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ARTICLE OPEN

Leakage detection for a transmon-based surface code
Boris Mihailov Varbanov 1✉, Francesco Battistel 1, Brian Michael Tarasinski1,2, Viacheslav Petrovych Ostroukh 1,2,
Thomas Eugene O’Brien3,4, Leonardo DiCarlo1,2 and Barbara Maria Terhal 1,5

Leakage outside of the qubit computational subspace, present in many leading experimental platforms, constitutes a threatening
error for quantum error correction (QEC) for qubits. We develop a leakage-detection scheme via Hidden Markov models (HMMs) for
transmon-based implementations of the surface code. By performing realistic density-matrix simulations of the distance-3 surface
code (Surface-17), we observe that leakage is sharply projected and leads to an increase in the surface-code defect probability of
neighboring stabilizers. Together with the analog readout of the ancilla qubits, this increase enables the accurate detection of the
time and location of leakage. We restore the logical error rate below the memory break-even point by post-selecting out leakage,
discarding less than half of the data for the given noise parameters. Leakage detection via HMMs opens the prospect for near-term
QEC demonstrations, targeted leakage reduction and leakage-aware decoding and is applicable to other experimental platforms.

npj Quantum Information           (2020) 6:102 ; https://doi.org/10.1038/s41534-020-00330-w

INTRODUCTION
Recent advances in qubit numbers1–4, as well as operational5–13,
and measurement14–16 fidelities have enabled leading quantum
computing platforms, such as superconducting and trapped-ion
processors, to target demonstrations of quantum error correction
(QEC)17–23 and quantum advantage2,24–26. In particular, two-
dimensional stabilizer codes, such as the surface code, are a
promising approach23,27 towards achieving quantum fault toler-
ance and, ultimately, large-scale quantum computation28. One of
the central assumptions of textbook QEC is that any error can be
decomposed into a set of Pauli errors that act within the
computational space of the qubit. In practice, many qubits such
as weakly-anharmonic transmons, as well as hyperfine-level
trapped ions, are many-level systems which function as qubits
by restricting the interactions with the other excited states. Due to
imprecise control12,29,30 or the explicit use of non-computational
states for operations5,6,9,11,31–35, there exists a finite probability for
information to leak from the computational subspace. Thus,
leakage constitutes an error that falls outside of the domain of the
qubit stabilizer formalism. Furthermore, leakage can last over
many QEC cycles, despite having a finite duration set by the
relaxation time36. Hence, leakage represents a menacing error
source in the context of quantum error correction17,36–43, despite
leakage probabilities per operation being smaller than readout,
control or decoherence error probabilities6,8,9,44.
The presence of leakage errors has motivated investigations of

its effect on the code performance and of strategies to mitigate it.
A number of previous studies have focused on a stochastic
depolarizing model of leakage38,40–43, allowing to explore large-
distance surface codes and the reduction of the code threshold
using simulations. These models, however, do not capture the full
details of leakage, even though a specific adaptation has been
used in the case of trapped-ion qubits41–43. Complementary
studies have considered a physically realistic leakage model for
transmons36,39, which was only applied to a small parity-check unit
due to the computational cost of many-qutrit density-matrix
simulations. In either case, leakage was found to have a strong

impact on the performance of the code, resulting in the
propagation of errors, in the increase of the logical error rate
and in a reduction of the effective code distance. In order to
mitigate these effects, there have been proposals for the
introduction of leakage reduction units (LRUs)37,39,40,45 beyond
the natural relaxation channel, for modifications to the decoding
algorithms17,38,40, as well as for the use of different codes
altogether42. Many of these approaches rely on the detection of
leakage or introduce an overhead in the execution of the code.
Recently, the indirect detection of leakage in a 3-qubit parity-
check experiment20 was realized via a Hidden Markov Model
(HMM), allowing for subsequent mitigation via post-selection.
Given that current experimental platforms are within reach of
quantum-memory demonstrations, detailed simulations employ-
ing realistic leakage models are vital for a comprehensive
understanding of the effect of leakage on the code performance,
as well as for the development of a strategy to detect leakage
without additional overhead.
In this work we demonstrate the use of computationally efficient

HMMs to detect leakage in a transmon implementation of the
distance-3 surface code (Surface-17)46. Using full-density-matrix
simulations27 (The quantumsim package can be found at https://
quantumsim.gitlab.io/) we first show that repeated stabilizer
measurements sharply project data qubits into the leakage
subspace, justifying the use of classical HMMs with only two hidden
states (computational or leaked) for leakage detection. We observe
a considerable increase in the surface-code defect probability of
neighboring stabilizers while a data or ancilla qubit is leaked, a clear
signal that may be detected by the HMMs. For ancilla qubits, we
further consider the information available in the analog measure-
ment outcomes, even when the leaked state 2j i can be
discriminated from the computational states 0j i and 1j i with
limited fidelity. We demonstrate that a set of two-state HMMs, one
HMM for each qubit, can accurately detect both the time and the
location of a leakage event in the surface code. By post-selecting on
the detected leakage, we restore the logical performance of
Surface-17 below the memory break-even point, while discarding
less than half of the data for the given error-model parameters.
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Finally, we outline a minimal set of conditions for our leakage-
detection scheme to apply to other quantum-computing platforms.
Although post-selection is not scalable due to an exponential
overhead in the number of required experiments, these results
open the prospect for near-term demonstrations of fault tolerance
even in the presence of leakage. Furthermore, HMM-based leakage
detection enables the possibility of scalable leakage-aware decod-
ing17,40 and real-time targeted application of LRUs37,39,40.

RESULTS
Leakage error model
We develop an error model for leakage in superconducting
transmons, for which two-qubit gates constitute the dominant
source of leakage5,6,9,11,12,29–34, while single-qubit gates have
negligible leakage probabilities8,44. We thus focus on the former,
while the latter is assumed to induce no leakage at all. We assume
that single-qubit gates act on a leaked state as the identity.
Measurement-induced leakage is also assumed to be negligible.
We use full-trajectory simulations to characterize leakage in the

Net-Zero implementation9 of the controlled-phase gate (CZ),
considered as the native two-qubit gate in a transmon-based
Surface-17, with experimentally targeted parameters (see Table 1
and Supplementary Table 1). This gate uses a flux pulse such that
the higher frequency qubit (Qflux) is fluxed down from its sweetspot
frequency ωmax to the vicinity of the interaction frequency ωint=
ωstat− α, where ωstat is the frequency of the other qubit (Qstat),
which remains static, and α is the transmon anharmonicity. The
inset in Fig. 1a shows a schematic diagram of the frequency
excursion taken by Qflux. A (bipolar) 30 ns pulse tunes twice the
qubit on resonance with the 11j i $ 02j i avoided crossing,
corresponding to the interaction frequency ωint. This pulse is
followed by a pair of 10 ns single-qubit phase-correction pulses. The
relevant crossings around ωint are shown in Fig. 1a and are all taken
into account in the full-trajectory simulations. The two-qubit
interactions give rise to population exchanges towards and within
the leakage subspace and to the phases acquired during gates with
leaked qubits, which we model as follows.
The model in Fig. 1b considers a general CZ rotation,

characterized by the two-qubit phase ϕ11 for state 11j i and ϕ=
0 for the other three computational states. The single-qubit
relative phases ϕ01 and ϕ10 result from imperfections in the phase
corrections. The conditional phase is defined as ϕCZ= ϕ11− ϕ01−
ϕ10+ ϕ00, which for an ideal CZ is ϕCZ= π. In this work, we assume
ϕ00= ϕ01= ϕ10= 0 and ϕCZ= ϕ11= π. We set ϕ02=− ϕ11 in the
rotating frame of the qutrit, as it holds for flux-based gates35.
Interactions between leaked and non-leaked qubits lead to

extra phases, which we call leakage conditional phases. We
consider first the interaction between a leaked Qflux and a non-
leaked Qstat. In this case the gate restricted to the 02j i; 12j if g
subspace has the effect diag eiϕ02 ; eiϕ12

� �
, which up to a global

phase corresponds to a Z rotation on Qstat with an angle given by
the leakage conditional phase ϕL

stat :¼ ϕ02 � ϕ12. Similarly, if Qstat

is leaked, then Qflux acquires a leakage conditional phase
ϕL
flux :¼ ϕ20 � ϕ21. These rotations are generally non-trivial, i.e.,

ϕL
stat ≠ π and ϕL

flux ≠ 0, due to the interactions in the 3-excitation
manifold which cause a shift in the energy of 12j i and 21j i (see
section “Second-order leakage effects” of Supplementary Meth-
ods). If the only interaction leading to non-trivial ϕL

stat, ϕ
L
flux is the

interaction between 12j i and 21j i, then it can be expected that
ϕ12=−ϕ21 in the rotating frame of the qutrit, leading to
ϕL
stat ¼ π � ϕL

flux.
Leakage is modeled as an exchange between 11j i and 02j i, i.e.,

11j i 7! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L1

p
11j i þ eiϕ

ffiffiffiffiffiffiffi
4L1

p
02j i and 02j i 7! �e�iϕ

ffiffiffiffiffiffiffi
4L1

p
11j iþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4L1
p

02j i, with L1 the leakage probability47. We observe that

Table 1. The parameters for the qubit decoherence times and for the
gate, measurement and QEC-cycle durations used in the density-
matrix simulations.

Parameter Value

Relaxation time T1 30 μs
Sweetspot dephasing time Tϕ;max 60 μs
High-freq. dephasing time at interaction point Tϕ,int 8 μs
Mid-freq. dephasing time at interaction point Tϕ,int 6 μs
Mid-freq. dephasing time at parking point Tϕ,park 8 μs
Low-freq. dephasing time at parking point Tϕ,park 9 μs
Single-qubit gate time tsingle 20 ns

Two-qubit interaction time tint 30 ns

Single-qubit phase-correction time tcor 10 ns

Measurement time tm 600 ns

QEC-cycle time tc 800 ns

Fig. 1 CZ error model for two transmon qubits. Schematic of
the relevant interactions and the CZ error model for two
transmons, a higher frequency one Qflux and a lower frequency
one Qstat. The inset of a shows the frequency excursion taken by
Qflux from its sweetspot frequency ωmax to the interaction
frequency ωint, corresponding to the 11j i $ 02j i avoided cross-
ing, followed by weaker single-qubit phase-correction pulses.
During this excursion, the frequency ωstat of Qstat remains static
at ωstat ¼ ωint � αj j, where α is the anharmonicity. a Sketch of all
the considered avoided crossings, with the two-qubit system
energy E on the vertical axis versus the frequency ωflux of Qflux on
the horizontal axis. b The parametrized CZ error model. An ideal
CZ is constructed with the two-qubit phase ϕ11 and the single-
qubit phases ϕ01 and ϕ10. It is followed by single-qubit rotations
with phases ϕL

flux and ϕL
stat, conditioned on the other transmon

being leaked, and by the SWAP-like exchanges with leakage
probability L1 and leakage-mobility probability Lm (see section
“Leakage error model” for precise definitions). Relaxation and
decoherence, indicated by the orange arrows, are taken into
account as well.
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the phase ϕ and the off-diagonal elements 11j i 02h j and 02j i 11h j do
not affect the results presented in this work, so we set them to 0 for
computational efficiency (see section “Error model and para-
meters”). The SWAP-like exchange between 12j i and 21j i with
probability Lm, which we call leakage mobility, as well as the
possibility of further leaking to 3j i, are analyzed in Supplementary
Fig. 1 and in section “Second-order leakage effects” of Supplemen-
tary Methods.
The described operations are implemented as instantaneous in

the quantumsim package (introduced in “The quantumsim
package can be found at https://quantumsim.gitlab.io/”), while
the amplitude and phase damping experienced by the transmon
during the application of the gate are symmetrically introduced
around them, indicated by light-orange arrows in Fig. 1b. The
dark-orange arrows indicate the increased dephasing rate of Qflux

far away from ωmax during the Net-Zero pulse. The error
parameters considered in this work are summarized in section
“Error model and parameters”. In particular, unless otherwise
stated, L1 is set to 0.125% and ϕL

flux and ϕL
stat are randomized for

each qubit pair across different batches consisting of 2 × 104 or
4 × 104 runs of 20 or 50 QEC cycles, respectively. This choice is
motivated by our expectation that these phases are determined
by the frequencies and anharmonicities of the two transmons, as
well as by the parameterization of the flux pulse implementing
each CZ between the pair, which is fixed when tuning the gate
experimentally. Since ϕL

flux and ϕL
stat have not been characterized

in experiment, we instead choose to randomized them in order to
capture an average behavior.
Some potential errors are found to be small from the full-

trajectory simulations of the CZ gate and thus are not included in
the parametrized error model. The population exchange between
01j i $ 10j i, with coupling J1, is suppressed (<0.5%) since this
avoided crossing is off-resonant by one anharmonicity α with
respect to ωint. While 12j i $ 21j i is also off-resonant by α, the
coupling between these two levels is stronger by a factor of 2, hence
potentially leading to a larger population exchange (see section
“Second-order leakage effects” of Supplementary Methods). The
11j i $ 20j i crossing is 2α away from ωint and it thus does not give
any substantial phase accumulation or population exchange
(<0.1%). We have compared the average gate fidelity of CZ gates
simulated with the two methods and found differences below
±0.1%, demonstrating the accuracy of the parametrized model.

Effect of leakage on the code performance
We implement density-matrix simulations (The quantumsim
package can be found at https://quantumsim.gitlab.io/) to study
the effect of leakage in Surface-17 (Fig. 2). We follow the
frequency arrangement and operation scheduling proposed in
ref. 46, which employs three qubit frequencies for the surface-code
lattice, arranged as shown in Fig. 2a. The CZ gates are performed
between the high-mid and mid-low qubit pairs, with the higher
frequency qubit of the pair taking the role of Qflux (see Fig. 1).
Based on the leakage model in section “Leakage error model”,
only the high and mid frequency qubits are prone to leakage
(assuming no leakage mobility). Thus, in the simulation those
qubits are included as three-level systems, while the low-
frequency ones are kept as qubits. Ancilla-qubit measurements
are modeled as projective in the 0j i; 1j i; 2j if g basis and ancilla
qubits are not reset between QEC cycles. As a consequence, given
the ancilla-qubit measurement m n½ � at QEC cycle n, the syndrome
is given by m n½ � �m n� 1½ � and the surface-code defect d n½ � by
d n½ � ¼ m n½ � �m n� 2½ �. For the computation of the syndrome and
defect bits we assume that a measurement outcome m n½ � ¼ 2 is
declared as m n½ � ¼ 1. The occurrence of an error is signaled by
d n½ � ¼ 1. To pair defects we use a minimum-weight perfect-
matching (MWPM) decoder, whose weights are trained on
simulated data without leakage27,48 and we benchmark its logical

performance in the presence of leakage errors. The logical qubit is
initialized in 0j iL and the logical fidelity is calculated at each QEC
cycle, from which the logical error rate εL can be extracted27.
Figure 2b shows that the logical error rate εL is sharply pushed

above the memory break-even point by leakage. We compare the
MWPM decoder to the decoding upper bound (UB), which uses
the complete density-matrix information to infer a logical error. A
strong increase in εL is observed for this decoder as well.
Furthermore, the logical error rate has a dependence on the
leakage conditional phases for both decoders, as shown in Fig. 2c,
d. While not included in these simulations, we do not expect the
inclusion of leakage mobility or the possibility of further leaking to
3j i to have a considerable effect on the logical performance (see
section “Effects of leakage mobility and superleakage on leakage
detection and code performance” of Supplementary Methods).

Projection and signatures of leakage
We now characterize leakage in Surface-17 and the effect that a
leaked qubit has on its neighboring qubits. From the density
matrix (DM), we extract the probability pLDM Qð Þ ¼ PðQ 2 LÞ ¼
2jρQj2
� �

of a qubit Q being in the leakage subspace L at the end
of a QEC cycle, after the ancilla-qubit measurements, where ρQ is
the reduced density matrix of Q.
In the case of data-qubit leakage, pLDM Qð Þ sharply rises to values

near unity, where it remains for a finite number of QEC cycles (on
average 16 QEC cycles for the considered parameters, given in
Table 1). We refer to this sharp increase of pLDM Qð Þ as projection of
leakage. An example showing this projective behavior (in the case
of qubit D4), as observed from the density-matrix simulations, is
reported in Fig. 3a. This is the typical behavior of leakage, as
shown in Fig. 3b by the bi-modal density distribution of the
probabilities pLDM Qð Þ for all the high-frequency data qubits Q. As
data-qubit leakage is associated with defects on the neighboring
ancilla qubits (due to the use of the 02j i $ 11j i crossing by the
CZ gates) and with the further propagation of defects in the
following QEC cycles (as shown below), we attribute the observed
projection to a back-action effect of the repetitive stabilizer
measurements (see Supplementary Fig. 2 and section “Projection
of data-qubit leakage by stabilizer-measurement back-action” of
Supplementary Methods). Given this projective behavior, we
identify individual events by introducing a threshold pLth Qð Þ,
above which a qubit is considered as leaked. Here we focus on
leakage on D4, sketched in Fig. 3c. Based on a threshold
pLth D4ð Þ ¼ 0:5, we select leakage events and extract the average
dynamics shown in Fig. 3d. Leakage grows over roughly 3 QEC
cycles following a logistic function, reaching a maximum
probability of approximately 0.8. We observe this behavior for all
three high-frequency data qubits D3, D4, D5. Each of the high-
frequency data qubits equilibrates towards a steady-state
population (extracted by averaging pLDM Qð Þ over all runs without
selecting individual events) after many QEC cycles (see Supple-
mentary Fig. 3 and section “Leakage steady state in the surface
code” of Supplementary Methods).
We observe an increase in the defect probability of the

neighboring ancilla qubits during data-qubit leakage. We extract
the probability pd of observing a defect d= 1 on the neighboring
stabilizers during the selected data-qubit leakage events, as
shown in Fig. 3e. As pLDM D4ð Þ reaches its maximum, pd goes to a
constant value of approximately 0.5. This can be explained by
data-qubit leakage reducing the stabilizer checks it is involved in
to effective weight-3 anti-commuting checks, illustrated in Fig. 3c
and as observed in ref. 20. This anti-commutation leads to some of
the increase in εL for the MWPM and UB decoders in Fig. 2b.
Furthermore, we attribute the observed sharp projection of
leakage (see Fig. 3d) to a back-action effect of the measurements
of the neighboring stabilizers, whose outcomes are nearly
randomized when the qubit is leaked (see sections “Leakage-
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induced anti-commutation” and “Projection of data-qubit leakage
by stabilizer-measurement back-action” of Supplementary Meth-
ods). The weight-3 checks can also be interpreted as gauge
operators, whose pairwise product results in weight-6 stabilizer
checks, which can be used for decoding49–52, effectively reducing
the code distance from 3 to 2.
We also find a local increase in the defect probability during

ancilla-qubit leakage. For ancilla qubits, pLDM is defined as the
leakage probability after the ancilla projection during measure-
ment. Since in the simulations ancilla qubits are fully projected,
pLDM Qð Þ ¼ 0; 1 for an ancilla qubit Q, allowing to directly obtain
the individual leakage events, as shown in Fig. 3g. We note that

an ancilla qubit remains leaked for 17 QEC cycles on average for
the considered parameters (given in Table 1). We extract pd

during the selected events, as shown in Fig. 3h. In the QEC cycle
after the ancilla qubit leaks, pd abruptly rises to a high constant
value. We attribute this to the Z rotations acquired by the
neighboring data qubits during interactions with the leaked
ancilla qubit, as sketched in Fig. 3f and described in section
“Leakage error model”. The angle of rotation is determined by
ϕL
flus or ϕL

stat, depending on whether the leaked ancilla qubit
takes the roles of Qstat or Qflux, respectively (see section
“Simulation protocol” for the scheduling of operations). In the
case of Z-type parity checks, these phase errors are detected by

Fig. 2 The effect of leakage on the performance of Surface-17. a Schematic overview of the Surface-17 layout46. Pink (resp. red) circles with
D labels represent low-frequency (high-) frequency data qubits, while blue (resp. green) circles with X (Z) labels represent ancilla qubits of
intermediate frequency, performing X-type (Z-type) parity checks. b Dependence of the logical error rate εL on the leakage probability L1 for a
MWPM decoder (green) and for the decoding upper bound (red). The black solid line shows the physical error rate of a single transmon qubit.
The dashed line corresponds to the recently achieved L1 in experiment9. Logical error rate εL for MWPM (c) and upper bound (d) as a function
of the leakage conditional phases ϕL

flux and ϕL
stat (for L1= 0.5%). Here, these phases are not randomized but fixed to the given values across all

runs. The logical error rates are extracted from an exponential fit of the logical fidelity over 20 QEC cycles and averaged over 5 batches of 2 ×
104 runs for b and one batch of 2 × 104 runs for c, d Error bars correspond to 2 standard deviations estimated by bootstrapping (not included
in b due the error bars being smaller than the symbol size).
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the X-type stabilizers. In the case of X-type checks, the phase
errors on data qubits are converted to bit-flip errors by the
Hadamard gates applied on the data qubits, making them
detectable by the Z-type stabilizers. Furthermore, while the
ancilla qubit is leaked, the corresponding stabilizer measurement
does not detect any errors on the neighboring data qubits,
effectively disabling the stabilizer, as sketched in Fig. 3f. This,
combined with the spread of errors, defines the signature of
ancilla-qubit leakage and explains part of the observed increase
in εL for the MWPM and UB decoders in Fig. 2b.
For both data and ancilla qubits, a leakage event is correlated

with a local increase in the defect rate, albeit due to different
mechanisms. However, interpreting the spread of defects as

signatures of leakage suggests the possible inversion of the
problem, allowing for effective leakage detection.

Hidden Markov models
We use a set of HMMs, one HMM for each leakage-prone qubit, to
detect leakage. This approach is similar to what was recently
demonstrated in a 3-qubit parity-check experiment20, but we use
simpler HMMs to make them computationally efficient. In general,
an HMM (see Fig. 4 and section “HMM formalism”) models the
time evolution of a discrete set of hidden states, the transitions
between which are assumed to be Markovian. At each time step a
set of observable bits is generated with state-dependent emission
probabilities. Depending on the observed outcomes, the HMM

Fig. 3 Projection and signatures of qubit leakage. a–b Projection of data-qubit leakage. a Example realization of a data-qubit leakage event,
extracted from the density-matrix simulations. b Density histogram of all data-qubit leakage probabilities over 20 bins, extracted over 4 × 104

runs of 50 QEC cycles each. c–e Signatures of data-qubit leakage. c Sketch of how leakage on a data qubit, e.g., D4, alters the interactions with
neighboring stabilizers, leading to their anti-commutation (see section “Leakage-induced anti-commutation” of Supplementary Methods).
d The average projection of the leakage probability pLDM of D4 over all events, where this probability is first below and then above a threshold
of pLth ¼ 0:5 for at least 5 and 8 QEC cycles, respectively. e The average number of defects on the neighboring stabilizers of D4 over the
selected rounds, showing a jump when leakage rises above pLth. f–h Signatures of ancilla-qubit leakage. f Sketch of how leakage on an ancilla
qubit, e.g., Z1, effectively disables the stabilizer check and probabilistically introduces errors on the neighboring data qubits. g We select
realizations where Z1 was in the computational subspace for at least 5 QEC cycles, after which it was projected into 2j i by the readout and
remained in that state for at least 5 QEC cycles. h The corresponding defect rate on neighboring stabilizers during the period of leakage. The
error bars, which were estimated by bootstrapping, are smaller than the symbol sizes.
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performs a Bayesian update of the predicted probability distribu-
tion over the hidden states.
We apply the concept of HMMs to leakage inference and

outline their applicability for an accurate, scalable and run-time
executable leakage-detection scheme. This is made possible by
two observations. The first is that both data-qubit and ancilla-
qubit leakage are sharply projected (see section “Projection and
signatures of leakage”) to high pLDM Qð Þ. This justifies the use of
classical HMMs with only two hidden states, corresponding to the
qubit being in the computational or leakage subspace.
The second observation is the sharp local increase in pd

associated with leakage (see section “Projection and signatures of
leakage”), which we identify as the signature of leakage. This
allows us to consider only the defects on the neighboring
stabilizers as relevant observables and to neglect correlations
between pairs of defects associated with qubit errors. In the case
of ancilla-qubit leakage, in addition to the defects, we consider the
state information obtained from the analog measurement as input
to the HMMs. Each transmon is dispersively coupled to a
dedicated readout resonator. The state-dependent shift in the
single-shot readout produces an output voltage signal, with in-
phase and quadrature components (see section “Transmon
measurements in experiment” of Supplementary Methods).
The transition probabilities between the two hidden states are

determined by the leakage and seepage probabilities per QEC
cycle, which are, to lowest order, a function only of the leakage
probability L1 per CZ gate and of the relaxation time T1 (see
section “HMM formalism”). We extract the state-dependent
emission probabilities from simulation. When a qubit is not
leaked, the probability of observing a defect on each of the
neighboring stabilizers is determined by regular errors. When a
data qubit is leaked, the defect probability is fixed to a nearly
constant value by the stabilizer anti-commutation, while when an
ancilla qubit is leaked, this probability depends on ϕL

flus and ϕL
stat.

Furthermore, the analog measurement outcome can be used to
extract a probability of the transmon being in 0j i; 1j i, or 2j i using
a calibrated measurement (see sections “Ancilla-qubit leakage
detection” and “Transmon measurements in experiment” of
Supplementary Methods).

Data-qubit leakage detection
We assess the ability of the data-qubit HMMs to accurately detect
both the time and the location of a leakage event. We recall that
these HMMs take the defects on neighboring stabilizers as input.
The average temporal response pLHMM Qð Þ of the HMMs to an event
is shown in Fig. 5 and compared to the leakage probabilities

pLDM Qð Þ extracted from the density-matrix simulation. Events are
selected when crossing a threshold pLth, as described in section
“Projection and signatures of leakage”, and the response is
averaged over these events. For the data-qubit HMMs, the
response pLHMM Qð Þ closely follows the probability pLDM Qð Þ from
the density matrix, reaching the same maximum leakage
probability but with a smaller logistic growth rate. This slightly
slower response is expected to translate to an average delay of
about 1 QEC cycles in the detection of leakage.
We now explore the leakage-detection capability of the HMMs.

The precision P of an HMM tracking leakage on a qubit Q is
defined as

PHMM Qð Þ ¼ P Q 2 LjpLHMM Qð Þ>pLth Qð Þ� �
(1)

and can be computed as

PHMM Qð Þ ¼
P

ip
L
DM Q; ið Þθ pLHMM Q; ið Þ � pLth Qð Þ� �
P

iθ pLHMM Q; ið Þ � pLth Qð Þ� � ; (2)

where i runs over all runs and QEC cycles and θ is the Heaviside
step function. The precision is then the fraction of correctly
identified leakage events (occurring with probability given by the
density matrix), over all of the HMM detections of leakage. The
recall R of an HMM for a qubit Q is defined as

RHMM Qð Þ ¼ P pLHMM Qð Þ>pLth Qð ÞjQ 2 L� �
; (3)

and can be computed as

RHMM Qð Þ ¼
P

ip
L
DM Q; ið Þθ pLHMM Q; ið Þ � pLth Qð Þ� �

P
ip

L
DM Q; ið Þ : (4)

The recall is the fraction of detected leakage by the HMM over
all leakage events (occurring with probability given by the density

Fig. 4 Schematic representation of an HMM for leakage detec-
tion. For both ancilla and data qubits only two hidden states are
considered, corresponding to the qubit being either in the
computational (teal) or leakage subspace (orange). Transitions
between these states occur each QEC cycle, depending on the
leakage and seepage probabilities. The state-dependent observa-
bles are the defects d Qð Þ on the neighboring stabilizers. For ancilla
qubits, the in-phase component Im of the analog measurement is
also used as an observable.

Fig. 5 Data-qubit leakage detection. a Average response in time of
the HMMs (diamonds) to leakage, in comparison to the actual
leakage probability extracted from the density-matrix simulations
(dashed lines). The average is computed by selecting single
realizations where pLDM Qð Þ was below a threshold pLth ¼ 0:5 for at
least 5 QEC cycles and then above it for 5 or more rounds. Error bars,
estimated by bootstrapping, are smaller than the symbol sizes.
b Precision-recall curves for the data qubits over 4 × 104 runs of 50
QEC cycles each using the HMM predictions (solid) and the leakage
probability from the density matrix (dashed). The dotted line
corresponds to a random guess classifier for which P is equal to
the fraction of leakage events (occurring with probability given by
the density matrix) over all QEC cycles and runs.
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matrix). The precision-recall (PR) of an HMM (see Fig. 5b) is a
parametric curve obtained by sweeping pLth Qð Þ and plotting the
value of P and R. Since the PR curve is constructed from pLHMM Qð Þ
over all QEC cycles and runs, it quantifies the detection ability in
both time and space. The detection ability of an HMM manifests
itself as a shift of the PR curve towards higher values of P and R
simultaneously. We define the optimality O Qð Þ of the HMM
corresponding to qubit Q as

O Qð Þ ¼ AUCHMM Qð Þ=AUCDM Qð Þ; (5)

where AUCHMM Qð Þ is the area under the PR curve of the HMM and
AUCDM Qð Þ is the area for the optimal model that predicts leakage
with probability pLDM Qð Þ, achieving the best possible PDM and
RDM. An average optimality of O Qð Þ � 67:0% is extracted for the
data-qubit HMMs. Given the few QEC-cycle delay in the data-qubit
HMM response to leakage, the main limitation to the observed
HMM optimality O Qð Þ is false detection when a neighboring qubit
is leaked (see Supplementary Fig. 4 and section “HMM error
budget” of Supplementary Methods).

Ancilla-qubit leakage detection
We now assess the ability of the ancilla-qubit HMMs to accurately
detect both the time and the location of a leakage event. These
HMMs take as observables the defects on the neighboring
stabilizers at each QEC cycle, as well as the analog measurement
outcome of the ancilla qubit itself.
We first consider the case when the HMMs rely only on the

increase in the defect probability pd and show their PR curves in
Fig. 6a, b. Given that projective measurements are used in the
simulations, AUCDM Qð Þ ¼ 1 for ancilla qubits. Bulk ancilla qubits
have a moderate O Qð Þ � 47%, while boundary ancilla qubits
possess nearly no ability to detect leakage. We attribute this to the
boundary ancilla qubits having only a single neighboring
stabilizer, compared to bulk ancilla qubits having 3 in Surface-
17. The HMMs corresponding to pairs of same-type (X or Z) bulk
ancilla qubits exhibit visibly different PR curves (see Fig. 6a, b),
despite the apparent symmetry of Surface-17. This symmetry is
broken by the use of high-frequency and low-frequency
transmons as data qubits, leading to differences in the order in
which an ancilla qubit interacts with its neighboring data qubits
(see ref. 46 and Fig. 8), together with the fact that CZs with L1 ≠ 0
do not commute in general. In addition to a low O Qð Þ, the errors
propagated by the leaked ancilla qubits (and hence the signatures
of ancilla-qubit leakage) depend on ϕL

stat and ϕL
flux (randomized in

the simulations). The values of these phases generally lead to
different pd than the ones parameterizing the HMM. The latter is
extracted based on the average pd observed over the runs (see
section “HMM formalism”). In the worst-case (for leakage
detection), these phases can lead to no errors being propagated
onto the neighboring data qubits, resulting in the undetectability
of leakage. The mismatch between the fluctuating pd (over ϕL

stat
and ϕL

flux) and the average value hinders the ability of the ancilla-
qubit HMMs to detect leakage. Even if these phases were
individually controllable, tuning them to maximize the detection
capability of the HMMs would also lead to an undesirable increase
in εL of a (leakage-unaware) decoder (see Fig. 2).
To alleviate these issues, we consider the state-dependent

information obtained from the analog measurement outcome.
The discrimination fidelity between 1j i and 2j i is defined as

FL ¼ 1�P 1j2ð Þ þP 2j1ð Þ
2

; (6)

where P ijjð Þ is the conditional probability of declaring the
measurement outcome i given that the qubit has been prepared
in state jj i, assuming that no excitation or relaxation occur during
the measurement (accounted for in post-processing). Here, we
assume that P 0j2ð Þ ¼ P 2j0ð Þ ¼ 0, as observed in experiment (see

Supplementary Fig. 5). We focus on the discrimination fidelity as in
our simulations relaxation is already accounted for in the
measurement outcomes (see section “Error model and para-
meters”). We extract FL from recent experimental data20, where
the readout pulse was only optimized to discriminate between the
computational states. By taking the in-phase component of the
analog measurement, for each state jj i a Gaussian distribution N j
is obtained, from which we get FL ¼ 88:4% (see section
“Transmon measurements in experiment” of Supplementary
Methods).
In order to emulate the analog measurement in simulation,

given an ancilla-qubit measurement outcome m 2 0; 1; 2f g, we
sample the in-phase response Im from the corresponding
distribution Nm. The probability of the ancilla qubit being leaked
given Im is computed as

pLm ¼ N 2 Imð ÞP
j2f0;1;2gN j Imð Þ : (7)

The ancilla-qubit HMMs use the sampled responses Im, in
combination with the observed defects, to detect leakage.
The PR curves of the HMMs using the analog readout are shown

in Fig. 6c, d, from which an average O Qð Þ � 97% can be extracted
for the ancilla-qubit HMMs. The temporal responses of the HMMs
to leakage are compared to the leakage probabilities extracted
from measurement in Fig. 6e, f, showing a relatively sharp
response to a leakage event, with an expected delay in the
detection of at most 2 QEC cycles. While FL ¼ 88:4% might
suggest an even sharper response, this is not the case as the HMM
update depends on both the prior pLHMM (which is low when the
qubit is not leaked) and on the likelihood of the sampled Im
together with the observed defects on the neighboring ancilla
qubits (see section “HMM formalism”). While the initial response is
not immediately high, given a (not too) low threshold, corre-
sponding to a high R, the HMMs still achieve a high P, leading to
the high O observed (see Fig. 6c, d). A further benefit of the
inclusion of the analog-measurement information is that the
detection capability of the HMMs is now largely insensitive to
the fluctuations in ϕL

stat and ϕL
flus.

We explore O Qð Þ as a function of FL, as shown in the inset of
Fig. 6c, d. To do this, we modelN j for each state as symmetric and
having the same standard deviation, in which case FL is a function
of their signal-to-noise ratio only (see section “Transmon
measurements in experiment” of Supplementary Methods). At
low FL t60%ð Þ the detection of leakage is possible but limited,
especially for the boundary ancilla qubits. On the other hand, even
at moderate values of FL � 80%ð Þ, corresponding to experimen-
tally achievable values, ancilla-qubit leakage can be accurately
identified for both bulk and boundary ancilla qubits. Furthermore,
relying solely on the analog measurements would allow for the
potential minimization of the error spread associated with ancilla-
qubit leakage, given controllability over ϕL

stat and ϕL
flus, without

compromising the capability of the HMMs to detect leakage. In
section “An alternative scheme for enhancing ancilla-qubit
leakage detection” of Supplementary Methods we explore an
alternative scheme for increasing the performance of the ancilla-
qubit HMMs without using the analog measurements, which
comes at the cost of a lower optimality for data-qubit HMMs.

Improving code performance via post-selection
We use the detection of leakage to reduce the logical error rate εL
via post-selection on leakage detection, with the selection
criterion defined as

max
Q;n

pL Q; nð Þ � pLth Qð Þ: (8)

We thus post-select any run for which the leakage probability of
any qubit exceeds the defined threshold in any of the QEC cycles.
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We note that post-selection is not scalable for larger-scale QEC,
due to an exponential overhead in the number of required
experiments, however, it can be useful for a relatively small code
such as Surface-17. Furthermore, note that, while the criterion
above is insensitive to overestimation of the leakage probability
due to a leaked neighboring qubit (see section “HMM error
budget” of Supplementary Methods), it is sensitive to the correct
detection of leakage in the first place and to the HMM response in
time (especially for short-lived leakage events).
We perform the multi-objective optimization

min
pLth Qð Þ

f ; εLð Þ;

subject to 0:02 � pLth Qð Þ � 1;

where f is the fraction of discarded data. The inequality constraint
on the feasible space is helpful for the fitting procedure, required
to estimate εL. This optimization uses an evolutionary algorithm
(NGSA-II), suitable for conflicting objectives, for which the outcome
is the set of lowest possible εL for a given f. This set is known as
the Pareto front and is shown in Fig. 7 for both the MWPM and UB
decoders. In Fig. 7 we also compare post-selection based on the
HMMs against post-selection based on the density-matrix simula-
tion. Here we use the predictions of the HMMs which include the
analog measurement outcome with the experimentally extracted
FL (see section “Ancilla-qubit leakage detection”). The observed
agreement between the two post-selection methods proves that

Fig. 6 Ancilla-qubit leakage detection. a–d Precision-recall curves for the ancilla-qubit HMMs over 4 × 104 runs of 50 QEC cycles each. In
a, b the HMMs rely only on the observed defects on the neighboring stabilizers. In c–f the HMMs further get the in-phase component Im of the
analog readout as input, from which pLm is extracted. The dotted line corresponds to a random guess classifier for which P is equal to the
fraction of leakage events over all QEC cycles and runs. As ancilla-qubit leakage is directly measured, PDM ¼ 1 for all values of R (not shown).
Insets in c, d: the HMM optimality O as a function of the discrimination fidelity FL between 1j i and 2j i. The corresponding error bars (extracted
over 2 × 104 runs of 20 QEC cycles each) are smaller than the symbol size. The vertical dashed line corresponds to the experimentally
measured FL ¼ 88:4%. e, f Average response in time of the ancilla-qubit HMMs (diamonds) to leakage, in comparison to the actual leakage
probability extracted directly from the readout (dashed), extracted over 4 × 104 runs of 50 QEC cycles each. The average is computed by
selecting single realizations where the qubit was in the computational subspace for at least 3 QEC cycles and then in the leakage subspace for
5 or more.

Fig. 7 Restoring code performance by post-selecting on leakage
detection. Improvement in the logical error rate εL via post-selecting
on the detection of leakage for a MWPM decoder (green) and the
decoder upper bound (red). The post-selection is based on the
probabilities predicted by the HMMs (solid) or on those extracted
from the density-matrix simulation (dashed), for 2 × 104 runs of 20
QEC cycles each. The physical error rate of a single transmon qubit
under decoherence is also given (solid black). Detection of leakage
allows for the restoration of the performance of the MWPM decoder,
reaching the memory break-even point by discarding about ≈28%
of the data. The logical error rates obtained from simulations
without leakage (and without post-selection) are indicated by
diamonds.
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the performance gain is due to discarding runs with leakage
instead of runs with only regular errors. The performance of the
MWPM decoder is restored below the quantum memory break-
even point by discarding f ≈ 28%. The logical error rates extracted
from simulations without leakage are achieved by post-selection
of f ≈ 44% of the data for both the MWPM and UB decoders, when
leakage is included.

DISCUSSION
We have investigated the effects of leakage and its detectability
using density-matrix simulations of a transmon-based implemen-
tation of Surface-17. Data and ancilla qubits tend to be sharply
projected onto the leakage subspace, either indirectly by a back-
action effect of stabilizer measurements for data qubits or by the
measurement itself for ancilla qubits. During leakage, a large, but
local, increase in the defect rate of neighboring qubits is observed.
For data qubits we attribute this to the anti-commutation of the
involved stabilizer checks, while for ancilla qubits we find that it is
due to an interaction-dependent spread of errors to the
neighboring qubits. We have developed a low-cost and scalable
approach based on HMMs, which use the observed signatures
together with the analog measurements of the ancilla qubits to
accurately detect the time and location of leakage events. The
HMM predictions are used to post-select out leakage, allowing for
the restoration of the performance of the logical qubit below the
memory break-even point by discarding less than half of the data
(for such a relatively small code and for the given noise
parameters), opening the prospect of near-term QEC demonstra-
tions even in the absence of a dedicated leakage-reduction
mechanism.
A few noise sources have not been included in the simulations.

First, we have not included readout-declaration errors, corre-
sponding to the declared measurement outcome being different
from the state in which the ancilla qubit is projected by the
measurement itself. These errors are expected to have an effect on
the performance of the MWPM decoder, as well as a small effect
on the observed optimality of the HMMs. We have also ignored
any crosstalk effects, such as residual couplings, cross-driving or
dephasing induced by measurements on other qubits. While the
presence of these crosstalk mechanisms is expected to increase
the error rate of the code, it is not expected to affect the HMM
leakage-detection capability. We have assumed measurements to
be perfectly projective. However, for small deviations, we do not
expect a significant effect on the projection of leakage and on the
observation of the characteristic signatures.
We now discuss the applicability of HMMs to other quantum-

computing platforms subject to leakage and determine a set of
conditions under which leakage can be efficiently detected. First,
we assume single-qubit and two-qubit gates to have low leakage
probabilities, otherwise QEC would not be possible in general. In
this way, single-qubit and two-qubit leakage probabilities can be
treated as perturbations to block-diagonal gates, with one block
for the computational subspace C and one for the leakage
subspace L. We focus on the gates used in the surface code, i.e.,
CZ and Hadamard H (or RY(π/2) rotations or equivalent gates). We
consider data-qubit leakage first. We have observed that it is made
detectable by the leakage-induced anti-commutation of neigh-
boring stabilizers. The only condition ensuring this anti-
commutation is that H acts as the identity in L or that it
commutes with the action of CZ within the leakage block (see
section “Leakage-induced anti-commutation” of Supplementary
Methods), regardless of the specifics of such action. Thus, data-
qubit leakage is detectable via HMMs if this condition is satisfied.
In particular, it is automatically satisfied if L is 1-dimensional. We
now consider ancilla-qubit leakage. Clearly, ancilla-qubit leakage
detection is possible if the readout discriminates computational
and leakage states perfectly or with high fidelity. If this is not the

case, the required condition is that leaked ancilla qubits spread
errors according to non-trivial leakage conditional phases,
constituting signatures that can be used by an HMM. If even a
limited-fidelity readout is available, it can still be used to
strengthen this signal, as demonstrated in section “Ancilla-qubit
leakage detection”. An issue is the possibility of the readout to
project onto a superposition of computational and leakage
subspaces. In that case, the significance of ancilla-qubit leakage
is even unclear. However, for non-trivial leakage conditional
phases, we expect a projection effect to the leakage subspace by a
back-action of the stabilizer measurements, due to leakage-
induced errors being detected onto other qubits, similarly to what
observed for data qubits.
The capability to detect the time and location of a leakage

event demonstrated by the HMMs could be used in conjunction
with leakage-reductions units (LRUs)37. These are of fundamental
importance for fault tolerance in the presence of leakage, since in
ref. 40 a threshold for the surface code was not found if dedicated
LRUs are not used to reduce the leakage lifetime beyond the one
set by the relaxation time. While the latter constitutes a natural
LRU by itself, we do not expect it to ensure a threshold since,
together with a reduction in the leakage lifetime, it leads to an
increase in the regular errors due to relaxation. A few options for
LRUs in superconducting qubits are the swap scheme introduced
in ref. 36, or the use of the readout resonator to reset a leaked
data-qubit into the computational subspace, similarly to refs. 53,54.
An alternative is to use the 02j i $ 11j i crossing to realize a
“leakage-reversal” gate that exchanges the leakage population in
02j i to 11j i. An even simpler gate would be a single-qubit π pulse
targeting the 1j i $ 2j i transition. All these schemes introduce a
considerable overhead either in hardware (swap, readout reso-
nator), or time (swap, readout resonator, leakage-reversal gate), or
they produce leakage when they are applied in the absence of it
(leakage-reversal gate, π pulse). Thus, all these schemes would
benefit from the accurate identification of leakage, allowing for
their targeted application, reducing the average circuit depth and
minimizing the probability of inadvertently inducing leakage. We
also note that the swap scheme, in conjunction with a good
discrimination fidelity for 2j i, could be used for detecting leakage
not only on ancilla qubits but also on data qubits by alternatively
measuring them. Still, this scheme would require 5 extra qubits for
Surface-17 and would make the QEC-cycle time at least ~ 50%
longer, together with more gate and idling errors, thus requiring
much better physical error rates to achieve the same logical error
rate in near-term experiments.
We discuss how decoders might benefit from the detection of

leakage. Modifications to MWPM decoders have been developed
for the case when ancilla-qubit leakage is directly measured17,40,
and when data-qubit leakage is measured in the LRU circuits40.
Further decoder modifications might be developed to achieve a
lower logical error rate relative to a leakage-unaware decoder, by
taking into account the detected leakage and the probability of
leakage-induced errors, as well as the stabilizer information that
can still be extracted from the superchecks (see section “Leakage-
induced anti-commutation” of Supplementary Methods). In the
latter case, a decoder could switch back and forth from standard
surface-code decoding to e.g., the partial subsystem-code
decoding in refs. 49–51. Given control of the leakage conditional
phases, the performance of this decoder can be optimized by
setting ϕL

stat ¼ π and ϕL
flux ¼ 0, minimizing the spread of phase

errors on the neighboring data qubits by a leaked ancilla qubit, as
well as the noise on the weight-6 stabilizer extraction in the case
of a leaked data qubit (see Supplementary Fig. 6 and section
“Leakage-induced anti-commutation” of Supplementary Methods).
Given a moderate discrimination fidelity of the leaked state, this is
not expected to compromise the detectability of leakage, as
discussed in section “Ancilla-qubit leakage detection”. At the same
time, for such a decoder we expect the improvement in the logical
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error rate to be limited in the case of low-distance codes such as
Surface-17, as single-qubit errors can result in a logical error. This
is because leakage effectively reduces the code distance, either
because a leaked data qubit is effectively removed from the code,
or because of the fact that a leaked ancilla qubit is effectively
disabled and in addition spreads errors onto neighboring data
qubits. Large codes, for which leakage could be well tolerated
(depending on the distribution of leakage events), cannot be
studied with density-matrix simulations, as done in this work for
Surface-17. However, the observed sharp projection of leakage
and the probabilistic spread of errors justify the stochastic
treatment of this error40. Under the assumption that amplitude
and phase damping can be modeled stochastically as well, we
expect that the performance of decoders and LRUs in large
surface codes can be well approximated in the presence of
leakage.

METHODS
Simulation protocol
For the Surface-17 simulations we use the open-source density-matrix
simulation package quantumsim27, available at “The quantumsim package
can be found at https://quantumsim.gitlab.io/”. For decoding we use a
MWPM decoder27, for which the weights of the possible error pairings are
extracted from Surface-17 simulations via adaptive estimation48 without
leakage (L1= 0) and an otherwise identical error model (described in
section “Error model and parameters”).
The logical performance of the surface code as a quantum memory is

the ability to maintain a logical state over a number of QEC cycles. We
focus on the Z-basis logical 0j iL, but we have observed nearly identical
performance for 1j iL. We have not performed simulations for the X-basis
logical states ±j iL ¼ 1ffiffi

2
p 0j iL ± 1j iL

� �
, as previous studies did not observe a

significant difference between the two bases27. The state 0j iL is prepared
by initializing all data qubits in 0j i, after which it is maintained for a fixed
number of QEC cycles (maximum 20 or 50 in this work), with the quantum
circuit given in Fig. 8. The first QEC cycle projects the logical qubit into a
simultaneous eigenstate of the X-type and Z-type stabilizers28, with the Z
measurement outcomes being +1 in the absence of errors, while the X
outcomes are random. The information about the occurred errors is
provided by the stabilizer measurement outcomes from each QEC cycle, as
well as by a Z-type stabilizer measurements obtained by measuring the
data qubits in the computational basis at the end of the run. This
information is provided to the MWPM decoder, which estimates the logical
state at the end of the experiment by tracking the Pauli frame. For

decoding, we assume that the 2j i state is measured as a 1j i, as in most
current experiments. In section “Ancilla-qubit leakage detection” we
considered the discrimination of 2j i in readout, which can be used for
leakage detection. While this information can be also useful for decoding,
we do not consider a leakage-aware decoder in this work.
The logical fidelity FL nð Þ at a final QEC cycle n is defined as the

probability that the decoder guess for the final logical state matches
the initially prepared one. The logical error rate εL is extracted by fitting the
decay as

FL nð Þ ¼ 1
2
1þ 1� 2εLð Þn�n0½ �; (10)

where n0 is a fitting parameter (usually close to 0)27.

Error model and parameters
In the simulations we include qubit decoherence via amplitude-damping
and phase-damping channels. The time evolution of a single qubit is given
by the Lindblad equation

dρ
dt

¼ �i H; ρ½ � þ
X
i

LiρL
y
i �

1
2

Lyi Li; ρ
n o

; (11)

where H is the transmon Hamiltonian

H ¼ ωayaþ α

2
ay
� �2

a2; (12)

with a the annihilation operator, ω and α the qubit frequency and
anharmonicity, respectively, and Li the Lindblad operators. Assuming weak
anharmonicity, we model amplitude damping for a qutrit by

Lamp ¼
ffiffiffiffiffi
1
T1

r
a: (13)

The 2j i lifetime is then characterized by a relaxation time T1/2. Dephasing
is described by

Ldeph;1 ¼
ffiffiffiffiffiffiffiffi
8

9Tϕ

s 1 0 0

0 0 0

0 0 �1

0
B@

1
CA; (14)

Ldeph;2 ¼
ffiffiffiffiffiffiffiffi
2

9Tϕ

s 1 0 0

0 �1 0

0 0 0

0
B@

1
CA; (15)

Ldeph;3 ¼
ffiffiffiffiffiffiffiffi
2

9Tϕ

s 0 0 0

0 1 0

0 0 �1

0
B@

1
CA; (16)

leading to a dephasing time Tϕ between 0j i (resp. 1j i) and 1j i ( 2j i), and to
a dephasing time Tϕ/2 between 0j i and 2j i9. The Lindblad equation is
integrated for a time t to obtain an amplitude-damping and phase-
damping superoperator R↓,t, expressed in the Pauli Transfer Matrix
representation. For a gate Rgate of duration tgate, decoherence is accounted
by applying R#;tgate=2RgateR#;tgate=2. For idling periods of duration tidle, R#;tidle is
applied.
For single-qubit gates we only include the amplitude and phase

damping experienced over the duration tsingle of the gate. These gates are
assumed to not induce any leakage, motivated by the low leakage
probabilities achieved8,44, and to act trivially in the leakage subspace. For
two-qubit gates, namely the CZ, we further consider the increased
dephasing rate experienced by qubits when fluxed away from their
sweetspot. In superconducting qubits, flux noise shows a typical power
spectral density Sf= A/f, where f is the frequency and

ffiffiffi
A

p
is a constant. In

this work we consider
ffiffiffi
A

p ¼ 4 μΦ0, where Φ0 is the flux quantum. Both
low-frequency and high-frequency components are contained in Sf, which
we define relative to the CZ gate duration tCZ. Away from the sweetspot
frequency ωmax, a flux-tunable transmon has first-order flux-noise
sensitivity Dϕ ¼ 1

2π
∂ω
∂Φ

		 		. The high-frequency components are included as
an increase in the dephasing rate Γϕ= 1/Tϕ (compared to the sweetspot),
given by Γϕ ¼ 2π

ffiffiffiffiffiffiffiffiffiffi
ln 2A

p
Dϕ

55, while the low-frequency components are not
included due to the built-in echo effect of Net-Zero pulses9. High-
frequency and mid-frequency qubits are fluxed away to different
frequencies, with dephasing rates computed with the given formula.
Furthermore, during a few gates low-frequency qubits are fluxed away to a
“parking” frequency in order to avoid unwanted interactions46. The

Fig. 8 The quantum circuit for a single QEC cycle employed in
simulation. The unit-cell scheduling is defined in ref. 46. The qubit
labels and frequencies correspond to the lattice arrangement shown
in Fig. 2. Gray elements correspond to operations belonging to the
previous or the following QEC cycle. The X-type parity checks are
performed at the start of the cycle, while the Z-type parity checks
are executed immediately after the Z-type stabilizer measurements
from the previous cycle are completed. The duration of each
operation is given in Table 1. The arrow at the bottom indicates the
repetition of QEC cycles.
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computed dephasing times at the interaction point are given in Table 1.
For the CZ gates, we include this increased dephasing during the time tint
spent at the interaction point, while for the phase-correction pulses of
duration tcor we consider the same dephasing time as at the sweetspot. We
do not include deviations in the ideal single-qubit phases of the CZ gate
ϕ01= 0 and ϕ10= 0 and the two-qubit phase ϕ11= π, under the
assumption that gates are well tuned and that the low-frequency
components of the flux noise are echoed out9.
We now consider the coherence of leakage in the CZ gates, which in the

rotating frame of the qutrit is modeled as the exchanges

11j i 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L1

p
11j i þ eiϕ

ffiffiffiffiffiffiffi
4L1

p
02j i; (17)

02j i 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L1

p
02j i � e�iϕ

ffiffiffiffiffiffiffi
4L1

p
11j i; (18)

with L1 the leakage probability47. The phase ϕ can lead to an interference
effect between consecutive applications of the CZ gate across pairs of data
and ancilla qubits. In terms of the full density matrix, the dynamics of Eqs.
(17) and (18) leads to a coherent superposition of computational and
leaked states

ρ ¼
ρC ρcoh

ρcoh ρL

0
B@

1
CA; (19)

where ρC (resp. ρL) is the density matrix restricted to the computational
(leakage) subspace, while ρcoh are the off-diagonal elements between
these subspaces. We observe that varying the phase ϕ does not have an
effect on the dynamics of leakage or on the logical error rate. We attribute
this to the fact that each ancilla qubit interacts with a given data qubit only
once during a QEC cycle and it is measured at the end of it (and as such it
is dephased). Thus, the ancilla-qubit measurement between consecutive
CZ gates between the same pair prevents any interference effect.
Furthermore, setting ρcoh= 0, does not affect the projection and
signatures of leakage nor the logical error rate (at least for the logical
state prepared in the Z basis), leading to an incoherent leakage model. We
attribute this to the projection of leakage itself, which leaves the qubit into
a mostly incoherent mixture between the computational and leakage
subspaces. In the harmonic rotating frame, 2j i is expected to acquire an
additional phase during periods of idling, proportional to the anharmo-
nicity. However, following the reasoning presented above, we also believe
that this phase is irrelevant.
An incoherent leakage model offers significant computational advan-

tage for density-matrix simulations. For the case where ρcoh ≠ 0, the size of
the stored density matrix at any time is 46 × 94 (6 low-frequency data
qubits, 3 high-frequency data qutrits plus 1 ancilla qutrit currently
performing the parity check). Setting ρcoh= 0 reduces the size of the
density matrix to 46 × 54, since for each qutrit only the 2j i 2h j matrix
element is stored in addition to the computational subspace. Thus, for the
simulations in this work we rely on an incoherent model of leakage.
Measurements of duration tm are modeled by applying R#;tm=2RprojR#;tm=2,

where R#;tm=2 are periods of amplitude and phase damping and Rproj is a
projection operator. This projector is chosen according to the Born rule
and leaves the ancilla qubit in either 0j i, 1j i, or 2j i. We do not include any
declaration errors, which are defined as the measurement outcome being
different from the state of the ancilla qubit immediately after the
projection. Furthermore, we do not include any measurement-induced
leakage, any decrease in the relaxation time via the Purcell effect or any
measurement-induced dephasing via broadband sources. We do not
consider non-ideal projective measurements (leaving the ancilla in a
superposition of the computational states) due to the increased size of the
stored density matrix that this would lead to.

HMM FORMALISM
An HMM describes the time evolution of a set S ¼ sf g of not
directly observable states s (i.e., “hidden”), over a sequence of
independent observables o ¼ oif g. At each time step n the states
undergo a Markovian transition, such that the probability ps n½ � of
the system being in the state s is determined by the previous
distribution ps n� 1½ � over all s∈ S. These transitions can be
expressed via the transition matrix A, whose elements are the
conditional probabilities As;s0 :¼ Pðs½n� ¼ sjs½n� 1� ¼ s0Þ. A set of

observables is then generated with state-dependent probabilities
Boi ½n�;s :¼ Pðoi½n� ¼ oi js½n� ¼ sÞ. Inverting this problem, the infer-
ence of the posterior state probabilities ps n½ � from the realized
observables is possible via

ps½n� ¼ Pðs½n�jo½n�; o½n� 1�; ¼ ; o½1�Þ (20)

¼ Pðo½n�js½n�Þpsprior½n�
Pðo½n�Þ (21)

¼
Q

iPðoi ½n�js½n�Þpsprior½n�Q
iPðoi ½n�Þ

(22)

¼
Q

iBoi n½ �;spsprior n½ �P
s0
Q

iBoi n½ �;s0ps
0
prior n½ � ; (23)

where psprior n½ � is the prior probability

psprior n½ � ¼
X
s0

As;s0p
s0 n� 1½ �: (24)

We define Bo n½ �;s ¼
Q

iBoi n½ �;s , which for discrete oi constitute the
entries of the emission matrix B. In addition to the transition and
emission probabilities, the initial state probabilities ps n ¼ 0½ � are
needed for the computation of the evolution.
In the context of leakage detection, we consider only two

hidden states, S ¼ C;Lf g, namely whether the qubit is in the
computational (C) or the leakage subspace (L). The transition
matrix is parameterized in terms of the leakage and seepage
probabilities per QEC cycle. The leakage probability is estimated as
ΓC!L � NfluxL1 (for low L1), where Nflux is in how many CZ gates
the qubit is fluxed during a QEC cycle and L1 is the leakage
probability per CZ gate. The seepage probability is estimated by

ΓL!C � NfluxL2 þ 1� e
tc

T1=2


 �
, where tc is the QEC cycle duration

and T1 the relaxation time (see Table 1), while L2 is the seepage
contribution from the gate, where L2= 2L1 due to the dimension-
ality ratio between C and L for a qubit-qutrit pair47. The transition
matrix A is then given by

A ¼ 1� ΓC!L ΓL!C
ΓC!L 1� ΓL!C

� 
(25)

We assume that all qubits are initialized in C, which defines the
initial state distribution pC n ¼ 0½ � ¼ 1 used by the HMMs.
The HMMs consider the defects d Qið Þ � di on the neighboring

ancilla qubits Qi at each QEC cycle, occurring with probability pdi ,
as the observables for leakage detection. Explicitly, the emission
probabilities are parameterized in terms of the conditional
probabilities Bdi ½n�;s ¼ Pðdi ½n�jsÞ of observing a defect when the
modeled qubit is in s ¼ C or s ¼ L. We extract Bdi n½ �;C directly from
simulation, by averaging over all runs and all QEC cycles,
motivated by the possible extraction of this probability in
experiment. While this includes runs when the modeled qubit
was leaked, we observe no significant differences in the HMM
performance when we instead post-select out these periods of
leakage, which we attribute to the low L1 per CZ gate. We extract
Bdi n½ �;L from simulation over the QEC cycles when the leakage
probability pLDM Qið Þ as observed from the density matrix is above a
threshold of pLth ¼ 0:5. In the case of ancilla-qubit leakage, Bdi n½ �;L
depends on the values of the leakage conditional phases ϕL

stat and
ϕL
flus. Thus, in the case of randomized leakage conditional phases,

the HMMs are parameterized by the average Bdi n½ �;L. In the case of
data-qubit leakage, the extracted Bdi n½ �;L is ≈0.5 regardless of the
leakage conditional phases, as expected from the anti-commuting
stabilizers (see section "Projection and signatures of leakage").
For ancilla-qubit leakage detection, the analog measurement

outcome Im can be additionally considered as an observable, in
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which case o ¼ di ; Imf g. In this case, the state-dependent probability
is further parametrized by BIm n½ �; C ¼ P Im n½ �jCð Þ ¼ N 0 Im n½ �ð Þ þ
N 1 Im n½ �ð Þ and by BIm n½ �;L ¼ P Im n½ �jLð Þ ¼ N 2 Im n½ �ð Þ, where N i
are the Gaussian distributions of the analog responses in the IQ
plane, projected along a rotated in-phase axis I, following the same
treatment as in section “Transmon measurements in experiment” of
Supplementary Methods.
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