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Abstract

Central banks communicate their monetary policy plans to the public through meeting
minutes or transcripts. These communications can have immense effects on markets and
are often the subjects of studies in the financial literature. The recent advancements in
Natural Language Processing have prompted researchers to analyze these communications
using Transformer-based Large Language Model (LLM) classifiers. The use of LLMs in
finance and other high-stakes domains calls for a high level of trustworthiness and explain-
ability of those models. We focus on Counterfactual Explanations, a form of Explainable
AI that explains a model’s classification by proposing an alternative to the original input.
We use three types of CE generators for LLM classifiers on a recent dataset consisting
of sentences taken from FOMC communications to assess the usability of their explana-
tions. We perform three experiments comparing different types of generators, one using
a selection of quantitative metrics and two involving human evaluators, including central
bank employees. Our findings suggest that non-expert and expert evaluators prefer coun-
terfactual methods that apply minimal changes to the texts; however, the methods we
analyze might not handle the domain-specific vocabulary well enough to generate plausi-
ble explanations for our task. We discuss shortcomings in the choice of evaluation metrics
in the literature on text CE generators and propose refined definitions of the fluency and
plausibility qualitative metrics.
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Chapter 1

Introduction

Central banks choose their words
very carefully. And rightly so –
policymakers’ wording can move
markets and, eventually, the
economy.

Gebauer, McGregor, and
Schumacher [26]

Monetary policies of central banks aim to influence the markets to ensure stability and
growth. Central banks tend to communicate their monetary policies by releasing meeting
minutes or transcriptions to control factors like the inflation expectation that, in turn,
influence the market’s growth [57]. It is thus beneficial for stakeholders to analyze those
communications and adequately react to incoming market changes. Recent developments
in Natural Language Processing (NLP) gained massive popularity with advancements and
applications such as text generation or sentiment analysis. Those developments have also
been applied in the financial domain in analyzing and predicting future market movements
[21]. The reliance on those NLP Language Models (LMs) in numerous critical domains
raises the questions: How can we trust those models? and How do those models interpret
the data? Explainable AI (XAI) methods try to shed light on how machine learning models
interpret data, and while those methods exist for LMs, there has been little work done in
applying them to expert domain fields such as finance.

Since the early 1990s, many central banks have started to disclose their strategies openly
[57] through press releases, meeting minutes, transcripts, and conferences. Central banks
such as the Federal Reserve Bank (Fed), the European Central Bank (ECB), or the Bank
of England (BoE) aim to inform the media, governments, financial market participants,
and the general public about their upcoming policies. The significance of these communi-
cations can be highlighted by how a market responds to them – reactions (such as changes
in overnight index swaps) are often registered within minutes after press releases or con-
ferences are published [1]. Communicating policies is difficult, so these communications
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have become more verbose [15]. Moreover, they frequently contain the central bank’s
assessment of the economic outlook, possibly increasing the ambiguity of the communica-
tion [32]. The complexity and format of these communications have prompted researchers
to use Natural Language Processing techniques to analyze and understand central bank
communications.

The NLP field has grown considerably over the past years, mainly thanks to the advance-
ments in Artificial Intelligence (AI) model architectures and the abundance of training
data. As these models reach great accuracy on many tasks, the field has shifted toward re-
search on AI. Large Language Models (LLMs) using the Transformer architecture, such as
the GPT model or Mistral, show impressive few-shot or zero-shot results [54], performing
complex tasks with seemingly no retraining or fine-tuning needed. These models are par-
ticularly useful due to the data type they work on. Textual data is relatively unstructured,
and language models can help users avoid a considerable amount of work. However, LLMs
are often close-sourced, act as black boxes, and are thus hard to explain. Furthermore,
using them in domains dealing with personal data or relying heavily on taking high stakes
in their outputs requires organizations and practitioners to follow safety considerations to
maintain safe use.

As the popularity of LLMs permeates the mainstream, these models start to be used in
various applications, often including those facing end-users directly. Chat-based models
such as Chat-GPT work well as customer service chatbots for retail websites. LLMs
combined with vector text databases can generate text backed by ground-truth texts in
a methodology called Retrieval-Augmented Generation (RAG). Some applications involve
compiling large amounts of texts, such as legal texts or invoices, for which a company can
fine-tune a pre-trained LLM to generate the required text types.

1.1 Motivation

Counterfactual Explanations (CE), a popular technique in explainable AI, explain a model’s
behavior by proposing an alternative to the original input that changes the model’s out-
put. If we change the model’s input by, for example, changing a word in the case of text
such that the model classifies this new input into a different class from the original one,
we have created a counterfactual. Such counterfactuals can serve as explanations for the
underlying model since they reveal to us what input changes the classifier is sensitive to.

The counterfactual approach to ML model explanations adheres well to the field of NLP,
as natural language texts are easy for human readers to interpret. Therefore, a well-
formed counterfactual might offer valuable insight into the model’s behavior. Over the
years, multiple approaches for generating counterfactual texts have been formulated: some
approaches with the direct goal of generating counterfactuals that explain particular clas-
sifier models [7, 56], others using classifier models to control text generation [16] or enable
data augmentation [71], that then get used to generate explanations [43].

Most of the methods in the literature of language model counterfactual explanations 1 use

1In this work we use the terms LM counterfactual explanations and text counterfactual explanations
interchangeably.
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simple datasets and tasks in training and evaluation [71]. These simple tasks often include
negation or rewording. While counterfactual examples generated for those tasks might
prove helpful in data augmentation, current works lack evaluation of text explanations
from specialist domains. Similarly, adapting a counterfactual generator to a complex task
might fail if the task we are adapting to falls out of the distribution of the usual training
sets.

1.2 Thesis objective and research questions

The main goal of the thesis is to thoroughly test LM counterfactual generators’ ability to
generate explanations for texts in expert domains. To do this, we apply methods of gen-
erating counterfactual explanations for language models on a financial text classification
dataset.

We aim to answer the following research questions:

• RQ1: What are the essential desiderata of text counterfactual explanations for lan-
guage models?

• RQ2: What type of explanations is most useful for the practitioners?

• RQ3: Are the metrics commonly used in Natural Language Processing right for eval-
uating and comparing text counterfactual generation methods?

Initially, we focus on researching the trends in text counterfactual generator design in
order to answer RQ 1. We study the considerations such as desiderata or qualities of text
explanations. We derive three main classes of counterfactual generators based on how they
generate text and study one generator from each class in our experiments.

Determining how to generate text counterfactual explanations for texts in expert domains,
particularly in finance, is the main focus of our research (RQ 2). We ask fluent English
speakers and central bank employees, including employees of the United States Federal
Reserve Board 2 to grade the counterfactuals generated using different methods. Following
their gradings, we aim to determine whether these counterfactual generators are useful and
find the methods that give the most promising results.

Finally, we focus on how we organize the text counterfactual explanation methods and
metrics for measuring their outputs. Using the results of our experiments, we determine
which metrics are useful for text CE methods evaluation and which are not fit for com-
paring them (RQ 3).

1.3 Contributions

We apply counterfactual explanation generators for LM classifiers on a real-world dataset
and evaluate their utility. Our evaluations involve human annotators judging the grammat-
ical correctness of the texts generated on a novel task. Additionally, we ask central bank

2The research responses, analysis, and conclusions set forth are those of the authors and do not indicate
concurrence by other members of the research staff or the Federal Reserve Board of Governors.
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employees for their insights on whether the changes introduced by the counterfactuals are
realistic for the domain. Our findings suggest future research directions in counterfactual
generation for text classification in specialist fields.

The literature on LM counterfactuals employs a variety of metrics used in NLP. We collect
a number of those metrics, both quantitative and qualitative, and reason about their
usability in evaluating text counterfactuals. We propose a new definition of two qualitative
metrics: fluency and plausibility. Fluency refers to the general correctness of a sentence,
while plausibility measures whether it is realistic in the context of the domain and the
expected sentiment class. We establish concrete definitions of these metrics. With those,
we aim to remove some of the guessing work that might occur for human annotators.

We find that most of the quantitative metrics used in assessing LM counterfactuals do not
correlate with the fluency or plausibility of the explanations. However, we find a strong
dependence between the fluency of an explanation and the edit distance metrics, suggesting
that minimal changes are preferred. Through comments of the central bank employees,
we find that using domain-specific wording incorrectly can make a counterfactual less
plausible than not using this type of wording at all.

1.4 Thesis structure

We divide this thesis into six chapters. Chapter 2 discusses the use of language models for
financial text classification. In Chapter 3, we introduce explainability in machine learning
and describe the methods used in this thesis. Our experimental setup is described in
Chapter 4, and the results of our experiments are discussed in Chapter 5. Finally, we
conclude the thesis with Chapter 6, summarizing our findings, stating the limitations of
our work, and the possible future avenues of research in this field.
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Chapter 2

Neural Text Classification in
Finance

This section gives an overview of the methods and background used in our research.
Section 2.1 gives an overview of the background of machine learning. In subsection 2.2,
we introduce modern ML models used in Natural Language Processing. Finally in Section
2.3, we discuss how machine learning and NLP are applied in financial text classification.

2.1 Machine Learning

Machine learning is a field of computer science and statistics concerned with creating al-
gorithms called models that automatically adapt to the data they are applied to perform
given tasks. Machine learning can be split into three main types: supervised, unsuper-
vised, and reinforcement learning. Supervised learning algorithms adapt data with set
input and output features. In unsupervised learning, the algorithm is tasked with find-
ing patterns in data with no previously defined output values, such as finding clusters in
data. Reinforcement learning consists of algorithms that represent agents in a simulated
environment and learn optimal sets of actions. In this thesis, we will introduce and focus
on supervised learning algorithms. The equations in this section are based on Bishop [11].

2.1.1 Linear Models

A common task for a supervised learning algorithm is regression. Given training data
consisting of observations x = (x1, ..., xk) and their corresponding target values y =
(y1, ..., yk), a regression model should give a prediction for a new, unseen value of x. A
regression model represents a function f(x) that maps observations x to their output val-
ues y. From a probabilistic point of view, a model can represent a conditional probability
distribution p(y|x).
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The simplest model for the regression task is a linear model which outputs a linear com-
bination of the input values with a vector of weights w = (w0, ..., wk):

f(x) = w0 + w1x1 + ... + wkxk =

k∑
i

wixi

The formula can be simplified to f(x) = xTw if a 1 is appended to the beginning of x,
x = (1, x1, ..., xk). The output of the function is the prediction of our linear model. If our
task involved binary classification, i.e., y ∈ {0, 1}, the output of the function needs to be
transformed using a logistic sigmoid function:

σ(x) =
1

1 + e−x

After applying the sigmoid function to a linear model, we get logistic regression. In the
probabilistic view, linear regression models the p(y|x) as a Gaussian distribution, while
logistic regression models the conditional as a Bernoulli distribution [49].

Training a Linear Model

The weights need to be fitted to the training data to get predictions adapted to it. To this
end, we define an error measure that establishes the rules that penalize errors between
the model’s predictions and the actual target values. This measure is often called an error
function or a loss function and quantifies the quality of a fit of the model to the training or
test data. A common choice for this function is a square loss, where the difference between
the prediction and the true target value is squared. A loss function can then be defined
as follows:

L =

n∑
i

(xT
i w − yi)

2 = ||XTw − Y ||2 (2.1)

with x being a set of n observations and y being their corresponding output values. The
resulting loss function can then be solved to achieve optimal weight fit. First, we take a
derivative with respect to w to achieve the gradient of the loss function:

∇wL = 2XTXw − 2XTY

then we find the w for which the gradient is equal to 0:

2XTXw − 2XTY = 0

w = (XTX)−1XTY
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This analytical solution is possible due to the rather simple definition of the model. It
is not always possible to arrive at an analytical solution, and training more complicated
models is often carried out via gradient descent (Subsection 2.1.2).

This linear model can be useful for solving a regression problem for simple, linear relations
between the input variables. An improvement we can make is to transform the input data
using a basis function ϕ(x). A non-linear transformation can help the model learn convex
functions, which can help with some tasks. However, more complex tasks, like natural text
classification, require the model to learn representations of its inputs that will allow for
successfully performing its task. A model architecture widely used and adopted as a general
solution to many problems is the multilayer perceptron or neural network architecture.

2.1.2 Neural Networks

A neural network model consists of a series of connected layers. Connecting a series of
simpler models allows the model to transform the data at each layer, possibly extracting
information that will make it easier to complete the tasks for later layers. This architecture
is known as a feed-forward network.

The first layer in a feed-forward network accepting inputs x = (x1, ..., xD) can be formal-
ized as a series of segments:

aj =

D∑
i=1

w
(1)
ji xi, z

(1)
j = h(a

(1)
j ) (2.2)

with j = 1, ...,M , M being the number of outputs, and (1) signifying the first layer of the
network. The coefficients wji are called weights, and the terms wj0 are called biases. The
linear function outputs aj are called activations. The activations are then fed through a
differentiable activation function h(·) that introduces a non-linearity to the layer’s outputs
and produces the hidden representation zj . The hidden representations of a layer are used
as inputs to the next one:

a
(2)
j =

K∑
i=1

w
(2)
ji a

(1)
i , z

(2)
j = h(a

(2)
j )

for K representations, j = 1, ...,K. For the last layer of the network, i.e., the one whose
outputs should match the target values y, the activation function is not applied. Instead,
the pre-activation value of the layer’s output can be used for regression (directly) or binary
classification (after sigmoid transformation).

If our task involves more than two classes, the last layer should have a number of outputs
matching the number of classes with a class label assigned to each output in training.
To transform the class activations to predicted class probabilities, we apply a smoothing
softmax function:
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yk =
exp(ak)∑
j exp(aj)

for j output activations, where yk is the kth class probability. The predicted class is the
one assigned to the output, achieving the softmax value.

w
(1)
1

w
(1)
2

w
(1)
n

w
(2)
0w

(1)
0 w

(3)
0

w
(2)
1

w
(2)
2

w
(2)
3

w
(2)
k w

(3)
k

w
(3)
3

w
(3)
2

w
(3)
1

w
(4)
t

w
(4)
1

Figure 2.1: A diagram of a four-layer neural network. The green nodes represent inputs,
the red nodes represent outputs, the blue nodes are the two hidden layers, and the grey
nodes represent biases.

A neural network composed of two hidden layers of size k with input size n and output
size t, like the one pictured in Figure 2.1, results in the following function:

yk =

T∑
t

w
(4)
t h

(
K∑
k

w
(3)
k h

(
K∑
k

w
(2)
k h

(
N∑
n

w(1)
n xn

)))
(2.3)

Training a Neural Network

Similar to the linear model training procedure introduced in Subsection 2.1.1, to train the
neural network, we first need to define a loss function and optimize the neural network’s
weights to minimize the loss value. We can assume, ex., a square error loss (Equation 2.1)
and calculate its gradient ∇L. However, due to the complexity of our model, solving for
∇L = 0 is infeasible. Additionally, this gradient might be close to or at 0 in many for
many values of weights. Considering the space of possible values the weight vector can
take, these points represent local minima. Ideally, we want to avoid those and find the
global minimum with the lowest loss function value.
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The gradient descent optimization procedure is an iterative approach to loss function
optimization. At each iteration, the gradient of the loss function is computed and applied
to the weights, taking a step towards the loss-minimizing direction. Given model weights
wt at a timestep t, the new weights are computed as:

wt+1 = wt − η∇L(wt)

where L(wk) is the loss function evaluated for a model with weights wk and η is a scaling
factor called the step size.

Backpropagation

The final step in the training procedure is the calculation of the loss gradient. In neural
networks, this calculation is done using a procedure called backpropagation. The forward
pass (inference) passes the input through the weights of the network to produce the output.
Since the layers are fully connected, the output of a single activation affects all the inputs
of the next layer. Starting from the last layer, Backpropagation calculates the gradient
w.r.t. a weight by combining the information about the gradients of the next layer’s
weights, propagating the gradients backward.

The last layer outputs the model’s predictions. Thus, the gradient calculation will be
dependent on the loss function. Considering outputs yk, targets ŷk and the square loss
function

yk =
∑
i

wkixi, L =
1

2

∑
k

(ynk − ŷnk)
2

we can calculate the gradient w.r.t. a weight wji as

∂L
∂wji

= (ynj − ŷnj)xni

which constitutes the error signal that will be propagated to the rest of the weights. For
the rest of the layers, the backpropagation algorithm takes advantage of the chain rule for
derivatives:

∂L
∂wji

=
∂L
∂aj

∂aj
∂wji

, δj ≡
∂aj
∂wji

and since the outputs zj of hidden layers are simply a weighted sum of the inputs (Equation
2.2), then we can calculate ∂L

∂aj
= zi, so:

∂L
∂wji

= δjzi
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Finally, for a hidden layer, we take into account the backpropagated gradients:

δj =
∑
k

∂L
∂ak

∂ak
∂aj

=
∑
k

zjwkjδk

2.1.3 Deep Learning

With efficient methods for training neural networks, researchers have started creating
deeper networks containing more hidden layers. Deep learning refers to those models.
There are numerous deep-learning architectures

Convolutional neural networks (CNN) learn and apply convolutions or filters that extract
features from images. Using fewer weights and connections, those networks can efficiently
process multidimensional inputs and detect spatial dependencies in the data.

Recurrent neural networks (RNN) are designed to process sequential data such as texts,
time series, or speech. They differ from the usual feed-forward networks by processing the
input sequence one part at a time and maintaining a single hidden state. By updating the
hidden state based on the incoming inputs and the previous hidden states, the RNN can
essentially memorize (it is autoregressive).

A new addition to the family of deep learning models is the Transformer architecture
described in Section 2.2.1. The model solves many of the issues related to using previous
architectures, such as the RNN, and allows for efficient pre-training on large data corpora.
These pre-trained models often serve as foundations for further training or fine-tuning
toward their use in specific tasks.

2.2 Deep Learning in Natural Language Processing

Natural Language Processing deals with a wide array of tasks related to processing and
understanding natural language, from the most basic ones like breaking texts into tokens,
parsing, and analyzing the structure of a sentence to understanding the meaning of words
and finding relationships between words and sentences.

As NLP tools, we can consider packages like NLTK [10] performing tokenization tasks,
part-of-speech tagging, parsing words into syntax trees based on mathematical formula-
tions, and many more. We can also consider ML models such as word2vec [47] that try
to learn semantic vector representations of tokens based on their typical relations with
surrounding words.

2.2.1 Transformers

The Transformer architecture [66], widely used in our work, has sparked a major shift
in the NLP models architecture and has allowed for many advantages leading up to the
modern LLM. One of the key changes introduced in the transformer architecture is the
transition from recurrent and convolutional layer-based architectures toward attention
(Subsection 2.2.1). Recurrent neural network (RNN) models encode an input sequence
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by calculating a hidden embedding ht for each position t in the sequence by combining
it with the previous embedding ht−1. This means an embedding ht depends on the last
hidden state. Consequently, parallelizing these models’ training and inference processes is
impossible, which is a major drawback, especially for long input sequences. Unlike most
successful architectures before the Transformer, it uses only the attention block with some
modifications.

Self-Attention

Initially, the attention method was introduced for neural machine translation [6] to enable
a neural network to learn relations between sequences of words over long input spans.

The main idea behind attention is to let the model learn how to relate input words to other
words through three weight matrices: query matrix WQ, key matrix WK , and value matrix
WV . Given an input sequence X, the attention mechanism relates a vector representation
of a single token x of dimension dk to the rest of the input sequence by first calculating
the Q = xWQ query, K = XWK key and V = XWV value matrices. The product of Q
and KT gives a vector of “soft weights” α for the V matrix. Attention(Q,K, V ) = QKTV
then gives the values of the input tokens in X correlated with x. Vaswani et al. [66]
formulate a particular version of self-attention called the “Scaled Dot-Product Attention”
pictured by Figure 2.2a, wherein the soft weights are scaled by first dividing them by

√
dk

and then applying the Softmax function on the result. The resulting value weights can
then be applied to the V matrix forming:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (2.4)

The rationale behind the division by
√
dk as stated by Vaswani et al. [66] is that for large

values of dk the dot products of the query and key matrices have large magnitudes causing
the Softmax to be very small.

Multi-Head Attention

A single attention layer maps the input to a dmodel-dimensional representation. Still,
it is limited by only learning an averaged representation of the relations encountered
in the training data. As illustrated by Figure ??, authors of the Transformer model
mitigate this issue by linearly projecting the Q, K, and V representations to dq, dk, and
dv dimensions, respectively, into h versions of projections called heads, each with separate
learned projection. This allows the model to capture relations at different representation
subspaces and positions. The authors formulate the multi-head attention as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headi)W
O, (2.5)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) (2.6)

The projection matrices WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk , and WV
i ∈ Rdmodel×dv , and

WO ∈ Rdv×dmodel mapping the output to the dmodel dimension.
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Figure 2.2: The Scaled Dot-Product Attention (a) and Multi-Head Attention (b) composed
of several attention layers. Adapted from [66].

2.2.2 NLP Transformer Models

Since the definition of the Transformer architecture, numerous language models have been
developed that use it. These models can have many main tasks, such as text translation,
text-to-text generation, mask infilling, or text classification. This section discusses two of
those Transformer models, BERT and GPT, used in various LM counterfactual generators
described in Section 3.3.

Generative Pre-trained Transformer

The Generative Pre-trained Transformer introduced by Radford et al. [53] is a Transformer
model achieving state-of-the-art performance on various tasks at its release. The authors
use unsupervised pre-training, a token prediction task where given tokens U = {u1, ..., un},
the model optimizes the following likelihood:

L(U) =
∑
i

logP (ui|ui−k, ..., ui−1; θ)

for a context window k, conditional probability P , and model parameters θ.

The model is also fine-tuned on the following supervised tasks: Natural Language In-
ference, Question Answering, Sentence Similarity, and Classification. The authors use a
dataset of labeled texts C and optimize

L(C) =
∑
i

logP (yi|x1
i , ..., x

m
i )

where y is the predicted label.
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The authors use a 12-layer decoder Transformer with 12 attention heads for each layer
and 768-dimensional (dmodel in Section 2.2.1) states for each head. This and the position-
wise feed-forward networks give a parameter count of 117 million. Radford et al. [54]
later released GPT-2, an architecture based on GPT, introducing a few modifications and
increasing the vocabulary, context size, amount of layers, and dmodel dimensionality. The
largest variant of the GPT-2 had a parameter count of 1.5 billion and again achieved
zero-shot state-of-the-art results on most tasks.

Bidirectional Encoder Representations from Transformers (BERT)

The GPT model proved that the Transformer architecture performs very well, even for
zero-shot tasks. However, Devlin et al. [19] see one main shortcoming of GPT: the left-to-
right architecture for language modeling, where a token can only attend to previous tokens
in self-attention. They argue that the left-to-right approach is “sub-optimal for sentence-
level tasks and could be very harmful when applying fine-tuning based approaches to
token-level tasks ...”.

Devlin et al. [19] introduce Bidirectional Encoder Representations from Transformers
(BERT), an architecture that maintains bidirectionality by using a masked language model
(MLM) objective. BERT is trained on the Masked LM task and the Next Sentence Pre-
diction task.

In the Masked LM task, the authors mask 15% of the training set tokens. The model is
then tasked to predict the masked tokens by predicting the token’s ID, similarly to the
classification task in Subsection 2.1.2. Depending on the downstream task, the masks
might not appear in the fine-tuning stage, creating a mismatch. To mitigate that, out of
the 15% of the training data selected for masking, 80% of the tokens are masked, 10% are
filled in with a random token, and for another 10%, the original token stays unchanged.

The second task, Next Sentence Prediction, involves training the model to detect relation-
ships between sentences. The authors prepare sets of two sentences, where 50% of the
time, the second sentence follows the first in the original dataset, labeled as IsNext. In
the other 50% of the cases, the second sentence is a random sentence from the training
corpus and is labeled as NotNext.

Similarly to the GPT model, BERT uses 12 Transformer layers, each with 12 self-attention
heads and dmodel of 768 (110 million parameters in total) for the base variant. The large
variant has 24 layers, 16 self-attention heads, and dmodel of 1024 (340 million parameters).

In our work, we analyze a classification model called RoBERTa, or the Robustly optimized
BERT approach. RoBERTa [39] is a configuration of the BERT model with a modified
pre-training procedure. RoBERTa uses dynamic masking, replaces the next sentence pre-
diction task with one that uses more sentences at once, drops the NSP loss, uses large
mini-batches, uses a different training set, and increases the number of training passes.
RoBERTa achieves state-of-the-art results at release time using the same architecture as
BERT.

RoBERTa is adapted to classification tasks by removing the MLM layer and replacing it
with a fully connected neural network. This model can then be fine-tuned for the specific
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classification task.

2.3 Text Classification in Finance

Machine learning plays a vital role in the financial domain. It is used in a wide array of
applications, from statistical modeling in price prediction through deep learning in risk
assessment to modeling and simulation in policy assessment [14]. Due to a large part
of financial data being in the form of texts, natural language processing techniques have
proven helpful in tasks such as NLP-based financial forecasting [73] or market prediction
[36].

Depending on the task, researchers use various models in their analyses: Tetlock, Saar-
Tsechansky, and Macskassy [62] aim to predict changes in stock prices by analyzing the
fractions of negative words contained in articles; Bi [9] uses a Hidden Markov Model to seg-
ment texts to classify their sentiment using an LSTM; Delice et al. [18] use Latent Dirichlet
Allocation along with several language models to determine the polarity of sentences and
documents; and Jarociński and Karadi [32] assess the impacts of monetary policy shocks
and the central bank information shocks using Bayesian structural autoregression. In this
work, we focus on central bank communication analysis.

Through communications such as meeting minutes or transcripts, central banks inform the
public about their upcoming policies. This approach to controlling inflation expectations
and shaping interest rates has only started to be used in the 1990s [57], and its relevance
has still been on the rise over the past years with the growing complexity of the policies
conveyed in the communications [15]. Monetary policy communications from organizations
like the BoE, ECB, or the Federal Open Market Committee (FOMC) play an important
role in financial text analysis: Frunza and Stanley [24] extract concept-value pairs from
FOMC communications using a ranking algorithm. [45] use word embeddings and vector
autoregression to extract semantic changes in policy documents. Mathur et al. [44] aim to
exploit the multimodal monetary policy calls by gathering a dataset comprised of visual,
audio, and textual data and training a model to forecast the financial risk movement
associated with the data.

Among the central bank communication sentiment analysis tasks, we focus on the classifi-
cation of financial texts into hawkish or dovish. This classification relates to the perception
of the communication – a hawkish perception suggests that the expectations are on the
tightening side (decreasing money supply), while the dovish perception suggests a loosening
side (increasing money supply) [63]. Numerous works have attempted to analyze central
bank communications through the hawkish-dovish lens, employing simple classifiers such
as the Support Vector Machine (SVM) [63], through modern Transformer-based models
such as BERT [69] and RoBERTa [52]. Others turn to LLMs such as GPT-3.5, GPT-4
[59], or even chat-based ChatGPT. Hansen and Kazinnik [29] analyze the performance of
the GPT-3 and GPT-4 on a number of FOMC texts, finding that they outperform other
models and are even able to provide explanations for their classifications. Peskoff et al.
[51] compile a set of FOMC documents from years between 1994 and 2016 and analyze
different types of communications using the latest GPT models. Similarly, Shah, Paturi,
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and Chava [58] compile and release a dataset comprised of meeting minutes and speeches
from 1996-2022, and press conferences from 2011-2022 annotated into three classes: dovish,
hawkish and neutral. They also fine-tune a RoBERTa-large model, outperforming a GPT-
3.5-Turbo. They compare the fine-tuned model’s predictions to the Consumer Price Index
(CPI) and Producer Price Index (PPI) inflation measures from the given dates.

The shift toward larger deep learning-based models in financial text analysis makes it
harder for researchers to interpret what makes those models classify the texts as hawkish
or dovish.
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Chapter 3

Generating and Evaluating
Counterfactual Explanations
for Language Models

In this chapter, we introduce methods for generating and comparing explanations of the
decision-making processes in language models. We introduce the concept of Explainable
AI and its types and present example methods in Section 3.1. In Section 3.2, we describe
counterfactual explanations in detail, and later, in Section 3.3, we discuss the approaches to
generating them for language models. Finally, we present the various evaluation strategies
for LM counterfactual explanations in Section 3.4.

3.1 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a highly active field of research in AI, focusing
on enhancing the understanding of AI systems [40]. With the ever-growing complexity
of modern machine learning architectures such as CNNs or Transformers, it is infeasible
to interpret them even knowing their parameters. This complexity makes those models
operate essentially like black boxes – accepting inputs and outputting predictions without
the user’s insight into the decision-making process [68]. With the popularity of deep
learning models being used in critical domains such as finance and healthcare, there is a
steady drive towards exploring explainability in machine learning.

The approaches to Explainable Artificial Intelligence can be categorized in several ways
[60]. One relates to the stage at which we want to establish explainability, either (1) in
designing a model to be explainable or (2) using methods to explain a possibly black-box
model after its training. Those two categories are called ante-hoc and post-hoc explain-
ability respectively. An example of an ante-hoc explainable model is the linear regression
model, whose parameters can directly relate to its simple formula (Section 2.1.1) and
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enable interpretation of the model’s output. Complex models usually require post-hoc
explanations, for example, employing counterfactual explanations (Section 3.2). Another
way to divide explanations is whether the reason for a single prediction of a model is
explained (local explanations) or the whole model is explained as a whole (global explana-
tions).

In this work, we explore post-hoc local explanations for language models in the form of
counterfactual explanations, which we describe in detail in Section 3.2. Other notable post-
hoc local explanation methods include feature attributions, such as Integrated Gradients
[61].

3.2 Counterfactual Explanations

Counterfactual explanations are one of the most popular forms of explaining predictions
made by an ML algorithm. They aim to explain the decision made by an ML system by
proposing an alternative scenario (set of inputs) that would lead the model to produce a
different output. A widely used example for a CE introduced in [68] refers to a scenario
where a bank refuses to provide a loan to an applicant following a decision made by an ML
risk assessment system. The bank can explain the decision by giving the following CE:
“You were denied a loan because your annual income was £30,000. If your income had
been £45,000, you would have been offered a loan.” The example shows a factual sentence
and a contrasting counterfactual one that describes the feature that needs to change for
the outcome to be different. Although one could argue that this example might not be
entirely realistic, it illustrates the concept of CEs well.

Over the years, numerous algorithms providing automatic generation of CEs for specific
ML models have emerged. Those algorithms, called counterfactual generators, employ
various principles and desiderata in generating counterfactual examples. One of the most
basic approaches to CE generation, formulated by Wachter, Mittelstadt, and Russell [68],
states that a counterfactual should consist of a minimal perturbation of the original sample
that changes the output classification. The approach can be described with the following
equation:

arg min
x′

l(x′, y′) + λd(x, x′) (3.1)

where l is a loss function of a sample w.r.t. a target class, d is a distance function, and λ
a penalty term.

This counterfactual generator often serves as a baseline or starting point for various coun-
terfactual generation methods employing various desiderata. Examples of those methods
include DICE [48], which aims to generate diverse counterfactual explanations with the
hopes that one of them is usable to the user. CLUE [4] and REVISE [34], which train a
variational autoencoder (VAE) to learn the generative process of the data, then perform a
search in the latent space to decode the resulting counterfactual. Those generators tackle
two different desiderata: CLUE optimizes for low predictive uncertainty of a probabilistic
classifier, while REVISE aims for plausible counterfactuals.

The use of counterfactual generators has also resulted in debates on the consequences
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or costs of employing counterfactuals and whether the recourse taker or the recourse
giver should take the costs [2]. Other approaches measure the reliability of counterfactual
explanations over time [23].

Counterfactual generators have also been applied to other data modalities, such as images
and text. However, due to the highly structured characteristics of these domains, a simple
approach, like the one presented in equation 3.1 might produce noisy results that do not
fall into the general desiderata seen in most counterfactual methods. Noisy counterfactual
examples resembling adversarial attacks rather than actual samples from the original data
distribution, thus having low plausibility [3], might not serve as usable explanations of the
model. Hence, developing generators specialized for more complicated data modalities or
even for select models is necessary. The task of generating counterfactual explanations for
unstructured data becomes more generative than usual.

The plausibility of counterfactual explanations, discussed in Subsection 3.4.3, is the close-
ness of the explanation to the original data distribution. Plausibility in CEs is crucial in
applications such as algorithmic recourse, where an explanation acts as a means for an
individual negatively affected by an AI system’s prediction to change their outcome by
employing the explanation. However, if an explanation is highly implausible, it might be
impossible to follow, for example, when the counterfactual involves an unreachable set of
values. Plausibility is one of the main focal points of this work.

3.3 Text Counterfactual Explanations

Counterfactual explanations for language models’ classification of a sentence aims to
present the user with a modified input sequence, which gives a different class upon subse-
quent classification by the model. Algorithmic recourse in the form of CEs for language
model classification may not yet be a focus of research in the field; however, ensuring
desiderata, like the plausibility of explanations, can benefit their quality. Apart from a
generator’s “label flip” objective, multiple other goals often exist.

Madaan, Saha, and Bedathur [42] treat text counterfactuals as adversarial examples or test
samples that can break a model and subsequent fine-tuning with counterfactual samples
as training against these types of failures. Wu et al. [71] argue that for some applications
label flipping does not need to be the main objective. For example, same-label counter-
factuals might serve as good training samples when generating counterfactuals for dataset
enhancement. Furthermore, they suggest that a broad, more generic pool of counterfac-
tuals can be preferable for an exploratory approach to model explainability. The authors
of MiCE [56] stay true to the more original notion of CEs by constructing contrastive
examples via minimal edits. They state that the perturbations should edit only a minimal
amount of tokens, and the resulting counterfactuals should be fluent, “resulting in text
natural to the domain”.

There are various approaches to generating CE for language models, which we split into
three main subclasses:

1. LLM-assisted generation
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2. Latent perturbation and decoding

3. Sequential generation

Our categorization is motivated by the primary mechanism of text generation seen in text
CE generators. We notice that most of the generators formulated in the literature adhere
to at least one of those classes. We will use one representative model for each class as a
baseline for the generator type.

3.3.1 LLM-Assisted Generation

LLM-assisted generation is the broadest category in our categorization. In this category,
we capture all the methods that use an LM with text generation capabilities to produce
parts of counterfactuals or whole counterfactual texts. Models that use different types of
language models or different language model heads, such as masked language models, are
excluded from this category.

The LLM-assisted generators exploit the large language model ability to model languages.
The texts generated by those methods do not have to be constrained by the structure of
the original sentences, thus enabling the generators to generate texts of high fluency.

The Polyjuice counterfactual generator [71] has been created to enable automatical coun-
terfactual sentence generation, a previously very costly task due to mainly being done by
human annotators. The authors aim to generate fluent and diverse counterfactuals by
involving minimal necessary changes to the texts while giving control over the relation-
ships between the factual and counterfactual sentences. The Polyjuice method was not
initially created for label-flipping counterfactual text generation, with the authors focusing
on general-purpose counterfactuals. However, the technique became one of the popular
baselines for evaluating other text CE methods.

To train Polyjuice, the authors combine six sentence-pair datasets to form a train set
containing close counterfactuals. In training, the sentence pairs are separated with a
special token called control code to allow for the conditioning of the counterfactual in the
original text. The authors list 8 control codes: negation, quantifier, shuffle, lexical,
resemantic, insert, delete, restructure.

Because the Polyjuice method requires sentence-pair data with ground-truth perturbed
sentences, in many cases, such as ours, it is impossible to fine-tune the model with task-
specific control codes. In our evaluation, we use the eight control codes provided by the
base version of the model.

The counterfactual generation in the Polyjuice method is performed by prompting the fine-
tuned GPT-2 model consisting of three main parts: the factual sentence, the control code,
and a masked factual sentence. Figure 3.1 illustrates an example prompt. The masked
input can consist of multiple masks, each able to cover multiple tokens. The model outputs
the tokens predicted for each provided mask, delimited with a special token [ANSWER]. The
final counterfactual is recomposed by inputting the predictions into their respective mask
locations.
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Household spending was projected to grow ...
[negation]

Household spending [BLANK] projected to grow ... [SEP] 

Household spending was not projected to grow

was not [ANSWER]

select masked tokens

add control code

add masked factual 

get perturbation

recompose counterfactual

LM input

LM output

Figure 3.1: An example counterfactual generation with the Polyjuice method. A prompt
consists of a factual sentence, a control code, a masked factual, and model-specific special
tokens. A single mask is used in this example; however, the model can handle an arbitrary
number of masks.

3.3.2 Latent Perturbation and Decoding

Another type of text CE methods focuses on finding counterfactuals through latent per-
turbation. This concept is similar to the approaches used in counterfactual generators for
tabular data, wherein the CE could be generated by finding the suitable perturbation in
the data domain. Methods that we include in this category should perform some trans-
formation of the text using a latent embedding, either through a simple search in the
embedding space or a perturbation of the latent embedding using a surrogate model.

One of the most popular methods that implement latent perturbation is the Plug-and-Play
Language Models (PPLM) method by Dathathri et al. [16]. PPLM enables text generation
with parameter control by employing an auxiliary discriminator model. The gradients of
the discriminator model are used to steer the text generation toward the target parameter
or label while maintaining the fluency of the text using a main unconditional LM.

While PPLM is a method for controlled generation and was not made with counterfactual
generation in mind, the central concept of the method allows for this type of usage. It
has been adapted to be used in counterfactual generation in the past with methods like
Generate Your Counterfactuals (GYC) [43] and Counterfactual Sentence Generation with
Plug-and-Play Perturbation (CASPer) [42]. These methods extend PPLM from condi-
tioning the text generation solely on an attribute, such as a class, to conditioning both on
the attribute and a factual text.

PPLM formulation

PPLM models an input sequence embedding of a transformer LM as a history matrix

Ht = [(K
(1)
t , V

(1)
t ), ...,K

(l)
t , V

(l)
t )], where (K

(i)
t , V

(i)
t ) is a key-value pair of the model’s

attention at the i-th layer, generated at time-steps 0 to t. Following this formulation, a
transformer language model can be written as at+1, Ht+1 = LM(xt, Ht), a model which,
based on the input sequence and its embedding, generates the next token logit at+1 and
a history matrix Ht+1 containing that token. To enable control of the text parameters,
the generation step gets split into two parts: (1) Steering generation and (2) Ensuring
fluency. In each part, the history matrix is shifted towards a gradient of a model in (1)
an attribute model and (2) an unconditional language model. While in practice, the two
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optimizations are applied in a single step by combining the gradient information, they are
illustrated in Figure 3.2 separately in red and blue, respectively.

1. optimize p(y|x)

2. optimize p(x)

higher p(x)

higher p(y|x)

Figure 3.2: A simplified explanation of the optimization parts used in PPLM. The two
regions represent the distributions of the attribute (red) and fluency (blue) models. The
dots represent the embedding of the sequences at different steps of the generation process.
After optimizing for the attribute model, the fluency of the text can be low, thus optimizing
for fluency is necessary. In practice, the update is done in a single step by summing the
two gradients. Adapted from Dathathri et al. [16].

Steering the text generation consists of using an attribute model p(y|x) as a guide for the
attribute adherence of the text. The authors explore two variants of an attribute model:
a discriminator attribute model, for example, a fine-tuned LM with classification head,
and a Bag of Words (BoW) model. The attribute model then gets formulated as p(y|Ht),
where y is an attribute (red in Figure 3.2). Since the goal is to perturb the history matrix
of the model, we take a ∆H update matrix, initialized at zero, and updated with the
gradients of the attribution model. Applying steps towards the positive gradient of the
model for the given attribute updates ∆Ht:

∆Ht ← ∆Ht + α
∇∆Ht

log p(y|Ht + ∆Ht)

||∇∆Ht
log p(y|Ht + ∆Ht)||

An updated history matrix H̃t = Ht + ∆Ht can now be used in the language model to
obtain the updated logits [16].

The second step of the method takes the updated history language model LM(xt, H̃t)
(blue in Figure 3.2) and transforms the perturbation to ensure a high level of text fluency.
The motivation behind this step comes from previous work where the researchers noticed
that tuning solely for a particular attribute model might quickly produce unrealistic and
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adversarial results. In this step, ∆Ht is tuned to minimize the KL-divergence between the
updated LM(xt, H̃t) and the base LM(xt, Ht) model.

Once the perturbation is completed, the resulting language model can perform inference
on the modified H̃t to produce the next token at+1.

One of the main disadvantages of PPLM, addressed by Madaan, Saha, and Bedathur [42]
and Madaan et al. [43] in GYC and CASPer, is the fact that the method is conditioned
on an initial sequence of tokens rather than the full text. This means that to create a
counterfactual, one needs to take a part of the factual sequence and input it into PPLM,
which generates new text that adheres to a given (counterfactual) conditioning class with-
out knowing the rest of the factual. This usually results in counterfactual sentences that
stray from the initial text’s topic or tone. We do not use GYC or CASPer as the authors
do not open-source those models.

3.3.3 Sequential Generation

Counterfactual text generation does not always require significant changes in the input
sequence. The sequential generation category uses this fact by reducing the generated
words to only those chosen to be replaced. In this category, we include those methods
that try to generate CEs by masking select parts of the input sentence and then infilling
them with words that should change the predicted label of the resulting sentence. We do
not limit the model types used in generating the new sentence parts, so overlap with other
generator categories is possible, for example, in the case of Polyjuice [71].

An example method that we place in this subcategory is Relevance-based Infilling for Nat-
ural Language Counterfactuals (RELITC) [7] based on Minimal Counterfactual Editing
(MiCE) [56]. RELITC’s procedure of generating a counterfactual is illustrated in Fig-
ure 3.3. It uses an attribution method, such as Integrated Gradients, to generate token
importances of an input for a fine-tuned discriminative LM. The token importances are
calculated for either the target or the original label. RELITC masks p% of the tokens with
the highest attribution scores, then infills those tokens sequentially using a Conditional
Masked Language Model (CMLM), here a fine-tuned BERT model (introduced in Section
2.2.2). The optimal fraction of masked tokens p% is established through beam search. A
candidate value p ∈ (pmin, pmax) is sampled, and several counterfactuals using this p value
are generated. If the generation using this p value was successful and a counterfactual was
classified as the target class, the value of pmax is set to the current p. If no successful
counterfactual was found, the value of pmin is set to p. The procedure is then repeated,
choosing new p, etc. until a depth limit is reached or the values of pmin and pmax are so
close they do not affect the number of masked tokens in the factual.

The method’s main contribution over MiCE is the inclusion of the infill order in coun-
terfactual generation. The infilling order is established based on the uncertainty of the
CMLM’s predictions (steps 4 and 5 in Figure 3.3). For each of the masked token positions,
the entropy of the output logits is calculated, and the position with the lowest entropy,
thus the lowest uncertainty, is infilled.

The BERT model is fine-tuned on a training set using the masked LM task. As illustrated
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Household spending was projected to grow ...

1. calculate token attributions w.r.t. selected class

Household spending was projected to grow ...

classifier + attribution method

4. get candidate infills for masked positions

Conditional 
Masked LM

2. mask K tokens with highest attribution 

Household spending was [MASK] to [MASK] ...

3. add target class conditioning token

[DOVISH]: Household spending was [MASK] to [MASK] ...

5. infill prediction with lowest uncertainty 

[DOVISH]: Household spending was [MASK] to decrease ...

6. repeat 4 and 5 until all masks are infilled

[DOVISH]: Household spending was predicted to decrease ...

tok: tok:

...

[DOVISH]: Household spending was [MASK] to [MASK] ...

high uncertainty low uncertainty

[DOVISH]: Household spending was [MASK] to [MASK] ...

Figure 3.3: An example counterfactual text generation using the RELITC method.

in Figure 3.3, authors append the class label to the beginning of the training samples in
the form of LABEL : TEXT to condition the model on the target label. The authors of
BERT call this addition in the fine-tuning process a Conditional Masked LM.

3.4 Evaluating Text Counterfactuals

Evaluation of text counterfactual explanations generally employs both qualitative and
quantitative metrics. In this section, we present how both kinds of metrics are used in the
literature on text CEs: quantitative metrics in Subsection 3.4.1, and qualitative metrics
in Subsection 3.4.3. We describe the quantitative metrics used in our work in greater
detail, including their formulations and implementation details in Subsection 3.4.2. We
use the metrics described in this section in the design of our experiments. The quantitative
metrics are used in Experiment 1 (Section 4.2), while for Experiments 2 and 3 (Sections
4.3 and 4.4) we extend the definitions of two of the qualitative metrics.

3.4.1 Quantitative Metrics for Text CEs

Quantitative metrics used in CE evaluation are often used as a proxy measure of the
quality of the generated texts. Since they can be computed relatively quickly and cheaply,
researchers often use them to evaluate large amounts of text without needing expensive
and time-intensive human annotation or evaluation. Quantitative metrics can reflect some
of the desiderata set by the researchers in their research or method description.

One of the most frequent desiderata, minimality of the changes, is often measured using
distance metrics, measuring the distance between the counterfactual and the factual texts.
Some examples of these metrics and their usages are Levenshtein character edit distance
[7, 20, 27, 56, 71], syntactic tree edit distance measures [27, 43, 71], or semantic measures
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of similarity, such as Universal Sentence Encoder [55] and embedding distance [7, 25, 42].

Another desideratum that researchers often opt to fulfill is the validity of the generated
counterfactuals. This is frequently measured using the flip rate of the generated counter-
factuals [7, 43, 55, 56, 71], or the average number of label changes towards the target class
per counterfactual. Other approaches consider the classifier accuracy [64, 72, 74], or the
label flip failure rate [22].

The main goal in text generation is ensuring the output sample is valid when interpreted
by a human. Thus, another quality sought after in text counterfactuals is the fluency of the
text. The metric most frequently used when quantifying the CE fluency is perplexity [16,
22, 42, 64] calculated as the average exponentiated negative log-likelihood of a sequence,
most often computed using a GPT-2 model. The perplexity score has also been used as
a measure of the plausibility of a text; Bhan et al. [8] compute the ratio between the
perplexity of an initial text and its counterfactual examples as a means to compare the
quality of the two texts.

Another metric widely used in evaluating text counterfactuals is Bilingual Evaluation
Understudy (BLEU) [50], a metric used for assessing the similarity of two sets of texts,
initially created for evaluating the task of machine translation. While in some works [7,
22, 72] the metric is used to measure the CE’s similarity to factual sentences, a surprising
amount of works uses it to quantify the diversity of the generations. Generating a set of
diverse explanations for each factual sentence can be helpful when a counterfactual method
aims to generate several explanations and then distill them using other metrics [7, 71], or
when we seek to generate text samples for model fine-tuning [42, 71]. In the field of text
counterfactual explanations, BLEU and its variations, like the self-BLEU [78], are used to
measure the difference between the generated texts [20, 42, 43, 64, 71]. A lower value of
self-BLEU is then sought after, as it signifies less similarity between the counterfactuals
and, thus a higher diversity. Other approaches to diversity quantification include counting
the distinct N -grams in the outputs [16].

3.4.2 Quantitative Metrics Implementation

Levenshtein distance [38], also known as edit distance, is a string similarity metric. For
two strings, a starting string a and target string b, the Levenshtein distance consists of
the sum of additions, deletions, and modifications needed to transform a to b. Initially
introduced as a means of error correction in the field of coding theory, the metric has been
adapted to many applications, such as string matching for optical character recognition
systems [28].

The Levenshtein distance between two strings is given by:

Leven(a, b) =



min(|a|, |b|) if |a| = 0 or |b| = 0

Leven(tail(a), tail(b)) if head(a) = head(b)

1 + min


Leven(tail(a), b)

Leven(a, tail(b))

Leven(tail(a), tail(b))

otherwise

(3.2)
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Where the function head(·) acting on a sequence x = {x1, x2, ..., xn} returns the first
element of the sequence, x1, and tail(x) returns all the elements except for the first one,
{x2, x3, ..., xn}.

This is a recursive definition of the metric. We use a more space-efficient implementation
of the Levenshtein distance utilizing dynamic programming [28].

Syntactic tree distance is a metric for calculating the similarity between two trees
representing sentences by counting the minimum number of node operations needed to
transform a tree a to a tree b.

To calculate a distance between two trees, we use a tree distance algorithm called Zhang-
Shasha algorithm [76], which, similarly to the Levenshtein distance, allows for node in-
sertions, deletions, and modifications. In our evaluations, we use an implementation from
the Python package zss [30].

To create the syntactic trees representing sentences, we use the functionalities of the Natu-
ral Language Toolkit (NLTK) [10] Python package. NLTK is a set of tools for handling natural
language data, including parsers, tokenizers, and methods for part of speech tagging.

To compute the semantic tree edit distance from two sentences, we follow these steps:

1. Split sentences into tokens using nltk.word tokenize.

2. Tag each token’s part of speech using nltk.pos tag.

3. Parse the tagged sequences into trees following a formal grammar using
nltk.RegexpParser.

4. Transform trees into zss tree objects.

5. Get edit distance using zss.simple distance.

While similar to the string edit distance, we expect tree edit distance to be more relevant
to the task of counterfactual text generation. The string edit distance metric can be
more sensitive to changes in individual words. However, in cases where the counterfactual
generator masks and replaces whole words, the string edit distance can give different results
depending on the length of the new token.

Embedding distance is the distance between two points in the high-dimensional repre-
sentation space of a machine learning model. We choose the embeddings of the last layer
of the roberta-large classifier as the representations of the evaluated sentences. For each
counterfactual pair, we compute the Euclidean distance between the embeddings of the
sentences.

Flip rate is simply the fraction of the counterfactuals classified to their target class by
the classifier. For a model f(·) outputting a classification yn for a sample xn and a target
class y′n, the metric is calculated as follows:

n∑
i

[f(xi) = y′i]

n
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Where n is the total number of samples in x. The Iverson bracket, [·], returns 1 if the
condition in the bracket is true and 0 otherwise.

Perplexity, the exponent of the entropy of a distribution is a measure of uncertainty. It
was initially introduced to the field of language modeling by Jelinek et al. [33] as a general
measure of the complexity of a language model. It has since been widely used as a main
evaluation metric in comparing models’ performance for the next token prediction task
[39, 46].

For a language model f with a task of predicting the next token xi for a sequence of tokens
X = x1, ..., xi−1, the calculation of the perplexity metric assumes an approximation of the
word error rate as the log-likelihood of the ith token conditioned on the previous tokens:
pf (xi is correct) ≈ η1 log pf (xi|x<i) + η2 for some constants η1 and η2 [12].

We use the Hugging Face’s evaluate [67] Python implementation of perplexity to evaluate
the counterfactual sentences. The package uses the following definition of perplexity:

PPL(X) = exp{− 1

n

n∑
i

log pf (xi|x<i)}

which for each token xi in an input sequence of tokens X = x1, ..., xn sums its negative
log-likelihood conditioned on preceding tokens x<i before the exponentiation. The model
used in the calculation of the log-likelihood is a GPT-2 large [54].

It is worth noting that perplexity is a metric for evaluating and comparing the fluency of
language models. In text counterfactual generation, this metric is often used to represent
the fluency of the counterfactual dataset itself, keeping model M the same while comparing
different methods of generating counterfactuals. By doing so, the perplexity score obtained
from this comparison relates to how likely it is for a model to have encountered a text like
the one evaluated in its training.

Perplexity ratio is the ratio between the perplexity score of the factual and its coun-
terfactual [8]. For each counterfactual method, we compute the mean of the perplexity
ratios of its factual-counterfactual pairs. While the results of this metric might be closely
dependent on the results of the perplexity metric, we expect that calculating the ratio
for each factual-counterfactual pair can make the result less dependent on the absolute
perplexity values.

3.4.3 Qualitative Metrics for Text CEs

Text explanations to natural language machine learning model classifications should ex-
hibit qualities humans desire. Thus, human annotators are often asked to evaluate text
counterfactuals. Many metrics used in text CE evaluation can be traced back to early
works on machine translation evaluation [31, 70].

One of a counterfactual text’s most frequently mentioned qualities is its fluency. This
quality can be traced back to early works on machine translation that tried to unify
what constitutes fluency in a machine-generated text. White, O’Connell, and O’Mara [70]
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describe fluency measurement as determining whether a piece of text “reads like good
English”, disregarding the semantic correctness of the sentence and giving it a rating on
a n-point scale. At the same time, longer and more defined definitions exist, such as
“A fluent segment is one that is grammatically well formed; contains correct spellings;
adheres to the common use of terms, titles and names; is intuitively acceptable; and can
be sensibly interpreted by a native speaker of English.” by Ma and Cieri [41].

Many of the recent works on text CEs [7, 16, 43, 56, 71] evaluate their texts using a very
similar notion of fluency as that defined by White, O’Connell, and O’Mara [70]. However,
the notion of fluency has often been described vaguely or inconsistently. In several works,
the annotators simply asked whether the Other works use different names like naturalness
[55, 64] to measure essentially the same thing.

Another critical aspect of a text generated in this context is the semantic resemblance of
the counterfactual to the original text. While we want our CE to be assigned a different
label, we also should maintain the text’s original meaning. This quality can be compared
to the measure of fidelity in machine translation described by Hovy, King, and Popescu-
Belis [31] as how well the “system’s output text expresses the content of an equivalent
portion of the source text”. Similarly to the case of fluency, this early description matches
multiple metrics used in the literature of text CE generators, such as content preservation
[7, 43, 72] and original content resemblance [37].

Apart from the two main metrics, more specific ones are often used if the researchers want
to test whether their method successfully employs certain desiderata or reaches particular
goals. A notable example is the use of plausibility and reasonability by Yang et al. [75].
The method is evaluated on a rather difficult dataset of sentences in the financial domain
of mergers and acquisitions. Here, the authors ask domain specialists to assess whether
or not it is plausible to find sentences similar to the generated counterfactuals in their
domain of expertise and if the changes made to the texts resulting in counterfactuals are
reasonable.

The definition of plausibility outside of counterfactual explanations for language models
often refers to the explanation’s similarity or closeness to the original data distribution
[35]. Indeed, many approaches to generating counterfactual explanations that emphasize
the interpretability [65] or the robustness [5] of the explanations employ strategies that
enhance the adherence of the counterfactual to a certain class.

Altmeyer et al. [3] define plausibility as:

Let X|y+ = p(x|y+) denote the true conditional distribution of samples in the
target class y+. Then for x′ to be considered a plausible counterfactual, we
need: x′ ∼ X|y+.

We expand the definitions of fluency and plausibility for use in evaluations in Chapter 4.
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Chapter 4

Experimental Setup and
Evaluation Methodology

In this chapter, we describe the approach taken in our experimental setup and the eval-
uation methodology of the results gathered in our experiments. Section 4.1 describes the
reasoning behind our choice of data and CE generators. Sections 4.2, 4.3, and 4.4 describe
how we design and execute our experiments.

4.1 Task Description

The FOMC communications dataset [58] described in Section 2.3 gathers a wide array
of communications released by FOMC labeled into three classes: dovish, hawkish, and
neutral. The only preprocessing steps done by the authors of the dataset are splitting
long sentences into segments using simple rules and labeling. Thus, the dataset offers a
realistic representation of the data available to practitioners and researchers interested in
using LM models for hawkish-dovish classification.

We assign target classes for the counterfactual generation to the original FOMC dataset
(Section 2.3). We generate a random target class for each factual, keeping the original
class priors. We share the generated dataset on the HuggingFace platform under https:

//huggingface.co/datasets/karoldobiczek/fomc-communication-counterfactual.

4.1.1 Model Selection

In Section 3.3 we introduce a categorization of text counterfactual generators into three
categories: 1. LLM-assisted generation, 2. Latent perturbation and decoding, and 3.
Sequential generation. To compare the different approaches to generating counterfactuals
for LMs (RQ 2), we select a single model out of each category for our evaluations.

From the first category, we selected the Polyjuice method for our analysis because it has
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been widely used as a baseline for comparison with other generators. The ContRastive Ed-
its with Sparse raTionalization (CREST) method [64] uses an approach similar to the one
described in Section 3.3.3. Gilo and Markovitch [27] introduce a search-based approach
for the counterfactual generation and justify the comparison with Polyjuice because both
methods optimize for a similar goal – a small syntactic distance to the counterfactual.
COunterfactual Generation via Retrieval and Editing (CORE) [20] trains a counterfac-
tual retrieval process to provide factual samples to a GPT-3 model that generates the
counterfactual. Madaan, Saha, and Bedathur [42] adapt Plug-and-Play Language Models
(PPLM) (described in Section 3.3.2) using a GPT-2 model as a fluency guide. Both CORE
and Madaan, Saha, and Bedathur [42] use a GPT model in generating the counterfactuals,
making the comparison with Polyjuice natural, especially for the latter case.

Since the RELITC [7] (described in Section 3.3.3) model masks and infills tokens to gen-
erate counterfactuals (third category), its inner workings can be compared with Polyjuice,
however, the way it performs those tasks is different. RELITC uses information from
the task in two ways. First, it masks tokens using token-wise attributions from a trained
classifier, and second, it uses a Conditional Masked Language Model to infill tokens based
on the target class.

PPLM [16] uses the information about the classifier in a completely different manner.
Conditioned on a starting sequence of words, it uses a language model to generate tokens
that adhere to the target class by directly optimizing them with a trained classifier. We
select PPLM as a representative model from the second category.

With this selection of counterfactual generators, we compare a method that generates
perturbations with no data-specific goal, one that is informed by the data and the clas-
sifier but only perturbs single tokens, and one that generates text steered directly by the
classifier.

4.1.2 Model Parameters

We use the Polyjuice.perturb method implemented in the Polyjuice package 1 to gen-
erate perturbations. The method is a wrapper that automatically generates and executes
a perturbation prompt with the Polyjuice model. It accepts arguments like the number
of perturbations, perturbation types, or custom masks. It also provides an option to gen-
erate random masks. For each factual, we generate 5 perturbations with random mask
placement and random perturbations.

We use the implementation of PPLM provided by the authors 2. We generate 5 coun-
terfactuals per each factual sentence, limiting the generation to 25 tokens. As a fluency
model we use the gpt2-medium and train a discriminator attribute model with the FOMC
dataset (Section 2.3). As inputs to the method, we give a string of the first 20%, maximally
ten words.

We use the authors’ implementation of RELITC 3 and slightly modify it to use it with

1https://github.com/tongshuangwu/polyjuice
2https://github.com/nishthaa/PPLM
3https://github.com/Loreb92/relitc-counterfactuals
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Input Polyjuice PPLM RELITC
Accelerating produc-
tivity poses a signifi-
cant complication for
economic forecasting.

Accelerating produc-
tivity poses a signifi-
cant complication for
the maintenance of
financial stability.

Accelerating pro-
ductivity poses a
significant compli-
cation for economic
forecasting. the key
question for pol-
icymakers today
is how much to
invest in new and
improved infras-
tructure to improve
the efficiency and
productivity of the
economy

Accelerating produc-
tivity poses a further
complication for eco-
nomic forecasting.

Market-based mea-
sures of inflation
compensation re-
mained low

Market-based mea-
sures of inflation
compensation re-
mained high

Market-based mea-
sures of inflation com-
pensation remained
low in august, while
the consumer price
index (cpi), a mea-
sure of overall
consumer prices,
was up 0.1 percent

Market - based mea-
sures of inflation
unemployment re-
mained low

These participants
cited, for example, the
still-elevated levels
of long-term unem-
ployment and workers
employed part time
for economic reasons
as well as low labor
force participation.

For example, there
were 65 members in
the first year, 91
members at the end
of the second year
and 106 members
in the third year.

These participants
cited, for example,
the still-elevated
levels of long-term
unemployment and
workers’ comp that
have led to a sig-
nificant number of
workers not being
paid for time that
they actually spent
on job training or
continuing

These participants
cited, for example,
the still - elevated
rates of long - term
unemployment and
being employed part
time slowing eco-
nomic recovery as
well as continuing
labor market con-
traction.

Table 4.1: Sample counterfactuals. The task of the first two rows of counterfactuals was
changing sentiment from dovish to hawkish, while the third row is dovish to neutral.

multiclass classification problems. We calculate token-wise feature importance w.r.t the
original label using Integrated Gradients. In generating counterfactuals, we use the default
settings, infilling based on the highest model confidence.

In our experiments, for each method we use a single counterfactual explanation. Since for
each factual, the generators generate a number of counterfactuals, we select the one with
the highest probability when classified by the classifier to the target class. If none of the
counterfactual variants are classified as the target class, we select one at random. Table
4.1 presents a sample of counterfactual explanations generated by all three methods using
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those settings. We share the full test set and the counterfactuals selected for the survey
under https://huggingface.co/datasets/karoldobiczek/fomc-communication-c

ounterfactual as well as the repository containing the code used to generate the data
under https://github.com/drobiu/LMCounterfactualExplanations. Due to the long
inference time, PPLM counterfactuals were generated on the DelftBlue supercomputer
[17] using an A100 GPU.

4.2 Experiment 1: Quantitative Metrics

As discussed in Subsection 3.4, many methods for generating text counterfactual expla-
nations are designed in a way that allows them to employ certain desiderata. Methods
are designed to optimize some objectives, either intentionally or implicitly. Then, metrics
measuring the desired objective are used when evaluating their method. Due to that,
comparing with baselines that do not employ those particular objectives is often complex
or unrealistic.

Our first experiment evaluates the text counterfactual generators using quantitative met-
rics. We select a variety of commonly used metrics in text CE evaluation, intending to
create a comparison that is not biased by using a single type of metric. Using the results
of this experiment we want to contribute to answering RQ 1 and RQ 3.

For this experiment, we select both minimality and fluency metrics. For the metrics mea-
suring the minimality of the changes, we choose the Levenshtein edit distance, the semantic
tree distance, and the embedding distance. To measure the fluency of the counterfactu-
als, we measure the perplexity of the explanations and the perplexity ratios between the
explanation and the factual sentence. We report an average computed over all samples in
the test set for each metric.

The metrics we selected are commonly used to evaluate text counterfactuals in the litera-
ture. However, due to our task formulation, we rejected some of the other popular metrics.
Since our dataset does not contain factual-counterfactual pairs, we do not evaluate the
generators using the BLEU metric, as it requires at least one ground truth (in this case,
a counterfactual) sentence. We do not measure the self-BLEU metric, commonly used in
quantifying the diversity of the counterfactuals, since we only present the annotators with
a single counterfactual per factual.

4.3 Experiment 2: Fluency of the Explanations

An essential quality of a counterfactual explanation of a text is the quality and soundness
of the explanation in terms of its fluency. Similarly to counterfactual explanations in other
data types, it has to match the factual domain for an explanation to be valuable and give
insight into the model and its decision-making. An explanation that solely optimizes the
label-flip objective can often look like an adversary example, fooling the classifier model
and bringing little to no information about the model itself.

In the second experiment, we want to verify which of the generators generates texts of high
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fluency, gathering data that will contribute to answering all three research questions (RQ 1,
RQ 2, and RQ 3). Thus, we evaluated the explanations by letting human annotators
judge the counterfactuals’ fluency. We extend the fluency metric defined in Section 3.4.3
to establish a concrete definition to be used by the annotators.

4.3.1 Defining Fluency

In designing a task for human evaluators, it is necessary to consider how they interpret the
task’s prompts. Especially in a field like text interpretation, non-experts can understand a
value like fluency in many different ways. Not providing a definition or using a very broad
one may lead to annotators essentially evaluating different qualities. It is thus crucial to
establish a robust and detailed definition upfront.

In Section 3.4.3, we describe how fluency has been defined both in the scope of text
counterfactual explanations and in fields like machine translation. Here, we derive a
fluency definition by modifying one by Ma and Cieri [41].

The generators we use can produce texts where word capitalization is omitted or where the
text changes abruptly. This impacts the quality of the generated text. To omit ambiguity
in case a counterfactual contains these errors, we specify that they will also impact fluency.
Our final definition is as follows:

A fluent segment is one that is grammatically well-formed; contains correct
spellings; adheres to the common use of terms, titles and names; contains
properly capitalized letters; and is intuitively acceptable. Unfinished sentences
also impact the fluency of a segment.

We ask the human annotators to judge the fluency of each sentence on a scale from 1 to
5, with 1/5 being very bad, 2/5 being bad, 3/5 being sufficient, 4/5 being good, and 5/5
being very good. With this range of grades, we aim to allow the annotators to mark a
sentence as average but also allow them to grade exceptional sentences high.

In addition to the grade labels, we give the evaluators guidelines for the very bad, sufficient,
and very good fluency grades:

A text should receive a score of:

• 5/5 if it follows this definition completely.

• 3/5 if there are several mistakes but the text still is interpretable.

• 1/5 if it is not fluent or grammatically correct English.

4.3.2 Survey Design

We construct our study as a survey using the Qualtrics4 platform. We obtain a TU Delft
Human Research Ethics (HREC) approval to conduct our study. To proceed to our survey,
each participant has to agree to an informed consent form specified in Appendix A as a
part of the HREC procedure. The concept of counterfactual explanations can be novel and

4https://www.qualtrics.com/
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complicated to some people, especially for those unfamiliar with machine learning. We
provide a short description of counterfactual explanations to introduce the participants to
the study’s purpose and domain. We also introduce the task which the annotators will
perform in the survey. Finally, we describe the fluency metric and grading criteria, as
introduced in Subsection 4.3.1. We include the complete introduction in Appendix B.

In the survey’s main part, we ask the participants to rate the counterfactual explanations
using our fluency definition and scale. We create a separate survey page for each factual
sentence containing all three of its counterfactual counterparts and fields for inputting
their fluency scores. Since, in this experiment, we do not recruit expert annotators, we
do not disclose the classes of the factual and counterfactual sentences. By doing so, we
aim not to distract the annotators with information that is not relevant to their task,
especially when the classes themselves would require additional explanations.

Finally, each participant randomly receives a fixed number of factual-counterfactual pages.
To minimize the likelihood that the order in which the counterfactual sentences are dis-
played influences the rating given to the sentence by the participant, we also decided
to generate all possible permutations of the counterfactual sentences and display them
randomly.

4.3.3 Participant Recruitment and Sample Sizes

We use the Prolific5 platform to recruit human annotators for our evaluation task. We re-
cruit native English speakers from the United Kingdom and the United States of America.
The participants are prescreened so that only those with at least high school-level educa-
tion can participate in the study. The annotators are compensated with the standard for
Prolific rate of 9 GBP per hour.

With our fluency evaluation instructions, we try to make the grading process nonsubjec-
tive, yet some variance in the gradings is expected between annotators. Thus, we chose a
sample size of 5 gradings for each counterfactual sentence. We decided to grade the coun-
terfactual sentences of 100 samples from the dataset, which, with three counterfactual
generators, gives a total of 300 graded sentences.

Apart from the amount of grade samples needed per counterfactual sentence, we also
consider the time necessary to complete a full survey. The longer the survey duration, the
more likely the respondent will lose interest in it and start to give intentionally low-effort
responses. We thus run pilot studies with small groups of respondents, varying the number
of counterfactuals they grade to determine the time it takes on average to complete our
surveys. Apart from the survey completion times, we analyze individual respondents’
average grades per pilot study batch. This determines whether the amount of factual-
counterfactual pages in a survey impacts how the respondents grade the sentences. We
discuss this analysis and the full results of our study, which consists of the combined results
of the five pilot studies and the full-scale study in Chapter 5.

5https://www.prolific.com/
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4.4 Experiment 3: Expert Evaluations

Our primary goal in this work is to determine the usability of counterfactual explanations
in financial text classification (RQ 2). Thus, we decided to perform another series of
evaluations with domain experts. Including experts who deal with texts in the economic
domain daily allows us to judge the texts’ fluency closely and determine whether the
changes introduced to produce the counterfactuals make sense given the original and target
classes.

Any fluent speaker of a language can assess the fluency of a text with some level of certainty.
Still, when evaluating specific domains with uncommon terms and jargon, regular language
users can lack the knowledge necessary to identify word usage, which would decrease a
text’s fluency level. In the classification task of the dataset we analyzed, changing a single
word can make the difference between a dovish and a hawkish sentence and thus cause the
rest of the text to be incorrect or seem out of place. These changes might not always be
caught by a typical language user and require additional expert analysis.

In a specialist domain like financial text classification, generating text sound solely in
fluency is insufficient. In Section 3.4.3, we describe the different desiderata present in
previous work on text counterfactual generation. Many approaches for evaluating coun-
terfactual text generation techniques consider how well the approach preserves the original
topic of the factual text and how realistic the changes or the resulting sentences are.

4.4.1 Defining Plausibility

In our expert evaluation, we, too, measure the quality of the counterfactual texts with
regard to the domain we analyze. Similarly to Gilo and Markovitch [27], Madaan et
al. [43], and Yang et al. [75], we ask the experts to judge the counterfactuals’ plausibility.
However, we decided to model our notion of plausibility to closer reflect the definition used
in the literature on counterfactual explanations. We discuss the definition of plausibility
by Altmeyer et al. [3] in Subsection 3.4.3.

We adapt this definition to the domain of explanations for text inputs and arrive at this
definition:

A plausible counterfactual segment adheres well to samples seen in the real
data distribution, and the target sentiment of the target class. The changes
made to the factual, considering the meaning and context of the edited words,
should also fit the target domain.

The main goal of the definitions of our metrics is to guide the human evaluators to grade
the characteristics of the counterfactuals we want to analyze. So, in the second part of our
definition, we additionally ask the evaluators to focus on the change that the counterfactual
introduces compared to the original sentence. This is inspired by the reasonability metric
used by Yang et al. [75]. With this condition, we aim to allow the evaluator to consider
the finished explanation but also entice them to judge the process or direction taken in
generating it.
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Similarly to the fluency metric, the evaluators receive additional guidelines for grading
sentences using the plausibility metric:

A text should receive a score of:

• 5/5 if it follows this definition completely.

• 3/5 if there are several mistakes but the text reflects the right sentiment.

• 1/5 if the changes are nonsensical.

4.4.2 Survey Design

For each counterfactual, the survey page consists of three elements:

1. 1 to 5 scale: Fluency grading

2. 1 to 5 scale: Plausibility grading

3. Open question: Remarks about the counterfactual

Similarly to the design of the non-expert survey described in Subsection 4.3.2, we use the
Qualtrics platform to build and host our surveys. We ask the annotators to grade the
counterfactuals’ fluency and plausibility. We do not modify the definition of fluency for
this round of evaluations. We again use a 1 to 5 scale with labels for the grading.

Contrarily to the non-expert evaluation, we inform the experts about the texts’ original and
target classes. This information is crucial for grading the plausibility of the explanations.
Since the experts are familiar with the texts and classifications in this domain, this addition
should not cause unnecessary strain or dissociation for the participants.

To engage our evaluators even further in grading the counterfactual explanations and
elicit more insights, in the final step of grading a counterfactual, we ask them to describe
any remarks they might have about the text in an open question. The answer to this
question is optional and is intended to be used when the evaluator sees shortcomings in
the counterfactual they analyze. The following is the full text we present in the question:

Considering the counterfactual from the previous question, describe what qual-
ities that you might look for in a text like this are missing. Your comment can
refer to the semantics of the sentence, its structure, or contents. If you do not
have any comments you can also leave the answer empty.

Each page of the expert survey contains nine questions: six closed grading questions and
three open ones. This format allows us to gather more information but makes the survey
more time-consuming. We take this into consideration when adjusting the number of pages
displayed to the evaluators.

4.4.3 Participant Recruitment and Sample Sizes

To maintain high quality and confidence in the ratings, we gathered ratings from specialists
experienced in assessing and analyzing texts in the monetary policy domain. We contacted
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employees of three central banks and recruited 9 participants for the survey. The identities
of the participants were pseudonymized and will not be disclosed.

The tasks we present to the evaluators in this survey require more time for consideration
and are more complex than those in the non-expert survey. Thus, we decrease the number
of pages in the survey to three. This allows us to receive 27 separate factual-counterfactual
ratings. Since we maintain the number of separate ratings per factual-counterfactual
instance at 5, we can grade 5 in full in this experiment.

While getting a single grade sample for each factual-counterfactual instance could allow
us to receive gradings for a considerable part of our dataset, we instead chose to average
ratings and remarks collected from multiple experts.

The median time to complete the survey was 17 minutes 36 seconds, while the average
after removing extreme outliers was just over 20 minutes.
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Chapter 5

Experimental Results and
Discussion

In this chapter, we discuss the results of our experiments and their implications in the
broader field of explainability for LLMs. We first analyze whether the survey duration
affects the quality of the results in Section 5.1. Later, in Section 5.2, we present the results
of our experiment. We analyze them deeper by testing the correlation between qualitative
and quantitative metrics in Section 5.2.1. In Section 5.3, we analyze the expert comments
on the counterfactuals.

5.1 Survey Duration

Section 4.3 describes our approach to building the survey for our second experiment. The
time a person spends in one survey could negatively impact the outcomes. To establish
an optimal amount of pages presented to the respondents, we try five different batches of
surveys with differing amounts of pages.

We prepare surveys with 7, 10, and 15 pages and send them to 5 respondents. The
average time to complete the surveys is 10 minutes 36 seconds for 7-page surveys, 10
minutes 12 seconds for 10-page surveys, and 12 minutes 32 seconds for 15-page surveys.
The resulting timings of our pilot surveys show that running a full-scale survey with 15
factual-counterfactual pages could be feasible. However, due to inconsistent timing results
in the latter two pilot studies and the preference for high-effort responses, we settled on
a conservative 10-page survey. The full-scale survey of 25 respondents gave a median
completion time of 10 minutes and 16 seconds.

With these small sample sizes of 5 respondents in each pilot study, we cannot draw firm
conclusions, although we can determine whether any individual respondents give very
similar responses or whose responses are very different from the main body of respondents.
We calculate the average grades each respondent gave during the study. We then calculate
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Batch (no. pages) 1 (7) 2 (10) 3 (15) 4 (15) 5 (15) 6 (10)

Intra-rater
Mean 3.10 2.92 3.31 3.55 3.24 3.15
Std. 0.21 0.23 0.24 0.38 0.35 0.51

Inter-rater
Mean 3.10 2.91 3.31 3.74 3.41 3.14
Std. 0.96 0.85 0.68 0.51 0.98 0.85

Table 5.1: Means and standard deviations of the intra-rater and inter-rater scores in each
batch of surveys.

the mean and standard deviation of these ratings to obtain the mean intra-rater ratings.
We present those in rows 2 and 3 of Table 5.1. We also report the inter-rater scores.

The standard deviations of the respondents’ intra-rater for the first three pilot studies start
out at around 0.2 and increase for the later batches due to the larger group of annotators.
For the inter-rater means, we see a slight decrease in the average grade standard deviation
in the first three batches, corresponding to the pilot studies with 7, 10, and 15 factual-
counterfactual pages. This could signify a reduction in the quality of the responses caused
by the decreasing patience of the respondents over time; however, in each pilot study,
we give the respondents different factual-counterfactual samples. Samples for which the
respondents are more certain could explain the lower standard deviation. Generally, we
do not see a cause to reject the results of our surveys.

5.2 Experiment Results

The results of the quantitative metrics are presented in Table 5.2. The results do not
seem to point toward a method that performs the best out of the three, although specific
patterns emerge. PPLM, which uses a GPT-2 model in its generation phase and optimizes
for its fluency, performs best for perplexity-based metrics. Similarly, RELITC, which tries
to minimize the fraction of perturbed tokens in creating a counterfactual, has the best
results for the Levenshtein distance and the tree edit distance. It also achieves the highest
flip rate out of the three methods. Interestingly, Polyjuice achieves the best results solely
for the embedding distance metric. These results are computed for all counterfactuals,
including ones that do not succeed at flipping the label; however, comparing those to ones
computed using successful CEs only in Table C.2, we see no major differences.

Generator Perpl. ↓ Perplexity ratio Edit dist. ↓ Tree dist. ↓ Emb. dist. ↓ Impl. ↓ Succ. rate ↑
Polyjuice 90.98 (172.1) 1.80 (4.6) 0.31 (0.3) 19.67 (24.0) 20.32 (3.7) 33.64 (4.6) 0.34 (0.5)
PPLM 36.97 (16.9) 0.78 (0.5) 0.69 (0.5) 36.94 (10.3) 20.88 (3.7) 32.18 (4.0) 0.51 (0.5)
RELITC 100.94 (125.2) 1.67 (1.2) 0.14 (0.1) 10.72 (12.2) 21.96 (3.9) 33.30 (3.9) 0.74 (0.4)

Table 5.2: Averages and standard deviations of the quantitative metrics calculated for
counterfactual explanations of texts in the test set. A perfect result for the perplexity
ratio metric is thought to be 1 [8].

The results of the human-annotated qualitative metrics are displayed in Table 5.3. Even
though the RELITC generator receives some of the worst results for the perplexity metrics,
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Annotators
Non-expert Non-expert (5 CEs) Expert

Generator Fluency Fluency Fluency Plausibility
PPLM 2.86 (0.7) 2.48 (0.5) 2.26 (0.5) 1.83 (0.3)
Polyjuice 3.40 (0.9) 3.44 (0.7) 3.45 (0.9) 2.45 (0.7)
RELITC 3.43 (0.8) 3.96 (0.5) 3.90 (0.6) 2.12 (0.3)

Table 5.3: Results of the human annotation of the counterfactuals using the qualitative
metrics. Each counterfactual receives five ratings. Those ratings are averaged. We display
the averages of those averages and their standard deviations. Since the expert evaluations
are performed on a subset of five samples, we calculate the fluency scores the non-expert
annotators give on the same set of samples.

it produces the most fluent texts according to both the sampled groups. At the same time,
the opposite applies to the PPLM method. Surprisingly, the only metrics that reflect the
same ranking of the methods as the fluency are the Levenshtein and tree edit distances.
These findings suggest that perplexity might not be a reliable metric for evaluating CEs
(RQ 3).

All the methods receive rather low scores of the expert-judged plausibility metric, all
achieving less than sufficient (score of 3, see Section 4.3.1) scores. Even though the RE-
LITC method produces the most fluent counterfactuals, the experts assign the highest
plausibility scores to Polyjuice. This stems from the RELITC’s misuse of domain-specific
words, as reported in the experts’ comments analyzed in Section 5.3.

A surprising result is the closeness between the experts’ and non-experts’ grading of flu-
ency. The highest difference between the average grades in Table 5.3 is 0.22 for PPLM,
while Polyjuice’s fluency scores differ by only 0.01. This indicates that the fluency metric
might not be dependent on the annotator’s background and that non-experts’ ratings can
give reliable results even in specialist domains.

Since the perplexity metric is highly dependent on the training data of the model used to
compute it [46], we investigate whether the choice of models affects our results. We choose
two different models apart from GPT-2, Open Pretrained Transformer (OPT) [77] opt-
125m, and a GPT-2 model fine-tuned on four financial datasets. We present the resulting
perplexity and perplexity ratio results in Table C.1; however, apart from different scales
of perplexities, we notice no major differences between the results.

5.2.1 Agreeance Between the Results

Even though the expert and non-expert fluency scores are nearly the same and they dictate
the same hierarchy as the distance metrics, we find that there is little apparent correlation
between the qualitative and quantitative results.

We decide to analyze the agreeance between our results further. We perform statistical
tests comparing the quantitative and qualitative metrics. We use the Pearson correlation
coefficient to measure the dependence between metrics.
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Agreeance with Non-Expert Ratings

Perplexity Perplexity ratio Edit Dist. Tree edit dist. Emb. dist. Implausibility
Correlation -0.06 (0.2) -0.03 (0.5) -0.21 (0.0002) -0.21 (0.0003) 0.03 (0.7) 0.06 (0.3)

Table 5.4: Pearson correlation coefficients between the quantitative metrics and the non-
expert fluency results. Numbers in brackets represent the p-values.

Table 5.4 shows that there is no strong correlation between the perplexity metric except
for the edit distance metrics. The correlation of fluency scores with both the Levenshtein
edit distance and tree edit distance metrics show low p-value, below 0.005, suggesting a
significant (negative) correlation with a coefficient of −0.21. This result is not surprising
considering the earlier findings, which suggest that the methods that introduce a lower
amount of edits tend to be rated higher.

Figure 5.1: Scatterplot of the fluency score of a counterfactual by its edit distance.

To investigate this correlation further, we calculate the correlation coefficient between
fluency and perplexity for each generator separately. We obtain the following results:
Polyjuice: r = −0.03, p-value = 0.73, PPLM: r = −0.06, p-value = 0.54, and RELITC:
r = −0.11, p-value = 0.28. These correlation coefficients suggest no statistically significant
correlation between the edit distance metric result and the fluency scores. In Figure 5.1,
we plot the distributions of the scores in relation to the edit distances. The plot shows that
for each method, there is an initial cluster of low edit distances and a wide distribution
of fluency scores (close to 0 edit distance for RELITC and Polyjuice and close to 0.5 for
PPLM). There also exists a trend where the fluency scores decrease for the higher values of
distances. This means that edit and tree edit distances can be good measures for assessing
the fluency of text counterfactuals (RQ 3).

The only metrics that show a strong correlation with the non-expert fluency scores are
the edit distance metrics. Our results show that for high amounts of changes made to
the factuals, the fluency of the counterfactuals decreases. This holds for comparisons
between counterfactual generators. However, there is no strong correlation between the
two variables within the classes. Those two results suggest that the distance metrics are
well-suited for comparing different counterfactual generators. One can also argue that
those metrics can also be used within classes as a means of detecting outliers, as it is likely
that counterfactuals with very high edit distances can be of poor quality.
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Agreeance with Expert Ratings

Perp. Perp. ratio Edit Dist. Tree edit dist. Emb. dist. Impl.
Fluency 0.12 (0.6) 0.14 (0.6) -0.56 (0.016) -0.56 (0.015) -0.25 (0.3) 0.13 (0.3)
Plausibility 0.32 (0.2) 0.02 (0.9) -0.12 (0.6) -0.28 (0.3) -0.12 (0.6) 0.28 (0.3)

Table 5.5: Pearson correlation coefficients between the quantitative metrics and the fluency
and plausibility scores given by the expert evaluators. Numbers in brackets represent the
p-values.

Similarly to the analysis performed in Subsection 5.2.1, we calculate the correlation coeffi-
cient for the fluency and plausibility scores given to the sentences by the expert evaluators.
Table 5.5 shows the resulting correlation values. Similarly to the non-expert correlation
scores, we see a negative correlation between the edit distances and the fluency of the coun-
terfactuals. The weak correlations are likely to stem from the low number of responses we
acquired.

5.3 Expert Insights on Counterfactuals

As a part of our expert evaluation questionnaire described in Section 4.4, we ask our
respondents to elaborate on the shortcomings they identify in the counterfactuals. We
perform further analysis of the counterfactual generators using those comments. In the
question we pose to the evaluators, we ask them to comment on shortcomings in “the
semantics of the [counterfactual] sentence, its structure, or content”. We gathered 50
comments, 15 on Polyjuice, 18 on PPLM, and 17 on RELITC counterfactuals. We present
a factual-counterfactual sample with corresponding comments in Table 5.6. We observe
distinct patterns for each of the generators.

Over half of the comments regarding Polyjuice counterfactuals relate to the lack of rele-
vance of the introduced changes. The experts say that “the content and hence tone has
not changed at all” or that with the changes that Polyjuice introduces, “the sentiment has
not been changed at all”. A large part of the comments address the grammatical errors
in the Polyjuice counterfactuals: “The only thing that has changed is the introduction of
grammatical errors ...”. For one of the counterfactuals, the commenters notice that there
is an “... entirely different subject” that replaces the original one.

As discussed in Section 4.2, PPLM generates tokens until reaching a fixed limit. Therefore,
it is possible that the generator does not finish a sentence within the given limit. Thus, it
is natural that the main point of critique offered by the experts is that the counterfactuals
are unfinished. Similarly to Polyjuice, PPLM introduced errors in the sentences: “The
counterfactual didn’t change the [tone], but included orthographic errors.” However, unlike
Polyjuice, PPLM’s propensity to use domain-specific words introduces more room for
errors in the usage thereof. This is reflected by the comments: “It is odd to call something
subdued when it is at a three-year high unless some caveats are given about the longer-term
trend.” PPLM was also criticized for making the counterfactuals too conversational.

RELITC is similar to PPLM in that it learns the domain-specific terms through its CMLM
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Text Expert comments
Factual At the conclusion of this discussion,

the Committee voted to authorize
and direct the Federal Reserve Bank
of New York, until it was instructed
otherwise, to execute transactions in
the System Account in accordance
with the following domestic policy
directive: The information reviewed
at this meeting suggests that the ex-
pansion in economic activity is still
robust.

Polyjuice At the conclusion of this discussion,
the committee voted to authorize
and direct the federal reserve bank
of new york, until it was instructed
otherwise, to execute transactions in
the system account in accordance
with the following domestic policy
directive: the information was not
suggests that the expansion in eco-
nomic activity is still robust.

1: “Language is off. The negation at
the end makes the statement unclear.”,
2: “Again all capital letters are miss-
ing. This time, the last sentence is also
incorrect”was not suggests” is clearly a
mistake”. This mistake makes the whole
message impossible to understand.”, 3:
“The last clause is not grammatically
correct. Otherwise it does come across
a bit more dovish.”

PPLM At the conclusion of this discussion,
the committee voted to authorize
and direct the federal reserve bank
of new york, until it was instructed
otherwise, to execute transactions in
securities that are not covered
by the exchange act.

1: “There now is a completely different
meaning at the end of the statement.”,
2: “Again capital letters are missing,
and the second sentence is incomplete.
But at least the first sentence can be
understood and sounds dovish (execute
transactions in additional securities)”, 3:
“There is an incomplete sentence at the
end of the excerpt. It also loses the link
to the current state of the economy and
so isn’t more dovish”

RELITC At the conclusion of this discussion,
the committee voted to authorize
and direct the federal reserve bank
of new york, until it was instructed
otherwise, to execute transactions in
the system account in accordance
with the following domestic policy
directive : the information reviewed
at this meeting suggests that the
impact of the response is still ro-
bust.

1: “There is a change of meaning in the
last sentence which makes it less clear.”,
2: “All capital letter are missing, but
the rest of the text seems to be correct.
In terms of content, it is not clear at all,
in particular the sentence ”the impact of
the response is still robust”.”, 3: “The
vagueness of ’impact of the response’
makes it difficult to extract the message
or signal this would try to send.”

Table 5.6: Sample counterfactuals and the expert comments regarding them. Factual
label: neutral, target label: dovish. Changes introduced in the counterfactuals, except for
word capitalization, are highlighted.
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and then uses them to generate a counterfactual. This, also similar to PPLM, introduces
room for error. The experts comment on sentences where RELITC introduces domain-
specific terms that are factually incorrect, contradict the contents of the sentence, or
make the tone of the counterfactual unclear or conversational. Three of the comments
mention that the counterfactuals might be pointing towards incorrect class, e.g., making
the sentence more hawkish instead of dovish. Similarly to Polyjuice, RELITC receives
many comments stating that the counterfactuals “not seem different in tone.”

The generators received minor comments about topic changes and incorrect or lacking
capitalization. For two of the generators, Polyjuice and RELITC, some experts expressed
that the counterfactuals might reflect the sentiment of the target class. In conjunction with
the fact that Polyjuice receives considerably fewer negative comments about the incorrect
usage of terms than the other two generators, this might explain the plausibility score
results in Table 5.3.

5.4 Data Complexity

The complexity of the dataset a model is trained on can be a limiting factor in generating
plausible explanations. Approaches such as CLUE [4] and REVISE [34] discussed in
Section 3.2 employ surrogate models that can be used to estimate the data distribution
closely to generate plausible counterfactuals. The same might apply to counterfactual
generation for language models.

The relatively noisy results of the embedding-based metrics can suggest that the data
is too complex for the model we are trying to explain. The embedding distances are
calculated by comparing the distances between the last-layer embeddings of the classifier.
If the classifier is not fitted well enough to the data, its embedding space might be too
noisy with clusters of different classes overlapping. The LM counterfactual generators that
we use might not be complex enough to generalize to the task and thus cannot generate
plausible counterfactuals. However, another possibility is that the classifier is so noisy
that even an adversarial-looking counterfactual can cause a label flip.

In our case, the classifier might indeed be underperforming. The authors of the model
report a test set accuracy of 0.71 [58], a result that is rather low even considering some
of the results reported in the original RoBERTa paper [39]. This result gives another use
case for text CEs, raising concerns about the model’s accuracy and possibly leading to
questions about its usability.

One could argue that to estimate a more complex domain, we need a larger language
model than those used in the generators we analyze. Approaches that use LLMs such as
GPT-3 exist, [20] use a RAG approach to retrieving texts and editing them to generate
counterfactuals, and Chen et al. [13] use GPT-4 to investigate counterfactual simulatability,
whether an input’s explanations allow inferring outputs for other inputs. Even in the
domain of hawkish-dovish classification, there exist works that prompt an LLM to explain
its classification [29].

We investigate this argument and formulate a pseudo-RAG counterfactual method (Ap-
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pendix D) by prompting a GPT-4o model to generate a counterfactual with minimal
changes to the input using supplied sample texts. Since the FOMC dataset has no factual-
counterfactual pairs, we present random text samples from both the factual and counter-
factual classes. We run the method on a subset of 15 factuals in our task dataset and
present the quantitative results in Table D.1. The method achieves a very high success
rate of 0.88, but it receives poor results for the edit distances and the implausibility met-
ric, its counterfactuals staying far from the factual embeddings. A method like this does
not use the classifier in the generation, and while methods like these can achieve good
plausibility (ex. Polyjuice), this can inhibit its performance.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarise our work and contributions (Section 6.1) and form sugges-
tions and recommendations for practitioners aiming to use LM counterfactual explanations
in specialist fields (Section 6.2) and for future research (Section 6.3). We also state the
limitations of the current work (Section 6.4).

6.1 Conclusions

Language model counterfactual explanations help analyze and explain natural language
processing models. These explanations can ensure trust in applications of those models
in specialist domains, such as finance, where the models can have high stakes in correctly
understanding sentiments. However, unlike the usual tasks a LM counterfactual generator
is tested on, a specialist dataset, such as one with a bank communications classification
task, can prove challenging for both a LM model and a counterfactual generator. In this
thesis, we set out to explore how counterfactual explanation generators for language models
fare on a dataset from a financial domain and assess their usefulness for practitioners.

To aid in this assessment, in Section 1.2, we define the following research questions:

• RQ1: What are the essential desiderata of text counterfactual explanations for lan-
guage models?

• RQ2: What type of explanations is most useful for the practitioners?

• RQ3: Are the metrics commonly used in Natural Language Processing right for eval-
uating and comparing text counterfactual generation methods?

To analyze the CE generators, we set out to explain a model trained on a novel dataset for
sentiment analysis of central bank communications. We review various LM counterfactual
generators, and based on the way they generate text, we derive three distinct categories
described in Section 3.3 (later used in RQ 2).
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In reviewing the literature on LM counterfactual explanations, we find various desiderata
taken in their design (RQ 1) and ways the researchers evaluate their methods (RQ 3).
We find that in previous work, researchers often focus on evaluation through quantitative
metrics and neglect explicitly defining qualitative metrics.

We determine the usefulness of the quantitative metrics used in the literature by comparing
them to human-annotated qualitative ones to answer RQ 3. We gather seven quantitative
metrics from the literature. We identify qualitative metrics from previous works and
find that they often are underspecified. We contribute to the field by providing precise
definitions of two that we deem the most important for our task. The two qualitative
metrics, fluency and plausibility, are based on previous work on computer translation and
counterfactual explanations.

To gather results of the metrics we analyze, we create an experiment described in Chapter
4. We select one counterfactual generator out of each of the derived categories. We
generate and assess counterfactual explanations using quantitative and qualitative metrics.
We gather ratings for the counterfactual explanations from native English speakers and
central bank employees.

The sequential infilling and LLM prompting methods we analyze achieve good fluency of
counterfactuals created for the FOMC dataset. However, the plausibility level of those
counterfactuals is less than satisfactory. Moreover, the plausibility of the explanations is
lower for generators that learn and apply domain-specific wording in their counterfactuals.
Answering RQ 2, the most plausible counterfactuals for the practitioners are ones that
perturb the text but use no domain-specific wording, thus having less risk of word misuse.

To answer RQ 3, we analyze the correlation between the quantitative results and the grades
counterfactuals received from human annotators. We observe a strong correlation between
the fluency of the explanation and the results for quantitative metrics that measure the
degree of changes introduced into the counterfactuals. This correlation only holds for intra-
method measurements, so it might be used to compare different methods. The smaller the
change, the more fluent an explanation is. Thus, the desideratum that seems to optimize
the fluency as well as plausibility is the minimality of the changes (RQ 1).

The counterfactual explanations are often classified to their target class while being rated
unrealistic by the experts. This means that the counterfactual generation methods are not
well suited for the task we use them for. However, these counterfactuals often achieve label
flip, so they change the classifier’s output label to the target class. This might point to
the fact that the model trained by Shah, Paturi, and Chava [58] is not well suited for this
task – either due to its relatively small size or due to the task’s difficulty in the dataset.

Based on our findings, we formulate several recommendations for practitioners who aim to
utilize counterfactual explanations for language models in their work. We describe these
recommendations in the following section.
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6.2 Recommendations for Practitioners

The primary purpose of our evaluations is to establish which of the existing methods for
LM counterfactual explanations is best suited for explaining financial text LM classifiers.
Through the results of our experiments and the analysis thereof, we can give recommen-
dations for practitioners who want to use LM counterfactual generators for their tasks.

The results we present and discuss in Chapter 5 suggest that the RELITC generator is
best suited for generating fluent counterfactuals. While the Polyjuice generator receives
the highest scores for the plausibility of the explanations, this can be attributed to RELITC
not handling the domain-specific wording properly. This could stem from the relatively
small size of the data set. For a task with a larger available training set, this could mean
that the RELITC counterfactual generator can be the best choice for general applications.

However, the usability of the three counterfactual generators can be task-specific. The
reason for the RELITC’s lower plausibility scores makes it so that the Polyjuice counter-
factual generator might be preferred for applications where the domain-specific wording
should not be altered.

The Polyjuice generator’s advantage over the other generators is the lack of training needed
for generating basic counterfactuals. Thus, the only option is to use the Polyjuice generator
when there is no training set or it is too small. The generator offers satisfactory fluency, and
by not altering domain-specific words, it produces plausible counterfactuals. A downside
to using this generator is the relatively low flip rate of the counterfactuals, which means
that it might take more time to generate a counterfactual with this method compared to
the other ones.

If a practitioner is willing to post-process the counterfactuals, it could also be viable to use
the PPLM generator. The generator creates a string of text based on an initial text and
a conditioning class, so while its direct outputs are not usually usable as counterfactual
explanations, they can act as suggestions to edit the factuals. Since the generation steps of
the generator are directly steered by the classifier, its outputs can be closer to the actual
target class, as shown by the lowest implausibility result in Table 5.2.

6.3 Future Work

The limitations of the presented work leave room for future work in analyzing LM counter-
factual generators. Limited by the amount of expert evaluations, we cannot draw strong
assumptions for aspects such as the correlation of the qualitative and quantitative met-
rics. Future work with higher resources might consider employing larger expert groups to
evaluate text-based counterfactuals.

The lack of ground-truth counterfactuals in our analysis is an aspect of the dataset we
analyze, although we also identify it as a limitation. Future work can focus on finding
ways to gather factual-counterfactual pairs. This can be done through search-based meth-
ods, although for many datasets, it is not realistic to find counterfactual counterparts for
large enough parts of the dataset. Expert input can also be necessary here. Creating a
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large financial dataset comprised of factual-counterfactual pairs can considerably help in
analyzing LM counterfactual methods.

In Subsection 5.4, we discuss possible and current approaches to generating explanations
using large language models like the GPT-4. We formulate a similar method of RAG-
based counterfactual generators and test its performance using quantitative metrics. While
the method achieved a strong label flip, it does not outperform the other counterfactual
generators. To better understand the prospect those methods bring to LM explainability,
they should be studied in a similar setting as ours, rigorously assessing the plausibility of
their explanations. Furthermore, including the newest LLMs in generators such as PPLM
and Polyjuice may bring advantages from both the high fluency of a modern LLM and the
signal from the classifier in PPLM or a structured approach to counterfactual generation
of Polyjuice.

6.4 Limitations

Our work is not without limitations. We select only 3 out of the multiple text counterfac-
tual generation methods. While we attempt to consider a wide range of techniques used
in the field, it is not feasible to evaluate all existing methods.

A limiting factor in using some methods is that some require additional data besides texts
and labels for training purposes. The PPLM BoW attribution model requires a curated
list of words for calculating the text generation direction [16]. Similarly, the work by
Yang et al. [75] uses bag-of-words for an infilling task similar to the one used in RELITC.
Our work analyzes the feasibility of using text counterfactual methods in real-life appli-
cations where additional data might not be available. At the same time, we acknowledge
that studying those methods might bring further insights into the field. Another limi-
tation inherent to the FOMC dataset is the lack of ground-truth counterfactuals. We
considered this in designing our study since datasets acquired from real-life data usually
do not contain samples with exact semantic matches in their target classes. While this
consideration makes our evaluation more realistic, it does not let us evaluate the results
with machine translation metrics like BLEU or include the ground-truth counterfactuals
in expert evaluation. Furthermore, one cannot use some of the retrieval-based generators
without factual-counterfactual pairs.

Another limitation stems from the use of a single dataset in our evaluations. While we
solely consider financial text classification, the texts in this field use specific terms that
might or might not be present in the pre-training data for the foundational models used in
the methods we evaluate. One could gain more insight from performing similar evaluations
on texts from other specialist domains, such as medicine or legal texts.
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[56] Alexis Ross, Ana Marasović, and Matthew Peters. “Explaining NLP Models via
Minimal Contrastive Editing (MiCE)”. In: Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021. Ed. by Chengqing Zong et al. Online:
Association for Computational Linguistics, Aug. 2021, pp. 3840–3852. doi: 10.186
53/v1/2021.findings-acl.336. url: https://aclanthology.org/2021.findin
gs-acl.336 (visited on 04/27/2024).

[57] Marek Rozkrut et al. “Quest for central bank communication: Does it pay to be
“talkative”?” en. In: European Journal of Political Economy 23.1 (Mar. 2007), pp. 176–
206. issn: 01762680. doi: 10.1016/j.ejpoleco.2006.09.011. url: https://linki
nghub.elsevier.com/retrieve/pii/S0176268006000917 (visited on 08/14/2024).

[58] Agam Shah, Suvan Paturi, and Sudheer Chava. “Trillion Dollar Words: A New
Financial Dataset, Task & Market Analysis”. In: Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Ed. by Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada:
Association for Computational Linguistics, July 2023, pp. 6664–6679. doi: 10.18653

56

https://doi.org/10.3115/1073083.1073135
https://dl.acm.org/doi/10.3115/1073083.1073135
https://dl.acm.org/doi/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2023.findings-emnlp.434
https://doi.org/10.18653/v1/2023.findings-emnlp.434
https://aclanthology.org/2023.findings-emnlp.434
https://doi.org/10.1016/j.jfds.2023.100114
https://doi.org/10.1016/j.jfds.2023.100114
https://linkinghub.elsevier.com/retrieve/pii/S2405918823000302
https://linkinghub.elsevier.com/retrieve/pii/S2405918823000302
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://doi.org/10.18653/v1/2021.findings-emnlp.306
https://doi.org/10.18653/v1/2021.findings-emnlp.306
https://aclanthology.org/2021.findings-emnlp.306
https://aclanthology.org/2021.findings-emnlp.306
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
https://aclanthology.org/2021.findings-acl.336
https://aclanthology.org/2021.findings-acl.336
https://doi.org/10.1016/j.ejpoleco.2006.09.011
https://linkinghub.elsevier.com/retrieve/pii/S0176268006000917
https://linkinghub.elsevier.com/retrieve/pii/S0176268006000917
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368


/v1/2023.acl-long.368. url: https://aclanthology.org/2023.acl-long.368
(visited on 06/29/2024).

[59] Lee A. Smales. “Classification of RBA monetary policy announcements using Chat-
GPT”. en. In: Finance Research Letters 58 (Dec. 2023), p. 104514. issn: 15446123.
doi: 10.1016/j.frl.2023.104514. url: https://linkinghub.elsevier.com/re
trieve/pii/S1544612323008863 (visited on 08/22/2024).

[60] Timo Speith. “A Review of Taxonomies of Explainable Artificial Intelligence (XAI)
Methods”. en. In: 2022 ACM Conference on Fairness, Accountability, and Trans-
parency. Seoul Republic of Korea: ACM, June 2022, pp. 2239–2250. isbn: 9781450393522.
doi: 10.1145/3531146.3534639. url: https://dl.acm.org/doi/10.1145/35311
46.3534639 (visited on 08/22/2024).

[61] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep
networks”. In: Proceedings of the 34th International Conference on Machine Learning
- Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, Aug. 2017, pp. 3319–
3328. (Visited on 08/22/2024).

[62] Paul C. Tetlock, Maytal Saar-Tsechansky, and Sofus Macskassy. “More Than Words:
Quantifying Language to Measure Firms’ Fundamentals”. en. In: The Journal of
Finance 63.3 (June 2008), pp. 1437–1467. issn: 0022-1082, 1540-6261. doi: 10.111
1/j.1540-6261.2008.01362.x. url: https://onlinelibrary.wiley.com/doi/1
0.1111/j.1540-6261.2008.01362.x (visited on 08/21/2024).

[63] Ellen Tobback, Stefano Nardelli, and David Martens. “Between Hawks and Doves:
Measuring Central Bank Communication”. en. In: SSRN Electronic Journal (2017).
issn: 1556-5068. doi: 10.2139/ssrn.2997481. url: https://www.ssrn.com/abst
ract=2997481 (visited on 08/22/2024).

[64] Marcos Treviso et al. “CREST: A Joint Framework for Rationalization and Counter-
factual Text Generation”. In: Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). Ed. by Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for Com-
putational Linguistics, July 2023, pp. 15109–15126. doi: 10.18653/v1/2023.acl
-long.842. url: https://aclanthology.org/2023.acl-long.842 (visited on
04/27/2024).

[65] Arnaud Van Looveren and Janis Klaise. “Interpretable Counterfactual Explana-
tions Guided by Prototypes”. en. In: Machine Learning and Knowledge Discovery in
Databases. Research Track. Ed. by Nuria Oliver et al. Cham: Springer International
Publishing, 2021, pp. 650–665. isbn: 9783030865207. doi: 10.1007/978-3-030-86
520-7_40.

[66] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 30. Curran Associates, Inc., 2017. url: https://pap
ers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a84

5aa-Abstract.html (visited on 04/30/2024).
[67] Leandro Von Werra et al. “Evaluate & Evaluation on the Hub: Better Best Practices

for Data and Model Measurements”. en. In: Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. Abu
Dhabi, UAE: Association for Computational Linguistics, 2022, pp. 128–136. doi:
10.18653/v1/2022.emnlp-demos.13. url: https://aclanthology.org/2022.em
nlp-demos.13 (visited on 08/11/2024).

57

https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
https://doi.org/10.18653/v1/2023.acl-long.368
https://aclanthology.org/2023.acl-long.368
https://doi.org/10.1016/j.frl.2023.104514
https://linkinghub.elsevier.com/retrieve/pii/S1544612323008863
https://linkinghub.elsevier.com/retrieve/pii/S1544612323008863
https://doi.org/10.1145/3531146.3534639
https://dl.acm.org/doi/10.1145/3531146.3534639
https://dl.acm.org/doi/10.1145/3531146.3534639
https://doi.org/10.1111/j.1540-6261.2008.01362.x
https://doi.org/10.1111/j.1540-6261.2008.01362.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2008.01362.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2008.01362.x
https://doi.org/10.2139/ssrn.2997481
https://www.ssrn.com/abstract=2997481
https://www.ssrn.com/abstract=2997481
https://doi.org/10.18653/v1/2023.acl-long.842
https://doi.org/10.18653/v1/2023.acl-long.842
https://aclanthology.org/2023.acl-long.842
https://doi.org/10.1007/978-3-030-86520-7_40
https://doi.org/10.1007/978-3-030-86520-7_40
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13
https://aclanthology.org/2022.emnlp-demos.13


[68] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual Explanations
without Opening the Black Box: Automated Decisions and the GDPR. arXiv:1711.00399
[cs]. Mar. 2018. doi: 10.48550/arXiv.1711.00399. url: http://arxiv.org/abs
/1711.00399 (visited on 04/23/2024).

[69] Yifei Wang. Aspect-based Sentiment Analysis in Document – FOMC Meeting Min-
utes on Economic Projection. arXiv:2108.04080 [cs]. Apr. 2023. doi: 10.48550/arXi
v.2108.04080. url: http://arxiv.org/abs/2108.04080 (visited on 08/22/2024).

[70] John S. White, Theresa A. O’Connell, and Francis E. O’Mara. “The ARPA MT
Evaluation Methodologies: Evolution, Lessons, and Future Approaches”. In: Pro-
ceedings of the First Conference of the Association for Machine Translation in the
Americas. Columbia, Maryland, USA, Oct. 1994. url: https://aclanthology.or
g/1994.amta-1.25 (visited on 04/29/2024).

[71] Tongshuang Wu et al. “Polyjuice: Generating Counterfactuals for Explaining, Eval-
uating, and Improving Models”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). Ed. by Chengqing
Zong et al. Online: Association for Computational Linguistics, Aug. 2021, pp. 6707–
6723. doi: 10.18653/v1/2021.acl-long.523. url: https://aclanthology.org
/2021.acl-long.523 (visited on 04/27/2024).

[72] Xing Wu et al. “Mask and Infill: Applying Masked Language Model for Sentiment
Transfer”. en. In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence. Macao, China: International Joint Conferences on Artificial
Intelligence Organization, Aug. 2019, pp. 5271–5277. isbn: 9780999241141. doi: 10
.24963/ijcai.2019/732. url: https://www.ijcai.org/proceedings/2019/732
(visited on 04/27/2024).

[73] Frank Z. Xing, Erik Cambria, and Roy E. Welsch. “Natural language based financial
forecasting: a survey”. en. In: Artificial Intelligence Review 50.1 (June 2018), pp. 49–
73. issn: 0269-2821, 1573-7462. doi: 10.1007/s10462-017-9588-9. url: http://l
ink.springer.com/10.1007/s10462-017-9588-9 (visited on 08/21/2024).

[74] Linyi Yang et al. “Exploring the Efficacy of Automatically Generated Counterfac-
tuals for Sentiment Analysis”. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). Ed. by Chengqing
Zong et al. Online: Association for Computational Linguistics, Aug. 2021, pp. 306–
316. doi: 10.18653/v1/2021.acl-long.26. url: https://aclanthology.org/20
21.acl-long.26 (visited on 04/27/2024).

[75] Linyi Yang et al. “Generating Plausible Counterfactual Explanations for Deep Trans-
formers in Financial Text Classification”. In: Proceedings of the 28th International
Conference on Computational Linguistics. Ed. by Donia Scott, Nuria Bel, and Chengqing
Zong. Barcelona, Spain (Online): International Committee on Computational Lin-
guistics, Dec. 2020, pp. 6150–6160. doi: 10.18653/v1/2020.coling-main.541. url:
https://aclanthology.org/2020.coling-main.541 (visited on 04/27/2024).

[76] Kaizhong Zhang and Dennis Shasha. “Simple Fast Algorithms for the Editing Dis-
tance between Trees and Related Problems”. en. In: SIAM Journal on Computing
18.6 (Dec. 1989), pp. 1245–1262. issn: 0097-5397, 1095-7111. doi: 10.1137/0218082.
url: http://epubs.siam.org/doi/10.1137/0218082 (visited on 08/10/2024).

58

https://doi.org/10.48550/arXiv.1711.00399
http://arxiv.org/abs/1711.00399
http://arxiv.org/abs/1711.00399
https://doi.org/10.48550/arXiv.2108.04080
https://doi.org/10.48550/arXiv.2108.04080
http://arxiv.org/abs/2108.04080
https://aclanthology.org/1994.amta-1.25
https://aclanthology.org/1994.amta-1.25
https://doi.org/10.18653/v1/2021.acl-long.523
https://aclanthology.org/2021.acl-long.523
https://aclanthology.org/2021.acl-long.523
https://doi.org/10.24963/ijcai.2019/732
https://doi.org/10.24963/ijcai.2019/732
https://www.ijcai.org/proceedings/2019/732
https://doi.org/10.1007/s10462-017-9588-9
http://link.springer.com/10.1007/s10462-017-9588-9
http://link.springer.com/10.1007/s10462-017-9588-9
https://doi.org/10.18653/v1/2021.acl-long.26
https://aclanthology.org/2021.acl-long.26
https://aclanthology.org/2021.acl-long.26
https://doi.org/10.18653/v1/2020.coling-main.541
https://aclanthology.org/2020.coling-main.541
https://doi.org/10.1137/0218082
http://epubs.siam.org/doi/10.1137/0218082


[77] Susan Zhang et al. OPT: Open Pre-trained Transformer Language Models. arXiv:2205.01068
[cs]. June 2022. doi: 10.48550/arXiv.2205.01068. url: http://arxiv.org/abs
/2205.01068 (visited on 08/23/2024).

[78] Yaoming Zhu et al. “Texygen: A Benchmarking Platform for Text Generation Mod-
els”. In: The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. SIGIR ’18. New York, NY, USA: Association for Comput-
ing Machinery, June 2018, pp. 1097–1100. isbn: 9781450356572. doi: 10.1145/32
09978.3210080. url: https://doi.org/10.1145/3209978.3210080 (visited on
04/29/2024).

59

https://doi.org/10.48550/arXiv.2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


Appendices

60



Appendix A

Informed Consent Form

You are being invited to participate in a Master’s thesis research study titled Evaluating
Language Model Explanations in Specialist Fields. This study is being done by Karol
Dobiczek under supervision of Cynthia C.S. Liem and Patrick Altmeyer from the TU
Delft.

The purpose of this research study is to assess the usability of modern language model
explainability tools in generating texts in specialist fields, such as finance. This study
will take you approximately 15 minutes to complete. The data will be used for evaluating
a counterfactual explanation method. We will be asking you to rate pieces of text on a
number of criteria using a 1 to 5 scale, and describe your reasoning in open questions.

As with any online activity the risk of a breach is always possible. To the best of our
ability your answers in this study will remain confidential. We will minimize any risks by
only collecting your personal information for the purpose of verification of the identity of
the respondents. In our research we will pseudonymize your identity and solely use the
answers to the questions relating to text assessment. The survey data will be stored on a
Project Storage drive at TU Delft and all personal information will be destroyed after the
end of the thesis project.

Your participation in this study is entirely voluntary and you can withdraw at any time.
You are free to omit any questions.

Contact details for the corresponding researcher:
Karol Dobiczek
k.t.dobiczek@student.tudelft.nl
Master’s Student, Multimedia Computing Group

By submitting a response to this survey you agree to this Opening Statement and to your
response being used for the research described above, and for your de-identified answers
to be included in the final data set that will be publicly available when the research is
published. I understand that once my response has been submitted my data will have
been processed in such a way that it is no longer possible for it to be withdrawn.
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Appendix B

Survey Topic Introduction

Counterfactual Explanations are a form of explainable AI aiming to explain a classi-
fication made by a Machine Learning model by proposing an alternative to the original
input. Imagine you write a text that you intend to be perceived as positive, but a senti-
ment analysis Language Model doesn’t find it quite convincing. Through a counterfactual
explanation, we can generate a text which could better reflect the intended tone.

Your task:

We will present you with several counterfactual sentences generated via different means.
On each page, we will show you an original (factual) sentence and three variants of coun-
terfactuals. We will ask you to grade the sentences you see using the following criteria:

Fluency: A fluent segment is one that is grammatically well-formed; contains correct
spellings; adheres to the common use of terms, titles and names; contains properly capi-
talized letters; and is intuitively acceptable. Unfinished sentences also impact the fluency
of a segment.

Please rate the texts using this definition of fluency. A text should receive a score of:

• 5/5 if it follows this definition completely.

• 3/5 if there are several mistakes but the text still is interpretable.

• 1/5 if it is not fluent or grammatically correct English.

For expert evaluation only:

Plausibility: A plausible counterfactual segment adheres well to samples seen in the real
data distribution, and the target sentiment of the target sentence class. The changes made
to the factual, considering the meaning and context of the edited words, should also fit
the target domain.

Please rate the texts using this definition of plausibility. A text should receive a score of:

• 5/5 if it follows this definition completely.
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• 3/5 if there are several mistakes but the text reflects the right sentiment.

• 1/5 if the changes are nonsensical.

These criteria will also appear at the end of each page.

In an open question, we will ask you to describe what qualities that you might look for
in a text like this are missing. Your comment can refer to the semantics of the sentence,
its structure, or its contents. If you do not have any comments you can also leave the
answer empty.

The order of the methods used for each question will be randomized.
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Appendix C

Additional Quantitative Results

C.1 Alternative Models for Perplexity Calculation

facebook/opt-125m gpt2 lxyuan/distilgpt2-finetuned-finance
Perplexity Perpl. ratio Perplexity Perpl. ratio Perplexity Perpl. ratio

Polyjuice 107.06 (291.9) 1.90 (7.9) 90.98 (172.1) 1.80 (4.6) 104.06 (150.3) 1.62 (3.84)
PPLM 36.07 (15.9) 0.68 (0.4) 43.90 (23.5) 0.78 (0.5) 43.89 (23.5) 0.69 (0.4)
RELITC 108.86 (153.8) 1.52 (0.8) 100.95 (125.2) 1.67 (1.2) 111.99 (142.0) 1.52 (1.0)

Table C.1: Comparison of perplexity-based metrics computed using three language models.
The base GPT-2, an Open Pretrained Transformer (OPT) [77] opt-125m (https://hu
ggingface.co/facebook/opt-125m), and a GPT-2 model fine-tuned on four financial
datasets (https://huggingface.co/lxyuan/distilgpt2-finetuned-finance).

C.2 Quantitative Results of Successful Counterfactu-
als

Perplexity Perp. ratio Edit dist. Tree dist. Embedding dist. Impl.
Polyjuice 99.64 (227.0) 1.91 (4.6) 0.36 (0.3) 22.10 (21.7) 20.35 (4.1) 29.06 (3.4)
PPLM 36.64 (16.2) 0.77 (0.4) 0.76 (0.6) 36.25 (6.7) 20.69 (3.7) 29.56 (2.9)
RELITC 104.04 (130.2) 1.68 (1.3) 0.12 (0.1) 9.90 (13.2) 21.84 (3.8) 33.35 (3.5)

Table C.2: Quantitative results computer over results containing only successful counter-
factuals.
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Appendix D

Pseudo-RAG Generator

The size of new LLMs, such as the GPT-4 or Mistral-7B, prevents those models from being
part of counterfactual generators, like the GPT-2 in PPLM. Due to that, the quality of
the contextual generators using older models might be lower compared to that possible
with the use of new LLMs. The newer generation of language models has been shown to
perform even better than their processors on zero short tasks, so one might assume that
their accuracy and their performance for a counterfactual generation task might also be
good. We thus performed an experiment using the GPT-4o large language model to create
a counterfactual generator, and we tested it on the FOMC task.

In designing our proof of concept method, we take inspiration from the retrieval-augmented
generation technique. In Retrieval-Augmented Generation, a large language model is
supplied with a number of texts or documents that the user’s query relates to; the model
is then tasked with answering the user’s query using the contents of the documents. While
there are several approaches to counterfactual generation using RAG, they all rely on data
sets that contain factual-counterfactual pairs, pairs that the FOMC dataset, among many
others, lacks. This is a severe limitation because the generators can only be applied to
a handful of specific datasets. In view of this limitation, we decide to supply the LLM
with several examples of factual sentences from both the factual class and the target class
creating a pseudo-RAG generator. We then ask the model to create a new counterfactual
that could be classified to the target class by making as few changes to the original sentence
as possible.

Table D.1 shows the results of text counterfactual generation using our pseudo-RAG
method. As with the previous experiments, we designed the experiment to use a rea-
sonable number of generation attempts, generating five counterfactuals per factual text.
Even with the small amount of counterfactuals generated, the method achieves the highest
flip rate score of 0.88. While the perplexity results for PPLM are still better than this
proof of concept, we get the lowest perplexity, the second lowest perplexity out of the
four generators. However, the results of the other metrics are comparable with the other
methods. On the other hand, the quality of the generated sentences is seemingly the best
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A classification Machine Learning model classifies texts into three classes:
DOVISH, HAWKISH and NEUTRAL. Your task is to transform a QUERY
sentence that was classified as {label} into a COUNTERFACTUAL that
should be classified as {target}. You can replace, remove or add words, but
you should keep the amount of changes to minimum, only performing up to
5 changes. You can use the EXAMPLE {factual label} and EXAMPLE
{target label} sentences as examples how sentences belonging to those
classes might look like. You should generate only one COUNTERFACTUAL
sentence.

EXAMPLE {factual label}:
{factual class examples}

EXAMPLE {target label}:
{target class examples}

{factual label} QUERY: {factual}

{target label} COUNTERFACTUAL:

Figure D.1: Prompt of the proof of concept GPT-3.5 generator.

out of all generators. This is probably due to the complexity of the model and the higher
quality of the outputs compared to the other models. A notable result is the implausibility
metric, where this model receives the highest score, meaning that the embeddings of the
counterfactuals generated by this model are furthest away from the factuals in our data
set.

Similarly to Polyjuice, our proof of concept method has no information about the classifier.
However, similarly to PPLM, it has no restrictions with regard to the amount of tokens
generated, so the changes it generates are not controlled, which can cause the counterfactu-
als to stray away from the factual sentences. The poor results of the implausibility metric,
combined with the high accuracy and seemingly high quality of the counterfactuals, point
us to believe that involving the classifier and generating counterfactuals is important, es-
pecially for classification tasks. While this model can be useful for generating new data
sets or new training sets, it is not likely to be used to generate useful explanations for
classification tasks.

D.1 Results
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Perplexity Perpl. ratio Edit dist. Tree dist. Embedding dist. Impl. Succ. rate
Pseudo-RAG 74.00 (38.8) 1.37 (0.5) 0.29 (0.1) 19.40 (11.5) 24.86 (4.0) 32.39 (2.9) 0.88
Polyjuice 86.49 (79.9) 1.58 (1.3) 0.26 (0.3) 17.36 (15.3) 24.78 (3.5) 31.56 (2.7) 0.36
PPLM 37.11 (15.2) 0.76 (0.4) 0.56 (0.2) 37.48 (7.3) 24.97 (4.4) 32.09 (4.5) 0.52
RELITC 86.72 (71.6) 1.54 (1.0) 0.13 (0.1) 11.00 (7.0) 25.83 (3.7) 32.18 (3.1) 0.80

Table D.1: Results for the quantitative metrics including the Pseudo-RAG method. Av-
eraged over 25 factual-counterfactual rows.
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