-life test case: heat exchange under consideration, whose dynamics are
observable via the logged datapoints.

model (2) is taken  with By, =5.235-107, Bom =
9.720-107%, 8,5, = 2.141 - 10~*. However, the parameters are not
fixed, but may vary according to an additive Gaussian diffusion

process with variance 9-1073,6-1073,35-107% (in continuous
time), respectively. The zone temperature can be measured, while
the mass temperature cannot. The zone temperature is subject to

an additive sensor noise with variance 1-107°. Furthermore the
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Fig. 11. Real-life UKF-based dual estimator, night #2: zone and mass temperatures
(upper plot), heat transfer coefficients (lower plow). In dash-dotted line the real
evolution, in solid line their estimates.

two equations in (2) are subject to additive Gaussian diffusion
processes with variance 1-107%,3-10"® (in continuous time),
respectively.

The model is discretized with backward Euler method with
T, = 15 min, and all the continuous-time covariances are trans-
lated into their discrete-time counterpart. The EKF- and UKF-
based dual estimators are derived via the procedures that have
been described. Figs. 7 and 8 show, for two particular realization
of the noises, the performance of the EKF- and UKF-based dual esti-
mators. It is possible to notice that both temperatures are tracked
with great accuracy: in addition the filters are able to track changes
in the parameters.

The performance of EKF- and UKF-based dual estimators is fur-
ther investigated with extensive simulations. In particular, 100
Montecarlo simulations are performed and the estimation perfor-
mance is measured in terms of the average root mean square
(RMS) error between the true temperatures and the estimated
temperatures, and between the true parameters and the estimated
parameters. The RMS is averaged over the 100 simulations. The
results are shown in Table 2. There is possible to notice that the
UKEF performs slightly better than the EKF.

6.2. Real-life test case and results

Here we show a real-life application of the UKF-based dual esti-
mator. The pilot building selected is a school located in the pro-
vince of Treviso, Italy, with humid subtropical climate. The
building is equipped with hydronic heating system supplied by a
gas-fired boiler. The heating system is supervised by an IQ1 Trend
building energy management system [60]. The legacy system logs
selected building data at a 15-min rate. The objective of the exer-
cise is to develop a dynamic model of the zone thermal response,
which would be used in model-based analytics as explained in Sec-
tion 1. Fig. 9 depicts the complete heat exchange in one room of the
school. It has to be underlined that the complete heat exchange
dynamics are not observable according to the observability analy-
sis of Section 5. For example, the temperature of the water in the
radiator is not available, and this makes it impossible to observe
some thermal dynamics arising from internal gains. We have thus
to come up with a simplified heat exchange situation whose
dynamics are observable given the available logged datapoints.

UKF, night 10
20 T T T T T T T T
O(T ————— T_ real
E 19.5 T, estim | |
2 T _estim
© m
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£
]
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Fig. 12. Real-life UKF-based dual estimator, night #10: zone and mass tempera-
tures (upper plot), heat transfer coefficients (lower plow). In dash-dotted line the
real evolution, in solid line their estimates.
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Fig. 13. Real-life UKF-based dual estimator, night #2: real data vs. estimated model.

The only logged datapoints relevant to the zone response are zone
temperatures (T, and T, in model (2)) and outside air temperature
(T, in model (2)). Fig. 10 depicts the heat exchange under consid-
eration, whose dynamics are observable via the logged datapoints.
Notice that Fig. 10 is compatible with the model (2). Consequently,
the test is based on historical data collected during night in such a
way that the model (2) is valid. Since this is a real-life experiment,
the real parameters and the real mass temperature are not avail-
able. Figs. 11 and 12 show, for 2 particular nights the good fit of
measured and estimated zone temperature, and the evolution of
mass temperature and heat transfer coefficients. Furthermore, in
order to check the correctness of the results, a Kalman smoothing
technique is used to estimate the initial state at the beginning of
the night: the initial state is used to run the backward Euler dis-
cretized model and compare it with real data. Figs. 13 and 14 show
that the model matches the data with good accuracy. Notice that
the real measurements are subject to a quite big quantization error
due to sensor precision.
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Fig. 14. Real-life UKF-based dual estimator, night #10: real data vs. estimated
model.

7. Conclusions

This work presented two dual estimation schemes based on
Extended Kalman Filtering (EKF) and Unscented Kalman Filtering
(UKF) for building heat transfer models used in real-time applica-
tions. The dual estimation schemes are used to simultaneously
estimate both missing data (mass temperature) and uncertain heat
transfer coefficients. In order to cope with low sampling rate of
data (with sampling time 15 min), an implicit discretization (Euler
backward method) was used to discretize the continuous-time
heat transfer dynamics. It was shown that explicit discretization
methods (even of high order) are ineffective for building reliable
heat transfer models with low sampling rate. Either smaller time
steps or alternative discretization methods are required. We veri-
fied that the implicit Euler backward method provides good results
and could be also easily implemented for our dual estimation pur-
poses. The applicability of the proposed method in terms of esti-
mation of both states and parameters was demonstrated via
simulations and using historical data from a real-life building.

Acknowledgment

The research leading to these results has been partially funded
by the Marie-Curie call FP7-PEOPLE-2012-IAPP ‘Advanced Methods
for Building Diagnostics and Maintenance’ (AMBI).

References

[1] Gao Dian-ce, Wang Shengwei, Shan Kui, Yan Chengchu. A system-level fault
detection and diagnosis method for low delta-t syndrome in the complex
HVAC systems. Appl Energy 2016;164:1028-38.

[2] Parisio A, Rikos E, Tzamalis G, Glielmo L. Use of model predictive control for
experimental microgrid optimization. Appl Energy 2014;115:37-46.

[3] Verhelst Clara, Logist Filip, Impe Jan Van, Helsen Lieve. Study of the optimal
control problem formulation for modulating air-to-water heat pumps
connected to a residential floor heating system. Energy Buildings
2012;45:43-53.

[4] Baldi S, Michailidis I, Ravanis C, Kosmatopoulos EB. Model-based and model-
free “plug-and-play” building energy efficient control. Appl Energy
2015;154:829-41.

[5] Michailidis 1, Baldi S, Kosmatopoulos EB, Pichler MF, Santiago JR. Proactive
control for solar energy exploitation: a german high-inertia building case
study. Appl Energy 2015;155:409-20.

[6] Salsbury TI, Diamond R. Performance validation and energy analysis of HVAC
systems using simulation. Energy Buildings 2000;32:5-17.

[7] Kusiak Andrew, Li Mingyang. Optimal decision making in ventilation control.
Energy 2009;34(11):1835-45.

[8] Tzivanidis C, Antonopoulos KA, Gioti F. Numerical simulation of cooling energy
consumption in connection with thermostat operation mode and comfort
requirements for the athens buildings. Appl Energy 2011;88(8):2871-84.

[9] Xu Xiaoqi, Culligan Patricia J, Taylor John E. Energy saving alignment strategy:
achieving energy efficiency in urban buildings by matching occupant
temperature preferences with a buildings indoor thermal environment. Appl
Energy 2014;123:209-19.

[10] Goyal Siddharth, Ingley Herbert A, Barooah Prabir. Occupancy-based zone-
climate control for energy-efficient buildings: complexity vs. performance.
Appl Energy 2013;106:209-21.

[11] Oldewurtel Frauke, Sturzenegger David, Morari Manfred. Importance of
occupancy information for building climate control. Appl Energy
2013;101:521-32.

[12] Korkas CD, Baldi S, Michailidis I, Kosmatopoulos EB. Intelligent energy and
thermal comfort management in grid-connected microgrids with
heterogeneous occupancy schedule. Appl Energy 2015;149:194-203.

[13] Korkas C, Baldi S, Michailidis I, Kosmatopoulos EB. Occupancy-based demand
response and thermal comfort optimization in microgrids with renewable
energy sources and storage. Appl Energy 2016;163:93-104.

[14] Wang Zhu, Yang Rui, Wang Lingfeng, Green RC, Dounis Anastasios I. A fuzzy
adaptive comfort temperature model with grey predictor for multi-agent
control system of smart building. In: 2011 IEEE congress on evolutionary
computation (CEC). IEEE; 2011. p. 728-35.

[15] Yang Liu, Yan Haiyan, Lam Joseph C. Thermal comfort and building energy
consumption implications - a review. Appl Energy 2014;115:164-73.

[16] Honeywell. Attune. <http://hbsmicrosites.honeywell.com/HBSCDMS/Attune/>.

[17] Schneider Electric. Smartstruxure lite solution. <http://www.schneider-
electric.com/en/product-range/62191-smartstruxure-lite-solution/?parent-
category-id=1200>.

[18] General Electric. Envisage* energy management system. <http://www.
geindustrial.com/services/power-delivery/envisage-energy-management-
system>.

[19] Bonvini Marco, Sohn Michael D, Granderson Jessica, Wetter Michael, Piette
Mary Ann. Robust on-line fault detection diagnosis for HVAC components
based on nonlinear state estimation techniques. Appl Energy
2014;124:156-66.

[20] Mathews EH, Arndt DC, Piani CB, Van Heerden E. Developing cost efficient
control strategies to ensure optimal energy use and sufficient indoor comfort.
Appl Energy 2000;66(2):135-59.

[21] Wang Zhu, Wang Lingfeng, Dounis Anastasios I, Yang Rui. Multi-agent control
system with information fusion based comfort model for smart buildings. Appl
Energy 2012;99:247-54.

[22] Michailidis 1, Baldi S, Kosmatopoulos EB, Boutalis YS. Optimization-based
active techniques for energy efficient building control part II: Real-life
experimental results. International conference on buildings energy efficiency
and renewable energy sources, BEE RES 2014, June 1st-3rd, Kozani, Greece;
2014. p. 39-42.

[23] ISO 13790:2008. Energy performance of buildings - calculation of energy use
for space heating and cooling; 2012. <http://www.iso.org/iso/catalogue_detail.
htm%3Fcsnumber=41974>.

[24] Crawley DB, Hand JW, Kummert M, Griffith BT. Contrasting the capabilities of
building energy performance simulation programs. Build Environ 2008;43
(4):661-73.

[25] U.S Department of Energy. Energyplus energy simulation software; 2008.
<http://apps1.eere.energy.gov/buildings/energyplus/>.

[26] Tarik Ferhatbegovic, Gerhard Zucker, Peter Palensky. An unscented Kalman
filter approach for the plant-model mismatch reduction in HVAC system
model based control. In: IECON 2012 - 38th annual conference on IEEE
industrial electronics society; 2012. p. 2180-5.

[27] Wetter Michael. A view on future building system modeling and simulation.
In: Hensen Jan LM, Lamberts Roberto, editors. Building performance
simulation for design and operation. UK: Routledge; 2011. p. 1-28.

[28] Asdrubali Francesco, DAlessandro Francesco, Baldinelli Giorgio, Bianchi
Francesco. Evaluating in situ thermal transmittance of green buildings
masonries-a case study. Case Stud Constr Mater 2014;1:53-9.

[29] Tsilingiris PT. On the thermal time constant of structural walls. Appl Therm
Eng 2004;24:743-57.

[30] Franklin Gene F, Powell Da ], Emami-Naein Abbasi. Feedback control of
dynamic systems. 7th ed. Prentice Hall; 2014.

[31] Hokoi Shuichi, Matsumoto Mamoru, Ihara Toshikazu. Statistical time series
models of solar radiation and outdoor temperature - identification of seasonal
models by Kalman filter. Energy Buildings 1990;15:373-83.

[2] Fux Samuel F, Ashouri Araz, Benz Michael ], Guzzella Lino. Physical parameters
identification of walls using ARX models obtained by deduction. Energy
Buildings 2015;108:317-29.

[33] Fux Samuel F, Ashouri Araz, Benz Michael ], Guzzella Lino. Estimation of non-
linear continuous time models for the heat exchange dynamics of building
integrated photovoltaic modules. Energy Buildings 2008;40:157-67.

[34] Choi Wonjun, Ooka Ryozo. Interpretation of disturbed data in thermal
response tests using the infinite line source model and numerical parameter
estimation method. Appl Energy 2015;148:476-88.

[35] Lin Guanjing, Claridge David E. A temperature-based approach to detect
abnormal building energy consumption. Energy Buildings 2015;93:110-8.

[36] Ogunsola Oluwaseyi T, Song Li. Application of a simplified thermal network
model for real-time thermal load estimation. Energy Buildings
2015;96:309-18.


http://refhub.elsevier.com/S0306-2619(16)30142-8/h0005
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0005
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0005
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0010
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0010
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9000
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9000
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9000
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9000
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9010
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9010
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9010
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0020
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0020
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0025
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0025
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0030
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0030
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0030
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0035
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0035
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0035
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0035
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0040
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0040
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0040
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0045
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0045
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0045
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0050
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0050
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0050
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h9015
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0055
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0055
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0055
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0055
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0060
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0060
http://hbsmicrosites.honeywell.com/HBSCDMS/Attune/
http://www.schneider-electric.com/en/product-range/62191-smartstruxure-lite-solution/?parent-category-id=1200
http://www.schneider-electric.com/en/product-range/62191-smartstruxure-lite-solution/?parent-category-id=1200
http://www.schneider-electric.com/en/product-range/62191-smartstruxure-lite-solution/?parent-category-id=1200
http://www.geindustrial.com/services/power-delivery/envisage-energy-management-system
http://www.geindustrial.com/services/power-delivery/envisage-energy-management-system
http://www.geindustrial.com/services/power-delivery/envisage-energy-management-system
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0080
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0080
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0080
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0080
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0085
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0085
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0085
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0090
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0090
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0090
http://www.iso.org/iso/catalogue_detail.htm%3Fcsnumber=41974
http://www.iso.org/iso/catalogue_detail.htm%3Fcsnumber=41974
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0100
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0100
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0100
http://apps1.eere.energy.gov/buildings/energyplus/
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0115
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0115
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0115
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0120
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0120
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0120
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0125
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0125
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0130
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0130
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0135
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0135
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0135
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0140
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0140
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0140
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0145
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0145
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0145
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0150
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0150
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0150
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0155
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0155
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0160
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0160
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0160

92 S. Baldi et al./Applied Energy 169 (2016) 81-92

[37] Najafi Massieh, Auslander David M, Bartlett Peter L, Haves Philip, Sohn Michael
D. Application of machine learning in the fault diagnostics of air handling
units. Appl Energy 2012;96:347-58.

[38] El-Baz Wessam, Tzscheutschler Peter. Short-term smart learning electrical
load prediction algorithm for home energy management systems. Appl Energy
2015;147:10-9.

[39] Wei Lai, Tian Wei, Silva Elisabete A, Choudhary Ruchi, Meng QingXin, Yang
Song. Comparative study on machine learning for urban building energy
analysis. Proc Eng 2015;123:285-92.

[40] Jain Rishee K, Smith Kevin M, Culligan Patricia ], Taylor John E. Forecasting
energy consumption of multi-family residential buildings using support vector
regression: investigating the impact of temporal and spatial monitoring
granularity on performance accuracy. Appl Energy 2014;123:168-78.

[41] Tsanas Athanasios, Xifara Angeliki. Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning tools.
Energy Buildings 2012;49:547-60.

[42] Simon Dan. Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, Inc.; 2006.

[43] Underwood CP, Yik FWH. Modelling methods for energy in buildings. Wiley-
Blackwell Ltd; 2004.

[44] Fux Samuel F, Ashouri Araz, Benz Michael ], Guzzella Lino. Ekf based self-
adaptive thermal model for a passive house. Energy Buildings 2014;68:811-7.

[45] Noh Jung-Hun, Kim Won-Geun, Cha Ki-Up, Yook Se-Jin. Inverse heat transfer
analysis of multi-layered tube using thermal resistance network and Kalman
filter. Int ] Heat Mass Transfer 2015;89:1016-23.

[46] Chen Xiao, Wang Qian, Srebric Jelena. Model predictive control for indoor
thermal comfort and energy optimization using occupant feedback. Energy
Buildings 2015;102:357-69.

[47] Chang Tian Pau. Estimation of wind energy potential using different
probability density functions. Appl Energy 2011;88:1848-56.

[48] Zuluaga Carlos D, Alvarez Mauricio A, Giraldo Eduardo. Short-term wind speed
prediction based on robust Kalman filtering: an experimental comparison.
Appl Energy 2015;156:321-30.

[49] Perez Gustavo, Garmendia Maitane, Reynaud Jean Francois, Crego Jon,
Viscarret Unai. Enhanced closed loop state of charge estimator for lithium-
ion batteries based on extended Kalman filter. Appl Energy 2015;155:834-45.

[50] He Hongwen, Liu Zhentong, Hua Yin. Adaptive extended Kalman filter based
fault detection and isolation for a lithium-ion battery pack. Energy Procedia
2015;75:1950-5.

[51] Barillas Joaquin Klee, Li Jiahao, Gunther Clemens, Danzer Michael A. A
comparative study and validation of state estimation algorithms for li-ion
batteries in battery management systems. Appl Energy 2015;155:455-62.

[52] Chin Vun Jack, Salam Zainal, Ishaque Kashif. Cell modelling and model
parameters estimation techniques for photovoltaic simulator application: a
review. Appl Energy 2015;154:500-19.

[53] Jiang Lian Lian, Maskell Douglas L, Patra Jagdish C. Parameter estimation of
solar cells and modules using an improved adaptive differential evolution
algorithm. Appl Energy 2013;112:185-93.

[54] Maasoumy M, Razmara M, Shahbakhti M, Sangiovanni Vincentelli A. Handling
model uncertainty in model predictive control for energy efficient buildings.
Energy Buildings 2014;77:377-92.

[55] Andersen Klaus Kaae, Madsen Henrik, Hansen Lars H. Modelling the heat
dynamics of a building using stochastic differential equations. Energy
Buildings 2000;31:13-24.

[56] Tashtoush B, Molhim M, Al-Rousan M. Dynamic model of an HVAC system for
control analysis. Energy 2005;30:1729-45.

[57] Afram Abdul, Janabi-Sharifi Farrokh. Review of modeling methods for HVAC
systems. Appl Therm Eng 2014;67:507-19.

[58] Wan Eric A, Merwe Rudolph van der, Nelson Alex T. Dual estimation and the
unscented transformation. Adv Neural Inf Process Syst 2000;12:666-72.

[59] Hedrick JK, Girard A. Control of nonlinear dynamic systems: theory and
applications. Controllability and observability of nonlinear systems, 2005.

[60] Trend Controls. Iql. <https://www.trendcontrols.com/Documents/
EnglQSystemOverviewV31LR.pdf>.


http://refhub.elsevier.com/S0306-2619(16)30142-8/h0165
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0165
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0165
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0170
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0170
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0170
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0175
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0175
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0175
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0180
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0180
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0180
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0180
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0185
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0185
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0185
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0190
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0190
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0195
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0195
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0200
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0200
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0205
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0205
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0205
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0210
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0210
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0210
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0215
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0215
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0220
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0220
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0220
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0225
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0225
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0225
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0230
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0230
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0230
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0235
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0235
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0235
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0240
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0240
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0240
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0245
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0245
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0245
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0250
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0250
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0250
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0255
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0255
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0255
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0260
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0260
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0265
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0265
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0270
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0270
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0275
http://refhub.elsevier.com/S0306-2619(16)30142-8/h0275
https://www.trendcontrols.com/Documents/EngIQSystemOverviewV31LR.pdf
https://www.trendcontrols.com/Documents/EngIQSystemOverviewV31LR.pdf

	Dual estimation: Constructing building energy models from data sampled at low rate
	1 Introduction
	1.1 Related work

	2 A building heat transfer model
	3 Dual estimation
	3.1 Extended Kalman Filter
	3.2 Unscented Kalman Filter

	4 Discretization issues in building heat transfer models
	4.1 Higher order explicit methods
	4.2 Euler backward method

	5 Observability analysis
	5.1 Toy example
	5.2 Observability of the heat transfer model

	6 Results
	6.1 Simulation results
	6.2 Real-life test case and results

	7 Conclusions
	Acknowledgment
	References


